Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 172			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 173			[NEIGH_VAR_PROXY_QLEN] = 64,
 174			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 175			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 176			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 177		},
 178	},
 179	.gc_interval	= 30 * HZ,
 180	.gc_thresh1	= 128,
 181	.gc_thresh2	= 512,
 182	.gc_thresh3	= 1024,
 183};
 184EXPORT_SYMBOL(arp_tbl);
 185
 186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 187{
 188	switch (dev->type) {
 189	case ARPHRD_ETHER:
 190	case ARPHRD_FDDI:
 191	case ARPHRD_IEEE802:
 192		ip_eth_mc_map(addr, haddr);
 193		return 0;
 194	case ARPHRD_INFINIBAND:
 195		ip_ib_mc_map(addr, dev->broadcast, haddr);
 196		return 0;
 197	case ARPHRD_IPGRE:
 198		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	default:
 201		if (dir) {
 202			memcpy(haddr, dev->broadcast, dev->addr_len);
 203			return 0;
 204		}
 205	}
 206	return -EINVAL;
 207}
 208
 209
 210static u32 arp_hash(const void *pkey,
 211		    const struct net_device *dev,
 212		    __u32 *hash_rnd)
 213{
 214	return arp_hashfn(pkey, dev, hash_rnd);
 215}
 216
 217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 218{
 219	return neigh_key_eq32(neigh, pkey);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224	__be32 addr;
 225	struct net_device *dev = neigh->dev;
 226	struct in_device *in_dev;
 227	struct neigh_parms *parms;
 228	u32 inaddr_any = INADDR_ANY;
 229
 230	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 231		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 232
 233	addr = *(__be32 *)neigh->primary_key;
 234	rcu_read_lock();
 235	in_dev = __in_dev_get_rcu(dev);
 236	if (!in_dev) {
 237		rcu_read_unlock();
 238		return -EINVAL;
 239	}
 240
 241	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 242
 243	parms = in_dev->arp_parms;
 244	__neigh_parms_put(neigh->parms);
 245	neigh->parms = neigh_parms_clone(parms);
 246	rcu_read_unlock();
 247
 248	if (!dev->header_ops) {
 249		neigh->nud_state = NUD_NOARP;
 250		neigh->ops = &arp_direct_ops;
 251		neigh->output = neigh_direct_output;
 252	} else {
 253		/* Good devices (checked by reading texts, but only Ethernet is
 254		   tested)
 255
 256		   ARPHRD_ETHER: (ethernet, apfddi)
 257		   ARPHRD_FDDI: (fddi)
 258		   ARPHRD_IEEE802: (tr)
 259		   ARPHRD_METRICOM: (strip)
 260		   ARPHRD_ARCNET:
 261		   etc. etc. etc.
 262
 263		   ARPHRD_IPDDP will also work, if author repairs it.
 264		   I did not it, because this driver does not work even
 265		   in old paradigm.
 266		 */
 267
 268		if (neigh->type == RTN_MULTICAST) {
 269			neigh->nud_state = NUD_NOARP;
 270			arp_mc_map(addr, neigh->ha, dev, 1);
 271		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 272			neigh->nud_state = NUD_NOARP;
 273			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 274		} else if (neigh->type == RTN_BROADCAST ||
 275			   (dev->flags & IFF_POINTOPOINT)) {
 276			neigh->nud_state = NUD_NOARP;
 277			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 278		}
 279
 280		if (dev->header_ops->cache)
 281			neigh->ops = &arp_hh_ops;
 282		else
 283			neigh->ops = &arp_generic_ops;
 284
 285		if (neigh->nud_state & NUD_VALID)
 286			neigh->output = neigh->ops->connected_output;
 287		else
 288			neigh->output = neigh->ops->output;
 289	}
 290	return 0;
 291}
 292
 293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 294{
 295	dst_link_failure(skb);
 296	kfree_skb(skb);
 297}
 298
 299/* Create and send an arp packet. */
 300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 301			 struct net_device *dev, __be32 src_ip,
 302			 const unsigned char *dest_hw,
 303			 const unsigned char *src_hw,
 304			 const unsigned char *target_hw,
 305			 struct dst_entry *dst)
 306{
 307	struct sk_buff *skb;
 308
 309	/* arp on this interface. */
 310	if (dev->flags & IFF_NOARP)
 311		return;
 312
 313	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 314			 dest_hw, src_hw, target_hw);
 315	if (!skb)
 316		return;
 317
 318	skb_dst_set(skb, dst_clone(dst));
 319	arp_xmit(skb);
 320}
 321
 322void arp_send(int type, int ptype, __be32 dest_ip,
 323	      struct net_device *dev, __be32 src_ip,
 324	      const unsigned char *dest_hw, const unsigned char *src_hw,
 325	      const unsigned char *target_hw)
 326{
 327	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 328		     target_hw, NULL);
 329}
 330EXPORT_SYMBOL(arp_send);
 331
 332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 333{
 334	__be32 saddr = 0;
 335	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 336	struct net_device *dev = neigh->dev;
 337	__be32 target = *(__be32 *)neigh->primary_key;
 338	int probes = atomic_read(&neigh->probes);
 339	struct in_device *in_dev;
 340	struct dst_entry *dst = NULL;
 341
 342	rcu_read_lock();
 343	in_dev = __in_dev_get_rcu(dev);
 344	if (!in_dev) {
 345		rcu_read_unlock();
 346		return;
 347	}
 348	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 349	default:
 350	case 0:		/* By default announce any local IP */
 351		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 352					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 353			saddr = ip_hdr(skb)->saddr;
 354		break;
 355	case 1:		/* Restrict announcements of saddr in same subnet */
 356		if (!skb)
 357			break;
 358		saddr = ip_hdr(skb)->saddr;
 359		if (inet_addr_type_dev_table(dev_net(dev), dev,
 360					     saddr) == RTN_LOCAL) {
 361			/* saddr should be known to target */
 362			if (inet_addr_onlink(in_dev, target, saddr))
 363				break;
 364		}
 365		saddr = 0;
 366		break;
 367	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 368		break;
 369	}
 370	rcu_read_unlock();
 371
 372	if (!saddr)
 373		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 374
 375	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 376	if (probes < 0) {
 377		if (!(neigh->nud_state & NUD_VALID))
 378			pr_debug("trying to ucast probe in NUD_INVALID\n");
 379		neigh_ha_snapshot(dst_ha, neigh, dev);
 380		dst_hw = dst_ha;
 381	} else {
 382		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 383		if (probes < 0) {
 384			neigh_app_ns(neigh);
 385			return;
 386		}
 387	}
 388
 389	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 390		dst = skb_dst(skb);
 391	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 392		     dst_hw, dev->dev_addr, NULL, dst);
 393}
 394
 395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 396{
 397	struct net *net = dev_net(in_dev->dev);
 398	int scope;
 399
 400	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 401	case 0:	/* Reply, the tip is already validated */
 402		return 0;
 403	case 1:	/* Reply only if tip is configured on the incoming interface */
 404		sip = 0;
 405		scope = RT_SCOPE_HOST;
 406		break;
 407	case 2:	/*
 408		 * Reply only if tip is configured on the incoming interface
 409		 * and is in same subnet as sip
 410		 */
 411		scope = RT_SCOPE_HOST;
 412		break;
 413	case 3:	/* Do not reply for scope host addresses */
 414		sip = 0;
 415		scope = RT_SCOPE_LINK;
 416		in_dev = NULL;
 417		break;
 418	case 4:	/* Reserved */
 419	case 5:
 420	case 6:
 421	case 7:
 422		return 0;
 423	case 8:	/* Do not reply */
 424		return 1;
 425	default:
 426		return 0;
 427	}
 428	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 429}
 430
 431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 432{
 433	struct rtable *rt;
 434	int flag = 0;
 435	/*unsigned long now; */
 436	struct net *net = dev_net(dev);
 437
 438	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 439	if (IS_ERR(rt))
 440		return 1;
 441	if (rt->dst.dev != dev) {
 442		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 443		flag = 1;
 444	}
 445	ip_rt_put(rt);
 446	return flag;
 447}
 448
 449/*
 450 * Check if we can use proxy ARP for this path
 451 */
 452static inline int arp_fwd_proxy(struct in_device *in_dev,
 453				struct net_device *dev,	struct rtable *rt)
 454{
 455	struct in_device *out_dev;
 456	int imi, omi = -1;
 457
 458	if (rt->dst.dev == dev)
 459		return 0;
 460
 461	if (!IN_DEV_PROXY_ARP(in_dev))
 462		return 0;
 463	imi = IN_DEV_MEDIUM_ID(in_dev);
 464	if (imi == 0)
 465		return 1;
 466	if (imi == -1)
 467		return 0;
 468
 469	/* place to check for proxy_arp for routes */
 470
 471	out_dev = __in_dev_get_rcu(rt->dst.dev);
 472	if (out_dev)
 473		omi = IN_DEV_MEDIUM_ID(out_dev);
 474
 475	return omi != imi && omi != -1;
 476}
 477
 478/*
 479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 480 *
 481 * RFC3069 supports proxy arp replies back to the same interface.  This
 482 * is done to support (ethernet) switch features, like RFC 3069, where
 483 * the individual ports are not allowed to communicate with each
 484 * other, BUT they are allowed to talk to the upstream router.  As
 485 * described in RFC 3069, it is possible to allow these hosts to
 486 * communicate through the upstream router, by proxy_arp'ing.
 487 *
 488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 489 *
 490 *  This technology is known by different names:
 491 *    In RFC 3069 it is called VLAN Aggregation.
 492 *    Cisco and Allied Telesyn call it Private VLAN.
 493 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 494 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 495 *
 496 */
 497static inline int arp_fwd_pvlan(struct in_device *in_dev,
 498				struct net_device *dev,	struct rtable *rt,
 499				__be32 sip, __be32 tip)
 500{
 501	/* Private VLAN is only concerned about the same ethernet segment */
 502	if (rt->dst.dev != dev)
 503		return 0;
 504
 505	/* Don't reply on self probes (often done by windowz boxes)*/
 506	if (sip == tip)
 507		return 0;
 508
 509	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 510		return 1;
 511	else
 512		return 0;
 513}
 514
 515/*
 516 *	Interface to link layer: send routine and receive handler.
 517 */
 518
 519/*
 520 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 521 *	message.
 522 */
 523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 524			   struct net_device *dev, __be32 src_ip,
 525			   const unsigned char *dest_hw,
 526			   const unsigned char *src_hw,
 527			   const unsigned char *target_hw)
 528{
 529	struct sk_buff *skb;
 530	struct arphdr *arp;
 531	unsigned char *arp_ptr;
 532	int hlen = LL_RESERVED_SPACE(dev);
 533	int tlen = dev->needed_tailroom;
 534
 535	/*
 536	 *	Allocate a buffer
 537	 */
 538
 539	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 540	if (!skb)
 541		return NULL;
 542
 543	skb_reserve(skb, hlen);
 544	skb_reset_network_header(skb);
 545	arp = skb_put(skb, arp_hdr_len(dev));
 546	skb->dev = dev;
 547	skb->protocol = htons(ETH_P_ARP);
 548	if (!src_hw)
 549		src_hw = dev->dev_addr;
 550	if (!dest_hw)
 551		dest_hw = dev->broadcast;
 552
 553	/*
 554	 *	Fill the device header for the ARP frame
 555	 */
 556	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 557		goto out;
 558
 559	/*
 560	 * Fill out the arp protocol part.
 561	 *
 562	 * The arp hardware type should match the device type, except for FDDI,
 563	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 564	 */
 565	/*
 566	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 567	 *	DIX code for the protocol. Make these device structure fields.
 568	 */
 569	switch (dev->type) {
 570	default:
 571		arp->ar_hrd = htons(dev->type);
 572		arp->ar_pro = htons(ETH_P_IP);
 573		break;
 574
 575#if IS_ENABLED(CONFIG_AX25)
 576	case ARPHRD_AX25:
 577		arp->ar_hrd = htons(ARPHRD_AX25);
 578		arp->ar_pro = htons(AX25_P_IP);
 579		break;
 580
 581#if IS_ENABLED(CONFIG_NETROM)
 582	case ARPHRD_NETROM:
 583		arp->ar_hrd = htons(ARPHRD_NETROM);
 584		arp->ar_pro = htons(AX25_P_IP);
 585		break;
 586#endif
 587#endif
 588
 589#if IS_ENABLED(CONFIG_FDDI)
 590	case ARPHRD_FDDI:
 591		arp->ar_hrd = htons(ARPHRD_ETHER);
 592		arp->ar_pro = htons(ETH_P_IP);
 593		break;
 594#endif
 595	}
 596
 597	arp->ar_hln = dev->addr_len;
 598	arp->ar_pln = 4;
 599	arp->ar_op = htons(type);
 600
 601	arp_ptr = (unsigned char *)(arp + 1);
 602
 603	memcpy(arp_ptr, src_hw, dev->addr_len);
 604	arp_ptr += dev->addr_len;
 605	memcpy(arp_ptr, &src_ip, 4);
 606	arp_ptr += 4;
 607
 608	switch (dev->type) {
 609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 610	case ARPHRD_IEEE1394:
 611		break;
 612#endif
 613	default:
 614		if (target_hw)
 615			memcpy(arp_ptr, target_hw, dev->addr_len);
 616		else
 617			memset(arp_ptr, 0, dev->addr_len);
 618		arp_ptr += dev->addr_len;
 619	}
 620	memcpy(arp_ptr, &dest_ip, 4);
 621
 622	return skb;
 623
 624out:
 625	kfree_skb(skb);
 626	return NULL;
 627}
 628EXPORT_SYMBOL(arp_create);
 629
 630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 631{
 632	return dev_queue_xmit(skb);
 633}
 634
 635/*
 636 *	Send an arp packet.
 637 */
 638void arp_xmit(struct sk_buff *skb)
 639{
 640	/* Send it off, maybe filter it using firewalling first.  */
 641	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 642		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 643		arp_xmit_finish);
 644}
 645EXPORT_SYMBOL(arp_xmit);
 646
 647static bool arp_is_garp(struct net *net, struct net_device *dev,
 648			int *addr_type, __be16 ar_op,
 649			__be32 sip, __be32 tip,
 650			unsigned char *sha, unsigned char *tha)
 651{
 652	bool is_garp = tip == sip;
 653
 654	/* Gratuitous ARP _replies_ also require target hwaddr to be
 655	 * the same as source.
 656	 */
 657	if (is_garp && ar_op == htons(ARPOP_REPLY))
 658		is_garp =
 659			/* IPv4 over IEEE 1394 doesn't provide target
 660			 * hardware address field in its ARP payload.
 661			 */
 662			tha &&
 663			!memcmp(tha, sha, dev->addr_len);
 664
 665	if (is_garp) {
 666		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 667		if (*addr_type != RTN_UNICAST)
 668			is_garp = false;
 669	}
 670	return is_garp;
 671}
 672
 673/*
 674 *	Process an arp request.
 675 */
 676
 677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 678{
 679	struct net_device *dev = skb->dev;
 680	struct in_device *in_dev = __in_dev_get_rcu(dev);
 681	struct arphdr *arp;
 682	unsigned char *arp_ptr;
 683	struct rtable *rt;
 684	unsigned char *sha;
 685	unsigned char *tha = NULL;
 686	__be32 sip, tip;
 687	u16 dev_type = dev->type;
 688	int addr_type;
 689	struct neighbour *n;
 690	struct dst_entry *reply_dst = NULL;
 691	bool is_garp = false;
 692
 693	/* arp_rcv below verifies the ARP header and verifies the device
 694	 * is ARP'able.
 695	 */
 696
 697	if (!in_dev)
 698		goto out_free_skb;
 699
 700	arp = arp_hdr(skb);
 701
 702	switch (dev_type) {
 703	default:
 704		if (arp->ar_pro != htons(ETH_P_IP) ||
 705		    htons(dev_type) != arp->ar_hrd)
 706			goto out_free_skb;
 707		break;
 708	case ARPHRD_ETHER:
 709	case ARPHRD_FDDI:
 710	case ARPHRD_IEEE802:
 711		/*
 712		 * ETHERNET, and Fibre Channel (which are IEEE 802
 713		 * devices, according to RFC 2625) devices will accept ARP
 714		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 715		 * This is the case also of FDDI, where the RFC 1390 says that
 716		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 717		 * however, to be more robust, we'll accept both 1 (Ethernet)
 718		 * or 6 (IEEE 802.2)
 719		 */
 720		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 721		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 722		    arp->ar_pro != htons(ETH_P_IP))
 723			goto out_free_skb;
 724		break;
 725	case ARPHRD_AX25:
 726		if (arp->ar_pro != htons(AX25_P_IP) ||
 727		    arp->ar_hrd != htons(ARPHRD_AX25))
 728			goto out_free_skb;
 729		break;
 730	case ARPHRD_NETROM:
 731		if (arp->ar_pro != htons(AX25_P_IP) ||
 732		    arp->ar_hrd != htons(ARPHRD_NETROM))
 733			goto out_free_skb;
 734		break;
 735	}
 736
 737	/* Understand only these message types */
 738
 739	if (arp->ar_op != htons(ARPOP_REPLY) &&
 740	    arp->ar_op != htons(ARPOP_REQUEST))
 741		goto out_free_skb;
 742
 743/*
 744 *	Extract fields
 745 */
 746	arp_ptr = (unsigned char *)(arp + 1);
 747	sha	= arp_ptr;
 748	arp_ptr += dev->addr_len;
 749	memcpy(&sip, arp_ptr, 4);
 750	arp_ptr += 4;
 751	switch (dev_type) {
 752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 753	case ARPHRD_IEEE1394:
 754		break;
 755#endif
 756	default:
 757		tha = arp_ptr;
 758		arp_ptr += dev->addr_len;
 759	}
 760	memcpy(&tip, arp_ptr, 4);
 761/*
 762 *	Check for bad requests for 127.x.x.x and requests for multicast
 763 *	addresses.  If this is one such, delete it.
 764 */
 765	if (ipv4_is_multicast(tip) ||
 766	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 767		goto out_free_skb;
 768
 769 /*
 770  *	For some 802.11 wireless deployments (and possibly other networks),
 771  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 772  *	and thus should not be accepted.
 773  */
 774	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 775		goto out_free_skb;
 776
 777/*
 778 *     Special case: We must set Frame Relay source Q.922 address
 779 */
 780	if (dev_type == ARPHRD_DLCI)
 781		sha = dev->broadcast;
 782
 783/*
 784 *  Process entry.  The idea here is we want to send a reply if it is a
 785 *  request for us or if it is a request for someone else that we hold
 786 *  a proxy for.  We want to add an entry to our cache if it is a reply
 787 *  to us or if it is a request for our address.
 788 *  (The assumption for this last is that if someone is requesting our
 789 *  address, they are probably intending to talk to us, so it saves time
 790 *  if we cache their address.  Their address is also probably not in
 791 *  our cache, since ours is not in their cache.)
 792 *
 793 *  Putting this another way, we only care about replies if they are to
 794 *  us, in which case we add them to the cache.  For requests, we care
 795 *  about those for us and those for our proxies.  We reply to both,
 796 *  and in the case of requests for us we add the requester to the arp
 797 *  cache.
 798 */
 799
 800	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 801		reply_dst = (struct dst_entry *)
 802			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 803						    GFP_ATOMIC);
 804
 805	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 806	if (sip == 0) {
 807		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 808		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 809		    !arp_ignore(in_dev, sip, tip))
 810			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 811				     sha, dev->dev_addr, sha, reply_dst);
 812		goto out_consume_skb;
 813	}
 814
 815	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 816	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 817
 818		rt = skb_rtable(skb);
 819		addr_type = rt->rt_type;
 820
 821		if (addr_type == RTN_LOCAL) {
 822			int dont_send;
 823
 824			dont_send = arp_ignore(in_dev, sip, tip);
 825			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 826				dont_send = arp_filter(sip, tip, dev);
 827			if (!dont_send) {
 828				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 829				if (n) {
 830					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 831						     sip, dev, tip, sha,
 832						     dev->dev_addr, sha,
 833						     reply_dst);
 834					neigh_release(n);
 835				}
 836			}
 837			goto out_consume_skb;
 838		} else if (IN_DEV_FORWARD(in_dev)) {
 839			if (addr_type == RTN_UNICAST  &&
 840			    (arp_fwd_proxy(in_dev, dev, rt) ||
 841			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 842			     (rt->dst.dev != dev &&
 843			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 844				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 845				if (n)
 846					neigh_release(n);
 847
 848				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 849				    skb->pkt_type == PACKET_HOST ||
 850				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855				} else {
 856					pneigh_enqueue(&arp_tbl,
 857						       in_dev->arp_parms, skb);
 858					goto out_free_dst;
 859				}
 860				goto out_consume_skb;
 861			}
 862		}
 863	}
 864
 865	/* Update our ARP tables */
 866
 867	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 868
 869	addr_type = -1;
 870	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 871		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 872				      sip, tip, sha, tha);
 873	}
 874
 875	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 876		/* Unsolicited ARP is not accepted by default.
 877		   It is possible, that this option should be enabled for some
 878		   devices (strip is candidate)
 879		 */
 880		if (!n &&
 881		    (is_garp ||
 882		     (arp->ar_op == htons(ARPOP_REPLY) &&
 883		      (addr_type == RTN_UNICAST ||
 884		       (addr_type < 0 &&
 885			/* postpone calculation to as late as possible */
 886			inet_addr_type_dev_table(net, dev, sip) ==
 887				RTN_UNICAST)))))
 888			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 889	}
 890
 891	if (n) {
 892		int state = NUD_REACHABLE;
 893		int override;
 894
 895		/* If several different ARP replies follows back-to-back,
 896		   use the FIRST one. It is possible, if several proxy
 897		   agents are active. Taking the first reply prevents
 898		   arp trashing and chooses the fastest router.
 899		 */
 900		override = time_after(jiffies,
 901				      n->updated +
 902				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 903			   is_garp;
 904
 905		/* Broadcast replies and request packets
 906		   do not assert neighbour reachability.
 907		 */
 908		if (arp->ar_op != htons(ARPOP_REPLY) ||
 909		    skb->pkt_type != PACKET_HOST)
 910			state = NUD_STALE;
 911		neigh_update(n, sha, state,
 912			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 913		neigh_release(n);
 914	}
 915
 916out_consume_skb:
 917	consume_skb(skb);
 918
 919out_free_dst:
 920	dst_release(reply_dst);
 921	return NET_RX_SUCCESS;
 922
 923out_free_skb:
 924	kfree_skb(skb);
 925	return NET_RX_DROP;
 926}
 927
 928static void parp_redo(struct sk_buff *skb)
 929{
 930	arp_process(dev_net(skb->dev), NULL, skb);
 931}
 932
 933static int arp_is_multicast(const void *pkey)
 934{
 935	return ipv4_is_multicast(*((__be32 *)pkey));
 936}
 937
 938/*
 939 *	Receive an arp request from the device layer.
 940 */
 941
 942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 943		   struct packet_type *pt, struct net_device *orig_dev)
 944{
 945	const struct arphdr *arp;
 946
 947	/* do not tweak dropwatch on an ARP we will ignore */
 948	if (dev->flags & IFF_NOARP ||
 949	    skb->pkt_type == PACKET_OTHERHOST ||
 950	    skb->pkt_type == PACKET_LOOPBACK)
 951		goto consumeskb;
 952
 953	skb = skb_share_check(skb, GFP_ATOMIC);
 954	if (!skb)
 955		goto out_of_mem;
 956
 957	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 958	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 959		goto freeskb;
 960
 961	arp = arp_hdr(skb);
 962	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 963		goto freeskb;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 968		       dev_net(dev), NULL, skb, dev, NULL,
 969		       arp_process);
 970
 971consumeskb:
 972	consume_skb(skb);
 973	return NET_RX_SUCCESS;
 974freeskb:
 975	kfree_skb(skb);
 976out_of_mem:
 977	return NET_RX_DROP;
 978}
 979
 980/*
 981 *	User level interface (ioctl)
 982 */
 983
 984/*
 985 *	Set (create) an ARP cache entry.
 986 */
 987
 988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 989{
 990	if (!dev) {
 991		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 992		return 0;
 993	}
 994	if (__in_dev_get_rtnl(dev)) {
 995		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 996		return 0;
 997	}
 998	return -ENXIO;
 999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002		struct net_device *dev)
1003{
1004	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007	if (mask && mask != htonl(0xFFFFFFFF))
1008		return -EINVAL;
1009	if (!dev && (r->arp_flags & ATF_COM)) {
1010		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011				      r->arp_ha.sa_data);
1012		if (!dev)
1013			return -ENODEV;
1014	}
1015	if (mask) {
1016		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017			return -ENOBUFS;
1018		return 0;
1019	}
1020
1021	return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025		       struct net_device *dev)
1026{
1027	__be32 ip;
1028	struct neighbour *neigh;
1029	int err;
1030
1031	if (r->arp_flags & ATF_PUBL)
1032		return arp_req_set_public(net, r, dev);
1033
1034	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035	if (r->arp_flags & ATF_PERM)
1036		r->arp_flags |= ATF_COM;
1037	if (!dev) {
1038		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040		if (IS_ERR(rt))
1041			return PTR_ERR(rt);
1042		dev = rt->dst.dev;
1043		ip_rt_put(rt);
1044		if (!dev)
1045			return -EINVAL;
1046	}
1047	switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049	case ARPHRD_FDDI:
1050		/*
1051		 * According to RFC 1390, FDDI devices should accept ARP
1052		 * hardware types of 1 (Ethernet).  However, to be more
1053		 * robust, we'll accept hardware types of either 1 (Ethernet)
1054		 * or 6 (IEEE 802.2).
1055		 */
1056		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059			return -EINVAL;
1060		break;
1061#endif
1062	default:
1063		if (r->arp_ha.sa_family != dev->type)
1064			return -EINVAL;
1065		break;
1066	}
1067
1068	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069	err = PTR_ERR(neigh);
1070	if (!IS_ERR(neigh)) {
1071		unsigned int state = NUD_STALE;
1072		if (r->arp_flags & ATF_PERM)
1073			state = NUD_PERMANENT;
1074		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075				   r->arp_ha.sa_data : NULL, state,
1076				   NEIGH_UPDATE_F_OVERRIDE |
1077				   NEIGH_UPDATE_F_ADMIN, 0);
1078		neigh_release(neigh);
1079	}
1080	return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085	if (neigh->nud_state&NUD_PERMANENT)
1086		return ATF_PERM | ATF_COM;
1087	else if (neigh->nud_state&NUD_VALID)
1088		return ATF_COM;
1089	else
1090		return 0;
1091}
1092
1093/*
1094 *	Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100	struct neighbour *neigh;
1101	int err = -ENXIO;
1102
1103	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104	if (neigh) {
1105		if (!(neigh->nud_state & NUD_NOARP)) {
1106			read_lock_bh(&neigh->lock);
1107			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108			r->arp_flags = arp_state_to_flags(neigh);
1109			read_unlock_bh(&neigh->lock);
1110			r->arp_ha.sa_family = dev->type;
1111			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112			err = 0;
1113		}
1114		neigh_release(neigh);
1115	}
1116	return err;
1117}
1118
1119static int arp_invalidate(struct net_device *dev, __be32 ip)
1120{
1121	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122	int err = -ENXIO;
1123	struct neigh_table *tbl = &arp_tbl;
1124
1125	if (neigh) {
1126		if (neigh->nud_state & ~NUD_NOARP)
1127			err = neigh_update(neigh, NULL, NUD_FAILED,
1128					   NEIGH_UPDATE_F_OVERRIDE|
1129					   NEIGH_UPDATE_F_ADMIN, 0);
1130		write_lock_bh(&tbl->lock);
1131		neigh_release(neigh);
1132		neigh_remove_one(neigh, tbl);
1133		write_unlock_bh(&tbl->lock);
1134	}
1135
1136	return err;
1137}
1138
1139static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140		struct net_device *dev)
1141{
1142	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144
1145	if (mask == htonl(0xFFFFFFFF))
1146		return pneigh_delete(&arp_tbl, net, &ip, dev);
1147
1148	if (mask)
1149		return -EINVAL;
1150
1151	return arp_req_set_proxy(net, dev, 0);
1152}
1153
1154static int arp_req_delete(struct net *net, struct arpreq *r,
1155			  struct net_device *dev)
1156{
1157	__be32 ip;
1158
1159	if (r->arp_flags & ATF_PUBL)
1160		return arp_req_delete_public(net, r, dev);
1161
1162	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163	if (!dev) {
1164		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165		if (IS_ERR(rt))
1166			return PTR_ERR(rt);
1167		dev = rt->dst.dev;
1168		ip_rt_put(rt);
1169		if (!dev)
1170			return -EINVAL;
1171	}
1172	return arp_invalidate(dev, ip);
1173}
1174
1175/*
1176 *	Handle an ARP layer I/O control request.
1177 */
1178
1179int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180{
1181	int err;
1182	struct arpreq r;
1183	struct net_device *dev = NULL;
1184
1185	switch (cmd) {
1186	case SIOCDARP:
1187	case SIOCSARP:
1188		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189			return -EPERM;
1190		fallthrough;
1191	case SIOCGARP:
1192		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193		if (err)
1194			return -EFAULT;
1195		break;
1196	default:
1197		return -EINVAL;
1198	}
1199
1200	if (r.arp_pa.sa_family != AF_INET)
1201		return -EPFNOSUPPORT;
1202
1203	if (!(r.arp_flags & ATF_PUBL) &&
1204	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205		return -EINVAL;
1206	if (!(r.arp_flags & ATF_NETMASK))
1207		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208							   htonl(0xFFFFFFFFUL);
1209	rtnl_lock();
1210	if (r.arp_dev[0]) {
1211		err = -ENODEV;
1212		dev = __dev_get_by_name(net, r.arp_dev);
1213		if (!dev)
1214			goto out;
1215
1216		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217		if (!r.arp_ha.sa_family)
1218			r.arp_ha.sa_family = dev->type;
1219		err = -EINVAL;
1220		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221			goto out;
1222	} else if (cmd == SIOCGARP) {
1223		err = -ENODEV;
1224		goto out;
1225	}
1226
1227	switch (cmd) {
1228	case SIOCDARP:
1229		err = arp_req_delete(net, &r, dev);
1230		break;
1231	case SIOCSARP:
1232		err = arp_req_set(net, &r, dev);
1233		break;
1234	case SIOCGARP:
1235		err = arp_req_get(&r, dev);
1236		break;
1237	}
1238out:
1239	rtnl_unlock();
1240	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241		err = -EFAULT;
1242	return err;
1243}
1244
1245static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246			    void *ptr)
1247{
1248	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249	struct netdev_notifier_change_info *change_info;
1250
1251	switch (event) {
1252	case NETDEV_CHANGEADDR:
1253		neigh_changeaddr(&arp_tbl, dev);
1254		rt_cache_flush(dev_net(dev));
1255		break;
1256	case NETDEV_CHANGE:
1257		change_info = ptr;
1258		if (change_info->flags_changed & IFF_NOARP)
1259			neigh_changeaddr(&arp_tbl, dev);
1260		if (!netif_carrier_ok(dev))
1261			neigh_carrier_down(&arp_tbl, dev);
1262		break;
1263	default:
1264		break;
1265	}
1266
1267	return NOTIFY_DONE;
1268}
1269
1270static struct notifier_block arp_netdev_notifier = {
1271	.notifier_call = arp_netdev_event,
1272};
1273
1274/* Note, that it is not on notifier chain.
1275   It is necessary, that this routine was called after route cache will be
1276   flushed.
1277 */
1278void arp_ifdown(struct net_device *dev)
1279{
1280	neigh_ifdown(&arp_tbl, dev);
1281}
1282
1283
1284/*
1285 *	Called once on startup.
1286 */
1287
1288static struct packet_type arp_packet_type __read_mostly = {
1289	.type =	cpu_to_be16(ETH_P_ARP),
1290	.func =	arp_rcv,
1291};
1292
1293static int arp_proc_init(void);
1294
1295void __init arp_init(void)
1296{
1297	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298
1299	dev_add_pack(&arp_packet_type);
1300	arp_proc_init();
1301#ifdef CONFIG_SYSCTL
1302	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303#endif
1304	register_netdevice_notifier(&arp_netdev_notifier);
1305}
1306
1307#ifdef CONFIG_PROC_FS
1308#if IS_ENABLED(CONFIG_AX25)
1309
1310/* ------------------------------------------------------------------------ */
1311/*
1312 *	ax25 -> ASCII conversion
1313 */
1314static void ax2asc2(ax25_address *a, char *buf)
1315{
1316	char c, *s;
1317	int n;
1318
1319	for (n = 0, s = buf; n < 6; n++) {
1320		c = (a->ax25_call[n] >> 1) & 0x7F;
1321
1322		if (c != ' ')
1323			*s++ = c;
1324	}
1325
1326	*s++ = '-';
1327	n = (a->ax25_call[6] >> 1) & 0x0F;
1328	if (n > 9) {
1329		*s++ = '1';
1330		n -= 10;
1331	}
1332
1333	*s++ = n + '0';
1334	*s++ = '\0';
1335
1336	if (*buf == '\0' || *buf == '-') {
1337		buf[0] = '*';
1338		buf[1] = '\0';
1339	}
1340}
1341#endif /* CONFIG_AX25 */
1342
1343#define HBUFFERLEN 30
1344
1345static void arp_format_neigh_entry(struct seq_file *seq,
1346				   struct neighbour *n)
1347{
1348	char hbuffer[HBUFFERLEN];
1349	int k, j;
1350	char tbuf[16];
1351	struct net_device *dev = n->dev;
1352	int hatype = dev->type;
1353
1354	read_lock(&n->lock);
1355	/* Convert hardware address to XX:XX:XX:XX ... form. */
1356#if IS_ENABLED(CONFIG_AX25)
1357	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358		ax2asc2((ax25_address *)n->ha, hbuffer);
1359	else {
1360#endif
1361	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364		hbuffer[k++] = ':';
1365	}
1366	if (k != 0)
1367		--k;
1368	hbuffer[k] = 0;
1369#if IS_ENABLED(CONFIG_AX25)
1370	}
1371#endif
1372	sprintf(tbuf, "%pI4", n->primary_key);
1373	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375	read_unlock(&n->lock);
1376}
1377
1378static void arp_format_pneigh_entry(struct seq_file *seq,
1379				    struct pneigh_entry *n)
1380{
1381	struct net_device *dev = n->dev;
1382	int hatype = dev ? dev->type : 0;
1383	char tbuf[16];
1384
1385	sprintf(tbuf, "%pI4", n->key);
1386	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388		   dev ? dev->name : "*");
1389}
1390
1391static int arp_seq_show(struct seq_file *seq, void *v)
1392{
1393	if (v == SEQ_START_TOKEN) {
1394		seq_puts(seq, "IP address       HW type     Flags       "
1395			      "HW address            Mask     Device\n");
1396	} else {
1397		struct neigh_seq_state *state = seq->private;
1398
1399		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400			arp_format_pneigh_entry(seq, v);
1401		else
1402			arp_format_neigh_entry(seq, v);
1403	}
1404
1405	return 0;
1406}
1407
1408static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409{
1410	/* Don't want to confuse "arp -a" w/ magic entries,
1411	 * so we tell the generic iterator to skip NUD_NOARP.
1412	 */
1413	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414}
1415
1416/* ------------------------------------------------------------------------ */
1417
1418static const struct seq_operations arp_seq_ops = {
1419	.start	= arp_seq_start,
1420	.next	= neigh_seq_next,
1421	.stop	= neigh_seq_stop,
1422	.show	= arp_seq_show,
1423};
1424
1425/* ------------------------------------------------------------------------ */
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430			sizeof(struct neigh_seq_state)))
1431		return -ENOMEM;
1432	return 0;
1433}
1434
1435static void __net_exit arp_net_exit(struct net *net)
1436{
1437	remove_proc_entry("arp", net->proc_net);
1438}
1439
1440static struct pernet_operations arp_net_ops = {
1441	.init = arp_net_init,
1442	.exit = arp_net_exit,
1443};
1444
1445static int __init arp_proc_init(void)
1446{
1447	return register_pernet_subsys(&arp_net_ops);
1448}
1449
1450#else /* CONFIG_PROC_FS */
1451
1452static int __init arp_proc_init(void)
1453{
1454	return 0;
1455}
1456
1457#endif /* CONFIG_PROC_FS */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 
 128
 129static const struct neigh_ops arp_generic_ops = {
 130	.family =		AF_INET,
 131	.solicit =		arp_solicit,
 132	.error_report =		arp_error_report,
 133	.output =		neigh_resolve_output,
 134	.connected_output =	neigh_connected_output,
 135};
 136
 137static const struct neigh_ops arp_hh_ops = {
 138	.family =		AF_INET,
 139	.solicit =		arp_solicit,
 140	.error_report =		arp_error_report,
 141	.output =		neigh_resolve_output,
 142	.connected_output =	neigh_resolve_output,
 143};
 144
 145static const struct neigh_ops arp_direct_ops = {
 146	.family =		AF_INET,
 147	.output =		neigh_direct_output,
 148	.connected_output =	neigh_direct_output,
 149};
 150
 151struct neigh_table arp_tbl = {
 152	.family		= AF_INET,
 153	.key_len	= 4,
 154	.protocol	= cpu_to_be16(ETH_P_IP),
 155	.hash		= arp_hash,
 156	.key_eq		= arp_key_eq,
 157	.constructor	= arp_constructor,
 158	.proxy_redo	= parp_redo,
 
 159	.id		= "arp_cache",
 160	.parms		= {
 161		.tbl			= &arp_tbl,
 162		.reachable_time		= 30 * HZ,
 163		.data	= {
 164			[NEIGH_VAR_MCAST_PROBES] = 3,
 165			[NEIGH_VAR_UCAST_PROBES] = 3,
 166			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 167			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 168			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 169			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 170			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 171			[NEIGH_VAR_PROXY_QLEN] = 64,
 172			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 173			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 174			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 175		},
 176	},
 177	.gc_interval	= 30 * HZ,
 178	.gc_thresh1	= 128,
 179	.gc_thresh2	= 512,
 180	.gc_thresh3	= 1024,
 181};
 182EXPORT_SYMBOL(arp_tbl);
 183
 184int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 185{
 186	switch (dev->type) {
 187	case ARPHRD_ETHER:
 188	case ARPHRD_FDDI:
 189	case ARPHRD_IEEE802:
 190		ip_eth_mc_map(addr, haddr);
 191		return 0;
 192	case ARPHRD_INFINIBAND:
 193		ip_ib_mc_map(addr, dev->broadcast, haddr);
 194		return 0;
 195	case ARPHRD_IPGRE:
 196		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	default:
 199		if (dir) {
 200			memcpy(haddr, dev->broadcast, dev->addr_len);
 201			return 0;
 202		}
 203	}
 204	return -EINVAL;
 205}
 206
 207
 208static u32 arp_hash(const void *pkey,
 209		    const struct net_device *dev,
 210		    __u32 *hash_rnd)
 211{
 212	return arp_hashfn(pkey, dev, hash_rnd);
 213}
 214
 215static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 216{
 217	return neigh_key_eq32(neigh, pkey);
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 226	u32 inaddr_any = INADDR_ANY;
 227
 228	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 229		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 230
 231	addr = *(__be32 *)neigh->primary_key;
 232	rcu_read_lock();
 233	in_dev = __in_dev_get_rcu(dev);
 234	if (!in_dev) {
 235		rcu_read_unlock();
 236		return -EINVAL;
 237	}
 238
 239	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 240
 241	parms = in_dev->arp_parms;
 242	__neigh_parms_put(neigh->parms);
 243	neigh->parms = neigh_parms_clone(parms);
 244	rcu_read_unlock();
 245
 246	if (!dev->header_ops) {
 247		neigh->nud_state = NUD_NOARP;
 248		neigh->ops = &arp_direct_ops;
 249		neigh->output = neigh_direct_output;
 250	} else {
 251		/* Good devices (checked by reading texts, but only Ethernet is
 252		   tested)
 253
 254		   ARPHRD_ETHER: (ethernet, apfddi)
 255		   ARPHRD_FDDI: (fddi)
 256		   ARPHRD_IEEE802: (tr)
 257		   ARPHRD_METRICOM: (strip)
 258		   ARPHRD_ARCNET:
 259		   etc. etc. etc.
 260
 261		   ARPHRD_IPDDP will also work, if author repairs it.
 262		   I did not it, because this driver does not work even
 263		   in old paradigm.
 264		 */
 265
 266		if (neigh->type == RTN_MULTICAST) {
 267			neigh->nud_state = NUD_NOARP;
 268			arp_mc_map(addr, neigh->ha, dev, 1);
 269		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 270			neigh->nud_state = NUD_NOARP;
 271			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 272		} else if (neigh->type == RTN_BROADCAST ||
 273			   (dev->flags & IFF_POINTOPOINT)) {
 274			neigh->nud_state = NUD_NOARP;
 275			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 276		}
 277
 278		if (dev->header_ops->cache)
 279			neigh->ops = &arp_hh_ops;
 280		else
 281			neigh->ops = &arp_generic_ops;
 282
 283		if (neigh->nud_state & NUD_VALID)
 284			neigh->output = neigh->ops->connected_output;
 285		else
 286			neigh->output = neigh->ops->output;
 287	}
 288	return 0;
 289}
 290
 291static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 292{
 293	dst_link_failure(skb);
 294	kfree_skb(skb);
 295}
 296
 297/* Create and send an arp packet. */
 298static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 299			 struct net_device *dev, __be32 src_ip,
 300			 const unsigned char *dest_hw,
 301			 const unsigned char *src_hw,
 302			 const unsigned char *target_hw,
 303			 struct dst_entry *dst)
 304{
 305	struct sk_buff *skb;
 306
 307	/* arp on this interface. */
 308	if (dev->flags & IFF_NOARP)
 309		return;
 310
 311	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 312			 dest_hw, src_hw, target_hw);
 313	if (!skb)
 314		return;
 315
 316	skb_dst_set(skb, dst_clone(dst));
 317	arp_xmit(skb);
 318}
 319
 320void arp_send(int type, int ptype, __be32 dest_ip,
 321	      struct net_device *dev, __be32 src_ip,
 322	      const unsigned char *dest_hw, const unsigned char *src_hw,
 323	      const unsigned char *target_hw)
 324{
 325	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 326		     target_hw, NULL);
 327}
 328EXPORT_SYMBOL(arp_send);
 329
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 338	struct dst_entry *dst = NULL;
 339
 340	rcu_read_lock();
 341	in_dev = __in_dev_get_rcu(dev);
 342	if (!in_dev) {
 343		rcu_read_unlock();
 344		return;
 345	}
 346	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 347	default:
 348	case 0:		/* By default announce any local IP */
 349		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 350					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 351			saddr = ip_hdr(skb)->saddr;
 352		break;
 353	case 1:		/* Restrict announcements of saddr in same subnet */
 354		if (!skb)
 355			break;
 356		saddr = ip_hdr(skb)->saddr;
 357		if (inet_addr_type_dev_table(dev_net(dev), dev,
 358					     saddr) == RTN_LOCAL) {
 359			/* saddr should be known to target */
 360			if (inet_addr_onlink(in_dev, target, saddr))
 361				break;
 362		}
 363		saddr = 0;
 364		break;
 365	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 366		break;
 367	}
 368	rcu_read_unlock();
 369
 370	if (!saddr)
 371		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 372
 373	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 374	if (probes < 0) {
 375		if (!(neigh->nud_state & NUD_VALID))
 376			pr_debug("trying to ucast probe in NUD_INVALID\n");
 377		neigh_ha_snapshot(dst_ha, neigh, dev);
 378		dst_hw = dst_ha;
 379	} else {
 380		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 381		if (probes < 0) {
 382			neigh_app_ns(neigh);
 383			return;
 384		}
 385	}
 386
 387	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 388		dst = skb_dst(skb);
 389	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 390		     dst_hw, dev->dev_addr, NULL, dst);
 391}
 392
 393static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 394{
 395	struct net *net = dev_net(in_dev->dev);
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 414		in_dev = NULL;
 415		break;
 416	case 4:	/* Reserved */
 417	case 5:
 418	case 6:
 419	case 7:
 420		return 0;
 421	case 8:	/* Do not reply */
 422		return 1;
 423	default:
 424		return 0;
 425	}
 426	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 427}
 428
 429static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 430{
 431	struct rtable *rt;
 432	int flag = 0;
 433	/*unsigned long now; */
 434	struct net *net = dev_net(dev);
 435
 436	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 437	if (IS_ERR(rt))
 438		return 1;
 439	if (rt->dst.dev != dev) {
 440		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 441		flag = 1;
 442	}
 443	ip_rt_put(rt);
 444	return flag;
 445}
 446
 447/*
 448 * Check if we can use proxy ARP for this path
 449 */
 450static inline int arp_fwd_proxy(struct in_device *in_dev,
 451				struct net_device *dev,	struct rtable *rt)
 452{
 453	struct in_device *out_dev;
 454	int imi, omi = -1;
 455
 456	if (rt->dst.dev == dev)
 457		return 0;
 458
 459	if (!IN_DEV_PROXY_ARP(in_dev))
 460		return 0;
 461	imi = IN_DEV_MEDIUM_ID(in_dev);
 462	if (imi == 0)
 463		return 1;
 464	if (imi == -1)
 465		return 0;
 466
 467	/* place to check for proxy_arp for routes */
 468
 469	out_dev = __in_dev_get_rcu(rt->dst.dev);
 470	if (out_dev)
 471		omi = IN_DEV_MEDIUM_ID(out_dev);
 472
 473	return omi != imi && omi != -1;
 474}
 475
 476/*
 477 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 478 *
 479 * RFC3069 supports proxy arp replies back to the same interface.  This
 480 * is done to support (ethernet) switch features, like RFC 3069, where
 481 * the individual ports are not allowed to communicate with each
 482 * other, BUT they are allowed to talk to the upstream router.  As
 483 * described in RFC 3069, it is possible to allow these hosts to
 484 * communicate through the upstream router, by proxy_arp'ing.
 485 *
 486 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 487 *
 488 *  This technology is known by different names:
 489 *    In RFC 3069 it is called VLAN Aggregation.
 490 *    Cisco and Allied Telesyn call it Private VLAN.
 491 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 492 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 493 *
 494 */
 495static inline int arp_fwd_pvlan(struct in_device *in_dev,
 496				struct net_device *dev,	struct rtable *rt,
 497				__be32 sip, __be32 tip)
 498{
 499	/* Private VLAN is only concerned about the same ethernet segment */
 500	if (rt->dst.dev != dev)
 501		return 0;
 502
 503	/* Don't reply on self probes (often done by windowz boxes)*/
 504	if (sip == tip)
 505		return 0;
 506
 507	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 508		return 1;
 509	else
 510		return 0;
 511}
 512
 513/*
 514 *	Interface to link layer: send routine and receive handler.
 515 */
 516
 517/*
 518 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 519 *	message.
 520 */
 521struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 522			   struct net_device *dev, __be32 src_ip,
 523			   const unsigned char *dest_hw,
 524			   const unsigned char *src_hw,
 525			   const unsigned char *target_hw)
 526{
 527	struct sk_buff *skb;
 528	struct arphdr *arp;
 529	unsigned char *arp_ptr;
 530	int hlen = LL_RESERVED_SPACE(dev);
 531	int tlen = dev->needed_tailroom;
 532
 533	/*
 534	 *	Allocate a buffer
 535	 */
 536
 537	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 538	if (!skb)
 539		return NULL;
 540
 541	skb_reserve(skb, hlen);
 542	skb_reset_network_header(skb);
 543	arp = skb_put(skb, arp_hdr_len(dev));
 544	skb->dev = dev;
 545	skb->protocol = htons(ETH_P_ARP);
 546	if (!src_hw)
 547		src_hw = dev->dev_addr;
 548	if (!dest_hw)
 549		dest_hw = dev->broadcast;
 550
 551	/*
 552	 *	Fill the device header for the ARP frame
 553	 */
 554	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 555		goto out;
 556
 557	/*
 558	 * Fill out the arp protocol part.
 559	 *
 560	 * The arp hardware type should match the device type, except for FDDI,
 561	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 562	 */
 563	/*
 564	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 565	 *	DIX code for the protocol. Make these device structure fields.
 566	 */
 567	switch (dev->type) {
 568	default:
 569		arp->ar_hrd = htons(dev->type);
 570		arp->ar_pro = htons(ETH_P_IP);
 571		break;
 572
 573#if IS_ENABLED(CONFIG_AX25)
 574	case ARPHRD_AX25:
 575		arp->ar_hrd = htons(ARPHRD_AX25);
 576		arp->ar_pro = htons(AX25_P_IP);
 577		break;
 578
 579#if IS_ENABLED(CONFIG_NETROM)
 580	case ARPHRD_NETROM:
 581		arp->ar_hrd = htons(ARPHRD_NETROM);
 582		arp->ar_pro = htons(AX25_P_IP);
 583		break;
 584#endif
 585#endif
 586
 587#if IS_ENABLED(CONFIG_FDDI)
 588	case ARPHRD_FDDI:
 589		arp->ar_hrd = htons(ARPHRD_ETHER);
 590		arp->ar_pro = htons(ETH_P_IP);
 591		break;
 592#endif
 593	}
 594
 595	arp->ar_hln = dev->addr_len;
 596	arp->ar_pln = 4;
 597	arp->ar_op = htons(type);
 598
 599	arp_ptr = (unsigned char *)(arp + 1);
 600
 601	memcpy(arp_ptr, src_hw, dev->addr_len);
 602	arp_ptr += dev->addr_len;
 603	memcpy(arp_ptr, &src_ip, 4);
 604	arp_ptr += 4;
 605
 606	switch (dev->type) {
 607#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 608	case ARPHRD_IEEE1394:
 609		break;
 610#endif
 611	default:
 612		if (target_hw)
 613			memcpy(arp_ptr, target_hw, dev->addr_len);
 614		else
 615			memset(arp_ptr, 0, dev->addr_len);
 616		arp_ptr += dev->addr_len;
 617	}
 618	memcpy(arp_ptr, &dest_ip, 4);
 619
 620	return skb;
 621
 622out:
 623	kfree_skb(skb);
 624	return NULL;
 625}
 626EXPORT_SYMBOL(arp_create);
 627
 628static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 629{
 630	return dev_queue_xmit(skb);
 631}
 632
 633/*
 634 *	Send an arp packet.
 635 */
 636void arp_xmit(struct sk_buff *skb)
 637{
 638	/* Send it off, maybe filter it using firewalling first.  */
 639	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 640		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 641		arp_xmit_finish);
 642}
 643EXPORT_SYMBOL(arp_xmit);
 644
 645static bool arp_is_garp(struct net *net, struct net_device *dev,
 646			int *addr_type, __be16 ar_op,
 647			__be32 sip, __be32 tip,
 648			unsigned char *sha, unsigned char *tha)
 649{
 650	bool is_garp = tip == sip;
 651
 652	/* Gratuitous ARP _replies_ also require target hwaddr to be
 653	 * the same as source.
 654	 */
 655	if (is_garp && ar_op == htons(ARPOP_REPLY))
 656		is_garp =
 657			/* IPv4 over IEEE 1394 doesn't provide target
 658			 * hardware address field in its ARP payload.
 659			 */
 660			tha &&
 661			!memcmp(tha, sha, dev->addr_len);
 662
 663	if (is_garp) {
 664		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 665		if (*addr_type != RTN_UNICAST)
 666			is_garp = false;
 667	}
 668	return is_garp;
 669}
 670
 671/*
 672 *	Process an arp request.
 673 */
 674
 675static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677	struct net_device *dev = skb->dev;
 678	struct in_device *in_dev = __in_dev_get_rcu(dev);
 679	struct arphdr *arp;
 680	unsigned char *arp_ptr;
 681	struct rtable *rt;
 682	unsigned char *sha;
 683	unsigned char *tha = NULL;
 684	__be32 sip, tip;
 685	u16 dev_type = dev->type;
 686	int addr_type;
 687	struct neighbour *n;
 688	struct dst_entry *reply_dst = NULL;
 689	bool is_garp = false;
 690
 691	/* arp_rcv below verifies the ARP header and verifies the device
 692	 * is ARP'able.
 693	 */
 694
 695	if (!in_dev)
 696		goto out_free_skb;
 697
 698	arp = arp_hdr(skb);
 699
 700	switch (dev_type) {
 701	default:
 702		if (arp->ar_pro != htons(ETH_P_IP) ||
 703		    htons(dev_type) != arp->ar_hrd)
 704			goto out_free_skb;
 705		break;
 706	case ARPHRD_ETHER:
 707	case ARPHRD_FDDI:
 708	case ARPHRD_IEEE802:
 709		/*
 710		 * ETHERNET, and Fibre Channel (which are IEEE 802
 711		 * devices, according to RFC 2625) devices will accept ARP
 712		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 713		 * This is the case also of FDDI, where the RFC 1390 says that
 714		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 715		 * however, to be more robust, we'll accept both 1 (Ethernet)
 716		 * or 6 (IEEE 802.2)
 717		 */
 718		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 719		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 720		    arp->ar_pro != htons(ETH_P_IP))
 721			goto out_free_skb;
 722		break;
 723	case ARPHRD_AX25:
 724		if (arp->ar_pro != htons(AX25_P_IP) ||
 725		    arp->ar_hrd != htons(ARPHRD_AX25))
 726			goto out_free_skb;
 727		break;
 728	case ARPHRD_NETROM:
 729		if (arp->ar_pro != htons(AX25_P_IP) ||
 730		    arp->ar_hrd != htons(ARPHRD_NETROM))
 731			goto out_free_skb;
 732		break;
 733	}
 734
 735	/* Understand only these message types */
 736
 737	if (arp->ar_op != htons(ARPOP_REPLY) &&
 738	    arp->ar_op != htons(ARPOP_REQUEST))
 739		goto out_free_skb;
 740
 741/*
 742 *	Extract fields
 743 */
 744	arp_ptr = (unsigned char *)(arp + 1);
 745	sha	= arp_ptr;
 746	arp_ptr += dev->addr_len;
 747	memcpy(&sip, arp_ptr, 4);
 748	arp_ptr += 4;
 749	switch (dev_type) {
 750#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 751	case ARPHRD_IEEE1394:
 752		break;
 753#endif
 754	default:
 755		tha = arp_ptr;
 756		arp_ptr += dev->addr_len;
 757	}
 758	memcpy(&tip, arp_ptr, 4);
 759/*
 760 *	Check for bad requests for 127.x.x.x and requests for multicast
 761 *	addresses.  If this is one such, delete it.
 762 */
 763	if (ipv4_is_multicast(tip) ||
 764	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 765		goto out_free_skb;
 766
 767 /*
 768  *	For some 802.11 wireless deployments (and possibly other networks),
 769  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 770  *	and thus should not be accepted.
 771  */
 772	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 773		goto out_free_skb;
 774
 775/*
 776 *     Special case: We must set Frame Relay source Q.922 address
 777 */
 778	if (dev_type == ARPHRD_DLCI)
 779		sha = dev->broadcast;
 780
 781/*
 782 *  Process entry.  The idea here is we want to send a reply if it is a
 783 *  request for us or if it is a request for someone else that we hold
 784 *  a proxy for.  We want to add an entry to our cache if it is a reply
 785 *  to us or if it is a request for our address.
 786 *  (The assumption for this last is that if someone is requesting our
 787 *  address, they are probably intending to talk to us, so it saves time
 788 *  if we cache their address.  Their address is also probably not in
 789 *  our cache, since ours is not in their cache.)
 790 *
 791 *  Putting this another way, we only care about replies if they are to
 792 *  us, in which case we add them to the cache.  For requests, we care
 793 *  about those for us and those for our proxies.  We reply to both,
 794 *  and in the case of requests for us we add the requester to the arp
 795 *  cache.
 796 */
 797
 798	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 799		reply_dst = (struct dst_entry *)
 800			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 801						    GFP_ATOMIC);
 802
 803	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 804	if (sip == 0) {
 805		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 806		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 807		    !arp_ignore(in_dev, sip, tip))
 808			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 809				     sha, dev->dev_addr, sha, reply_dst);
 810		goto out_consume_skb;
 811	}
 812
 813	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 814	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 815
 816		rt = skb_rtable(skb);
 817		addr_type = rt->rt_type;
 818
 819		if (addr_type == RTN_LOCAL) {
 820			int dont_send;
 821
 822			dont_send = arp_ignore(in_dev, sip, tip);
 823			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 824				dont_send = arp_filter(sip, tip, dev);
 825			if (!dont_send) {
 826				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 827				if (n) {
 828					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 829						     sip, dev, tip, sha,
 830						     dev->dev_addr, sha,
 831						     reply_dst);
 832					neigh_release(n);
 833				}
 834			}
 835			goto out_consume_skb;
 836		} else if (IN_DEV_FORWARD(in_dev)) {
 837			if (addr_type == RTN_UNICAST  &&
 838			    (arp_fwd_proxy(in_dev, dev, rt) ||
 839			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 840			     (rt->dst.dev != dev &&
 841			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n)
 844					neigh_release(n);
 845
 846				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 847				    skb->pkt_type == PACKET_HOST ||
 848				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 849					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 850						     sip, dev, tip, sha,
 851						     dev->dev_addr, sha,
 852						     reply_dst);
 853				} else {
 854					pneigh_enqueue(&arp_tbl,
 855						       in_dev->arp_parms, skb);
 856					goto out_free_dst;
 857				}
 858				goto out_consume_skb;
 859			}
 860		}
 861	}
 862
 863	/* Update our ARP tables */
 864
 865	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 866
 867	addr_type = -1;
 868	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 869		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 870				      sip, tip, sha, tha);
 871	}
 872
 873	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 874		/* Unsolicited ARP is not accepted by default.
 875		   It is possible, that this option should be enabled for some
 876		   devices (strip is candidate)
 877		 */
 878		if (!n &&
 879		    (is_garp ||
 880		     (arp->ar_op == htons(ARPOP_REPLY) &&
 881		      (addr_type == RTN_UNICAST ||
 882		       (addr_type < 0 &&
 883			/* postpone calculation to as late as possible */
 884			inet_addr_type_dev_table(net, dev, sip) ==
 885				RTN_UNICAST)))))
 886			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 887	}
 888
 889	if (n) {
 890		int state = NUD_REACHABLE;
 891		int override;
 892
 893		/* If several different ARP replies follows back-to-back,
 894		   use the FIRST one. It is possible, if several proxy
 895		   agents are active. Taking the first reply prevents
 896		   arp trashing and chooses the fastest router.
 897		 */
 898		override = time_after(jiffies,
 899				      n->updated +
 900				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 901			   is_garp;
 902
 903		/* Broadcast replies and request packets
 904		   do not assert neighbour reachability.
 905		 */
 906		if (arp->ar_op != htons(ARPOP_REPLY) ||
 907		    skb->pkt_type != PACKET_HOST)
 908			state = NUD_STALE;
 909		neigh_update(n, sha, state,
 910			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 911		neigh_release(n);
 912	}
 913
 914out_consume_skb:
 915	consume_skb(skb);
 916
 917out_free_dst:
 918	dst_release(reply_dst);
 919	return NET_RX_SUCCESS;
 920
 921out_free_skb:
 922	kfree_skb(skb);
 923	return NET_RX_DROP;
 924}
 925
 926static void parp_redo(struct sk_buff *skb)
 927{
 928	arp_process(dev_net(skb->dev), NULL, skb);
 929}
 930
 
 
 
 
 931
 932/*
 933 *	Receive an arp request from the device layer.
 934 */
 935
 936static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 937		   struct packet_type *pt, struct net_device *orig_dev)
 938{
 939	const struct arphdr *arp;
 940
 941	/* do not tweak dropwatch on an ARP we will ignore */
 942	if (dev->flags & IFF_NOARP ||
 943	    skb->pkt_type == PACKET_OTHERHOST ||
 944	    skb->pkt_type == PACKET_LOOPBACK)
 945		goto consumeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (!skb)
 949		goto out_of_mem;
 950
 951	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 952	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 953		goto freeskb;
 954
 955	arp = arp_hdr(skb);
 956	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 957		goto freeskb;
 958
 959	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 960
 961	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 962		       dev_net(dev), NULL, skb, dev, NULL,
 963		       arp_process);
 964
 965consumeskb:
 966	consume_skb(skb);
 967	return NET_RX_SUCCESS;
 968freeskb:
 969	kfree_skb(skb);
 970out_of_mem:
 971	return NET_RX_DROP;
 972}
 973
 974/*
 975 *	User level interface (ioctl)
 976 */
 977
 978/*
 979 *	Set (create) an ARP cache entry.
 980 */
 981
 982static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 983{
 984	if (!dev) {
 985		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 986		return 0;
 987	}
 988	if (__in_dev_get_rtnl(dev)) {
 989		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 990		return 0;
 991	}
 992	return -ENXIO;
 993}
 994
 995static int arp_req_set_public(struct net *net, struct arpreq *r,
 996		struct net_device *dev)
 997{
 998	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 999	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1000
1001	if (mask && mask != htonl(0xFFFFFFFF))
1002		return -EINVAL;
1003	if (!dev && (r->arp_flags & ATF_COM)) {
1004		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1005				      r->arp_ha.sa_data);
1006		if (!dev)
1007			return -ENODEV;
1008	}
1009	if (mask) {
1010		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1011			return -ENOBUFS;
1012		return 0;
1013	}
1014
1015	return arp_req_set_proxy(net, dev, 1);
1016}
1017
1018static int arp_req_set(struct net *net, struct arpreq *r,
1019		       struct net_device *dev)
1020{
1021	__be32 ip;
1022	struct neighbour *neigh;
1023	int err;
1024
1025	if (r->arp_flags & ATF_PUBL)
1026		return arp_req_set_public(net, r, dev);
1027
1028	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1029	if (r->arp_flags & ATF_PERM)
1030		r->arp_flags |= ATF_COM;
1031	if (!dev) {
1032		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1033
1034		if (IS_ERR(rt))
1035			return PTR_ERR(rt);
1036		dev = rt->dst.dev;
1037		ip_rt_put(rt);
1038		if (!dev)
1039			return -EINVAL;
1040	}
1041	switch (dev->type) {
1042#if IS_ENABLED(CONFIG_FDDI)
1043	case ARPHRD_FDDI:
1044		/*
1045		 * According to RFC 1390, FDDI devices should accept ARP
1046		 * hardware types of 1 (Ethernet).  However, to be more
1047		 * robust, we'll accept hardware types of either 1 (Ethernet)
1048		 * or 6 (IEEE 802.2).
1049		 */
1050		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1051		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1052		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1053			return -EINVAL;
1054		break;
1055#endif
1056	default:
1057		if (r->arp_ha.sa_family != dev->type)
1058			return -EINVAL;
1059		break;
1060	}
1061
1062	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1063	err = PTR_ERR(neigh);
1064	if (!IS_ERR(neigh)) {
1065		unsigned int state = NUD_STALE;
1066		if (r->arp_flags & ATF_PERM)
1067			state = NUD_PERMANENT;
1068		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1069				   r->arp_ha.sa_data : NULL, state,
1070				   NEIGH_UPDATE_F_OVERRIDE |
1071				   NEIGH_UPDATE_F_ADMIN, 0);
1072		neigh_release(neigh);
1073	}
1074	return err;
1075}
1076
1077static unsigned int arp_state_to_flags(struct neighbour *neigh)
1078{
1079	if (neigh->nud_state&NUD_PERMANENT)
1080		return ATF_PERM | ATF_COM;
1081	else if (neigh->nud_state&NUD_VALID)
1082		return ATF_COM;
1083	else
1084		return 0;
1085}
1086
1087/*
1088 *	Get an ARP cache entry.
1089 */
1090
1091static int arp_req_get(struct arpreq *r, struct net_device *dev)
1092{
1093	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1094	struct neighbour *neigh;
1095	int err = -ENXIO;
1096
1097	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1098	if (neigh) {
1099		if (!(neigh->nud_state & NUD_NOARP)) {
1100			read_lock_bh(&neigh->lock);
1101			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102			r->arp_flags = arp_state_to_flags(neigh);
1103			read_unlock_bh(&neigh->lock);
1104			r->arp_ha.sa_family = dev->type;
1105			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106			err = 0;
1107		}
1108		neigh_release(neigh);
1109	}
1110	return err;
1111}
1112
1113static int arp_invalidate(struct net_device *dev, __be32 ip)
1114{
1115	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116	int err = -ENXIO;
1117	struct neigh_table *tbl = &arp_tbl;
1118
1119	if (neigh) {
1120		if (neigh->nud_state & ~NUD_NOARP)
1121			err = neigh_update(neigh, NULL, NUD_FAILED,
1122					   NEIGH_UPDATE_F_OVERRIDE|
1123					   NEIGH_UPDATE_F_ADMIN, 0);
1124		write_lock_bh(&tbl->lock);
1125		neigh_release(neigh);
1126		neigh_remove_one(neigh, tbl);
1127		write_unlock_bh(&tbl->lock);
1128	}
1129
1130	return err;
1131}
1132
1133static int arp_req_delete_public(struct net *net, struct arpreq *r,
1134		struct net_device *dev)
1135{
1136	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1137	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1138
1139	if (mask == htonl(0xFFFFFFFF))
1140		return pneigh_delete(&arp_tbl, net, &ip, dev);
1141
1142	if (mask)
1143		return -EINVAL;
1144
1145	return arp_req_set_proxy(net, dev, 0);
1146}
1147
1148static int arp_req_delete(struct net *net, struct arpreq *r,
1149			  struct net_device *dev)
1150{
1151	__be32 ip;
1152
1153	if (r->arp_flags & ATF_PUBL)
1154		return arp_req_delete_public(net, r, dev);
1155
1156	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1157	if (!dev) {
1158		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1159		if (IS_ERR(rt))
1160			return PTR_ERR(rt);
1161		dev = rt->dst.dev;
1162		ip_rt_put(rt);
1163		if (!dev)
1164			return -EINVAL;
1165	}
1166	return arp_invalidate(dev, ip);
1167}
1168
1169/*
1170 *	Handle an ARP layer I/O control request.
1171 */
1172
1173int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1174{
1175	int err;
1176	struct arpreq r;
1177	struct net_device *dev = NULL;
1178
1179	switch (cmd) {
1180	case SIOCDARP:
1181	case SIOCSARP:
1182		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1183			return -EPERM;
1184		fallthrough;
1185	case SIOCGARP:
1186		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1187		if (err)
1188			return -EFAULT;
1189		break;
1190	default:
1191		return -EINVAL;
1192	}
1193
1194	if (r.arp_pa.sa_family != AF_INET)
1195		return -EPFNOSUPPORT;
1196
1197	if (!(r.arp_flags & ATF_PUBL) &&
1198	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1199		return -EINVAL;
1200	if (!(r.arp_flags & ATF_NETMASK))
1201		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1202							   htonl(0xFFFFFFFFUL);
1203	rtnl_lock();
1204	if (r.arp_dev[0]) {
1205		err = -ENODEV;
1206		dev = __dev_get_by_name(net, r.arp_dev);
1207		if (!dev)
1208			goto out;
1209
1210		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211		if (!r.arp_ha.sa_family)
1212			r.arp_ha.sa_family = dev->type;
1213		err = -EINVAL;
1214		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215			goto out;
1216	} else if (cmd == SIOCGARP) {
1217		err = -ENODEV;
1218		goto out;
1219	}
1220
1221	switch (cmd) {
1222	case SIOCDARP:
1223		err = arp_req_delete(net, &r, dev);
1224		break;
1225	case SIOCSARP:
1226		err = arp_req_set(net, &r, dev);
1227		break;
1228	case SIOCGARP:
1229		err = arp_req_get(&r, dev);
1230		break;
1231	}
1232out:
1233	rtnl_unlock();
1234	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1235		err = -EFAULT;
1236	return err;
1237}
1238
1239static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1240			    void *ptr)
1241{
1242	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1243	struct netdev_notifier_change_info *change_info;
1244
1245	switch (event) {
1246	case NETDEV_CHANGEADDR:
1247		neigh_changeaddr(&arp_tbl, dev);
1248		rt_cache_flush(dev_net(dev));
1249		break;
1250	case NETDEV_CHANGE:
1251		change_info = ptr;
1252		if (change_info->flags_changed & IFF_NOARP)
1253			neigh_changeaddr(&arp_tbl, dev);
1254		if (!netif_carrier_ok(dev))
1255			neigh_carrier_down(&arp_tbl, dev);
1256		break;
1257	default:
1258		break;
1259	}
1260
1261	return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265	.notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274	neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *	Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283	.type =	cpu_to_be16(ETH_P_ARP),
1284	.func =	arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1292
1293	dev_add_pack(&arp_packet_type);
1294	arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298	register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *	ax25 -> ASCII conversion
1307 */
1308static void ax2asc2(ax25_address *a, char *buf)
1309{
1310	char c, *s;
1311	int n;
1312
1313	for (n = 0, s = buf; n < 6; n++) {
1314		c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316		if (c != ' ')
1317			*s++ = c;
1318	}
1319
1320	*s++ = '-';
1321	n = (a->ax25_call[6] >> 1) & 0x0F;
1322	if (n > 9) {
1323		*s++ = '1';
1324		n -= 10;
1325	}
1326
1327	*s++ = n + '0';
1328	*s++ = '\0';
1329
1330	if (*buf == '\0' || *buf == '-') {
1331		buf[0] = '*';
1332		buf[1] = '\0';
1333	}
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340				   struct neighbour *n)
1341{
1342	char hbuffer[HBUFFERLEN];
1343	int k, j;
1344	char tbuf[16];
1345	struct net_device *dev = n->dev;
1346	int hatype = dev->type;
1347
1348	read_lock(&n->lock);
1349	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352		ax2asc2((ax25_address *)n->ha, hbuffer);
1353	else {
1354#endif
1355	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358		hbuffer[k++] = ':';
1359	}
1360	if (k != 0)
1361		--k;
1362	hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364	}
1365#endif
1366	sprintf(tbuf, "%pI4", n->primary_key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1368		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369	read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373				    struct pneigh_entry *n)
1374{
1375	struct net_device *dev = n->dev;
1376	int hatype = dev ? dev->type : 0;
1377	char tbuf[16];
1378
1379	sprintf(tbuf, "%pI4", n->key);
1380	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382		   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387	if (v == SEQ_START_TOKEN) {
1388		seq_puts(seq, "IP address       HW type     Flags       "
1389			      "HW address            Mask     Device\n");
1390	} else {
1391		struct neigh_seq_state *state = seq->private;
1392
1393		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394			arp_format_pneigh_entry(seq, v);
1395		else
1396			arp_format_neigh_entry(seq, v);
1397	}
1398
1399	return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404	/* Don't want to confuse "arp -a" w/ magic entries,
1405	 * so we tell the generic iterator to skip NUD_NOARP.
1406	 */
1407	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413	.start	= arp_seq_start,
1414	.next	= neigh_seq_next,
1415	.stop	= neigh_seq_stop,
1416	.show	= arp_seq_show,
1417};
1418
1419/* ------------------------------------------------------------------------ */
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1424			sizeof(struct neigh_seq_state)))
1425		return -ENOMEM;
1426	return 0;
1427}
1428
1429static void __net_exit arp_net_exit(struct net *net)
1430{
1431	remove_proc_entry("arp", net->proc_net);
1432}
1433
1434static struct pernet_operations arp_net_ops = {
1435	.init = arp_net_init,
1436	.exit = arp_net_exit,
1437};
1438
1439static int __init arp_proc_init(void)
1440{
1441	return register_pernet_subsys(&arp_net_ops);
1442}
1443
1444#else /* CONFIG_PROC_FS */
1445
1446static int __init arp_proc_init(void)
1447{
1448	return 0;
1449}
1450
1451#endif /* CONFIG_PROC_FS */