Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* linux/net/ipv4/arp.c
3 *
4 * Copyright (C) 1994 by Florian La Roche
5 *
6 * This module implements the Address Resolution Protocol ARP (RFC 826),
7 * which is used to convert IP addresses (or in the future maybe other
8 * high-level addresses) into a low-level hardware address (like an Ethernet
9 * address).
10 *
11 * Fixes:
12 * Alan Cox : Removed the Ethernet assumptions in
13 * Florian's code
14 * Alan Cox : Fixed some small errors in the ARP
15 * logic
16 * Alan Cox : Allow >4K in /proc
17 * Alan Cox : Make ARP add its own protocol entry
18 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
19 * Stephen Henson : Add AX25 support to arp_get_info()
20 * Alan Cox : Drop data when a device is downed.
21 * Alan Cox : Use init_timer().
22 * Alan Cox : Double lock fixes.
23 * Martin Seine : Move the arphdr structure
24 * to if_arp.h for compatibility.
25 * with BSD based programs.
26 * Andrew Tridgell : Added ARP netmask code and
27 * re-arranged proxy handling.
28 * Alan Cox : Changed to use notifiers.
29 * Niibe Yutaka : Reply for this device or proxies only.
30 * Alan Cox : Don't proxy across hardware types!
31 * Jonathan Naylor : Added support for NET/ROM.
32 * Mike Shaver : RFC1122 checks.
33 * Jonathan Naylor : Only lookup the hardware address for
34 * the correct hardware type.
35 * Germano Caronni : Assorted subtle races.
36 * Craig Schlenter : Don't modify permanent entry
37 * during arp_rcv.
38 * Russ Nelson : Tidied up a few bits.
39 * Alexey Kuznetsov: Major changes to caching and behaviour,
40 * eg intelligent arp probing and
41 * generation
42 * of host down events.
43 * Alan Cox : Missing unlock in device events.
44 * Eckes : ARP ioctl control errors.
45 * Alexey Kuznetsov: Arp free fix.
46 * Manuel Rodriguez: Gratuitous ARP.
47 * Jonathan Layes : Added arpd support through kerneld
48 * message queue (960314)
49 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
50 * Mike McLagan : Routing by source
51 * Stuart Cheshire : Metricom and grat arp fixes
52 * *** FOR 2.1 clean this up ***
53 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 * Alan Cox : Took the AP1000 nasty FDDI hack and
55 * folded into the mainstream FDDI code.
56 * Ack spit, Linus how did you allow that
57 * one in...
58 * Jes Sorensen : Make FDDI work again in 2.1.x and
59 * clean up the APFDDI & gen. FDDI bits.
60 * Alexey Kuznetsov: new arp state machine;
61 * now it is in net/core/neighbour.c.
62 * Krzysztof Halasa: Added Frame Relay ARP support.
63 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
64 * Shmulik Hen: Split arp_send to arp_create and
65 * arp_xmit so intermediate drivers like
66 * bonding can change the skb before
67 * sending (e.g. insert 8021q tag).
68 * Harald Welte : convert to make use of jenkins hash
69 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70 */
71
72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74#include <linux/module.h>
75#include <linux/types.h>
76#include <linux/string.h>
77#include <linux/kernel.h>
78#include <linux/capability.h>
79#include <linux/socket.h>
80#include <linux/sockios.h>
81#include <linux/errno.h>
82#include <linux/in.h>
83#include <linux/mm.h>
84#include <linux/inet.h>
85#include <linux/inetdevice.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/fddidevice.h>
89#include <linux/if_arp.h>
90#include <linux/skbuff.h>
91#include <linux/proc_fs.h>
92#include <linux/seq_file.h>
93#include <linux/stat.h>
94#include <linux/init.h>
95#include <linux/net.h>
96#include <linux/rcupdate.h>
97#include <linux/slab.h>
98#ifdef CONFIG_SYSCTL
99#include <linux/sysctl.h>
100#endif
101
102#include <net/net_namespace.h>
103#include <net/ip.h>
104#include <net/icmp.h>
105#include <net/route.h>
106#include <net/protocol.h>
107#include <net/tcp.h>
108#include <net/sock.h>
109#include <net/arp.h>
110#include <net/ax25.h>
111#include <net/netrom.h>
112#include <net/dst_metadata.h>
113#include <net/ip_tunnels.h>
114
115#include <linux/uaccess.h>
116
117#include <linux/netfilter_arp.h>
118
119/*
120 * Interface to generic neighbour cache.
121 */
122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124static int arp_constructor(struct neighbour *neigh);
125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127static void parp_redo(struct sk_buff *skb);
128static int arp_is_multicast(const void *pkey);
129
130static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136};
137
138static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144};
145
146static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150};
151
152struct neigh_table arp_tbl = {
153 .family = AF_INET,
154 .key_len = 4,
155 .protocol = cpu_to_be16(ETH_P_IP),
156 .hash = arp_hash,
157 .key_eq = arp_key_eq,
158 .constructor = arp_constructor,
159 .proxy_redo = parp_redo,
160 .is_multicast = arp_is_multicast,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183};
184EXPORT_SYMBOL(arp_tbl);
185
186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187{
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207}
208
209
210static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213{
214 return arp_hashfn(pkey, dev, hash_rnd);
215}
216
217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218{
219 return neigh_key_eq32(neigh, pkey);
220}
221
222static int arp_constructor(struct neighbour *neigh)
223{
224 __be32 addr;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228 u32 inaddr_any = INADDR_ANY;
229
230 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232
233 addr = *(__be32 *)neigh->primary_key;
234 rcu_read_lock();
235 in_dev = __in_dev_get_rcu(dev);
236 if (!in_dev) {
237 rcu_read_unlock();
238 return -EINVAL;
239 }
240
241 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242
243 parms = in_dev->arp_parms;
244 __neigh_parms_put(neigh->parms);
245 neigh->parms = neigh_parms_clone(parms);
246 rcu_read_unlock();
247
248 if (!dev->header_ops) {
249 neigh->nud_state = NUD_NOARP;
250 neigh->ops = &arp_direct_ops;
251 neigh->output = neigh_direct_output;
252 } else {
253 /* Good devices (checked by reading texts, but only Ethernet is
254 tested)
255
256 ARPHRD_ETHER: (ethernet, apfddi)
257 ARPHRD_FDDI: (fddi)
258 ARPHRD_IEEE802: (tr)
259 ARPHRD_METRICOM: (strip)
260 ARPHRD_ARCNET:
261 etc. etc. etc.
262
263 ARPHRD_IPDDP will also work, if author repairs it.
264 I did not it, because this driver does not work even
265 in old paradigm.
266 */
267
268 if (neigh->type == RTN_MULTICAST) {
269 neigh->nud_state = NUD_NOARP;
270 arp_mc_map(addr, neigh->ha, dev, 1);
271 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272 neigh->nud_state = NUD_NOARP;
273 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274 } else if (neigh->type == RTN_BROADCAST ||
275 (dev->flags & IFF_POINTOPOINT)) {
276 neigh->nud_state = NUD_NOARP;
277 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278 }
279
280 if (dev->header_ops->cache)
281 neigh->ops = &arp_hh_ops;
282 else
283 neigh->ops = &arp_generic_ops;
284
285 if (neigh->nud_state & NUD_VALID)
286 neigh->output = neigh->ops->connected_output;
287 else
288 neigh->output = neigh->ops->output;
289 }
290 return 0;
291}
292
293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294{
295 dst_link_failure(skb);
296 kfree_skb(skb);
297}
298
299/* Create and send an arp packet. */
300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301 struct net_device *dev, __be32 src_ip,
302 const unsigned char *dest_hw,
303 const unsigned char *src_hw,
304 const unsigned char *target_hw,
305 struct dst_entry *dst)
306{
307 struct sk_buff *skb;
308
309 /* arp on this interface. */
310 if (dev->flags & IFF_NOARP)
311 return;
312
313 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314 dest_hw, src_hw, target_hw);
315 if (!skb)
316 return;
317
318 skb_dst_set(skb, dst_clone(dst));
319 arp_xmit(skb);
320}
321
322void arp_send(int type, int ptype, __be32 dest_ip,
323 struct net_device *dev, __be32 src_ip,
324 const unsigned char *dest_hw, const unsigned char *src_hw,
325 const unsigned char *target_hw)
326{
327 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328 target_hw, NULL);
329}
330EXPORT_SYMBOL(arp_send);
331
332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333{
334 __be32 saddr = 0;
335 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336 struct net_device *dev = neigh->dev;
337 __be32 target = *(__be32 *)neigh->primary_key;
338 int probes = atomic_read(&neigh->probes);
339 struct in_device *in_dev;
340 struct dst_entry *dst = NULL;
341
342 rcu_read_lock();
343 in_dev = __in_dev_get_rcu(dev);
344 if (!in_dev) {
345 rcu_read_unlock();
346 return;
347 }
348 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349 default:
350 case 0: /* By default announce any local IP */
351 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352 ip_hdr(skb)->saddr) == RTN_LOCAL)
353 saddr = ip_hdr(skb)->saddr;
354 break;
355 case 1: /* Restrict announcements of saddr in same subnet */
356 if (!skb)
357 break;
358 saddr = ip_hdr(skb)->saddr;
359 if (inet_addr_type_dev_table(dev_net(dev), dev,
360 saddr) == RTN_LOCAL) {
361 /* saddr should be known to target */
362 if (inet_addr_onlink(in_dev, target, saddr))
363 break;
364 }
365 saddr = 0;
366 break;
367 case 2: /* Avoid secondary IPs, get a primary/preferred one */
368 break;
369 }
370 rcu_read_unlock();
371
372 if (!saddr)
373 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374
375 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376 if (probes < 0) {
377 if (!(neigh->nud_state & NUD_VALID))
378 pr_debug("trying to ucast probe in NUD_INVALID\n");
379 neigh_ha_snapshot(dst_ha, neigh, dev);
380 dst_hw = dst_ha;
381 } else {
382 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383 if (probes < 0) {
384 neigh_app_ns(neigh);
385 return;
386 }
387 }
388
389 if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390 dst = skb_dst(skb);
391 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392 dst_hw, dev->dev_addr, NULL, dst);
393}
394
395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396{
397 struct net *net = dev_net(in_dev->dev);
398 int scope;
399
400 switch (IN_DEV_ARP_IGNORE(in_dev)) {
401 case 0: /* Reply, the tip is already validated */
402 return 0;
403 case 1: /* Reply only if tip is configured on the incoming interface */
404 sip = 0;
405 scope = RT_SCOPE_HOST;
406 break;
407 case 2: /*
408 * Reply only if tip is configured on the incoming interface
409 * and is in same subnet as sip
410 */
411 scope = RT_SCOPE_HOST;
412 break;
413 case 3: /* Do not reply for scope host addresses */
414 sip = 0;
415 scope = RT_SCOPE_LINK;
416 in_dev = NULL;
417 break;
418 case 4: /* Reserved */
419 case 5:
420 case 6:
421 case 7:
422 return 0;
423 case 8: /* Do not reply */
424 return 1;
425 default:
426 return 0;
427 }
428 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429}
430
431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432{
433 struct rtable *rt;
434 int flag = 0;
435 /*unsigned long now; */
436 struct net *net = dev_net(dev);
437
438 rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439 if (IS_ERR(rt))
440 return 1;
441 if (rt->dst.dev != dev) {
442 __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443 flag = 1;
444 }
445 ip_rt_put(rt);
446 return flag;
447}
448
449/*
450 * Check if we can use proxy ARP for this path
451 */
452static inline int arp_fwd_proxy(struct in_device *in_dev,
453 struct net_device *dev, struct rtable *rt)
454{
455 struct in_device *out_dev;
456 int imi, omi = -1;
457
458 if (rt->dst.dev == dev)
459 return 0;
460
461 if (!IN_DEV_PROXY_ARP(in_dev))
462 return 0;
463 imi = IN_DEV_MEDIUM_ID(in_dev);
464 if (imi == 0)
465 return 1;
466 if (imi == -1)
467 return 0;
468
469 /* place to check for proxy_arp for routes */
470
471 out_dev = __in_dev_get_rcu(rt->dst.dev);
472 if (out_dev)
473 omi = IN_DEV_MEDIUM_ID(out_dev);
474
475 return omi != imi && omi != -1;
476}
477
478/*
479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480 *
481 * RFC3069 supports proxy arp replies back to the same interface. This
482 * is done to support (ethernet) switch features, like RFC 3069, where
483 * the individual ports are not allowed to communicate with each
484 * other, BUT they are allowed to talk to the upstream router. As
485 * described in RFC 3069, it is possible to allow these hosts to
486 * communicate through the upstream router, by proxy_arp'ing.
487 *
488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489 *
490 * This technology is known by different names:
491 * In RFC 3069 it is called VLAN Aggregation.
492 * Cisco and Allied Telesyn call it Private VLAN.
493 * Hewlett-Packard call it Source-Port filtering or port-isolation.
494 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
495 *
496 */
497static inline int arp_fwd_pvlan(struct in_device *in_dev,
498 struct net_device *dev, struct rtable *rt,
499 __be32 sip, __be32 tip)
500{
501 /* Private VLAN is only concerned about the same ethernet segment */
502 if (rt->dst.dev != dev)
503 return 0;
504
505 /* Don't reply on self probes (often done by windowz boxes)*/
506 if (sip == tip)
507 return 0;
508
509 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510 return 1;
511 else
512 return 0;
513}
514
515/*
516 * Interface to link layer: send routine and receive handler.
517 */
518
519/*
520 * Create an arp packet. If dest_hw is not set, we create a broadcast
521 * message.
522 */
523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524 struct net_device *dev, __be32 src_ip,
525 const unsigned char *dest_hw,
526 const unsigned char *src_hw,
527 const unsigned char *target_hw)
528{
529 struct sk_buff *skb;
530 struct arphdr *arp;
531 unsigned char *arp_ptr;
532 int hlen = LL_RESERVED_SPACE(dev);
533 int tlen = dev->needed_tailroom;
534
535 /*
536 * Allocate a buffer
537 */
538
539 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540 if (!skb)
541 return NULL;
542
543 skb_reserve(skb, hlen);
544 skb_reset_network_header(skb);
545 arp = skb_put(skb, arp_hdr_len(dev));
546 skb->dev = dev;
547 skb->protocol = htons(ETH_P_ARP);
548 if (!src_hw)
549 src_hw = dev->dev_addr;
550 if (!dest_hw)
551 dest_hw = dev->broadcast;
552
553 /*
554 * Fill the device header for the ARP frame
555 */
556 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557 goto out;
558
559 /*
560 * Fill out the arp protocol part.
561 *
562 * The arp hardware type should match the device type, except for FDDI,
563 * which (according to RFC 1390) should always equal 1 (Ethernet).
564 */
565 /*
566 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567 * DIX code for the protocol. Make these device structure fields.
568 */
569 switch (dev->type) {
570 default:
571 arp->ar_hrd = htons(dev->type);
572 arp->ar_pro = htons(ETH_P_IP);
573 break;
574
575#if IS_ENABLED(CONFIG_AX25)
576 case ARPHRD_AX25:
577 arp->ar_hrd = htons(ARPHRD_AX25);
578 arp->ar_pro = htons(AX25_P_IP);
579 break;
580
581#if IS_ENABLED(CONFIG_NETROM)
582 case ARPHRD_NETROM:
583 arp->ar_hrd = htons(ARPHRD_NETROM);
584 arp->ar_pro = htons(AX25_P_IP);
585 break;
586#endif
587#endif
588
589#if IS_ENABLED(CONFIG_FDDI)
590 case ARPHRD_FDDI:
591 arp->ar_hrd = htons(ARPHRD_ETHER);
592 arp->ar_pro = htons(ETH_P_IP);
593 break;
594#endif
595 }
596
597 arp->ar_hln = dev->addr_len;
598 arp->ar_pln = 4;
599 arp->ar_op = htons(type);
600
601 arp_ptr = (unsigned char *)(arp + 1);
602
603 memcpy(arp_ptr, src_hw, dev->addr_len);
604 arp_ptr += dev->addr_len;
605 memcpy(arp_ptr, &src_ip, 4);
606 arp_ptr += 4;
607
608 switch (dev->type) {
609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
610 case ARPHRD_IEEE1394:
611 break;
612#endif
613 default:
614 if (target_hw)
615 memcpy(arp_ptr, target_hw, dev->addr_len);
616 else
617 memset(arp_ptr, 0, dev->addr_len);
618 arp_ptr += dev->addr_len;
619 }
620 memcpy(arp_ptr, &dest_ip, 4);
621
622 return skb;
623
624out:
625 kfree_skb(skb);
626 return NULL;
627}
628EXPORT_SYMBOL(arp_create);
629
630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631{
632 return dev_queue_xmit(skb);
633}
634
635/*
636 * Send an arp packet.
637 */
638void arp_xmit(struct sk_buff *skb)
639{
640 /* Send it off, maybe filter it using firewalling first. */
641 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
642 dev_net(skb->dev), NULL, skb, NULL, skb->dev,
643 arp_xmit_finish);
644}
645EXPORT_SYMBOL(arp_xmit);
646
647static bool arp_is_garp(struct net *net, struct net_device *dev,
648 int *addr_type, __be16 ar_op,
649 __be32 sip, __be32 tip,
650 unsigned char *sha, unsigned char *tha)
651{
652 bool is_garp = tip == sip;
653
654 /* Gratuitous ARP _replies_ also require target hwaddr to be
655 * the same as source.
656 */
657 if (is_garp && ar_op == htons(ARPOP_REPLY))
658 is_garp =
659 /* IPv4 over IEEE 1394 doesn't provide target
660 * hardware address field in its ARP payload.
661 */
662 tha &&
663 !memcmp(tha, sha, dev->addr_len);
664
665 if (is_garp) {
666 *addr_type = inet_addr_type_dev_table(net, dev, sip);
667 if (*addr_type != RTN_UNICAST)
668 is_garp = false;
669 }
670 return is_garp;
671}
672
673/*
674 * Process an arp request.
675 */
676
677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
678{
679 struct net_device *dev = skb->dev;
680 struct in_device *in_dev = __in_dev_get_rcu(dev);
681 struct arphdr *arp;
682 unsigned char *arp_ptr;
683 struct rtable *rt;
684 unsigned char *sha;
685 unsigned char *tha = NULL;
686 __be32 sip, tip;
687 u16 dev_type = dev->type;
688 int addr_type;
689 struct neighbour *n;
690 struct dst_entry *reply_dst = NULL;
691 bool is_garp = false;
692
693 /* arp_rcv below verifies the ARP header and verifies the device
694 * is ARP'able.
695 */
696
697 if (!in_dev)
698 goto out_free_skb;
699
700 arp = arp_hdr(skb);
701
702 switch (dev_type) {
703 default:
704 if (arp->ar_pro != htons(ETH_P_IP) ||
705 htons(dev_type) != arp->ar_hrd)
706 goto out_free_skb;
707 break;
708 case ARPHRD_ETHER:
709 case ARPHRD_FDDI:
710 case ARPHRD_IEEE802:
711 /*
712 * ETHERNET, and Fibre Channel (which are IEEE 802
713 * devices, according to RFC 2625) devices will accept ARP
714 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
715 * This is the case also of FDDI, where the RFC 1390 says that
716 * FDDI devices should accept ARP hardware of (1) Ethernet,
717 * however, to be more robust, we'll accept both 1 (Ethernet)
718 * or 6 (IEEE 802.2)
719 */
720 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
721 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
722 arp->ar_pro != htons(ETH_P_IP))
723 goto out_free_skb;
724 break;
725 case ARPHRD_AX25:
726 if (arp->ar_pro != htons(AX25_P_IP) ||
727 arp->ar_hrd != htons(ARPHRD_AX25))
728 goto out_free_skb;
729 break;
730 case ARPHRD_NETROM:
731 if (arp->ar_pro != htons(AX25_P_IP) ||
732 arp->ar_hrd != htons(ARPHRD_NETROM))
733 goto out_free_skb;
734 break;
735 }
736
737 /* Understand only these message types */
738
739 if (arp->ar_op != htons(ARPOP_REPLY) &&
740 arp->ar_op != htons(ARPOP_REQUEST))
741 goto out_free_skb;
742
743/*
744 * Extract fields
745 */
746 arp_ptr = (unsigned char *)(arp + 1);
747 sha = arp_ptr;
748 arp_ptr += dev->addr_len;
749 memcpy(&sip, arp_ptr, 4);
750 arp_ptr += 4;
751 switch (dev_type) {
752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
753 case ARPHRD_IEEE1394:
754 break;
755#endif
756 default:
757 tha = arp_ptr;
758 arp_ptr += dev->addr_len;
759 }
760 memcpy(&tip, arp_ptr, 4);
761/*
762 * Check for bad requests for 127.x.x.x and requests for multicast
763 * addresses. If this is one such, delete it.
764 */
765 if (ipv4_is_multicast(tip) ||
766 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
767 goto out_free_skb;
768
769 /*
770 * For some 802.11 wireless deployments (and possibly other networks),
771 * there will be an ARP proxy and gratuitous ARP frames are attacks
772 * and thus should not be accepted.
773 */
774 if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
775 goto out_free_skb;
776
777/*
778 * Special case: We must set Frame Relay source Q.922 address
779 */
780 if (dev_type == ARPHRD_DLCI)
781 sha = dev->broadcast;
782
783/*
784 * Process entry. The idea here is we want to send a reply if it is a
785 * request for us or if it is a request for someone else that we hold
786 * a proxy for. We want to add an entry to our cache if it is a reply
787 * to us or if it is a request for our address.
788 * (The assumption for this last is that if someone is requesting our
789 * address, they are probably intending to talk to us, so it saves time
790 * if we cache their address. Their address is also probably not in
791 * our cache, since ours is not in their cache.)
792 *
793 * Putting this another way, we only care about replies if they are to
794 * us, in which case we add them to the cache. For requests, we care
795 * about those for us and those for our proxies. We reply to both,
796 * and in the case of requests for us we add the requester to the arp
797 * cache.
798 */
799
800 if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
801 reply_dst = (struct dst_entry *)
802 iptunnel_metadata_reply(skb_metadata_dst(skb),
803 GFP_ATOMIC);
804
805 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
806 if (sip == 0) {
807 if (arp->ar_op == htons(ARPOP_REQUEST) &&
808 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
809 !arp_ignore(in_dev, sip, tip))
810 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
811 sha, dev->dev_addr, sha, reply_dst);
812 goto out_consume_skb;
813 }
814
815 if (arp->ar_op == htons(ARPOP_REQUEST) &&
816 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
817
818 rt = skb_rtable(skb);
819 addr_type = rt->rt_type;
820
821 if (addr_type == RTN_LOCAL) {
822 int dont_send;
823
824 dont_send = arp_ignore(in_dev, sip, tip);
825 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
826 dont_send = arp_filter(sip, tip, dev);
827 if (!dont_send) {
828 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
829 if (n) {
830 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
831 sip, dev, tip, sha,
832 dev->dev_addr, sha,
833 reply_dst);
834 neigh_release(n);
835 }
836 }
837 goto out_consume_skb;
838 } else if (IN_DEV_FORWARD(in_dev)) {
839 if (addr_type == RTN_UNICAST &&
840 (arp_fwd_proxy(in_dev, dev, rt) ||
841 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
842 (rt->dst.dev != dev &&
843 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
844 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
845 if (n)
846 neigh_release(n);
847
848 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
849 skb->pkt_type == PACKET_HOST ||
850 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
851 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852 sip, dev, tip, sha,
853 dev->dev_addr, sha,
854 reply_dst);
855 } else {
856 pneigh_enqueue(&arp_tbl,
857 in_dev->arp_parms, skb);
858 goto out_free_dst;
859 }
860 goto out_consume_skb;
861 }
862 }
863 }
864
865 /* Update our ARP tables */
866
867 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
868
869 addr_type = -1;
870 if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
871 is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
872 sip, tip, sha, tha);
873 }
874
875 if (IN_DEV_ARP_ACCEPT(in_dev)) {
876 /* Unsolicited ARP is not accepted by default.
877 It is possible, that this option should be enabled for some
878 devices (strip is candidate)
879 */
880 if (!n &&
881 (is_garp ||
882 (arp->ar_op == htons(ARPOP_REPLY) &&
883 (addr_type == RTN_UNICAST ||
884 (addr_type < 0 &&
885 /* postpone calculation to as late as possible */
886 inet_addr_type_dev_table(net, dev, sip) ==
887 RTN_UNICAST)))))
888 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
889 }
890
891 if (n) {
892 int state = NUD_REACHABLE;
893 int override;
894
895 /* If several different ARP replies follows back-to-back,
896 use the FIRST one. It is possible, if several proxy
897 agents are active. Taking the first reply prevents
898 arp trashing and chooses the fastest router.
899 */
900 override = time_after(jiffies,
901 n->updated +
902 NEIGH_VAR(n->parms, LOCKTIME)) ||
903 is_garp;
904
905 /* Broadcast replies and request packets
906 do not assert neighbour reachability.
907 */
908 if (arp->ar_op != htons(ARPOP_REPLY) ||
909 skb->pkt_type != PACKET_HOST)
910 state = NUD_STALE;
911 neigh_update(n, sha, state,
912 override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
913 neigh_release(n);
914 }
915
916out_consume_skb:
917 consume_skb(skb);
918
919out_free_dst:
920 dst_release(reply_dst);
921 return NET_RX_SUCCESS;
922
923out_free_skb:
924 kfree_skb(skb);
925 return NET_RX_DROP;
926}
927
928static void parp_redo(struct sk_buff *skb)
929{
930 arp_process(dev_net(skb->dev), NULL, skb);
931}
932
933static int arp_is_multicast(const void *pkey)
934{
935 return ipv4_is_multicast(*((__be32 *)pkey));
936}
937
938/*
939 * Receive an arp request from the device layer.
940 */
941
942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
943 struct packet_type *pt, struct net_device *orig_dev)
944{
945 const struct arphdr *arp;
946
947 /* do not tweak dropwatch on an ARP we will ignore */
948 if (dev->flags & IFF_NOARP ||
949 skb->pkt_type == PACKET_OTHERHOST ||
950 skb->pkt_type == PACKET_LOOPBACK)
951 goto consumeskb;
952
953 skb = skb_share_check(skb, GFP_ATOMIC);
954 if (!skb)
955 goto out_of_mem;
956
957 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
958 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
959 goto freeskb;
960
961 arp = arp_hdr(skb);
962 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
963 goto freeskb;
964
965 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966
967 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
968 dev_net(dev), NULL, skb, dev, NULL,
969 arp_process);
970
971consumeskb:
972 consume_skb(skb);
973 return NET_RX_SUCCESS;
974freeskb:
975 kfree_skb(skb);
976out_of_mem:
977 return NET_RX_DROP;
978}
979
980/*
981 * User level interface (ioctl)
982 */
983
984/*
985 * Set (create) an ARP cache entry.
986 */
987
988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
989{
990 if (!dev) {
991 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
992 return 0;
993 }
994 if (__in_dev_get_rtnl(dev)) {
995 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
996 return 0;
997 }
998 return -ENXIO;
999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002 struct net_device *dev)
1003{
1004 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007 if (mask && mask != htonl(0xFFFFFFFF))
1008 return -EINVAL;
1009 if (!dev && (r->arp_flags & ATF_COM)) {
1010 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011 r->arp_ha.sa_data);
1012 if (!dev)
1013 return -ENODEV;
1014 }
1015 if (mask) {
1016 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017 return -ENOBUFS;
1018 return 0;
1019 }
1020
1021 return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025 struct net_device *dev)
1026{
1027 __be32 ip;
1028 struct neighbour *neigh;
1029 int err;
1030
1031 if (r->arp_flags & ATF_PUBL)
1032 return arp_req_set_public(net, r, dev);
1033
1034 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035 if (r->arp_flags & ATF_PERM)
1036 r->arp_flags |= ATF_COM;
1037 if (!dev) {
1038 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040 if (IS_ERR(rt))
1041 return PTR_ERR(rt);
1042 dev = rt->dst.dev;
1043 ip_rt_put(rt);
1044 if (!dev)
1045 return -EINVAL;
1046 }
1047 switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049 case ARPHRD_FDDI:
1050 /*
1051 * According to RFC 1390, FDDI devices should accept ARP
1052 * hardware types of 1 (Ethernet). However, to be more
1053 * robust, we'll accept hardware types of either 1 (Ethernet)
1054 * or 6 (IEEE 802.2).
1055 */
1056 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057 r->arp_ha.sa_family != ARPHRD_ETHER &&
1058 r->arp_ha.sa_family != ARPHRD_IEEE802)
1059 return -EINVAL;
1060 break;
1061#endif
1062 default:
1063 if (r->arp_ha.sa_family != dev->type)
1064 return -EINVAL;
1065 break;
1066 }
1067
1068 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069 err = PTR_ERR(neigh);
1070 if (!IS_ERR(neigh)) {
1071 unsigned int state = NUD_STALE;
1072 if (r->arp_flags & ATF_PERM)
1073 state = NUD_PERMANENT;
1074 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075 r->arp_ha.sa_data : NULL, state,
1076 NEIGH_UPDATE_F_OVERRIDE |
1077 NEIGH_UPDATE_F_ADMIN, 0);
1078 neigh_release(neigh);
1079 }
1080 return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085 if (neigh->nud_state&NUD_PERMANENT)
1086 return ATF_PERM | ATF_COM;
1087 else if (neigh->nud_state&NUD_VALID)
1088 return ATF_COM;
1089 else
1090 return 0;
1091}
1092
1093/*
1094 * Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100 struct neighbour *neigh;
1101 int err = -ENXIO;
1102
1103 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104 if (neigh) {
1105 if (!(neigh->nud_state & NUD_NOARP)) {
1106 read_lock_bh(&neigh->lock);
1107 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108 r->arp_flags = arp_state_to_flags(neigh);
1109 read_unlock_bh(&neigh->lock);
1110 r->arp_ha.sa_family = dev->type;
1111 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112 err = 0;
1113 }
1114 neigh_release(neigh);
1115 }
1116 return err;
1117}
1118
1119static int arp_invalidate(struct net_device *dev, __be32 ip)
1120{
1121 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122 int err = -ENXIO;
1123 struct neigh_table *tbl = &arp_tbl;
1124
1125 if (neigh) {
1126 if (neigh->nud_state & ~NUD_NOARP)
1127 err = neigh_update(neigh, NULL, NUD_FAILED,
1128 NEIGH_UPDATE_F_OVERRIDE|
1129 NEIGH_UPDATE_F_ADMIN, 0);
1130 write_lock_bh(&tbl->lock);
1131 neigh_release(neigh);
1132 neigh_remove_one(neigh, tbl);
1133 write_unlock_bh(&tbl->lock);
1134 }
1135
1136 return err;
1137}
1138
1139static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140 struct net_device *dev)
1141{
1142 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144
1145 if (mask == htonl(0xFFFFFFFF))
1146 return pneigh_delete(&arp_tbl, net, &ip, dev);
1147
1148 if (mask)
1149 return -EINVAL;
1150
1151 return arp_req_set_proxy(net, dev, 0);
1152}
1153
1154static int arp_req_delete(struct net *net, struct arpreq *r,
1155 struct net_device *dev)
1156{
1157 __be32 ip;
1158
1159 if (r->arp_flags & ATF_PUBL)
1160 return arp_req_delete_public(net, r, dev);
1161
1162 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163 if (!dev) {
1164 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165 if (IS_ERR(rt))
1166 return PTR_ERR(rt);
1167 dev = rt->dst.dev;
1168 ip_rt_put(rt);
1169 if (!dev)
1170 return -EINVAL;
1171 }
1172 return arp_invalidate(dev, ip);
1173}
1174
1175/*
1176 * Handle an ARP layer I/O control request.
1177 */
1178
1179int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180{
1181 int err;
1182 struct arpreq r;
1183 struct net_device *dev = NULL;
1184
1185 switch (cmd) {
1186 case SIOCDARP:
1187 case SIOCSARP:
1188 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189 return -EPERM;
1190 fallthrough;
1191 case SIOCGARP:
1192 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193 if (err)
1194 return -EFAULT;
1195 break;
1196 default:
1197 return -EINVAL;
1198 }
1199
1200 if (r.arp_pa.sa_family != AF_INET)
1201 return -EPFNOSUPPORT;
1202
1203 if (!(r.arp_flags & ATF_PUBL) &&
1204 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205 return -EINVAL;
1206 if (!(r.arp_flags & ATF_NETMASK))
1207 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208 htonl(0xFFFFFFFFUL);
1209 rtnl_lock();
1210 if (r.arp_dev[0]) {
1211 err = -ENODEV;
1212 dev = __dev_get_by_name(net, r.arp_dev);
1213 if (!dev)
1214 goto out;
1215
1216 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217 if (!r.arp_ha.sa_family)
1218 r.arp_ha.sa_family = dev->type;
1219 err = -EINVAL;
1220 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221 goto out;
1222 } else if (cmd == SIOCGARP) {
1223 err = -ENODEV;
1224 goto out;
1225 }
1226
1227 switch (cmd) {
1228 case SIOCDARP:
1229 err = arp_req_delete(net, &r, dev);
1230 break;
1231 case SIOCSARP:
1232 err = arp_req_set(net, &r, dev);
1233 break;
1234 case SIOCGARP:
1235 err = arp_req_get(&r, dev);
1236 break;
1237 }
1238out:
1239 rtnl_unlock();
1240 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241 err = -EFAULT;
1242 return err;
1243}
1244
1245static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246 void *ptr)
1247{
1248 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249 struct netdev_notifier_change_info *change_info;
1250
1251 switch (event) {
1252 case NETDEV_CHANGEADDR:
1253 neigh_changeaddr(&arp_tbl, dev);
1254 rt_cache_flush(dev_net(dev));
1255 break;
1256 case NETDEV_CHANGE:
1257 change_info = ptr;
1258 if (change_info->flags_changed & IFF_NOARP)
1259 neigh_changeaddr(&arp_tbl, dev);
1260 if (!netif_carrier_ok(dev))
1261 neigh_carrier_down(&arp_tbl, dev);
1262 break;
1263 default:
1264 break;
1265 }
1266
1267 return NOTIFY_DONE;
1268}
1269
1270static struct notifier_block arp_netdev_notifier = {
1271 .notifier_call = arp_netdev_event,
1272};
1273
1274/* Note, that it is not on notifier chain.
1275 It is necessary, that this routine was called after route cache will be
1276 flushed.
1277 */
1278void arp_ifdown(struct net_device *dev)
1279{
1280 neigh_ifdown(&arp_tbl, dev);
1281}
1282
1283
1284/*
1285 * Called once on startup.
1286 */
1287
1288static struct packet_type arp_packet_type __read_mostly = {
1289 .type = cpu_to_be16(ETH_P_ARP),
1290 .func = arp_rcv,
1291};
1292
1293static int arp_proc_init(void);
1294
1295void __init arp_init(void)
1296{
1297 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298
1299 dev_add_pack(&arp_packet_type);
1300 arp_proc_init();
1301#ifdef CONFIG_SYSCTL
1302 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303#endif
1304 register_netdevice_notifier(&arp_netdev_notifier);
1305}
1306
1307#ifdef CONFIG_PROC_FS
1308#if IS_ENABLED(CONFIG_AX25)
1309
1310/* ------------------------------------------------------------------------ */
1311/*
1312 * ax25 -> ASCII conversion
1313 */
1314static void ax2asc2(ax25_address *a, char *buf)
1315{
1316 char c, *s;
1317 int n;
1318
1319 for (n = 0, s = buf; n < 6; n++) {
1320 c = (a->ax25_call[n] >> 1) & 0x7F;
1321
1322 if (c != ' ')
1323 *s++ = c;
1324 }
1325
1326 *s++ = '-';
1327 n = (a->ax25_call[6] >> 1) & 0x0F;
1328 if (n > 9) {
1329 *s++ = '1';
1330 n -= 10;
1331 }
1332
1333 *s++ = n + '0';
1334 *s++ = '\0';
1335
1336 if (*buf == '\0' || *buf == '-') {
1337 buf[0] = '*';
1338 buf[1] = '\0';
1339 }
1340}
1341#endif /* CONFIG_AX25 */
1342
1343#define HBUFFERLEN 30
1344
1345static void arp_format_neigh_entry(struct seq_file *seq,
1346 struct neighbour *n)
1347{
1348 char hbuffer[HBUFFERLEN];
1349 int k, j;
1350 char tbuf[16];
1351 struct net_device *dev = n->dev;
1352 int hatype = dev->type;
1353
1354 read_lock(&n->lock);
1355 /* Convert hardware address to XX:XX:XX:XX ... form. */
1356#if IS_ENABLED(CONFIG_AX25)
1357 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358 ax2asc2((ax25_address *)n->ha, hbuffer);
1359 else {
1360#endif
1361 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364 hbuffer[k++] = ':';
1365 }
1366 if (k != 0)
1367 --k;
1368 hbuffer[k] = 0;
1369#if IS_ENABLED(CONFIG_AX25)
1370 }
1371#endif
1372 sprintf(tbuf, "%pI4", n->primary_key);
1373 seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1374 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375 read_unlock(&n->lock);
1376}
1377
1378static void arp_format_pneigh_entry(struct seq_file *seq,
1379 struct pneigh_entry *n)
1380{
1381 struct net_device *dev = n->dev;
1382 int hatype = dev ? dev->type : 0;
1383 char tbuf[16];
1384
1385 sprintf(tbuf, "%pI4", n->key);
1386 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1387 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388 dev ? dev->name : "*");
1389}
1390
1391static int arp_seq_show(struct seq_file *seq, void *v)
1392{
1393 if (v == SEQ_START_TOKEN) {
1394 seq_puts(seq, "IP address HW type Flags "
1395 "HW address Mask Device\n");
1396 } else {
1397 struct neigh_seq_state *state = seq->private;
1398
1399 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400 arp_format_pneigh_entry(seq, v);
1401 else
1402 arp_format_neigh_entry(seq, v);
1403 }
1404
1405 return 0;
1406}
1407
1408static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409{
1410 /* Don't want to confuse "arp -a" w/ magic entries,
1411 * so we tell the generic iterator to skip NUD_NOARP.
1412 */
1413 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414}
1415
1416/* ------------------------------------------------------------------------ */
1417
1418static const struct seq_operations arp_seq_ops = {
1419 .start = arp_seq_start,
1420 .next = neigh_seq_next,
1421 .stop = neigh_seq_stop,
1422 .show = arp_seq_show,
1423};
1424
1425/* ------------------------------------------------------------------------ */
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429 if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430 sizeof(struct neigh_seq_state)))
1431 return -ENOMEM;
1432 return 0;
1433}
1434
1435static void __net_exit arp_net_exit(struct net *net)
1436{
1437 remove_proc_entry("arp", net->proc_net);
1438}
1439
1440static struct pernet_operations arp_net_ops = {
1441 .init = arp_net_init,
1442 .exit = arp_net_exit,
1443};
1444
1445static int __init arp_proc_init(void)
1446{
1447 return register_pernet_subsys(&arp_net_ops);
1448}
1449
1450#else /* CONFIG_PROC_FS */
1451
1452static int __init arp_proc_init(void)
1453{
1454 return 0;
1455}
1456
1457#endif /* CONFIG_PROC_FS */
1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78#include <linux/module.h>
79#include <linux/types.h>
80#include <linux/string.h>
81#include <linux/kernel.h>
82#include <linux/capability.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/inetdevice.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/fddidevice.h>
93#include <linux/if_arp.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/slab.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#include <net/dst_metadata.h>
117#include <net/ip_tunnels.h>
118
119#include <linux/uaccess.h>
120
121#include <linux/netfilter_arp.h>
122
123/*
124 * Interface to generic neighbour cache.
125 */
126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
128static int arp_constructor(struct neighbour *neigh);
129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131static void parp_redo(struct sk_buff *skb);
132
133static const struct neigh_ops arp_generic_ops = {
134 .family = AF_INET,
135 .solicit = arp_solicit,
136 .error_report = arp_error_report,
137 .output = neigh_resolve_output,
138 .connected_output = neigh_connected_output,
139};
140
141static const struct neigh_ops arp_hh_ops = {
142 .family = AF_INET,
143 .solicit = arp_solicit,
144 .error_report = arp_error_report,
145 .output = neigh_resolve_output,
146 .connected_output = neigh_resolve_output,
147};
148
149static const struct neigh_ops arp_direct_ops = {
150 .family = AF_INET,
151 .output = neigh_direct_output,
152 .connected_output = neigh_direct_output,
153};
154
155struct neigh_table arp_tbl = {
156 .family = AF_INET,
157 .key_len = 4,
158 .protocol = cpu_to_be16(ETH_P_IP),
159 .hash = arp_hash,
160 .key_eq = arp_key_eq,
161 .constructor = arp_constructor,
162 .proxy_redo = parp_redo,
163 .id = "arp_cache",
164 .parms = {
165 .tbl = &arp_tbl,
166 .reachable_time = 30 * HZ,
167 .data = {
168 [NEIGH_VAR_MCAST_PROBES] = 3,
169 [NEIGH_VAR_UCAST_PROBES] = 3,
170 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
171 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
172 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
173 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
175 [NEIGH_VAR_PROXY_QLEN] = 64,
176 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
178 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
179 },
180 },
181 .gc_interval = 30 * HZ,
182 .gc_thresh1 = 128,
183 .gc_thresh2 = 512,
184 .gc_thresh3 = 1024,
185};
186EXPORT_SYMBOL(arp_tbl);
187
188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189{
190 switch (dev->type) {
191 case ARPHRD_ETHER:
192 case ARPHRD_FDDI:
193 case ARPHRD_IEEE802:
194 ip_eth_mc_map(addr, haddr);
195 return 0;
196 case ARPHRD_INFINIBAND:
197 ip_ib_mc_map(addr, dev->broadcast, haddr);
198 return 0;
199 case ARPHRD_IPGRE:
200 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201 return 0;
202 default:
203 if (dir) {
204 memcpy(haddr, dev->broadcast, dev->addr_len);
205 return 0;
206 }
207 }
208 return -EINVAL;
209}
210
211
212static u32 arp_hash(const void *pkey,
213 const struct net_device *dev,
214 __u32 *hash_rnd)
215{
216 return arp_hashfn(pkey, dev, hash_rnd);
217}
218
219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220{
221 return neigh_key_eq32(neigh, pkey);
222}
223
224static int arp_constructor(struct neighbour *neigh)
225{
226 __be32 addr = *(__be32 *)neigh->primary_key;
227 struct net_device *dev = neigh->dev;
228 struct in_device *in_dev;
229 struct neigh_parms *parms;
230
231 rcu_read_lock();
232 in_dev = __in_dev_get_rcu(dev);
233 if (!in_dev) {
234 rcu_read_unlock();
235 return -EINVAL;
236 }
237
238 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
239
240 parms = in_dev->arp_parms;
241 __neigh_parms_put(neigh->parms);
242 neigh->parms = neigh_parms_clone(parms);
243 rcu_read_unlock();
244
245 if (!dev->header_ops) {
246 neigh->nud_state = NUD_NOARP;
247 neigh->ops = &arp_direct_ops;
248 neigh->output = neigh_direct_output;
249 } else {
250 /* Good devices (checked by reading texts, but only Ethernet is
251 tested)
252
253 ARPHRD_ETHER: (ethernet, apfddi)
254 ARPHRD_FDDI: (fddi)
255 ARPHRD_IEEE802: (tr)
256 ARPHRD_METRICOM: (strip)
257 ARPHRD_ARCNET:
258 etc. etc. etc.
259
260 ARPHRD_IPDDP will also work, if author repairs it.
261 I did not it, because this driver does not work even
262 in old paradigm.
263 */
264
265 if (neigh->type == RTN_MULTICAST) {
266 neigh->nud_state = NUD_NOARP;
267 arp_mc_map(addr, neigh->ha, dev, 1);
268 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
269 neigh->nud_state = NUD_NOARP;
270 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
271 } else if (neigh->type == RTN_BROADCAST ||
272 (dev->flags & IFF_POINTOPOINT)) {
273 neigh->nud_state = NUD_NOARP;
274 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
275 }
276
277 if (dev->header_ops->cache)
278 neigh->ops = &arp_hh_ops;
279 else
280 neigh->ops = &arp_generic_ops;
281
282 if (neigh->nud_state & NUD_VALID)
283 neigh->output = neigh->ops->connected_output;
284 else
285 neigh->output = neigh->ops->output;
286 }
287 return 0;
288}
289
290static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
291{
292 dst_link_failure(skb);
293 kfree_skb(skb);
294}
295
296/* Create and send an arp packet. */
297static void arp_send_dst(int type, int ptype, __be32 dest_ip,
298 struct net_device *dev, __be32 src_ip,
299 const unsigned char *dest_hw,
300 const unsigned char *src_hw,
301 const unsigned char *target_hw,
302 struct dst_entry *dst)
303{
304 struct sk_buff *skb;
305
306 /* arp on this interface. */
307 if (dev->flags & IFF_NOARP)
308 return;
309
310 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
311 dest_hw, src_hw, target_hw);
312 if (!skb)
313 return;
314
315 skb_dst_set(skb, dst_clone(dst));
316 arp_xmit(skb);
317}
318
319void arp_send(int type, int ptype, __be32 dest_ip,
320 struct net_device *dev, __be32 src_ip,
321 const unsigned char *dest_hw, const unsigned char *src_hw,
322 const unsigned char *target_hw)
323{
324 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
325 target_hw, NULL);
326}
327EXPORT_SYMBOL(arp_send);
328
329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330{
331 __be32 saddr = 0;
332 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32 *)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev;
337 struct dst_entry *dst = NULL;
338
339 rcu_read_lock();
340 in_dev = __in_dev_get_rcu(dev);
341 if (!in_dev) {
342 rcu_read_unlock();
343 return;
344 }
345 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 default:
347 case 0: /* By default announce any local IP */
348 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
349 ip_hdr(skb)->saddr) == RTN_LOCAL)
350 saddr = ip_hdr(skb)->saddr;
351 break;
352 case 1: /* Restrict announcements of saddr in same subnet */
353 if (!skb)
354 break;
355 saddr = ip_hdr(skb)->saddr;
356 if (inet_addr_type_dev_table(dev_net(dev), dev,
357 saddr) == RTN_LOCAL) {
358 /* saddr should be known to target */
359 if (inet_addr_onlink(in_dev, target, saddr))
360 break;
361 }
362 saddr = 0;
363 break;
364 case 2: /* Avoid secondary IPs, get a primary/preferred one */
365 break;
366 }
367 rcu_read_unlock();
368
369 if (!saddr)
370 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
371
372 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
373 if (probes < 0) {
374 if (!(neigh->nud_state & NUD_VALID))
375 pr_debug("trying to ucast probe in NUD_INVALID\n");
376 neigh_ha_snapshot(dst_ha, neigh, dev);
377 dst_hw = dst_ha;
378 } else {
379 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
380 if (probes < 0) {
381 neigh_app_ns(neigh);
382 return;
383 }
384 }
385
386 if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
387 dst = skb_dst(skb);
388 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
389 dst_hw, dev->dev_addr, NULL, dst);
390}
391
392static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
393{
394 struct net *net = dev_net(in_dev->dev);
395 int scope;
396
397 switch (IN_DEV_ARP_IGNORE(in_dev)) {
398 case 0: /* Reply, the tip is already validated */
399 return 0;
400 case 1: /* Reply only if tip is configured on the incoming interface */
401 sip = 0;
402 scope = RT_SCOPE_HOST;
403 break;
404 case 2: /*
405 * Reply only if tip is configured on the incoming interface
406 * and is in same subnet as sip
407 */
408 scope = RT_SCOPE_HOST;
409 break;
410 case 3: /* Do not reply for scope host addresses */
411 sip = 0;
412 scope = RT_SCOPE_LINK;
413 in_dev = NULL;
414 break;
415 case 4: /* Reserved */
416 case 5:
417 case 6:
418 case 7:
419 return 0;
420 case 8: /* Do not reply */
421 return 1;
422 default:
423 return 0;
424 }
425 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
426}
427
428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
429{
430 struct rtable *rt;
431 int flag = 0;
432 /*unsigned long now; */
433 struct net *net = dev_net(dev);
434
435 rt = ip_route_output(net, sip, tip, 0, 0);
436 if (IS_ERR(rt))
437 return 1;
438 if (rt->dst.dev != dev) {
439 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
440 flag = 1;
441 }
442 ip_rt_put(rt);
443 return flag;
444}
445
446/*
447 * Check if we can use proxy ARP for this path
448 */
449static inline int arp_fwd_proxy(struct in_device *in_dev,
450 struct net_device *dev, struct rtable *rt)
451{
452 struct in_device *out_dev;
453 int imi, omi = -1;
454
455 if (rt->dst.dev == dev)
456 return 0;
457
458 if (!IN_DEV_PROXY_ARP(in_dev))
459 return 0;
460 imi = IN_DEV_MEDIUM_ID(in_dev);
461 if (imi == 0)
462 return 1;
463 if (imi == -1)
464 return 0;
465
466 /* place to check for proxy_arp for routes */
467
468 out_dev = __in_dev_get_rcu(rt->dst.dev);
469 if (out_dev)
470 omi = IN_DEV_MEDIUM_ID(out_dev);
471
472 return omi != imi && omi != -1;
473}
474
475/*
476 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
477 *
478 * RFC3069 supports proxy arp replies back to the same interface. This
479 * is done to support (ethernet) switch features, like RFC 3069, where
480 * the individual ports are not allowed to communicate with each
481 * other, BUT they are allowed to talk to the upstream router. As
482 * described in RFC 3069, it is possible to allow these hosts to
483 * communicate through the upstream router, by proxy_arp'ing.
484 *
485 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
486 *
487 * This technology is known by different names:
488 * In RFC 3069 it is called VLAN Aggregation.
489 * Cisco and Allied Telesyn call it Private VLAN.
490 * Hewlett-Packard call it Source-Port filtering or port-isolation.
491 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
492 *
493 */
494static inline int arp_fwd_pvlan(struct in_device *in_dev,
495 struct net_device *dev, struct rtable *rt,
496 __be32 sip, __be32 tip)
497{
498 /* Private VLAN is only concerned about the same ethernet segment */
499 if (rt->dst.dev != dev)
500 return 0;
501
502 /* Don't reply on self probes (often done by windowz boxes)*/
503 if (sip == tip)
504 return 0;
505
506 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
507 return 1;
508 else
509 return 0;
510}
511
512/*
513 * Interface to link layer: send routine and receive handler.
514 */
515
516/*
517 * Create an arp packet. If dest_hw is not set, we create a broadcast
518 * message.
519 */
520struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
521 struct net_device *dev, __be32 src_ip,
522 const unsigned char *dest_hw,
523 const unsigned char *src_hw,
524 const unsigned char *target_hw)
525{
526 struct sk_buff *skb;
527 struct arphdr *arp;
528 unsigned char *arp_ptr;
529 int hlen = LL_RESERVED_SPACE(dev);
530 int tlen = dev->needed_tailroom;
531
532 /*
533 * Allocate a buffer
534 */
535
536 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
537 if (!skb)
538 return NULL;
539
540 skb_reserve(skb, hlen);
541 skb_reset_network_header(skb);
542 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
543 skb->dev = dev;
544 skb->protocol = htons(ETH_P_ARP);
545 if (!src_hw)
546 src_hw = dev->dev_addr;
547 if (!dest_hw)
548 dest_hw = dev->broadcast;
549
550 /*
551 * Fill the device header for the ARP frame
552 */
553 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
554 goto out;
555
556 /*
557 * Fill out the arp protocol part.
558 *
559 * The arp hardware type should match the device type, except for FDDI,
560 * which (according to RFC 1390) should always equal 1 (Ethernet).
561 */
562 /*
563 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
564 * DIX code for the protocol. Make these device structure fields.
565 */
566 switch (dev->type) {
567 default:
568 arp->ar_hrd = htons(dev->type);
569 arp->ar_pro = htons(ETH_P_IP);
570 break;
571
572#if IS_ENABLED(CONFIG_AX25)
573 case ARPHRD_AX25:
574 arp->ar_hrd = htons(ARPHRD_AX25);
575 arp->ar_pro = htons(AX25_P_IP);
576 break;
577
578#if IS_ENABLED(CONFIG_NETROM)
579 case ARPHRD_NETROM:
580 arp->ar_hrd = htons(ARPHRD_NETROM);
581 arp->ar_pro = htons(AX25_P_IP);
582 break;
583#endif
584#endif
585
586#if IS_ENABLED(CONFIG_FDDI)
587 case ARPHRD_FDDI:
588 arp->ar_hrd = htons(ARPHRD_ETHER);
589 arp->ar_pro = htons(ETH_P_IP);
590 break;
591#endif
592 }
593
594 arp->ar_hln = dev->addr_len;
595 arp->ar_pln = 4;
596 arp->ar_op = htons(type);
597
598 arp_ptr = (unsigned char *)(arp + 1);
599
600 memcpy(arp_ptr, src_hw, dev->addr_len);
601 arp_ptr += dev->addr_len;
602 memcpy(arp_ptr, &src_ip, 4);
603 arp_ptr += 4;
604
605 switch (dev->type) {
606#if IS_ENABLED(CONFIG_FIREWIRE_NET)
607 case ARPHRD_IEEE1394:
608 break;
609#endif
610 default:
611 if (target_hw)
612 memcpy(arp_ptr, target_hw, dev->addr_len);
613 else
614 memset(arp_ptr, 0, dev->addr_len);
615 arp_ptr += dev->addr_len;
616 }
617 memcpy(arp_ptr, &dest_ip, 4);
618
619 return skb;
620
621out:
622 kfree_skb(skb);
623 return NULL;
624}
625EXPORT_SYMBOL(arp_create);
626
627static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
628{
629 return dev_queue_xmit(skb);
630}
631
632/*
633 * Send an arp packet.
634 */
635void arp_xmit(struct sk_buff *skb)
636{
637 /* Send it off, maybe filter it using firewalling first. */
638 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
639 dev_net(skb->dev), NULL, skb, NULL, skb->dev,
640 arp_xmit_finish);
641}
642EXPORT_SYMBOL(arp_xmit);
643
644/*
645 * Process an arp request.
646 */
647
648static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
649{
650 struct net_device *dev = skb->dev;
651 struct in_device *in_dev = __in_dev_get_rcu(dev);
652 struct arphdr *arp;
653 unsigned char *arp_ptr;
654 struct rtable *rt;
655 unsigned char *sha;
656 __be32 sip, tip;
657 u16 dev_type = dev->type;
658 int addr_type;
659 struct neighbour *n;
660 struct dst_entry *reply_dst = NULL;
661 bool is_garp = false;
662
663 /* arp_rcv below verifies the ARP header and verifies the device
664 * is ARP'able.
665 */
666
667 if (!in_dev)
668 goto out_free_skb;
669
670 arp = arp_hdr(skb);
671
672 switch (dev_type) {
673 default:
674 if (arp->ar_pro != htons(ETH_P_IP) ||
675 htons(dev_type) != arp->ar_hrd)
676 goto out_free_skb;
677 break;
678 case ARPHRD_ETHER:
679 case ARPHRD_FDDI:
680 case ARPHRD_IEEE802:
681 /*
682 * ETHERNET, and Fibre Channel (which are IEEE 802
683 * devices, according to RFC 2625) devices will accept ARP
684 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
685 * This is the case also of FDDI, where the RFC 1390 says that
686 * FDDI devices should accept ARP hardware of (1) Ethernet,
687 * however, to be more robust, we'll accept both 1 (Ethernet)
688 * or 6 (IEEE 802.2)
689 */
690 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
691 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
692 arp->ar_pro != htons(ETH_P_IP))
693 goto out_free_skb;
694 break;
695 case ARPHRD_AX25:
696 if (arp->ar_pro != htons(AX25_P_IP) ||
697 arp->ar_hrd != htons(ARPHRD_AX25))
698 goto out_free_skb;
699 break;
700 case ARPHRD_NETROM:
701 if (arp->ar_pro != htons(AX25_P_IP) ||
702 arp->ar_hrd != htons(ARPHRD_NETROM))
703 goto out_free_skb;
704 break;
705 }
706
707 /* Understand only these message types */
708
709 if (arp->ar_op != htons(ARPOP_REPLY) &&
710 arp->ar_op != htons(ARPOP_REQUEST))
711 goto out_free_skb;
712
713/*
714 * Extract fields
715 */
716 arp_ptr = (unsigned char *)(arp + 1);
717 sha = arp_ptr;
718 arp_ptr += dev->addr_len;
719 memcpy(&sip, arp_ptr, 4);
720 arp_ptr += 4;
721 switch (dev_type) {
722#if IS_ENABLED(CONFIG_FIREWIRE_NET)
723 case ARPHRD_IEEE1394:
724 break;
725#endif
726 default:
727 arp_ptr += dev->addr_len;
728 }
729 memcpy(&tip, arp_ptr, 4);
730/*
731 * Check for bad requests for 127.x.x.x and requests for multicast
732 * addresses. If this is one such, delete it.
733 */
734 if (ipv4_is_multicast(tip) ||
735 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
736 goto out_free_skb;
737
738 /*
739 * For some 802.11 wireless deployments (and possibly other networks),
740 * there will be an ARP proxy and gratuitous ARP frames are attacks
741 * and thus should not be accepted.
742 */
743 if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
744 goto out_free_skb;
745
746/*
747 * Special case: We must set Frame Relay source Q.922 address
748 */
749 if (dev_type == ARPHRD_DLCI)
750 sha = dev->broadcast;
751
752/*
753 * Process entry. The idea here is we want to send a reply if it is a
754 * request for us or if it is a request for someone else that we hold
755 * a proxy for. We want to add an entry to our cache if it is a reply
756 * to us or if it is a request for our address.
757 * (The assumption for this last is that if someone is requesting our
758 * address, they are probably intending to talk to us, so it saves time
759 * if we cache their address. Their address is also probably not in
760 * our cache, since ours is not in their cache.)
761 *
762 * Putting this another way, we only care about replies if they are to
763 * us, in which case we add them to the cache. For requests, we care
764 * about those for us and those for our proxies. We reply to both,
765 * and in the case of requests for us we add the requester to the arp
766 * cache.
767 */
768
769 if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
770 reply_dst = (struct dst_entry *)
771 iptunnel_metadata_reply(skb_metadata_dst(skb),
772 GFP_ATOMIC);
773
774 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
775 if (sip == 0) {
776 if (arp->ar_op == htons(ARPOP_REQUEST) &&
777 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
778 !arp_ignore(in_dev, sip, tip))
779 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
780 sha, dev->dev_addr, sha, reply_dst);
781 goto out_consume_skb;
782 }
783
784 if (arp->ar_op == htons(ARPOP_REQUEST) &&
785 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
786
787 rt = skb_rtable(skb);
788 addr_type = rt->rt_type;
789
790 if (addr_type == RTN_LOCAL) {
791 int dont_send;
792
793 dont_send = arp_ignore(in_dev, sip, tip);
794 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
795 dont_send = arp_filter(sip, tip, dev);
796 if (!dont_send) {
797 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
798 if (n) {
799 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
800 sip, dev, tip, sha,
801 dev->dev_addr, sha,
802 reply_dst);
803 neigh_release(n);
804 }
805 }
806 goto out_consume_skb;
807 } else if (IN_DEV_FORWARD(in_dev)) {
808 if (addr_type == RTN_UNICAST &&
809 (arp_fwd_proxy(in_dev, dev, rt) ||
810 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
811 (rt->dst.dev != dev &&
812 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
813 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
814 if (n)
815 neigh_release(n);
816
817 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
818 skb->pkt_type == PACKET_HOST ||
819 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
820 arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
821 sip, dev, tip, sha,
822 dev->dev_addr, sha,
823 reply_dst);
824 } else {
825 pneigh_enqueue(&arp_tbl,
826 in_dev->arp_parms, skb);
827 goto out_free_dst;
828 }
829 goto out_consume_skb;
830 }
831 }
832 }
833
834 /* Update our ARP tables */
835
836 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
837
838 if (IN_DEV_ARP_ACCEPT(in_dev)) {
839 unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
840
841 /* Unsolicited ARP is not accepted by default.
842 It is possible, that this option should be enabled for some
843 devices (strip is candidate)
844 */
845 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
846 addr_type == RTN_UNICAST;
847
848 if (!n &&
849 ((arp->ar_op == htons(ARPOP_REPLY) &&
850 addr_type == RTN_UNICAST) || is_garp))
851 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
852 }
853
854 if (n) {
855 int state = NUD_REACHABLE;
856 int override;
857
858 /* If several different ARP replies follows back-to-back,
859 use the FIRST one. It is possible, if several proxy
860 agents are active. Taking the first reply prevents
861 arp trashing and chooses the fastest router.
862 */
863 override = time_after(jiffies,
864 n->updated +
865 NEIGH_VAR(n->parms, LOCKTIME)) ||
866 is_garp;
867
868 /* Broadcast replies and request packets
869 do not assert neighbour reachability.
870 */
871 if (arp->ar_op != htons(ARPOP_REPLY) ||
872 skb->pkt_type != PACKET_HOST)
873 state = NUD_STALE;
874 neigh_update(n, sha, state,
875 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
876 neigh_release(n);
877 }
878
879out_consume_skb:
880 consume_skb(skb);
881
882out_free_dst:
883 dst_release(reply_dst);
884 return NET_RX_SUCCESS;
885
886out_free_skb:
887 kfree_skb(skb);
888 return NET_RX_DROP;
889}
890
891static void parp_redo(struct sk_buff *skb)
892{
893 arp_process(dev_net(skb->dev), NULL, skb);
894}
895
896
897/*
898 * Receive an arp request from the device layer.
899 */
900
901static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
902 struct packet_type *pt, struct net_device *orig_dev)
903{
904 const struct arphdr *arp;
905
906 /* do not tweak dropwatch on an ARP we will ignore */
907 if (dev->flags & IFF_NOARP ||
908 skb->pkt_type == PACKET_OTHERHOST ||
909 skb->pkt_type == PACKET_LOOPBACK)
910 goto consumeskb;
911
912 skb = skb_share_check(skb, GFP_ATOMIC);
913 if (!skb)
914 goto out_of_mem;
915
916 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
917 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
918 goto freeskb;
919
920 arp = arp_hdr(skb);
921 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
922 goto freeskb;
923
924 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
925
926 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
927 dev_net(dev), NULL, skb, dev, NULL,
928 arp_process);
929
930consumeskb:
931 consume_skb(skb);
932 return NET_RX_SUCCESS;
933freeskb:
934 kfree_skb(skb);
935out_of_mem:
936 return NET_RX_DROP;
937}
938
939/*
940 * User level interface (ioctl)
941 */
942
943/*
944 * Set (create) an ARP cache entry.
945 */
946
947static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
948{
949 if (!dev) {
950 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
951 return 0;
952 }
953 if (__in_dev_get_rtnl(dev)) {
954 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
955 return 0;
956 }
957 return -ENXIO;
958}
959
960static int arp_req_set_public(struct net *net, struct arpreq *r,
961 struct net_device *dev)
962{
963 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
964 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
965
966 if (mask && mask != htonl(0xFFFFFFFF))
967 return -EINVAL;
968 if (!dev && (r->arp_flags & ATF_COM)) {
969 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
970 r->arp_ha.sa_data);
971 if (!dev)
972 return -ENODEV;
973 }
974 if (mask) {
975 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
976 return -ENOBUFS;
977 return 0;
978 }
979
980 return arp_req_set_proxy(net, dev, 1);
981}
982
983static int arp_req_set(struct net *net, struct arpreq *r,
984 struct net_device *dev)
985{
986 __be32 ip;
987 struct neighbour *neigh;
988 int err;
989
990 if (r->arp_flags & ATF_PUBL)
991 return arp_req_set_public(net, r, dev);
992
993 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
994 if (r->arp_flags & ATF_PERM)
995 r->arp_flags |= ATF_COM;
996 if (!dev) {
997 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
998
999 if (IS_ERR(rt))
1000 return PTR_ERR(rt);
1001 dev = rt->dst.dev;
1002 ip_rt_put(rt);
1003 if (!dev)
1004 return -EINVAL;
1005 }
1006 switch (dev->type) {
1007#if IS_ENABLED(CONFIG_FDDI)
1008 case ARPHRD_FDDI:
1009 /*
1010 * According to RFC 1390, FDDI devices should accept ARP
1011 * hardware types of 1 (Ethernet). However, to be more
1012 * robust, we'll accept hardware types of either 1 (Ethernet)
1013 * or 6 (IEEE 802.2).
1014 */
1015 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1016 r->arp_ha.sa_family != ARPHRD_ETHER &&
1017 r->arp_ha.sa_family != ARPHRD_IEEE802)
1018 return -EINVAL;
1019 break;
1020#endif
1021 default:
1022 if (r->arp_ha.sa_family != dev->type)
1023 return -EINVAL;
1024 break;
1025 }
1026
1027 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1028 err = PTR_ERR(neigh);
1029 if (!IS_ERR(neigh)) {
1030 unsigned int state = NUD_STALE;
1031 if (r->arp_flags & ATF_PERM)
1032 state = NUD_PERMANENT;
1033 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1034 r->arp_ha.sa_data : NULL, state,
1035 NEIGH_UPDATE_F_OVERRIDE |
1036 NEIGH_UPDATE_F_ADMIN);
1037 neigh_release(neigh);
1038 }
1039 return err;
1040}
1041
1042static unsigned int arp_state_to_flags(struct neighbour *neigh)
1043{
1044 if (neigh->nud_state&NUD_PERMANENT)
1045 return ATF_PERM | ATF_COM;
1046 else if (neigh->nud_state&NUD_VALID)
1047 return ATF_COM;
1048 else
1049 return 0;
1050}
1051
1052/*
1053 * Get an ARP cache entry.
1054 */
1055
1056static int arp_req_get(struct arpreq *r, struct net_device *dev)
1057{
1058 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1059 struct neighbour *neigh;
1060 int err = -ENXIO;
1061
1062 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1063 if (neigh) {
1064 if (!(neigh->nud_state & NUD_NOARP)) {
1065 read_lock_bh(&neigh->lock);
1066 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1067 r->arp_flags = arp_state_to_flags(neigh);
1068 read_unlock_bh(&neigh->lock);
1069 r->arp_ha.sa_family = dev->type;
1070 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1071 err = 0;
1072 }
1073 neigh_release(neigh);
1074 }
1075 return err;
1076}
1077
1078static int arp_invalidate(struct net_device *dev, __be32 ip)
1079{
1080 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1081 int err = -ENXIO;
1082
1083 if (neigh) {
1084 if (neigh->nud_state & ~NUD_NOARP)
1085 err = neigh_update(neigh, NULL, NUD_FAILED,
1086 NEIGH_UPDATE_F_OVERRIDE|
1087 NEIGH_UPDATE_F_ADMIN);
1088 neigh_release(neigh);
1089 }
1090
1091 return err;
1092}
1093
1094static int arp_req_delete_public(struct net *net, struct arpreq *r,
1095 struct net_device *dev)
1096{
1097 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1099
1100 if (mask == htonl(0xFFFFFFFF))
1101 return pneigh_delete(&arp_tbl, net, &ip, dev);
1102
1103 if (mask)
1104 return -EINVAL;
1105
1106 return arp_req_set_proxy(net, dev, 0);
1107}
1108
1109static int arp_req_delete(struct net *net, struct arpreq *r,
1110 struct net_device *dev)
1111{
1112 __be32 ip;
1113
1114 if (r->arp_flags & ATF_PUBL)
1115 return arp_req_delete_public(net, r, dev);
1116
1117 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1118 if (!dev) {
1119 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1120 if (IS_ERR(rt))
1121 return PTR_ERR(rt);
1122 dev = rt->dst.dev;
1123 ip_rt_put(rt);
1124 if (!dev)
1125 return -EINVAL;
1126 }
1127 return arp_invalidate(dev, ip);
1128}
1129
1130/*
1131 * Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135{
1136 int err;
1137 struct arpreq r;
1138 struct net_device *dev = NULL;
1139
1140 switch (cmd) {
1141 case SIOCDARP:
1142 case SIOCSARP:
1143 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1144 return -EPERM;
1145 case SIOCGARP:
1146 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147 if (err)
1148 return -EFAULT;
1149 break;
1150 default:
1151 return -EINVAL;
1152 }
1153
1154 if (r.arp_pa.sa_family != AF_INET)
1155 return -EPFNOSUPPORT;
1156
1157 if (!(r.arp_flags & ATF_PUBL) &&
1158 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1159 return -EINVAL;
1160 if (!(r.arp_flags & ATF_NETMASK))
1161 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162 htonl(0xFFFFFFFFUL);
1163 rtnl_lock();
1164 if (r.arp_dev[0]) {
1165 err = -ENODEV;
1166 dev = __dev_get_by_name(net, r.arp_dev);
1167 if (!dev)
1168 goto out;
1169
1170 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171 if (!r.arp_ha.sa_family)
1172 r.arp_ha.sa_family = dev->type;
1173 err = -EINVAL;
1174 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175 goto out;
1176 } else if (cmd == SIOCGARP) {
1177 err = -ENODEV;
1178 goto out;
1179 }
1180
1181 switch (cmd) {
1182 case SIOCDARP:
1183 err = arp_req_delete(net, &r, dev);
1184 break;
1185 case SIOCSARP:
1186 err = arp_req_set(net, &r, dev);
1187 break;
1188 case SIOCGARP:
1189 err = arp_req_get(&r, dev);
1190 break;
1191 }
1192out:
1193 rtnl_unlock();
1194 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1195 err = -EFAULT;
1196 return err;
1197}
1198
1199static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1200 void *ptr)
1201{
1202 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1203 struct netdev_notifier_change_info *change_info;
1204
1205 switch (event) {
1206 case NETDEV_CHANGEADDR:
1207 neigh_changeaddr(&arp_tbl, dev);
1208 rt_cache_flush(dev_net(dev));
1209 break;
1210 case NETDEV_CHANGE:
1211 change_info = ptr;
1212 if (change_info->flags_changed & IFF_NOARP)
1213 neigh_changeaddr(&arp_tbl, dev);
1214 break;
1215 default:
1216 break;
1217 }
1218
1219 return NOTIFY_DONE;
1220}
1221
1222static struct notifier_block arp_netdev_notifier = {
1223 .notifier_call = arp_netdev_event,
1224};
1225
1226/* Note, that it is not on notifier chain.
1227 It is necessary, that this routine was called after route cache will be
1228 flushed.
1229 */
1230void arp_ifdown(struct net_device *dev)
1231{
1232 neigh_ifdown(&arp_tbl, dev);
1233}
1234
1235
1236/*
1237 * Called once on startup.
1238 */
1239
1240static struct packet_type arp_packet_type __read_mostly = {
1241 .type = cpu_to_be16(ETH_P_ARP),
1242 .func = arp_rcv,
1243};
1244
1245static int arp_proc_init(void);
1246
1247void __init arp_init(void)
1248{
1249 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1250
1251 dev_add_pack(&arp_packet_type);
1252 arp_proc_init();
1253#ifdef CONFIG_SYSCTL
1254 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1255#endif
1256 register_netdevice_notifier(&arp_netdev_notifier);
1257}
1258
1259#ifdef CONFIG_PROC_FS
1260#if IS_ENABLED(CONFIG_AX25)
1261
1262/* ------------------------------------------------------------------------ */
1263/*
1264 * ax25 -> ASCII conversion
1265 */
1266static char *ax2asc2(ax25_address *a, char *buf)
1267{
1268 char c, *s;
1269 int n;
1270
1271 for (n = 0, s = buf; n < 6; n++) {
1272 c = (a->ax25_call[n] >> 1) & 0x7F;
1273
1274 if (c != ' ')
1275 *s++ = c;
1276 }
1277
1278 *s++ = '-';
1279 n = (a->ax25_call[6] >> 1) & 0x0F;
1280 if (n > 9) {
1281 *s++ = '1';
1282 n -= 10;
1283 }
1284
1285 *s++ = n + '0';
1286 *s++ = '\0';
1287
1288 if (*buf == '\0' || *buf == '-')
1289 return "*";
1290
1291 return buf;
1292}
1293#endif /* CONFIG_AX25 */
1294
1295#define HBUFFERLEN 30
1296
1297static void arp_format_neigh_entry(struct seq_file *seq,
1298 struct neighbour *n)
1299{
1300 char hbuffer[HBUFFERLEN];
1301 int k, j;
1302 char tbuf[16];
1303 struct net_device *dev = n->dev;
1304 int hatype = dev->type;
1305
1306 read_lock(&n->lock);
1307 /* Convert hardware address to XX:XX:XX:XX ... form. */
1308#if IS_ENABLED(CONFIG_AX25)
1309 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1310 ax2asc2((ax25_address *)n->ha, hbuffer);
1311 else {
1312#endif
1313 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1314 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1315 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1316 hbuffer[k++] = ':';
1317 }
1318 if (k != 0)
1319 --k;
1320 hbuffer[k] = 0;
1321#if IS_ENABLED(CONFIG_AX25)
1322 }
1323#endif
1324 sprintf(tbuf, "%pI4", n->primary_key);
1325 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1326 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1327 read_unlock(&n->lock);
1328}
1329
1330static void arp_format_pneigh_entry(struct seq_file *seq,
1331 struct pneigh_entry *n)
1332{
1333 struct net_device *dev = n->dev;
1334 int hatype = dev ? dev->type : 0;
1335 char tbuf[16];
1336
1337 sprintf(tbuf, "%pI4", n->key);
1338 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1339 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1340 dev ? dev->name : "*");
1341}
1342
1343static int arp_seq_show(struct seq_file *seq, void *v)
1344{
1345 if (v == SEQ_START_TOKEN) {
1346 seq_puts(seq, "IP address HW type Flags "
1347 "HW address Mask Device\n");
1348 } else {
1349 struct neigh_seq_state *state = seq->private;
1350
1351 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1352 arp_format_pneigh_entry(seq, v);
1353 else
1354 arp_format_neigh_entry(seq, v);
1355 }
1356
1357 return 0;
1358}
1359
1360static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1361{
1362 /* Don't want to confuse "arp -a" w/ magic entries,
1363 * so we tell the generic iterator to skip NUD_NOARP.
1364 */
1365 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366}
1367
1368/* ------------------------------------------------------------------------ */
1369
1370static const struct seq_operations arp_seq_ops = {
1371 .start = arp_seq_start,
1372 .next = neigh_seq_next,
1373 .stop = neigh_seq_stop,
1374 .show = arp_seq_show,
1375};
1376
1377static int arp_seq_open(struct inode *inode, struct file *file)
1378{
1379 return seq_open_net(inode, file, &arp_seq_ops,
1380 sizeof(struct neigh_seq_state));
1381}
1382
1383static const struct file_operations arp_seq_fops = {
1384 .owner = THIS_MODULE,
1385 .open = arp_seq_open,
1386 .read = seq_read,
1387 .llseek = seq_lseek,
1388 .release = seq_release_net,
1389};
1390
1391
1392static int __net_init arp_net_init(struct net *net)
1393{
1394 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1395 return -ENOMEM;
1396 return 0;
1397}
1398
1399static void __net_exit arp_net_exit(struct net *net)
1400{
1401 remove_proc_entry("arp", net->proc_net);
1402}
1403
1404static struct pernet_operations arp_net_ops = {
1405 .init = arp_net_init,
1406 .exit = arp_net_exit,
1407};
1408
1409static int __init arp_proc_init(void)
1410{
1411 return register_pernet_subsys(&arp_net_ops);
1412}
1413
1414#else /* CONFIG_PROC_FS */
1415
1416static int __init arp_proc_init(void)
1417{
1418 return 0;
1419}
1420
1421#endif /* CONFIG_PROC_FS */