Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
 
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 
 
 
 114
 
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 
 
 
 
 
 
 
 
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 
 
 
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 172			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 173			[NEIGH_VAR_PROXY_QLEN] = 64,
 174			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 175			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 176			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 177		},
 178	},
 179	.gc_interval	= 30 * HZ,
 180	.gc_thresh1	= 128,
 181	.gc_thresh2	= 512,
 182	.gc_thresh3	= 1024,
 183};
 184EXPORT_SYMBOL(arp_tbl);
 185
 186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 187{
 188	switch (dev->type) {
 189	case ARPHRD_ETHER:
 190	case ARPHRD_FDDI:
 191	case ARPHRD_IEEE802:
 192		ip_eth_mc_map(addr, haddr);
 193		return 0;
 
 
 
 194	case ARPHRD_INFINIBAND:
 195		ip_ib_mc_map(addr, dev->broadcast, haddr);
 196		return 0;
 197	case ARPHRD_IPGRE:
 198		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	default:
 201		if (dir) {
 202			memcpy(haddr, dev->broadcast, dev->addr_len);
 203			return 0;
 204		}
 205	}
 206	return -EINVAL;
 207}
 208
 209
 210static u32 arp_hash(const void *pkey,
 211		    const struct net_device *dev,
 212		    __u32 *hash_rnd)
 213{
 214	return arp_hashfn(pkey, dev, hash_rnd);
 215}
 216
 217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 218{
 219	return neigh_key_eq32(neigh, pkey);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228	u32 inaddr_any = INADDR_ANY;
 229
 230	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 231		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 232
 233	addr = *(__be32 *)neigh->primary_key;
 234	rcu_read_lock();
 235	in_dev = __in_dev_get_rcu(dev);
 236	if (!in_dev) {
 237		rcu_read_unlock();
 238		return -EINVAL;
 239	}
 240
 241	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 242
 243	parms = in_dev->arp_parms;
 244	__neigh_parms_put(neigh->parms);
 245	neigh->parms = neigh_parms_clone(parms);
 246	rcu_read_unlock();
 247
 248	if (!dev->header_ops) {
 249		neigh->nud_state = NUD_NOARP;
 250		neigh->ops = &arp_direct_ops;
 251		neigh->output = neigh_direct_output;
 252	} else {
 253		/* Good devices (checked by reading texts, but only Ethernet is
 254		   tested)
 255
 256		   ARPHRD_ETHER: (ethernet, apfddi)
 257		   ARPHRD_FDDI: (fddi)
 258		   ARPHRD_IEEE802: (tr)
 259		   ARPHRD_METRICOM: (strip)
 260		   ARPHRD_ARCNET:
 261		   etc. etc. etc.
 262
 263		   ARPHRD_IPDDP will also work, if author repairs it.
 264		   I did not it, because this driver does not work even
 265		   in old paradigm.
 266		 */
 267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268		if (neigh->type == RTN_MULTICAST) {
 269			neigh->nud_state = NUD_NOARP;
 270			arp_mc_map(addr, neigh->ha, dev, 1);
 271		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 272			neigh->nud_state = NUD_NOARP;
 273			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 274		} else if (neigh->type == RTN_BROADCAST ||
 275			   (dev->flags & IFF_POINTOPOINT)) {
 276			neigh->nud_state = NUD_NOARP;
 277			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 278		}
 279
 280		if (dev->header_ops->cache)
 281			neigh->ops = &arp_hh_ops;
 282		else
 283			neigh->ops = &arp_generic_ops;
 284
 285		if (neigh->nud_state & NUD_VALID)
 286			neigh->output = neigh->ops->connected_output;
 287		else
 288			neigh->output = neigh->ops->output;
 289	}
 290	return 0;
 291}
 292
 293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 294{
 295	dst_link_failure(skb);
 296	kfree_skb(skb);
 297}
 298
 299/* Create and send an arp packet. */
 300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 301			 struct net_device *dev, __be32 src_ip,
 302			 const unsigned char *dest_hw,
 303			 const unsigned char *src_hw,
 304			 const unsigned char *target_hw,
 305			 struct dst_entry *dst)
 306{
 307	struct sk_buff *skb;
 308
 309	/* arp on this interface. */
 310	if (dev->flags & IFF_NOARP)
 311		return;
 312
 313	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 314			 dest_hw, src_hw, target_hw);
 315	if (!skb)
 316		return;
 317
 318	skb_dst_set(skb, dst_clone(dst));
 319	arp_xmit(skb);
 320}
 321
 322void arp_send(int type, int ptype, __be32 dest_ip,
 323	      struct net_device *dev, __be32 src_ip,
 324	      const unsigned char *dest_hw, const unsigned char *src_hw,
 325	      const unsigned char *target_hw)
 326{
 327	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 328		     target_hw, NULL);
 329}
 330EXPORT_SYMBOL(arp_send);
 331
 332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 333{
 334	__be32 saddr = 0;
 335	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 336	struct net_device *dev = neigh->dev;
 337	__be32 target = *(__be32 *)neigh->primary_key;
 338	int probes = atomic_read(&neigh->probes);
 339	struct in_device *in_dev;
 340	struct dst_entry *dst = NULL;
 341
 342	rcu_read_lock();
 343	in_dev = __in_dev_get_rcu(dev);
 344	if (!in_dev) {
 345		rcu_read_unlock();
 346		return;
 347	}
 348	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 349	default:
 350	case 0:		/* By default announce any local IP */
 351		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 352					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 353			saddr = ip_hdr(skb)->saddr;
 354		break;
 355	case 1:		/* Restrict announcements of saddr in same subnet */
 356		if (!skb)
 357			break;
 358		saddr = ip_hdr(skb)->saddr;
 359		if (inet_addr_type_dev_table(dev_net(dev), dev,
 360					     saddr) == RTN_LOCAL) {
 361			/* saddr should be known to target */
 362			if (inet_addr_onlink(in_dev, target, saddr))
 363				break;
 364		}
 365		saddr = 0;
 366		break;
 367	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 368		break;
 369	}
 370	rcu_read_unlock();
 371
 372	if (!saddr)
 373		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 374
 375	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 376	if (probes < 0) {
 377		if (!(neigh->nud_state & NUD_VALID))
 378			pr_debug("trying to ucast probe in NUD_INVALID\n");
 379		neigh_ha_snapshot(dst_ha, neigh, dev);
 380		dst_hw = dst_ha;
 
 381	} else {
 382		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 383		if (probes < 0) {
 
 384			neigh_app_ns(neigh);
 
 385			return;
 386		}
 387	}
 388
 389	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 390		dst = skb_dst(skb);
 391	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 392		     dst_hw, dev->dev_addr, NULL, dst);
 393}
 394
 395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 396{
 397	struct net *net = dev_net(in_dev->dev);
 398	int scope;
 399
 400	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 401	case 0:	/* Reply, the tip is already validated */
 402		return 0;
 403	case 1:	/* Reply only if tip is configured on the incoming interface */
 404		sip = 0;
 405		scope = RT_SCOPE_HOST;
 406		break;
 407	case 2:	/*
 408		 * Reply only if tip is configured on the incoming interface
 409		 * and is in same subnet as sip
 410		 */
 411		scope = RT_SCOPE_HOST;
 412		break;
 413	case 3:	/* Do not reply for scope host addresses */
 414		sip = 0;
 415		scope = RT_SCOPE_LINK;
 416		in_dev = NULL;
 417		break;
 418	case 4:	/* Reserved */
 419	case 5:
 420	case 6:
 421	case 7:
 422		return 0;
 423	case 8:	/* Do not reply */
 424		return 1;
 425	default:
 426		return 0;
 427	}
 428	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 429}
 430
 431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 432{
 433	struct rtable *rt;
 434	int flag = 0;
 435	/*unsigned long now; */
 436	struct net *net = dev_net(dev);
 437
 438	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 439	if (IS_ERR(rt))
 440		return 1;
 441	if (rt->dst.dev != dev) {
 442		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 443		flag = 1;
 444	}
 445	ip_rt_put(rt);
 446	return flag;
 447}
 448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449/*
 450 * Check if we can use proxy ARP for this path
 451 */
 452static inline int arp_fwd_proxy(struct in_device *in_dev,
 453				struct net_device *dev,	struct rtable *rt)
 454{
 455	struct in_device *out_dev;
 456	int imi, omi = -1;
 457
 458	if (rt->dst.dev == dev)
 459		return 0;
 460
 461	if (!IN_DEV_PROXY_ARP(in_dev))
 462		return 0;
 463	imi = IN_DEV_MEDIUM_ID(in_dev);
 464	if (imi == 0)
 465		return 1;
 466	if (imi == -1)
 467		return 0;
 468
 469	/* place to check for proxy_arp for routes */
 470
 471	out_dev = __in_dev_get_rcu(rt->dst.dev);
 472	if (out_dev)
 473		omi = IN_DEV_MEDIUM_ID(out_dev);
 474
 475	return omi != imi && omi != -1;
 476}
 477
 478/*
 479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 480 *
 481 * RFC3069 supports proxy arp replies back to the same interface.  This
 482 * is done to support (ethernet) switch features, like RFC 3069, where
 483 * the individual ports are not allowed to communicate with each
 484 * other, BUT they are allowed to talk to the upstream router.  As
 485 * described in RFC 3069, it is possible to allow these hosts to
 486 * communicate through the upstream router, by proxy_arp'ing.
 487 *
 488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 489 *
 490 *  This technology is known by different names:
 491 *    In RFC 3069 it is called VLAN Aggregation.
 492 *    Cisco and Allied Telesyn call it Private VLAN.
 493 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 494 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 495 *
 496 */
 497static inline int arp_fwd_pvlan(struct in_device *in_dev,
 498				struct net_device *dev,	struct rtable *rt,
 499				__be32 sip, __be32 tip)
 500{
 501	/* Private VLAN is only concerned about the same ethernet segment */
 502	if (rt->dst.dev != dev)
 503		return 0;
 504
 505	/* Don't reply on self probes (often done by windowz boxes)*/
 506	if (sip == tip)
 507		return 0;
 508
 509	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 510		return 1;
 511	else
 512		return 0;
 513}
 514
 515/*
 516 *	Interface to link layer: send routine and receive handler.
 517 */
 518
 519/*
 520 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 521 *	message.
 522 */
 523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 524			   struct net_device *dev, __be32 src_ip,
 525			   const unsigned char *dest_hw,
 526			   const unsigned char *src_hw,
 527			   const unsigned char *target_hw)
 528{
 529	struct sk_buff *skb;
 530	struct arphdr *arp;
 531	unsigned char *arp_ptr;
 532	int hlen = LL_RESERVED_SPACE(dev);
 533	int tlen = dev->needed_tailroom;
 534
 535	/*
 536	 *	Allocate a buffer
 537	 */
 538
 539	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 540	if (!skb)
 541		return NULL;
 542
 543	skb_reserve(skb, hlen);
 544	skb_reset_network_header(skb);
 545	arp = skb_put(skb, arp_hdr_len(dev));
 546	skb->dev = dev;
 547	skb->protocol = htons(ETH_P_ARP);
 548	if (!src_hw)
 549		src_hw = dev->dev_addr;
 550	if (!dest_hw)
 551		dest_hw = dev->broadcast;
 552
 553	/*
 554	 *	Fill the device header for the ARP frame
 555	 */
 556	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 557		goto out;
 558
 559	/*
 560	 * Fill out the arp protocol part.
 561	 *
 562	 * The arp hardware type should match the device type, except for FDDI,
 563	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 564	 */
 565	/*
 566	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 567	 *	DIX code for the protocol. Make these device structure fields.
 568	 */
 569	switch (dev->type) {
 570	default:
 571		arp->ar_hrd = htons(dev->type);
 572		arp->ar_pro = htons(ETH_P_IP);
 573		break;
 574
 575#if IS_ENABLED(CONFIG_AX25)
 576	case ARPHRD_AX25:
 577		arp->ar_hrd = htons(ARPHRD_AX25);
 578		arp->ar_pro = htons(AX25_P_IP);
 579		break;
 580
 581#if IS_ENABLED(CONFIG_NETROM)
 582	case ARPHRD_NETROM:
 583		arp->ar_hrd = htons(ARPHRD_NETROM);
 584		arp->ar_pro = htons(AX25_P_IP);
 585		break;
 586#endif
 587#endif
 588
 589#if IS_ENABLED(CONFIG_FDDI)
 590	case ARPHRD_FDDI:
 591		arp->ar_hrd = htons(ARPHRD_ETHER);
 592		arp->ar_pro = htons(ETH_P_IP);
 593		break;
 594#endif
 
 
 
 
 
 
 595	}
 596
 597	arp->ar_hln = dev->addr_len;
 598	arp->ar_pln = 4;
 599	arp->ar_op = htons(type);
 600
 601	arp_ptr = (unsigned char *)(arp + 1);
 602
 603	memcpy(arp_ptr, src_hw, dev->addr_len);
 604	arp_ptr += dev->addr_len;
 605	memcpy(arp_ptr, &src_ip, 4);
 606	arp_ptr += 4;
 607
 608	switch (dev->type) {
 609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 610	case ARPHRD_IEEE1394:
 611		break;
 612#endif
 613	default:
 614		if (target_hw)
 615			memcpy(arp_ptr, target_hw, dev->addr_len);
 616		else
 617			memset(arp_ptr, 0, dev->addr_len);
 618		arp_ptr += dev->addr_len;
 619	}
 620	memcpy(arp_ptr, &dest_ip, 4);
 621
 622	return skb;
 623
 624out:
 625	kfree_skb(skb);
 626	return NULL;
 627}
 628EXPORT_SYMBOL(arp_create);
 629
 630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 631{
 632	return dev_queue_xmit(skb);
 633}
 634
 635/*
 636 *	Send an arp packet.
 637 */
 638void arp_xmit(struct sk_buff *skb)
 639{
 640	/* Send it off, maybe filter it using firewalling first.  */
 641	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 642		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 643		arp_xmit_finish);
 644}
 645EXPORT_SYMBOL(arp_xmit);
 646
 647static bool arp_is_garp(struct net *net, struct net_device *dev,
 648			int *addr_type, __be16 ar_op,
 649			__be32 sip, __be32 tip,
 650			unsigned char *sha, unsigned char *tha)
 
 
 
 651{
 652	bool is_garp = tip == sip;
 653
 654	/* Gratuitous ARP _replies_ also require target hwaddr to be
 655	 * the same as source.
 656	 */
 657	if (is_garp && ar_op == htons(ARPOP_REPLY))
 658		is_garp =
 659			/* IPv4 over IEEE 1394 doesn't provide target
 660			 * hardware address field in its ARP payload.
 661			 */
 662			tha &&
 663			!memcmp(tha, sha, dev->addr_len);
 664
 665	if (is_garp) {
 666		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 667		if (*addr_type != RTN_UNICAST)
 668			is_garp = false;
 669	}
 670	return is_garp;
 671}
 
 672
 673/*
 674 *	Process an arp request.
 675 */
 676
 677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 678{
 679	struct net_device *dev = skb->dev;
 680	struct in_device *in_dev = __in_dev_get_rcu(dev);
 681	struct arphdr *arp;
 682	unsigned char *arp_ptr;
 683	struct rtable *rt;
 684	unsigned char *sha;
 685	unsigned char *tha = NULL;
 686	__be32 sip, tip;
 687	u16 dev_type = dev->type;
 688	int addr_type;
 689	struct neighbour *n;
 690	struct dst_entry *reply_dst = NULL;
 691	bool is_garp = false;
 692
 693	/* arp_rcv below verifies the ARP header and verifies the device
 694	 * is ARP'able.
 695	 */
 696
 697	if (!in_dev)
 698		goto out_free_skb;
 699
 700	arp = arp_hdr(skb);
 701
 702	switch (dev_type) {
 703	default:
 704		if (arp->ar_pro != htons(ETH_P_IP) ||
 705		    htons(dev_type) != arp->ar_hrd)
 706			goto out_free_skb;
 707		break;
 708	case ARPHRD_ETHER:
 
 709	case ARPHRD_FDDI:
 710	case ARPHRD_IEEE802:
 711		/*
 712		 * ETHERNET, and Fibre Channel (which are IEEE 802
 713		 * devices, according to RFC 2625) devices will accept ARP
 714		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 715		 * This is the case also of FDDI, where the RFC 1390 says that
 716		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 717		 * however, to be more robust, we'll accept both 1 (Ethernet)
 718		 * or 6 (IEEE 802.2)
 719		 */
 720		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 721		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 722		    arp->ar_pro != htons(ETH_P_IP))
 723			goto out_free_skb;
 724		break;
 725	case ARPHRD_AX25:
 726		if (arp->ar_pro != htons(AX25_P_IP) ||
 727		    arp->ar_hrd != htons(ARPHRD_AX25))
 728			goto out_free_skb;
 729		break;
 730	case ARPHRD_NETROM:
 731		if (arp->ar_pro != htons(AX25_P_IP) ||
 732		    arp->ar_hrd != htons(ARPHRD_NETROM))
 733			goto out_free_skb;
 734		break;
 735	}
 736
 737	/* Understand only these message types */
 738
 739	if (arp->ar_op != htons(ARPOP_REPLY) &&
 740	    arp->ar_op != htons(ARPOP_REQUEST))
 741		goto out_free_skb;
 742
 743/*
 744 *	Extract fields
 745 */
 746	arp_ptr = (unsigned char *)(arp + 1);
 747	sha	= arp_ptr;
 748	arp_ptr += dev->addr_len;
 749	memcpy(&sip, arp_ptr, 4);
 750	arp_ptr += 4;
 751	switch (dev_type) {
 752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 753	case ARPHRD_IEEE1394:
 754		break;
 755#endif
 756	default:
 757		tha = arp_ptr;
 758		arp_ptr += dev->addr_len;
 759	}
 760	memcpy(&tip, arp_ptr, 4);
 761/*
 762 *	Check for bad requests for 127.x.x.x and requests for multicast
 763 *	addresses.  If this is one such, delete it.
 764 */
 765	if (ipv4_is_multicast(tip) ||
 766	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 767		goto out_free_skb;
 768
 769 /*
 770  *	For some 802.11 wireless deployments (and possibly other networks),
 771  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 772  *	and thus should not be accepted.
 773  */
 774	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 775		goto out_free_skb;
 776
 777/*
 778 *     Special case: We must set Frame Relay source Q.922 address
 779 */
 780	if (dev_type == ARPHRD_DLCI)
 781		sha = dev->broadcast;
 782
 783/*
 784 *  Process entry.  The idea here is we want to send a reply if it is a
 785 *  request for us or if it is a request for someone else that we hold
 786 *  a proxy for.  We want to add an entry to our cache if it is a reply
 787 *  to us or if it is a request for our address.
 788 *  (The assumption for this last is that if someone is requesting our
 789 *  address, they are probably intending to talk to us, so it saves time
 790 *  if we cache their address.  Their address is also probably not in
 791 *  our cache, since ours is not in their cache.)
 792 *
 793 *  Putting this another way, we only care about replies if they are to
 794 *  us, in which case we add them to the cache.  For requests, we care
 795 *  about those for us and those for our proxies.  We reply to both,
 796 *  and in the case of requests for us we add the requester to the arp
 797 *  cache.
 798 */
 799
 800	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 801		reply_dst = (struct dst_entry *)
 802			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 803						    GFP_ATOMIC);
 804
 805	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 806	if (sip == 0) {
 807		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 808		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 809		    !arp_ignore(in_dev, sip, tip))
 810			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 811				     sha, dev->dev_addr, sha, reply_dst);
 812		goto out_consume_skb;
 813	}
 814
 815	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 816	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 817
 818		rt = skb_rtable(skb);
 819		addr_type = rt->rt_type;
 820
 821		if (addr_type == RTN_LOCAL) {
 822			int dont_send;
 823
 824			dont_send = arp_ignore(in_dev, sip, tip);
 825			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 826				dont_send = arp_filter(sip, tip, dev);
 827			if (!dont_send) {
 828				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 829				if (n) {
 830					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 831						     sip, dev, tip, sha,
 832						     dev->dev_addr, sha,
 833						     reply_dst);
 834					neigh_release(n);
 835				}
 836			}
 837			goto out_consume_skb;
 838		} else if (IN_DEV_FORWARD(in_dev)) {
 839			if (addr_type == RTN_UNICAST  &&
 840			    (arp_fwd_proxy(in_dev, dev, rt) ||
 841			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 842			     (rt->dst.dev != dev &&
 843			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 844				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 845				if (n)
 846					neigh_release(n);
 847
 848				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 849				    skb->pkt_type == PACKET_HOST ||
 850				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855				} else {
 856					pneigh_enqueue(&arp_tbl,
 857						       in_dev->arp_parms, skb);
 858					goto out_free_dst;
 859				}
 860				goto out_consume_skb;
 861			}
 862		}
 863	}
 864
 865	/* Update our ARP tables */
 866
 867	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 868
 869	addr_type = -1;
 870	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 871		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 872				      sip, tip, sha, tha);
 873	}
 874
 875	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 876		/* Unsolicited ARP is not accepted by default.
 877		   It is possible, that this option should be enabled for some
 878		   devices (strip is candidate)
 879		 */
 880		if (!n &&
 881		    (is_garp ||
 882		     (arp->ar_op == htons(ARPOP_REPLY) &&
 883		      (addr_type == RTN_UNICAST ||
 884		       (addr_type < 0 &&
 885			/* postpone calculation to as late as possible */
 886			inet_addr_type_dev_table(net, dev, sip) ==
 887				RTN_UNICAST)))))
 888			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 889	}
 890
 891	if (n) {
 892		int state = NUD_REACHABLE;
 893		int override;
 894
 895		/* If several different ARP replies follows back-to-back,
 896		   use the FIRST one. It is possible, if several proxy
 897		   agents are active. Taking the first reply prevents
 898		   arp trashing and chooses the fastest router.
 899		 */
 900		override = time_after(jiffies,
 901				      n->updated +
 902				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 903			   is_garp;
 904
 905		/* Broadcast replies and request packets
 906		   do not assert neighbour reachability.
 907		 */
 908		if (arp->ar_op != htons(ARPOP_REPLY) ||
 909		    skb->pkt_type != PACKET_HOST)
 910			state = NUD_STALE;
 911		neigh_update(n, sha, state,
 912			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 913		neigh_release(n);
 914	}
 915
 916out_consume_skb:
 917	consume_skb(skb);
 918
 919out_free_dst:
 920	dst_release(reply_dst);
 921	return NET_RX_SUCCESS;
 922
 923out_free_skb:
 924	kfree_skb(skb);
 925	return NET_RX_DROP;
 926}
 927
 928static void parp_redo(struct sk_buff *skb)
 929{
 930	arp_process(dev_net(skb->dev), NULL, skb);
 931}
 932
 933static int arp_is_multicast(const void *pkey)
 934{
 935	return ipv4_is_multicast(*((__be32 *)pkey));
 936}
 937
 938/*
 939 *	Receive an arp request from the device layer.
 940 */
 941
 942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 943		   struct packet_type *pt, struct net_device *orig_dev)
 944{
 945	const struct arphdr *arp;
 946
 947	/* do not tweak dropwatch on an ARP we will ignore */
 948	if (dev->flags & IFF_NOARP ||
 949	    skb->pkt_type == PACKET_OTHERHOST ||
 950	    skb->pkt_type == PACKET_LOOPBACK)
 951		goto consumeskb;
 952
 953	skb = skb_share_check(skb, GFP_ATOMIC);
 954	if (!skb)
 955		goto out_of_mem;
 956
 957	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 958	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 959		goto freeskb;
 960
 961	arp = arp_hdr(skb);
 962	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 963		goto freeskb;
 964
 
 
 
 
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 968		       dev_net(dev), NULL, skb, dev, NULL,
 969		       arp_process);
 970
 971consumeskb:
 972	consume_skb(skb);
 973	return NET_RX_SUCCESS;
 974freeskb:
 975	kfree_skb(skb);
 976out_of_mem:
 977	return NET_RX_DROP;
 978}
 979
 980/*
 981 *	User level interface (ioctl)
 982 */
 983
 984/*
 985 *	Set (create) an ARP cache entry.
 986 */
 987
 988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 989{
 990	if (!dev) {
 991		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 992		return 0;
 993	}
 994	if (__in_dev_get_rtnl(dev)) {
 995		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 996		return 0;
 997	}
 998	return -ENXIO;
 999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002		struct net_device *dev)
1003{
1004	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007	if (mask && mask != htonl(0xFFFFFFFF))
1008		return -EINVAL;
1009	if (!dev && (r->arp_flags & ATF_COM)) {
1010		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011				      r->arp_ha.sa_data);
1012		if (!dev)
1013			return -ENODEV;
1014	}
1015	if (mask) {
1016		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017			return -ENOBUFS;
1018		return 0;
1019	}
1020
1021	return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025		       struct net_device *dev)
1026{
1027	__be32 ip;
1028	struct neighbour *neigh;
1029	int err;
1030
1031	if (r->arp_flags & ATF_PUBL)
1032		return arp_req_set_public(net, r, dev);
1033
1034	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035	if (r->arp_flags & ATF_PERM)
1036		r->arp_flags |= ATF_COM;
1037	if (!dev) {
1038		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040		if (IS_ERR(rt))
1041			return PTR_ERR(rt);
1042		dev = rt->dst.dev;
1043		ip_rt_put(rt);
1044		if (!dev)
1045			return -EINVAL;
1046	}
1047	switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049	case ARPHRD_FDDI:
1050		/*
1051		 * According to RFC 1390, FDDI devices should accept ARP
1052		 * hardware types of 1 (Ethernet).  However, to be more
1053		 * robust, we'll accept hardware types of either 1 (Ethernet)
1054		 * or 6 (IEEE 802.2).
1055		 */
1056		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059			return -EINVAL;
1060		break;
1061#endif
1062	default:
1063		if (r->arp_ha.sa_family != dev->type)
1064			return -EINVAL;
1065		break;
1066	}
1067
1068	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069	err = PTR_ERR(neigh);
1070	if (!IS_ERR(neigh)) {
1071		unsigned int state = NUD_STALE;
1072		if (r->arp_flags & ATF_PERM)
1073			state = NUD_PERMANENT;
1074		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075				   r->arp_ha.sa_data : NULL, state,
1076				   NEIGH_UPDATE_F_OVERRIDE |
1077				   NEIGH_UPDATE_F_ADMIN, 0);
1078		neigh_release(neigh);
1079	}
1080	return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085	if (neigh->nud_state&NUD_PERMANENT)
1086		return ATF_PERM | ATF_COM;
1087	else if (neigh->nud_state&NUD_VALID)
1088		return ATF_COM;
1089	else
1090		return 0;
1091}
1092
1093/*
1094 *	Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100	struct neighbour *neigh;
1101	int err = -ENXIO;
1102
1103	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104	if (neigh) {
1105		if (!(neigh->nud_state & NUD_NOARP)) {
1106			read_lock_bh(&neigh->lock);
1107			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108			r->arp_flags = arp_state_to_flags(neigh);
1109			read_unlock_bh(&neigh->lock);
1110			r->arp_ha.sa_family = dev->type;
1111			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112			err = 0;
1113		}
1114		neigh_release(neigh);
 
1115	}
1116	return err;
1117}
1118
1119static int arp_invalidate(struct net_device *dev, __be32 ip)
1120{
1121	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122	int err = -ENXIO;
1123	struct neigh_table *tbl = &arp_tbl;
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN, 0);
1130		write_lock_bh(&tbl->lock);
1131		neigh_release(neigh);
1132		neigh_remove_one(neigh, tbl);
1133		write_unlock_bh(&tbl->lock);
1134	}
1135
1136	return err;
1137}
 
1138
1139static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140		struct net_device *dev)
1141{
1142	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144
1145	if (mask == htonl(0xFFFFFFFF))
1146		return pneigh_delete(&arp_tbl, net, &ip, dev);
1147
1148	if (mask)
1149		return -EINVAL;
1150
1151	return arp_req_set_proxy(net, dev, 0);
1152}
1153
1154static int arp_req_delete(struct net *net, struct arpreq *r,
1155			  struct net_device *dev)
1156{
1157	__be32 ip;
1158
1159	if (r->arp_flags & ATF_PUBL)
1160		return arp_req_delete_public(net, r, dev);
1161
1162	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163	if (!dev) {
1164		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165		if (IS_ERR(rt))
1166			return PTR_ERR(rt);
1167		dev = rt->dst.dev;
1168		ip_rt_put(rt);
1169		if (!dev)
1170			return -EINVAL;
1171	}
1172	return arp_invalidate(dev, ip);
1173}
1174
1175/*
1176 *	Handle an ARP layer I/O control request.
1177 */
1178
1179int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180{
1181	int err;
1182	struct arpreq r;
1183	struct net_device *dev = NULL;
1184
1185	switch (cmd) {
1186	case SIOCDARP:
1187	case SIOCSARP:
1188		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189			return -EPERM;
1190		fallthrough;
1191	case SIOCGARP:
1192		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193		if (err)
1194			return -EFAULT;
1195		break;
1196	default:
1197		return -EINVAL;
1198	}
1199
1200	if (r.arp_pa.sa_family != AF_INET)
1201		return -EPFNOSUPPORT;
1202
1203	if (!(r.arp_flags & ATF_PUBL) &&
1204	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205		return -EINVAL;
1206	if (!(r.arp_flags & ATF_NETMASK))
1207		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208							   htonl(0xFFFFFFFFUL);
1209	rtnl_lock();
1210	if (r.arp_dev[0]) {
1211		err = -ENODEV;
1212		dev = __dev_get_by_name(net, r.arp_dev);
1213		if (!dev)
1214			goto out;
1215
1216		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217		if (!r.arp_ha.sa_family)
1218			r.arp_ha.sa_family = dev->type;
1219		err = -EINVAL;
1220		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221			goto out;
1222	} else if (cmd == SIOCGARP) {
1223		err = -ENODEV;
1224		goto out;
1225	}
1226
1227	switch (cmd) {
1228	case SIOCDARP:
1229		err = arp_req_delete(net, &r, dev);
1230		break;
1231	case SIOCSARP:
1232		err = arp_req_set(net, &r, dev);
1233		break;
1234	case SIOCGARP:
1235		err = arp_req_get(&r, dev);
1236		break;
1237	}
1238out:
1239	rtnl_unlock();
1240	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241		err = -EFAULT;
1242	return err;
1243}
1244
1245static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246			    void *ptr)
1247{
1248	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249	struct netdev_notifier_change_info *change_info;
1250
1251	switch (event) {
1252	case NETDEV_CHANGEADDR:
1253		neigh_changeaddr(&arp_tbl, dev);
1254		rt_cache_flush(dev_net(dev));
1255		break;
1256	case NETDEV_CHANGE:
1257		change_info = ptr;
1258		if (change_info->flags_changed & IFF_NOARP)
1259			neigh_changeaddr(&arp_tbl, dev);
1260		if (!netif_carrier_ok(dev))
1261			neigh_carrier_down(&arp_tbl, dev);
1262		break;
1263	default:
1264		break;
1265	}
1266
1267	return NOTIFY_DONE;
1268}
1269
1270static struct notifier_block arp_netdev_notifier = {
1271	.notifier_call = arp_netdev_event,
1272};
1273
1274/* Note, that it is not on notifier chain.
1275   It is necessary, that this routine was called after route cache will be
1276   flushed.
1277 */
1278void arp_ifdown(struct net_device *dev)
1279{
1280	neigh_ifdown(&arp_tbl, dev);
1281}
1282
1283
1284/*
1285 *	Called once on startup.
1286 */
1287
1288static struct packet_type arp_packet_type __read_mostly = {
1289	.type =	cpu_to_be16(ETH_P_ARP),
1290	.func =	arp_rcv,
1291};
1292
1293static int arp_proc_init(void);
1294
1295void __init arp_init(void)
1296{
1297	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298
1299	dev_add_pack(&arp_packet_type);
1300	arp_proc_init();
1301#ifdef CONFIG_SYSCTL
1302	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303#endif
1304	register_netdevice_notifier(&arp_netdev_notifier);
1305}
1306
1307#ifdef CONFIG_PROC_FS
1308#if IS_ENABLED(CONFIG_AX25)
1309
1310/* ------------------------------------------------------------------------ */
1311/*
1312 *	ax25 -> ASCII conversion
1313 */
1314static void ax2asc2(ax25_address *a, char *buf)
1315{
1316	char c, *s;
1317	int n;
1318
1319	for (n = 0, s = buf; n < 6; n++) {
1320		c = (a->ax25_call[n] >> 1) & 0x7F;
1321
1322		if (c != ' ')
1323			*s++ = c;
1324	}
1325
1326	*s++ = '-';
1327	n = (a->ax25_call[6] >> 1) & 0x0F;
1328	if (n > 9) {
1329		*s++ = '1';
1330		n -= 10;
1331	}
1332
1333	*s++ = n + '0';
1334	*s++ = '\0';
1335
1336	if (*buf == '\0' || *buf == '-') {
1337		buf[0] = '*';
1338		buf[1] = '\0';
1339	}
1340}
1341#endif /* CONFIG_AX25 */
1342
1343#define HBUFFERLEN 30
1344
1345static void arp_format_neigh_entry(struct seq_file *seq,
1346				   struct neighbour *n)
1347{
1348	char hbuffer[HBUFFERLEN];
1349	int k, j;
1350	char tbuf[16];
1351	struct net_device *dev = n->dev;
1352	int hatype = dev->type;
1353
1354	read_lock(&n->lock);
1355	/* Convert hardware address to XX:XX:XX:XX ... form. */
1356#if IS_ENABLED(CONFIG_AX25)
1357	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358		ax2asc2((ax25_address *)n->ha, hbuffer);
1359	else {
1360#endif
1361	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364		hbuffer[k++] = ':';
1365	}
1366	if (k != 0)
1367		--k;
1368	hbuffer[k] = 0;
1369#if IS_ENABLED(CONFIG_AX25)
1370	}
1371#endif
1372	sprintf(tbuf, "%pI4", n->primary_key);
1373	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375	read_unlock(&n->lock);
1376}
1377
1378static void arp_format_pneigh_entry(struct seq_file *seq,
1379				    struct pneigh_entry *n)
1380{
1381	struct net_device *dev = n->dev;
1382	int hatype = dev ? dev->type : 0;
1383	char tbuf[16];
1384
1385	sprintf(tbuf, "%pI4", n->key);
1386	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388		   dev ? dev->name : "*");
1389}
1390
1391static int arp_seq_show(struct seq_file *seq, void *v)
1392{
1393	if (v == SEQ_START_TOKEN) {
1394		seq_puts(seq, "IP address       HW type     Flags       "
1395			      "HW address            Mask     Device\n");
1396	} else {
1397		struct neigh_seq_state *state = seq->private;
1398
1399		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400			arp_format_pneigh_entry(seq, v);
1401		else
1402			arp_format_neigh_entry(seq, v);
1403	}
1404
1405	return 0;
1406}
1407
1408static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409{
1410	/* Don't want to confuse "arp -a" w/ magic entries,
1411	 * so we tell the generic iterator to skip NUD_NOARP.
1412	 */
1413	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414}
1415
1416/* ------------------------------------------------------------------------ */
1417
1418static const struct seq_operations arp_seq_ops = {
1419	.start	= arp_seq_start,
1420	.next	= neigh_seq_next,
1421	.stop	= neigh_seq_stop,
1422	.show	= arp_seq_show,
1423};
1424
1425/* ------------------------------------------------------------------------ */
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430			sizeof(struct neigh_seq_state)))
1431		return -ENOMEM;
1432	return 0;
1433}
1434
1435static void __net_exit arp_net_exit(struct net *net)
1436{
1437	remove_proc_entry("arp", net->proc_net);
1438}
1439
1440static struct pernet_operations arp_net_ops = {
1441	.init = arp_net_init,
1442	.exit = arp_net_exit,
1443};
1444
1445static int __init arp_proc_init(void)
1446{
1447	return register_pernet_subsys(&arp_net_ops);
1448}
1449
1450#else /* CONFIG_PROC_FS */
1451
1452static int __init arp_proc_init(void)
1453{
1454	return 0;
1455}
1456
1457#endif /* CONFIG_PROC_FS */
v3.1
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 
 
 
 
 
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 
 
 
 
 235
 
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 
 
 
 
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 
 
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 
 
 
 
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
 
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
 
1122		neigh_release(neigh);
 
 
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
 
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
 
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */