Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 
 171			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 172			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 173			[NEIGH_VAR_PROXY_QLEN] = 64,
 174			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 175			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 176			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 177		},
 178	},
 179	.gc_interval	= 30 * HZ,
 180	.gc_thresh1	= 128,
 181	.gc_thresh2	= 512,
 182	.gc_thresh3	= 1024,
 183};
 184EXPORT_SYMBOL(arp_tbl);
 185
 186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 187{
 188	switch (dev->type) {
 189	case ARPHRD_ETHER:
 190	case ARPHRD_FDDI:
 191	case ARPHRD_IEEE802:
 192		ip_eth_mc_map(addr, haddr);
 193		return 0;
 194	case ARPHRD_INFINIBAND:
 195		ip_ib_mc_map(addr, dev->broadcast, haddr);
 196		return 0;
 197	case ARPHRD_IPGRE:
 198		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	default:
 201		if (dir) {
 202			memcpy(haddr, dev->broadcast, dev->addr_len);
 203			return 0;
 204		}
 205	}
 206	return -EINVAL;
 207}
 208
 209
 210static u32 arp_hash(const void *pkey,
 211		    const struct net_device *dev,
 212		    __u32 *hash_rnd)
 213{
 214	return arp_hashfn(pkey, dev, hash_rnd);
 215}
 216
 217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 218{
 219	return neigh_key_eq32(neigh, pkey);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228	u32 inaddr_any = INADDR_ANY;
 229
 230	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 231		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 232
 233	addr = *(__be32 *)neigh->primary_key;
 234	rcu_read_lock();
 235	in_dev = __in_dev_get_rcu(dev);
 236	if (!in_dev) {
 237		rcu_read_unlock();
 238		return -EINVAL;
 239	}
 240
 241	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 242
 243	parms = in_dev->arp_parms;
 244	__neigh_parms_put(neigh->parms);
 245	neigh->parms = neigh_parms_clone(parms);
 246	rcu_read_unlock();
 247
 248	if (!dev->header_ops) {
 249		neigh->nud_state = NUD_NOARP;
 250		neigh->ops = &arp_direct_ops;
 251		neigh->output = neigh_direct_output;
 252	} else {
 253		/* Good devices (checked by reading texts, but only Ethernet is
 254		   tested)
 255
 256		   ARPHRD_ETHER: (ethernet, apfddi)
 257		   ARPHRD_FDDI: (fddi)
 258		   ARPHRD_IEEE802: (tr)
 259		   ARPHRD_METRICOM: (strip)
 260		   ARPHRD_ARCNET:
 261		   etc. etc. etc.
 262
 263		   ARPHRD_IPDDP will also work, if author repairs it.
 264		   I did not it, because this driver does not work even
 265		   in old paradigm.
 266		 */
 267
 268		if (neigh->type == RTN_MULTICAST) {
 269			neigh->nud_state = NUD_NOARP;
 270			arp_mc_map(addr, neigh->ha, dev, 1);
 271		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 272			neigh->nud_state = NUD_NOARP;
 273			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 274		} else if (neigh->type == RTN_BROADCAST ||
 275			   (dev->flags & IFF_POINTOPOINT)) {
 276			neigh->nud_state = NUD_NOARP;
 277			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 278		}
 279
 280		if (dev->header_ops->cache)
 281			neigh->ops = &arp_hh_ops;
 282		else
 283			neigh->ops = &arp_generic_ops;
 284
 285		if (neigh->nud_state & NUD_VALID)
 286			neigh->output = neigh->ops->connected_output;
 287		else
 288			neigh->output = neigh->ops->output;
 289	}
 290	return 0;
 291}
 292
 293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 294{
 295	dst_link_failure(skb);
 296	kfree_skb(skb);
 297}
 298
 299/* Create and send an arp packet. */
 300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 301			 struct net_device *dev, __be32 src_ip,
 302			 const unsigned char *dest_hw,
 303			 const unsigned char *src_hw,
 304			 const unsigned char *target_hw,
 305			 struct dst_entry *dst)
 306{
 307	struct sk_buff *skb;
 308
 309	/* arp on this interface. */
 310	if (dev->flags & IFF_NOARP)
 311		return;
 312
 313	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 314			 dest_hw, src_hw, target_hw);
 315	if (!skb)
 316		return;
 317
 318	skb_dst_set(skb, dst_clone(dst));
 319	arp_xmit(skb);
 320}
 321
 322void arp_send(int type, int ptype, __be32 dest_ip,
 323	      struct net_device *dev, __be32 src_ip,
 324	      const unsigned char *dest_hw, const unsigned char *src_hw,
 325	      const unsigned char *target_hw)
 326{
 327	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 328		     target_hw, NULL);
 329}
 330EXPORT_SYMBOL(arp_send);
 331
 332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 333{
 334	__be32 saddr = 0;
 335	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 336	struct net_device *dev = neigh->dev;
 337	__be32 target = *(__be32 *)neigh->primary_key;
 338	int probes = atomic_read(&neigh->probes);
 339	struct in_device *in_dev;
 340	struct dst_entry *dst = NULL;
 341
 342	rcu_read_lock();
 343	in_dev = __in_dev_get_rcu(dev);
 344	if (!in_dev) {
 345		rcu_read_unlock();
 346		return;
 347	}
 348	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 349	default:
 350	case 0:		/* By default announce any local IP */
 351		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 352					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 353			saddr = ip_hdr(skb)->saddr;
 354		break;
 355	case 1:		/* Restrict announcements of saddr in same subnet */
 356		if (!skb)
 357			break;
 358		saddr = ip_hdr(skb)->saddr;
 359		if (inet_addr_type_dev_table(dev_net(dev), dev,
 360					     saddr) == RTN_LOCAL) {
 361			/* saddr should be known to target */
 362			if (inet_addr_onlink(in_dev, target, saddr))
 363				break;
 364		}
 365		saddr = 0;
 366		break;
 367	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 368		break;
 369	}
 370	rcu_read_unlock();
 371
 372	if (!saddr)
 373		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 374
 375	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 376	if (probes < 0) {
 377		if (!(neigh->nud_state & NUD_VALID))
 378			pr_debug("trying to ucast probe in NUD_INVALID\n");
 379		neigh_ha_snapshot(dst_ha, neigh, dev);
 380		dst_hw = dst_ha;
 381	} else {
 382		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 383		if (probes < 0) {
 384			neigh_app_ns(neigh);
 385			return;
 386		}
 387	}
 388
 389	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 390		dst = skb_dst(skb);
 391	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 392		     dst_hw, dev->dev_addr, NULL, dst);
 393}
 394
 395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 396{
 397	struct net *net = dev_net(in_dev->dev);
 398	int scope;
 399
 400	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 401	case 0:	/* Reply, the tip is already validated */
 402		return 0;
 403	case 1:	/* Reply only if tip is configured on the incoming interface */
 404		sip = 0;
 405		scope = RT_SCOPE_HOST;
 406		break;
 407	case 2:	/*
 408		 * Reply only if tip is configured on the incoming interface
 409		 * and is in same subnet as sip
 410		 */
 411		scope = RT_SCOPE_HOST;
 412		break;
 413	case 3:	/* Do not reply for scope host addresses */
 414		sip = 0;
 415		scope = RT_SCOPE_LINK;
 416		in_dev = NULL;
 417		break;
 418	case 4:	/* Reserved */
 419	case 5:
 420	case 6:
 421	case 7:
 422		return 0;
 423	case 8:	/* Do not reply */
 424		return 1;
 425	default:
 426		return 0;
 427	}
 428	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 432{
 433	struct rtable *rt;
 434	int flag = 0;
 435	/*unsigned long now; */
 436	struct net *net = dev_net(dev);
 437
 438	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 439	if (IS_ERR(rt))
 440		return 1;
 441	if (rt->dst.dev != dev) {
 442		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 443		flag = 1;
 444	}
 445	ip_rt_put(rt);
 446	return flag;
 447}
 448
 449/*
 450 * Check if we can use proxy ARP for this path
 451 */
 452static inline int arp_fwd_proxy(struct in_device *in_dev,
 453				struct net_device *dev,	struct rtable *rt)
 454{
 455	struct in_device *out_dev;
 456	int imi, omi = -1;
 457
 458	if (rt->dst.dev == dev)
 459		return 0;
 460
 461	if (!IN_DEV_PROXY_ARP(in_dev))
 462		return 0;
 463	imi = IN_DEV_MEDIUM_ID(in_dev);
 464	if (imi == 0)
 465		return 1;
 466	if (imi == -1)
 467		return 0;
 468
 469	/* place to check for proxy_arp for routes */
 470
 471	out_dev = __in_dev_get_rcu(rt->dst.dev);
 472	if (out_dev)
 473		omi = IN_DEV_MEDIUM_ID(out_dev);
 474
 475	return omi != imi && omi != -1;
 476}
 477
 478/*
 479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 480 *
 481 * RFC3069 supports proxy arp replies back to the same interface.  This
 482 * is done to support (ethernet) switch features, like RFC 3069, where
 483 * the individual ports are not allowed to communicate with each
 484 * other, BUT they are allowed to talk to the upstream router.  As
 485 * described in RFC 3069, it is possible to allow these hosts to
 486 * communicate through the upstream router, by proxy_arp'ing.
 487 *
 488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 489 *
 490 *  This technology is known by different names:
 491 *    In RFC 3069 it is called VLAN Aggregation.
 492 *    Cisco and Allied Telesyn call it Private VLAN.
 493 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 494 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 495 *
 496 */
 497static inline int arp_fwd_pvlan(struct in_device *in_dev,
 498				struct net_device *dev,	struct rtable *rt,
 499				__be32 sip, __be32 tip)
 500{
 501	/* Private VLAN is only concerned about the same ethernet segment */
 502	if (rt->dst.dev != dev)
 503		return 0;
 504
 505	/* Don't reply on self probes (often done by windowz boxes)*/
 506	if (sip == tip)
 507		return 0;
 508
 509	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 510		return 1;
 511	else
 512		return 0;
 513}
 514
 515/*
 516 *	Interface to link layer: send routine and receive handler.
 517 */
 518
 519/*
 520 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 521 *	message.
 522 */
 523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 524			   struct net_device *dev, __be32 src_ip,
 525			   const unsigned char *dest_hw,
 526			   const unsigned char *src_hw,
 527			   const unsigned char *target_hw)
 528{
 529	struct sk_buff *skb;
 530	struct arphdr *arp;
 531	unsigned char *arp_ptr;
 532	int hlen = LL_RESERVED_SPACE(dev);
 533	int tlen = dev->needed_tailroom;
 534
 535	/*
 536	 *	Allocate a buffer
 537	 */
 538
 539	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 540	if (!skb)
 541		return NULL;
 542
 543	skb_reserve(skb, hlen);
 544	skb_reset_network_header(skb);
 545	arp = skb_put(skb, arp_hdr_len(dev));
 546	skb->dev = dev;
 547	skb->protocol = htons(ETH_P_ARP);
 548	if (!src_hw)
 549		src_hw = dev->dev_addr;
 550	if (!dest_hw)
 551		dest_hw = dev->broadcast;
 552
 553	/*
 554	 *	Fill the device header for the ARP frame
 555	 */
 556	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 557		goto out;
 558
 559	/*
 560	 * Fill out the arp protocol part.
 561	 *
 562	 * The arp hardware type should match the device type, except for FDDI,
 563	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 564	 */
 565	/*
 566	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 567	 *	DIX code for the protocol. Make these device structure fields.
 568	 */
 569	switch (dev->type) {
 570	default:
 571		arp->ar_hrd = htons(dev->type);
 572		arp->ar_pro = htons(ETH_P_IP);
 573		break;
 574
 575#if IS_ENABLED(CONFIG_AX25)
 576	case ARPHRD_AX25:
 577		arp->ar_hrd = htons(ARPHRD_AX25);
 578		arp->ar_pro = htons(AX25_P_IP);
 579		break;
 580
 581#if IS_ENABLED(CONFIG_NETROM)
 582	case ARPHRD_NETROM:
 583		arp->ar_hrd = htons(ARPHRD_NETROM);
 584		arp->ar_pro = htons(AX25_P_IP);
 585		break;
 586#endif
 587#endif
 588
 589#if IS_ENABLED(CONFIG_FDDI)
 590	case ARPHRD_FDDI:
 591		arp->ar_hrd = htons(ARPHRD_ETHER);
 592		arp->ar_pro = htons(ETH_P_IP);
 593		break;
 594#endif
 595	}
 596
 597	arp->ar_hln = dev->addr_len;
 598	arp->ar_pln = 4;
 599	arp->ar_op = htons(type);
 600
 601	arp_ptr = (unsigned char *)(arp + 1);
 602
 603	memcpy(arp_ptr, src_hw, dev->addr_len);
 604	arp_ptr += dev->addr_len;
 605	memcpy(arp_ptr, &src_ip, 4);
 606	arp_ptr += 4;
 607
 608	switch (dev->type) {
 609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 610	case ARPHRD_IEEE1394:
 611		break;
 612#endif
 613	default:
 614		if (target_hw)
 615			memcpy(arp_ptr, target_hw, dev->addr_len);
 616		else
 617			memset(arp_ptr, 0, dev->addr_len);
 618		arp_ptr += dev->addr_len;
 619	}
 620	memcpy(arp_ptr, &dest_ip, 4);
 621
 622	return skb;
 623
 624out:
 625	kfree_skb(skb);
 626	return NULL;
 627}
 628EXPORT_SYMBOL(arp_create);
 629
 630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 631{
 632	return dev_queue_xmit(skb);
 633}
 634
 635/*
 636 *	Send an arp packet.
 637 */
 638void arp_xmit(struct sk_buff *skb)
 639{
 640	/* Send it off, maybe filter it using firewalling first.  */
 641	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 642		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 643		arp_xmit_finish);
 644}
 645EXPORT_SYMBOL(arp_xmit);
 646
 647static bool arp_is_garp(struct net *net, struct net_device *dev,
 648			int *addr_type, __be16 ar_op,
 649			__be32 sip, __be32 tip,
 650			unsigned char *sha, unsigned char *tha)
 651{
 652	bool is_garp = tip == sip;
 653
 654	/* Gratuitous ARP _replies_ also require target hwaddr to be
 655	 * the same as source.
 656	 */
 657	if (is_garp && ar_op == htons(ARPOP_REPLY))
 658		is_garp =
 659			/* IPv4 over IEEE 1394 doesn't provide target
 660			 * hardware address field in its ARP payload.
 661			 */
 662			tha &&
 663			!memcmp(tha, sha, dev->addr_len);
 664
 665	if (is_garp) {
 666		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 667		if (*addr_type != RTN_UNICAST)
 668			is_garp = false;
 669	}
 670	return is_garp;
 671}
 672
 673/*
 674 *	Process an arp request.
 675 */
 676
 677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 678{
 679	struct net_device *dev = skb->dev;
 680	struct in_device *in_dev = __in_dev_get_rcu(dev);
 681	struct arphdr *arp;
 682	unsigned char *arp_ptr;
 683	struct rtable *rt;
 684	unsigned char *sha;
 685	unsigned char *tha = NULL;
 686	__be32 sip, tip;
 687	u16 dev_type = dev->type;
 688	int addr_type;
 689	struct neighbour *n;
 690	struct dst_entry *reply_dst = NULL;
 691	bool is_garp = false;
 692
 693	/* arp_rcv below verifies the ARP header and verifies the device
 694	 * is ARP'able.
 695	 */
 696
 697	if (!in_dev)
 698		goto out_free_skb;
 699
 700	arp = arp_hdr(skb);
 701
 702	switch (dev_type) {
 703	default:
 704		if (arp->ar_pro != htons(ETH_P_IP) ||
 705		    htons(dev_type) != arp->ar_hrd)
 706			goto out_free_skb;
 707		break;
 708	case ARPHRD_ETHER:
 709	case ARPHRD_FDDI:
 710	case ARPHRD_IEEE802:
 711		/*
 712		 * ETHERNET, and Fibre Channel (which are IEEE 802
 713		 * devices, according to RFC 2625) devices will accept ARP
 714		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 715		 * This is the case also of FDDI, where the RFC 1390 says that
 716		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 717		 * however, to be more robust, we'll accept both 1 (Ethernet)
 718		 * or 6 (IEEE 802.2)
 719		 */
 720		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 721		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 722		    arp->ar_pro != htons(ETH_P_IP))
 723			goto out_free_skb;
 724		break;
 725	case ARPHRD_AX25:
 726		if (arp->ar_pro != htons(AX25_P_IP) ||
 727		    arp->ar_hrd != htons(ARPHRD_AX25))
 728			goto out_free_skb;
 729		break;
 730	case ARPHRD_NETROM:
 731		if (arp->ar_pro != htons(AX25_P_IP) ||
 732		    arp->ar_hrd != htons(ARPHRD_NETROM))
 733			goto out_free_skb;
 734		break;
 735	}
 736
 737	/* Understand only these message types */
 738
 739	if (arp->ar_op != htons(ARPOP_REPLY) &&
 740	    arp->ar_op != htons(ARPOP_REQUEST))
 741		goto out_free_skb;
 742
 743/*
 744 *	Extract fields
 745 */
 746	arp_ptr = (unsigned char *)(arp + 1);
 747	sha	= arp_ptr;
 748	arp_ptr += dev->addr_len;
 749	memcpy(&sip, arp_ptr, 4);
 750	arp_ptr += 4;
 751	switch (dev_type) {
 752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 753	case ARPHRD_IEEE1394:
 754		break;
 755#endif
 756	default:
 757		tha = arp_ptr;
 758		arp_ptr += dev->addr_len;
 759	}
 760	memcpy(&tip, arp_ptr, 4);
 761/*
 762 *	Check for bad requests for 127.x.x.x and requests for multicast
 763 *	addresses.  If this is one such, delete it.
 764 */
 765	if (ipv4_is_multicast(tip) ||
 766	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 767		goto out_free_skb;
 768
 769 /*
 770  *	For some 802.11 wireless deployments (and possibly other networks),
 771  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 772  *	and thus should not be accepted.
 773  */
 774	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 775		goto out_free_skb;
 776
 777/*
 778 *     Special case: We must set Frame Relay source Q.922 address
 779 */
 780	if (dev_type == ARPHRD_DLCI)
 781		sha = dev->broadcast;
 782
 783/*
 784 *  Process entry.  The idea here is we want to send a reply if it is a
 785 *  request for us or if it is a request for someone else that we hold
 786 *  a proxy for.  We want to add an entry to our cache if it is a reply
 787 *  to us or if it is a request for our address.
 788 *  (The assumption for this last is that if someone is requesting our
 789 *  address, they are probably intending to talk to us, so it saves time
 790 *  if we cache their address.  Their address is also probably not in
 791 *  our cache, since ours is not in their cache.)
 792 *
 793 *  Putting this another way, we only care about replies if they are to
 794 *  us, in which case we add them to the cache.  For requests, we care
 795 *  about those for us and those for our proxies.  We reply to both,
 796 *  and in the case of requests for us we add the requester to the arp
 797 *  cache.
 798 */
 799
 800	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 801		reply_dst = (struct dst_entry *)
 802			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 803						    GFP_ATOMIC);
 804
 805	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 806	if (sip == 0) {
 807		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 808		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 809		    !arp_ignore(in_dev, sip, tip))
 810			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 811				     sha, dev->dev_addr, sha, reply_dst);
 812		goto out_consume_skb;
 813	}
 814
 815	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 816	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 817
 818		rt = skb_rtable(skb);
 819		addr_type = rt->rt_type;
 820
 821		if (addr_type == RTN_LOCAL) {
 822			int dont_send;
 823
 824			dont_send = arp_ignore(in_dev, sip, tip);
 825			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 826				dont_send = arp_filter(sip, tip, dev);
 827			if (!dont_send) {
 828				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 829				if (n) {
 830					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 831						     sip, dev, tip, sha,
 832						     dev->dev_addr, sha,
 833						     reply_dst);
 834					neigh_release(n);
 835				}
 836			}
 837			goto out_consume_skb;
 838		} else if (IN_DEV_FORWARD(in_dev)) {
 839			if (addr_type == RTN_UNICAST  &&
 840			    (arp_fwd_proxy(in_dev, dev, rt) ||
 841			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 842			     (rt->dst.dev != dev &&
 843			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 844				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 845				if (n)
 846					neigh_release(n);
 847
 848				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 849				    skb->pkt_type == PACKET_HOST ||
 850				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855				} else {
 856					pneigh_enqueue(&arp_tbl,
 857						       in_dev->arp_parms, skb);
 858					goto out_free_dst;
 859				}
 860				goto out_consume_skb;
 861			}
 862		}
 863	}
 864
 865	/* Update our ARP tables */
 866
 867	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 868
 869	addr_type = -1;
 870	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 871		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 872				      sip, tip, sha, tha);
 873	}
 874
 875	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 876		/* Unsolicited ARP is not accepted by default.
 877		   It is possible, that this option should be enabled for some
 878		   devices (strip is candidate)
 879		 */
 880		if (!n &&
 881		    (is_garp ||
 882		     (arp->ar_op == htons(ARPOP_REPLY) &&
 883		      (addr_type == RTN_UNICAST ||
 884		       (addr_type < 0 &&
 885			/* postpone calculation to as late as possible */
 886			inet_addr_type_dev_table(net, dev, sip) ==
 887				RTN_UNICAST)))))
 888			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 889	}
 890
 891	if (n) {
 892		int state = NUD_REACHABLE;
 893		int override;
 894
 895		/* If several different ARP replies follows back-to-back,
 896		   use the FIRST one. It is possible, if several proxy
 897		   agents are active. Taking the first reply prevents
 898		   arp trashing and chooses the fastest router.
 899		 */
 900		override = time_after(jiffies,
 901				      n->updated +
 902				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 903			   is_garp;
 904
 905		/* Broadcast replies and request packets
 906		   do not assert neighbour reachability.
 907		 */
 908		if (arp->ar_op != htons(ARPOP_REPLY) ||
 909		    skb->pkt_type != PACKET_HOST)
 910			state = NUD_STALE;
 911		neigh_update(n, sha, state,
 912			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 913		neigh_release(n);
 914	}
 915
 916out_consume_skb:
 917	consume_skb(skb);
 918
 919out_free_dst:
 920	dst_release(reply_dst);
 921	return NET_RX_SUCCESS;
 922
 923out_free_skb:
 924	kfree_skb(skb);
 925	return NET_RX_DROP;
 926}
 927
 928static void parp_redo(struct sk_buff *skb)
 929{
 930	arp_process(dev_net(skb->dev), NULL, skb);
 931}
 932
 933static int arp_is_multicast(const void *pkey)
 934{
 935	return ipv4_is_multicast(*((__be32 *)pkey));
 936}
 937
 938/*
 939 *	Receive an arp request from the device layer.
 940 */
 941
 942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 943		   struct packet_type *pt, struct net_device *orig_dev)
 944{
 945	const struct arphdr *arp;
 946
 947	/* do not tweak dropwatch on an ARP we will ignore */
 948	if (dev->flags & IFF_NOARP ||
 949	    skb->pkt_type == PACKET_OTHERHOST ||
 950	    skb->pkt_type == PACKET_LOOPBACK)
 951		goto consumeskb;
 952
 953	skb = skb_share_check(skb, GFP_ATOMIC);
 954	if (!skb)
 955		goto out_of_mem;
 956
 957	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 958	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 959		goto freeskb;
 960
 961	arp = arp_hdr(skb);
 962	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 963		goto freeskb;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 968		       dev_net(dev), NULL, skb, dev, NULL,
 969		       arp_process);
 970
 971consumeskb:
 972	consume_skb(skb);
 973	return NET_RX_SUCCESS;
 974freeskb:
 975	kfree_skb(skb);
 976out_of_mem:
 977	return NET_RX_DROP;
 978}
 979
 980/*
 981 *	User level interface (ioctl)
 982 */
 983
 984/*
 985 *	Set (create) an ARP cache entry.
 986 */
 987
 988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 989{
 990	if (!dev) {
 991		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 992		return 0;
 993	}
 994	if (__in_dev_get_rtnl(dev)) {
 995		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 996		return 0;
 997	}
 998	return -ENXIO;
 999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002		struct net_device *dev)
1003{
1004	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007	if (mask && mask != htonl(0xFFFFFFFF))
1008		return -EINVAL;
1009	if (!dev && (r->arp_flags & ATF_COM)) {
1010		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011				      r->arp_ha.sa_data);
1012		if (!dev)
1013			return -ENODEV;
1014	}
1015	if (mask) {
1016		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017			return -ENOBUFS;
1018		return 0;
1019	}
1020
1021	return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025		       struct net_device *dev)
1026{
1027	__be32 ip;
1028	struct neighbour *neigh;
1029	int err;
1030
1031	if (r->arp_flags & ATF_PUBL)
1032		return arp_req_set_public(net, r, dev);
1033
1034	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035	if (r->arp_flags & ATF_PERM)
1036		r->arp_flags |= ATF_COM;
1037	if (!dev) {
1038		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040		if (IS_ERR(rt))
1041			return PTR_ERR(rt);
1042		dev = rt->dst.dev;
1043		ip_rt_put(rt);
1044		if (!dev)
1045			return -EINVAL;
1046	}
1047	switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049	case ARPHRD_FDDI:
1050		/*
1051		 * According to RFC 1390, FDDI devices should accept ARP
1052		 * hardware types of 1 (Ethernet).  However, to be more
1053		 * robust, we'll accept hardware types of either 1 (Ethernet)
1054		 * or 6 (IEEE 802.2).
1055		 */
1056		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059			return -EINVAL;
1060		break;
1061#endif
1062	default:
1063		if (r->arp_ha.sa_family != dev->type)
1064			return -EINVAL;
1065		break;
1066	}
1067
1068	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069	err = PTR_ERR(neigh);
1070	if (!IS_ERR(neigh)) {
1071		unsigned int state = NUD_STALE;
1072		if (r->arp_flags & ATF_PERM)
1073			state = NUD_PERMANENT;
1074		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075				   r->arp_ha.sa_data : NULL, state,
1076				   NEIGH_UPDATE_F_OVERRIDE |
1077				   NEIGH_UPDATE_F_ADMIN, 0);
1078		neigh_release(neigh);
1079	}
1080	return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085	if (neigh->nud_state&NUD_PERMANENT)
1086		return ATF_PERM | ATF_COM;
1087	else if (neigh->nud_state&NUD_VALID)
1088		return ATF_COM;
1089	else
1090		return 0;
1091}
1092
1093/*
1094 *	Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100	struct neighbour *neigh;
1101	int err = -ENXIO;
1102
1103	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104	if (neigh) {
1105		if (!(neigh->nud_state & NUD_NOARP)) {
1106			read_lock_bh(&neigh->lock);
1107			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108			r->arp_flags = arp_state_to_flags(neigh);
1109			read_unlock_bh(&neigh->lock);
1110			r->arp_ha.sa_family = dev->type;
1111			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112			err = 0;
1113		}
1114		neigh_release(neigh);
1115	}
1116	return err;
1117}
1118
1119static int arp_invalidate(struct net_device *dev, __be32 ip)
1120{
1121	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122	int err = -ENXIO;
1123	struct neigh_table *tbl = &arp_tbl;
1124
1125	if (neigh) {
 
 
 
 
 
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN, 0);
1130		write_lock_bh(&tbl->lock);
1131		neigh_release(neigh);
1132		neigh_remove_one(neigh, tbl);
1133		write_unlock_bh(&tbl->lock);
1134	}
1135
1136	return err;
1137}
1138
1139static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140		struct net_device *dev)
1141{
1142	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144
1145	if (mask == htonl(0xFFFFFFFF))
1146		return pneigh_delete(&arp_tbl, net, &ip, dev);
1147
1148	if (mask)
1149		return -EINVAL;
1150
1151	return arp_req_set_proxy(net, dev, 0);
1152}
1153
1154static int arp_req_delete(struct net *net, struct arpreq *r,
1155			  struct net_device *dev)
1156{
1157	__be32 ip;
1158
1159	if (r->arp_flags & ATF_PUBL)
1160		return arp_req_delete_public(net, r, dev);
1161
1162	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163	if (!dev) {
1164		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165		if (IS_ERR(rt))
1166			return PTR_ERR(rt);
1167		dev = rt->dst.dev;
1168		ip_rt_put(rt);
1169		if (!dev)
1170			return -EINVAL;
1171	}
1172	return arp_invalidate(dev, ip);
1173}
1174
1175/*
1176 *	Handle an ARP layer I/O control request.
1177 */
1178
1179int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180{
1181	int err;
1182	struct arpreq r;
1183	struct net_device *dev = NULL;
1184
1185	switch (cmd) {
1186	case SIOCDARP:
1187	case SIOCSARP:
1188		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189			return -EPERM;
1190		fallthrough;
1191	case SIOCGARP:
1192		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193		if (err)
1194			return -EFAULT;
1195		break;
1196	default:
1197		return -EINVAL;
1198	}
1199
1200	if (r.arp_pa.sa_family != AF_INET)
1201		return -EPFNOSUPPORT;
1202
1203	if (!(r.arp_flags & ATF_PUBL) &&
1204	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205		return -EINVAL;
1206	if (!(r.arp_flags & ATF_NETMASK))
1207		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208							   htonl(0xFFFFFFFFUL);
1209	rtnl_lock();
1210	if (r.arp_dev[0]) {
1211		err = -ENODEV;
1212		dev = __dev_get_by_name(net, r.arp_dev);
1213		if (!dev)
1214			goto out;
1215
1216		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217		if (!r.arp_ha.sa_family)
1218			r.arp_ha.sa_family = dev->type;
1219		err = -EINVAL;
1220		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221			goto out;
1222	} else if (cmd == SIOCGARP) {
1223		err = -ENODEV;
1224		goto out;
1225	}
1226
1227	switch (cmd) {
1228	case SIOCDARP:
1229		err = arp_req_delete(net, &r, dev);
1230		break;
1231	case SIOCSARP:
1232		err = arp_req_set(net, &r, dev);
1233		break;
1234	case SIOCGARP:
1235		err = arp_req_get(&r, dev);
1236		break;
1237	}
1238out:
1239	rtnl_unlock();
1240	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241		err = -EFAULT;
1242	return err;
1243}
1244
1245static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246			    void *ptr)
1247{
1248	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249	struct netdev_notifier_change_info *change_info;
 
 
1250
1251	switch (event) {
1252	case NETDEV_CHANGEADDR:
1253		neigh_changeaddr(&arp_tbl, dev);
1254		rt_cache_flush(dev_net(dev));
1255		break;
1256	case NETDEV_CHANGE:
1257		change_info = ptr;
1258		if (change_info->flags_changed & IFF_NOARP)
1259			neigh_changeaddr(&arp_tbl, dev);
1260		if (!netif_carrier_ok(dev))
 
 
 
 
 
 
 
1261			neigh_carrier_down(&arp_tbl, dev);
1262		break;
1263	default:
1264		break;
1265	}
1266
1267	return NOTIFY_DONE;
1268}
1269
1270static struct notifier_block arp_netdev_notifier = {
1271	.notifier_call = arp_netdev_event,
1272};
1273
1274/* Note, that it is not on notifier chain.
1275   It is necessary, that this routine was called after route cache will be
1276   flushed.
1277 */
1278void arp_ifdown(struct net_device *dev)
1279{
1280	neigh_ifdown(&arp_tbl, dev);
1281}
1282
1283
1284/*
1285 *	Called once on startup.
1286 */
1287
1288static struct packet_type arp_packet_type __read_mostly = {
1289	.type =	cpu_to_be16(ETH_P_ARP),
1290	.func =	arp_rcv,
1291};
1292
1293static int arp_proc_init(void);
1294
1295void __init arp_init(void)
1296{
1297	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298
1299	dev_add_pack(&arp_packet_type);
1300	arp_proc_init();
1301#ifdef CONFIG_SYSCTL
1302	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303#endif
1304	register_netdevice_notifier(&arp_netdev_notifier);
1305}
1306
1307#ifdef CONFIG_PROC_FS
1308#if IS_ENABLED(CONFIG_AX25)
1309
1310/* ------------------------------------------------------------------------ */
1311/*
1312 *	ax25 -> ASCII conversion
1313 */
1314static void ax2asc2(ax25_address *a, char *buf)
1315{
1316	char c, *s;
1317	int n;
1318
1319	for (n = 0, s = buf; n < 6; n++) {
1320		c = (a->ax25_call[n] >> 1) & 0x7F;
1321
1322		if (c != ' ')
1323			*s++ = c;
1324	}
1325
1326	*s++ = '-';
1327	n = (a->ax25_call[6] >> 1) & 0x0F;
1328	if (n > 9) {
1329		*s++ = '1';
1330		n -= 10;
1331	}
1332
1333	*s++ = n + '0';
1334	*s++ = '\0';
1335
1336	if (*buf == '\0' || *buf == '-') {
1337		buf[0] = '*';
1338		buf[1] = '\0';
1339	}
1340}
1341#endif /* CONFIG_AX25 */
1342
1343#define HBUFFERLEN 30
1344
1345static void arp_format_neigh_entry(struct seq_file *seq,
1346				   struct neighbour *n)
1347{
1348	char hbuffer[HBUFFERLEN];
1349	int k, j;
1350	char tbuf[16];
1351	struct net_device *dev = n->dev;
1352	int hatype = dev->type;
1353
1354	read_lock(&n->lock);
1355	/* Convert hardware address to XX:XX:XX:XX ... form. */
1356#if IS_ENABLED(CONFIG_AX25)
1357	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358		ax2asc2((ax25_address *)n->ha, hbuffer);
1359	else {
1360#endif
1361	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364		hbuffer[k++] = ':';
1365	}
1366	if (k != 0)
1367		--k;
1368	hbuffer[k] = 0;
1369#if IS_ENABLED(CONFIG_AX25)
1370	}
1371#endif
1372	sprintf(tbuf, "%pI4", n->primary_key);
1373	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375	read_unlock(&n->lock);
1376}
1377
1378static void arp_format_pneigh_entry(struct seq_file *seq,
1379				    struct pneigh_entry *n)
1380{
1381	struct net_device *dev = n->dev;
1382	int hatype = dev ? dev->type : 0;
1383	char tbuf[16];
1384
1385	sprintf(tbuf, "%pI4", n->key);
1386	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388		   dev ? dev->name : "*");
1389}
1390
1391static int arp_seq_show(struct seq_file *seq, void *v)
1392{
1393	if (v == SEQ_START_TOKEN) {
1394		seq_puts(seq, "IP address       HW type     Flags       "
1395			      "HW address            Mask     Device\n");
1396	} else {
1397		struct neigh_seq_state *state = seq->private;
1398
1399		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400			arp_format_pneigh_entry(seq, v);
1401		else
1402			arp_format_neigh_entry(seq, v);
1403	}
1404
1405	return 0;
1406}
1407
1408static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409{
1410	/* Don't want to confuse "arp -a" w/ magic entries,
1411	 * so we tell the generic iterator to skip NUD_NOARP.
1412	 */
1413	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414}
1415
1416/* ------------------------------------------------------------------------ */
1417
1418static const struct seq_operations arp_seq_ops = {
1419	.start	= arp_seq_start,
1420	.next	= neigh_seq_next,
1421	.stop	= neigh_seq_stop,
1422	.show	= arp_seq_show,
1423};
1424
1425/* ------------------------------------------------------------------------ */
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430			sizeof(struct neigh_seq_state)))
1431		return -ENOMEM;
1432	return 0;
1433}
1434
1435static void __net_exit arp_net_exit(struct net *net)
1436{
1437	remove_proc_entry("arp", net->proc_net);
1438}
1439
1440static struct pernet_operations arp_net_ops = {
1441	.init = arp_net_init,
1442	.exit = arp_net_exit,
1443};
1444
1445static int __init arp_proc_init(void)
1446{
1447	return register_pernet_subsys(&arp_net_ops);
1448}
1449
1450#else /* CONFIG_PROC_FS */
1451
1452static int __init arp_proc_init(void)
1453{
1454	return 0;
 
 
 
1455}
1456
1457#endif /* CONFIG_PROC_FS */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
 172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 174			[NEIGH_VAR_PROXY_QLEN] = 64,
 175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 178		},
 179	},
 180	.gc_interval	= 30 * HZ,
 181	.gc_thresh1	= 128,
 182	.gc_thresh2	= 512,
 183	.gc_thresh3	= 1024,
 184};
 185EXPORT_SYMBOL(arp_tbl);
 186
 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 188{
 189	switch (dev->type) {
 190	case ARPHRD_ETHER:
 191	case ARPHRD_FDDI:
 192	case ARPHRD_IEEE802:
 193		ip_eth_mc_map(addr, haddr);
 194		return 0;
 195	case ARPHRD_INFINIBAND:
 196		ip_ib_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	case ARPHRD_IPGRE:
 199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 200		return 0;
 201	default:
 202		if (dir) {
 203			memcpy(haddr, dev->broadcast, dev->addr_len);
 204			return 0;
 205		}
 206	}
 207	return -EINVAL;
 208}
 209
 210
 211static u32 arp_hash(const void *pkey,
 212		    const struct net_device *dev,
 213		    __u32 *hash_rnd)
 214{
 215	return arp_hashfn(pkey, dev, hash_rnd);
 216}
 217
 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 219{
 220	return neigh_key_eq32(neigh, pkey);
 221}
 222
 223static int arp_constructor(struct neighbour *neigh)
 224{
 225	__be32 addr;
 226	struct net_device *dev = neigh->dev;
 227	struct in_device *in_dev;
 228	struct neigh_parms *parms;
 229	u32 inaddr_any = INADDR_ANY;
 230
 231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 233
 234	addr = *(__be32 *)neigh->primary_key;
 235	rcu_read_lock();
 236	in_dev = __in_dev_get_rcu(dev);
 237	if (!in_dev) {
 238		rcu_read_unlock();
 239		return -EINVAL;
 240	}
 241
 242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 243
 244	parms = in_dev->arp_parms;
 245	__neigh_parms_put(neigh->parms);
 246	neigh->parms = neigh_parms_clone(parms);
 247	rcu_read_unlock();
 248
 249	if (!dev->header_ops) {
 250		neigh->nud_state = NUD_NOARP;
 251		neigh->ops = &arp_direct_ops;
 252		neigh->output = neigh_direct_output;
 253	} else {
 254		/* Good devices (checked by reading texts, but only Ethernet is
 255		   tested)
 256
 257		   ARPHRD_ETHER: (ethernet, apfddi)
 258		   ARPHRD_FDDI: (fddi)
 259		   ARPHRD_IEEE802: (tr)
 260		   ARPHRD_METRICOM: (strip)
 261		   ARPHRD_ARCNET:
 262		   etc. etc. etc.
 263
 264		   ARPHRD_IPDDP will also work, if author repairs it.
 265		   I did not it, because this driver does not work even
 266		   in old paradigm.
 267		 */
 268
 269		if (neigh->type == RTN_MULTICAST) {
 270			neigh->nud_state = NUD_NOARP;
 271			arp_mc_map(addr, neigh->ha, dev, 1);
 272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 275		} else if (neigh->type == RTN_BROADCAST ||
 276			   (dev->flags & IFF_POINTOPOINT)) {
 277			neigh->nud_state = NUD_NOARP;
 278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 279		}
 280
 281		if (dev->header_ops->cache)
 282			neigh->ops = &arp_hh_ops;
 283		else
 284			neigh->ops = &arp_generic_ops;
 285
 286		if (neigh->nud_state & NUD_VALID)
 287			neigh->output = neigh->ops->connected_output;
 288		else
 289			neigh->output = neigh->ops->output;
 290	}
 291	return 0;
 292}
 293
 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 295{
 296	dst_link_failure(skb);
 297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
 298}
 299
 300/* Create and send an arp packet. */
 301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 302			 struct net_device *dev, __be32 src_ip,
 303			 const unsigned char *dest_hw,
 304			 const unsigned char *src_hw,
 305			 const unsigned char *target_hw,
 306			 struct dst_entry *dst)
 307{
 308	struct sk_buff *skb;
 309
 310	/* arp on this interface. */
 311	if (dev->flags & IFF_NOARP)
 312		return;
 313
 314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 315			 dest_hw, src_hw, target_hw);
 316	if (!skb)
 317		return;
 318
 319	skb_dst_set(skb, dst_clone(dst));
 320	arp_xmit(skb);
 321}
 322
 323void arp_send(int type, int ptype, __be32 dest_ip,
 324	      struct net_device *dev, __be32 src_ip,
 325	      const unsigned char *dest_hw, const unsigned char *src_hw,
 326	      const unsigned char *target_hw)
 327{
 328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 329		     target_hw, NULL);
 330}
 331EXPORT_SYMBOL(arp_send);
 332
 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 334{
 335	__be32 saddr = 0;
 336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 337	struct net_device *dev = neigh->dev;
 338	__be32 target = *(__be32 *)neigh->primary_key;
 339	int probes = atomic_read(&neigh->probes);
 340	struct in_device *in_dev;
 341	struct dst_entry *dst = NULL;
 342
 343	rcu_read_lock();
 344	in_dev = __in_dev_get_rcu(dev);
 345	if (!in_dev) {
 346		rcu_read_unlock();
 347		return;
 348	}
 349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 350	default:
 351	case 0:		/* By default announce any local IP */
 352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 354			saddr = ip_hdr(skb)->saddr;
 355		break;
 356	case 1:		/* Restrict announcements of saddr in same subnet */
 357		if (!skb)
 358			break;
 359		saddr = ip_hdr(skb)->saddr;
 360		if (inet_addr_type_dev_table(dev_net(dev), dev,
 361					     saddr) == RTN_LOCAL) {
 362			/* saddr should be known to target */
 363			if (inet_addr_onlink(in_dev, target, saddr))
 364				break;
 365		}
 366		saddr = 0;
 367		break;
 368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 369		break;
 370	}
 371	rcu_read_unlock();
 372
 373	if (!saddr)
 374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 375
 376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 377	if (probes < 0) {
 378		if (!(neigh->nud_state & NUD_VALID))
 379			pr_debug("trying to ucast probe in NUD_INVALID\n");
 380		neigh_ha_snapshot(dst_ha, neigh, dev);
 381		dst_hw = dst_ha;
 382	} else {
 383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 384		if (probes < 0) {
 385			neigh_app_ns(neigh);
 386			return;
 387		}
 388	}
 389
 390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 391		dst = skb_dst(skb);
 392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 393		     dst_hw, dev->dev_addr, NULL, dst);
 394}
 395
 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 397{
 398	struct net *net = dev_net(in_dev->dev);
 399	int scope;
 400
 401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 402	case 0:	/* Reply, the tip is already validated */
 403		return 0;
 404	case 1:	/* Reply only if tip is configured on the incoming interface */
 405		sip = 0;
 406		scope = RT_SCOPE_HOST;
 407		break;
 408	case 2:	/*
 409		 * Reply only if tip is configured on the incoming interface
 410		 * and is in same subnet as sip
 411		 */
 412		scope = RT_SCOPE_HOST;
 413		break;
 414	case 3:	/* Do not reply for scope host addresses */
 415		sip = 0;
 416		scope = RT_SCOPE_LINK;
 417		in_dev = NULL;
 418		break;
 419	case 4:	/* Reserved */
 420	case 5:
 421	case 6:
 422	case 7:
 423		return 0;
 424	case 8:	/* Do not reply */
 425		return 1;
 426	default:
 427		return 0;
 428	}
 429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 430}
 431
 432static int arp_accept(struct in_device *in_dev, __be32 sip)
 433{
 434	struct net *net = dev_net(in_dev->dev);
 435	int scope = RT_SCOPE_LINK;
 436
 437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
 438	case 0: /* Don't create new entries from garp */
 439		return 0;
 440	case 1: /* Create new entries from garp */
 441		return 1;
 442	case 2: /* Create a neighbor in the arp table only if sip
 443		 * is in the same subnet as an address configured
 444		 * on the interface that received the garp message
 445		 */
 446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
 447	default:
 448		return 0;
 449	}
 450}
 451
 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 453{
 454	struct rtable *rt;
 455	int flag = 0;
 456	/*unsigned long now; */
 457	struct net *net = dev_net(dev);
 458
 459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 460	if (IS_ERR(rt))
 461		return 1;
 462	if (rt->dst.dev != dev) {
 463		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 464		flag = 1;
 465	}
 466	ip_rt_put(rt);
 467	return flag;
 468}
 469
 470/*
 471 * Check if we can use proxy ARP for this path
 472 */
 473static inline int arp_fwd_proxy(struct in_device *in_dev,
 474				struct net_device *dev,	struct rtable *rt)
 475{
 476	struct in_device *out_dev;
 477	int imi, omi = -1;
 478
 479	if (rt->dst.dev == dev)
 480		return 0;
 481
 482	if (!IN_DEV_PROXY_ARP(in_dev))
 483		return 0;
 484	imi = IN_DEV_MEDIUM_ID(in_dev);
 485	if (imi == 0)
 486		return 1;
 487	if (imi == -1)
 488		return 0;
 489
 490	/* place to check for proxy_arp for routes */
 491
 492	out_dev = __in_dev_get_rcu(rt->dst.dev);
 493	if (out_dev)
 494		omi = IN_DEV_MEDIUM_ID(out_dev);
 495
 496	return omi != imi && omi != -1;
 497}
 498
 499/*
 500 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 501 *
 502 * RFC3069 supports proxy arp replies back to the same interface.  This
 503 * is done to support (ethernet) switch features, like RFC 3069, where
 504 * the individual ports are not allowed to communicate with each
 505 * other, BUT they are allowed to talk to the upstream router.  As
 506 * described in RFC 3069, it is possible to allow these hosts to
 507 * communicate through the upstream router, by proxy_arp'ing.
 508 *
 509 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 510 *
 511 *  This technology is known by different names:
 512 *    In RFC 3069 it is called VLAN Aggregation.
 513 *    Cisco and Allied Telesyn call it Private VLAN.
 514 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 515 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 516 *
 517 */
 518static inline int arp_fwd_pvlan(struct in_device *in_dev,
 519				struct net_device *dev,	struct rtable *rt,
 520				__be32 sip, __be32 tip)
 521{
 522	/* Private VLAN is only concerned about the same ethernet segment */
 523	if (rt->dst.dev != dev)
 524		return 0;
 525
 526	/* Don't reply on self probes (often done by windowz boxes)*/
 527	if (sip == tip)
 528		return 0;
 529
 530	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 531		return 1;
 532	else
 533		return 0;
 534}
 535
 536/*
 537 *	Interface to link layer: send routine and receive handler.
 538 */
 539
 540/*
 541 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 542 *	message.
 543 */
 544struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 545			   struct net_device *dev, __be32 src_ip,
 546			   const unsigned char *dest_hw,
 547			   const unsigned char *src_hw,
 548			   const unsigned char *target_hw)
 549{
 550	struct sk_buff *skb;
 551	struct arphdr *arp;
 552	unsigned char *arp_ptr;
 553	int hlen = LL_RESERVED_SPACE(dev);
 554	int tlen = dev->needed_tailroom;
 555
 556	/*
 557	 *	Allocate a buffer
 558	 */
 559
 560	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 561	if (!skb)
 562		return NULL;
 563
 564	skb_reserve(skb, hlen);
 565	skb_reset_network_header(skb);
 566	arp = skb_put(skb, arp_hdr_len(dev));
 567	skb->dev = dev;
 568	skb->protocol = htons(ETH_P_ARP);
 569	if (!src_hw)
 570		src_hw = dev->dev_addr;
 571	if (!dest_hw)
 572		dest_hw = dev->broadcast;
 573
 574	/*
 575	 *	Fill the device header for the ARP frame
 576	 */
 577	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 578		goto out;
 579
 580	/*
 581	 * Fill out the arp protocol part.
 582	 *
 583	 * The arp hardware type should match the device type, except for FDDI,
 584	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 585	 */
 586	/*
 587	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 588	 *	DIX code for the protocol. Make these device structure fields.
 589	 */
 590	switch (dev->type) {
 591	default:
 592		arp->ar_hrd = htons(dev->type);
 593		arp->ar_pro = htons(ETH_P_IP);
 594		break;
 595
 596#if IS_ENABLED(CONFIG_AX25)
 597	case ARPHRD_AX25:
 598		arp->ar_hrd = htons(ARPHRD_AX25);
 599		arp->ar_pro = htons(AX25_P_IP);
 600		break;
 601
 602#if IS_ENABLED(CONFIG_NETROM)
 603	case ARPHRD_NETROM:
 604		arp->ar_hrd = htons(ARPHRD_NETROM);
 605		arp->ar_pro = htons(AX25_P_IP);
 606		break;
 607#endif
 608#endif
 609
 610#if IS_ENABLED(CONFIG_FDDI)
 611	case ARPHRD_FDDI:
 612		arp->ar_hrd = htons(ARPHRD_ETHER);
 613		arp->ar_pro = htons(ETH_P_IP);
 614		break;
 615#endif
 616	}
 617
 618	arp->ar_hln = dev->addr_len;
 619	arp->ar_pln = 4;
 620	arp->ar_op = htons(type);
 621
 622	arp_ptr = (unsigned char *)(arp + 1);
 623
 624	memcpy(arp_ptr, src_hw, dev->addr_len);
 625	arp_ptr += dev->addr_len;
 626	memcpy(arp_ptr, &src_ip, 4);
 627	arp_ptr += 4;
 628
 629	switch (dev->type) {
 630#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 631	case ARPHRD_IEEE1394:
 632		break;
 633#endif
 634	default:
 635		if (target_hw)
 636			memcpy(arp_ptr, target_hw, dev->addr_len);
 637		else
 638			memset(arp_ptr, 0, dev->addr_len);
 639		arp_ptr += dev->addr_len;
 640	}
 641	memcpy(arp_ptr, &dest_ip, 4);
 642
 643	return skb;
 644
 645out:
 646	kfree_skb(skb);
 647	return NULL;
 648}
 649EXPORT_SYMBOL(arp_create);
 650
 651static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 652{
 653	return dev_queue_xmit(skb);
 654}
 655
 656/*
 657 *	Send an arp packet.
 658 */
 659void arp_xmit(struct sk_buff *skb)
 660{
 661	/* Send it off, maybe filter it using firewalling first.  */
 662	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 663		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 664		arp_xmit_finish);
 665}
 666EXPORT_SYMBOL(arp_xmit);
 667
 668static bool arp_is_garp(struct net *net, struct net_device *dev,
 669			int *addr_type, __be16 ar_op,
 670			__be32 sip, __be32 tip,
 671			unsigned char *sha, unsigned char *tha)
 672{
 673	bool is_garp = tip == sip;
 674
 675	/* Gratuitous ARP _replies_ also require target hwaddr to be
 676	 * the same as source.
 677	 */
 678	if (is_garp && ar_op == htons(ARPOP_REPLY))
 679		is_garp =
 680			/* IPv4 over IEEE 1394 doesn't provide target
 681			 * hardware address field in its ARP payload.
 682			 */
 683			tha &&
 684			!memcmp(tha, sha, dev->addr_len);
 685
 686	if (is_garp) {
 687		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 688		if (*addr_type != RTN_UNICAST)
 689			is_garp = false;
 690	}
 691	return is_garp;
 692}
 693
 694/*
 695 *	Process an arp request.
 696 */
 697
 698static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 699{
 700	struct net_device *dev = skb->dev;
 701	struct in_device *in_dev = __in_dev_get_rcu(dev);
 702	struct arphdr *arp;
 703	unsigned char *arp_ptr;
 704	struct rtable *rt;
 705	unsigned char *sha;
 706	unsigned char *tha = NULL;
 707	__be32 sip, tip;
 708	u16 dev_type = dev->type;
 709	int addr_type;
 710	struct neighbour *n;
 711	struct dst_entry *reply_dst = NULL;
 712	bool is_garp = false;
 713
 714	/* arp_rcv below verifies the ARP header and verifies the device
 715	 * is ARP'able.
 716	 */
 717
 718	if (!in_dev)
 719		goto out_free_skb;
 720
 721	arp = arp_hdr(skb);
 722
 723	switch (dev_type) {
 724	default:
 725		if (arp->ar_pro != htons(ETH_P_IP) ||
 726		    htons(dev_type) != arp->ar_hrd)
 727			goto out_free_skb;
 728		break;
 729	case ARPHRD_ETHER:
 730	case ARPHRD_FDDI:
 731	case ARPHRD_IEEE802:
 732		/*
 733		 * ETHERNET, and Fibre Channel (which are IEEE 802
 734		 * devices, according to RFC 2625) devices will accept ARP
 735		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 736		 * This is the case also of FDDI, where the RFC 1390 says that
 737		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 738		 * however, to be more robust, we'll accept both 1 (Ethernet)
 739		 * or 6 (IEEE 802.2)
 740		 */
 741		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 742		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 743		    arp->ar_pro != htons(ETH_P_IP))
 744			goto out_free_skb;
 745		break;
 746	case ARPHRD_AX25:
 747		if (arp->ar_pro != htons(AX25_P_IP) ||
 748		    arp->ar_hrd != htons(ARPHRD_AX25))
 749			goto out_free_skb;
 750		break;
 751	case ARPHRD_NETROM:
 752		if (arp->ar_pro != htons(AX25_P_IP) ||
 753		    arp->ar_hrd != htons(ARPHRD_NETROM))
 754			goto out_free_skb;
 755		break;
 756	}
 757
 758	/* Understand only these message types */
 759
 760	if (arp->ar_op != htons(ARPOP_REPLY) &&
 761	    arp->ar_op != htons(ARPOP_REQUEST))
 762		goto out_free_skb;
 763
 764/*
 765 *	Extract fields
 766 */
 767	arp_ptr = (unsigned char *)(arp + 1);
 768	sha	= arp_ptr;
 769	arp_ptr += dev->addr_len;
 770	memcpy(&sip, arp_ptr, 4);
 771	arp_ptr += 4;
 772	switch (dev_type) {
 773#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 774	case ARPHRD_IEEE1394:
 775		break;
 776#endif
 777	default:
 778		tha = arp_ptr;
 779		arp_ptr += dev->addr_len;
 780	}
 781	memcpy(&tip, arp_ptr, 4);
 782/*
 783 *	Check for bad requests for 127.x.x.x and requests for multicast
 784 *	addresses.  If this is one such, delete it.
 785 */
 786	if (ipv4_is_multicast(tip) ||
 787	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 788		goto out_free_skb;
 789
 790 /*
 791  *	For some 802.11 wireless deployments (and possibly other networks),
 792  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 793  *	and thus should not be accepted.
 794  */
 795	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 796		goto out_free_skb;
 797
 798/*
 799 *     Special case: We must set Frame Relay source Q.922 address
 800 */
 801	if (dev_type == ARPHRD_DLCI)
 802		sha = dev->broadcast;
 803
 804/*
 805 *  Process entry.  The idea here is we want to send a reply if it is a
 806 *  request for us or if it is a request for someone else that we hold
 807 *  a proxy for.  We want to add an entry to our cache if it is a reply
 808 *  to us or if it is a request for our address.
 809 *  (The assumption for this last is that if someone is requesting our
 810 *  address, they are probably intending to talk to us, so it saves time
 811 *  if we cache their address.  Their address is also probably not in
 812 *  our cache, since ours is not in their cache.)
 813 *
 814 *  Putting this another way, we only care about replies if they are to
 815 *  us, in which case we add them to the cache.  For requests, we care
 816 *  about those for us and those for our proxies.  We reply to both,
 817 *  and in the case of requests for us we add the requester to the arp
 818 *  cache.
 819 */
 820
 821	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 822		reply_dst = (struct dst_entry *)
 823			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 824						    GFP_ATOMIC);
 825
 826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 827	if (sip == 0) {
 828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 829		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 830		    !arp_ignore(in_dev, sip, tip))
 831			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 832				     sha, dev->dev_addr, sha, reply_dst);
 833		goto out_consume_skb;
 834	}
 835
 836	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 838
 839		rt = skb_rtable(skb);
 840		addr_type = rt->rt_type;
 841
 842		if (addr_type == RTN_LOCAL) {
 843			int dont_send;
 844
 845			dont_send = arp_ignore(in_dev, sip, tip);
 846			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 847				dont_send = arp_filter(sip, tip, dev);
 848			if (!dont_send) {
 849				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 850				if (n) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855					neigh_release(n);
 856				}
 857			}
 858			goto out_consume_skb;
 859		} else if (IN_DEV_FORWARD(in_dev)) {
 860			if (addr_type == RTN_UNICAST  &&
 861			    (arp_fwd_proxy(in_dev, dev, rt) ||
 862			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 863			     (rt->dst.dev != dev &&
 864			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 865				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 866				if (n)
 867					neigh_release(n);
 868
 869				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 870				    skb->pkt_type == PACKET_HOST ||
 871				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 872					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 873						     sip, dev, tip, sha,
 874						     dev->dev_addr, sha,
 875						     reply_dst);
 876				} else {
 877					pneigh_enqueue(&arp_tbl,
 878						       in_dev->arp_parms, skb);
 879					goto out_free_dst;
 880				}
 881				goto out_consume_skb;
 882			}
 883		}
 884	}
 885
 886	/* Update our ARP tables */
 887
 888	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 889
 890	addr_type = -1;
 891	if (n || arp_accept(in_dev, sip)) {
 892		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 893				      sip, tip, sha, tha);
 894	}
 895
 896	if (arp_accept(in_dev, sip)) {
 897		/* Unsolicited ARP is not accepted by default.
 898		   It is possible, that this option should be enabled for some
 899		   devices (strip is candidate)
 900		 */
 901		if (!n &&
 902		    (is_garp ||
 903		     (arp->ar_op == htons(ARPOP_REPLY) &&
 904		      (addr_type == RTN_UNICAST ||
 905		       (addr_type < 0 &&
 906			/* postpone calculation to as late as possible */
 907			inet_addr_type_dev_table(net, dev, sip) ==
 908				RTN_UNICAST)))))
 909			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 910	}
 911
 912	if (n) {
 913		int state = NUD_REACHABLE;
 914		int override;
 915
 916		/* If several different ARP replies follows back-to-back,
 917		   use the FIRST one. It is possible, if several proxy
 918		   agents are active. Taking the first reply prevents
 919		   arp trashing and chooses the fastest router.
 920		 */
 921		override = time_after(jiffies,
 922				      n->updated +
 923				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 924			   is_garp;
 925
 926		/* Broadcast replies and request packets
 927		   do not assert neighbour reachability.
 928		 */
 929		if (arp->ar_op != htons(ARPOP_REPLY) ||
 930		    skb->pkt_type != PACKET_HOST)
 931			state = NUD_STALE;
 932		neigh_update(n, sha, state,
 933			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 934		neigh_release(n);
 935	}
 936
 937out_consume_skb:
 938	consume_skb(skb);
 939
 940out_free_dst:
 941	dst_release(reply_dst);
 942	return NET_RX_SUCCESS;
 943
 944out_free_skb:
 945	kfree_skb(skb);
 946	return NET_RX_DROP;
 947}
 948
 949static void parp_redo(struct sk_buff *skb)
 950{
 951	arp_process(dev_net(skb->dev), NULL, skb);
 952}
 953
 954static int arp_is_multicast(const void *pkey)
 955{
 956	return ipv4_is_multicast(*((__be32 *)pkey));
 957}
 958
 959/*
 960 *	Receive an arp request from the device layer.
 961 */
 962
 963static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 964		   struct packet_type *pt, struct net_device *orig_dev)
 965{
 966	const struct arphdr *arp;
 967
 968	/* do not tweak dropwatch on an ARP we will ignore */
 969	if (dev->flags & IFF_NOARP ||
 970	    skb->pkt_type == PACKET_OTHERHOST ||
 971	    skb->pkt_type == PACKET_LOOPBACK)
 972		goto consumeskb;
 973
 974	skb = skb_share_check(skb, GFP_ATOMIC);
 975	if (!skb)
 976		goto out_of_mem;
 977
 978	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 979	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 980		goto freeskb;
 981
 982	arp = arp_hdr(skb);
 983	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 984		goto freeskb;
 985
 986	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 987
 988	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 989		       dev_net(dev), NULL, skb, dev, NULL,
 990		       arp_process);
 991
 992consumeskb:
 993	consume_skb(skb);
 994	return NET_RX_SUCCESS;
 995freeskb:
 996	kfree_skb(skb);
 997out_of_mem:
 998	return NET_RX_DROP;
 999}
1000
1001/*
1002 *	User level interface (ioctl)
1003 */
1004
1005/*
1006 *	Set (create) an ARP cache entry.
1007 */
1008
1009static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010{
1011	if (!dev) {
1012		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013		return 0;
1014	}
1015	if (__in_dev_get_rtnl(dev)) {
1016		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017		return 0;
1018	}
1019	return -ENXIO;
1020}
1021
1022static int arp_req_set_public(struct net *net, struct arpreq *r,
1023		struct net_device *dev)
1024{
1025	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027
1028	if (mask && mask != htonl(0xFFFFFFFF))
1029		return -EINVAL;
1030	if (!dev && (r->arp_flags & ATF_COM)) {
1031		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032				      r->arp_ha.sa_data);
1033		if (!dev)
1034			return -ENODEV;
1035	}
1036	if (mask) {
1037		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038			return -ENOBUFS;
1039		return 0;
1040	}
1041
1042	return arp_req_set_proxy(net, dev, 1);
1043}
1044
1045static int arp_req_set(struct net *net, struct arpreq *r,
1046		       struct net_device *dev)
1047{
1048	__be32 ip;
1049	struct neighbour *neigh;
1050	int err;
1051
1052	if (r->arp_flags & ATF_PUBL)
1053		return arp_req_set_public(net, r, dev);
1054
1055	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056	if (r->arp_flags & ATF_PERM)
1057		r->arp_flags |= ATF_COM;
1058	if (!dev) {
1059		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060
1061		if (IS_ERR(rt))
1062			return PTR_ERR(rt);
1063		dev = rt->dst.dev;
1064		ip_rt_put(rt);
1065		if (!dev)
1066			return -EINVAL;
1067	}
1068	switch (dev->type) {
1069#if IS_ENABLED(CONFIG_FDDI)
1070	case ARPHRD_FDDI:
1071		/*
1072		 * According to RFC 1390, FDDI devices should accept ARP
1073		 * hardware types of 1 (Ethernet).  However, to be more
1074		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075		 * or 6 (IEEE 802.2).
1076		 */
1077		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080			return -EINVAL;
1081		break;
1082#endif
1083	default:
1084		if (r->arp_ha.sa_family != dev->type)
1085			return -EINVAL;
1086		break;
1087	}
1088
1089	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090	err = PTR_ERR(neigh);
1091	if (!IS_ERR(neigh)) {
1092		unsigned int state = NUD_STALE;
1093		if (r->arp_flags & ATF_PERM)
1094			state = NUD_PERMANENT;
1095		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096				   r->arp_ha.sa_data : NULL, state,
1097				   NEIGH_UPDATE_F_OVERRIDE |
1098				   NEIGH_UPDATE_F_ADMIN, 0);
1099		neigh_release(neigh);
1100	}
1101	return err;
1102}
1103
1104static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105{
1106	if (neigh->nud_state&NUD_PERMANENT)
1107		return ATF_PERM | ATF_COM;
1108	else if (neigh->nud_state&NUD_VALID)
1109		return ATF_COM;
1110	else
1111		return 0;
1112}
1113
1114/*
1115 *	Get an ARP cache entry.
1116 */
1117
1118static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119{
1120	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121	struct neighbour *neigh;
1122	int err = -ENXIO;
1123
1124	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125	if (neigh) {
1126		if (!(neigh->nud_state & NUD_NOARP)) {
1127			read_lock_bh(&neigh->lock);
1128			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1129			r->arp_flags = arp_state_to_flags(neigh);
1130			read_unlock_bh(&neigh->lock);
1131			r->arp_ha.sa_family = dev->type;
1132			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1133			err = 0;
1134		}
1135		neigh_release(neigh);
1136	}
1137	return err;
1138}
1139
1140int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1141{
1142	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1143	int err = -ENXIO;
1144	struct neigh_table *tbl = &arp_tbl;
1145
1146	if (neigh) {
1147		if ((neigh->nud_state & NUD_VALID) && !force) {
1148			neigh_release(neigh);
1149			return 0;
1150		}
1151
1152		if (neigh->nud_state & ~NUD_NOARP)
1153			err = neigh_update(neigh, NULL, NUD_FAILED,
1154					   NEIGH_UPDATE_F_OVERRIDE|
1155					   NEIGH_UPDATE_F_ADMIN, 0);
1156		write_lock_bh(&tbl->lock);
1157		neigh_release(neigh);
1158		neigh_remove_one(neigh, tbl);
1159		write_unlock_bh(&tbl->lock);
1160	}
1161
1162	return err;
1163}
1164
1165static int arp_req_delete_public(struct net *net, struct arpreq *r,
1166		struct net_device *dev)
1167{
1168	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1169	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1170
1171	if (mask == htonl(0xFFFFFFFF))
1172		return pneigh_delete(&arp_tbl, net, &ip, dev);
1173
1174	if (mask)
1175		return -EINVAL;
1176
1177	return arp_req_set_proxy(net, dev, 0);
1178}
1179
1180static int arp_req_delete(struct net *net, struct arpreq *r,
1181			  struct net_device *dev)
1182{
1183	__be32 ip;
1184
1185	if (r->arp_flags & ATF_PUBL)
1186		return arp_req_delete_public(net, r, dev);
1187
1188	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1189	if (!dev) {
1190		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1191		if (IS_ERR(rt))
1192			return PTR_ERR(rt);
1193		dev = rt->dst.dev;
1194		ip_rt_put(rt);
1195		if (!dev)
1196			return -EINVAL;
1197	}
1198	return arp_invalidate(dev, ip, true);
1199}
1200
1201/*
1202 *	Handle an ARP layer I/O control request.
1203 */
1204
1205int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1206{
1207	int err;
1208	struct arpreq r;
1209	struct net_device *dev = NULL;
1210
1211	switch (cmd) {
1212	case SIOCDARP:
1213	case SIOCSARP:
1214		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1215			return -EPERM;
1216		fallthrough;
1217	case SIOCGARP:
1218		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1219		if (err)
1220			return -EFAULT;
1221		break;
1222	default:
1223		return -EINVAL;
1224	}
1225
1226	if (r.arp_pa.sa_family != AF_INET)
1227		return -EPFNOSUPPORT;
1228
1229	if (!(r.arp_flags & ATF_PUBL) &&
1230	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1231		return -EINVAL;
1232	if (!(r.arp_flags & ATF_NETMASK))
1233		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1234							   htonl(0xFFFFFFFFUL);
1235	rtnl_lock();
1236	if (r.arp_dev[0]) {
1237		err = -ENODEV;
1238		dev = __dev_get_by_name(net, r.arp_dev);
1239		if (!dev)
1240			goto out;
1241
1242		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1243		if (!r.arp_ha.sa_family)
1244			r.arp_ha.sa_family = dev->type;
1245		err = -EINVAL;
1246		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1247			goto out;
1248	} else if (cmd == SIOCGARP) {
1249		err = -ENODEV;
1250		goto out;
1251	}
1252
1253	switch (cmd) {
1254	case SIOCDARP:
1255		err = arp_req_delete(net, &r, dev);
1256		break;
1257	case SIOCSARP:
1258		err = arp_req_set(net, &r, dev);
1259		break;
1260	case SIOCGARP:
1261		err = arp_req_get(&r, dev);
1262		break;
1263	}
1264out:
1265	rtnl_unlock();
1266	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1267		err = -EFAULT;
1268	return err;
1269}
1270
1271static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1272			    void *ptr)
1273{
1274	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1275	struct netdev_notifier_change_info *change_info;
1276	struct in_device *in_dev;
1277	bool evict_nocarrier;
1278
1279	switch (event) {
1280	case NETDEV_CHANGEADDR:
1281		neigh_changeaddr(&arp_tbl, dev);
1282		rt_cache_flush(dev_net(dev));
1283		break;
1284	case NETDEV_CHANGE:
1285		change_info = ptr;
1286		if (change_info->flags_changed & IFF_NOARP)
1287			neigh_changeaddr(&arp_tbl, dev);
1288
1289		in_dev = __in_dev_get_rtnl(dev);
1290		if (!in_dev)
1291			evict_nocarrier = true;
1292		else
1293			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1294
1295		if (evict_nocarrier && !netif_carrier_ok(dev))
1296			neigh_carrier_down(&arp_tbl, dev);
1297		break;
1298	default:
1299		break;
1300	}
1301
1302	return NOTIFY_DONE;
1303}
1304
1305static struct notifier_block arp_netdev_notifier = {
1306	.notifier_call = arp_netdev_event,
1307};
1308
1309/* Note, that it is not on notifier chain.
1310   It is necessary, that this routine was called after route cache will be
1311   flushed.
1312 */
1313void arp_ifdown(struct net_device *dev)
1314{
1315	neigh_ifdown(&arp_tbl, dev);
1316}
1317
1318
1319/*
1320 *	Called once on startup.
1321 */
1322
1323static struct packet_type arp_packet_type __read_mostly = {
1324	.type =	cpu_to_be16(ETH_P_ARP),
1325	.func =	arp_rcv,
1326};
1327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328#ifdef CONFIG_PROC_FS
1329#if IS_ENABLED(CONFIG_AX25)
1330
 
1331/*
1332 *	ax25 -> ASCII conversion
1333 */
1334static void ax2asc2(ax25_address *a, char *buf)
1335{
1336	char c, *s;
1337	int n;
1338
1339	for (n = 0, s = buf; n < 6; n++) {
1340		c = (a->ax25_call[n] >> 1) & 0x7F;
1341
1342		if (c != ' ')
1343			*s++ = c;
1344	}
1345
1346	*s++ = '-';
1347	n = (a->ax25_call[6] >> 1) & 0x0F;
1348	if (n > 9) {
1349		*s++ = '1';
1350		n -= 10;
1351	}
1352
1353	*s++ = n + '0';
1354	*s++ = '\0';
1355
1356	if (*buf == '\0' || *buf == '-') {
1357		buf[0] = '*';
1358		buf[1] = '\0';
1359	}
1360}
1361#endif /* CONFIG_AX25 */
1362
1363#define HBUFFERLEN 30
1364
1365static void arp_format_neigh_entry(struct seq_file *seq,
1366				   struct neighbour *n)
1367{
1368	char hbuffer[HBUFFERLEN];
1369	int k, j;
1370	char tbuf[16];
1371	struct net_device *dev = n->dev;
1372	int hatype = dev->type;
1373
1374	read_lock(&n->lock);
1375	/* Convert hardware address to XX:XX:XX:XX ... form. */
1376#if IS_ENABLED(CONFIG_AX25)
1377	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1378		ax2asc2((ax25_address *)n->ha, hbuffer);
1379	else {
1380#endif
1381	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1382		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1383		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1384		hbuffer[k++] = ':';
1385	}
1386	if (k != 0)
1387		--k;
1388	hbuffer[k] = 0;
1389#if IS_ENABLED(CONFIG_AX25)
1390	}
1391#endif
1392	sprintf(tbuf, "%pI4", n->primary_key);
1393	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1394		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1395	read_unlock(&n->lock);
1396}
1397
1398static void arp_format_pneigh_entry(struct seq_file *seq,
1399				    struct pneigh_entry *n)
1400{
1401	struct net_device *dev = n->dev;
1402	int hatype = dev ? dev->type : 0;
1403	char tbuf[16];
1404
1405	sprintf(tbuf, "%pI4", n->key);
1406	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1407		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1408		   dev ? dev->name : "*");
1409}
1410
1411static int arp_seq_show(struct seq_file *seq, void *v)
1412{
1413	if (v == SEQ_START_TOKEN) {
1414		seq_puts(seq, "IP address       HW type     Flags       "
1415			      "HW address            Mask     Device\n");
1416	} else {
1417		struct neigh_seq_state *state = seq->private;
1418
1419		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1420			arp_format_pneigh_entry(seq, v);
1421		else
1422			arp_format_neigh_entry(seq, v);
1423	}
1424
1425	return 0;
1426}
1427
1428static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1429{
1430	/* Don't want to confuse "arp -a" w/ magic entries,
1431	 * so we tell the generic iterator to skip NUD_NOARP.
1432	 */
1433	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1434}
1435
 
 
1436static const struct seq_operations arp_seq_ops = {
1437	.start	= arp_seq_start,
1438	.next	= neigh_seq_next,
1439	.stop	= neigh_seq_stop,
1440	.show	= arp_seq_show,
1441};
1442#endif /* CONFIG_PROC_FS */
 
1443
1444static int __net_init arp_net_init(struct net *net)
1445{
1446	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1447			sizeof(struct neigh_seq_state)))
1448		return -ENOMEM;
1449	return 0;
1450}
1451
1452static void __net_exit arp_net_exit(struct net *net)
1453{
1454	remove_proc_entry("arp", net->proc_net);
1455}
1456
1457static struct pernet_operations arp_net_ops = {
1458	.init = arp_net_init,
1459	.exit = arp_net_exit,
1460};
1461
1462void __init arp_init(void)
1463{
1464	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
 
 
 
1465
1466	dev_add_pack(&arp_packet_type);
1467	register_pernet_subsys(&arp_net_ops);
1468#ifdef CONFIG_SYSCTL
1469	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1470#endif
1471	register_netdevice_notifier(&arp_netdev_notifier);
1472}