Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
 
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/file.h>
  62#include <linux/tracehook.h>
  63#include <linux/psi.h>
  64#include <linux/seq_buf.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include "slab.h"
 
  69
  70#include <linux/uaccess.h>
  71
  72#include <trace/events/vmscan.h>
  73
  74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  75EXPORT_SYMBOL(memory_cgrp_subsys);
  76
  77struct mem_cgroup *root_mem_cgroup __read_mostly;
  78
  79/* Active memory cgroup to use from an interrupt context */
  80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  82
  83/* Socket memory accounting disabled? */
  84static bool cgroup_memory_nosocket __ro_after_init;
  85
  86/* Kernel memory accounting disabled? */
  87bool cgroup_memory_nokmem __ro_after_init;
  88
  89/* Whether the swap controller is active */
  90#ifdef CONFIG_MEMCG_SWAP
  91bool cgroup_memory_noswap __ro_after_init;
  92#else
  93#define cgroup_memory_noswap		1
  94#endif
  95
  96#ifdef CONFIG_CGROUP_WRITEBACK
  97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  98#endif
  99
 100/* Whether legacy memory+swap accounting is active */
 101static bool do_memsw_account(void)
 102{
 103	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 104}
 105
 106#define THRESHOLDS_EVENTS_TARGET 128
 107#define SOFTLIMIT_EVENTS_TARGET 1024
 108
 109/*
 110 * Cgroups above their limits are maintained in a RB-Tree, independent of
 111 * their hierarchy representation
 112 */
 113
 114struct mem_cgroup_tree_per_node {
 115	struct rb_root rb_root;
 116	struct rb_node *rb_rightmost;
 117	spinlock_t lock;
 118};
 119
 120struct mem_cgroup_tree {
 121	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 122};
 123
 124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 125
 126/* for OOM */
 127struct mem_cgroup_eventfd_list {
 128	struct list_head list;
 129	struct eventfd_ctx *eventfd;
 130};
 131
 132/*
 133 * cgroup_event represents events which userspace want to receive.
 134 */
 135struct mem_cgroup_event {
 136	/*
 137	 * memcg which the event belongs to.
 138	 */
 139	struct mem_cgroup *memcg;
 140	/*
 141	 * eventfd to signal userspace about the event.
 142	 */
 143	struct eventfd_ctx *eventfd;
 144	/*
 145	 * Each of these stored in a list by the cgroup.
 146	 */
 147	struct list_head list;
 148	/*
 149	 * register_event() callback will be used to add new userspace
 150	 * waiter for changes related to this event.  Use eventfd_signal()
 151	 * on eventfd to send notification to userspace.
 152	 */
 153	int (*register_event)(struct mem_cgroup *memcg,
 154			      struct eventfd_ctx *eventfd, const char *args);
 155	/*
 156	 * unregister_event() callback will be called when userspace closes
 157	 * the eventfd or on cgroup removing.  This callback must be set,
 158	 * if you want provide notification functionality.
 159	 */
 160	void (*unregister_event)(struct mem_cgroup *memcg,
 161				 struct eventfd_ctx *eventfd);
 162	/*
 163	 * All fields below needed to unregister event when
 164	 * userspace closes eventfd.
 165	 */
 166	poll_table pt;
 167	wait_queue_head_t *wqh;
 168	wait_queue_entry_t wait;
 169	struct work_struct remove;
 170};
 171
 172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 174
 175/* Stuffs for move charges at task migration. */
 176/*
 177 * Types of charges to be moved.
 178 */
 179#define MOVE_ANON	0x1U
 180#define MOVE_FILE	0x2U
 181#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 182
 183/* "mc" and its members are protected by cgroup_mutex */
 184static struct move_charge_struct {
 185	spinlock_t	  lock; /* for from, to */
 186	struct mm_struct  *mm;
 187	struct mem_cgroup *from;
 188	struct mem_cgroup *to;
 189	unsigned long flags;
 190	unsigned long precharge;
 191	unsigned long moved_charge;
 192	unsigned long moved_swap;
 193	struct task_struct *moving_task;	/* a task moving charges */
 194	wait_queue_head_t waitq;		/* a waitq for other context */
 195} mc = {
 196	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 197	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 198};
 199
 200/*
 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 202 * limit reclaim to prevent infinite loops, if they ever occur.
 203 */
 204#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 205#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 206
 207/* for encoding cft->private value on file */
 208enum res_type {
 209	_MEM,
 210	_MEMSWAP,
 211	_OOM_TYPE,
 212	_KMEM,
 213	_TCP,
 214};
 215
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219/* Used for OOM notifier */
 220#define OOM_CONTROL		(0)
 221
 222/*
 223 * Iteration constructs for visiting all cgroups (under a tree).  If
 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 225 * be used for reference counting.
 226 */
 227#define for_each_mem_cgroup_tree(iter, root)		\
 228	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 229	     iter != NULL;				\
 230	     iter = mem_cgroup_iter(root, iter, NULL))
 231
 232#define for_each_mem_cgroup(iter)			\
 233	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 234	     iter != NULL;				\
 235	     iter = mem_cgroup_iter(NULL, iter, NULL))
 236
 237static inline bool should_force_charge(void)
 238{
 239	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 240		(current->flags & PF_EXITING);
 241}
 242
 243/* Some nice accessors for the vmpressure. */
 244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 245{
 246	if (!memcg)
 247		memcg = root_mem_cgroup;
 248	return &memcg->vmpressure;
 249}
 250
 251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 252{
 253	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 254}
 255
 256#ifdef CONFIG_MEMCG_KMEM
 257extern spinlock_t css_set_lock;
 258
 259bool mem_cgroup_kmem_disabled(void)
 260{
 261	return cgroup_memory_nokmem;
 262}
 263
 264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 265				      unsigned int nr_pages);
 266
 267static void obj_cgroup_release(struct percpu_ref *ref)
 268{
 269	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 270	unsigned int nr_bytes;
 271	unsigned int nr_pages;
 272	unsigned long flags;
 273
 274	/*
 275	 * At this point all allocated objects are freed, and
 276	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 277	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 278	 *
 279	 * The following sequence can lead to it:
 280	 * 1) CPU0: objcg == stock->cached_objcg
 281	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 282	 *          PAGE_SIZE bytes are charged
 283	 * 3) CPU1: a process from another memcg is allocating something,
 284	 *          the stock if flushed,
 285	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 286	 * 5) CPU0: we do release this object,
 287	 *          92 bytes are added to stock->nr_bytes
 288	 * 6) CPU0: stock is flushed,
 289	 *          92 bytes are added to objcg->nr_charged_bytes
 290	 *
 291	 * In the result, nr_charged_bytes == PAGE_SIZE.
 292	 * This page will be uncharged in obj_cgroup_release().
 293	 */
 294	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 295	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 296	nr_pages = nr_bytes >> PAGE_SHIFT;
 297
 298	if (nr_pages)
 299		obj_cgroup_uncharge_pages(objcg, nr_pages);
 300
 301	spin_lock_irqsave(&css_set_lock, flags);
 302	list_del(&objcg->list);
 303	spin_unlock_irqrestore(&css_set_lock, flags);
 304
 305	percpu_ref_exit(ref);
 306	kfree_rcu(objcg, rcu);
 307}
 308
 309static struct obj_cgroup *obj_cgroup_alloc(void)
 310{
 311	struct obj_cgroup *objcg;
 312	int ret;
 313
 314	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 315	if (!objcg)
 316		return NULL;
 317
 318	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 319			      GFP_KERNEL);
 320	if (ret) {
 321		kfree(objcg);
 322		return NULL;
 323	}
 324	INIT_LIST_HEAD(&objcg->list);
 325	return objcg;
 326}
 327
 328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 329				  struct mem_cgroup *parent)
 330{
 331	struct obj_cgroup *objcg, *iter;
 332
 333	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 334
 335	spin_lock_irq(&css_set_lock);
 336
 337	/* 1) Ready to reparent active objcg. */
 338	list_add(&objcg->list, &memcg->objcg_list);
 339	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 340	list_for_each_entry(iter, &memcg->objcg_list, list)
 341		WRITE_ONCE(iter->memcg, parent);
 342	/* 3) Move already reparented objcgs to the parent's list */
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 401
 402/**
 403 * mem_cgroup_css_from_page - css of the memcg associated with a page
 404 * @page: page of interest
 405 *
 406 * If memcg is bound to the default hierarchy, css of the memcg associated
 407 * with @page is returned.  The returned css remains associated with @page
 408 * until it is released.
 409 *
 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 411 * is returned.
 412 */
 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 414{
 415	struct mem_cgroup *memcg;
 416
 417	memcg = page_memcg(page);
 418
 419	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 420		memcg = root_mem_cgroup;
 421
 422	return &memcg->css;
 423}
 424
 425/**
 426 * page_cgroup_ino - return inode number of the memcg a page is charged to
 427 * @page: the page
 428 *
 429 * Look up the closest online ancestor of the memory cgroup @page is charged to
 430 * and return its inode number or 0 if @page is not charged to any cgroup. It
 431 * is safe to call this function without holding a reference to @page.
 432 *
 433 * Note, this function is inherently racy, because there is nothing to prevent
 434 * the cgroup inode from getting torn down and potentially reallocated a moment
 435 * after page_cgroup_ino() returns, so it only should be used by callers that
 436 * do not care (such as procfs interfaces).
 437 */
 438ino_t page_cgroup_ino(struct page *page)
 439{
 440	struct mem_cgroup *memcg;
 441	unsigned long ino = 0;
 442
 443	rcu_read_lock();
 444	memcg = page_memcg_check(page);
 445
 446	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 447		memcg = parent_mem_cgroup(memcg);
 448	if (memcg)
 449		ino = cgroup_ino(memcg->css.cgroup);
 450	rcu_read_unlock();
 451	return ino;
 452}
 453
 454static struct mem_cgroup_per_node *
 455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 456{
 457	int nid = page_to_nid(page);
 458
 459	return memcg->nodeinfo[nid];
 460}
 461
 462static struct mem_cgroup_tree_per_node *
 463soft_limit_tree_node(int nid)
 464{
 465	return soft_limit_tree.rb_tree_per_node[nid];
 466}
 467
 468static struct mem_cgroup_tree_per_node *
 469soft_limit_tree_from_page(struct page *page)
 470{
 471	int nid = page_to_nid(page);
 472
 473	return soft_limit_tree.rb_tree_per_node[nid];
 474}
 475
 476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 477					 struct mem_cgroup_tree_per_node *mctz,
 478					 unsigned long new_usage_in_excess)
 479{
 480	struct rb_node **p = &mctz->rb_root.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct mem_cgroup_per_node *mz_node;
 483	bool rightmost = true;
 484
 485	if (mz->on_tree)
 486		return;
 487
 488	mz->usage_in_excess = new_usage_in_excess;
 489	if (!mz->usage_in_excess)
 490		return;
 491	while (*p) {
 492		parent = *p;
 493		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 494					tree_node);
 495		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 496			p = &(*p)->rb_left;
 497			rightmost = false;
 498		} else {
 499			p = &(*p)->rb_right;
 500		}
 501	}
 502
 503	if (rightmost)
 504		mctz->rb_rightmost = &mz->tree_node;
 505
 506	rb_link_node(&mz->tree_node, parent, p);
 507	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 508	mz->on_tree = true;
 509}
 510
 511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 512					 struct mem_cgroup_tree_per_node *mctz)
 513{
 514	if (!mz->on_tree)
 515		return;
 516
 517	if (&mz->tree_node == mctz->rb_rightmost)
 518		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 519
 520	rb_erase(&mz->tree_node, &mctz->rb_root);
 521	mz->on_tree = false;
 522}
 523
 524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 525				       struct mem_cgroup_tree_per_node *mctz)
 526{
 527	unsigned long flags;
 528
 529	spin_lock_irqsave(&mctz->lock, flags);
 530	__mem_cgroup_remove_exceeded(mz, mctz);
 531	spin_unlock_irqrestore(&mctz->lock, flags);
 532}
 533
 534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 535{
 536	unsigned long nr_pages = page_counter_read(&memcg->memory);
 537	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 538	unsigned long excess = 0;
 539
 540	if (nr_pages > soft_limit)
 541		excess = nr_pages - soft_limit;
 542
 543	return excess;
 544}
 545
 546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 547{
 548	unsigned long excess;
 549	struct mem_cgroup_per_node *mz;
 550	struct mem_cgroup_tree_per_node *mctz;
 551
 552	mctz = soft_limit_tree_from_page(page);
 553	if (!mctz)
 554		return;
 555	/*
 556	 * Necessary to update all ancestors when hierarchy is used.
 557	 * because their event counter is not touched.
 558	 */
 559	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 560		mz = mem_cgroup_page_nodeinfo(memcg, page);
 561		excess = soft_limit_excess(memcg);
 562		/*
 563		 * We have to update the tree if mz is on RB-tree or
 564		 * mem is over its softlimit.
 565		 */
 566		if (excess || mz->on_tree) {
 567			unsigned long flags;
 568
 569			spin_lock_irqsave(&mctz->lock, flags);
 570			/* if on-tree, remove it */
 571			if (mz->on_tree)
 572				__mem_cgroup_remove_exceeded(mz, mctz);
 573			/*
 574			 * Insert again. mz->usage_in_excess will be updated.
 575			 * If excess is 0, no tree ops.
 576			 */
 577			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 578			spin_unlock_irqrestore(&mctz->lock, flags);
 579		}
 580	}
 581}
 582
 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 584{
 585	struct mem_cgroup_tree_per_node *mctz;
 586	struct mem_cgroup_per_node *mz;
 587	int nid;
 588
 589	for_each_node(nid) {
 590		mz = memcg->nodeinfo[nid];
 591		mctz = soft_limit_tree_node(nid);
 592		if (mctz)
 593			mem_cgroup_remove_exceeded(mz, mctz);
 594	}
 595}
 596
 597static struct mem_cgroup_per_node *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 599{
 600	struct mem_cgroup_per_node *mz;
 601
 602retry:
 603	mz = NULL;
 604	if (!mctz->rb_rightmost)
 605		goto done;		/* Nothing to reclaim from */
 606
 607	mz = rb_entry(mctz->rb_rightmost,
 608		      struct mem_cgroup_per_node, tree_node);
 609	/*
 610	 * Remove the node now but someone else can add it back,
 611	 * we will to add it back at the end of reclaim to its correct
 612	 * position in the tree.
 613	 */
 614	__mem_cgroup_remove_exceeded(mz, mctz);
 615	if (!soft_limit_excess(mz->memcg) ||
 616	    !css_tryget(&mz->memcg->css))
 617		goto retry;
 618done:
 619	return mz;
 620}
 621
 622static struct mem_cgroup_per_node *
 623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 624{
 625	struct mem_cgroup_per_node *mz;
 626
 627	spin_lock_irq(&mctz->lock);
 628	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 629	spin_unlock_irq(&mctz->lock);
 630	return mz;
 631}
 632
 633/**
 634 * __mod_memcg_state - update cgroup memory statistics
 635 * @memcg: the memory cgroup
 636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 637 * @val: delta to add to the counter, can be negative
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638 */
 639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 640{
 641	if (mem_cgroup_disabled())
 642		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 645	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
 649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650{
 651	long x = READ_ONCE(memcg->vmstats.state[idx]);
 652#ifdef CONFIG_SMP
 653	if (x < 0)
 654		x = 0;
 655#endif
 656	return x;
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
 660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 661{
 662	long x = 0;
 663	int cpu;
 664
 665	for_each_possible_cpu(cpu)
 666		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 667#ifdef CONFIG_SMP
 668	if (x < 0)
 669		x = 0;
 670#endif
 671	return x;
 672}
 673
 674static struct mem_cgroup_per_node *
 675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 676{
 677	struct mem_cgroup *parent;
 678
 679	parent = parent_mem_cgroup(pn->memcg);
 680	if (!parent)
 681		return NULL;
 682	return parent->nodeinfo[nid];
 683}
 684
 685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 686			      int val)
 687{
 688	struct mem_cgroup_per_node *pn;
 689	struct mem_cgroup *memcg;
 690	long x, threshold = MEMCG_CHARGE_BATCH;
 691
 692	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 693	memcg = pn->memcg;
 694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695	/* Update memcg */
 696	__mod_memcg_state(memcg, idx, val);
 697
 698	/* Update lruvec */
 699	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 700
 701	if (vmstat_item_in_bytes(idx))
 702		threshold <<= PAGE_SHIFT;
 703
 704	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 705	if (unlikely(abs(x) > threshold)) {
 706		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 707		struct mem_cgroup_per_node *pi;
 708
 709		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 710			atomic_long_add(x, &pi->lruvec_stat[idx]);
 711		x = 0;
 712	}
 713	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 714}
 715
 716/**
 717 * __mod_lruvec_state - update lruvec memory statistics
 718 * @lruvec: the lruvec
 719 * @idx: the stat item
 720 * @val: delta to add to the counter, can be negative
 721 *
 722 * The lruvec is the intersection of the NUMA node and a cgroup. This
 723 * function updates the all three counters that are affected by a
 724 * change of state at this level: per-node, per-cgroup, per-lruvec.
 725 */
 726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 727			int val)
 728{
 729	/* Update node */
 730	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 731
 732	/* Update memcg and lruvec */
 733	if (!mem_cgroup_disabled())
 734		__mod_memcg_lruvec_state(lruvec, idx, val);
 735}
 736
 737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 738			     int val)
 739{
 740	struct page *head = compound_head(page); /* rmap on tail pages */
 741	struct mem_cgroup *memcg;
 742	pg_data_t *pgdat = page_pgdat(page);
 743	struct lruvec *lruvec;
 744
 745	rcu_read_lock();
 746	memcg = page_memcg(head);
 747	/* Untracked pages have no memcg, no lruvec. Update only the node */
 748	if (!memcg) {
 749		rcu_read_unlock();
 750		__mod_node_page_state(pgdat, idx, val);
 751		return;
 752	}
 753
 754	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 755	__mod_lruvec_state(lruvec, idx, val);
 756	rcu_read_unlock();
 757}
 758EXPORT_SYMBOL(__mod_lruvec_page_state);
 759
 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 761{
 762	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 763	struct mem_cgroup *memcg;
 764	struct lruvec *lruvec;
 765
 766	rcu_read_lock();
 767	memcg = mem_cgroup_from_obj(p);
 768
 769	/*
 770	 * Untracked pages have no memcg, no lruvec. Update only the
 771	 * node. If we reparent the slab objects to the root memcg,
 772	 * when we free the slab object, we need to update the per-memcg
 773	 * vmstats to keep it correct for the root memcg.
 774	 */
 775	if (!memcg) {
 776		__mod_node_page_state(pgdat, idx, val);
 777	} else {
 778		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 779		__mod_lruvec_state(lruvec, idx, val);
 780	}
 781	rcu_read_unlock();
 782}
 783
 784/*
 785 * mod_objcg_mlstate() may be called with irq enabled, so
 786 * mod_memcg_lruvec_state() should be used.
 787 */
 788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 789				     struct pglist_data *pgdat,
 790				     enum node_stat_item idx, int nr)
 791{
 792	struct mem_cgroup *memcg;
 793	struct lruvec *lruvec;
 794
 795	rcu_read_lock();
 796	memcg = obj_cgroup_memcg(objcg);
 797	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798	mod_memcg_lruvec_state(lruvec, idx, nr);
 799	rcu_read_unlock();
 800}
 801
 802/**
 803 * __count_memcg_events - account VM events in a cgroup
 804 * @memcg: the memory cgroup
 805 * @idx: the event item
 806 * @count: the number of events that occurred
 807 */
 808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 809			  unsigned long count)
 810{
 811	if (mem_cgroup_disabled())
 
 
 812		return;
 813
 814	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 815	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 
 
 816}
 817
 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 819{
 820	return READ_ONCE(memcg->vmstats.events[event]);
 
 
 
 
 821}
 822
 823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 824{
 825	long x = 0;
 826	int cpu;
 
 
 
 
 827
 828	for_each_possible_cpu(cpu)
 829		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 830	return x;
 831}
 832
 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 834					 struct page *page,
 835					 int nr_pages)
 836{
 837	/* pagein of a big page is an event. So, ignore page size */
 838	if (nr_pages > 0)
 839		__count_memcg_events(memcg, PGPGIN, 1);
 840	else {
 841		__count_memcg_events(memcg, PGPGOUT, 1);
 842		nr_pages = -nr_pages; /* for event */
 843	}
 844
 845	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 846}
 847
 848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 849				       enum mem_cgroup_events_target target)
 850{
 851	unsigned long val, next;
 852
 853	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 854	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 855	/* from time_after() in jiffies.h */
 856	if ((long)(next - val) < 0) {
 857		switch (target) {
 858		case MEM_CGROUP_TARGET_THRESH:
 859			next = val + THRESHOLDS_EVENTS_TARGET;
 860			break;
 861		case MEM_CGROUP_TARGET_SOFTLIMIT:
 862			next = val + SOFTLIMIT_EVENTS_TARGET;
 863			break;
 864		default:
 865			break;
 866		}
 867		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 868		return true;
 869	}
 870	return false;
 871}
 872
 873/*
 874 * Check events in order.
 875 *
 876 */
 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 878{
 
 
 
 879	/* threshold event is triggered in finer grain than soft limit */
 880	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 881						MEM_CGROUP_TARGET_THRESH))) {
 882		bool do_softlimit;
 883
 884		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 885						MEM_CGROUP_TARGET_SOFTLIMIT);
 886		mem_cgroup_threshold(memcg);
 887		if (unlikely(do_softlimit))
 888			mem_cgroup_update_tree(memcg, page);
 889	}
 890}
 891
 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 893{
 894	/*
 895	 * mm_update_next_owner() may clear mm->owner to NULL
 896	 * if it races with swapoff, page migration, etc.
 897	 * So this can be called with p == NULL.
 898	 */
 899	if (unlikely(!p))
 900		return NULL;
 901
 902	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 903}
 904EXPORT_SYMBOL(mem_cgroup_from_task);
 905
 906static __always_inline struct mem_cgroup *active_memcg(void)
 907{
 908	if (in_interrupt())
 909		return this_cpu_read(int_active_memcg);
 910	else
 911		return current->active_memcg;
 912}
 913
 914/**
 915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 916 * @mm: mm from which memcg should be extracted. It can be NULL.
 917 *
 918 * Obtain a reference on mm->memcg and returns it if successful. If mm
 919 * is NULL, then the memcg is chosen as follows:
 920 * 1) The active memcg, if set.
 921 * 2) current->mm->memcg, if available
 922 * 3) root memcg
 923 * If mem_cgroup is disabled, NULL is returned.
 924 */
 925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 926{
 927	struct mem_cgroup *memcg;
 928
 929	if (mem_cgroup_disabled())
 930		return NULL;
 931
 932	/*
 933	 * Page cache insertions can happen without an
 934	 * actual mm context, e.g. during disk probing
 935	 * on boot, loopback IO, acct() writes etc.
 936	 *
 937	 * No need to css_get on root memcg as the reference
 938	 * counting is disabled on the root level in the
 939	 * cgroup core. See CSS_NO_REF.
 940	 */
 941	if (unlikely(!mm)) {
 942		memcg = active_memcg();
 943		if (unlikely(memcg)) {
 944			/* remote memcg must hold a ref */
 945			css_get(&memcg->css);
 946			return memcg;
 947		}
 948		mm = current->mm;
 949		if (unlikely(!mm))
 950			return root_mem_cgroup;
 951	}
 952
 953	rcu_read_lock();
 954	do {
 955		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 956		if (unlikely(!memcg))
 957			memcg = root_mem_cgroup;
 958	} while (!css_tryget(&memcg->css));
 959	rcu_read_unlock();
 960	return memcg;
 961}
 962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 963
 964static __always_inline bool memcg_kmem_bypass(void)
 965{
 966	/* Allow remote memcg charging from any context. */
 967	if (unlikely(active_memcg()))
 968		return false;
 969
 970	/* Memcg to charge can't be determined. */
 971	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 972		return true;
 973
 974	return false;
 975}
 976
 977/**
 978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 979 * @root: hierarchy root
 980 * @prev: previously returned memcg, NULL on first invocation
 981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 982 *
 983 * Returns references to children of the hierarchy below @root, or
 984 * @root itself, or %NULL after a full round-trip.
 985 *
 986 * Caller must pass the return value in @prev on subsequent
 987 * invocations for reference counting, or use mem_cgroup_iter_break()
 988 * to cancel a hierarchy walk before the round-trip is complete.
 989 *
 990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 991 * in the hierarchy among all concurrent reclaimers operating on the
 992 * same node.
 993 */
 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 995				   struct mem_cgroup *prev,
 996				   struct mem_cgroup_reclaim_cookie *reclaim)
 997{
 998	struct mem_cgroup_reclaim_iter *iter;
 999	struct cgroup_subsys_state *css = NULL;
1000	struct mem_cgroup *memcg = NULL;
1001	struct mem_cgroup *pos = NULL;
1002
1003	if (mem_cgroup_disabled())
1004		return NULL;
1005
1006	if (!root)
1007		root = root_mem_cgroup;
1008
1009	if (prev && !reclaim)
1010		pos = prev;
1011
1012	rcu_read_lock();
1013
1014	if (reclaim) {
1015		struct mem_cgroup_per_node *mz;
1016
1017		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018		iter = &mz->iter;
1019
1020		if (prev && reclaim->generation != iter->generation)
 
 
 
 
 
 
1021			goto out_unlock;
1022
1023		while (1) {
1024			pos = READ_ONCE(iter->position);
1025			if (!pos || css_tryget(&pos->css))
1026				break;
1027			/*
1028			 * css reference reached zero, so iter->position will
1029			 * be cleared by ->css_released. However, we should not
1030			 * rely on this happening soon, because ->css_released
1031			 * is called from a work queue, and by busy-waiting we
1032			 * might block it. So we clear iter->position right
1033			 * away.
1034			 */
1035			(void)cmpxchg(&iter->position, pos, NULL);
1036		}
 
 
1037	}
1038
1039	if (pos)
1040		css = &pos->css;
1041
1042	for (;;) {
1043		css = css_next_descendant_pre(css, &root->css);
1044		if (!css) {
1045			/*
1046			 * Reclaimers share the hierarchy walk, and a
1047			 * new one might jump in right at the end of
1048			 * the hierarchy - make sure they see at least
1049			 * one group and restart from the beginning.
1050			 */
1051			if (!prev)
1052				continue;
1053			break;
1054		}
1055
1056		/*
1057		 * Verify the css and acquire a reference.  The root
1058		 * is provided by the caller, so we know it's alive
1059		 * and kicking, and don't take an extra reference.
1060		 */
1061		memcg = mem_cgroup_from_css(css);
1062
1063		if (css == &root->css)
1064			break;
1065
1066		if (css_tryget(css))
1067			break;
1068
1069		memcg = NULL;
1070	}
1071
1072	if (reclaim) {
1073		/*
1074		 * The position could have already been updated by a competing
1075		 * thread, so check that the value hasn't changed since we read
1076		 * it to avoid reclaiming from the same cgroup twice.
1077		 */
1078		(void)cmpxchg(&iter->position, pos, memcg);
1079
1080		if (pos)
1081			css_put(&pos->css);
1082
1083		if (!memcg)
1084			iter->generation++;
1085		else if (!prev)
1086			reclaim->generation = iter->generation;
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgruop1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (last != root_mem_cgroup)
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			  int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164
1165	BUG_ON(memcg == root_mem_cgroup);
1166
1167	for_each_mem_cgroup_tree(iter, memcg) {
1168		struct css_task_iter it;
1169		struct task_struct *task;
1170
1171		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172		while (!ret && (task = css_task_iter_next(&it)))
1173			ret = fn(task, arg);
1174		css_task_iter_end(&it);
1175		if (ret) {
1176			mem_cgroup_iter_break(memcg, iter);
1177			break;
1178		}
1179	}
1180	return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186	struct mem_cgroup *memcg;
1187
1188	if (mem_cgroup_disabled())
1189		return;
1190
1191	memcg = page_memcg(page);
1192
1193	if (!memcg)
1194		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195	else
1196		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
 
 
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212	struct lruvec *lruvec;
1213
1214	lruvec = mem_cgroup_page_lruvec(page);
1215	spin_lock(&lruvec->lru_lock);
1216
1217	lruvec_memcg_debug(lruvec, page);
1218
1219	return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
1223{
1224	struct lruvec *lruvec;
1225
1226	lruvec = mem_cgroup_page_lruvec(page);
1227	spin_lock_irq(&lruvec->lru_lock);
1228
1229	lruvec_memcg_debug(lruvec, page);
1230
1231	return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	struct lruvec *lruvec;
1237
1238	lruvec = mem_cgroup_page_lruvec(page);
1239	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241	lruvec_memcg_debug(lruvec, page);
1242
1243	return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258				int zid, int nr_pages)
1259{
1260	struct mem_cgroup_per_node *mz;
1261	unsigned long *lru_size;
1262	long size;
1263
1264	if (mem_cgroup_disabled())
1265		return;
1266
1267	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268	lru_size = &mz->lru_zone_size[zid][lru];
1269
1270	if (nr_pages < 0)
1271		*lru_size += nr_pages;
1272
1273	size = *lru_size;
1274	if (WARN_ONCE(size < 0,
1275		"%s(%p, %d, %d): lru_size %ld\n",
1276		__func__, lruvec, lru, nr_pages, size)) {
1277		VM_BUG_ON(1);
1278		*lru_size = 0;
1279	}
1280
1281	if (nr_pages > 0)
1282		*lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294	unsigned long margin = 0;
1295	unsigned long count;
1296	unsigned long limit;
1297
1298	count = page_counter_read(&memcg->memory);
1299	limit = READ_ONCE(memcg->memory.max);
1300	if (count < limit)
1301		margin = limit - count;
1302
1303	if (do_memsw_account()) {
1304		count = page_counter_read(&memcg->memsw);
1305		limit = READ_ONCE(memcg->memsw.max);
1306		if (count < limit)
1307			margin = min(margin, limit - count);
1308		else
1309			margin = 0;
1310	}
1311
1312	return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324	struct mem_cgroup *from;
1325	struct mem_cgroup *to;
1326	bool ret = false;
1327	/*
1328	 * Unlike task_move routines, we access mc.to, mc.from not under
1329	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330	 */
1331	spin_lock(&mc.lock);
1332	from = mc.from;
1333	to = mc.to;
1334	if (!from)
1335		goto unlock;
1336
1337	ret = mem_cgroup_is_descendant(from, memcg) ||
1338		mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340	spin_unlock(&mc.lock);
1341	return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346	if (mc.moving_task && current != mc.moving_task) {
1347		if (mem_cgroup_under_move(memcg)) {
1348			DEFINE_WAIT(wait);
1349			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350			/* moving charge context might have finished. */
1351			if (mc.moving_task)
1352				schedule();
1353			finish_wait(&mc.waitq, &wait);
1354			return true;
1355		}
1356	}
1357	return false;
1358}
1359
1360struct memory_stat {
1361	const char *name;
1362	unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366	{ "anon",			NR_ANON_MAPPED			},
1367	{ "file",			NR_FILE_PAGES			},
 
1368	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369	{ "pagetables",			NR_PAGETABLE			},
 
1370	{ "percpu",			MEMCG_PERCPU_B			},
1371	{ "sock",			MEMCG_SOCK			},
 
1372	{ "shmem",			NR_SHMEM			},
 
 
 
 
1373	{ "file_mapped",		NR_FILE_MAPPED			},
1374	{ "file_dirty",			NR_FILE_DIRTY			},
1375	{ "file_writeback",		NR_WRITEBACK			},
1376#ifdef CONFIG_SWAP
1377	{ "swapcached",			NR_SWAPCACHE			},
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380	{ "anon_thp",			NR_ANON_THPS			},
1381	{ "file_thp",			NR_FILE_THPS			},
1382	{ "shmem_thp",			NR_SHMEM_THPS			},
1383#endif
1384	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385	{ "active_anon",		NR_ACTIVE_ANON			},
1386	{ "inactive_file",		NR_INACTIVE_FILE		},
1387	{ "active_file",		NR_ACTIVE_FILE			},
1388	{ "unevictable",		NR_UNEVICTABLE			},
1389	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391
1392	/* The memory events */
1393	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405	switch (item) {
1406	case MEMCG_PERCPU_B:
 
1407	case NR_SLAB_RECLAIMABLE_B:
1408	case NR_SLAB_UNRECLAIMABLE_B:
1409	case WORKINGSET_REFAULT_ANON:
1410	case WORKINGSET_REFAULT_FILE:
1411	case WORKINGSET_ACTIVATE_ANON:
1412	case WORKINGSET_ACTIVATE_FILE:
1413	case WORKINGSET_RESTORE_ANON:
1414	case WORKINGSET_RESTORE_FILE:
1415	case WORKINGSET_NODERECLAIM:
1416		return 1;
1417	case NR_KERNEL_STACK_KB:
1418		return SZ_1K;
1419	default:
1420		return PAGE_SIZE;
1421	}
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425						    int item)
1426{
1427	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432	struct seq_buf s;
1433	int i;
1434
1435	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436	if (!s.buffer)
1437		return NULL;
1438
1439	/*
1440	 * Provide statistics on the state of the memory subsystem as
1441	 * well as cumulative event counters that show past behavior.
1442	 *
1443	 * This list is ordered following a combination of these gradients:
1444	 * 1) generic big picture -> specifics and details
1445	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446	 *
1447	 * Current memory state:
1448	 */
1449	cgroup_rstat_flush(memcg->css.cgroup);
1450
1451	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452		u64 size;
1453
1454		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458			size += memcg_page_state_output(memcg,
1459							NR_SLAB_RECLAIMABLE_B);
1460			seq_buf_printf(&s, "slab %llu\n", size);
1461		}
1462	}
1463
1464	/* Accumulated memory events */
1465
1466	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467		       memcg_events(memcg, PGFAULT));
1468	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469		       memcg_events(memcg, PGMAJFAULT));
1470	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471		       memcg_events(memcg, PGREFILL));
1472	seq_buf_printf(&s, "pgscan %lu\n",
1473		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474		       memcg_events(memcg, PGSCAN_DIRECT));
 
1475	seq_buf_printf(&s, "pgsteal %lu\n",
1476		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477		       memcg_events(memcg, PGSTEAL_DIRECT));
1478	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479		       memcg_events(memcg, PGACTIVATE));
1480	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481		       memcg_events(memcg, PGDEACTIVATE));
1482	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483		       memcg_events(memcg, PGLAZYFREE));
1484	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485		       memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489		       memcg_events(memcg, THP_FAULT_ALLOC));
1490	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 
 
1493
1494	/* The above should easily fit into one page */
1495	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497	return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512	rcu_read_lock();
1513
1514	if (memcg) {
1515		pr_cont(",oom_memcg=");
1516		pr_cont_cgroup_path(memcg->css.cgroup);
1517	} else
1518		pr_cont(",global_oom");
1519	if (p) {
1520		pr_cont(",task_memcg=");
1521		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522	}
1523	rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533	char *buf;
 
 
 
1534
1535	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536		K((u64)page_counter_read(&memcg->memory)),
1537		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540			K((u64)page_counter_read(&memcg->swap)),
1541			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542	else {
1543		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544			K((u64)page_counter_read(&memcg->memsw)),
1545			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547			K((u64)page_counter_read(&memcg->kmem)),
1548			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549	}
1550
1551	pr_info("Memory cgroup stats for ");
1552	pr_cont_cgroup_path(memcg->css.cgroup);
1553	pr_cont(":");
1554	buf = memory_stat_format(memcg);
1555	if (!buf)
1556		return;
1557	pr_info("%s", buf);
1558	kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566	unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569		if (mem_cgroup_swappiness(memcg))
1570			max += min(READ_ONCE(memcg->swap.max),
1571				   (unsigned long)total_swap_pages);
1572	} else { /* v1 */
1573		if (mem_cgroup_swappiness(memcg)) {
1574			/* Calculate swap excess capacity from memsw limit */
1575			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577			max += min(swap, (unsigned long)total_swap_pages);
1578		}
 
 
 
 
1579	}
1580	return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585	return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589				     int order)
1590{
1591	struct oom_control oc = {
1592		.zonelist = NULL,
1593		.nodemask = NULL,
1594		.memcg = memcg,
1595		.gfp_mask = gfp_mask,
1596		.order = order,
1597	};
1598	bool ret = true;
1599
1600	if (mutex_lock_killable(&oom_lock))
1601		return true;
1602
1603	if (mem_cgroup_margin(memcg) >= (1 << order))
1604		goto unlock;
1605
1606	/*
1607	 * A few threads which were not waiting at mutex_lock_killable() can
1608	 * fail to bail out. Therefore, check again after holding oom_lock.
1609	 */
1610	ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613	mutex_unlock(&oom_lock);
1614	return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618				   pg_data_t *pgdat,
1619				   gfp_t gfp_mask,
1620				   unsigned long *total_scanned)
1621{
1622	struct mem_cgroup *victim = NULL;
1623	int total = 0;
1624	int loop = 0;
1625	unsigned long excess;
1626	unsigned long nr_scanned;
1627	struct mem_cgroup_reclaim_cookie reclaim = {
1628		.pgdat = pgdat,
1629	};
1630
1631	excess = soft_limit_excess(root_memcg);
1632
1633	while (1) {
1634		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635		if (!victim) {
1636			loop++;
1637			if (loop >= 2) {
1638				/*
1639				 * If we have not been able to reclaim
1640				 * anything, it might because there are
1641				 * no reclaimable pages under this hierarchy
1642				 */
1643				if (!total)
1644					break;
1645				/*
1646				 * We want to do more targeted reclaim.
1647				 * excess >> 2 is not to excessive so as to
1648				 * reclaim too much, nor too less that we keep
1649				 * coming back to reclaim from this cgroup
1650				 */
1651				if (total >= (excess >> 2) ||
1652					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653					break;
1654			}
1655			continue;
1656		}
1657		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658					pgdat, &nr_scanned);
1659		*total_scanned += nr_scanned;
1660		if (!soft_limit_excess(root_memcg))
1661			break;
1662	}
1663	mem_cgroup_iter_break(root_memcg, victim);
1664	return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669	.name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681	struct mem_cgroup *iter, *failed = NULL;
1682
1683	spin_lock(&memcg_oom_lock);
1684
1685	for_each_mem_cgroup_tree(iter, memcg) {
1686		if (iter->oom_lock) {
1687			/*
1688			 * this subtree of our hierarchy is already locked
1689			 * so we cannot give a lock.
1690			 */
1691			failed = iter;
1692			mem_cgroup_iter_break(memcg, iter);
1693			break;
1694		} else
1695			iter->oom_lock = true;
1696	}
1697
1698	if (failed) {
1699		/*
1700		 * OK, we failed to lock the whole subtree so we have
1701		 * to clean up what we set up to the failing subtree
1702		 */
1703		for_each_mem_cgroup_tree(iter, memcg) {
1704			if (iter == failed) {
1705				mem_cgroup_iter_break(memcg, iter);
1706				break;
1707			}
1708			iter->oom_lock = false;
1709		}
1710	} else
1711		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713	spin_unlock(&memcg_oom_lock);
1714
1715	return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720	struct mem_cgroup *iter;
1721
1722	spin_lock(&memcg_oom_lock);
1723	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724	for_each_mem_cgroup_tree(iter, memcg)
1725		iter->oom_lock = false;
1726	spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731	struct mem_cgroup *iter;
1732
1733	spin_lock(&memcg_oom_lock);
1734	for_each_mem_cgroup_tree(iter, memcg)
1735		iter->under_oom++;
1736	spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741	struct mem_cgroup *iter;
1742
1743	/*
1744	 * Be careful about under_oom underflows because a child memcg
1745	 * could have been added after mem_cgroup_mark_under_oom.
1746	 */
1747	spin_lock(&memcg_oom_lock);
1748	for_each_mem_cgroup_tree(iter, memcg)
1749		if (iter->under_oom > 0)
1750			iter->under_oom--;
1751	spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757	struct mem_cgroup *memcg;
1758	wait_queue_entry_t	wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762	unsigned mode, int sync, void *arg)
1763{
1764	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765	struct mem_cgroup *oom_wait_memcg;
1766	struct oom_wait_info *oom_wait_info;
1767
1768	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769	oom_wait_memcg = oom_wait_info->memcg;
1770
1771	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773		return 0;
1774	return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779	/*
1780	 * For the following lockless ->under_oom test, the only required
1781	 * guarantee is that it must see the state asserted by an OOM when
1782	 * this function is called as a result of userland actions
1783	 * triggered by the notification of the OOM.  This is trivially
1784	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785	 * triggering notification.
1786	 */
1787	if (memcg && memcg->under_oom)
1788		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792	OOM_SUCCESS,
1793	OOM_FAILED,
1794	OOM_ASYNC,
1795	OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800	enum oom_status ret;
1801	bool locked;
1802
1803	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804		return OOM_SKIPPED;
1805
1806	memcg_memory_event(memcg, MEMCG_OOM);
1807
1808	/*
1809	 * We are in the middle of the charge context here, so we
1810	 * don't want to block when potentially sitting on a callstack
1811	 * that holds all kinds of filesystem and mm locks.
1812	 *
1813	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814	 * handling until the charge can succeed; remember the context and put
1815	 * the task to sleep at the end of the page fault when all locks are
1816	 * released.
1817	 *
1818	 * On the other hand, in-kernel OOM killer allows for an async victim
1819	 * memory reclaim (oom_reaper) and that means that we are not solely
1820	 * relying on the oom victim to make a forward progress and we can
1821	 * invoke the oom killer here.
1822	 *
1823	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824	 * victim and then we have to bail out from the charge path.
1825	 */
1826	if (memcg->oom_kill_disable) {
1827		if (!current->in_user_fault)
1828			return OOM_SKIPPED;
1829		css_get(&memcg->css);
1830		current->memcg_in_oom = memcg;
1831		current->memcg_oom_gfp_mask = mask;
1832		current->memcg_oom_order = order;
1833
1834		return OOM_ASYNC;
1835	}
1836
1837	mem_cgroup_mark_under_oom(memcg);
1838
1839	locked = mem_cgroup_oom_trylock(memcg);
1840
1841	if (locked)
1842		mem_cgroup_oom_notify(memcg);
1843
1844	mem_cgroup_unmark_under_oom(memcg);
1845	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846		ret = OOM_SUCCESS;
1847	else
1848		ret = OOM_FAILED;
1849
1850	if (locked)
1851		mem_cgroup_oom_unlock(memcg);
1852
1853	return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation.  Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875	struct mem_cgroup *memcg = current->memcg_in_oom;
1876	struct oom_wait_info owait;
1877	bool locked;
1878
1879	/* OOM is global, do not handle */
1880	if (!memcg)
1881		return false;
1882
1883	if (!handle)
1884		goto cleanup;
1885
1886	owait.memcg = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.entry);
1891
1892	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893	mem_cgroup_mark_under_oom(memcg);
1894
1895	locked = mem_cgroup_oom_trylock(memcg);
1896
1897	if (locked)
1898		mem_cgroup_oom_notify(memcg);
1899
1900	if (locked && !memcg->oom_kill_disable) {
1901		mem_cgroup_unmark_under_oom(memcg);
1902		finish_wait(&memcg_oom_waitq, &owait.wait);
1903		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904					 current->memcg_oom_order);
1905	} else {
1906		schedule();
1907		mem_cgroup_unmark_under_oom(memcg);
1908		finish_wait(&memcg_oom_waitq, &owait.wait);
1909	}
1910
1911	if (locked) {
1912		mem_cgroup_oom_unlock(memcg);
1913		/*
1914		 * There is no guarantee that an OOM-lock contender
1915		 * sees the wakeups triggered by the OOM kill
1916		 * uncharges.  Wake any sleepers explicitly.
1917		 */
1918		memcg_oom_recover(memcg);
1919	}
1920cleanup:
1921	current->memcg_in_oom = NULL;
1922	css_put(&memcg->css);
1923	return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937					    struct mem_cgroup *oom_domain)
1938{
1939	struct mem_cgroup *oom_group = NULL;
1940	struct mem_cgroup *memcg;
1941
1942	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943		return NULL;
1944
1945	if (!oom_domain)
1946		oom_domain = root_mem_cgroup;
1947
1948	rcu_read_lock();
1949
1950	memcg = mem_cgroup_from_task(victim);
1951	if (memcg == root_mem_cgroup)
1952		goto out;
1953
1954	/*
1955	 * If the victim task has been asynchronously moved to a different
1956	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957	 * In this case it's better to ignore memory.group.oom.
1958	 */
1959	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960		goto out;
1961
1962	/*
1963	 * Traverse the memory cgroup hierarchy from the victim task's
1964	 * cgroup up to the OOMing cgroup (or root) to find the
1965	 * highest-level memory cgroup with oom.group set.
1966	 */
1967	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968		if (memcg->oom_group)
1969			oom_group = memcg;
1970
1971		if (memcg == oom_domain)
1972			break;
1973	}
1974
1975	if (oom_group)
1976		css_get(&oom_group->css);
1977out:
1978	rcu_read_unlock();
1979
1980	return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985	pr_info("Tasks in ");
1986	pr_cont_cgroup_path(memcg->css.cgroup);
1987	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002	struct page *head = compound_head(page); /* rmap on tail pages */
2003	struct mem_cgroup *memcg;
2004	unsigned long flags;
2005
2006	/*
2007	 * The RCU lock is held throughout the transaction.  The fast
2008	 * path can get away without acquiring the memcg->move_lock
2009	 * because page moving starts with an RCU grace period.
2010         */
2011	rcu_read_lock();
2012
2013	if (mem_cgroup_disabled())
2014		return;
2015again:
2016	memcg = page_memcg(head);
2017	if (unlikely(!memcg))
2018		return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021	local_irq_save(flags);
2022	might_lock(&memcg->move_lock);
2023	local_irq_restore(flags);
2024#endif
2025
2026	if (atomic_read(&memcg->moving_account) <= 0)
2027		return;
2028
2029	spin_lock_irqsave(&memcg->move_lock, flags);
2030	if (memcg != page_memcg(head)) {
2031		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032		goto again;
2033	}
2034
2035	/*
2036	 * When charge migration first begins, we can have multiple
2037	 * critical sections holding the fast-path RCU lock and one
2038	 * holding the slowpath move_lock. Track the task who has the
2039	 * move_lock for unlock_page_memcg().
2040	 */
2041	memcg->move_lock_task = current;
2042	memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
2047{
2048	if (memcg && memcg->move_lock_task == current) {
2049		unsigned long flags = memcg->move_lock_flags;
2050
2051		memcg->move_lock_task = NULL;
2052		memcg->move_lock_flags = 0;
2053
2054		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055	}
2056
2057	rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
 
 
 
 
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066	struct page *head = compound_head(page);
 
2067
2068	__unlock_page_memcg(page_memcg(head));
 
 
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
 
 
 
 
2073#ifdef CONFIG_MEMCG_KMEM
2074	struct obj_cgroup *cached_objcg;
2075	struct pglist_data *cached_pgdat;
2076	unsigned int nr_bytes;
2077	int nr_slab_reclaimable_b;
2078	int nr_slab_unreclaimable_b;
2079#else
2080	int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085	struct mem_cgroup *cached; /* this never be root cgroup */
2086	unsigned int nr_pages;
2087	struct obj_stock task_obj;
2088	struct obj_stock irq_obj;
2089
2090	struct work_struct work;
2091	unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE	0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 
 
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100				     struct mem_cgroup *root_memcg);
 
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
 
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107				     struct mem_cgroup *root_memcg)
2108{
2109	return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126	struct memcg_stock_pcp *stock;
2127
2128	if (likely(in_task())) {
2129		*pflags = 0UL;
2130		preempt_disable();
2131		stock = this_cpu_ptr(&memcg_stock);
2132		return &stock->task_obj;
2133	}
2134
2135	local_irq_save(*pflags);
2136	stock = this_cpu_ptr(&memcg_stock);
2137	return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142	if (likely(in_task()))
2143		preempt_enable();
2144	else
2145		local_irq_restore(flags);
2146}
 
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock.  Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161	struct memcg_stock_pcp *stock;
2162	unsigned long flags;
2163	bool ret = false;
2164
2165	if (nr_pages > MEMCG_CHARGE_BATCH)
2166		return ret;
2167
2168	local_irq_save(flags);
2169
2170	stock = this_cpu_ptr(&memcg_stock);
2171	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172		stock->nr_pages -= nr_pages;
2173		ret = true;
2174	}
2175
2176	local_irq_restore(flags);
2177
2178	return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186	struct mem_cgroup *old = stock->cached;
2187
2188	if (!old)
2189		return;
2190
2191	if (stock->nr_pages) {
2192		page_counter_uncharge(&old->memory, stock->nr_pages);
2193		if (do_memsw_account())
2194			page_counter_uncharge(&old->memsw, stock->nr_pages);
2195		stock->nr_pages = 0;
2196	}
2197
2198	css_put(&old->css);
2199	stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204	struct memcg_stock_pcp *stock;
 
2205	unsigned long flags;
2206
2207	/*
2208	 * The only protection from memory hotplug vs. drain_stock races is
2209	 * that we always operate on local CPU stock here with IRQ disabled
 
2210	 */
2211	local_irq_save(flags);
2212
2213	stock = this_cpu_ptr(&memcg_stock);
2214	drain_obj_stock(&stock->irq_obj);
2215	if (in_task())
2216		drain_obj_stock(&stock->task_obj);
2217	drain_stock(stock);
2218	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220	local_irq_restore(flags);
 
 
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231
2232	local_irq_save(flags);
2233
2234	stock = this_cpu_ptr(&memcg_stock);
2235	if (stock->cached != memcg) { /* reset if necessary */
2236		drain_stock(stock);
2237		css_get(&memcg->css);
2238		stock->cached = memcg;
2239	}
2240	stock->nr_pages += nr_pages;
2241
2242	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243		drain_stock(stock);
 
2244
2245	local_irq_restore(flags);
 
 
 
 
 
 
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254	int cpu, curcpu;
2255
2256	/* If someone's already draining, avoid adding running more workers. */
2257	if (!mutex_trylock(&percpu_charge_mutex))
2258		return;
2259	/*
2260	 * Notify other cpus that system-wide "drain" is running
2261	 * We do not care about races with the cpu hotplug because cpu down
2262	 * as well as workers from this path always operate on the local
2263	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264	 */
2265	curcpu = get_cpu();
 
2266	for_each_online_cpu(cpu) {
2267		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268		struct mem_cgroup *memcg;
2269		bool flush = false;
2270
2271		rcu_read_lock();
2272		memcg = stock->cached;
2273		if (memcg && stock->nr_pages &&
2274		    mem_cgroup_is_descendant(memcg, root_memcg))
2275			flush = true;
2276		if (obj_stock_flush_required(stock, root_memcg))
2277			flush = true;
2278		rcu_read_unlock();
2279
2280		if (flush &&
2281		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282			if (cpu == curcpu)
2283				drain_local_stock(&stock->work);
2284			else
2285				schedule_work_on(cpu, &stock->work);
2286		}
2287	}
2288	put_cpu();
2289	mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294	int nid;
2295
2296	for_each_node(nid) {
2297		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299		struct batched_lruvec_stat *lstatc;
2300		int i;
2301
2302		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304			stat[i] = lstatc->count[i];
2305			lstatc->count[i] = 0;
2306		}
2307
2308		do {
2309			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311		} while ((pn = parent_nodeinfo(pn, nid)));
2312	}
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317	struct memcg_stock_pcp *stock;
2318	struct mem_cgroup *memcg;
2319
2320	stock = &per_cpu(memcg_stock, cpu);
2321	drain_stock(stock);
2322
2323	for_each_mem_cgroup(memcg)
2324		memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326	return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330				  unsigned int nr_pages,
2331				  gfp_t gfp_mask)
2332{
2333	unsigned long nr_reclaimed = 0;
2334
2335	do {
2336		unsigned long pflags;
2337
2338		if (page_counter_read(&memcg->memory) <=
2339		    READ_ONCE(memcg->memory.high))
2340			continue;
2341
2342		memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344		psi_memstall_enter(&pflags);
2345		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346							     gfp_mask, true);
 
2347		psi_memstall_leave(&pflags);
2348	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349		 !mem_cgroup_is_root(memcg));
2350
2351	return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356	struct mem_cgroup *memcg;
2357
2358	memcg = container_of(work, struct mem_cgroup, high_work);
2359	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 *   overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 *   to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 *  +-------+------------------------+
2387 *  | usage | time to allocate in ms |
2388 *  +-------+------------------------+
2389 *  | 100M  |                      0 |
2390 *  | 101M  |                      6 |
2391 *  | 102M  |                     25 |
2392 *  | 103M  |                     57 |
2393 *  | 104M  |                    102 |
2394 *  | 105M  |                    159 |
2395 *  | 106M  |                    230 |
2396 *  | 107M  |                    313 |
2397 *  | 108M  |                    409 |
2398 *  | 109M  |                    518 |
2399 *  | 110M  |                    639 |
2400 *  | 111M  |                    774 |
2401 *  | 112M  |                    921 |
2402 *  | 113M  |                   1081 |
2403 *  | 114M  |                   1254 |
2404 *  | 115M  |                   1439 |
2405 *  | 116M  |                   1638 |
2406 *  | 117M  |                   1849 |
2407 *  | 118M  |                   2000 |
2408 *  | 119M  |                   2000 |
2409 *  | 120M  |                   2000 |
2410 *  +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417	u64 overage;
2418
2419	if (usage <= high)
2420		return 0;
2421
2422	/*
2423	 * Prevent division by 0 in overage calculation by acting as if
2424	 * it was a threshold of 1 page
2425	 */
2426	high = max(high, 1UL);
2427
2428	overage = usage - high;
2429	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430	return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435	u64 overage, max_overage = 0;
2436
2437	do {
2438		overage = calculate_overage(page_counter_read(&memcg->memory),
2439					    READ_ONCE(memcg->memory.high));
2440		max_overage = max(overage, max_overage);
2441	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442		 !mem_cgroup_is_root(memcg));
2443
2444	return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449	u64 overage, max_overage = 0;
2450
2451	do {
2452		overage = calculate_overage(page_counter_read(&memcg->swap),
2453					    READ_ONCE(memcg->swap.high));
2454		if (overage)
2455			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456		max_overage = max(overage, max_overage);
2457	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458		 !mem_cgroup_is_root(memcg));
2459
2460	return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468					  unsigned int nr_pages,
2469					  u64 max_overage)
2470{
2471	unsigned long penalty_jiffies;
2472
2473	if (!max_overage)
2474		return 0;
2475
2476	/*
2477	 * We use overage compared to memory.high to calculate the number of
2478	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479	 * fairly lenient on small overages, and increasingly harsh when the
2480	 * memcg in question makes it clear that it has no intention of stopping
2481	 * its crazy behaviour, so we exponentially increase the delay based on
2482	 * overage amount.
2483	 */
2484	penalty_jiffies = max_overage * max_overage * HZ;
2485	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488	/*
2489	 * Factor in the task's own contribution to the overage, such that four
2490	 * N-sized allocations are throttled approximately the same as one
2491	 * 4N-sized allocation.
2492	 *
2493	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494	 * larger the current charge patch is than that.
2495	 */
2496	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505	unsigned long penalty_jiffies;
2506	unsigned long pflags;
2507	unsigned long nr_reclaimed;
2508	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509	int nr_retries = MAX_RECLAIM_RETRIES;
2510	struct mem_cgroup *memcg;
2511	bool in_retry = false;
2512
2513	if (likely(!nr_pages))
2514		return;
2515
2516	memcg = get_mem_cgroup_from_mm(current->mm);
2517	current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520	/*
2521	 * The allocating task should reclaim at least the batch size, but for
2522	 * subsequent retries we only want to do what's necessary to prevent oom
2523	 * or breaching resource isolation.
2524	 *
2525	 * This is distinct from memory.max or page allocator behaviour because
2526	 * memory.high is currently batched, whereas memory.max and the page
2527	 * allocator run every time an allocation is made.
2528	 */
2529	nr_reclaimed = reclaim_high(memcg,
2530				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531				    GFP_KERNEL);
2532
2533	/*
2534	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535	 * allocators proactively to slow down excessive growth.
2536	 */
2537	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538					       mem_find_max_overage(memcg));
2539
2540	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541						swap_find_max_overage(memcg));
2542
2543	/*
2544	 * Clamp the max delay per usermode return so as to still keep the
2545	 * application moving forwards and also permit diagnostics, albeit
2546	 * extremely slowly.
2547	 */
2548	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550	/*
2551	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552	 * that it's not even worth doing, in an attempt to be nice to those who
2553	 * go only a small amount over their memory.high value and maybe haven't
2554	 * been aggressively reclaimed enough yet.
2555	 */
2556	if (penalty_jiffies <= HZ / 100)
2557		goto out;
2558
2559	/*
2560	 * If reclaim is making forward progress but we're still over
2561	 * memory.high, we want to encourage that rather than doing allocator
2562	 * throttling.
2563	 */
2564	if (nr_reclaimed || nr_retries--) {
2565		in_retry = true;
2566		goto retry_reclaim;
2567	}
2568
2569	/*
2570	 * If we exit early, we're guaranteed to die (since
2571	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572	 * need to account for any ill-begotten jiffies to pay them off later.
2573	 */
2574	psi_memstall_enter(&pflags);
2575	schedule_timeout_killable(penalty_jiffies);
2576	psi_memstall_leave(&pflags);
2577
2578out:
2579	css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583			unsigned int nr_pages)
2584{
2585	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586	int nr_retries = MAX_RECLAIM_RETRIES;
2587	struct mem_cgroup *mem_over_limit;
2588	struct page_counter *counter;
2589	enum oom_status oom_status;
2590	unsigned long nr_reclaimed;
2591	bool may_swap = true;
 
2592	bool drained = false;
 
2593	unsigned long pflags;
2594
2595retry:
2596	if (consume_stock(memcg, nr_pages))
2597		return 0;
2598
2599	if (!do_memsw_account() ||
2600	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602			goto done_restock;
2603		if (do_memsw_account())
2604			page_counter_uncharge(&memcg->memsw, batch);
2605		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606	} else {
2607		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608		may_swap = false;
2609	}
2610
2611	if (batch > nr_pages) {
2612		batch = nr_pages;
2613		goto retry;
2614	}
2615
2616	/*
2617	 * Memcg doesn't have a dedicated reserve for atomic
2618	 * allocations. But like the global atomic pool, we need to
2619	 * put the burden of reclaim on regular allocation requests
2620	 * and let these go through as privileged allocations.
2621	 */
2622	if (gfp_mask & __GFP_ATOMIC)
2623		goto force;
2624
2625	/*
2626	 * Unlike in global OOM situations, memcg is not in a physical
2627	 * memory shortage.  Allow dying and OOM-killed tasks to
2628	 * bypass the last charges so that they can exit quickly and
2629	 * free their memory.
2630	 */
2631	if (unlikely(should_force_charge()))
2632		goto force;
2633
2634	/*
2635	 * Prevent unbounded recursion when reclaim operations need to
2636	 * allocate memory. This might exceed the limits temporarily,
2637	 * but we prefer facilitating memory reclaim and getting back
2638	 * under the limit over triggering OOM kills in these cases.
2639	 */
2640	if (unlikely(current->flags & PF_MEMALLOC))
2641		goto force;
2642
2643	if (unlikely(task_in_memcg_oom(current)))
2644		goto nomem;
2645
2646	if (!gfpflags_allow_blocking(gfp_mask))
2647		goto nomem;
2648
2649	memcg_memory_event(mem_over_limit, MEMCG_MAX);
 
2650
2651	psi_memstall_enter(&pflags);
2652	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653						    gfp_mask, may_swap);
2654	psi_memstall_leave(&pflags);
2655
2656	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657		goto retry;
2658
2659	if (!drained) {
2660		drain_all_stock(mem_over_limit);
2661		drained = true;
2662		goto retry;
2663	}
2664
2665	if (gfp_mask & __GFP_NORETRY)
2666		goto nomem;
2667	/*
2668	 * Even though the limit is exceeded at this point, reclaim
2669	 * may have been able to free some pages.  Retry the charge
2670	 * before killing the task.
2671	 *
2672	 * Only for regular pages, though: huge pages are rather
2673	 * unlikely to succeed so close to the limit, and we fall back
2674	 * to regular pages anyway in case of failure.
2675	 */
2676	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677		goto retry;
2678	/*
2679	 * At task move, charge accounts can be doubly counted. So, it's
2680	 * better to wait until the end of task_move if something is going on.
2681	 */
2682	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683		goto retry;
2684
2685	if (nr_retries--)
2686		goto retry;
2687
2688	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689		goto nomem;
2690
2691	if (fatal_signal_pending(current))
2692		goto force;
 
2693
2694	/*
2695	 * keep retrying as long as the memcg oom killer is able to make
2696	 * a forward progress or bypass the charge if the oom killer
2697	 * couldn't make any progress.
2698	 */
2699	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700		       get_order(nr_pages * PAGE_SIZE));
2701	switch (oom_status) {
2702	case OOM_SUCCESS:
2703		nr_retries = MAX_RECLAIM_RETRIES;
2704		goto retry;
2705	case OOM_FAILED:
2706		goto force;
2707	default:
2708		goto nomem;
2709	}
2710nomem:
2711	if (!(gfp_mask & __GFP_NOFAIL))
 
 
 
 
 
 
2712		return -ENOMEM;
2713force:
2714	/*
 
 
 
 
 
 
 
2715	 * The allocation either can't fail or will lead to more memory
2716	 * being freed very soon.  Allow memory usage go over the limit
2717	 * temporarily by force charging it.
2718	 */
2719	page_counter_charge(&memcg->memory, nr_pages);
2720	if (do_memsw_account())
2721		page_counter_charge(&memcg->memsw, nr_pages);
2722
2723	return 0;
2724
2725done_restock:
2726	if (batch > nr_pages)
2727		refill_stock(memcg, batch - nr_pages);
2728
2729	/*
2730	 * If the hierarchy is above the normal consumption range, schedule
2731	 * reclaim on returning to userland.  We can perform reclaim here
2732	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734	 * not recorded as it most likely matches current's and won't
2735	 * change in the meantime.  As high limit is checked again before
2736	 * reclaim, the cost of mismatch is negligible.
2737	 */
2738	do {
2739		bool mem_high, swap_high;
2740
2741		mem_high = page_counter_read(&memcg->memory) >
2742			READ_ONCE(memcg->memory.high);
2743		swap_high = page_counter_read(&memcg->swap) >
2744			READ_ONCE(memcg->swap.high);
2745
2746		/* Don't bother a random interrupted task */
2747		if (in_interrupt()) {
2748			if (mem_high) {
2749				schedule_work(&memcg->high_work);
2750				break;
2751			}
2752			continue;
2753		}
2754
2755		if (mem_high || swap_high) {
2756			/*
2757			 * The allocating tasks in this cgroup will need to do
2758			 * reclaim or be throttled to prevent further growth
2759			 * of the memory or swap footprints.
2760			 *
2761			 * Target some best-effort fairness between the tasks,
2762			 * and distribute reclaim work and delay penalties
2763			 * based on how much each task is actually allocating.
2764			 */
2765			current->memcg_nr_pages_over_high += batch;
2766			set_notify_resume(current);
2767			break;
2768		}
2769	} while ((memcg = parent_mem_cgroup(memcg)));
2770
 
 
 
 
 
2771	return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775			     unsigned int nr_pages)
2776{
2777	if (mem_cgroup_is_root(memcg))
2778		return 0;
2779
2780	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786	if (mem_cgroup_is_root(memcg))
2787		return;
2788
2789	page_counter_uncharge(&memcg->memory, nr_pages);
2790	if (do_memsw_account())
2791		page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797	VM_BUG_ON_PAGE(page_memcg(page), page);
2798	/*
2799	 * Any of the following ensures page's memcg stability:
2800	 *
2801	 * - the page lock
2802	 * - LRU isolation
2803	 * - lock_page_memcg()
2804	 * - exclusive reference
 
2805	 */
2806	page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811	struct mem_cgroup *memcg;
2812
2813	rcu_read_lock();
2814retry:
2815	memcg = obj_cgroup_memcg(objcg);
2816	if (unlikely(!css_tryget(&memcg->css)))
2817		goto retry;
2818	rcu_read_unlock();
2819
2820	return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832				 gfp_t gfp, bool new_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833{
2834	unsigned int objects = objs_per_slab_page(s, page);
2835	unsigned long memcg_data;
2836	void *vec;
2837
2838	gfp &= ~OBJCGS_CLEAR_MASK;
2839	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840			   page_to_nid(page));
2841	if (!vec)
2842		return -ENOMEM;
2843
2844	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845	if (new_page) {
2846		/*
2847		 * If the slab page is brand new and nobody can yet access
2848		 * it's memcg_data, no synchronization is required and
2849		 * memcg_data can be simply assigned.
2850		 */
2851		page->memcg_data = memcg_data;
2852	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853		/*
2854		 * If the slab page is already in use, somebody can allocate
2855		 * and assign obj_cgroups in parallel. In this case the existing
2856		 * objcg vector should be reused.
2857		 */
2858		kfree(vec);
2859		return 0;
2860	}
2861
2862	kmemleak_not_leak(vec);
2863	return 0;
2864}
2865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
 
 
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880	struct page *page;
2881
2882	if (mem_cgroup_disabled())
2883		return NULL;
2884
2885	page = virt_to_head_page(p);
2886
2887	/*
2888	 * Slab objects are accounted individually, not per-page.
2889	 * Memcg membership data for each individual object is saved in
2890	 * the page->obj_cgroups.
2891	 */
2892	if (page_objcgs_check(page)) {
2893		struct obj_cgroup *objcg;
2894		unsigned int off;
2895
2896		off = obj_to_index(page->slab_cache, page, p);
2897		objcg = page_objcgs(page)[off];
2898		if (objcg)
2899			return obj_cgroup_memcg(objcg);
2900
 
 
 
 
 
 
 
 
 
 
 
 
 
2901		return NULL;
2902	}
2903
2904	/*
2905	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906	 * check above could fail because the object cgroups vector wasn't set
2907	 * at that moment, but it can be set concurrently.
2908	 * page_memcg_check(page) will guarantee that a proper memory
2909	 * cgroup pointer or NULL will be returned.
2910	 */
2911	return page_memcg_check(page);
 
 
 
 
 
 
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916	struct obj_cgroup *objcg = NULL;
2917	struct mem_cgroup *memcg;
2918
2919	if (memcg_kmem_bypass())
2920		return NULL;
2921
2922	rcu_read_lock();
2923	if (unlikely(active_memcg()))
2924		memcg = active_memcg();
2925	else
2926		memcg = mem_cgroup_from_task(current);
2927
2928	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929		objcg = rcu_dereference(memcg->objcg);
2930		if (objcg && obj_cgroup_tryget(objcg))
2931			break;
2932		objcg = NULL;
2933	}
2934	rcu_read_unlock();
2935
2936	return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941	int id, size;
2942	int err;
2943
2944	id = ida_simple_get(&memcg_cache_ida,
2945			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946	if (id < 0)
2947		return id;
2948
2949	if (id < memcg_nr_cache_ids)
2950		return id;
2951
2952	/*
2953	 * There's no space for the new id in memcg_caches arrays,
2954	 * so we have to grow them.
2955	 */
2956	down_write(&memcg_cache_ids_sem);
2957
2958	size = 2 * (id + 1);
2959	if (size < MEMCG_CACHES_MIN_SIZE)
2960		size = MEMCG_CACHES_MIN_SIZE;
2961	else if (size > MEMCG_CACHES_MAX_SIZE)
2962		size = MEMCG_CACHES_MAX_SIZE;
2963
2964	err = memcg_update_all_list_lrus(size);
2965	if (!err)
2966		memcg_nr_cache_ids = size;
2967
2968	up_write(&memcg_cache_ids_sem);
 
 
 
 
2969
2970	if (err) {
2971		ida_simple_remove(&memcg_cache_ida, id);
2972		return err;
 
 
 
 
2973	}
2974	return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979	ida_simple_remove(&memcg_cache_ida, id);
 
 
 
 
 
 
2980}
2981
 
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988				      unsigned int nr_pages)
2989{
2990	struct mem_cgroup *memcg;
2991
2992	memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995		page_counter_uncharge(&memcg->kmem, nr_pages);
2996	refill_stock(memcg, nr_pages);
2997
2998	css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010				   unsigned int nr_pages)
3011{
3012	struct page_counter *counter;
3013	struct mem_cgroup *memcg;
3014	int ret;
3015
3016	memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019	if (ret)
3020		goto out;
3021
3022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025		/*
3026		 * Enforce __GFP_NOFAIL allocation because callers are not
3027		 * prepared to see failures and likely do not have any failure
3028		 * handling code.
3029		 */
3030		if (gfp & __GFP_NOFAIL) {
3031			page_counter_charge(&memcg->kmem, nr_pages);
3032			goto out;
3033		}
3034		cancel_charge(memcg, nr_pages);
3035		ret = -ENOMEM;
3036	}
3037out:
3038	css_put(&memcg->css);
3039
3040	return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053	struct obj_cgroup *objcg;
3054	int ret = 0;
3055
3056	objcg = get_obj_cgroup_from_current();
3057	if (objcg) {
3058		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059		if (!ret) {
3060			page->memcg_data = (unsigned long)objcg |
3061				MEMCG_DATA_KMEM;
3062			return 0;
3063		}
3064		obj_cgroup_put(objcg);
3065	}
3066	return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
 
3076	struct obj_cgroup *objcg;
3077	unsigned int nr_pages = 1 << order;
3078
3079	if (!PageMemcgKmem(page))
3080		return;
3081
3082	objcg = __page_objcg(page);
3083	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084	page->memcg_data = 0;
3085	obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089		     enum node_stat_item idx, int nr)
3090{
 
 
3091	unsigned long flags;
3092	struct obj_stock *stock = get_obj_stock(&flags);
3093	int *bytes;
3094
 
 
 
3095	/*
3096	 * Save vmstat data in stock and skip vmstat array update unless
3097	 * accumulating over a page of vmstat data or when pgdat or idx
3098	 * changes.
3099	 */
3100	if (stock->cached_objcg != objcg) {
3101		drain_obj_stock(stock);
3102		obj_cgroup_get(objcg);
3103		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105		stock->cached_objcg = objcg;
3106		stock->cached_pgdat = pgdat;
3107	} else if (stock->cached_pgdat != pgdat) {
3108		/* Flush the existing cached vmstat data */
3109		struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111		if (stock->nr_slab_reclaimable_b) {
3112			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113					  stock->nr_slab_reclaimable_b);
3114			stock->nr_slab_reclaimable_b = 0;
3115		}
3116		if (stock->nr_slab_unreclaimable_b) {
3117			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118					  stock->nr_slab_unreclaimable_b);
3119			stock->nr_slab_unreclaimable_b = 0;
3120		}
3121		stock->cached_pgdat = pgdat;
3122	}
3123
3124	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125					       : &stock->nr_slab_unreclaimable_b;
3126	/*
3127	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128	 * cached locally at least once before pushing it out.
3129	 */
3130	if (!*bytes) {
3131		*bytes = nr;
3132		nr = 0;
3133	} else {
3134		*bytes += nr;
3135		if (abs(*bytes) > PAGE_SIZE) {
3136			nr = *bytes;
3137			*bytes = 0;
3138		} else {
3139			nr = 0;
3140		}
3141	}
3142	if (nr)
3143		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145	put_obj_stock(flags);
 
 
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
 
3150	unsigned long flags;
3151	struct obj_stock *stock = get_obj_stock(&flags);
3152	bool ret = false;
3153
 
 
 
3154	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155		stock->nr_bytes -= nr_bytes;
3156		ret = true;
3157	}
3158
3159	put_obj_stock(flags);
3160
3161	return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166	struct obj_cgroup *old = stock->cached_objcg;
3167
3168	if (!old)
3169		return;
3170
3171	if (stock->nr_bytes) {
3172		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175		if (nr_pages)
3176			obj_cgroup_uncharge_pages(old, nr_pages);
 
 
 
 
 
 
 
 
3177
3178		/*
3179		 * The leftover is flushed to the centralized per-memcg value.
3180		 * On the next attempt to refill obj stock it will be moved
3181		 * to a per-cpu stock (probably, on an other CPU), see
3182		 * refill_obj_stock().
3183		 *
3184		 * How often it's flushed is a trade-off between the memory
3185		 * limit enforcement accuracy and potential CPU contention,
3186		 * so it might be changed in the future.
3187		 */
3188		atomic_add(nr_bytes, &old->nr_charged_bytes);
3189		stock->nr_bytes = 0;
3190	}
3191
3192	/*
3193	 * Flush the vmstat data in current stock
3194	 */
3195	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196		if (stock->nr_slab_reclaimable_b) {
3197			mod_objcg_mlstate(old, stock->cached_pgdat,
3198					  NR_SLAB_RECLAIMABLE_B,
3199					  stock->nr_slab_reclaimable_b);
3200			stock->nr_slab_reclaimable_b = 0;
3201		}
3202		if (stock->nr_slab_unreclaimable_b) {
3203			mod_objcg_mlstate(old, stock->cached_pgdat,
3204					  NR_SLAB_UNRECLAIMABLE_B,
3205					  stock->nr_slab_unreclaimable_b);
3206			stock->nr_slab_unreclaimable_b = 0;
3207		}
3208		stock->cached_pgdat = NULL;
3209	}
3210
3211	obj_cgroup_put(old);
3212	stock->cached_objcg = NULL;
 
 
 
 
 
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216				     struct mem_cgroup *root_memcg)
3217{
3218	struct mem_cgroup *memcg;
3219
3220	if (in_task() && stock->task_obj.cached_objcg) {
3221		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223			return true;
3224	}
3225	if (stock->irq_obj.cached_objcg) {
3226		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228			return true;
3229	}
3230
3231	return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235			     bool allow_uncharge)
3236{
 
 
3237	unsigned long flags;
3238	struct obj_stock *stock = get_obj_stock(&flags);
3239	unsigned int nr_pages = 0;
3240
 
 
 
3241	if (stock->cached_objcg != objcg) { /* reset if necessary */
3242		drain_obj_stock(stock);
3243		obj_cgroup_get(objcg);
3244		stock->cached_objcg = objcg;
3245		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3248	}
3249	stock->nr_bytes += nr_bytes;
3250
3251	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253		stock->nr_bytes &= (PAGE_SIZE - 1);
3254	}
3255
3256	put_obj_stock(flags);
 
 
3257
3258	if (nr_pages)
3259		obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264	unsigned int nr_pages, nr_bytes;
3265	int ret;
3266
3267	if (consume_obj_stock(objcg, size))
3268		return 0;
3269
3270	/*
3271	 * In theory, objcg->nr_charged_bytes can have enough
3272	 * pre-charged bytes to satisfy the allocation. However,
3273	 * flushing objcg->nr_charged_bytes requires two atomic
3274	 * operations, and objcg->nr_charged_bytes can't be big.
3275	 * The shared objcg->nr_charged_bytes can also become a
3276	 * performance bottleneck if all tasks of the same memcg are
3277	 * trying to update it. So it's better to ignore it and try
3278	 * grab some new pages. The stock's nr_bytes will be flushed to
3279	 * objcg->nr_charged_bytes later on when objcg changes.
3280	 *
3281	 * The stock's nr_bytes may contain enough pre-charged bytes
3282	 * to allow one less page from being charged, but we can't rely
3283	 * on the pre-charged bytes not being changed outside of
3284	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285	 * pre-charged bytes as well when charging pages. To avoid a
3286	 * page uncharge right after a page charge, we set the
3287	 * allow_uncharge flag to false when calling refill_obj_stock()
3288	 * to temporarily allow the pre-charged bytes to exceed the page
3289	 * size limit. The maximum reachable value of the pre-charged
3290	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291	 * race.
3292	 */
3293	nr_pages = size >> PAGE_SHIFT;
3294	nr_bytes = size & (PAGE_SIZE - 1);
3295
3296	if (nr_bytes)
3297		nr_pages += 1;
3298
3299	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300	if (!ret && nr_bytes)
3301		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303	return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308	refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318	struct mem_cgroup *memcg = page_memcg(head);
 
3319	int i;
3320
3321	if (mem_cgroup_disabled() || !memcg)
3322		return;
3323
3324	for (i = 1; i < nr; i++)
3325		head[i].memcg_data = head->memcg_data;
3326
3327	if (PageMemcgKmem(head))
3328		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329	else
3330		css_get_many(&memcg->css, nr - 1);
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from:  mem_cgroup which the entry is moved from
3338 * @to:  mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349				struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351	unsigned short old_id, new_id;
3352
3353	old_id = mem_cgroup_id(from);
3354	new_id = mem_cgroup_id(to);
3355
3356	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357		mod_memcg_state(from, MEMCG_SWAP, -1);
3358		mod_memcg_state(to, MEMCG_SWAP, 1);
3359		return 0;
3360	}
3361	return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365				struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367	return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374				 unsigned long max, bool memsw)
3375{
3376	bool enlarge = false;
3377	bool drained = false;
3378	int ret;
3379	bool limits_invariant;
3380	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382	do {
3383		if (signal_pending(current)) {
3384			ret = -EINTR;
3385			break;
3386		}
3387
3388		mutex_lock(&memcg_max_mutex);
3389		/*
3390		 * Make sure that the new limit (memsw or memory limit) doesn't
3391		 * break our basic invariant rule memory.max <= memsw.max.
3392		 */
3393		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394					   max <= memcg->memsw.max;
3395		if (!limits_invariant) {
3396			mutex_unlock(&memcg_max_mutex);
3397			ret = -EINVAL;
3398			break;
3399		}
3400		if (max > counter->max)
3401			enlarge = true;
3402		ret = page_counter_set_max(counter, max);
3403		mutex_unlock(&memcg_max_mutex);
3404
3405		if (!ret)
3406			break;
3407
3408		if (!drained) {
3409			drain_all_stock(memcg);
3410			drained = true;
3411			continue;
3412		}
3413
3414		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415					GFP_KERNEL, !memsw)) {
3416			ret = -EBUSY;
3417			break;
3418		}
3419	} while (true);
3420
3421	if (!ret && enlarge)
3422		memcg_oom_recover(memcg);
3423
3424	return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428					    gfp_t gfp_mask,
3429					    unsigned long *total_scanned)
3430{
3431	unsigned long nr_reclaimed = 0;
3432	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433	unsigned long reclaimed;
3434	int loop = 0;
3435	struct mem_cgroup_tree_per_node *mctz;
3436	unsigned long excess;
3437	unsigned long nr_scanned;
3438
3439	if (order > 0)
3440		return 0;
3441
3442	mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444	/*
3445	 * Do not even bother to check the largest node if the root
3446	 * is empty. Do it lockless to prevent lock bouncing. Races
3447	 * are acceptable as soft limit is best effort anyway.
3448	 */
3449	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450		return 0;
3451
3452	/*
3453	 * This loop can run a while, specially if mem_cgroup's continuously
3454	 * keep exceeding their soft limit and putting the system under
3455	 * pressure
3456	 */
3457	do {
3458		if (next_mz)
3459			mz = next_mz;
3460		else
3461			mz = mem_cgroup_largest_soft_limit_node(mctz);
3462		if (!mz)
3463			break;
3464
3465		nr_scanned = 0;
3466		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467						    gfp_mask, &nr_scanned);
3468		nr_reclaimed += reclaimed;
3469		*total_scanned += nr_scanned;
3470		spin_lock_irq(&mctz->lock);
3471		__mem_cgroup_remove_exceeded(mz, mctz);
3472
3473		/*
3474		 * If we failed to reclaim anything from this memory cgroup
3475		 * it is time to move on to the next cgroup
3476		 */
3477		next_mz = NULL;
3478		if (!reclaimed)
3479			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481		excess = soft_limit_excess(mz->memcg);
3482		/*
3483		 * One school of thought says that we should not add
3484		 * back the node to the tree if reclaim returns 0.
3485		 * But our reclaim could return 0, simply because due
3486		 * to priority we are exposing a smaller subset of
3487		 * memory to reclaim from. Consider this as a longer
3488		 * term TODO.
3489		 */
3490		/* If excess == 0, no tree ops */
3491		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3492		spin_unlock_irq(&mctz->lock);
3493		css_put(&mz->memcg->css);
3494		loop++;
3495		/*
3496		 * Could not reclaim anything and there are no more
3497		 * mem cgroups to try or we seem to be looping without
3498		 * reclaiming anything.
3499		 */
3500		if (!nr_reclaimed &&
3501			(next_mz == NULL ||
3502			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503			break;
3504	} while (!nr_reclaimed);
3505	if (next_mz)
3506		css_put(&next_mz->memcg->css);
3507	return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517	int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519	/* we call try-to-free pages for make this cgroup empty */
3520	lru_add_drain_all();
3521
3522	drain_all_stock(memcg);
3523
3524	/* try to free all pages in this cgroup */
3525	while (nr_retries && page_counter_read(&memcg->memory)) {
3526		int progress;
3527
3528		if (signal_pending(current))
3529			return -EINTR;
3530
3531		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532							GFP_KERNEL, true);
3533		if (!progress) {
3534			nr_retries--;
3535			/* maybe some writeback is necessary */
3536			congestion_wait(BLK_RW_ASYNC, HZ/10);
3537		}
3538
3539	}
3540
3541	return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545					    char *buf, size_t nbytes,
3546					    loff_t off)
3547{
3548	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550	if (mem_cgroup_is_root(memcg))
3551		return -EINVAL;
3552	return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556				     struct cftype *cft)
3557{
3558	return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562				      struct cftype *cft, u64 val)
3563{
3564	if (val == 1)
3565		return 0;
3566
3567	pr_warn_once("Non-hierarchical mode is deprecated. "
3568		     "Please report your usecase to linux-mm@kvack.org if you "
3569		     "depend on this functionality.\n");
3570
3571	return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576	unsigned long val;
3577
3578	if (mem_cgroup_is_root(memcg)) {
3579		/* mem_cgroup_threshold() calls here from irqsafe context */
3580		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582			memcg_page_state(memcg, NR_ANON_MAPPED);
3583		if (swap)
3584			val += memcg_page_state(memcg, MEMCG_SWAP);
3585	} else {
3586		if (!swap)
3587			val = page_counter_read(&memcg->memory);
3588		else
3589			val = page_counter_read(&memcg->memsw);
3590	}
3591	return val;
3592}
3593
3594enum {
3595	RES_USAGE,
3596	RES_LIMIT,
3597	RES_MAX_USAGE,
3598	RES_FAILCNT,
3599	RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603			       struct cftype *cft)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606	struct page_counter *counter;
3607
3608	switch (MEMFILE_TYPE(cft->private)) {
3609	case _MEM:
3610		counter = &memcg->memory;
3611		break;
3612	case _MEMSWAP:
3613		counter = &memcg->memsw;
3614		break;
3615	case _KMEM:
3616		counter = &memcg->kmem;
3617		break;
3618	case _TCP:
3619		counter = &memcg->tcpmem;
3620		break;
3621	default:
3622		BUG();
3623	}
3624
3625	switch (MEMFILE_ATTR(cft->private)) {
3626	case RES_USAGE:
3627		if (counter == &memcg->memory)
3628			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629		if (counter == &memcg->memsw)
3630			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631		return (u64)page_counter_read(counter) * PAGE_SIZE;
3632	case RES_LIMIT:
3633		return (u64)counter->max * PAGE_SIZE;
3634	case RES_MAX_USAGE:
3635		return (u64)counter->watermark * PAGE_SIZE;
3636	case RES_FAILCNT:
3637		return counter->failcnt;
3638	case RES_SOFT_LIMIT:
3639		return (u64)memcg->soft_limit * PAGE_SIZE;
3640	default:
3641		BUG();
3642	}
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648	struct obj_cgroup *objcg;
3649	int memcg_id;
3650
3651	if (cgroup_memory_nokmem)
3652		return 0;
3653
3654	BUG_ON(memcg->kmemcg_id >= 0);
3655	BUG_ON(memcg->kmem_state);
3656
3657	memcg_id = memcg_alloc_cache_id();
3658	if (memcg_id < 0)
3659		return memcg_id;
3660
3661	objcg = obj_cgroup_alloc();
3662	if (!objcg) {
3663		memcg_free_cache_id(memcg_id);
3664		return -ENOMEM;
3665	}
3666	objcg->memcg = memcg;
3667	rcu_assign_pointer(memcg->objcg, objcg);
3668
3669	static_branch_enable(&memcg_kmem_enabled_key);
3670
3671	memcg->kmemcg_id = memcg_id;
3672	memcg->kmem_state = KMEM_ONLINE;
3673
3674	return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679	struct cgroup_subsys_state *css;
3680	struct mem_cgroup *parent, *child;
3681	int kmemcg_id;
3682
3683	if (memcg->kmem_state != KMEM_ONLINE)
3684		return;
3685
3686	memcg->kmem_state = KMEM_ALLOCATED;
 
3687
3688	parent = parent_mem_cgroup(memcg);
3689	if (!parent)
3690		parent = root_mem_cgroup;
3691
3692	memcg_reparent_objcgs(memcg, parent);
3693
3694	kmemcg_id = memcg->kmemcg_id;
3695	BUG_ON(kmemcg_id < 0);
3696
3697	/*
3698	 * Change kmemcg_id of this cgroup and all its descendants to the
3699	 * parent's id, and then move all entries from this cgroup's list_lrus
3700	 * to ones of the parent. After we have finished, all list_lrus
3701	 * corresponding to this cgroup are guaranteed to remain empty. The
3702	 * ordering is imposed by list_lru_node->lock taken by
3703	 * memcg_drain_all_list_lrus().
3704	 */
3705	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706	css_for_each_descendant_pre(css, &memcg->css) {
3707		child = mem_cgroup_from_css(css);
3708		BUG_ON(child->kmemcg_id != kmemcg_id);
3709		child->kmemcg_id = parent->kmemcg_id;
3710	}
3711	rcu_read_unlock();
3712
3713	memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715	memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720	/* css_alloc() failed, offlining didn't happen */
3721	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722		memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738				 unsigned long max)
3739{
3740	int ret;
3741
3742	mutex_lock(&memcg_max_mutex);
3743	ret = page_counter_set_max(&memcg->kmem, max);
3744	mutex_unlock(&memcg_max_mutex);
3745	return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750	int ret;
3751
3752	mutex_lock(&memcg_max_mutex);
3753
3754	ret = page_counter_set_max(&memcg->tcpmem, max);
3755	if (ret)
3756		goto out;
3757
3758	if (!memcg->tcpmem_active) {
3759		/*
3760		 * The active flag needs to be written after the static_key
3761		 * update. This is what guarantees that the socket activation
3762		 * function is the last one to run. See mem_cgroup_sk_alloc()
3763		 * for details, and note that we don't mark any socket as
3764		 * belonging to this memcg until that flag is up.
3765		 *
3766		 * We need to do this, because static_keys will span multiple
3767		 * sites, but we can't control their order. If we mark a socket
3768		 * as accounted, but the accounting functions are not patched in
3769		 * yet, we'll lose accounting.
3770		 *
3771		 * We never race with the readers in mem_cgroup_sk_alloc(),
3772		 * because when this value change, the code to process it is not
3773		 * patched in yet.
3774		 */
3775		static_branch_inc(&memcg_sockets_enabled_key);
3776		memcg->tcpmem_active = true;
3777	}
3778out:
3779	mutex_unlock(&memcg_max_mutex);
3780	return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788				char *buf, size_t nbytes, loff_t off)
3789{
3790	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791	unsigned long nr_pages;
3792	int ret;
3793
3794	buf = strstrip(buf);
3795	ret = page_counter_memparse(buf, "-1", &nr_pages);
3796	if (ret)
3797		return ret;
3798
3799	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800	case RES_LIMIT:
3801		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802			ret = -EINVAL;
3803			break;
3804		}
3805		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806		case _MEM:
3807			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808			break;
3809		case _MEMSWAP:
3810			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811			break;
3812		case _KMEM:
3813			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814				     "Please report your usecase to linux-mm@kvack.org if you "
3815				     "depend on this functionality.\n");
3816			ret = memcg_update_kmem_max(memcg, nr_pages);
3817			break;
3818		case _TCP:
3819			ret = memcg_update_tcp_max(memcg, nr_pages);
3820			break;
3821		}
3822		break;
3823	case RES_SOFT_LIMIT:
3824		memcg->soft_limit = nr_pages;
3825		ret = 0;
 
 
 
 
3826		break;
3827	}
3828	return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832				size_t nbytes, loff_t off)
3833{
3834	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835	struct page_counter *counter;
3836
3837	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838	case _MEM:
3839		counter = &memcg->memory;
3840		break;
3841	case _MEMSWAP:
3842		counter = &memcg->memsw;
3843		break;
3844	case _KMEM:
3845		counter = &memcg->kmem;
3846		break;
3847	case _TCP:
3848		counter = &memcg->tcpmem;
3849		break;
3850	default:
3851		BUG();
3852	}
3853
3854	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855	case RES_MAX_USAGE:
3856		page_counter_reset_watermark(counter);
3857		break;
3858	case RES_FAILCNT:
3859		counter->failcnt = 0;
3860		break;
3861	default:
3862		BUG();
3863	}
3864
3865	return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869					struct cftype *cft)
3870{
3871	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876					struct cftype *cft, u64 val)
3877{
3878	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880	if (val & ~MOVE_MASK)
3881		return -EINVAL;
3882
3883	/*
3884	 * No kind of locking is needed in here, because ->can_attach() will
3885	 * check this value once in the beginning of the process, and then carry
3886	 * on with stale data. This means that changes to this value will only
3887	 * affect task migrations starting after the change.
3888	 */
3889	memcg->move_charge_at_immigrate = val;
3890	return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894					struct cftype *cft, u64 val)
3895{
3896	return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907				int nid, unsigned int lru_mask, bool tree)
3908{
3909	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910	unsigned long nr = 0;
3911	enum lru_list lru;
3912
3913	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915	for_each_lru(lru) {
3916		if (!(BIT(lru) & lru_mask))
3917			continue;
3918		if (tree)
3919			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920		else
3921			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922	}
3923	return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927					     unsigned int lru_mask,
3928					     bool tree)
3929{
3930	unsigned long nr = 0;
3931	enum lru_list lru;
3932
3933	for_each_lru(lru) {
3934		if (!(BIT(lru) & lru_mask))
3935			continue;
3936		if (tree)
3937			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938		else
3939			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940	}
3941	return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946	struct numa_stat {
3947		const char *name;
3948		unsigned int lru_mask;
3949	};
3950
3951	static const struct numa_stat stats[] = {
3952		{ "total", LRU_ALL },
3953		{ "file", LRU_ALL_FILE },
3954		{ "anon", LRU_ALL_ANON },
3955		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3956	};
3957	const struct numa_stat *stat;
3958	int nid;
3959	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961	cgroup_rstat_flush(memcg->css.cgroup);
3962
3963	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964		seq_printf(m, "%s=%lu", stat->name,
3965			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966						   false));
3967		for_each_node_state(nid, N_MEMORY)
3968			seq_printf(m, " N%d=%lu", nid,
3969				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3970							stat->lru_mask, false));
3971		seq_putc(m, '\n');
3972	}
3973
3974	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978						   true));
3979		for_each_node_state(nid, N_MEMORY)
3980			seq_printf(m, " N%d=%lu", nid,
3981				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3982							stat->lru_mask, true));
3983		seq_putc(m, '\n');
3984	}
3985
3986	return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991	NR_FILE_PAGES,
3992	NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994	NR_ANON_THPS,
3995#endif
3996	NR_SHMEM,
3997	NR_FILE_MAPPED,
3998	NR_FILE_DIRTY,
3999	NR_WRITEBACK,
 
 
4000	MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004	"cache",
4005	"rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007	"rss_huge",
4008#endif
4009	"shmem",
4010	"mapped_file",
4011	"dirty",
4012	"writeback",
 
 
4013	"swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018	PGPGIN,
4019	PGPGOUT,
4020	PGFAULT,
4021	PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027	unsigned long memory, memsw;
4028	struct mem_cgroup *mi;
4029	unsigned int i;
4030
4031	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033	cgroup_rstat_flush(memcg->css.cgroup);
4034
4035	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036		unsigned long nr;
4037
4038		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039			continue;
4040		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
 
4042	}
4043
4044	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046			   memcg_events_local(memcg, memcg1_events[i]));
4047
4048	for (i = 0; i < NR_LRU_LISTS; i++)
4049		seq_printf(m, "%s %lu\n", lru_list_name(i),
4050			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051			   PAGE_SIZE);
4052
4053	/* Hierarchical information */
4054	memory = memsw = PAGE_COUNTER_MAX;
4055	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056		memory = min(memory, READ_ONCE(mi->memory.max));
4057		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058	}
4059	seq_printf(m, "hierarchical_memory_limit %llu\n",
4060		   (u64)memory * PAGE_SIZE);
4061	if (do_memsw_account())
4062		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063			   (u64)memsw * PAGE_SIZE);
4064
4065	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066		unsigned long nr;
4067
4068		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069			continue;
4070		nr = memcg_page_state(memcg, memcg1_stats[i]);
4071		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072						(u64)nr * PAGE_SIZE);
4073	}
4074
4075	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076		seq_printf(m, "total_%s %llu\n",
4077			   vm_event_name(memcg1_events[i]),
4078			   (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080	for (i = 0; i < NR_LRU_LISTS; i++)
4081		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083			   PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086	{
4087		pg_data_t *pgdat;
4088		struct mem_cgroup_per_node *mz;
4089		unsigned long anon_cost = 0;
4090		unsigned long file_cost = 0;
4091
4092		for_each_online_pgdat(pgdat) {
4093			mz = memcg->nodeinfo[pgdat->node_id];
4094
4095			anon_cost += mz->lruvec.anon_cost;
4096			file_cost += mz->lruvec.file_cost;
4097		}
4098		seq_printf(m, "anon_cost %lu\n", anon_cost);
4099		seq_printf(m, "file_cost %lu\n", file_cost);
4100	}
4101#endif
4102
4103	return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107				      struct cftype *cft)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115				       struct cftype *cft, u64 val)
4116{
4117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119	if (val > 100)
4120		return -EINVAL;
4121
4122	if (!mem_cgroup_is_root(memcg))
4123		memcg->swappiness = val;
4124	else
4125		vm_swappiness = val;
4126
4127	return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132	struct mem_cgroup_threshold_ary *t;
4133	unsigned long usage;
4134	int i;
4135
4136	rcu_read_lock();
4137	if (!swap)
4138		t = rcu_dereference(memcg->thresholds.primary);
4139	else
4140		t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142	if (!t)
4143		goto unlock;
4144
4145	usage = mem_cgroup_usage(memcg, swap);
4146
4147	/*
4148	 * current_threshold points to threshold just below or equal to usage.
4149	 * If it's not true, a threshold was crossed after last
4150	 * call of __mem_cgroup_threshold().
4151	 */
4152	i = t->current_threshold;
4153
4154	/*
4155	 * Iterate backward over array of thresholds starting from
4156	 * current_threshold and check if a threshold is crossed.
4157	 * If none of thresholds below usage is crossed, we read
4158	 * only one element of the array here.
4159	 */
4160	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161		eventfd_signal(t->entries[i].eventfd, 1);
4162
4163	/* i = current_threshold + 1 */
4164	i++;
4165
4166	/*
4167	 * Iterate forward over array of thresholds starting from
4168	 * current_threshold+1 and check if a threshold is crossed.
4169	 * If none of thresholds above usage is crossed, we read
4170	 * only one element of the array here.
4171	 */
4172	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173		eventfd_signal(t->entries[i].eventfd, 1);
4174
4175	/* Update current_threshold */
4176	t->current_threshold = i - 1;
4177unlock:
4178	rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183	while (memcg) {
4184		__mem_cgroup_threshold(memcg, false);
4185		if (do_memsw_account())
4186			__mem_cgroup_threshold(memcg, true);
4187
4188		memcg = parent_mem_cgroup(memcg);
4189	}
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194	const struct mem_cgroup_threshold *_a = a;
4195	const struct mem_cgroup_threshold *_b = b;
4196
4197	if (_a->threshold > _b->threshold)
4198		return 1;
4199
4200	if (_a->threshold < _b->threshold)
4201		return -1;
4202
4203	return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208	struct mem_cgroup_eventfd_list *ev;
4209
4210	spin_lock(&memcg_oom_lock);
4211
4212	list_for_each_entry(ev, &memcg->oom_notify, list)
4213		eventfd_signal(ev->eventfd, 1);
4214
4215	spin_unlock(&memcg_oom_lock);
4216	return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, memcg)
4224		mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230	struct mem_cgroup_thresholds *thresholds;
4231	struct mem_cgroup_threshold_ary *new;
4232	unsigned long threshold;
4233	unsigned long usage;
4234	int i, size, ret;
4235
4236	ret = page_counter_memparse(args, "-1", &threshold);
4237	if (ret)
4238		return ret;
4239
4240	mutex_lock(&memcg->thresholds_lock);
4241
4242	if (type == _MEM) {
4243		thresholds = &memcg->thresholds;
4244		usage = mem_cgroup_usage(memcg, false);
4245	} else if (type == _MEMSWAP) {
4246		thresholds = &memcg->memsw_thresholds;
4247		usage = mem_cgroup_usage(memcg, true);
4248	} else
4249		BUG();
4250
4251	/* Check if a threshold crossed before adding a new one */
4252	if (thresholds->primary)
4253		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257	/* Allocate memory for new array of thresholds */
4258	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259	if (!new) {
4260		ret = -ENOMEM;
4261		goto unlock;
4262	}
4263	new->size = size;
4264
4265	/* Copy thresholds (if any) to new array */
4266	if (thresholds->primary)
4267		memcpy(new->entries, thresholds->primary->entries,
4268		       flex_array_size(new, entries, size - 1));
4269
4270	/* Add new threshold */
4271	new->entries[size - 1].eventfd = eventfd;
4272	new->entries[size - 1].threshold = threshold;
4273
4274	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275	sort(new->entries, size, sizeof(*new->entries),
4276			compare_thresholds, NULL);
4277
4278	/* Find current threshold */
4279	new->current_threshold = -1;
4280	for (i = 0; i < size; i++) {
4281		if (new->entries[i].threshold <= usage) {
4282			/*
4283			 * new->current_threshold will not be used until
4284			 * rcu_assign_pointer(), so it's safe to increment
4285			 * it here.
4286			 */
4287			++new->current_threshold;
4288		} else
4289			break;
4290	}
4291
4292	/* Free old spare buffer and save old primary buffer as spare */
4293	kfree(thresholds->spare);
4294	thresholds->spare = thresholds->primary;
4295
4296	rcu_assign_pointer(thresholds->primary, new);
4297
4298	/* To be sure that nobody uses thresholds */
4299	synchronize_rcu();
4300
4301unlock:
4302	mutex_unlock(&memcg->thresholds_lock);
4303
4304	return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308	struct eventfd_ctx *eventfd, const char *args)
4309{
4310	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314	struct eventfd_ctx *eventfd, const char *args)
4315{
4316	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320	struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322	struct mem_cgroup_thresholds *thresholds;
4323	struct mem_cgroup_threshold_ary *new;
4324	unsigned long usage;
4325	int i, j, size, entries;
4326
4327	mutex_lock(&memcg->thresholds_lock);
4328
4329	if (type == _MEM) {
4330		thresholds = &memcg->thresholds;
4331		usage = mem_cgroup_usage(memcg, false);
4332	} else if (type == _MEMSWAP) {
4333		thresholds = &memcg->memsw_thresholds;
4334		usage = mem_cgroup_usage(memcg, true);
4335	} else
4336		BUG();
4337
4338	if (!thresholds->primary)
4339		goto unlock;
4340
4341	/* Check if a threshold crossed before removing */
4342	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344	/* Calculate new number of threshold */
4345	size = entries = 0;
4346	for (i = 0; i < thresholds->primary->size; i++) {
4347		if (thresholds->primary->entries[i].eventfd != eventfd)
4348			size++;
4349		else
4350			entries++;
4351	}
4352
4353	new = thresholds->spare;
4354
4355	/* If no items related to eventfd have been cleared, nothing to do */
4356	if (!entries)
4357		goto unlock;
4358
4359	/* Set thresholds array to NULL if we don't have thresholds */
4360	if (!size) {
4361		kfree(new);
4362		new = NULL;
4363		goto swap_buffers;
4364	}
4365
4366	new->size = size;
4367
4368	/* Copy thresholds and find current threshold */
4369	new->current_threshold = -1;
4370	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371		if (thresholds->primary->entries[i].eventfd == eventfd)
4372			continue;
4373
4374		new->entries[j] = thresholds->primary->entries[i];
4375		if (new->entries[j].threshold <= usage) {
4376			/*
4377			 * new->current_threshold will not be used
4378			 * until rcu_assign_pointer(), so it's safe to increment
4379			 * it here.
4380			 */
4381			++new->current_threshold;
4382		}
4383		j++;
4384	}
4385
4386swap_buffers:
4387	/* Swap primary and spare array */
4388	thresholds->spare = thresholds->primary;
4389
4390	rcu_assign_pointer(thresholds->primary, new);
4391
4392	/* To be sure that nobody uses thresholds */
4393	synchronize_rcu();
4394
4395	/* If all events are unregistered, free the spare array */
4396	if (!new) {
4397		kfree(thresholds->spare);
4398		thresholds->spare = NULL;
4399	}
4400unlock:
4401	mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405	struct eventfd_ctx *eventfd)
4406{
4407	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411	struct eventfd_ctx *eventfd)
4412{
4413	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417	struct eventfd_ctx *eventfd, const char *args)
4418{
4419	struct mem_cgroup_eventfd_list *event;
4420
4421	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4422	if (!event)
4423		return -ENOMEM;
4424
4425	spin_lock(&memcg_oom_lock);
4426
4427	event->eventfd = eventfd;
4428	list_add(&event->list, &memcg->oom_notify);
4429
4430	/* already in OOM ? */
4431	if (memcg->under_oom)
4432		eventfd_signal(eventfd, 1);
4433	spin_unlock(&memcg_oom_lock);
4434
4435	return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439	struct eventfd_ctx *eventfd)
4440{
4441	struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443	spin_lock(&memcg_oom_lock);
4444
4445	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446		if (ev->eventfd == eventfd) {
4447			list_del(&ev->list);
4448			kfree(ev);
4449		}
4450	}
4451
4452	spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461	seq_printf(sf, "oom_kill %lu\n",
4462		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463	return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467	struct cftype *cft, u64 val)
4468{
4469	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471	/* cannot set to root cgroup and only 0 and 1 are allowed */
4472	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473		return -EINVAL;
4474
4475	memcg->oom_kill_disable = val;
4476	if (!val)
4477		memcg_oom_recover(memcg);
4478
4479	return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488	return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493	wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498	wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505	if (!memcg->css.parent)
4506		return NULL;
4507
4508	return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors.  Note that this doesn't consider the actual amount of
4526 * available memory in the system.  The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530			 unsigned long *pheadroom, unsigned long *pdirty,
4531			 unsigned long *pwriteback)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534	struct mem_cgroup *parent;
4535
4536	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541			memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543	*pheadroom = PAGE_COUNTER_MAX;
4544	while ((parent = parent_mem_cgroup(memcg))) {
4545		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546					    READ_ONCE(memcg->memory.high));
4547		unsigned long used = page_counter_read(&memcg->memory);
4548
4549		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550		memcg = parent;
4551	}
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback.  The former
4558 * tracks ownership per-page while the latter per-inode.  This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases.  For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode.  B owns the inode and
4568 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback.  A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction.  However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism.  When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599					     struct bdi_writeback *wb)
4600{
4601	struct mem_cgroup *memcg = page_memcg(page);
4602	struct memcg_cgwb_frn *frn;
4603	u64 now = get_jiffies_64();
4604	u64 oldest_at = now;
4605	int oldest = -1;
4606	int i;
4607
4608	trace_track_foreign_dirty(page, wb);
4609
4610	/*
4611	 * Pick the slot to use.  If there is already a slot for @wb, keep
4612	 * using it.  If not replace the oldest one which isn't being
4613	 * written out.
4614	 */
4615	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616		frn = &memcg->cgwb_frn[i];
4617		if (frn->bdi_id == wb->bdi->id &&
4618		    frn->memcg_id == wb->memcg_css->id)
4619			break;
4620		if (time_before64(frn->at, oldest_at) &&
4621		    atomic_read(&frn->done.cnt) == 1) {
4622			oldest = i;
4623			oldest_at = frn->at;
4624		}
4625	}
4626
4627	if (i < MEMCG_CGWB_FRN_CNT) {
4628		/*
4629		 * Re-using an existing one.  Update timestamp lazily to
4630		 * avoid making the cacheline hot.  We want them to be
4631		 * reasonably up-to-date and significantly shorter than
4632		 * dirty_expire_interval as that's what expires the record.
4633		 * Use the shorter of 1s and dirty_expire_interval / 8.
4634		 */
4635		unsigned long update_intv =
4636			min_t(unsigned long, HZ,
4637			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639		if (time_before64(frn->at, now - update_intv))
4640			frn->at = now;
4641	} else if (oldest >= 0) {
4642		/* replace the oldest free one */
4643		frn = &memcg->cgwb_frn[oldest];
4644		frn->bdi_id = wb->bdi->id;
4645		frn->memcg_id = wb->memcg_css->id;
4646		frn->at = now;
4647	}
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655	u64 now = jiffies_64;
4656	int i;
4657
4658	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661		/*
4662		 * If the record is older than dirty_expire_interval,
4663		 * writeback on it has already started.  No need to kick it
4664		 * off again.  Also, don't start a new one if there's
4665		 * already one in flight.
4666		 */
4667		if (time_after64(frn->at, now - intv) &&
4668		    atomic_read(&frn->done.cnt) == 1) {
4669			frn->at = 0;
4670			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672					       WB_REASON_FOREIGN_FLUSH,
4673					       &frn->done);
4674		}
4675	}
4676}
4677
4678#else	/* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682	return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif	/* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered.  It tries to support fully configurable
4701 * events for each user.  Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715	struct mem_cgroup_event *event =
4716		container_of(work, struct mem_cgroup_event, remove);
4717	struct mem_cgroup *memcg = event->memcg;
4718
4719	remove_wait_queue(event->wqh, &event->wait);
4720
4721	event->unregister_event(memcg, event->eventfd);
4722
4723	/* Notify userspace the event is going away. */
4724	eventfd_signal(event->eventfd, 1);
4725
4726	eventfd_ctx_put(event->eventfd);
4727	kfree(event);
4728	css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737			    int sync, void *key)
4738{
4739	struct mem_cgroup_event *event =
4740		container_of(wait, struct mem_cgroup_event, wait);
4741	struct mem_cgroup *memcg = event->memcg;
4742	__poll_t flags = key_to_poll(key);
4743
4744	if (flags & EPOLLHUP) {
4745		/*
4746		 * If the event has been detached at cgroup removal, we
4747		 * can simply return knowing the other side will cleanup
4748		 * for us.
4749		 *
4750		 * We can't race against event freeing since the other
4751		 * side will require wqh->lock via remove_wait_queue(),
4752		 * which we hold.
4753		 */
4754		spin_lock(&memcg->event_list_lock);
4755		if (!list_empty(&event->list)) {
4756			list_del_init(&event->list);
4757			/*
4758			 * We are in atomic context, but cgroup_event_remove()
4759			 * may sleep, so we have to call it in workqueue.
4760			 */
4761			schedule_work(&event->remove);
4762		}
4763		spin_unlock(&memcg->event_list_lock);
4764	}
4765
4766	return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770		wait_queue_head_t *wqh, poll_table *pt)
4771{
4772	struct mem_cgroup_event *event =
4773		container_of(pt, struct mem_cgroup_event, pt);
4774
4775	event->wqh = wqh;
4776	add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788					 char *buf, size_t nbytes, loff_t off)
4789{
4790	struct cgroup_subsys_state *css = of_css(of);
4791	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792	struct mem_cgroup_event *event;
4793	struct cgroup_subsys_state *cfile_css;
4794	unsigned int efd, cfd;
4795	struct fd efile;
4796	struct fd cfile;
 
4797	const char *name;
4798	char *endp;
4799	int ret;
4800
 
 
 
4801	buf = strstrip(buf);
4802
4803	efd = simple_strtoul(buf, &endp, 10);
4804	if (*endp != ' ')
4805		return -EINVAL;
4806	buf = endp + 1;
4807
4808	cfd = simple_strtoul(buf, &endp, 10);
4809	if ((*endp != ' ') && (*endp != '\0'))
4810		return -EINVAL;
4811	buf = endp + 1;
4812
4813	event = kzalloc(sizeof(*event), GFP_KERNEL);
4814	if (!event)
4815		return -ENOMEM;
4816
4817	event->memcg = memcg;
4818	INIT_LIST_HEAD(&event->list);
4819	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821	INIT_WORK(&event->remove, memcg_event_remove);
4822
4823	efile = fdget(efd);
4824	if (!efile.file) {
4825		ret = -EBADF;
4826		goto out_kfree;
4827	}
4828
4829	event->eventfd = eventfd_ctx_fileget(efile.file);
4830	if (IS_ERR(event->eventfd)) {
4831		ret = PTR_ERR(event->eventfd);
4832		goto out_put_efile;
4833	}
4834
4835	cfile = fdget(cfd);
4836	if (!cfile.file) {
4837		ret = -EBADF;
4838		goto out_put_eventfd;
4839	}
4840
4841	/* the process need read permission on control file */
4842	/* AV: shouldn't we check that it's been opened for read instead? */
4843	ret = file_permission(cfile.file, MAY_READ);
4844	if (ret < 0)
4845		goto out_put_cfile;
4846
4847	/*
 
 
 
 
 
 
 
 
 
 
4848	 * Determine the event callbacks and set them in @event.  This used
4849	 * to be done via struct cftype but cgroup core no longer knows
4850	 * about these events.  The following is crude but the whole thing
4851	 * is for compatibility anyway.
4852	 *
4853	 * DO NOT ADD NEW FILES.
4854	 */
4855	name = cfile.file->f_path.dentry->d_name.name;
4856
4857	if (!strcmp(name, "memory.usage_in_bytes")) {
4858		event->register_event = mem_cgroup_usage_register_event;
4859		event->unregister_event = mem_cgroup_usage_unregister_event;
4860	} else if (!strcmp(name, "memory.oom_control")) {
4861		event->register_event = mem_cgroup_oom_register_event;
4862		event->unregister_event = mem_cgroup_oom_unregister_event;
4863	} else if (!strcmp(name, "memory.pressure_level")) {
4864		event->register_event = vmpressure_register_event;
4865		event->unregister_event = vmpressure_unregister_event;
4866	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867		event->register_event = memsw_cgroup_usage_register_event;
4868		event->unregister_event = memsw_cgroup_usage_unregister_event;
4869	} else {
4870		ret = -EINVAL;
4871		goto out_put_cfile;
4872	}
4873
4874	/*
4875	 * Verify @cfile should belong to @css.  Also, remaining events are
4876	 * automatically removed on cgroup destruction but the removal is
4877	 * asynchronous, so take an extra ref on @css.
4878	 */
4879	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880					       &memory_cgrp_subsys);
4881	ret = -EINVAL;
4882	if (IS_ERR(cfile_css))
4883		goto out_put_cfile;
4884	if (cfile_css != css) {
4885		css_put(cfile_css);
4886		goto out_put_cfile;
4887	}
4888
4889	ret = event->register_event(memcg, event->eventfd, buf);
4890	if (ret)
4891		goto out_put_css;
4892
4893	vfs_poll(efile.file, &event->pt);
4894
4895	spin_lock(&memcg->event_list_lock);
4896	list_add(&event->list, &memcg->event_list);
4897	spin_unlock(&memcg->event_list_lock);
4898
4899	fdput(cfile);
4900	fdput(efile);
4901
4902	return nbytes;
4903
4904out_put_css:
4905	css_put(css);
4906out_put_cfile:
4907	fdput(cfile);
4908out_put_eventfd:
4909	eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911	fdput(efile);
4912out_kfree:
4913	kfree(event);
4914
4915	return ret;
4916}
4917
 
 
 
 
 
 
 
 
 
 
 
4918static struct cftype mem_cgroup_legacy_files[] = {
4919	{
4920		.name = "usage_in_bytes",
4921		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922		.read_u64 = mem_cgroup_read_u64,
4923	},
4924	{
4925		.name = "max_usage_in_bytes",
4926		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927		.write = mem_cgroup_reset,
4928		.read_u64 = mem_cgroup_read_u64,
4929	},
4930	{
4931		.name = "limit_in_bytes",
4932		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933		.write = mem_cgroup_write,
4934		.read_u64 = mem_cgroup_read_u64,
4935	},
4936	{
4937		.name = "soft_limit_in_bytes",
4938		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939		.write = mem_cgroup_write,
4940		.read_u64 = mem_cgroup_read_u64,
4941	},
4942	{
4943		.name = "failcnt",
4944		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945		.write = mem_cgroup_reset,
4946		.read_u64 = mem_cgroup_read_u64,
4947	},
4948	{
4949		.name = "stat",
4950		.seq_show = memcg_stat_show,
4951	},
4952	{
4953		.name = "force_empty",
4954		.write = mem_cgroup_force_empty_write,
4955	},
4956	{
4957		.name = "use_hierarchy",
4958		.write_u64 = mem_cgroup_hierarchy_write,
4959		.read_u64 = mem_cgroup_hierarchy_read,
4960	},
4961	{
4962		.name = "cgroup.event_control",		/* XXX: for compat */
4963		.write = memcg_write_event_control,
4964		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965	},
4966	{
4967		.name = "swappiness",
4968		.read_u64 = mem_cgroup_swappiness_read,
4969		.write_u64 = mem_cgroup_swappiness_write,
4970	},
4971	{
4972		.name = "move_charge_at_immigrate",
4973		.read_u64 = mem_cgroup_move_charge_read,
4974		.write_u64 = mem_cgroup_move_charge_write,
4975	},
4976	{
4977		.name = "oom_control",
4978		.seq_show = mem_cgroup_oom_control_read,
4979		.write_u64 = mem_cgroup_oom_control_write,
4980		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981	},
4982	{
4983		.name = "pressure_level",
4984	},
4985#ifdef CONFIG_NUMA
4986	{
4987		.name = "numa_stat",
4988		.seq_show = memcg_numa_stat_show,
4989	},
4990#endif
4991	{
4992		.name = "kmem.limit_in_bytes",
4993		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994		.write = mem_cgroup_write,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "kmem.usage_in_bytes",
4999		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000		.read_u64 = mem_cgroup_read_u64,
5001	},
5002	{
5003		.name = "kmem.failcnt",
5004		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005		.write = mem_cgroup_reset,
5006		.read_u64 = mem_cgroup_read_u64,
5007	},
5008	{
5009		.name = "kmem.max_usage_in_bytes",
5010		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011		.write = mem_cgroup_reset,
5012		.read_u64 = mem_cgroup_read_u64,
5013	},
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016	{
5017		.name = "kmem.slabinfo",
5018		.seq_show = memcg_slab_show,
5019	},
5020#endif
5021	{
5022		.name = "kmem.tcp.limit_in_bytes",
5023		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024		.write = mem_cgroup_write,
5025		.read_u64 = mem_cgroup_read_u64,
5026	},
5027	{
5028		.name = "kmem.tcp.usage_in_bytes",
5029		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030		.read_u64 = mem_cgroup_read_u64,
5031	},
5032	{
5033		.name = "kmem.tcp.failcnt",
5034		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035		.write = mem_cgroup_reset,
5036		.read_u64 = mem_cgroup_read_u64,
5037	},
5038	{
5039		.name = "kmem.tcp.max_usage_in_bytes",
5040		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041		.write = mem_cgroup_reset,
5042		.read_u64 = mem_cgroup_read_u64,
5043	},
5044	{ },	/* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075	if (memcg->id.id > 0) {
5076		idr_remove(&mem_cgroup_idr, memcg->id.id);
5077		memcg->id.id = 0;
5078	}
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082						  unsigned int n)
5083{
5084	refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090		mem_cgroup_id_remove(memcg);
5091
5092		/* Memcg ID pins CSS */
5093		css_put(&memcg->css);
5094	}
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099	mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110	WARN_ON_ONCE(!rcu_read_lock_held());
5111	return idr_find(&mem_cgroup_idr, id);
5112}
5113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116	struct mem_cgroup_per_node *pn;
5117	int tmp = node;
5118	/*
5119	 * This routine is called against possible nodes.
5120	 * But it's BUG to call kmalloc() against offline node.
5121	 *
5122	 * TODO: this routine can waste much memory for nodes which will
5123	 *       never be onlined. It's better to use memory hotplug callback
5124	 *       function.
5125	 */
5126	if (!node_state(node, N_NORMAL_MEMORY))
5127		tmp = -1;
5128	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129	if (!pn)
5130		return 1;
5131
5132	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133						 GFP_KERNEL_ACCOUNT);
5134	if (!pn->lruvec_stat_local) {
5135		kfree(pn);
5136		return 1;
5137	}
5138
5139	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140					       GFP_KERNEL_ACCOUNT);
5141	if (!pn->lruvec_stat_cpu) {
5142		free_percpu(pn->lruvec_stat_local);
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	lruvec_init(&pn->lruvec);
5148	pn->usage_in_excess = 0;
5149	pn->on_tree = false;
5150	pn->memcg = memcg;
5151
5152	memcg->nodeinfo[node] = pn;
5153	return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160	if (!pn)
5161		return;
5162
5163	free_percpu(pn->lruvec_stat_cpu);
5164	free_percpu(pn->lruvec_stat_local);
5165	kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170	int node;
5171
5172	for_each_node(node)
5173		free_mem_cgroup_per_node_info(memcg, node);
 
5174	free_percpu(memcg->vmstats_percpu);
5175	kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180	int cpu;
5181
5182	memcg_wb_domain_exit(memcg);
5183	/*
5184	 * Flush percpu lruvec stats to guarantee the value
5185	 * correctness on parent's and all ancestor levels.
5186	 */
5187	for_each_online_cpu(cpu)
5188		memcg_flush_lruvec_page_state(memcg, cpu);
5189	__mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194	struct mem_cgroup *memcg;
5195	unsigned int size;
5196	int node;
5197	int __maybe_unused i;
5198	long error = -ENOMEM;
5199
5200	size = sizeof(struct mem_cgroup);
5201	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203	memcg = kzalloc(size, GFP_KERNEL);
5204	if (!memcg)
5205		return ERR_PTR(error);
5206
5207	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208				 1, MEM_CGROUP_ID_MAX,
5209				 GFP_KERNEL);
5210	if (memcg->id.id < 0) {
5211		error = memcg->id.id;
5212		goto fail;
5213	}
5214
 
 
 
 
5215	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216						 GFP_KERNEL_ACCOUNT);
5217	if (!memcg->vmstats_percpu)
5218		goto fail;
5219
5220	for_each_node(node)
5221		if (alloc_mem_cgroup_per_node_info(memcg, node))
5222			goto fail;
5223
5224	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225		goto fail;
5226
5227	INIT_WORK(&memcg->high_work, high_work_func);
5228	INIT_LIST_HEAD(&memcg->oom_notify);
5229	mutex_init(&memcg->thresholds_lock);
5230	spin_lock_init(&memcg->move_lock);
5231	vmpressure_init(&memcg->vmpressure);
5232	INIT_LIST_HEAD(&memcg->event_list);
5233	spin_lock_init(&memcg->event_list_lock);
5234	memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236	memcg->kmemcg_id = -1;
5237	INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240	INIT_LIST_HEAD(&memcg->cgwb_list);
5241	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242		memcg->cgwb_frn[i].done =
5243			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248	memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
 
5251	return memcg;
5252fail:
5253	mem_cgroup_id_remove(memcg);
5254	__mem_cgroup_free(memcg);
5255	return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262	struct mem_cgroup *memcg, *old_memcg;
5263	long error = -ENOMEM;
5264
5265	old_memcg = set_active_memcg(parent);
5266	memcg = mem_cgroup_alloc();
5267	set_active_memcg(old_memcg);
5268	if (IS_ERR(memcg))
5269		return ERR_CAST(memcg);
5270
5271	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
5273	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274	if (parent) {
5275		memcg->swappiness = mem_cgroup_swappiness(parent);
5276		memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278		page_counter_init(&memcg->memory, &parent->memory);
5279		page_counter_init(&memcg->swap, &parent->swap);
5280		page_counter_init(&memcg->kmem, &parent->kmem);
5281		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282	} else {
 
5283		page_counter_init(&memcg->memory, NULL);
5284		page_counter_init(&memcg->swap, NULL);
5285		page_counter_init(&memcg->kmem, NULL);
5286		page_counter_init(&memcg->tcpmem, NULL);
5287
5288		root_mem_cgroup = memcg;
5289		return &memcg->css;
5290	}
5291
5292	/* The following stuff does not apply to the root */
5293	error = memcg_online_kmem(memcg);
5294	if (error)
5295		goto fail;
5296
5297	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298		static_branch_inc(&memcg_sockets_enabled_key);
5299
5300	return &memcg->css;
5301fail:
5302	mem_cgroup_id_remove(memcg);
5303	mem_cgroup_free(memcg);
5304	return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
 
 
 
5311	/*
5312	 * A memcg must be visible for expand_shrinker_info()
5313	 * by the time the maps are allocated. So, we allocate maps
5314	 * here, when for_each_mem_cgroup() can't skip it.
5315	 */
5316	if (alloc_shrinker_info(memcg)) {
5317		mem_cgroup_id_remove(memcg);
5318		return -ENOMEM;
5319	}
5320
5321	/* Online state pins memcg ID, memcg ID pins CSS */
5322	refcount_set(&memcg->id.ref, 1);
5323	css_get(css);
 
 
 
 
5324	return 0;
 
 
 
 
 
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330	struct mem_cgroup_event *event, *tmp;
5331
5332	/*
5333	 * Unregister events and notify userspace.
5334	 * Notify userspace about cgroup removing only after rmdir of cgroup
5335	 * directory to avoid race between userspace and kernelspace.
5336	 */
5337	spin_lock(&memcg->event_list_lock);
5338	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339		list_del_init(&event->list);
5340		schedule_work(&event->remove);
5341	}
5342	spin_unlock(&memcg->event_list_lock);
5343
5344	page_counter_set_min(&memcg->memory, 0);
5345	page_counter_set_low(&memcg->memory, 0);
5346
5347	memcg_offline_kmem(memcg);
5348	reparent_shrinker_deferred(memcg);
5349	wb_memcg_offline(memcg);
5350
5351	drain_all_stock(memcg);
5352
5353	mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360	invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366	int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373		static_branch_dec(&memcg_sockets_enabled_key);
5374
5375	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376		static_branch_dec(&memcg_sockets_enabled_key);
5377
5378	vmpressure_cleanup(&memcg->vmpressure);
5379	cancel_work_sync(&memcg->high_work);
5380	mem_cgroup_remove_from_trees(memcg);
5381	free_shrinker_info(memcg);
5382	memcg_free_kmem(memcg);
5383	mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css.  This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency.  The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407	page_counter_set_min(&memcg->memory, 0);
5408	page_counter_set_low(&memcg->memory, 0);
5409	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410	memcg->soft_limit = PAGE_COUNTER_MAX;
5411	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412	memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419	struct memcg_vmstats_percpu *statc;
5420	long delta, v;
5421	int i;
5422
5423	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425	for (i = 0; i < MEMCG_NR_STAT; i++) {
5426		/*
5427		 * Collect the aggregated propagation counts of groups
5428		 * below us. We're in a per-cpu loop here and this is
5429		 * a global counter, so the first cycle will get them.
5430		 */
5431		delta = memcg->vmstats.state_pending[i];
5432		if (delta)
5433			memcg->vmstats.state_pending[i] = 0;
5434
5435		/* Add CPU changes on this level since the last flush */
5436		v = READ_ONCE(statc->state[i]);
5437		if (v != statc->state_prev[i]) {
5438			delta += v - statc->state_prev[i];
5439			statc->state_prev[i] = v;
5440		}
5441
5442		if (!delta)
5443			continue;
5444
5445		/* Aggregate counts on this level and propagate upwards */
5446		memcg->vmstats.state[i] += delta;
5447		if (parent)
5448			parent->vmstats.state_pending[i] += delta;
5449	}
5450
5451	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452		delta = memcg->vmstats.events_pending[i];
5453		if (delta)
5454			memcg->vmstats.events_pending[i] = 0;
5455
5456		v = READ_ONCE(statc->events[i]);
5457		if (v != statc->events_prev[i]) {
5458			delta += v - statc->events_prev[i];
5459			statc->events_prev[i] = v;
5460		}
5461
5462		if (!delta)
5463			continue;
5464
5465		memcg->vmstats.events[i] += delta;
 
 
 
 
 
 
 
 
 
5466		if (parent)
5467			parent->vmstats.events_pending[i] += delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5468	}
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475	int ret;
5476
5477	/* Try a single bulk charge without reclaim first, kswapd may wake */
5478	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479	if (!ret) {
5480		mc.precharge += count;
5481		return ret;
5482	}
5483
5484	/* Try charges one by one with reclaim, but do not retry */
5485	while (count--) {
5486		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487		if (ret)
5488			return ret;
5489		mc.precharge++;
5490		cond_resched();
5491	}
5492	return 0;
5493}
5494
5495union mc_target {
5496	struct page	*page;
5497	swp_entry_t	ent;
5498};
5499
5500enum mc_target_type {
5501	MC_TARGET_NONE = 0,
5502	MC_TARGET_PAGE,
5503	MC_TARGET_SWAP,
5504	MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508						unsigned long addr, pte_t ptent)
5509{
5510	struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512	if (!page || !page_mapped(page))
5513		return NULL;
5514	if (PageAnon(page)) {
5515		if (!(mc.flags & MOVE_ANON))
5516			return NULL;
5517	} else {
5518		if (!(mc.flags & MOVE_FILE))
5519			return NULL;
5520	}
5521	if (!get_page_unless_zero(page))
5522		return NULL;
5523
5524	return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529			pte_t ptent, swp_entry_t *entry)
5530{
5531	struct page *page = NULL;
5532	swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534	if (!(mc.flags & MOVE_ANON))
5535		return NULL;
5536
5537	/*
5538	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539	 * a device and because they are not accessible by CPU they are store
5540	 * as special swap entry in the CPU page table.
5541	 */
5542	if (is_device_private_entry(ent)) {
5543		page = pfn_swap_entry_to_page(ent);
5544		/*
5545		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546		 * a refcount of 1 when free (unlike normal page)
5547		 */
5548		if (!page_ref_add_unless(page, 1, 1))
5549			return NULL;
5550		return page;
5551	}
5552
5553	if (non_swap_entry(ent))
5554		return NULL;
5555
5556	/*
5557	 * Because lookup_swap_cache() updates some statistics counter,
5558	 * we call find_get_page() with swapper_space directly.
5559	 */
5560	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561	entry->val = ent.val;
5562
5563	return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567			pte_t ptent, swp_entry_t *entry)
5568{
5569	return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
 
 
 
5576	if (!vma->vm_file) /* anonymous vma */
5577		return NULL;
5578	if (!(mc.flags & MOVE_FILE))
5579		return NULL;
5580
5581	/* page is moved even if it's not RSS of this task(page-faulted). */
5582	/* shmem/tmpfs may report page out on swap: account for that too. */
5583	return find_get_incore_page(vma->vm_file->f_mapping,
5584			linear_page_index(vma, addr));
 
 
 
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to:	mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600				   bool compound,
5601				   struct mem_cgroup *from,
5602				   struct mem_cgroup *to)
5603{
 
5604	struct lruvec *from_vec, *to_vec;
5605	struct pglist_data *pgdat;
5606	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607	int ret;
5608
5609	VM_BUG_ON(from == to);
5610	VM_BUG_ON_PAGE(PageLRU(page), page);
5611	VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613	/*
5614	 * Prevent mem_cgroup_migrate() from looking at
5615	 * page's memory cgroup of its source page while we change it.
5616	 */
5617	ret = -EBUSY;
5618	if (!trylock_page(page))
5619		goto out;
5620
5621	ret = -EINVAL;
5622	if (page_memcg(page) != from)
5623		goto out_unlock;
5624
5625	pgdat = page_pgdat(page);
5626	from_vec = mem_cgroup_lruvec(from, pgdat);
5627	to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629	lock_page_memcg(page);
5630
5631	if (PageAnon(page)) {
5632		if (page_mapped(page)) {
5633			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635			if (PageTransHuge(page)) {
5636				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5637						   -nr_pages);
5638				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5639						   nr_pages);
5640			}
5641		}
5642	} else {
5643		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646		if (PageSwapBacked(page)) {
5647			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649		}
5650
5651		if (page_mapped(page)) {
5652			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654		}
5655
5656		if (PageDirty(page)) {
5657			struct address_space *mapping = page_mapping(page);
5658
5659			if (mapping_can_writeback(mapping)) {
5660				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661						   -nr_pages);
5662				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663						   nr_pages);
5664			}
5665		}
5666	}
5667
5668	if (PageWriteback(page)) {
 
 
 
 
 
 
5669		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671	}
5672
5673	/*
5674	 * All state has been migrated, let's switch to the new memcg.
5675	 *
5676	 * It is safe to change page's memcg here because the page
5677	 * is referenced, charged, isolated, and locked: we can't race
5678	 * with (un)charging, migration, LRU putback, or anything else
5679	 * that would rely on a stable page's memory cgroup.
5680	 *
5681	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682	 * to save space. As soon as we switch page's memory cgroup to a
5683	 * new memcg that isn't locked, the above state can change
5684	 * concurrently again. Make sure we're truly done with it.
5685	 */
5686	smp_mb();
5687
5688	css_get(&to->css);
5689	css_put(&from->css);
5690
5691	page->memcg_data = (unsigned long)to;
5692
5693	__unlock_page_memcg(from);
5694
5695	ret = 0;
 
5696
5697	local_irq_disable();
5698	mem_cgroup_charge_statistics(to, page, nr_pages);
5699	memcg_check_events(to, page);
5700	mem_cgroup_charge_statistics(from, page, -nr_pages);
5701	memcg_check_events(from, page);
5702	local_irq_enable();
5703out_unlock:
5704	unlock_page(page);
5705out:
5706	return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 *     move charge. if @target is not NULL, the page is stored in target->page
5720 *     with extra refcnt got(Callers should handle it).
5721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 *     target for charge migration. if @target is not NULL, the entry is stored
5723 *     in target->ent.
5724 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5725 *     (so ZONE_DEVICE page and thus not on the lru).
5726 *     For now we such page is charge like a regular page would be as for all
5727 *     intent and purposes it is just special memory taking the place of a
5728 *     regular page.
5729 *
5730 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736		unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738	struct page *page = NULL;
5739	enum mc_target_type ret = MC_TARGET_NONE;
5740	swp_entry_t ent = { .val = 0 };
5741
5742	if (pte_present(ptent))
5743		page = mc_handle_present_pte(vma, addr, ptent);
 
 
 
 
 
 
5744	else if (is_swap_pte(ptent))
5745		page = mc_handle_swap_pte(vma, ptent, &ent);
5746	else if (pte_none(ptent))
5747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749	if (!page && !ent.val)
5750		return ret;
5751	if (page) {
5752		/*
5753		 * Do only loose check w/o serialization.
5754		 * mem_cgroup_move_account() checks the page is valid or
5755		 * not under LRU exclusion.
5756		 */
5757		if (page_memcg(page) == mc.from) {
5758			ret = MC_TARGET_PAGE;
5759			if (is_device_private_page(page))
 
5760				ret = MC_TARGET_DEVICE;
5761			if (target)
5762				target->page = page;
5763		}
5764		if (!ret || !target)
5765			put_page(page);
5766	}
5767	/*
5768	 * There is a swap entry and a page doesn't exist or isn't charged.
5769	 * But we cannot move a tail-page in a THP.
5770	 */
5771	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773		ret = MC_TARGET_SWAP;
5774		if (target)
5775			target->ent = ent;
5776	}
5777	return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787		unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789	struct page *page = NULL;
5790	enum mc_target_type ret = MC_TARGET_NONE;
5791
5792	if (unlikely(is_swap_pmd(pmd))) {
5793		VM_BUG_ON(thp_migration_supported() &&
5794				  !is_pmd_migration_entry(pmd));
5795		return ret;
5796	}
5797	page = pmd_page(pmd);
5798	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799	if (!(mc.flags & MOVE_ANON))
5800		return ret;
5801	if (page_memcg(page) == mc.from) {
5802		ret = MC_TARGET_PAGE;
5803		if (target) {
5804			get_page(page);
5805			target->page = page;
5806		}
5807	}
5808	return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812		unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814	return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819					unsigned long addr, unsigned long end,
5820					struct mm_walk *walk)
5821{
5822	struct vm_area_struct *vma = walk->vma;
5823	pte_t *pte;
5824	spinlock_t *ptl;
5825
5826	ptl = pmd_trans_huge_lock(pmd, vma);
5827	if (ptl) {
5828		/*
5829		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831		 * this might change.
5832		 */
5833		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834			mc.precharge += HPAGE_PMD_NR;
5835		spin_unlock(ptl);
5836		return 0;
5837	}
5838
5839	if (pmd_trans_unstable(pmd))
5840		return 0;
5841	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842	for (; addr != end; pte++, addr += PAGE_SIZE)
5843		if (get_mctgt_type(vma, addr, *pte, NULL))
5844			mc.precharge++;	/* increment precharge temporarily */
5845	pte_unmap_unlock(pte - 1, ptl);
5846	cond_resched();
5847
5848	return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857	unsigned long precharge;
5858
5859	mmap_read_lock(mm);
5860	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861	mmap_read_unlock(mm);
5862
5863	precharge = mc.precharge;
5864	mc.precharge = 0;
5865
5866	return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871	unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873	VM_BUG_ON(mc.moving_task);
5874	mc.moving_task = current;
5875	return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881	struct mem_cgroup *from = mc.from;
5882	struct mem_cgroup *to = mc.to;
5883
5884	/* we must uncharge all the leftover precharges from mc.to */
5885	if (mc.precharge) {
5886		cancel_charge(mc.to, mc.precharge);
5887		mc.precharge = 0;
5888	}
5889	/*
5890	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891	 * we must uncharge here.
5892	 */
5893	if (mc.moved_charge) {
5894		cancel_charge(mc.from, mc.moved_charge);
5895		mc.moved_charge = 0;
5896	}
5897	/* we must fixup refcnts and charges */
5898	if (mc.moved_swap) {
5899		/* uncharge swap account from the old cgroup */
5900		if (!mem_cgroup_is_root(mc.from))
5901			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905		/*
5906		 * we charged both to->memory and to->memsw, so we
5907		 * should uncharge to->memory.
5908		 */
5909		if (!mem_cgroup_is_root(mc.to))
5910			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912		mc.moved_swap = 0;
5913	}
5914	memcg_oom_recover(from);
5915	memcg_oom_recover(to);
5916	wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921	struct mm_struct *mm = mc.mm;
5922
5923	/*
5924	 * we must clear moving_task before waking up waiters at the end of
5925	 * task migration.
5926	 */
5927	mc.moving_task = NULL;
5928	__mem_cgroup_clear_mc();
5929	spin_lock(&mc.lock);
5930	mc.from = NULL;
5931	mc.to = NULL;
5932	mc.mm = NULL;
5933	spin_unlock(&mc.lock);
5934
5935	mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940	struct cgroup_subsys_state *css;
5941	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942	struct mem_cgroup *from;
5943	struct task_struct *leader, *p;
5944	struct mm_struct *mm;
5945	unsigned long move_flags;
5946	int ret = 0;
5947
5948	/* charge immigration isn't supported on the default hierarchy */
5949	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950		return 0;
5951
5952	/*
5953	 * Multi-process migrations only happen on the default hierarchy
5954	 * where charge immigration is not used.  Perform charge
5955	 * immigration if @tset contains a leader and whine if there are
5956	 * multiple.
5957	 */
5958	p = NULL;
5959	cgroup_taskset_for_each_leader(leader, css, tset) {
5960		WARN_ON_ONCE(p);
5961		p = leader;
5962		memcg = mem_cgroup_from_css(css);
5963	}
5964	if (!p)
5965		return 0;
5966
5967	/*
5968	 * We are now committed to this value whatever it is. Changes in this
5969	 * tunable will only affect upcoming migrations, not the current one.
5970	 * So we need to save it, and keep it going.
5971	 */
5972	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973	if (!move_flags)
5974		return 0;
5975
5976	from = mem_cgroup_from_task(p);
5977
5978	VM_BUG_ON(from == memcg);
5979
5980	mm = get_task_mm(p);
5981	if (!mm)
5982		return 0;
5983	/* We move charges only when we move a owner of the mm */
5984	if (mm->owner == p) {
5985		VM_BUG_ON(mc.from);
5986		VM_BUG_ON(mc.to);
5987		VM_BUG_ON(mc.precharge);
5988		VM_BUG_ON(mc.moved_charge);
5989		VM_BUG_ON(mc.moved_swap);
5990
5991		spin_lock(&mc.lock);
5992		mc.mm = mm;
5993		mc.from = from;
5994		mc.to = memcg;
5995		mc.flags = move_flags;
5996		spin_unlock(&mc.lock);
5997		/* We set mc.moving_task later */
5998
5999		ret = mem_cgroup_precharge_mc(mm);
6000		if (ret)
6001			mem_cgroup_clear_mc();
6002	} else {
6003		mmput(mm);
6004	}
6005	return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010	if (mc.to)
6011		mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015				unsigned long addr, unsigned long end,
6016				struct mm_walk *walk)
6017{
6018	int ret = 0;
6019	struct vm_area_struct *vma = walk->vma;
6020	pte_t *pte;
6021	spinlock_t *ptl;
6022	enum mc_target_type target_type;
6023	union mc_target target;
6024	struct page *page;
6025
6026	ptl = pmd_trans_huge_lock(pmd, vma);
6027	if (ptl) {
6028		if (mc.precharge < HPAGE_PMD_NR) {
6029			spin_unlock(ptl);
6030			return 0;
6031		}
6032		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033		if (target_type == MC_TARGET_PAGE) {
6034			page = target.page;
6035			if (!isolate_lru_page(page)) {
6036				if (!mem_cgroup_move_account(page, true,
6037							     mc.from, mc.to)) {
6038					mc.precharge -= HPAGE_PMD_NR;
6039					mc.moved_charge += HPAGE_PMD_NR;
6040				}
6041				putback_lru_page(page);
6042			}
6043			put_page(page);
6044		} else if (target_type == MC_TARGET_DEVICE) {
6045			page = target.page;
6046			if (!mem_cgroup_move_account(page, true,
6047						     mc.from, mc.to)) {
6048				mc.precharge -= HPAGE_PMD_NR;
6049				mc.moved_charge += HPAGE_PMD_NR;
6050			}
6051			put_page(page);
6052		}
6053		spin_unlock(ptl);
6054		return 0;
6055	}
6056
6057	if (pmd_trans_unstable(pmd))
6058		return 0;
6059retry:
6060	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061	for (; addr != end; addr += PAGE_SIZE) {
6062		pte_t ptent = *(pte++);
6063		bool device = false;
6064		swp_entry_t ent;
6065
6066		if (!mc.precharge)
6067			break;
6068
6069		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070		case MC_TARGET_DEVICE:
6071			device = true;
6072			fallthrough;
6073		case MC_TARGET_PAGE:
6074			page = target.page;
6075			/*
6076			 * We can have a part of the split pmd here. Moving it
6077			 * can be done but it would be too convoluted so simply
6078			 * ignore such a partial THP and keep it in original
6079			 * memcg. There should be somebody mapping the head.
6080			 */
6081			if (PageTransCompound(page))
6082				goto put;
6083			if (!device && isolate_lru_page(page))
6084				goto put;
6085			if (!mem_cgroup_move_account(page, false,
6086						mc.from, mc.to)) {
6087				mc.precharge--;
6088				/* we uncharge from mc.from later. */
6089				mc.moved_charge++;
6090			}
6091			if (!device)
6092				putback_lru_page(page);
6093put:			/* get_mctgt_type() gets the page */
6094			put_page(page);
6095			break;
6096		case MC_TARGET_SWAP:
6097			ent = target.ent;
6098			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099				mc.precharge--;
6100				mem_cgroup_id_get_many(mc.to, 1);
6101				/* we fixup other refcnts and charges later. */
6102				mc.moved_swap++;
6103			}
6104			break;
6105		default:
6106			break;
6107		}
6108	}
6109	pte_unmap_unlock(pte - 1, ptl);
6110	cond_resched();
6111
6112	if (addr != end) {
6113		/*
6114		 * We have consumed all precharges we got in can_attach().
6115		 * We try charge one by one, but don't do any additional
6116		 * charges to mc.to if we have failed in charge once in attach()
6117		 * phase.
6118		 */
6119		ret = mem_cgroup_do_precharge(1);
6120		if (!ret)
6121			goto retry;
6122	}
6123
6124	return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133	lru_add_drain_all();
6134	/*
6135	 * Signal lock_page_memcg() to take the memcg's move_lock
6136	 * while we're moving its pages to another memcg. Then wait
6137	 * for already started RCU-only updates to finish.
6138	 */
6139	atomic_inc(&mc.from->moving_account);
6140	synchronize_rcu();
6141retry:
6142	if (unlikely(!mmap_read_trylock(mc.mm))) {
6143		/*
6144		 * Someone who are holding the mmap_lock might be waiting in
6145		 * waitq. So we cancel all extra charges, wake up all waiters,
6146		 * and retry. Because we cancel precharges, we might not be able
6147		 * to move enough charges, but moving charge is a best-effort
6148		 * feature anyway, so it wouldn't be a big problem.
6149		 */
6150		__mem_cgroup_clear_mc();
6151		cond_resched();
6152		goto retry;
6153	}
6154	/*
6155	 * When we have consumed all precharges and failed in doing
6156	 * additional charge, the page walk just aborts.
6157	 */
6158	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159			NULL);
6160
6161	mmap_read_unlock(mc.mm);
6162	atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167	if (mc.to) {
6168		mem_cgroup_move_charge();
6169		mem_cgroup_clear_mc();
6170	}
6171}
6172#else	/* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175	return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187	if (value == PAGE_COUNTER_MAX)
6188		seq_puts(m, "max\n");
6189	else
6190		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192	return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196			       struct cftype *cft)
6197{
6198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
 
 
 
 
 
 
 
 
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205	return seq_puts_memcg_tunable(m,
6206		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210				char *buf, size_t nbytes, loff_t off)
6211{
6212	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213	unsigned long min;
6214	int err;
6215
6216	buf = strstrip(buf);
6217	err = page_counter_memparse(buf, "max", &min);
6218	if (err)
6219		return err;
6220
6221	page_counter_set_min(&memcg->memory, min);
6222
6223	return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228	return seq_puts_memcg_tunable(m,
6229		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233				char *buf, size_t nbytes, loff_t off)
6234{
6235	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236	unsigned long low;
6237	int err;
6238
6239	buf = strstrip(buf);
6240	err = page_counter_memparse(buf, "max", &low);
6241	if (err)
6242		return err;
6243
6244	page_counter_set_low(&memcg->memory, low);
6245
6246	return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251	return seq_puts_memcg_tunable(m,
6252		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256				 char *buf, size_t nbytes, loff_t off)
6257{
6258	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260	bool drained = false;
6261	unsigned long high;
6262	int err;
6263
6264	buf = strstrip(buf);
6265	err = page_counter_memparse(buf, "max", &high);
6266	if (err)
6267		return err;
6268
6269	page_counter_set_high(&memcg->memory, high);
6270
6271	for (;;) {
6272		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273		unsigned long reclaimed;
6274
6275		if (nr_pages <= high)
6276			break;
6277
6278		if (signal_pending(current))
6279			break;
6280
6281		if (!drained) {
6282			drain_all_stock(memcg);
6283			drained = true;
6284			continue;
6285		}
6286
6287		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288							 GFP_KERNEL, true);
6289
6290		if (!reclaimed && !nr_retries--)
6291			break;
6292	}
6293
6294	memcg_wb_domain_size_changed(memcg);
6295	return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300	return seq_puts_memcg_tunable(m,
6301		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305				char *buf, size_t nbytes, loff_t off)
6306{
6307	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309	bool drained = false;
6310	unsigned long max;
6311	int err;
6312
6313	buf = strstrip(buf);
6314	err = page_counter_memparse(buf, "max", &max);
6315	if (err)
6316		return err;
6317
6318	xchg(&memcg->memory.max, max);
6319
6320	for (;;) {
6321		unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323		if (nr_pages <= max)
6324			break;
6325
6326		if (signal_pending(current))
6327			break;
6328
6329		if (!drained) {
6330			drain_all_stock(memcg);
6331			drained = true;
6332			continue;
6333		}
6334
6335		if (nr_reclaims) {
6336			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337							  GFP_KERNEL, true))
6338				nr_reclaims--;
6339			continue;
6340		}
6341
6342		memcg_memory_event(memcg, MEMCG_OOM);
6343		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344			break;
6345	}
6346
6347	memcg_wb_domain_size_changed(memcg);
6348	return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357	seq_printf(m, "oom_kill %lu\n",
6358		   atomic_long_read(&events[MEMCG_OOM_KILL]));
 
 
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365	__memory_events_show(m, memcg->memory_events);
6366	return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373	__memory_events_show(m, memcg->memory_events_local);
6374	return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380	char *buf;
6381
6382	buf = memory_stat_format(memcg);
6383	if (!buf)
6384		return -ENOMEM;
 
6385	seq_puts(m, buf);
6386	kfree(buf);
6387	return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392						     int item)
6393{
6394	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399	int i;
6400	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
 
 
6402	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403		int nid;
6404
6405		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406			continue;
6407
6408		seq_printf(m, "%s", memory_stats[i].name);
6409		for_each_node_state(nid, N_MEMORY) {
6410			u64 size;
6411			struct lruvec *lruvec;
6412
6413			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414			size = lruvec_page_state_output(lruvec,
6415							memory_stats[i].idx);
6416			seq_printf(m, " N%d=%llu", nid, size);
6417		}
6418		seq_putc(m, '\n');
6419	}
6420
6421	return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429	seq_printf(m, "%d\n", memcg->oom_group);
6430
6431	return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435				      char *buf, size_t nbytes, loff_t off)
6436{
6437	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438	int ret, oom_group;
6439
6440	buf = strstrip(buf);
6441	if (!buf)
6442		return -EINVAL;
6443
6444	ret = kstrtoint(buf, 0, &oom_group);
6445	if (ret)
6446		return ret;
6447
6448	if (oom_group != 0 && oom_group != 1)
6449		return -EINVAL;
6450
6451	memcg->oom_group = oom_group;
6452
6453	return nbytes;
6454}
6455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6456static struct cftype memory_files[] = {
6457	{
6458		.name = "current",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.read_u64 = memory_current_read,
6461	},
6462	{
 
 
 
 
 
6463		.name = "min",
6464		.flags = CFTYPE_NOT_ON_ROOT,
6465		.seq_show = memory_min_show,
6466		.write = memory_min_write,
6467	},
6468	{
6469		.name = "low",
6470		.flags = CFTYPE_NOT_ON_ROOT,
6471		.seq_show = memory_low_show,
6472		.write = memory_low_write,
6473	},
6474	{
6475		.name = "high",
6476		.flags = CFTYPE_NOT_ON_ROOT,
6477		.seq_show = memory_high_show,
6478		.write = memory_high_write,
6479	},
6480	{
6481		.name = "max",
6482		.flags = CFTYPE_NOT_ON_ROOT,
6483		.seq_show = memory_max_show,
6484		.write = memory_max_write,
6485	},
6486	{
6487		.name = "events",
6488		.flags = CFTYPE_NOT_ON_ROOT,
6489		.file_offset = offsetof(struct mem_cgroup, events_file),
6490		.seq_show = memory_events_show,
6491	},
6492	{
6493		.name = "events.local",
6494		.flags = CFTYPE_NOT_ON_ROOT,
6495		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6496		.seq_show = memory_events_local_show,
6497	},
6498	{
6499		.name = "stat",
6500		.seq_show = memory_stat_show,
6501	},
6502#ifdef CONFIG_NUMA
6503	{
6504		.name = "numa_stat",
6505		.seq_show = memory_numa_stat_show,
6506	},
6507#endif
6508	{
6509		.name = "oom.group",
6510		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511		.seq_show = memory_oom_group_show,
6512		.write = memory_oom_group_write,
6513	},
 
 
 
 
 
6514	{ }	/* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518	.css_alloc = mem_cgroup_css_alloc,
6519	.css_online = mem_cgroup_css_online,
6520	.css_offline = mem_cgroup_css_offline,
6521	.css_released = mem_cgroup_css_released,
6522	.css_free = mem_cgroup_css_free,
6523	.css_reset = mem_cgroup_css_reset,
6524	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6525	.can_attach = mem_cgroup_can_attach,
 
6526	.cancel_attach = mem_cgroup_cancel_attach,
6527	.post_attach = mem_cgroup_move_task,
6528	.dfl_cftypes = memory_files,
6529	.legacy_cftypes = mem_cgroup_legacy_files,
6530	.early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 *    the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 *    subsequent levels the effective protection is capped to the
6546 *    parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 *    user is allowed to overcommit the declared protection at a given
6550 *    level. If that is the case, the parent's effective protection is
6551 *    distributed to the children in proportion to how much protection
6552 *    they have declared and how much of it they are utilizing.
6553 *
6554 *    This makes distribution proportional, but also work-conserving:
6555 *    if one cgroup claims much more protection than it uses memory,
6556 *    the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 *    given level, the distribution of the larger parental protection
6560 *    budget is NOT proportional. A cgroup's protection from a sibling
6561 *    is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 *    without having to declare each individual cgroup's fixed share
6565 *    of the ancestor's claim to protection, any unutilized -
6566 *    "floating" - protection from up the tree is distributed in
6567 *    proportion to each cgroup's *usage*. This makes the protection
6568 *    neutral wrt sibling cgroups and lets them compete freely over
6569 *    the shared parental protection budget, but it protects the
6570 *    subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577					  unsigned long parent_usage,
6578					  unsigned long setting,
6579					  unsigned long parent_effective,
6580					  unsigned long siblings_protected)
6581{
6582	unsigned long protected;
6583	unsigned long ep;
6584
6585	protected = min(usage, setting);
6586	/*
6587	 * If all cgroups at this level combined claim and use more
6588	 * protection then what the parent affords them, distribute
6589	 * shares in proportion to utilization.
6590	 *
6591	 * We are using actual utilization rather than the statically
6592	 * claimed protection in order to be work-conserving: claimed
6593	 * but unused protection is available to siblings that would
6594	 * otherwise get a smaller chunk than what they claimed.
6595	 */
6596	if (siblings_protected > parent_effective)
6597		return protected * parent_effective / siblings_protected;
6598
6599	/*
6600	 * Ok, utilized protection of all children is within what the
6601	 * parent affords them, so we know whatever this child claims
6602	 * and utilizes is effectively protected.
6603	 *
6604	 * If there is unprotected usage beyond this value, reclaim
6605	 * will apply pressure in proportion to that amount.
6606	 *
6607	 * If there is unutilized protection, the cgroup will be fully
6608	 * shielded from reclaim, but we do return a smaller value for
6609	 * protection than what the group could enjoy in theory. This
6610	 * is okay. With the overcommit distribution above, effective
6611	 * protection is always dependent on how memory is actually
6612	 * consumed among the siblings anyway.
6613	 */
6614	ep = protected;
6615
6616	/*
6617	 * If the children aren't claiming (all of) the protection
6618	 * afforded to them by the parent, distribute the remainder in
6619	 * proportion to the (unprotected) memory of each cgroup. That
6620	 * way, cgroups that aren't explicitly prioritized wrt each
6621	 * other compete freely over the allowance, but they are
6622	 * collectively protected from neighboring trees.
6623	 *
6624	 * We're using unprotected memory for the weight so that if
6625	 * some cgroups DO claim explicit protection, we don't protect
6626	 * the same bytes twice.
6627	 *
6628	 * Check both usage and parent_usage against the respective
6629	 * protected values. One should imply the other, but they
6630	 * aren't read atomically - make sure the division is sane.
6631	 */
6632	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633		return ep;
6634	if (parent_effective > siblings_protected &&
6635	    parent_usage > siblings_protected &&
6636	    usage > protected) {
6637		unsigned long unclaimed;
6638
6639		unclaimed = parent_effective - siblings_protected;
6640		unclaimed *= usage - protected;
6641		unclaimed /= parent_usage - siblings_protected;
6642
6643		ep += unclaimed;
6644	}
6645
6646	return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 *          of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658				     struct mem_cgroup *memcg)
6659{
6660	unsigned long usage, parent_usage;
6661	struct mem_cgroup *parent;
6662
6663	if (mem_cgroup_disabled())
6664		return;
6665
6666	if (!root)
6667		root = root_mem_cgroup;
6668
6669	/*
6670	 * Effective values of the reclaim targets are ignored so they
6671	 * can be stale. Have a look at mem_cgroup_protection for more
6672	 * details.
6673	 * TODO: calculation should be more robust so that we do not need
6674	 * that special casing.
6675	 */
6676	if (memcg == root)
6677		return;
6678
6679	usage = page_counter_read(&memcg->memory);
6680	if (!usage)
6681		return;
6682
6683	parent = parent_mem_cgroup(memcg);
6684	/* No parent means a non-hierarchical mode on v1 memcg */
6685	if (!parent)
6686		return;
6687
6688	if (parent == root) {
6689		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691		return;
6692	}
6693
6694	parent_usage = page_counter_read(&parent->memory);
6695
6696	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697			READ_ONCE(memcg->memory.min),
6698			READ_ONCE(parent->memory.emin),
6699			atomic_long_read(&parent->memory.children_min_usage)));
6700
6701	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702			READ_ONCE(memcg->memory.low),
6703			READ_ONCE(parent->memory.elow),
6704			atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708			       gfp_t gfp)
6709{
6710	unsigned int nr_pages = thp_nr_pages(page);
6711	int ret;
6712
6713	ret = try_charge(memcg, gfp, nr_pages);
6714	if (ret)
6715		goto out;
6716
6717	css_get(&memcg->css);
6718	commit_charge(page, memcg);
6719
6720	local_irq_disable();
6721	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722	memcg_check_events(memcg, page);
6723	local_irq_enable();
6724out:
6725	return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744	struct mem_cgroup *memcg;
6745	int ret;
6746
6747	if (mem_cgroup_disabled())
6748		return 0;
6749
6750	memcg = get_mem_cgroup_from_mm(mm);
6751	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752	css_put(&memcg->css);
6753
6754	return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770				  gfp_t gfp, swp_entry_t entry)
6771{
6772	struct mem_cgroup *memcg;
6773	unsigned short id;
6774	int ret;
6775
6776	if (mem_cgroup_disabled())
6777		return 0;
6778
6779	id = lookup_swap_cgroup_id(entry);
6780	rcu_read_lock();
6781	memcg = mem_cgroup_from_id(id);
6782	if (!memcg || !css_tryget_online(&memcg->css))
6783		memcg = get_mem_cgroup_from_mm(mm);
6784	rcu_read_unlock();
6785
6786	ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788	css_put(&memcg->css);
6789	return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803	/*
6804	 * Cgroup1's unified memory+swap counter has been charged with the
6805	 * new swapcache page, finish the transfer by uncharging the swap
6806	 * slot. The swap slot would also get uncharged when it dies, but
6807	 * it can stick around indefinitely and we'd count the page twice
6808	 * the entire time.
6809	 *
6810	 * Cgroup2 has separate resource counters for memory and swap,
6811	 * so this is a non-issue here. Memory and swap charge lifetimes
6812	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813	 * page to memory here, and uncharge swap when the slot is freed.
6814	 */
6815	if (!mem_cgroup_disabled() && do_memsw_account()) {
6816		/*
6817		 * The swap entry might not get freed for a long time,
6818		 * let's not wait for it.  The page already received a
6819		 * memory+swap charge, drop the swap entry duplicate.
6820		 */
6821		mem_cgroup_uncharge_swap(entry, 1);
6822	}
6823}
6824
6825struct uncharge_gather {
6826	struct mem_cgroup *memcg;
6827	unsigned long nr_memory;
6828	unsigned long pgpgout;
6829	unsigned long nr_kmem;
6830	struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835	memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840	unsigned long flags;
6841
6842	if (ug->nr_memory) {
6843		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844		if (do_memsw_account())
6845			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848		memcg_oom_recover(ug->memcg);
6849	}
6850
6851	local_irq_save(flags);
6852	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854	memcg_check_events(ug->memcg, ug->dummy_page);
6855	local_irq_restore(flags);
6856
6857	/* drop reference from uncharge_page */
6858	css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863	unsigned long nr_pages;
6864	struct mem_cgroup *memcg;
6865	struct obj_cgroup *objcg;
6866	bool use_objcg = PageMemcgKmem(page);
6867
6868	VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870	/*
6871	 * Nobody should be changing or seriously looking at
6872	 * page memcg or objcg at this point, we have fully
6873	 * exclusive access to the page.
6874	 */
6875	if (use_objcg) {
6876		objcg = __page_objcg(page);
6877		/*
6878		 * This get matches the put at the end of the function and
6879		 * kmem pages do not hold memcg references anymore.
6880		 */
6881		memcg = get_mem_cgroup_from_objcg(objcg);
6882	} else {
6883		memcg = __page_memcg(page);
6884	}
6885
6886	if (!memcg)
6887		return;
6888
6889	if (ug->memcg != memcg) {
6890		if (ug->memcg) {
6891			uncharge_batch(ug);
6892			uncharge_gather_clear(ug);
6893		}
6894		ug->memcg = memcg;
6895		ug->dummy_page = page;
6896
6897		/* pairs with css_put in uncharge_batch */
6898		css_get(&memcg->css);
6899	}
6900
6901	nr_pages = compound_nr(page);
6902
6903	if (use_objcg) {
6904		ug->nr_memory += nr_pages;
6905		ug->nr_kmem += nr_pages;
6906
6907		page->memcg_data = 0;
6908		obj_cgroup_put(objcg);
6909	} else {
6910		/* LRU pages aren't accounted at the root level */
6911		if (!mem_cgroup_is_root(memcg))
6912			ug->nr_memory += nr_pages;
6913		ug->pgpgout++;
6914
6915		page->memcg_data = 0;
6916	}
6917
6918	css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929	struct uncharge_gather ug;
6930
6931	if (mem_cgroup_disabled())
6932		return;
6933
6934	/* Don't touch page->lru of any random page, pre-check: */
6935	if (!page_memcg(page))
6936		return;
6937
6938	uncharge_gather_clear(&ug);
6939	uncharge_page(page, &ug);
6940	uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952	struct uncharge_gather ug;
6953	struct page *page;
6954
6955	if (mem_cgroup_disabled())
6956		return;
6957
6958	uncharge_gather_clear(&ug);
6959	list_for_each_entry(page, page_list, lru)
6960		uncharge_page(page, &ug);
6961	if (ug.memcg)
6962		uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977	struct mem_cgroup *memcg;
6978	unsigned int nr_pages;
6979	unsigned long flags;
6980
6981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985		       newpage);
6986
6987	if (mem_cgroup_disabled())
6988		return;
6989
6990	/* Page cache replacement: new page already charged? */
6991	if (page_memcg(newpage))
6992		return;
6993
6994	memcg = page_memcg(oldpage);
6995	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996	if (!memcg)
6997		return;
6998
6999	/* Force-charge the new page. The old one will be freed soon */
7000	nr_pages = thp_nr_pages(newpage);
7001
7002	if (!mem_cgroup_is_root(memcg)) {
7003		page_counter_charge(&memcg->memory, nr_pages);
7004		if (do_memsw_account())
7005			page_counter_charge(&memcg->memsw, nr_pages);
7006	}
7007
7008	css_get(&memcg->css);
7009	commit_charge(newpage, memcg);
7010
7011	local_irq_save(flags);
7012	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013	memcg_check_events(memcg, newpage);
7014	local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022	struct mem_cgroup *memcg;
7023
7024	if (!mem_cgroup_sockets_enabled)
7025		return;
7026
7027	/* Do not associate the sock with unrelated interrupted task's memcg. */
7028	if (in_interrupt())
7029		return;
7030
7031	rcu_read_lock();
7032	memcg = mem_cgroup_from_task(current);
7033	if (memcg == root_mem_cgroup)
7034		goto out;
7035	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036		goto out;
7037	if (css_tryget(&memcg->css))
7038		sk->sk_memcg = memcg;
7039out:
7040	rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045	if (sk->sk_memcg)
7046		css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
 
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 
7058{
7059	gfp_t gfp_mask = GFP_KERNEL;
7060
7061	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062		struct page_counter *fail;
7063
7064		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065			memcg->tcpmem_pressure = 0;
7066			return true;
7067		}
7068		page_counter_charge(&memcg->tcpmem, nr_pages);
7069		memcg->tcpmem_pressure = 1;
 
 
 
 
7070		return false;
7071	}
7072
7073	/* Don't block in the packet receive path */
7074	if (in_softirq())
7075		gfp_mask = GFP_NOWAIT;
7076
7077	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080		return true;
 
7081
7082	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083	return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095		return;
7096	}
7097
7098	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100	refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105	char *token;
7106
7107	while ((token = strsep(&s, ",")) != NULL) {
7108		if (!*token)
7109			continue;
7110		if (!strcmp(token, "nosocket"))
7111			cgroup_memory_nosocket = true;
7112		if (!strcmp(token, "nokmem"))
7113			cgroup_memory_nokmem = true;
7114	}
7115	return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129	int cpu, node;
7130
7131	/*
7132	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134	 * to work fine, we should make sure that the overfill threshold can't
7135	 * exceed S32_MAX / PAGE_SIZE.
7136	 */
7137	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140				  memcg_hotplug_cpu_dead);
7141
7142	for_each_possible_cpu(cpu)
7143		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144			  drain_local_stock);
7145
7146	for_each_node(node) {
7147		struct mem_cgroup_tree_per_node *rtpn;
7148
7149		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150				    node_online(node) ? node : NUMA_NO_NODE);
7151
7152		rtpn->rb_root = RB_ROOT;
7153		rtpn->rb_rightmost = NULL;
7154		spin_lock_init(&rtpn->lock);
7155		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156	}
7157
7158	return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166		/*
7167		 * The root cgroup cannot be destroyed, so it's refcount must
7168		 * always be >= 1.
7169		 */
7170		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171			VM_BUG_ON(1);
7172			break;
7173		}
7174		memcg = parent_mem_cgroup(memcg);
7175		if (!memcg)
7176			memcg = root_mem_cgroup;
7177	}
7178	return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190	struct mem_cgroup *memcg, *swap_memcg;
7191	unsigned int nr_entries;
7192	unsigned short oldid;
7193
7194	VM_BUG_ON_PAGE(PageLRU(page), page);
7195	VM_BUG_ON_PAGE(page_count(page), page);
7196
7197	if (mem_cgroup_disabled())
7198		return;
7199
7200	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201		return;
7202
7203	memcg = page_memcg(page);
7204
7205	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206	if (!memcg)
7207		return;
7208
7209	/*
7210	 * In case the memcg owning these pages has been offlined and doesn't
7211	 * have an ID allocated to it anymore, charge the closest online
7212	 * ancestor for the swap instead and transfer the memory+swap charge.
7213	 */
7214	swap_memcg = mem_cgroup_id_get_online(memcg);
7215	nr_entries = thp_nr_pages(page);
7216	/* Get references for the tail pages, too */
7217	if (nr_entries > 1)
7218		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220				   nr_entries);
7221	VM_BUG_ON_PAGE(oldid, page);
7222	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224	page->memcg_data = 0;
7225
7226	if (!mem_cgroup_is_root(memcg))
7227		page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230		if (!mem_cgroup_is_root(swap_memcg))
7231			page_counter_charge(&swap_memcg->memsw, nr_entries);
7232		page_counter_uncharge(&memcg->memsw, nr_entries);
7233	}
7234
7235	/*
7236	 * Interrupts should be disabled here because the caller holds the
7237	 * i_pages lock which is taken with interrupts-off. It is
7238	 * important here to have the interrupts disabled because it is the
7239	 * only synchronisation we have for updating the per-CPU variables.
7240	 */
7241	VM_BUG_ON(!irqs_disabled());
7242	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243	memcg_check_events(memcg, page);
 
7244
7245	css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259	unsigned int nr_pages = thp_nr_pages(page);
7260	struct page_counter *counter;
7261	struct mem_cgroup *memcg;
7262	unsigned short oldid;
7263
7264	if (mem_cgroup_disabled())
7265		return 0;
7266
7267	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268		return 0;
7269
7270	memcg = page_memcg(page);
7271
7272	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273	if (!memcg)
7274		return 0;
7275
7276	if (!entry.val) {
7277		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278		return 0;
7279	}
7280
7281	memcg = mem_cgroup_id_get_online(memcg);
7282
7283	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287		mem_cgroup_id_put(memcg);
7288		return -ENOMEM;
7289	}
7290
7291	/* Get references for the tail pages, too */
7292	if (nr_pages > 1)
7293		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295	VM_BUG_ON_PAGE(oldid, page);
7296	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298	return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308	struct mem_cgroup *memcg;
7309	unsigned short id;
7310
 
 
 
7311	id = swap_cgroup_record(entry, 0, nr_pages);
7312	rcu_read_lock();
7313	memcg = mem_cgroup_from_id(id);
7314	if (memcg) {
7315		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317				page_counter_uncharge(&memcg->swap, nr_pages);
7318			else
7319				page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
7320		}
7321		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322		mem_cgroup_id_put_many(memcg, nr_pages);
7323	}
7324	rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329	long nr_swap_pages = get_nr_swap_pages();
7330
7331	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332		return nr_swap_pages;
7333	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334		nr_swap_pages = min_t(long, nr_swap_pages,
7335				      READ_ONCE(memcg->swap.max) -
7336				      page_counter_read(&memcg->swap));
7337	return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342	struct mem_cgroup *memcg;
7343
7344	VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346	if (vm_swap_full())
7347		return true;
7348	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349		return false;
7350
7351	memcg = page_memcg(page);
7352	if (!memcg)
7353		return false;
7354
7355	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356		unsigned long usage = page_counter_read(&memcg->swap);
7357
7358		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359		    usage * 2 >= READ_ONCE(memcg->swap.max))
7360			return true;
7361	}
7362
7363	return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368	if (!strcmp(s, "1"))
7369		cgroup_memory_noswap = false;
7370	else if (!strcmp(s, "0"))
7371		cgroup_memory_noswap = true;
7372	return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377			     struct cftype *cft)
7378{
7379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386	return seq_puts_memcg_tunable(m,
7387		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391			       char *buf, size_t nbytes, loff_t off)
7392{
7393	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394	unsigned long high;
7395	int err;
7396
7397	buf = strstrip(buf);
7398	err = page_counter_memparse(buf, "max", &high);
7399	if (err)
7400		return err;
7401
7402	page_counter_set_high(&memcg->swap, high);
7403
7404	return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409	return seq_puts_memcg_tunable(m,
7410		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414			      char *buf, size_t nbytes, loff_t off)
7415{
7416	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417	unsigned long max;
7418	int err;
7419
7420	buf = strstrip(buf);
7421	err = page_counter_memparse(buf, "max", &max);
7422	if (err)
7423		return err;
7424
7425	xchg(&memcg->swap.max, max);
7426
7427	return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434	seq_printf(m, "high %lu\n",
7435		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436	seq_printf(m, "max %lu\n",
7437		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438	seq_printf(m, "fail %lu\n",
7439		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441	return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445	{
7446		.name = "swap.current",
7447		.flags = CFTYPE_NOT_ON_ROOT,
7448		.read_u64 = swap_current_read,
7449	},
7450	{
7451		.name = "swap.high",
7452		.flags = CFTYPE_NOT_ON_ROOT,
7453		.seq_show = swap_high_show,
7454		.write = swap_high_write,
7455	},
7456	{
7457		.name = "swap.max",
7458		.flags = CFTYPE_NOT_ON_ROOT,
7459		.seq_show = swap_max_show,
7460		.write = swap_max_write,
7461	},
7462	{
7463		.name = "swap.events",
7464		.flags = CFTYPE_NOT_ON_ROOT,
7465		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466		.seq_show = swap_events_show,
7467	},
7468	{ }	/* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472	{
7473		.name = "memsw.usage_in_bytes",
7474		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475		.read_u64 = mem_cgroup_read_u64,
7476	},
7477	{
7478		.name = "memsw.max_usage_in_bytes",
7479		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480		.write = mem_cgroup_reset,
7481		.read_u64 = mem_cgroup_read_u64,
7482	},
7483	{
7484		.name = "memsw.limit_in_bytes",
7485		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486		.write = mem_cgroup_write,
7487		.read_u64 = mem_cgroup_read_u64,
7488	},
7489	{
7490		.name = "memsw.failcnt",
7491		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492		.write = mem_cgroup_reset,
7493		.read_u64 = mem_cgroup_read_u64,
7494	},
7495	{ },	/* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7504 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7505static int __init mem_cgroup_swap_init(void)
7506{
7507	/* No memory control -> no swap control */
7508	if (mem_cgroup_disabled())
7509		cgroup_memory_noswap = true;
7510
7511	if (cgroup_memory_noswap)
7512		return 0;
7513
7514	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
 
 
7517	return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/memremap.h>
  57#include <linux/mm_inline.h>
  58#include <linux/swap_cgroup.h>
  59#include <linux/cpu.h>
  60#include <linux/oom.h>
  61#include <linux/lockdep.h>
  62#include <linux/file.h>
  63#include <linux/resume_user_mode.h>
  64#include <linux/psi.h>
  65#include <linux/seq_buf.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70#include "swap.h"
  71
  72#include <linux/uaccess.h>
  73
  74#include <trace/events/vmscan.h>
  75
  76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  77EXPORT_SYMBOL(memory_cgrp_subsys);
  78
  79struct mem_cgroup *root_mem_cgroup __read_mostly;
  80
  81/* Active memory cgroup to use from an interrupt context */
  82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  84
  85/* Socket memory accounting disabled? */
  86static bool cgroup_memory_nosocket __ro_after_init;
  87
  88/* Kernel memory accounting disabled? */
  89static bool cgroup_memory_nokmem __ro_after_init;
 
 
 
 
 
 
 
  90
  91#ifdef CONFIG_CGROUP_WRITEBACK
  92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
  99}
 100
 101#define THRESHOLDS_EVENTS_TARGET 128
 102#define SOFTLIMIT_EVENTS_TARGET 1024
 103
 104/*
 105 * Cgroups above their limits are maintained in a RB-Tree, independent of
 106 * their hierarchy representation
 107 */
 108
 109struct mem_cgroup_tree_per_node {
 110	struct rb_root rb_root;
 111	struct rb_node *rb_rightmost;
 112	spinlock_t lock;
 113};
 114
 115struct mem_cgroup_tree {
 116	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 117};
 118
 119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 120
 121/* for OOM */
 122struct mem_cgroup_eventfd_list {
 123	struct list_head list;
 124	struct eventfd_ctx *eventfd;
 125};
 126
 127/*
 128 * cgroup_event represents events which userspace want to receive.
 129 */
 130struct mem_cgroup_event {
 131	/*
 132	 * memcg which the event belongs to.
 133	 */
 134	struct mem_cgroup *memcg;
 135	/*
 136	 * eventfd to signal userspace about the event.
 137	 */
 138	struct eventfd_ctx *eventfd;
 139	/*
 140	 * Each of these stored in a list by the cgroup.
 141	 */
 142	struct list_head list;
 143	/*
 144	 * register_event() callback will be used to add new userspace
 145	 * waiter for changes related to this event.  Use eventfd_signal()
 146	 * on eventfd to send notification to userspace.
 147	 */
 148	int (*register_event)(struct mem_cgroup *memcg,
 149			      struct eventfd_ctx *eventfd, const char *args);
 150	/*
 151	 * unregister_event() callback will be called when userspace closes
 152	 * the eventfd or on cgroup removing.  This callback must be set,
 153	 * if you want provide notification functionality.
 154	 */
 155	void (*unregister_event)(struct mem_cgroup *memcg,
 156				 struct eventfd_ctx *eventfd);
 157	/*
 158	 * All fields below needed to unregister event when
 159	 * userspace closes eventfd.
 160	 */
 161	poll_table pt;
 162	wait_queue_head_t *wqh;
 163	wait_queue_entry_t wait;
 164	struct work_struct remove;
 165};
 166
 167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 169
 170/* Stuffs for move charges at task migration. */
 171/*
 172 * Types of charges to be moved.
 173 */
 174#define MOVE_ANON	0x1U
 175#define MOVE_FILE	0x2U
 176#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 177
 178/* "mc" and its members are protected by cgroup_mutex */
 179static struct move_charge_struct {
 180	spinlock_t	  lock; /* for from, to */
 181	struct mm_struct  *mm;
 182	struct mem_cgroup *from;
 183	struct mem_cgroup *to;
 184	unsigned long flags;
 185	unsigned long precharge;
 186	unsigned long moved_charge;
 187	unsigned long moved_swap;
 188	struct task_struct *moving_task;	/* a task moving charges */
 189	wait_queue_head_t waitq;		/* a waitq for other context */
 190} mc = {
 191	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 192	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 193};
 194
 195/*
 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 197 * limit reclaim to prevent infinite loops, if they ever occur.
 198 */
 199#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 200#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 201
 202/* for encoding cft->private value on file */
 203enum res_type {
 204	_MEM,
 205	_MEMSWAP,
 
 206	_KMEM,
 207	_TCP,
 208};
 209
 210#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 211#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 212#define MEMFILE_ATTR(val)	((val) & 0xffff)
 
 
 213
 214/*
 215 * Iteration constructs for visiting all cgroups (under a tree).  If
 216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 217 * be used for reference counting.
 218 */
 219#define for_each_mem_cgroup_tree(iter, root)		\
 220	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 221	     iter != NULL;				\
 222	     iter = mem_cgroup_iter(root, iter, NULL))
 223
 224#define for_each_mem_cgroup(iter)			\
 225	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 226	     iter != NULL;				\
 227	     iter = mem_cgroup_iter(NULL, iter, NULL))
 228
 229static inline bool task_is_dying(void)
 230{
 231	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 232		(current->flags & PF_EXITING);
 233}
 234
 235/* Some nice accessors for the vmpressure. */
 236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 237{
 238	if (!memcg)
 239		memcg = root_mem_cgroup;
 240	return &memcg->vmpressure;
 241}
 242
 243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 244{
 245	return container_of(vmpr, struct mem_cgroup, vmpressure);
 246}
 247
 248#ifdef CONFIG_MEMCG_KMEM
 249static DEFINE_SPINLOCK(objcg_lock);
 250
 251bool mem_cgroup_kmem_disabled(void)
 252{
 253	return cgroup_memory_nokmem;
 254}
 255
 256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 257				      unsigned int nr_pages);
 258
 259static void obj_cgroup_release(struct percpu_ref *ref)
 260{
 261	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 262	unsigned int nr_bytes;
 263	unsigned int nr_pages;
 264	unsigned long flags;
 265
 266	/*
 267	 * At this point all allocated objects are freed, and
 268	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 269	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 270	 *
 271	 * The following sequence can lead to it:
 272	 * 1) CPU0: objcg == stock->cached_objcg
 273	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 274	 *          PAGE_SIZE bytes are charged
 275	 * 3) CPU1: a process from another memcg is allocating something,
 276	 *          the stock if flushed,
 277	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 278	 * 5) CPU0: we do release this object,
 279	 *          92 bytes are added to stock->nr_bytes
 280	 * 6) CPU0: stock is flushed,
 281	 *          92 bytes are added to objcg->nr_charged_bytes
 282	 *
 283	 * In the result, nr_charged_bytes == PAGE_SIZE.
 284	 * This page will be uncharged in obj_cgroup_release().
 285	 */
 286	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 287	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 288	nr_pages = nr_bytes >> PAGE_SHIFT;
 289
 290	if (nr_pages)
 291		obj_cgroup_uncharge_pages(objcg, nr_pages);
 292
 293	spin_lock_irqsave(&objcg_lock, flags);
 294	list_del(&objcg->list);
 295	spin_unlock_irqrestore(&objcg_lock, flags);
 296
 297	percpu_ref_exit(ref);
 298	kfree_rcu(objcg, rcu);
 299}
 300
 301static struct obj_cgroup *obj_cgroup_alloc(void)
 302{
 303	struct obj_cgroup *objcg;
 304	int ret;
 305
 306	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 307	if (!objcg)
 308		return NULL;
 309
 310	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 311			      GFP_KERNEL);
 312	if (ret) {
 313		kfree(objcg);
 314		return NULL;
 315	}
 316	INIT_LIST_HEAD(&objcg->list);
 317	return objcg;
 318}
 319
 320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 321				  struct mem_cgroup *parent)
 322{
 323	struct obj_cgroup *objcg, *iter;
 324
 325	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 326
 327	spin_lock_irq(&objcg_lock);
 328
 329	/* 1) Ready to reparent active objcg. */
 330	list_add(&objcg->list, &memcg->objcg_list);
 331	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 332	list_for_each_entry(iter, &memcg->objcg_list, list)
 333		WRITE_ONCE(iter->memcg, parent);
 334	/* 3) Move already reparented objcgs to the parent's list */
 335	list_splice(&memcg->objcg_list, &parent->objcg_list);
 336
 337	spin_unlock_irq(&objcg_lock);
 338
 339	percpu_ref_kill(&objcg->refcnt);
 340}
 341
 342/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343 * A lot of the calls to the cache allocation functions are expected to be
 344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 345 * conditional to this static branch, we'll have to allow modules that does
 346 * kmem_cache_alloc and the such to see this symbol as well
 347 */
 348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 349EXPORT_SYMBOL(memcg_kmem_enabled_key);
 350#endif
 351
 352/**
 353 * mem_cgroup_css_from_page - css of the memcg associated with a page
 354 * @page: page of interest
 355 *
 356 * If memcg is bound to the default hierarchy, css of the memcg associated
 357 * with @page is returned.  The returned css remains associated with @page
 358 * until it is released.
 359 *
 360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 361 * is returned.
 362 */
 363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 364{
 365	struct mem_cgroup *memcg;
 366
 367	memcg = page_memcg(page);
 368
 369	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 370		memcg = root_mem_cgroup;
 371
 372	return &memcg->css;
 373}
 374
 375/**
 376 * page_cgroup_ino - return inode number of the memcg a page is charged to
 377 * @page: the page
 378 *
 379 * Look up the closest online ancestor of the memory cgroup @page is charged to
 380 * and return its inode number or 0 if @page is not charged to any cgroup. It
 381 * is safe to call this function without holding a reference to @page.
 382 *
 383 * Note, this function is inherently racy, because there is nothing to prevent
 384 * the cgroup inode from getting torn down and potentially reallocated a moment
 385 * after page_cgroup_ino() returns, so it only should be used by callers that
 386 * do not care (such as procfs interfaces).
 387 */
 388ino_t page_cgroup_ino(struct page *page)
 389{
 390	struct mem_cgroup *memcg;
 391	unsigned long ino = 0;
 392
 393	rcu_read_lock();
 394	memcg = page_memcg_check(page);
 395
 396	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 397		memcg = parent_mem_cgroup(memcg);
 398	if (memcg)
 399		ino = cgroup_ino(memcg->css.cgroup);
 400	rcu_read_unlock();
 401	return ino;
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 405					 struct mem_cgroup_tree_per_node *mctz,
 406					 unsigned long new_usage_in_excess)
 407{
 408	struct rb_node **p = &mctz->rb_root.rb_node;
 409	struct rb_node *parent = NULL;
 410	struct mem_cgroup_per_node *mz_node;
 411	bool rightmost = true;
 412
 413	if (mz->on_tree)
 414		return;
 415
 416	mz->usage_in_excess = new_usage_in_excess;
 417	if (!mz->usage_in_excess)
 418		return;
 419	while (*p) {
 420		parent = *p;
 421		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 422					tree_node);
 423		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 424			p = &(*p)->rb_left;
 425			rightmost = false;
 426		} else {
 427			p = &(*p)->rb_right;
 428		}
 429	}
 430
 431	if (rightmost)
 432		mctz->rb_rightmost = &mz->tree_node;
 433
 434	rb_link_node(&mz->tree_node, parent, p);
 435	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 436	mz->on_tree = true;
 437}
 438
 439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 440					 struct mem_cgroup_tree_per_node *mctz)
 441{
 442	if (!mz->on_tree)
 443		return;
 444
 445	if (&mz->tree_node == mctz->rb_rightmost)
 446		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 447
 448	rb_erase(&mz->tree_node, &mctz->rb_root);
 449	mz->on_tree = false;
 450}
 451
 452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 453				       struct mem_cgroup_tree_per_node *mctz)
 454{
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&mctz->lock, flags);
 458	__mem_cgroup_remove_exceeded(mz, mctz);
 459	spin_unlock_irqrestore(&mctz->lock, flags);
 460}
 461
 462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 463{
 464	unsigned long nr_pages = page_counter_read(&memcg->memory);
 465	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 466	unsigned long excess = 0;
 467
 468	if (nr_pages > soft_limit)
 469		excess = nr_pages - soft_limit;
 470
 471	return excess;
 472}
 473
 474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
 475{
 476	unsigned long excess;
 477	struct mem_cgroup_per_node *mz;
 478	struct mem_cgroup_tree_per_node *mctz;
 479
 480	mctz = soft_limit_tree.rb_tree_per_node[nid];
 481	if (!mctz)
 482		return;
 483	/*
 484	 * Necessary to update all ancestors when hierarchy is used.
 485	 * because their event counter is not touched.
 486	 */
 487	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 488		mz = memcg->nodeinfo[nid];
 489		excess = soft_limit_excess(memcg);
 490		/*
 491		 * We have to update the tree if mz is on RB-tree or
 492		 * mem is over its softlimit.
 493		 */
 494		if (excess || mz->on_tree) {
 495			unsigned long flags;
 496
 497			spin_lock_irqsave(&mctz->lock, flags);
 498			/* if on-tree, remove it */
 499			if (mz->on_tree)
 500				__mem_cgroup_remove_exceeded(mz, mctz);
 501			/*
 502			 * Insert again. mz->usage_in_excess will be updated.
 503			 * If excess is 0, no tree ops.
 504			 */
 505			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 506			spin_unlock_irqrestore(&mctz->lock, flags);
 507		}
 508	}
 509}
 510
 511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 512{
 513	struct mem_cgroup_tree_per_node *mctz;
 514	struct mem_cgroup_per_node *mz;
 515	int nid;
 516
 517	for_each_node(nid) {
 518		mz = memcg->nodeinfo[nid];
 519		mctz = soft_limit_tree.rb_tree_per_node[nid];
 520		if (mctz)
 521			mem_cgroup_remove_exceeded(mz, mctz);
 522	}
 523}
 524
 525static struct mem_cgroup_per_node *
 526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 527{
 528	struct mem_cgroup_per_node *mz;
 529
 530retry:
 531	mz = NULL;
 532	if (!mctz->rb_rightmost)
 533		goto done;		/* Nothing to reclaim from */
 534
 535	mz = rb_entry(mctz->rb_rightmost,
 536		      struct mem_cgroup_per_node, tree_node);
 537	/*
 538	 * Remove the node now but someone else can add it back,
 539	 * we will to add it back at the end of reclaim to its correct
 540	 * position in the tree.
 541	 */
 542	__mem_cgroup_remove_exceeded(mz, mctz);
 543	if (!soft_limit_excess(mz->memcg) ||
 544	    !css_tryget(&mz->memcg->css))
 545		goto retry;
 546done:
 547	return mz;
 548}
 549
 550static struct mem_cgroup_per_node *
 551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 552{
 553	struct mem_cgroup_per_node *mz;
 554
 555	spin_lock_irq(&mctz->lock);
 556	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 557	spin_unlock_irq(&mctz->lock);
 558	return mz;
 559}
 560
 561/*
 562 * memcg and lruvec stats flushing
 563 *
 564 * Many codepaths leading to stats update or read are performance sensitive and
 565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 566 * flushing the kernel does:
 567 *
 568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 569 *    rstat update tree grow unbounded.
 570 *
 571 * 2) Flush the stats synchronously on reader side only when there are more than
 572 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 573 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 574 *    only for 2 seconds due to (1).
 575 */
 576static void flush_memcg_stats_dwork(struct work_struct *w);
 577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 578static DEFINE_SPINLOCK(stats_flush_lock);
 579static DEFINE_PER_CPU(unsigned int, stats_updates);
 580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
 581static u64 flush_next_time;
 582
 583#define FLUSH_TIME (2UL*HZ)
 584
 585/*
 586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 587 * not rely on this as part of an acquired spinlock_t lock. These functions are
 588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 589 * is sufficient.
 590 */
 591static void memcg_stats_lock(void)
 592{
 593	preempt_disable_nested();
 594	VM_WARN_ON_IRQS_ENABLED();
 595}
 596
 597static void __memcg_stats_lock(void)
 598{
 599	preempt_disable_nested();
 600}
 601
 602static void memcg_stats_unlock(void)
 603{
 604	preempt_enable_nested();
 605}
 606
 607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
 608{
 609	unsigned int x;
 610
 
 611	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 612
 613	x = __this_cpu_add_return(stats_updates, abs(val));
 614	if (x > MEMCG_CHARGE_BATCH) {
 615		/*
 616		 * If stats_flush_threshold exceeds the threshold
 617		 * (>num_online_cpus()), cgroup stats update will be triggered
 618		 * in __mem_cgroup_flush_stats(). Increasing this var further
 619		 * is redundant and simply adds overhead in atomic update.
 620		 */
 621		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
 622			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
 623		__this_cpu_write(stats_updates, 0);
 624	}
 625}
 626
 627static void __mem_cgroup_flush_stats(void)
 628{
 629	unsigned long flag;
 630
 631	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
 632		return;
 633
 634	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
 635	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
 636	atomic_set(&stats_flush_threshold, 0);
 637	spin_unlock_irqrestore(&stats_flush_lock, flag);
 638}
 639
 640void mem_cgroup_flush_stats(void)
 641{
 642	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
 643		__mem_cgroup_flush_stats();
 644}
 645
 646void mem_cgroup_flush_stats_delayed(void)
 647{
 648	if (time_after64(jiffies_64, flush_next_time))
 649		mem_cgroup_flush_stats();
 650}
 651
 652static void flush_memcg_stats_dwork(struct work_struct *w)
 653{
 654	__mem_cgroup_flush_stats();
 655	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 656}
 657
 658/* Subset of vm_event_item to report for memcg event stats */
 659static const unsigned int memcg_vm_event_stat[] = {
 660	PGPGIN,
 661	PGPGOUT,
 662	PGSCAN_KSWAPD,
 663	PGSCAN_DIRECT,
 664	PGSCAN_KHUGEPAGED,
 665	PGSTEAL_KSWAPD,
 666	PGSTEAL_DIRECT,
 667	PGSTEAL_KHUGEPAGED,
 668	PGFAULT,
 669	PGMAJFAULT,
 670	PGREFILL,
 671	PGACTIVATE,
 672	PGDEACTIVATE,
 673	PGLAZYFREE,
 674	PGLAZYFREED,
 675#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
 676	ZSWPIN,
 677	ZSWPOUT,
 678#endif
 679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 680	THP_FAULT_ALLOC,
 681	THP_COLLAPSE_ALLOC,
 682#endif
 683};
 684
 685#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
 686static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
 687
 688static void init_memcg_events(void)
 689{
 690	int i;
 691
 692	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
 693		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
 694}
 695
 696static inline int memcg_events_index(enum vm_event_item idx)
 697{
 698	return mem_cgroup_events_index[idx] - 1;
 699}
 700
 701struct memcg_vmstats_percpu {
 702	/* Local (CPU and cgroup) page state & events */
 703	long			state[MEMCG_NR_STAT];
 704	unsigned long		events[NR_MEMCG_EVENTS];
 705
 706	/* Delta calculation for lockless upward propagation */
 707	long			state_prev[MEMCG_NR_STAT];
 708	unsigned long		events_prev[NR_MEMCG_EVENTS];
 709
 710	/* Cgroup1: threshold notifications & softlimit tree updates */
 711	unsigned long		nr_page_events;
 712	unsigned long		targets[MEM_CGROUP_NTARGETS];
 713};
 714
 715struct memcg_vmstats {
 716	/* Aggregated (CPU and subtree) page state & events */
 717	long			state[MEMCG_NR_STAT];
 718	unsigned long		events[NR_MEMCG_EVENTS];
 719
 720	/* Pending child counts during tree propagation */
 721	long			state_pending[MEMCG_NR_STAT];
 722	unsigned long		events_pending[NR_MEMCG_EVENTS];
 723};
 724
 725unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 726{
 727	long x = READ_ONCE(memcg->vmstats->state[idx]);
 728#ifdef CONFIG_SMP
 729	if (x < 0)
 730		x = 0;
 731#endif
 732	return x;
 733}
 734
 735/**
 736 * __mod_memcg_state - update cgroup memory statistics
 737 * @memcg: the memory cgroup
 738 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 739 * @val: delta to add to the counter, can be negative
 740 */
 741void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 742{
 743	if (mem_cgroup_disabled())
 744		return;
 745
 746	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 747	memcg_rstat_updated(memcg, val);
 748}
 749
 750/* idx can be of type enum memcg_stat_item or node_stat_item. */
 751static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 752{
 753	long x = 0;
 754	int cpu;
 755
 756	for_each_possible_cpu(cpu)
 757		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 758#ifdef CONFIG_SMP
 759	if (x < 0)
 760		x = 0;
 761#endif
 762	return x;
 763}
 764
 
 
 
 
 
 
 
 
 
 
 
 765void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 766			      int val)
 767{
 768	struct mem_cgroup_per_node *pn;
 769	struct mem_cgroup *memcg;
 
 770
 771	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 772	memcg = pn->memcg;
 773
 774	/*
 775	 * The caller from rmap relay on disabled preemption becase they never
 776	 * update their counter from in-interrupt context. For these two
 777	 * counters we check that the update is never performed from an
 778	 * interrupt context while other caller need to have disabled interrupt.
 779	 */
 780	__memcg_stats_lock();
 781	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
 782		switch (idx) {
 783		case NR_ANON_MAPPED:
 784		case NR_FILE_MAPPED:
 785		case NR_ANON_THPS:
 786		case NR_SHMEM_PMDMAPPED:
 787		case NR_FILE_PMDMAPPED:
 788			WARN_ON_ONCE(!in_task());
 789			break;
 790		default:
 791			VM_WARN_ON_IRQS_ENABLED();
 792		}
 793	}
 794
 795	/* Update memcg */
 796	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 797
 798	/* Update lruvec */
 799	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
 
 
 
 800
 801	memcg_rstat_updated(memcg, val);
 802	memcg_stats_unlock();
 
 
 
 
 
 
 
 
 803}
 804
 805/**
 806 * __mod_lruvec_state - update lruvec memory statistics
 807 * @lruvec: the lruvec
 808 * @idx: the stat item
 809 * @val: delta to add to the counter, can be negative
 810 *
 811 * The lruvec is the intersection of the NUMA node and a cgroup. This
 812 * function updates the all three counters that are affected by a
 813 * change of state at this level: per-node, per-cgroup, per-lruvec.
 814 */
 815void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 816			int val)
 817{
 818	/* Update node */
 819	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 820
 821	/* Update memcg and lruvec */
 822	if (!mem_cgroup_disabled())
 823		__mod_memcg_lruvec_state(lruvec, idx, val);
 824}
 825
 826void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 827			     int val)
 828{
 829	struct page *head = compound_head(page); /* rmap on tail pages */
 830	struct mem_cgroup *memcg;
 831	pg_data_t *pgdat = page_pgdat(page);
 832	struct lruvec *lruvec;
 833
 834	rcu_read_lock();
 835	memcg = page_memcg(head);
 836	/* Untracked pages have no memcg, no lruvec. Update only the node */
 837	if (!memcg) {
 838		rcu_read_unlock();
 839		__mod_node_page_state(pgdat, idx, val);
 840		return;
 841	}
 842
 843	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 844	__mod_lruvec_state(lruvec, idx, val);
 845	rcu_read_unlock();
 846}
 847EXPORT_SYMBOL(__mod_lruvec_page_state);
 848
 849void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 850{
 851	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 852	struct mem_cgroup *memcg;
 853	struct lruvec *lruvec;
 854
 855	rcu_read_lock();
 856	memcg = mem_cgroup_from_slab_obj(p);
 857
 858	/*
 859	 * Untracked pages have no memcg, no lruvec. Update only the
 860	 * node. If we reparent the slab objects to the root memcg,
 861	 * when we free the slab object, we need to update the per-memcg
 862	 * vmstats to keep it correct for the root memcg.
 863	 */
 864	if (!memcg) {
 865		__mod_node_page_state(pgdat, idx, val);
 866	} else {
 867		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 868		__mod_lruvec_state(lruvec, idx, val);
 869	}
 870	rcu_read_unlock();
 871}
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873/**
 874 * __count_memcg_events - account VM events in a cgroup
 875 * @memcg: the memory cgroup
 876 * @idx: the event item
 877 * @count: the number of events that occurred
 878 */
 879void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 880			  unsigned long count)
 881{
 882	int index = memcg_events_index(idx);
 883
 884	if (mem_cgroup_disabled() || index < 0)
 885		return;
 886
 887	memcg_stats_lock();
 888	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
 889	memcg_rstat_updated(memcg, count);
 890	memcg_stats_unlock();
 891}
 892
 893static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 894{
 895	int index = memcg_events_index(event);
 896
 897	if (index < 0)
 898		return 0;
 899	return READ_ONCE(memcg->vmstats->events[index]);
 900}
 901
 902static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 903{
 904	long x = 0;
 905	int cpu;
 906	int index = memcg_events_index(event);
 907
 908	if (index < 0)
 909		return 0;
 910
 911	for_each_possible_cpu(cpu)
 912		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
 913	return x;
 914}
 915
 916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 
 917					 int nr_pages)
 918{
 919	/* pagein of a big page is an event. So, ignore page size */
 920	if (nr_pages > 0)
 921		__count_memcg_events(memcg, PGPGIN, 1);
 922	else {
 923		__count_memcg_events(memcg, PGPGOUT, 1);
 924		nr_pages = -nr_pages; /* for event */
 925	}
 926
 927	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 928}
 929
 930static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 931				       enum mem_cgroup_events_target target)
 932{
 933	unsigned long val, next;
 934
 935	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 936	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 937	/* from time_after() in jiffies.h */
 938	if ((long)(next - val) < 0) {
 939		switch (target) {
 940		case MEM_CGROUP_TARGET_THRESH:
 941			next = val + THRESHOLDS_EVENTS_TARGET;
 942			break;
 943		case MEM_CGROUP_TARGET_SOFTLIMIT:
 944			next = val + SOFTLIMIT_EVENTS_TARGET;
 945			break;
 946		default:
 947			break;
 948		}
 949		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 950		return true;
 951	}
 952	return false;
 953}
 954
 955/*
 956 * Check events in order.
 957 *
 958 */
 959static void memcg_check_events(struct mem_cgroup *memcg, int nid)
 960{
 961	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 962		return;
 963
 964	/* threshold event is triggered in finer grain than soft limit */
 965	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 966						MEM_CGROUP_TARGET_THRESH))) {
 967		bool do_softlimit;
 968
 969		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 970						MEM_CGROUP_TARGET_SOFTLIMIT);
 971		mem_cgroup_threshold(memcg);
 972		if (unlikely(do_softlimit))
 973			mem_cgroup_update_tree(memcg, nid);
 974	}
 975}
 976
 977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 978{
 979	/*
 980	 * mm_update_next_owner() may clear mm->owner to NULL
 981	 * if it races with swapoff, page migration, etc.
 982	 * So this can be called with p == NULL.
 983	 */
 984	if (unlikely(!p))
 985		return NULL;
 986
 987	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 988}
 989EXPORT_SYMBOL(mem_cgroup_from_task);
 990
 991static __always_inline struct mem_cgroup *active_memcg(void)
 992{
 993	if (!in_task())
 994		return this_cpu_read(int_active_memcg);
 995	else
 996		return current->active_memcg;
 997}
 998
 999/**
1000 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001 * @mm: mm from which memcg should be extracted. It can be NULL.
1002 *
1003 * Obtain a reference on mm->memcg and returns it if successful. If mm
1004 * is NULL, then the memcg is chosen as follows:
1005 * 1) The active memcg, if set.
1006 * 2) current->mm->memcg, if available
1007 * 3) root memcg
1008 * If mem_cgroup is disabled, NULL is returned.
1009 */
1010struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1011{
1012	struct mem_cgroup *memcg;
1013
1014	if (mem_cgroup_disabled())
1015		return NULL;
1016
1017	/*
1018	 * Page cache insertions can happen without an
1019	 * actual mm context, e.g. during disk probing
1020	 * on boot, loopback IO, acct() writes etc.
1021	 *
1022	 * No need to css_get on root memcg as the reference
1023	 * counting is disabled on the root level in the
1024	 * cgroup core. See CSS_NO_REF.
1025	 */
1026	if (unlikely(!mm)) {
1027		memcg = active_memcg();
1028		if (unlikely(memcg)) {
1029			/* remote memcg must hold a ref */
1030			css_get(&memcg->css);
1031			return memcg;
1032		}
1033		mm = current->mm;
1034		if (unlikely(!mm))
1035			return root_mem_cgroup;
1036	}
1037
1038	rcu_read_lock();
1039	do {
1040		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041		if (unlikely(!memcg))
1042			memcg = root_mem_cgroup;
1043	} while (!css_tryget(&memcg->css));
1044	rcu_read_unlock();
1045	return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049static __always_inline bool memcg_kmem_bypass(void)
1050{
1051	/* Allow remote memcg charging from any context. */
1052	if (unlikely(active_memcg()))
1053		return false;
1054
1055	/* Memcg to charge can't be determined. */
1056	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1057		return true;
1058
1059	return false;
1060}
1061
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 *
1068 * Returns references to children of the hierarchy below @root, or
1069 * @root itself, or %NULL after a full round-trip.
1070 *
1071 * Caller must pass the return value in @prev on subsequent
1072 * invocations for reference counting, or use mem_cgroup_iter_break()
1073 * to cancel a hierarchy walk before the round-trip is complete.
1074 *
1075 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076 * in the hierarchy among all concurrent reclaimers operating on the
1077 * same node.
1078 */
1079struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1080				   struct mem_cgroup *prev,
1081				   struct mem_cgroup_reclaim_cookie *reclaim)
1082{
1083	struct mem_cgroup_reclaim_iter *iter;
1084	struct cgroup_subsys_state *css = NULL;
1085	struct mem_cgroup *memcg = NULL;
1086	struct mem_cgroup *pos = NULL;
1087
1088	if (mem_cgroup_disabled())
1089		return NULL;
1090
1091	if (!root)
1092		root = root_mem_cgroup;
1093
 
 
 
1094	rcu_read_lock();
1095
1096	if (reclaim) {
1097		struct mem_cgroup_per_node *mz;
1098
1099		mz = root->nodeinfo[reclaim->pgdat->node_id];
1100		iter = &mz->iter;
1101
1102		/*
1103		 * On start, join the current reclaim iteration cycle.
1104		 * Exit when a concurrent walker completes it.
1105		 */
1106		if (!prev)
1107			reclaim->generation = iter->generation;
1108		else if (reclaim->generation != iter->generation)
1109			goto out_unlock;
1110
1111		while (1) {
1112			pos = READ_ONCE(iter->position);
1113			if (!pos || css_tryget(&pos->css))
1114				break;
1115			/*
1116			 * css reference reached zero, so iter->position will
1117			 * be cleared by ->css_released. However, we should not
1118			 * rely on this happening soon, because ->css_released
1119			 * is called from a work queue, and by busy-waiting we
1120			 * might block it. So we clear iter->position right
1121			 * away.
1122			 */
1123			(void)cmpxchg(&iter->position, pos, NULL);
1124		}
1125	} else if (prev) {
1126		pos = prev;
1127	}
1128
1129	if (pos)
1130		css = &pos->css;
1131
1132	for (;;) {
1133		css = css_next_descendant_pre(css, &root->css);
1134		if (!css) {
1135			/*
1136			 * Reclaimers share the hierarchy walk, and a
1137			 * new one might jump in right at the end of
1138			 * the hierarchy - make sure they see at least
1139			 * one group and restart from the beginning.
1140			 */
1141			if (!prev)
1142				continue;
1143			break;
1144		}
1145
1146		/*
1147		 * Verify the css and acquire a reference.  The root
1148		 * is provided by the caller, so we know it's alive
1149		 * and kicking, and don't take an extra reference.
1150		 */
1151		if (css == &root->css || css_tryget(css)) {
1152			memcg = mem_cgroup_from_css(css);
 
 
 
 
1153			break;
1154		}
 
1155	}
1156
1157	if (reclaim) {
1158		/*
1159		 * The position could have already been updated by a competing
1160		 * thread, so check that the value hasn't changed since we read
1161		 * it to avoid reclaiming from the same cgroup twice.
1162		 */
1163		(void)cmpxchg(&iter->position, pos, memcg);
1164
1165		if (pos)
1166			css_put(&pos->css);
1167
1168		if (!memcg)
1169			iter->generation++;
 
 
1170	}
1171
1172out_unlock:
1173	rcu_read_unlock();
1174	if (prev && prev != root)
1175		css_put(&prev->css);
1176
1177	return memcg;
1178}
1179
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186			   struct mem_cgroup *prev)
1187{
1188	if (!root)
1189		root = root_mem_cgroup;
1190	if (prev && prev != root)
1191		css_put(&prev->css);
1192}
1193
1194static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195					struct mem_cgroup *dead_memcg)
1196{
1197	struct mem_cgroup_reclaim_iter *iter;
1198	struct mem_cgroup_per_node *mz;
1199	int nid;
1200
1201	for_each_node(nid) {
1202		mz = from->nodeinfo[nid];
1203		iter = &mz->iter;
1204		cmpxchg(&iter->position, dead_memcg, NULL);
1205	}
1206}
1207
1208static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209{
1210	struct mem_cgroup *memcg = dead_memcg;
1211	struct mem_cgroup *last;
1212
1213	do {
1214		__invalidate_reclaim_iterators(memcg, dead_memcg);
1215		last = memcg;
1216	} while ((memcg = parent_mem_cgroup(memcg)));
1217
1218	/*
1219	 * When cgroup1 non-hierarchy mode is used,
1220	 * parent_mem_cgroup() does not walk all the way up to the
1221	 * cgroup root (root_mem_cgroup). So we have to handle
1222	 * dead_memcg from cgroup root separately.
1223	 */
1224	if (!mem_cgroup_is_root(last))
1225		__invalidate_reclaim_iterators(root_mem_cgroup,
1226						dead_memcg);
1227}
1228
1229/**
1230 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231 * @memcg: hierarchy root
1232 * @fn: function to call for each task
1233 * @arg: argument passed to @fn
1234 *
1235 * This function iterates over tasks attached to @memcg or to any of its
1236 * descendants and calls @fn for each task. If @fn returns a non-zero
1237 * value, the function breaks the iteration loop and returns the value.
1238 * Otherwise, it will iterate over all tasks and return 0.
1239 *
1240 * This function must not be called for the root memory cgroup.
1241 */
1242int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243			  int (*fn)(struct task_struct *, void *), void *arg)
1244{
1245	struct mem_cgroup *iter;
1246	int ret = 0;
1247
1248	BUG_ON(mem_cgroup_is_root(memcg));
1249
1250	for_each_mem_cgroup_tree(iter, memcg) {
1251		struct css_task_iter it;
1252		struct task_struct *task;
1253
1254		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1255		while (!ret && (task = css_task_iter_next(&it)))
1256			ret = fn(task, arg);
1257		css_task_iter_end(&it);
1258		if (ret) {
1259			mem_cgroup_iter_break(memcg, iter);
1260			break;
1261		}
1262	}
1263	return ret;
1264}
1265
1266#ifdef CONFIG_DEBUG_VM
1267void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268{
1269	struct mem_cgroup *memcg;
1270
1271	if (mem_cgroup_disabled())
1272		return;
1273
1274	memcg = folio_memcg(folio);
1275
1276	if (!memcg)
1277		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1278	else
1279		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1280}
1281#endif
1282
1283/**
1284 * folio_lruvec_lock - Lock the lruvec for a folio.
1285 * @folio: Pointer to the folio.
1286 *
1287 * These functions are safe to use under any of the following conditions:
1288 * - folio locked
1289 * - folio_test_lru false
1290 * - folio_memcg_lock()
1291 * - folio frozen (refcount of 0)
1292 *
1293 * Return: The lruvec this folio is on with its lock held.
1294 */
1295struct lruvec *folio_lruvec_lock(struct folio *folio)
1296{
1297	struct lruvec *lruvec = folio_lruvec(folio);
1298
 
1299	spin_lock(&lruvec->lru_lock);
1300	lruvec_memcg_debug(lruvec, folio);
 
1301
1302	return lruvec;
1303}
1304
1305/**
1306 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307 * @folio: Pointer to the folio.
1308 *
1309 * These functions are safe to use under any of the following conditions:
1310 * - folio locked
1311 * - folio_test_lru false
1312 * - folio_memcg_lock()
1313 * - folio frozen (refcount of 0)
1314 *
1315 * Return: The lruvec this folio is on with its lock held and interrupts
1316 * disabled.
1317 */
1318struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1319{
1320	struct lruvec *lruvec = folio_lruvec(folio);
1321
 
1322	spin_lock_irq(&lruvec->lru_lock);
1323	lruvec_memcg_debug(lruvec, folio);
 
1324
1325	return lruvec;
1326}
1327
1328/**
1329 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330 * @folio: Pointer to the folio.
1331 * @flags: Pointer to irqsave flags.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343		unsigned long *flags)
1344{
1345	struct lruvec *lruvec = folio_lruvec(folio);
1346
 
1347	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1348	lruvec_memcg_debug(lruvec, folio);
 
1349
1350	return lruvec;
1351}
1352
1353/**
1354 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355 * @lruvec: mem_cgroup per zone lru vector
1356 * @lru: index of lru list the page is sitting on
1357 * @zid: zone id of the accounted pages
1358 * @nr_pages: positive when adding or negative when removing
1359 *
1360 * This function must be called under lru_lock, just before a page is added
1361 * to or just after a page is removed from an lru list.
 
1362 */
1363void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1364				int zid, int nr_pages)
1365{
1366	struct mem_cgroup_per_node *mz;
1367	unsigned long *lru_size;
1368	long size;
1369
1370	if (mem_cgroup_disabled())
1371		return;
1372
1373	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1374	lru_size = &mz->lru_zone_size[zid][lru];
1375
1376	if (nr_pages < 0)
1377		*lru_size += nr_pages;
1378
1379	size = *lru_size;
1380	if (WARN_ONCE(size < 0,
1381		"%s(%p, %d, %d): lru_size %ld\n",
1382		__func__, lruvec, lru, nr_pages, size)) {
1383		VM_BUG_ON(1);
1384		*lru_size = 0;
1385	}
1386
1387	if (nr_pages > 0)
1388		*lru_size += nr_pages;
1389}
1390
1391/**
1392 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1393 * @memcg: the memory cgroup
1394 *
1395 * Returns the maximum amount of memory @mem can be charged with, in
1396 * pages.
1397 */
1398static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1399{
1400	unsigned long margin = 0;
1401	unsigned long count;
1402	unsigned long limit;
1403
1404	count = page_counter_read(&memcg->memory);
1405	limit = READ_ONCE(memcg->memory.max);
1406	if (count < limit)
1407		margin = limit - count;
1408
1409	if (do_memsw_account()) {
1410		count = page_counter_read(&memcg->memsw);
1411		limit = READ_ONCE(memcg->memsw.max);
1412		if (count < limit)
1413			margin = min(margin, limit - count);
1414		else
1415			margin = 0;
1416	}
1417
1418	return margin;
1419}
1420
1421/*
1422 * A routine for checking "mem" is under move_account() or not.
1423 *
1424 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425 * moving cgroups. This is for waiting at high-memory pressure
1426 * caused by "move".
1427 */
1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429{
1430	struct mem_cgroup *from;
1431	struct mem_cgroup *to;
1432	bool ret = false;
1433	/*
1434	 * Unlike task_move routines, we access mc.to, mc.from not under
1435	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436	 */
1437	spin_lock(&mc.lock);
1438	from = mc.from;
1439	to = mc.to;
1440	if (!from)
1441		goto unlock;
1442
1443	ret = mem_cgroup_is_descendant(from, memcg) ||
1444		mem_cgroup_is_descendant(to, memcg);
1445unlock:
1446	spin_unlock(&mc.lock);
1447	return ret;
1448}
1449
1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451{
1452	if (mc.moving_task && current != mc.moving_task) {
1453		if (mem_cgroup_under_move(memcg)) {
1454			DEFINE_WAIT(wait);
1455			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456			/* moving charge context might have finished. */
1457			if (mc.moving_task)
1458				schedule();
1459			finish_wait(&mc.waitq, &wait);
1460			return true;
1461		}
1462	}
1463	return false;
1464}
1465
1466struct memory_stat {
1467	const char *name;
1468	unsigned int idx;
1469};
1470
1471static const struct memory_stat memory_stats[] = {
1472	{ "anon",			NR_ANON_MAPPED			},
1473	{ "file",			NR_FILE_PAGES			},
1474	{ "kernel",			MEMCG_KMEM			},
1475	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1476	{ "pagetables",			NR_PAGETABLE			},
1477	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1478	{ "percpu",			MEMCG_PERCPU_B			},
1479	{ "sock",			MEMCG_SOCK			},
1480	{ "vmalloc",			MEMCG_VMALLOC			},
1481	{ "shmem",			NR_SHMEM			},
1482#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483	{ "zswap",			MEMCG_ZSWAP_B			},
1484	{ "zswapped",			MEMCG_ZSWAPPED			},
1485#endif
1486	{ "file_mapped",		NR_FILE_MAPPED			},
1487	{ "file_dirty",			NR_FILE_DIRTY			},
1488	{ "file_writeback",		NR_WRITEBACK			},
1489#ifdef CONFIG_SWAP
1490	{ "swapcached",			NR_SWAPCACHE			},
1491#endif
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493	{ "anon_thp",			NR_ANON_THPS			},
1494	{ "file_thp",			NR_FILE_THPS			},
1495	{ "shmem_thp",			NR_SHMEM_THPS			},
1496#endif
1497	{ "inactive_anon",		NR_INACTIVE_ANON		},
1498	{ "active_anon",		NR_ACTIVE_ANON			},
1499	{ "inactive_file",		NR_INACTIVE_FILE		},
1500	{ "active_file",		NR_ACTIVE_FILE			},
1501	{ "unevictable",		NR_UNEVICTABLE			},
1502	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1503	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1504
1505	/* The memory events */
1506	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1507	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1508	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1509	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1510	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1511	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1512	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1513};
1514
1515/* Translate stat items to the correct unit for memory.stat output */
1516static int memcg_page_state_unit(int item)
1517{
1518	switch (item) {
1519	case MEMCG_PERCPU_B:
1520	case MEMCG_ZSWAP_B:
1521	case NR_SLAB_RECLAIMABLE_B:
1522	case NR_SLAB_UNRECLAIMABLE_B:
1523	case WORKINGSET_REFAULT_ANON:
1524	case WORKINGSET_REFAULT_FILE:
1525	case WORKINGSET_ACTIVATE_ANON:
1526	case WORKINGSET_ACTIVATE_FILE:
1527	case WORKINGSET_RESTORE_ANON:
1528	case WORKINGSET_RESTORE_FILE:
1529	case WORKINGSET_NODERECLAIM:
1530		return 1;
1531	case NR_KERNEL_STACK_KB:
1532		return SZ_1K;
1533	default:
1534		return PAGE_SIZE;
1535	}
1536}
1537
1538static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539						    int item)
1540{
1541	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542}
1543
1544static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1545{
1546	struct seq_buf s;
1547	int i;
1548
1549	seq_buf_init(&s, buf, bufsize);
 
 
1550
1551	/*
1552	 * Provide statistics on the state of the memory subsystem as
1553	 * well as cumulative event counters that show past behavior.
1554	 *
1555	 * This list is ordered following a combination of these gradients:
1556	 * 1) generic big picture -> specifics and details
1557	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558	 *
1559	 * Current memory state:
1560	 */
1561	mem_cgroup_flush_stats();
1562
1563	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564		u64 size;
1565
1566		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1567		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1568
1569		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570			size += memcg_page_state_output(memcg,
1571							NR_SLAB_RECLAIMABLE_B);
1572			seq_buf_printf(&s, "slab %llu\n", size);
1573		}
1574	}
1575
1576	/* Accumulated memory events */
 
 
 
 
 
 
 
1577	seq_buf_printf(&s, "pgscan %lu\n",
1578		       memcg_events(memcg, PGSCAN_KSWAPD) +
1579		       memcg_events(memcg, PGSCAN_DIRECT) +
1580		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1581	seq_buf_printf(&s, "pgsteal %lu\n",
1582		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1583		       memcg_events(memcg, PGSTEAL_DIRECT) +
1584		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
 
 
 
 
 
 
 
1585
1586	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587		if (memcg_vm_event_stat[i] == PGPGIN ||
1588		    memcg_vm_event_stat[i] == PGPGOUT)
1589			continue;
1590
1591		seq_buf_printf(&s, "%s %lu\n",
1592			       vm_event_name(memcg_vm_event_stat[i]),
1593			       memcg_events(memcg, memcg_vm_event_stat[i]));
1594	}
1595
1596	/* The above should easily fit into one page */
1597	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
 
 
1598}
1599
1600#define K(x) ((x) << (PAGE_SHIFT-10))
1601/**
1602 * mem_cgroup_print_oom_context: Print OOM information relevant to
1603 * memory controller.
1604 * @memcg: The memory cgroup that went over limit
1605 * @p: Task that is going to be killed
1606 *
1607 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608 * enabled
1609 */
1610void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1611{
1612	rcu_read_lock();
1613
1614	if (memcg) {
1615		pr_cont(",oom_memcg=");
1616		pr_cont_cgroup_path(memcg->css.cgroup);
1617	} else
1618		pr_cont(",global_oom");
1619	if (p) {
1620		pr_cont(",task_memcg=");
1621		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1622	}
1623	rcu_read_unlock();
1624}
1625
1626/**
1627 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628 * memory controller.
1629 * @memcg: The memory cgroup that went over limit
1630 */
1631void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632{
1633	/* Use static buffer, for the caller is holding oom_lock. */
1634	static char buf[PAGE_SIZE];
1635
1636	lockdep_assert_held(&oom_lock);
1637
1638	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639		K((u64)page_counter_read(&memcg->memory)),
1640		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1641	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643			K((u64)page_counter_read(&memcg->swap)),
1644			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1645	else {
1646		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647			K((u64)page_counter_read(&memcg->memsw)),
1648			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650			K((u64)page_counter_read(&memcg->kmem)),
1651			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1652	}
1653
1654	pr_info("Memory cgroup stats for ");
1655	pr_cont_cgroup_path(memcg->css.cgroup);
1656	pr_cont(":");
1657	memory_stat_format(memcg, buf, sizeof(buf));
 
 
1658	pr_info("%s", buf);
 
1659}
1660
1661/*
1662 * Return the memory (and swap, if configured) limit for a memcg.
1663 */
1664unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1665{
1666	unsigned long max = READ_ONCE(memcg->memory.max);
1667
1668	if (do_memsw_account()) {
 
 
 
 
1669		if (mem_cgroup_swappiness(memcg)) {
1670			/* Calculate swap excess capacity from memsw limit */
1671			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672
1673			max += min(swap, (unsigned long)total_swap_pages);
1674		}
1675	} else {
1676		if (mem_cgroup_swappiness(memcg))
1677			max += min(READ_ONCE(memcg->swap.max),
1678				   (unsigned long)total_swap_pages);
1679	}
1680	return max;
1681}
1682
1683unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684{
1685	return page_counter_read(&memcg->memory);
1686}
1687
1688static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1689				     int order)
1690{
1691	struct oom_control oc = {
1692		.zonelist = NULL,
1693		.nodemask = NULL,
1694		.memcg = memcg,
1695		.gfp_mask = gfp_mask,
1696		.order = order,
1697	};
1698	bool ret = true;
1699
1700	if (mutex_lock_killable(&oom_lock))
1701		return true;
1702
1703	if (mem_cgroup_margin(memcg) >= (1 << order))
1704		goto unlock;
1705
1706	/*
1707	 * A few threads which were not waiting at mutex_lock_killable() can
1708	 * fail to bail out. Therefore, check again after holding oom_lock.
1709	 */
1710	ret = task_is_dying() || out_of_memory(&oc);
1711
1712unlock:
1713	mutex_unlock(&oom_lock);
1714	return ret;
1715}
1716
1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718				   pg_data_t *pgdat,
1719				   gfp_t gfp_mask,
1720				   unsigned long *total_scanned)
1721{
1722	struct mem_cgroup *victim = NULL;
1723	int total = 0;
1724	int loop = 0;
1725	unsigned long excess;
1726	unsigned long nr_scanned;
1727	struct mem_cgroup_reclaim_cookie reclaim = {
1728		.pgdat = pgdat,
1729	};
1730
1731	excess = soft_limit_excess(root_memcg);
1732
1733	while (1) {
1734		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735		if (!victim) {
1736			loop++;
1737			if (loop >= 2) {
1738				/*
1739				 * If we have not been able to reclaim
1740				 * anything, it might because there are
1741				 * no reclaimable pages under this hierarchy
1742				 */
1743				if (!total)
1744					break;
1745				/*
1746				 * We want to do more targeted reclaim.
1747				 * excess >> 2 is not to excessive so as to
1748				 * reclaim too much, nor too less that we keep
1749				 * coming back to reclaim from this cgroup
1750				 */
1751				if (total >= (excess >> 2) ||
1752					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753					break;
1754			}
1755			continue;
1756		}
1757		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1758					pgdat, &nr_scanned);
1759		*total_scanned += nr_scanned;
1760		if (!soft_limit_excess(root_memcg))
1761			break;
1762	}
1763	mem_cgroup_iter_break(root_memcg, victim);
1764	return total;
1765}
1766
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769	.name = "memcg_oom_lock",
1770};
1771#endif
1772
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780{
1781	struct mem_cgroup *iter, *failed = NULL;
1782
1783	spin_lock(&memcg_oom_lock);
1784
1785	for_each_mem_cgroup_tree(iter, memcg) {
1786		if (iter->oom_lock) {
1787			/*
1788			 * this subtree of our hierarchy is already locked
1789			 * so we cannot give a lock.
1790			 */
1791			failed = iter;
1792			mem_cgroup_iter_break(memcg, iter);
1793			break;
1794		} else
1795			iter->oom_lock = true;
1796	}
1797
1798	if (failed) {
1799		/*
1800		 * OK, we failed to lock the whole subtree so we have
1801		 * to clean up what we set up to the failing subtree
1802		 */
1803		for_each_mem_cgroup_tree(iter, memcg) {
1804			if (iter == failed) {
1805				mem_cgroup_iter_break(memcg, iter);
1806				break;
1807			}
1808			iter->oom_lock = false;
1809		}
1810	} else
1811		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812
1813	spin_unlock(&memcg_oom_lock);
1814
1815	return !failed;
1816}
1817
1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819{
1820	struct mem_cgroup *iter;
1821
1822	spin_lock(&memcg_oom_lock);
1823	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1824	for_each_mem_cgroup_tree(iter, memcg)
1825		iter->oom_lock = false;
1826	spin_unlock(&memcg_oom_lock);
1827}
1828
1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830{
1831	struct mem_cgroup *iter;
1832
1833	spin_lock(&memcg_oom_lock);
1834	for_each_mem_cgroup_tree(iter, memcg)
1835		iter->under_oom++;
1836	spin_unlock(&memcg_oom_lock);
1837}
1838
1839static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1840{
1841	struct mem_cgroup *iter;
1842
1843	/*
1844	 * Be careful about under_oom underflows because a child memcg
1845	 * could have been added after mem_cgroup_mark_under_oom.
1846	 */
1847	spin_lock(&memcg_oom_lock);
1848	for_each_mem_cgroup_tree(iter, memcg)
1849		if (iter->under_oom > 0)
1850			iter->under_oom--;
1851	spin_unlock(&memcg_oom_lock);
1852}
1853
1854static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855
1856struct oom_wait_info {
1857	struct mem_cgroup *memcg;
1858	wait_queue_entry_t	wait;
1859};
1860
1861static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1862	unsigned mode, int sync, void *arg)
1863{
1864	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865	struct mem_cgroup *oom_wait_memcg;
1866	struct oom_wait_info *oom_wait_info;
1867
1868	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1869	oom_wait_memcg = oom_wait_info->memcg;
1870
1871	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1873		return 0;
1874	return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
1877static void memcg_oom_recover(struct mem_cgroup *memcg)
1878{
1879	/*
1880	 * For the following lockless ->under_oom test, the only required
1881	 * guarantee is that it must see the state asserted by an OOM when
1882	 * this function is called as a result of userland actions
1883	 * triggered by the notification of the OOM.  This is trivially
1884	 * achieved by invoking mem_cgroup_mark_under_oom() before
1885	 * triggering notification.
1886	 */
1887	if (memcg && memcg->under_oom)
1888		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889}
1890
1891/*
1892 * Returns true if successfully killed one or more processes. Though in some
1893 * corner cases it can return true even without killing any process.
1894 */
1895static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 
 
 
1896{
1897	bool locked, ret;
 
1898
1899	if (order > PAGE_ALLOC_COSTLY_ORDER)
1900		return false;
1901
1902	memcg_memory_event(memcg, MEMCG_OOM);
1903
1904	/*
1905	 * We are in the middle of the charge context here, so we
1906	 * don't want to block when potentially sitting on a callstack
1907	 * that holds all kinds of filesystem and mm locks.
1908	 *
1909	 * cgroup1 allows disabling the OOM killer and waiting for outside
1910	 * handling until the charge can succeed; remember the context and put
1911	 * the task to sleep at the end of the page fault when all locks are
1912	 * released.
1913	 *
1914	 * On the other hand, in-kernel OOM killer allows for an async victim
1915	 * memory reclaim (oom_reaper) and that means that we are not solely
1916	 * relying on the oom victim to make a forward progress and we can
1917	 * invoke the oom killer here.
1918	 *
1919	 * Please note that mem_cgroup_out_of_memory might fail to find a
1920	 * victim and then we have to bail out from the charge path.
1921	 */
1922	if (memcg->oom_kill_disable) {
1923		if (current->in_user_fault) {
1924			css_get(&memcg->css);
1925			current->memcg_in_oom = memcg;
1926			current->memcg_oom_gfp_mask = mask;
1927			current->memcg_oom_order = order;
1928		}
1929		return false;
 
1930	}
1931
1932	mem_cgroup_mark_under_oom(memcg);
1933
1934	locked = mem_cgroup_oom_trylock(memcg);
1935
1936	if (locked)
1937		mem_cgroup_oom_notify(memcg);
1938
1939	mem_cgroup_unmark_under_oom(memcg);
1940	ret = mem_cgroup_out_of_memory(memcg, mask, order);
 
 
 
1941
1942	if (locked)
1943		mem_cgroup_oom_unlock(memcg);
1944
1945	return ret;
1946}
1947
1948/**
1949 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1950 * @handle: actually kill/wait or just clean up the OOM state
1951 *
1952 * This has to be called at the end of a page fault if the memcg OOM
1953 * handler was enabled.
1954 *
1955 * Memcg supports userspace OOM handling where failed allocations must
1956 * sleep on a waitqueue until the userspace task resolves the
1957 * situation.  Sleeping directly in the charge context with all kinds
1958 * of locks held is not a good idea, instead we remember an OOM state
1959 * in the task and mem_cgroup_oom_synchronize() has to be called at
1960 * the end of the page fault to complete the OOM handling.
1961 *
1962 * Returns %true if an ongoing memcg OOM situation was detected and
1963 * completed, %false otherwise.
1964 */
1965bool mem_cgroup_oom_synchronize(bool handle)
1966{
1967	struct mem_cgroup *memcg = current->memcg_in_oom;
1968	struct oom_wait_info owait;
1969	bool locked;
1970
1971	/* OOM is global, do not handle */
1972	if (!memcg)
1973		return false;
1974
1975	if (!handle)
1976		goto cleanup;
1977
1978	owait.memcg = memcg;
1979	owait.wait.flags = 0;
1980	owait.wait.func = memcg_oom_wake_function;
1981	owait.wait.private = current;
1982	INIT_LIST_HEAD(&owait.wait.entry);
1983
1984	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1985	mem_cgroup_mark_under_oom(memcg);
1986
1987	locked = mem_cgroup_oom_trylock(memcg);
1988
1989	if (locked)
1990		mem_cgroup_oom_notify(memcg);
1991
1992	if (locked && !memcg->oom_kill_disable) {
1993		mem_cgroup_unmark_under_oom(memcg);
1994		finish_wait(&memcg_oom_waitq, &owait.wait);
1995		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996					 current->memcg_oom_order);
1997	} else {
1998		schedule();
1999		mem_cgroup_unmark_under_oom(memcg);
2000		finish_wait(&memcg_oom_waitq, &owait.wait);
2001	}
2002
2003	if (locked) {
2004		mem_cgroup_oom_unlock(memcg);
2005		/*
2006		 * There is no guarantee that an OOM-lock contender
2007		 * sees the wakeups triggered by the OOM kill
2008		 * uncharges.  Wake any sleepers explicitly.
2009		 */
2010		memcg_oom_recover(memcg);
2011	}
2012cleanup:
2013	current->memcg_in_oom = NULL;
2014	css_put(&memcg->css);
2015	return true;
2016}
2017
2018/**
2019 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020 * @victim: task to be killed by the OOM killer
2021 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022 *
2023 * Returns a pointer to a memory cgroup, which has to be cleaned up
2024 * by killing all belonging OOM-killable tasks.
2025 *
2026 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027 */
2028struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029					    struct mem_cgroup *oom_domain)
2030{
2031	struct mem_cgroup *oom_group = NULL;
2032	struct mem_cgroup *memcg;
2033
2034	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035		return NULL;
2036
2037	if (!oom_domain)
2038		oom_domain = root_mem_cgroup;
2039
2040	rcu_read_lock();
2041
2042	memcg = mem_cgroup_from_task(victim);
2043	if (mem_cgroup_is_root(memcg))
2044		goto out;
2045
2046	/*
2047	 * If the victim task has been asynchronously moved to a different
2048	 * memory cgroup, we might end up killing tasks outside oom_domain.
2049	 * In this case it's better to ignore memory.group.oom.
2050	 */
2051	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052		goto out;
2053
2054	/*
2055	 * Traverse the memory cgroup hierarchy from the victim task's
2056	 * cgroup up to the OOMing cgroup (or root) to find the
2057	 * highest-level memory cgroup with oom.group set.
2058	 */
2059	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060		if (memcg->oom_group)
2061			oom_group = memcg;
2062
2063		if (memcg == oom_domain)
2064			break;
2065	}
2066
2067	if (oom_group)
2068		css_get(&oom_group->css);
2069out:
2070	rcu_read_unlock();
2071
2072	return oom_group;
2073}
2074
2075void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076{
2077	pr_info("Tasks in ");
2078	pr_cont_cgroup_path(memcg->css.cgroup);
2079	pr_cont(" are going to be killed due to memory.oom.group set\n");
2080}
2081
2082/**
2083 * folio_memcg_lock - Bind a folio to its memcg.
2084 * @folio: The folio.
2085 *
2086 * This function prevents unlocked LRU folios from being moved to
2087 * another cgroup.
2088 *
2089 * It ensures lifetime of the bound memcg.  The caller is responsible
2090 * for the lifetime of the folio.
2091 */
2092void folio_memcg_lock(struct folio *folio)
2093{
 
2094	struct mem_cgroup *memcg;
2095	unsigned long flags;
2096
2097	/*
2098	 * The RCU lock is held throughout the transaction.  The fast
2099	 * path can get away without acquiring the memcg->move_lock
2100	 * because page moving starts with an RCU grace period.
2101         */
2102	rcu_read_lock();
2103
2104	if (mem_cgroup_disabled())
2105		return;
2106again:
2107	memcg = folio_memcg(folio);
2108	if (unlikely(!memcg))
2109		return;
2110
2111#ifdef CONFIG_PROVE_LOCKING
2112	local_irq_save(flags);
2113	might_lock(&memcg->move_lock);
2114	local_irq_restore(flags);
2115#endif
2116
2117	if (atomic_read(&memcg->moving_account) <= 0)
2118		return;
2119
2120	spin_lock_irqsave(&memcg->move_lock, flags);
2121	if (memcg != folio_memcg(folio)) {
2122		spin_unlock_irqrestore(&memcg->move_lock, flags);
2123		goto again;
2124	}
2125
2126	/*
2127	 * When charge migration first begins, we can have multiple
2128	 * critical sections holding the fast-path RCU lock and one
2129	 * holding the slowpath move_lock. Track the task who has the
2130	 * move_lock for unlock_page_memcg().
2131	 */
2132	memcg->move_lock_task = current;
2133	memcg->move_lock_flags = flags;
2134}
 
2135
2136void lock_page_memcg(struct page *page)
2137{
2138	folio_memcg_lock(page_folio(page));
2139}
2140
2141static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2142{
2143	if (memcg && memcg->move_lock_task == current) {
2144		unsigned long flags = memcg->move_lock_flags;
2145
2146		memcg->move_lock_task = NULL;
2147		memcg->move_lock_flags = 0;
2148
2149		spin_unlock_irqrestore(&memcg->move_lock, flags);
2150	}
2151
2152	rcu_read_unlock();
2153}
2154
2155/**
2156 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157 * @folio: The folio.
2158 *
2159 * This releases the binding created by folio_memcg_lock().  This does
2160 * not change the accounting of this folio to its memcg, but it does
2161 * permit others to change it.
2162 */
2163void folio_memcg_unlock(struct folio *folio)
2164{
2165	__folio_memcg_unlock(folio_memcg(folio));
2166}
2167
2168void unlock_page_memcg(struct page *page)
2169{
2170	folio_memcg_unlock(page_folio(page));
2171}
 
2172
2173struct memcg_stock_pcp {
2174	local_lock_t stock_lock;
2175	struct mem_cgroup *cached; /* this never be root cgroup */
2176	unsigned int nr_pages;
2177
2178#ifdef CONFIG_MEMCG_KMEM
2179	struct obj_cgroup *cached_objcg;
2180	struct pglist_data *cached_pgdat;
2181	unsigned int nr_bytes;
2182	int nr_slab_reclaimable_b;
2183	int nr_slab_unreclaimable_b;
 
 
2184#endif
 
 
 
 
 
 
 
2185
2186	struct work_struct work;
2187	unsigned long flags;
2188#define FLUSHING_CACHED_CHARGE	0
2189};
2190static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192};
2193static DEFINE_MUTEX(percpu_charge_mutex);
2194
2195#ifdef CONFIG_MEMCG_KMEM
2196static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198				     struct mem_cgroup *root_memcg);
2199static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2200
2201#else
2202static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2203{
2204	return NULL;
2205}
2206static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207				     struct mem_cgroup *root_memcg)
2208{
2209	return false;
2210}
2211static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212{
 
 
 
 
2213}
2214#endif
2215
2216/**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock.  Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
2226 */
2227static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231	bool ret = false;
2232
2233	if (nr_pages > MEMCG_CHARGE_BATCH)
2234		return ret;
2235
2236	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2237
2238	stock = this_cpu_ptr(&memcg_stock);
2239	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240		stock->nr_pages -= nr_pages;
2241		ret = true;
2242	}
2243
2244	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2245
2246	return ret;
2247}
2248
2249/*
2250 * Returns stocks cached in percpu and reset cached information.
2251 */
2252static void drain_stock(struct memcg_stock_pcp *stock)
2253{
2254	struct mem_cgroup *old = stock->cached;
2255
2256	if (!old)
2257		return;
2258
2259	if (stock->nr_pages) {
2260		page_counter_uncharge(&old->memory, stock->nr_pages);
2261		if (do_memsw_account())
2262			page_counter_uncharge(&old->memsw, stock->nr_pages);
2263		stock->nr_pages = 0;
2264	}
2265
2266	css_put(&old->css);
2267	stock->cached = NULL;
2268}
2269
2270static void drain_local_stock(struct work_struct *dummy)
2271{
2272	struct memcg_stock_pcp *stock;
2273	struct obj_cgroup *old = NULL;
2274	unsigned long flags;
2275
2276	/*
2277	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278	 * drain_stock races is that we always operate on local CPU stock
2279	 * here with IRQ disabled
2280	 */
2281	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2282
2283	stock = this_cpu_ptr(&memcg_stock);
2284	old = drain_obj_stock(stock);
 
 
2285	drain_stock(stock);
2286	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2287
2288	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289	if (old)
2290		obj_cgroup_put(old);
2291}
2292
2293/*
2294 * Cache charges(val) to local per_cpu area.
2295 * This will be consumed by consume_stock() function, later.
2296 */
2297static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298{
2299	struct memcg_stock_pcp *stock;
 
 
 
2300
2301	stock = this_cpu_ptr(&memcg_stock);
2302	if (stock->cached != memcg) { /* reset if necessary */
2303		drain_stock(stock);
2304		css_get(&memcg->css);
2305		stock->cached = memcg;
2306	}
2307	stock->nr_pages += nr_pages;
2308
2309	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2310		drain_stock(stock);
2311}
2312
2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314{
2315	unsigned long flags;
2316
2317	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318	__refill_stock(memcg, nr_pages);
2319	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2320}
2321
2322/*
2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2324 * of the hierarchy under it.
2325 */
2326static void drain_all_stock(struct mem_cgroup *root_memcg)
2327{
2328	int cpu, curcpu;
2329
2330	/* If someone's already draining, avoid adding running more workers. */
2331	if (!mutex_trylock(&percpu_charge_mutex))
2332		return;
2333	/*
2334	 * Notify other cpus that system-wide "drain" is running
2335	 * We do not care about races with the cpu hotplug because cpu down
2336	 * as well as workers from this path always operate on the local
2337	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338	 */
2339	migrate_disable();
2340	curcpu = smp_processor_id();
2341	for_each_online_cpu(cpu) {
2342		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343		struct mem_cgroup *memcg;
2344		bool flush = false;
2345
2346		rcu_read_lock();
2347		memcg = stock->cached;
2348		if (memcg && stock->nr_pages &&
2349		    mem_cgroup_is_descendant(memcg, root_memcg))
2350			flush = true;
2351		else if (obj_stock_flush_required(stock, root_memcg))
2352			flush = true;
2353		rcu_read_unlock();
2354
2355		if (flush &&
2356		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357			if (cpu == curcpu)
2358				drain_local_stock(&stock->work);
2359			else
2360				schedule_work_on(cpu, &stock->work);
2361		}
2362	}
2363	migrate_enable();
2364	mutex_unlock(&percpu_charge_mutex);
2365}
2366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368{
2369	struct memcg_stock_pcp *stock;
 
2370
2371	stock = &per_cpu(memcg_stock, cpu);
2372	drain_stock(stock);
2373
 
 
 
2374	return 0;
2375}
2376
2377static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378				  unsigned int nr_pages,
2379				  gfp_t gfp_mask)
2380{
2381	unsigned long nr_reclaimed = 0;
2382
2383	do {
2384		unsigned long pflags;
2385
2386		if (page_counter_read(&memcg->memory) <=
2387		    READ_ONCE(memcg->memory.high))
2388			continue;
2389
2390		memcg_memory_event(memcg, MEMCG_HIGH);
2391
2392		psi_memstall_enter(&pflags);
2393		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2394							gfp_mask,
2395							MEMCG_RECLAIM_MAY_SWAP);
2396		psi_memstall_leave(&pflags);
2397	} while ((memcg = parent_mem_cgroup(memcg)) &&
2398		 !mem_cgroup_is_root(memcg));
2399
2400	return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405	struct mem_cgroup *memcg;
2406
2407	memcg = container_of(work, struct mem_cgroup, high_work);
2408	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 *   overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 *   to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 *  +-------+------------------------+
2436 *  | usage | time to allocate in ms |
2437 *  +-------+------------------------+
2438 *  | 100M  |                      0 |
2439 *  | 101M  |                      6 |
2440 *  | 102M  |                     25 |
2441 *  | 103M  |                     57 |
2442 *  | 104M  |                    102 |
2443 *  | 105M  |                    159 |
2444 *  | 106M  |                    230 |
2445 *  | 107M  |                    313 |
2446 *  | 108M  |                    409 |
2447 *  | 109M  |                    518 |
2448 *  | 110M  |                    639 |
2449 *  | 111M  |                    774 |
2450 *  | 112M  |                    921 |
2451 *  | 113M  |                   1081 |
2452 *  | 114M  |                   1254 |
2453 *  | 115M  |                   1439 |
2454 *  | 116M  |                   1638 |
2455 *  | 117M  |                   1849 |
2456 *  | 118M  |                   2000 |
2457 *  | 119M  |                   2000 |
2458 *  | 120M  |                   2000 |
2459 *  +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466	u64 overage;
2467
2468	if (usage <= high)
2469		return 0;
2470
2471	/*
2472	 * Prevent division by 0 in overage calculation by acting as if
2473	 * it was a threshold of 1 page
2474	 */
2475	high = max(high, 1UL);
2476
2477	overage = usage - high;
2478	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479	return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484	u64 overage, max_overage = 0;
2485
2486	do {
2487		overage = calculate_overage(page_counter_read(&memcg->memory),
2488					    READ_ONCE(memcg->memory.high));
2489		max_overage = max(overage, max_overage);
2490	} while ((memcg = parent_mem_cgroup(memcg)) &&
2491		 !mem_cgroup_is_root(memcg));
2492
2493	return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498	u64 overage, max_overage = 0;
2499
2500	do {
2501		overage = calculate_overage(page_counter_read(&memcg->swap),
2502					    READ_ONCE(memcg->swap.high));
2503		if (overage)
2504			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505		max_overage = max(overage, max_overage);
2506	} while ((memcg = parent_mem_cgroup(memcg)) &&
2507		 !mem_cgroup_is_root(memcg));
2508
2509	return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517					  unsigned int nr_pages,
2518					  u64 max_overage)
2519{
2520	unsigned long penalty_jiffies;
2521
2522	if (!max_overage)
2523		return 0;
2524
2525	/*
2526	 * We use overage compared to memory.high to calculate the number of
2527	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528	 * fairly lenient on small overages, and increasingly harsh when the
2529	 * memcg in question makes it clear that it has no intention of stopping
2530	 * its crazy behaviour, so we exponentially increase the delay based on
2531	 * overage amount.
2532	 */
2533	penalty_jiffies = max_overage * max_overage * HZ;
2534	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537	/*
2538	 * Factor in the task's own contribution to the overage, such that four
2539	 * N-sized allocations are throttled approximately the same as one
2540	 * 4N-sized allocation.
2541	 *
2542	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543	 * larger the current charge patch is than that.
2544	 */
2545	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554	unsigned long penalty_jiffies;
2555	unsigned long pflags;
2556	unsigned long nr_reclaimed;
2557	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558	int nr_retries = MAX_RECLAIM_RETRIES;
2559	struct mem_cgroup *memcg;
2560	bool in_retry = false;
2561
2562	if (likely(!nr_pages))
2563		return;
2564
2565	memcg = get_mem_cgroup_from_mm(current->mm);
2566	current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569	/*
2570	 * The allocating task should reclaim at least the batch size, but for
2571	 * subsequent retries we only want to do what's necessary to prevent oom
2572	 * or breaching resource isolation.
2573	 *
2574	 * This is distinct from memory.max or page allocator behaviour because
2575	 * memory.high is currently batched, whereas memory.max and the page
2576	 * allocator run every time an allocation is made.
2577	 */
2578	nr_reclaimed = reclaim_high(memcg,
2579				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580				    GFP_KERNEL);
2581
2582	/*
2583	 * memory.high is breached and reclaim is unable to keep up. Throttle
2584	 * allocators proactively to slow down excessive growth.
2585	 */
2586	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587					       mem_find_max_overage(memcg));
2588
2589	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590						swap_find_max_overage(memcg));
2591
2592	/*
2593	 * Clamp the max delay per usermode return so as to still keep the
2594	 * application moving forwards and also permit diagnostics, albeit
2595	 * extremely slowly.
2596	 */
2597	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599	/*
2600	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601	 * that it's not even worth doing, in an attempt to be nice to those who
2602	 * go only a small amount over their memory.high value and maybe haven't
2603	 * been aggressively reclaimed enough yet.
2604	 */
2605	if (penalty_jiffies <= HZ / 100)
2606		goto out;
2607
2608	/*
2609	 * If reclaim is making forward progress but we're still over
2610	 * memory.high, we want to encourage that rather than doing allocator
2611	 * throttling.
2612	 */
2613	if (nr_reclaimed || nr_retries--) {
2614		in_retry = true;
2615		goto retry_reclaim;
2616	}
2617
2618	/*
2619	 * If we exit early, we're guaranteed to die (since
2620	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621	 * need to account for any ill-begotten jiffies to pay them off later.
2622	 */
2623	psi_memstall_enter(&pflags);
2624	schedule_timeout_killable(penalty_jiffies);
2625	psi_memstall_leave(&pflags);
2626
2627out:
2628	css_put(&memcg->css);
2629}
2630
2631static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632			unsigned int nr_pages)
2633{
2634	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635	int nr_retries = MAX_RECLAIM_RETRIES;
2636	struct mem_cgroup *mem_over_limit;
2637	struct page_counter *counter;
 
2638	unsigned long nr_reclaimed;
2639	bool passed_oom = false;
2640	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2641	bool drained = false;
2642	bool raised_max_event = false;
2643	unsigned long pflags;
2644
2645retry:
2646	if (consume_stock(memcg, nr_pages))
2647		return 0;
2648
2649	if (!do_memsw_account() ||
2650	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2652			goto done_restock;
2653		if (do_memsw_account())
2654			page_counter_uncharge(&memcg->memsw, batch);
2655		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2656	} else {
2657		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2658		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2659	}
2660
2661	if (batch > nr_pages) {
2662		batch = nr_pages;
2663		goto retry;
2664	}
2665
2666	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2667	 * Prevent unbounded recursion when reclaim operations need to
2668	 * allocate memory. This might exceed the limits temporarily,
2669	 * but we prefer facilitating memory reclaim and getting back
2670	 * under the limit over triggering OOM kills in these cases.
2671	 */
2672	if (unlikely(current->flags & PF_MEMALLOC))
2673		goto force;
2674
2675	if (unlikely(task_in_memcg_oom(current)))
2676		goto nomem;
2677
2678	if (!gfpflags_allow_blocking(gfp_mask))
2679		goto nomem;
2680
2681	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2682	raised_max_event = true;
2683
2684	psi_memstall_enter(&pflags);
2685	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2686						    gfp_mask, reclaim_options);
2687	psi_memstall_leave(&pflags);
2688
2689	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2690		goto retry;
2691
2692	if (!drained) {
2693		drain_all_stock(mem_over_limit);
2694		drained = true;
2695		goto retry;
2696	}
2697
2698	if (gfp_mask & __GFP_NORETRY)
2699		goto nomem;
2700	/*
2701	 * Even though the limit is exceeded at this point, reclaim
2702	 * may have been able to free some pages.  Retry the charge
2703	 * before killing the task.
2704	 *
2705	 * Only for regular pages, though: huge pages are rather
2706	 * unlikely to succeed so close to the limit, and we fall back
2707	 * to regular pages anyway in case of failure.
2708	 */
2709	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2710		goto retry;
2711	/*
2712	 * At task move, charge accounts can be doubly counted. So, it's
2713	 * better to wait until the end of task_move if something is going on.
2714	 */
2715	if (mem_cgroup_wait_acct_move(mem_over_limit))
2716		goto retry;
2717
2718	if (nr_retries--)
2719		goto retry;
2720
2721	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2722		goto nomem;
2723
2724	/* Avoid endless loop for tasks bypassed by the oom killer */
2725	if (passed_oom && task_is_dying())
2726		goto nomem;
2727
2728	/*
2729	 * keep retrying as long as the memcg oom killer is able to make
2730	 * a forward progress or bypass the charge if the oom killer
2731	 * couldn't make any progress.
2732	 */
2733	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734			   get_order(nr_pages * PAGE_SIZE))) {
2735		passed_oom = true;
 
2736		nr_retries = MAX_RECLAIM_RETRIES;
2737		goto retry;
 
 
 
 
2738	}
2739nomem:
2740	/*
2741	 * Memcg doesn't have a dedicated reserve for atomic
2742	 * allocations. But like the global atomic pool, we need to
2743	 * put the burden of reclaim on regular allocation requests
2744	 * and let these go through as privileged allocations.
2745	 */
2746	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2747		return -ENOMEM;
2748force:
2749	/*
2750	 * If the allocation has to be enforced, don't forget to raise
2751	 * a MEMCG_MAX event.
2752	 */
2753	if (!raised_max_event)
2754		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
2756	/*
2757	 * The allocation either can't fail or will lead to more memory
2758	 * being freed very soon.  Allow memory usage go over the limit
2759	 * temporarily by force charging it.
2760	 */
2761	page_counter_charge(&memcg->memory, nr_pages);
2762	if (do_memsw_account())
2763		page_counter_charge(&memcg->memsw, nr_pages);
2764
2765	return 0;
2766
2767done_restock:
2768	if (batch > nr_pages)
2769		refill_stock(memcg, batch - nr_pages);
2770
2771	/*
2772	 * If the hierarchy is above the normal consumption range, schedule
2773	 * reclaim on returning to userland.  We can perform reclaim here
2774	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2775	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2776	 * not recorded as it most likely matches current's and won't
2777	 * change in the meantime.  As high limit is checked again before
2778	 * reclaim, the cost of mismatch is negligible.
2779	 */
2780	do {
2781		bool mem_high, swap_high;
2782
2783		mem_high = page_counter_read(&memcg->memory) >
2784			READ_ONCE(memcg->memory.high);
2785		swap_high = page_counter_read(&memcg->swap) >
2786			READ_ONCE(memcg->swap.high);
2787
2788		/* Don't bother a random interrupted task */
2789		if (!in_task()) {
2790			if (mem_high) {
2791				schedule_work(&memcg->high_work);
2792				break;
2793			}
2794			continue;
2795		}
2796
2797		if (mem_high || swap_high) {
2798			/*
2799			 * The allocating tasks in this cgroup will need to do
2800			 * reclaim or be throttled to prevent further growth
2801			 * of the memory or swap footprints.
2802			 *
2803			 * Target some best-effort fairness between the tasks,
2804			 * and distribute reclaim work and delay penalties
2805			 * based on how much each task is actually allocating.
2806			 */
2807			current->memcg_nr_pages_over_high += batch;
2808			set_notify_resume(current);
2809			break;
2810		}
2811	} while ((memcg = parent_mem_cgroup(memcg)));
2812
2813	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814	    !(current->flags & PF_MEMALLOC) &&
2815	    gfpflags_allow_blocking(gfp_mask)) {
2816		mem_cgroup_handle_over_high();
2817	}
2818	return 0;
2819}
2820
2821static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822			     unsigned int nr_pages)
2823{
2824	if (mem_cgroup_is_root(memcg))
2825		return 0;
2826
2827	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828}
2829
2830static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
2831{
2832	if (mem_cgroup_is_root(memcg))
2833		return;
2834
2835	page_counter_uncharge(&memcg->memory, nr_pages);
2836	if (do_memsw_account())
2837		page_counter_uncharge(&memcg->memsw, nr_pages);
2838}
 
2839
2840static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2841{
2842	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2843	/*
2844	 * Any of the following ensures page's memcg stability:
2845	 *
2846	 * - the page lock
2847	 * - LRU isolation
2848	 * - lock_page_memcg()
2849	 * - exclusive reference
2850	 * - mem_cgroup_trylock_pages()
2851	 */
2852	folio->memcg_data = (unsigned long)memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2853}
2854
2855#ifdef CONFIG_MEMCG_KMEM
2856/*
2857 * The allocated objcg pointers array is not accounted directly.
2858 * Moreover, it should not come from DMA buffer and is not readily
2859 * reclaimable. So those GFP bits should be masked off.
2860 */
2861#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862
2863/*
2864 * mod_objcg_mlstate() may be called with irq enabled, so
2865 * mod_memcg_lruvec_state() should be used.
2866 */
2867static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868				     struct pglist_data *pgdat,
2869				     enum node_stat_item idx, int nr)
2870{
2871	struct mem_cgroup *memcg;
2872	struct lruvec *lruvec;
2873
2874	rcu_read_lock();
2875	memcg = obj_cgroup_memcg(objcg);
2876	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877	mod_memcg_lruvec_state(lruvec, idx, nr);
2878	rcu_read_unlock();
2879}
2880
2881int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882				 gfp_t gfp, bool new_slab)
2883{
2884	unsigned int objects = objs_per_slab(s, slab);
2885	unsigned long memcg_data;
2886	void *vec;
2887
2888	gfp &= ~OBJCGS_CLEAR_MASK;
2889	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2890			   slab_nid(slab));
2891	if (!vec)
2892		return -ENOMEM;
2893
2894	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2895	if (new_slab) {
2896		/*
2897		 * If the slab is brand new and nobody can yet access its
2898		 * memcg_data, no synchronization is required and memcg_data can
2899		 * be simply assigned.
2900		 */
2901		slab->memcg_data = memcg_data;
2902	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2903		/*
2904		 * If the slab is already in use, somebody can allocate and
2905		 * assign obj_cgroups in parallel. In this case the existing
2906		 * objcg vector should be reused.
2907		 */
2908		kfree(vec);
2909		return 0;
2910	}
2911
2912	kmemleak_not_leak(vec);
2913	return 0;
2914}
2915
2916static __always_inline
2917struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2918{
2919	/*
2920	 * Slab objects are accounted individually, not per-page.
2921	 * Memcg membership data for each individual object is saved in
2922	 * slab->memcg_data.
2923	 */
2924	if (folio_test_slab(folio)) {
2925		struct obj_cgroup **objcgs;
2926		struct slab *slab;
2927		unsigned int off;
2928
2929		slab = folio_slab(folio);
2930		objcgs = slab_objcgs(slab);
2931		if (!objcgs)
2932			return NULL;
2933
2934		off = obj_to_index(slab->slab_cache, slab, p);
2935		if (objcgs[off])
2936			return obj_cgroup_memcg(objcgs[off]);
2937
2938		return NULL;
2939	}
2940
2941	/*
2942	 * page_memcg_check() is used here, because in theory we can encounter
2943	 * a folio where the slab flag has been cleared already, but
2944	 * slab->memcg_data has not been freed yet
2945	 * page_memcg_check(page) will guarantee that a proper memory
2946	 * cgroup pointer or NULL will be returned.
2947	 */
2948	return page_memcg_check(folio_page(folio, 0));
2949}
2950
2951/*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * A passed kernel object can be a slab object, vmalloc object or a generic
2955 * kernel page, so different mechanisms for getting the memory cgroup pointer
2956 * should be used.
2957 *
2958 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959 * can not know for sure how the kernel object is implemented.
2960 * mem_cgroup_from_obj() can be safely used in such cases.
2961 *
2962 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963 * cgroup_mutex, etc.
2964 */
2965struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966{
2967	struct folio *folio;
2968
2969	if (mem_cgroup_disabled())
2970		return NULL;
2971
2972	if (unlikely(is_vmalloc_addr(p)))
2973		folio = page_folio(vmalloc_to_page(p));
2974	else
2975		folio = virt_to_folio(p);
 
 
 
 
 
 
2976
2977	return mem_cgroup_from_obj_folio(folio, p);
2978}
 
 
2979
2980/*
2981 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983 * allocated using vmalloc().
2984 *
2985 * A passed kernel object must be a slab object or a generic kernel page.
2986 *
2987 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988 * cgroup_mutex, etc.
2989 */
2990struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991{
2992	if (mem_cgroup_disabled())
2993		return NULL;
 
2994
2995	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996}
2997
2998static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999{
3000	struct obj_cgroup *objcg = NULL;
3001
3002	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3003		objcg = rcu_dereference(memcg->objcg);
3004		if (objcg && obj_cgroup_tryget(objcg))
3005			break;
3006		objcg = NULL;
3007	}
3008	return objcg;
3009}
3010
3011__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012{
3013	struct obj_cgroup *objcg = NULL;
3014	struct mem_cgroup *memcg;
3015
3016	if (memcg_kmem_bypass())
3017		return NULL;
3018
3019	rcu_read_lock();
3020	if (unlikely(active_memcg()))
3021		memcg = active_memcg();
3022	else
3023		memcg = mem_cgroup_from_task(current);
3024	objcg = __get_obj_cgroup_from_memcg(memcg);
 
 
 
 
 
 
3025	rcu_read_unlock();
 
3026	return objcg;
3027}
3028
3029struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030{
3031	struct obj_cgroup *objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032
3033	if (!memcg_kmem_enabled())
3034		return NULL;
 
3035
3036	if (PageMemcgKmem(page)) {
3037		objcg = __folio_objcg(page_folio(page));
3038		obj_cgroup_get(objcg);
3039	} else {
3040		struct mem_cgroup *memcg;
3041
3042		rcu_read_lock();
3043		memcg = __folio_memcg(page_folio(page));
3044		if (memcg)
3045			objcg = __get_obj_cgroup_from_memcg(memcg);
3046		else
3047			objcg = NULL;
3048		rcu_read_unlock();
3049	}
3050	return objcg;
3051}
3052
3053static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054{
3055	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057		if (nr_pages > 0)
3058			page_counter_charge(&memcg->kmem, nr_pages);
3059		else
3060			page_counter_uncharge(&memcg->kmem, -nr_pages);
3061	}
3062}
3063
3064
3065/*
3066 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067 * @objcg: object cgroup to uncharge
3068 * @nr_pages: number of pages to uncharge
3069 */
3070static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071				      unsigned int nr_pages)
3072{
3073	struct mem_cgroup *memcg;
3074
3075	memcg = get_mem_cgroup_from_objcg(objcg);
3076
3077	memcg_account_kmem(memcg, -nr_pages);
 
3078	refill_stock(memcg, nr_pages);
3079
3080	css_put(&memcg->css);
3081}
3082
3083/*
3084 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085 * @objcg: object cgroup to charge
3086 * @gfp: reclaim mode
3087 * @nr_pages: number of pages to charge
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
3091static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092				   unsigned int nr_pages)
3093{
 
3094	struct mem_cgroup *memcg;
3095	int ret;
3096
3097	memcg = get_mem_cgroup_from_objcg(objcg);
3098
3099	ret = try_charge_memcg(memcg, gfp, nr_pages);
3100	if (ret)
3101		goto out;
3102
3103	memcg_account_kmem(memcg, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104out:
3105	css_put(&memcg->css);
3106
3107	return ret;
3108}
3109
3110/**
3111 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3112 * @page: page to charge
3113 * @gfp: reclaim mode
3114 * @order: allocation order
3115 *
3116 * Returns 0 on success, an error code on failure.
3117 */
3118int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3119{
3120	struct obj_cgroup *objcg;
3121	int ret = 0;
3122
3123	objcg = get_obj_cgroup_from_current();
3124	if (objcg) {
3125		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3126		if (!ret) {
3127			page->memcg_data = (unsigned long)objcg |
3128				MEMCG_DATA_KMEM;
3129			return 0;
3130		}
3131		obj_cgroup_put(objcg);
3132	}
3133	return ret;
3134}
3135
3136/**
3137 * __memcg_kmem_uncharge_page: uncharge a kmem page
3138 * @page: page to uncharge
3139 * @order: allocation order
3140 */
3141void __memcg_kmem_uncharge_page(struct page *page, int order)
3142{
3143	struct folio *folio = page_folio(page);
3144	struct obj_cgroup *objcg;
3145	unsigned int nr_pages = 1 << order;
3146
3147	if (!folio_memcg_kmem(folio))
3148		return;
3149
3150	objcg = __folio_objcg(folio);
3151	obj_cgroup_uncharge_pages(objcg, nr_pages);
3152	folio->memcg_data = 0;
3153	obj_cgroup_put(objcg);
3154}
3155
3156void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157		     enum node_stat_item idx, int nr)
3158{
3159	struct memcg_stock_pcp *stock;
3160	struct obj_cgroup *old = NULL;
3161	unsigned long flags;
 
3162	int *bytes;
3163
3164	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3165	stock = this_cpu_ptr(&memcg_stock);
3166
3167	/*
3168	 * Save vmstat data in stock and skip vmstat array update unless
3169	 * accumulating over a page of vmstat data or when pgdat or idx
3170	 * changes.
3171	 */
3172	if (stock->cached_objcg != objcg) {
3173		old = drain_obj_stock(stock);
3174		obj_cgroup_get(objcg);
3175		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177		stock->cached_objcg = objcg;
3178		stock->cached_pgdat = pgdat;
3179	} else if (stock->cached_pgdat != pgdat) {
3180		/* Flush the existing cached vmstat data */
3181		struct pglist_data *oldpg = stock->cached_pgdat;
3182
3183		if (stock->nr_slab_reclaimable_b) {
3184			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3185					  stock->nr_slab_reclaimable_b);
3186			stock->nr_slab_reclaimable_b = 0;
3187		}
3188		if (stock->nr_slab_unreclaimable_b) {
3189			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3190					  stock->nr_slab_unreclaimable_b);
3191			stock->nr_slab_unreclaimable_b = 0;
3192		}
3193		stock->cached_pgdat = pgdat;
3194	}
3195
3196	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197					       : &stock->nr_slab_unreclaimable_b;
3198	/*
3199	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200	 * cached locally at least once before pushing it out.
3201	 */
3202	if (!*bytes) {
3203		*bytes = nr;
3204		nr = 0;
3205	} else {
3206		*bytes += nr;
3207		if (abs(*bytes) > PAGE_SIZE) {
3208			nr = *bytes;
3209			*bytes = 0;
3210		} else {
3211			nr = 0;
3212		}
3213	}
3214	if (nr)
3215		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216
3217	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218	if (old)
3219		obj_cgroup_put(old);
3220}
3221
3222static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223{
3224	struct memcg_stock_pcp *stock;
3225	unsigned long flags;
 
3226	bool ret = false;
3227
3228	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3229
3230	stock = this_cpu_ptr(&memcg_stock);
3231	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232		stock->nr_bytes -= nr_bytes;
3233		ret = true;
3234	}
3235
3236	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3237
3238	return ret;
3239}
3240
3241static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3242{
3243	struct obj_cgroup *old = stock->cached_objcg;
3244
3245	if (!old)
3246		return NULL;
3247
3248	if (stock->nr_bytes) {
3249		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251
3252		if (nr_pages) {
3253			struct mem_cgroup *memcg;
3254
3255			memcg = get_mem_cgroup_from_objcg(old);
3256
3257			memcg_account_kmem(memcg, -nr_pages);
3258			__refill_stock(memcg, nr_pages);
3259
3260			css_put(&memcg->css);
3261		}
3262
3263		/*
3264		 * The leftover is flushed to the centralized per-memcg value.
3265		 * On the next attempt to refill obj stock it will be moved
3266		 * to a per-cpu stock (probably, on an other CPU), see
3267		 * refill_obj_stock().
3268		 *
3269		 * How often it's flushed is a trade-off between the memory
3270		 * limit enforcement accuracy and potential CPU contention,
3271		 * so it might be changed in the future.
3272		 */
3273		atomic_add(nr_bytes, &old->nr_charged_bytes);
3274		stock->nr_bytes = 0;
3275	}
3276
3277	/*
3278	 * Flush the vmstat data in current stock
3279	 */
3280	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281		if (stock->nr_slab_reclaimable_b) {
3282			mod_objcg_mlstate(old, stock->cached_pgdat,
3283					  NR_SLAB_RECLAIMABLE_B,
3284					  stock->nr_slab_reclaimable_b);
3285			stock->nr_slab_reclaimable_b = 0;
3286		}
3287		if (stock->nr_slab_unreclaimable_b) {
3288			mod_objcg_mlstate(old, stock->cached_pgdat,
3289					  NR_SLAB_UNRECLAIMABLE_B,
3290					  stock->nr_slab_unreclaimable_b);
3291			stock->nr_slab_unreclaimable_b = 0;
3292		}
3293		stock->cached_pgdat = NULL;
3294	}
3295
 
3296	stock->cached_objcg = NULL;
3297	/*
3298	 * The `old' objects needs to be released by the caller via
3299	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300	 */
3301	return old;
3302}
3303
3304static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305				     struct mem_cgroup *root_memcg)
3306{
3307	struct mem_cgroup *memcg;
3308
3309	if (stock->cached_objcg) {
3310		memcg = obj_cgroup_memcg(stock->cached_objcg);
 
 
 
 
 
3311		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312			return true;
3313	}
3314
3315	return false;
3316}
3317
3318static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319			     bool allow_uncharge)
3320{
3321	struct memcg_stock_pcp *stock;
3322	struct obj_cgroup *old = NULL;
3323	unsigned long flags;
 
3324	unsigned int nr_pages = 0;
3325
3326	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3327
3328	stock = this_cpu_ptr(&memcg_stock);
3329	if (stock->cached_objcg != objcg) { /* reset if necessary */
3330		old = drain_obj_stock(stock);
3331		obj_cgroup_get(objcg);
3332		stock->cached_objcg = objcg;
3333		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3336	}
3337	stock->nr_bytes += nr_bytes;
3338
3339	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341		stock->nr_bytes &= (PAGE_SIZE - 1);
3342	}
3343
3344	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345	if (old)
3346		obj_cgroup_put(old);
3347
3348	if (nr_pages)
3349		obj_cgroup_uncharge_pages(objcg, nr_pages);
3350}
3351
3352int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353{
3354	unsigned int nr_pages, nr_bytes;
3355	int ret;
3356
3357	if (consume_obj_stock(objcg, size))
3358		return 0;
3359
3360	/*
3361	 * In theory, objcg->nr_charged_bytes can have enough
3362	 * pre-charged bytes to satisfy the allocation. However,
3363	 * flushing objcg->nr_charged_bytes requires two atomic
3364	 * operations, and objcg->nr_charged_bytes can't be big.
3365	 * The shared objcg->nr_charged_bytes can also become a
3366	 * performance bottleneck if all tasks of the same memcg are
3367	 * trying to update it. So it's better to ignore it and try
3368	 * grab some new pages. The stock's nr_bytes will be flushed to
3369	 * objcg->nr_charged_bytes later on when objcg changes.
3370	 *
3371	 * The stock's nr_bytes may contain enough pre-charged bytes
3372	 * to allow one less page from being charged, but we can't rely
3373	 * on the pre-charged bytes not being changed outside of
3374	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375	 * pre-charged bytes as well when charging pages. To avoid a
3376	 * page uncharge right after a page charge, we set the
3377	 * allow_uncharge flag to false when calling refill_obj_stock()
3378	 * to temporarily allow the pre-charged bytes to exceed the page
3379	 * size limit. The maximum reachable value of the pre-charged
3380	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381	 * race.
3382	 */
3383	nr_pages = size >> PAGE_SHIFT;
3384	nr_bytes = size & (PAGE_SIZE - 1);
3385
3386	if (nr_bytes)
3387		nr_pages += 1;
3388
3389	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3390	if (!ret && nr_bytes)
3391		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3392
3393	return ret;
3394}
3395
3396void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397{
3398	refill_obj_stock(objcg, size, true);
3399}
3400
3401#endif /* CONFIG_MEMCG_KMEM */
3402
3403/*
3404 * Because page_memcg(head) is not set on tails, set it now.
3405 */
3406void split_page_memcg(struct page *head, unsigned int nr)
3407{
3408	struct folio *folio = page_folio(head);
3409	struct mem_cgroup *memcg = folio_memcg(folio);
3410	int i;
3411
3412	if (mem_cgroup_disabled() || !memcg)
3413		return;
3414
3415	for (i = 1; i < nr; i++)
3416		folio_page(folio, i)->memcg_data = folio->memcg_data;
3417
3418	if (folio_memcg_kmem(folio))
3419		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3420	else
3421		css_get_many(&memcg->css, nr - 1);
3422}
3423
3424#ifdef CONFIG_SWAP
3425/**
3426 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427 * @entry: swap entry to be moved
3428 * @from:  mem_cgroup which the entry is moved from
3429 * @to:  mem_cgroup which the entry is moved to
3430 *
3431 * It succeeds only when the swap_cgroup's record for this entry is the same
3432 * as the mem_cgroup's id of @from.
3433 *
3434 * Returns 0 on success, -EINVAL on failure.
3435 *
3436 * The caller must have charged to @to, IOW, called page_counter_charge() about
3437 * both res and memsw, and called css_get().
3438 */
3439static int mem_cgroup_move_swap_account(swp_entry_t entry,
3440				struct mem_cgroup *from, struct mem_cgroup *to)
3441{
3442	unsigned short old_id, new_id;
3443
3444	old_id = mem_cgroup_id(from);
3445	new_id = mem_cgroup_id(to);
3446
3447	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3448		mod_memcg_state(from, MEMCG_SWAP, -1);
3449		mod_memcg_state(to, MEMCG_SWAP, 1);
3450		return 0;
3451	}
3452	return -EINVAL;
3453}
3454#else
3455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3456				struct mem_cgroup *from, struct mem_cgroup *to)
3457{
3458	return -EINVAL;
3459}
3460#endif
3461
3462static DEFINE_MUTEX(memcg_max_mutex);
3463
3464static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465				 unsigned long max, bool memsw)
3466{
3467	bool enlarge = false;
3468	bool drained = false;
3469	int ret;
3470	bool limits_invariant;
3471	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3472
3473	do {
3474		if (signal_pending(current)) {
3475			ret = -EINTR;
3476			break;
3477		}
3478
3479		mutex_lock(&memcg_max_mutex);
3480		/*
3481		 * Make sure that the new limit (memsw or memory limit) doesn't
3482		 * break our basic invariant rule memory.max <= memsw.max.
3483		 */
3484		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3485					   max <= memcg->memsw.max;
3486		if (!limits_invariant) {
3487			mutex_unlock(&memcg_max_mutex);
3488			ret = -EINVAL;
3489			break;
3490		}
3491		if (max > counter->max)
3492			enlarge = true;
3493		ret = page_counter_set_max(counter, max);
3494		mutex_unlock(&memcg_max_mutex);
3495
3496		if (!ret)
3497			break;
3498
3499		if (!drained) {
3500			drain_all_stock(memcg);
3501			drained = true;
3502			continue;
3503		}
3504
3505		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3506					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3507			ret = -EBUSY;
3508			break;
3509		}
3510	} while (true);
3511
3512	if (!ret && enlarge)
3513		memcg_oom_recover(memcg);
3514
3515	return ret;
3516}
3517
3518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3519					    gfp_t gfp_mask,
3520					    unsigned long *total_scanned)
3521{
3522	unsigned long nr_reclaimed = 0;
3523	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3524	unsigned long reclaimed;
3525	int loop = 0;
3526	struct mem_cgroup_tree_per_node *mctz;
3527	unsigned long excess;
 
3528
3529	if (order > 0)
3530		return 0;
3531
3532	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3533
3534	/*
3535	 * Do not even bother to check the largest node if the root
3536	 * is empty. Do it lockless to prevent lock bouncing. Races
3537	 * are acceptable as soft limit is best effort anyway.
3538	 */
3539	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3540		return 0;
3541
3542	/*
3543	 * This loop can run a while, specially if mem_cgroup's continuously
3544	 * keep exceeding their soft limit and putting the system under
3545	 * pressure
3546	 */
3547	do {
3548		if (next_mz)
3549			mz = next_mz;
3550		else
3551			mz = mem_cgroup_largest_soft_limit_node(mctz);
3552		if (!mz)
3553			break;
3554
 
3555		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3556						    gfp_mask, total_scanned);
3557		nr_reclaimed += reclaimed;
 
3558		spin_lock_irq(&mctz->lock);
 
3559
3560		/*
3561		 * If we failed to reclaim anything from this memory cgroup
3562		 * it is time to move on to the next cgroup
3563		 */
3564		next_mz = NULL;
3565		if (!reclaimed)
3566			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567
3568		excess = soft_limit_excess(mz->memcg);
3569		/*
3570		 * One school of thought says that we should not add
3571		 * back the node to the tree if reclaim returns 0.
3572		 * But our reclaim could return 0, simply because due
3573		 * to priority we are exposing a smaller subset of
3574		 * memory to reclaim from. Consider this as a longer
3575		 * term TODO.
3576		 */
3577		/* If excess == 0, no tree ops */
3578		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3579		spin_unlock_irq(&mctz->lock);
3580		css_put(&mz->memcg->css);
3581		loop++;
3582		/*
3583		 * Could not reclaim anything and there are no more
3584		 * mem cgroups to try or we seem to be looping without
3585		 * reclaiming anything.
3586		 */
3587		if (!nr_reclaimed &&
3588			(next_mz == NULL ||
3589			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590			break;
3591	} while (!nr_reclaimed);
3592	if (next_mz)
3593		css_put(&next_mz->memcg->css);
3594	return nr_reclaimed;
3595}
3596
3597/*
3598 * Reclaims as many pages from the given memcg as possible.
3599 *
3600 * Caller is responsible for holding css reference for memcg.
3601 */
3602static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603{
3604	int nr_retries = MAX_RECLAIM_RETRIES;
3605
3606	/* we call try-to-free pages for make this cgroup empty */
3607	lru_add_drain_all();
3608
3609	drain_all_stock(memcg);
3610
3611	/* try to free all pages in this cgroup */
3612	while (nr_retries && page_counter_read(&memcg->memory)) {
 
 
3613		if (signal_pending(current))
3614			return -EINTR;
3615
3616		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3617						  MEMCG_RECLAIM_MAY_SWAP))
 
3618			nr_retries--;
 
 
 
 
3619	}
3620
3621	return 0;
3622}
3623
3624static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625					    char *buf, size_t nbytes,
3626					    loff_t off)
3627{
3628	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3629
3630	if (mem_cgroup_is_root(memcg))
3631		return -EINVAL;
3632	return mem_cgroup_force_empty(memcg) ?: nbytes;
3633}
3634
3635static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636				     struct cftype *cft)
3637{
3638	return 1;
3639}
3640
3641static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642				      struct cftype *cft, u64 val)
3643{
3644	if (val == 1)
3645		return 0;
3646
3647	pr_warn_once("Non-hierarchical mode is deprecated. "
3648		     "Please report your usecase to linux-mm@kvack.org if you "
3649		     "depend on this functionality.\n");
3650
3651	return -EINVAL;
3652}
3653
3654static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3655{
3656	unsigned long val;
3657
3658	if (mem_cgroup_is_root(memcg)) {
3659		mem_cgroup_flush_stats();
 
3660		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3661			memcg_page_state(memcg, NR_ANON_MAPPED);
3662		if (swap)
3663			val += memcg_page_state(memcg, MEMCG_SWAP);
3664	} else {
3665		if (!swap)
3666			val = page_counter_read(&memcg->memory);
3667		else
3668			val = page_counter_read(&memcg->memsw);
3669	}
3670	return val;
3671}
3672
3673enum {
3674	RES_USAGE,
3675	RES_LIMIT,
3676	RES_MAX_USAGE,
3677	RES_FAILCNT,
3678	RES_SOFT_LIMIT,
3679};
3680
3681static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3682			       struct cftype *cft)
3683{
3684	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3685	struct page_counter *counter;
3686
3687	switch (MEMFILE_TYPE(cft->private)) {
3688	case _MEM:
3689		counter = &memcg->memory;
3690		break;
3691	case _MEMSWAP:
3692		counter = &memcg->memsw;
3693		break;
3694	case _KMEM:
3695		counter = &memcg->kmem;
3696		break;
3697	case _TCP:
3698		counter = &memcg->tcpmem;
3699		break;
3700	default:
3701		BUG();
3702	}
3703
3704	switch (MEMFILE_ATTR(cft->private)) {
3705	case RES_USAGE:
3706		if (counter == &memcg->memory)
3707			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3708		if (counter == &memcg->memsw)
3709			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3710		return (u64)page_counter_read(counter) * PAGE_SIZE;
3711	case RES_LIMIT:
3712		return (u64)counter->max * PAGE_SIZE;
3713	case RES_MAX_USAGE:
3714		return (u64)counter->watermark * PAGE_SIZE;
3715	case RES_FAILCNT:
3716		return counter->failcnt;
3717	case RES_SOFT_LIMIT:
3718		return (u64)memcg->soft_limit * PAGE_SIZE;
3719	default:
3720		BUG();
3721	}
3722}
3723
3724#ifdef CONFIG_MEMCG_KMEM
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	struct obj_cgroup *objcg;
 
3728
3729	if (mem_cgroup_kmem_disabled())
3730		return 0;
3731
3732	if (unlikely(mem_cgroup_is_root(memcg)))
3733		return 0;
 
 
 
 
3734
3735	objcg = obj_cgroup_alloc();
3736	if (!objcg)
 
3737		return -ENOMEM;
3738
3739	objcg->memcg = memcg;
3740	rcu_assign_pointer(memcg->objcg, objcg);
3741
3742	static_branch_enable(&memcg_kmem_enabled_key);
3743
3744	memcg->kmemcg_id = memcg->id.id;
 
3745
3746	return 0;
3747}
3748
3749static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750{
3751	struct mem_cgroup *parent;
 
 
3752
3753	if (mem_cgroup_kmem_disabled())
3754		return;
3755
3756	if (unlikely(mem_cgroup_is_root(memcg)))
3757		return;
3758
3759	parent = parent_mem_cgroup(memcg);
3760	if (!parent)
3761		parent = root_mem_cgroup;
3762
3763	memcg_reparent_objcgs(memcg, parent);
3764
 
 
 
3765	/*
3766	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767	 * corresponding to this cgroup are guaranteed to remain empty.
3768	 * The ordering is imposed by list_lru_node->lock taken by
3769	 * memcg_reparent_list_lrus().
3770	 */
3771	memcg_reparent_list_lrus(memcg, parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3772}
3773#else
3774static int memcg_online_kmem(struct mem_cgroup *memcg)
3775{
3776	return 0;
3777}
3778static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779{
3780}
 
 
 
3781#endif /* CONFIG_MEMCG_KMEM */
3782
 
 
 
 
 
 
 
 
 
 
 
3783static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3784{
3785	int ret;
3786
3787	mutex_lock(&memcg_max_mutex);
3788
3789	ret = page_counter_set_max(&memcg->tcpmem, max);
3790	if (ret)
3791		goto out;
3792
3793	if (!memcg->tcpmem_active) {
3794		/*
3795		 * The active flag needs to be written after the static_key
3796		 * update. This is what guarantees that the socket activation
3797		 * function is the last one to run. See mem_cgroup_sk_alloc()
3798		 * for details, and note that we don't mark any socket as
3799		 * belonging to this memcg until that flag is up.
3800		 *
3801		 * We need to do this, because static_keys will span multiple
3802		 * sites, but we can't control their order. If we mark a socket
3803		 * as accounted, but the accounting functions are not patched in
3804		 * yet, we'll lose accounting.
3805		 *
3806		 * We never race with the readers in mem_cgroup_sk_alloc(),
3807		 * because when this value change, the code to process it is not
3808		 * patched in yet.
3809		 */
3810		static_branch_inc(&memcg_sockets_enabled_key);
3811		memcg->tcpmem_active = true;
3812	}
3813out:
3814	mutex_unlock(&memcg_max_mutex);
3815	return ret;
3816}
3817
3818/*
3819 * The user of this function is...
3820 * RES_LIMIT.
3821 */
3822static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823				char *buf, size_t nbytes, loff_t off)
3824{
3825	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826	unsigned long nr_pages;
3827	int ret;
3828
3829	buf = strstrip(buf);
3830	ret = page_counter_memparse(buf, "-1", &nr_pages);
3831	if (ret)
3832		return ret;
3833
3834	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3835	case RES_LIMIT:
3836		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837			ret = -EINVAL;
3838			break;
3839		}
3840		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841		case _MEM:
3842			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3843			break;
3844		case _MEMSWAP:
3845			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3846			break;
3847		case _KMEM:
3848			/* kmem.limit_in_bytes is deprecated. */
3849			ret = -EOPNOTSUPP;
 
 
3850			break;
3851		case _TCP:
3852			ret = memcg_update_tcp_max(memcg, nr_pages);
3853			break;
3854		}
3855		break;
3856	case RES_SOFT_LIMIT:
3857		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858			ret = -EOPNOTSUPP;
3859		} else {
3860			memcg->soft_limit = nr_pages;
3861			ret = 0;
3862		}
3863		break;
3864	}
3865	return ret ?: nbytes;
3866}
3867
3868static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869				size_t nbytes, loff_t off)
3870{
3871	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872	struct page_counter *counter;
3873
3874	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875	case _MEM:
3876		counter = &memcg->memory;
3877		break;
3878	case _MEMSWAP:
3879		counter = &memcg->memsw;
3880		break;
3881	case _KMEM:
3882		counter = &memcg->kmem;
3883		break;
3884	case _TCP:
3885		counter = &memcg->tcpmem;
3886		break;
3887	default:
3888		BUG();
3889	}
3890
3891	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892	case RES_MAX_USAGE:
3893		page_counter_reset_watermark(counter);
3894		break;
3895	case RES_FAILCNT:
3896		counter->failcnt = 0;
3897		break;
3898	default:
3899		BUG();
3900	}
3901
3902	return nbytes;
3903}
3904
3905static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906					struct cftype *cft)
3907{
3908	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909}
3910
3911#ifdef CONFIG_MMU
3912static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913					struct cftype *cft, u64 val)
3914{
3915	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916
3917	if (val & ~MOVE_MASK)
3918		return -EINVAL;
3919
3920	/*
3921	 * No kind of locking is needed in here, because ->can_attach() will
3922	 * check this value once in the beginning of the process, and then carry
3923	 * on with stale data. This means that changes to this value will only
3924	 * affect task migrations starting after the change.
3925	 */
3926	memcg->move_charge_at_immigrate = val;
3927	return 0;
3928}
3929#else
3930static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931					struct cftype *cft, u64 val)
3932{
3933	return -ENOSYS;
3934}
3935#endif
3936
3937#ifdef CONFIG_NUMA
3938
3939#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3942
3943static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944				int nid, unsigned int lru_mask, bool tree)
3945{
3946	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947	unsigned long nr = 0;
3948	enum lru_list lru;
3949
3950	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952	for_each_lru(lru) {
3953		if (!(BIT(lru) & lru_mask))
3954			continue;
3955		if (tree)
3956			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957		else
3958			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959	}
3960	return nr;
3961}
3962
3963static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964					     unsigned int lru_mask,
3965					     bool tree)
3966{
3967	unsigned long nr = 0;
3968	enum lru_list lru;
3969
3970	for_each_lru(lru) {
3971		if (!(BIT(lru) & lru_mask))
3972			continue;
3973		if (tree)
3974			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975		else
3976			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977	}
3978	return nr;
3979}
3980
3981static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982{
3983	struct numa_stat {
3984		const char *name;
3985		unsigned int lru_mask;
3986	};
3987
3988	static const struct numa_stat stats[] = {
3989		{ "total", LRU_ALL },
3990		{ "file", LRU_ALL_FILE },
3991		{ "anon", LRU_ALL_ANON },
3992		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3993	};
3994	const struct numa_stat *stat;
3995	int nid;
3996	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997
3998	mem_cgroup_flush_stats();
3999
4000	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001		seq_printf(m, "%s=%lu", stat->name,
4002			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003						   false));
4004		for_each_node_state(nid, N_MEMORY)
4005			seq_printf(m, " N%d=%lu", nid,
4006				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4007							stat->lru_mask, false));
4008		seq_putc(m, '\n');
4009	}
4010
4011	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015						   true));
4016		for_each_node_state(nid, N_MEMORY)
4017			seq_printf(m, " N%d=%lu", nid,
4018				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4019							stat->lru_mask, true));
4020		seq_putc(m, '\n');
4021	}
4022
4023	return 0;
4024}
4025#endif /* CONFIG_NUMA */
4026
4027static const unsigned int memcg1_stats[] = {
4028	NR_FILE_PAGES,
4029	NR_ANON_MAPPED,
4030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031	NR_ANON_THPS,
4032#endif
4033	NR_SHMEM,
4034	NR_FILE_MAPPED,
4035	NR_FILE_DIRTY,
4036	NR_WRITEBACK,
4037	WORKINGSET_REFAULT_ANON,
4038	WORKINGSET_REFAULT_FILE,
4039	MEMCG_SWAP,
4040};
4041
4042static const char *const memcg1_stat_names[] = {
4043	"cache",
4044	"rss",
4045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046	"rss_huge",
4047#endif
4048	"shmem",
4049	"mapped_file",
4050	"dirty",
4051	"writeback",
4052	"workingset_refault_anon",
4053	"workingset_refault_file",
4054	"swap",
4055};
4056
4057/* Universal VM events cgroup1 shows, original sort order */
4058static const unsigned int memcg1_events[] = {
4059	PGPGIN,
4060	PGPGOUT,
4061	PGFAULT,
4062	PGMAJFAULT,
4063};
4064
4065static int memcg_stat_show(struct seq_file *m, void *v)
4066{
4067	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068	unsigned long memory, memsw;
4069	struct mem_cgroup *mi;
4070	unsigned int i;
4071
4072	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073
4074	mem_cgroup_flush_stats();
4075
4076	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077		unsigned long nr;
4078
4079		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080			continue;
4081		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083			   nr * memcg_page_state_unit(memcg1_stats[i]));
4084	}
4085
4086	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088			   memcg_events_local(memcg, memcg1_events[i]));
4089
4090	for (i = 0; i < NR_LRU_LISTS; i++)
4091		seq_printf(m, "%s %lu\n", lru_list_name(i),
4092			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093			   PAGE_SIZE);
4094
4095	/* Hierarchical information */
4096	memory = memsw = PAGE_COUNTER_MAX;
4097	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098		memory = min(memory, READ_ONCE(mi->memory.max));
4099		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100	}
4101	seq_printf(m, "hierarchical_memory_limit %llu\n",
4102		   (u64)memory * PAGE_SIZE);
4103	if (do_memsw_account())
4104		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105			   (u64)memsw * PAGE_SIZE);
4106
4107	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108		unsigned long nr;
4109
4110		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111			continue;
4112		nr = memcg_page_state(memcg, memcg1_stats[i]);
4113		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115	}
4116
4117	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118		seq_printf(m, "total_%s %llu\n",
4119			   vm_event_name(memcg1_events[i]),
4120			   (u64)memcg_events(memcg, memcg1_events[i]));
4121
4122	for (i = 0; i < NR_LRU_LISTS; i++)
4123		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125			   PAGE_SIZE);
4126
4127#ifdef CONFIG_DEBUG_VM
4128	{
4129		pg_data_t *pgdat;
4130		struct mem_cgroup_per_node *mz;
4131		unsigned long anon_cost = 0;
4132		unsigned long file_cost = 0;
4133
4134		for_each_online_pgdat(pgdat) {
4135			mz = memcg->nodeinfo[pgdat->node_id];
4136
4137			anon_cost += mz->lruvec.anon_cost;
4138			file_cost += mz->lruvec.file_cost;
4139		}
4140		seq_printf(m, "anon_cost %lu\n", anon_cost);
4141		seq_printf(m, "file_cost %lu\n", file_cost);
4142	}
4143#endif
4144
4145	return 0;
4146}
4147
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149				      struct cftype *cft)
4150{
4151	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152
4153	return mem_cgroup_swappiness(memcg);
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157				       struct cftype *cft, u64 val)
4158{
4159	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160
4161	if (val > 200)
4162		return -EINVAL;
4163
4164	if (!mem_cgroup_is_root(memcg))
4165		memcg->swappiness = val;
4166	else
4167		vm_swappiness = val;
4168
4169	return 0;
4170}
4171
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174	struct mem_cgroup_threshold_ary *t;
4175	unsigned long usage;
4176	int i;
4177
4178	rcu_read_lock();
4179	if (!swap)
4180		t = rcu_dereference(memcg->thresholds.primary);
4181	else
4182		t = rcu_dereference(memcg->memsw_thresholds.primary);
4183
4184	if (!t)
4185		goto unlock;
4186
4187	usage = mem_cgroup_usage(memcg, swap);
4188
4189	/*
4190	 * current_threshold points to threshold just below or equal to usage.
4191	 * If it's not true, a threshold was crossed after last
4192	 * call of __mem_cgroup_threshold().
4193	 */
4194	i = t->current_threshold;
4195
4196	/*
4197	 * Iterate backward over array of thresholds starting from
4198	 * current_threshold and check if a threshold is crossed.
4199	 * If none of thresholds below usage is crossed, we read
4200	 * only one element of the array here.
4201	 */
4202	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203		eventfd_signal(t->entries[i].eventfd, 1);
4204
4205	/* i = current_threshold + 1 */
4206	i++;
4207
4208	/*
4209	 * Iterate forward over array of thresholds starting from
4210	 * current_threshold+1 and check if a threshold is crossed.
4211	 * If none of thresholds above usage is crossed, we read
4212	 * only one element of the array here.
4213	 */
4214	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215		eventfd_signal(t->entries[i].eventfd, 1);
4216
4217	/* Update current_threshold */
4218	t->current_threshold = i - 1;
4219unlock:
4220	rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
4225	while (memcg) {
4226		__mem_cgroup_threshold(memcg, false);
4227		if (do_memsw_account())
4228			__mem_cgroup_threshold(memcg, true);
4229
4230		memcg = parent_mem_cgroup(memcg);
4231	}
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236	const struct mem_cgroup_threshold *_a = a;
4237	const struct mem_cgroup_threshold *_b = b;
4238
4239	if (_a->threshold > _b->threshold)
4240		return 1;
4241
4242	if (_a->threshold < _b->threshold)
4243		return -1;
4244
4245	return 0;
4246}
4247
4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249{
4250	struct mem_cgroup_eventfd_list *ev;
4251
4252	spin_lock(&memcg_oom_lock);
4253
4254	list_for_each_entry(ev, &memcg->oom_notify, list)
4255		eventfd_signal(ev->eventfd, 1);
4256
4257	spin_unlock(&memcg_oom_lock);
4258	return 0;
4259}
4260
4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262{
4263	struct mem_cgroup *iter;
4264
4265	for_each_mem_cgroup_tree(iter, memcg)
4266		mem_cgroup_oom_notify_cb(iter);
4267}
4268
4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271{
4272	struct mem_cgroup_thresholds *thresholds;
4273	struct mem_cgroup_threshold_ary *new;
4274	unsigned long threshold;
4275	unsigned long usage;
4276	int i, size, ret;
4277
4278	ret = page_counter_memparse(args, "-1", &threshold);
4279	if (ret)
4280		return ret;
4281
4282	mutex_lock(&memcg->thresholds_lock);
4283
4284	if (type == _MEM) {
4285		thresholds = &memcg->thresholds;
4286		usage = mem_cgroup_usage(memcg, false);
4287	} else if (type == _MEMSWAP) {
4288		thresholds = &memcg->memsw_thresholds;
4289		usage = mem_cgroup_usage(memcg, true);
4290	} else
4291		BUG();
4292
4293	/* Check if a threshold crossed before adding a new one */
4294	if (thresholds->primary)
4295		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
4297	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298
4299	/* Allocate memory for new array of thresholds */
4300	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301	if (!new) {
4302		ret = -ENOMEM;
4303		goto unlock;
4304	}
4305	new->size = size;
4306
4307	/* Copy thresholds (if any) to new array */
4308	if (thresholds->primary)
4309		memcpy(new->entries, thresholds->primary->entries,
4310		       flex_array_size(new, entries, size - 1));
4311
4312	/* Add new threshold */
4313	new->entries[size - 1].eventfd = eventfd;
4314	new->entries[size - 1].threshold = threshold;
4315
4316	/* Sort thresholds. Registering of new threshold isn't time-critical */
4317	sort(new->entries, size, sizeof(*new->entries),
4318			compare_thresholds, NULL);
4319
4320	/* Find current threshold */
4321	new->current_threshold = -1;
4322	for (i = 0; i < size; i++) {
4323		if (new->entries[i].threshold <= usage) {
4324			/*
4325			 * new->current_threshold will not be used until
4326			 * rcu_assign_pointer(), so it's safe to increment
4327			 * it here.
4328			 */
4329			++new->current_threshold;
4330		} else
4331			break;
4332	}
4333
4334	/* Free old spare buffer and save old primary buffer as spare */
4335	kfree(thresholds->spare);
4336	thresholds->spare = thresholds->primary;
4337
4338	rcu_assign_pointer(thresholds->primary, new);
4339
4340	/* To be sure that nobody uses thresholds */
4341	synchronize_rcu();
4342
4343unlock:
4344	mutex_unlock(&memcg->thresholds_lock);
4345
4346	return ret;
4347}
4348
4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350	struct eventfd_ctx *eventfd, const char *args)
4351{
4352	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353}
4354
4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356	struct eventfd_ctx *eventfd, const char *args)
4357{
4358	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359}
4360
4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362	struct eventfd_ctx *eventfd, enum res_type type)
4363{
4364	struct mem_cgroup_thresholds *thresholds;
4365	struct mem_cgroup_threshold_ary *new;
4366	unsigned long usage;
4367	int i, j, size, entries;
4368
4369	mutex_lock(&memcg->thresholds_lock);
4370
4371	if (type == _MEM) {
4372		thresholds = &memcg->thresholds;
4373		usage = mem_cgroup_usage(memcg, false);
4374	} else if (type == _MEMSWAP) {
4375		thresholds = &memcg->memsw_thresholds;
4376		usage = mem_cgroup_usage(memcg, true);
4377	} else
4378		BUG();
4379
4380	if (!thresholds->primary)
4381		goto unlock;
4382
4383	/* Check if a threshold crossed before removing */
4384	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386	/* Calculate new number of threshold */
4387	size = entries = 0;
4388	for (i = 0; i < thresholds->primary->size; i++) {
4389		if (thresholds->primary->entries[i].eventfd != eventfd)
4390			size++;
4391		else
4392			entries++;
4393	}
4394
4395	new = thresholds->spare;
4396
4397	/* If no items related to eventfd have been cleared, nothing to do */
4398	if (!entries)
4399		goto unlock;
4400
4401	/* Set thresholds array to NULL if we don't have thresholds */
4402	if (!size) {
4403		kfree(new);
4404		new = NULL;
4405		goto swap_buffers;
4406	}
4407
4408	new->size = size;
4409
4410	/* Copy thresholds and find current threshold */
4411	new->current_threshold = -1;
4412	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413		if (thresholds->primary->entries[i].eventfd == eventfd)
4414			continue;
4415
4416		new->entries[j] = thresholds->primary->entries[i];
4417		if (new->entries[j].threshold <= usage) {
4418			/*
4419			 * new->current_threshold will not be used
4420			 * until rcu_assign_pointer(), so it's safe to increment
4421			 * it here.
4422			 */
4423			++new->current_threshold;
4424		}
4425		j++;
4426	}
4427
4428swap_buffers:
4429	/* Swap primary and spare array */
4430	thresholds->spare = thresholds->primary;
4431
4432	rcu_assign_pointer(thresholds->primary, new);
4433
4434	/* To be sure that nobody uses thresholds */
4435	synchronize_rcu();
4436
4437	/* If all events are unregistered, free the spare array */
4438	if (!new) {
4439		kfree(thresholds->spare);
4440		thresholds->spare = NULL;
4441	}
4442unlock:
4443	mutex_unlock(&memcg->thresholds_lock);
4444}
4445
4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447	struct eventfd_ctx *eventfd)
4448{
4449	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450}
4451
4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453	struct eventfd_ctx *eventfd)
4454{
4455	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456}
4457
4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459	struct eventfd_ctx *eventfd, const char *args)
4460{
4461	struct mem_cgroup_eventfd_list *event;
4462
4463	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4464	if (!event)
4465		return -ENOMEM;
4466
4467	spin_lock(&memcg_oom_lock);
4468
4469	event->eventfd = eventfd;
4470	list_add(&event->list, &memcg->oom_notify);
4471
4472	/* already in OOM ? */
4473	if (memcg->under_oom)
4474		eventfd_signal(eventfd, 1);
4475	spin_unlock(&memcg_oom_lock);
4476
4477	return 0;
4478}
4479
4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481	struct eventfd_ctx *eventfd)
4482{
4483	struct mem_cgroup_eventfd_list *ev, *tmp;
4484
4485	spin_lock(&memcg_oom_lock);
4486
4487	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488		if (ev->eventfd == eventfd) {
4489			list_del(&ev->list);
4490			kfree(ev);
4491		}
4492	}
4493
4494	spin_unlock(&memcg_oom_lock);
4495}
4496
4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498{
4499	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500
4501	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503	seq_printf(sf, "oom_kill %lu\n",
4504		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505	return 0;
4506}
4507
4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509	struct cftype *cft, u64 val)
4510{
4511	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513	/* cannot set to root cgroup and only 0 and 1 are allowed */
4514	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515		return -EINVAL;
4516
4517	memcg->oom_kill_disable = val;
4518	if (!val)
4519		memcg_oom_recover(memcg);
4520
4521	return 0;
4522}
4523
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
4526#include <trace/events/writeback.h>
4527
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530	return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535	wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540	wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547	if (!memcg->css.parent)
4548		return NULL;
4549
4550	return &memcg->cgwb_domain;
4551}
4552
4553/**
4554 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555 * @wb: bdi_writeback in question
4556 * @pfilepages: out parameter for number of file pages
4557 * @pheadroom: out parameter for number of allocatable pages according to memcg
4558 * @pdirty: out parameter for number of dirty pages
4559 * @pwriteback: out parameter for number of pages under writeback
4560 *
4561 * Determine the numbers of file, headroom, dirty, and writeback pages in
4562 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4563 * is a bit more involved.
4564 *
4565 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4566 * headroom is calculated as the lowest headroom of itself and the
4567 * ancestors.  Note that this doesn't consider the actual amount of
4568 * available memory in the system.  The caller should further cap
4569 * *@pheadroom accordingly.
4570 */
4571void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572			 unsigned long *pheadroom, unsigned long *pdirty,
4573			 unsigned long *pwriteback)
4574{
4575	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576	struct mem_cgroup *parent;
4577
4578	mem_cgroup_flush_stats();
4579
4580	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583			memcg_page_state(memcg, NR_ACTIVE_FILE);
4584
4585	*pheadroom = PAGE_COUNTER_MAX;
4586	while ((parent = parent_mem_cgroup(memcg))) {
4587		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588					    READ_ONCE(memcg->memory.high));
4589		unsigned long used = page_counter_read(&memcg->memory);
4590
4591		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592		memcg = parent;
4593	}
4594}
4595
4596/*
4597 * Foreign dirty flushing
4598 *
4599 * There's an inherent mismatch between memcg and writeback.  The former
4600 * tracks ownership per-page while the latter per-inode.  This was a
4601 * deliberate design decision because honoring per-page ownership in the
4602 * writeback path is complicated, may lead to higher CPU and IO overheads
4603 * and deemed unnecessary given that write-sharing an inode across
4604 * different cgroups isn't a common use-case.
4605 *
4606 * Combined with inode majority-writer ownership switching, this works well
4607 * enough in most cases but there are some pathological cases.  For
4608 * example, let's say there are two cgroups A and B which keep writing to
4609 * different but confined parts of the same inode.  B owns the inode and
4610 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4611 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612 * triggering background writeback.  A will be slowed down without a way to
4613 * make writeback of the dirty pages happen.
4614 *
4615 * Conditions like the above can lead to a cgroup getting repeatedly and
4616 * severely throttled after making some progress after each
4617 * dirty_expire_interval while the underlying IO device is almost
4618 * completely idle.
4619 *
4620 * Solving this problem completely requires matching the ownership tracking
4621 * granularities between memcg and writeback in either direction.  However,
4622 * the more egregious behaviors can be avoided by simply remembering the
4623 * most recent foreign dirtying events and initiating remote flushes on
4624 * them when local writeback isn't enough to keep the memory clean enough.
4625 *
4626 * The following two functions implement such mechanism.  When a foreign
4627 * page - a page whose memcg and writeback ownerships don't match - is
4628 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4630 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4633 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634 * limited to MEMCG_CGWB_FRN_CNT.
4635 *
4636 * The mechanism only remembers IDs and doesn't hold any object references.
4637 * As being wrong occasionally doesn't matter, updates and accesses to the
4638 * records are lockless and racy.
4639 */
4640void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641					     struct bdi_writeback *wb)
4642{
4643	struct mem_cgroup *memcg = folio_memcg(folio);
4644	struct memcg_cgwb_frn *frn;
4645	u64 now = get_jiffies_64();
4646	u64 oldest_at = now;
4647	int oldest = -1;
4648	int i;
4649
4650	trace_track_foreign_dirty(folio, wb);
4651
4652	/*
4653	 * Pick the slot to use.  If there is already a slot for @wb, keep
4654	 * using it.  If not replace the oldest one which isn't being
4655	 * written out.
4656	 */
4657	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658		frn = &memcg->cgwb_frn[i];
4659		if (frn->bdi_id == wb->bdi->id &&
4660		    frn->memcg_id == wb->memcg_css->id)
4661			break;
4662		if (time_before64(frn->at, oldest_at) &&
4663		    atomic_read(&frn->done.cnt) == 1) {
4664			oldest = i;
4665			oldest_at = frn->at;
4666		}
4667	}
4668
4669	if (i < MEMCG_CGWB_FRN_CNT) {
4670		/*
4671		 * Re-using an existing one.  Update timestamp lazily to
4672		 * avoid making the cacheline hot.  We want them to be
4673		 * reasonably up-to-date and significantly shorter than
4674		 * dirty_expire_interval as that's what expires the record.
4675		 * Use the shorter of 1s and dirty_expire_interval / 8.
4676		 */
4677		unsigned long update_intv =
4678			min_t(unsigned long, HZ,
4679			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681		if (time_before64(frn->at, now - update_intv))
4682			frn->at = now;
4683	} else if (oldest >= 0) {
4684		/* replace the oldest free one */
4685		frn = &memcg->cgwb_frn[oldest];
4686		frn->bdi_id = wb->bdi->id;
4687		frn->memcg_id = wb->memcg_css->id;
4688		frn->at = now;
4689	}
4690}
4691
4692/* issue foreign writeback flushes for recorded foreign dirtying events */
4693void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694{
4695	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697	u64 now = jiffies_64;
4698	int i;
4699
4700	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703		/*
4704		 * If the record is older than dirty_expire_interval,
4705		 * writeback on it has already started.  No need to kick it
4706		 * off again.  Also, don't start a new one if there's
4707		 * already one in flight.
4708		 */
4709		if (time_after64(frn->at, now - intv) &&
4710		    atomic_read(&frn->done.cnt) == 1) {
4711			frn->at = 0;
4712			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714					       WB_REASON_FOREIGN_FLUSH,
4715					       &frn->done);
4716		}
4717	}
4718}
4719
4720#else	/* CONFIG_CGROUP_WRITEBACK */
4721
4722static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723{
4724	return 0;
4725}
4726
4727static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728{
4729}
4730
4731static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732{
4733}
4734
4735#endif	/* CONFIG_CGROUP_WRITEBACK */
4736
4737/*
4738 * DO NOT USE IN NEW FILES.
4739 *
4740 * "cgroup.event_control" implementation.
4741 *
4742 * This is way over-engineered.  It tries to support fully configurable
4743 * events for each user.  Such level of flexibility is completely
4744 * unnecessary especially in the light of the planned unified hierarchy.
4745 *
4746 * Please deprecate this and replace with something simpler if at all
4747 * possible.
4748 */
4749
4750/*
4751 * Unregister event and free resources.
4752 *
4753 * Gets called from workqueue.
4754 */
4755static void memcg_event_remove(struct work_struct *work)
4756{
4757	struct mem_cgroup_event *event =
4758		container_of(work, struct mem_cgroup_event, remove);
4759	struct mem_cgroup *memcg = event->memcg;
4760
4761	remove_wait_queue(event->wqh, &event->wait);
4762
4763	event->unregister_event(memcg, event->eventfd);
4764
4765	/* Notify userspace the event is going away. */
4766	eventfd_signal(event->eventfd, 1);
4767
4768	eventfd_ctx_put(event->eventfd);
4769	kfree(event);
4770	css_put(&memcg->css);
4771}
4772
4773/*
4774 * Gets called on EPOLLHUP on eventfd when user closes it.
4775 *
4776 * Called with wqh->lock held and interrupts disabled.
4777 */
4778static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779			    int sync, void *key)
4780{
4781	struct mem_cgroup_event *event =
4782		container_of(wait, struct mem_cgroup_event, wait);
4783	struct mem_cgroup *memcg = event->memcg;
4784	__poll_t flags = key_to_poll(key);
4785
4786	if (flags & EPOLLHUP) {
4787		/*
4788		 * If the event has been detached at cgroup removal, we
4789		 * can simply return knowing the other side will cleanup
4790		 * for us.
4791		 *
4792		 * We can't race against event freeing since the other
4793		 * side will require wqh->lock via remove_wait_queue(),
4794		 * which we hold.
4795		 */
4796		spin_lock(&memcg->event_list_lock);
4797		if (!list_empty(&event->list)) {
4798			list_del_init(&event->list);
4799			/*
4800			 * We are in atomic context, but cgroup_event_remove()
4801			 * may sleep, so we have to call it in workqueue.
4802			 */
4803			schedule_work(&event->remove);
4804		}
4805		spin_unlock(&memcg->event_list_lock);
4806	}
4807
4808	return 0;
4809}
4810
4811static void memcg_event_ptable_queue_proc(struct file *file,
4812		wait_queue_head_t *wqh, poll_table *pt)
4813{
4814	struct mem_cgroup_event *event =
4815		container_of(pt, struct mem_cgroup_event, pt);
4816
4817	event->wqh = wqh;
4818	add_wait_queue(wqh, &event->wait);
4819}
4820
4821/*
4822 * DO NOT USE IN NEW FILES.
4823 *
4824 * Parse input and register new cgroup event handler.
4825 *
4826 * Input must be in format '<event_fd> <control_fd> <args>'.
4827 * Interpretation of args is defined by control file implementation.
4828 */
4829static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830					 char *buf, size_t nbytes, loff_t off)
4831{
4832	struct cgroup_subsys_state *css = of_css(of);
4833	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834	struct mem_cgroup_event *event;
4835	struct cgroup_subsys_state *cfile_css;
4836	unsigned int efd, cfd;
4837	struct fd efile;
4838	struct fd cfile;
4839	struct dentry *cdentry;
4840	const char *name;
4841	char *endp;
4842	int ret;
4843
4844	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845		return -EOPNOTSUPP;
4846
4847	buf = strstrip(buf);
4848
4849	efd = simple_strtoul(buf, &endp, 10);
4850	if (*endp != ' ')
4851		return -EINVAL;
4852	buf = endp + 1;
4853
4854	cfd = simple_strtoul(buf, &endp, 10);
4855	if ((*endp != ' ') && (*endp != '\0'))
4856		return -EINVAL;
4857	buf = endp + 1;
4858
4859	event = kzalloc(sizeof(*event), GFP_KERNEL);
4860	if (!event)
4861		return -ENOMEM;
4862
4863	event->memcg = memcg;
4864	INIT_LIST_HEAD(&event->list);
4865	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867	INIT_WORK(&event->remove, memcg_event_remove);
4868
4869	efile = fdget(efd);
4870	if (!efile.file) {
4871		ret = -EBADF;
4872		goto out_kfree;
4873	}
4874
4875	event->eventfd = eventfd_ctx_fileget(efile.file);
4876	if (IS_ERR(event->eventfd)) {
4877		ret = PTR_ERR(event->eventfd);
4878		goto out_put_efile;
4879	}
4880
4881	cfile = fdget(cfd);
4882	if (!cfile.file) {
4883		ret = -EBADF;
4884		goto out_put_eventfd;
4885	}
4886
4887	/* the process need read permission on control file */
4888	/* AV: shouldn't we check that it's been opened for read instead? */
4889	ret = file_permission(cfile.file, MAY_READ);
4890	if (ret < 0)
4891		goto out_put_cfile;
4892
4893	/*
4894	 * The control file must be a regular cgroup1 file. As a regular cgroup
4895	 * file can't be renamed, it's safe to access its name afterwards.
4896	 */
4897	cdentry = cfile.file->f_path.dentry;
4898	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899		ret = -EINVAL;
4900		goto out_put_cfile;
4901	}
4902
4903	/*
4904	 * Determine the event callbacks and set them in @event.  This used
4905	 * to be done via struct cftype but cgroup core no longer knows
4906	 * about these events.  The following is crude but the whole thing
4907	 * is for compatibility anyway.
4908	 *
4909	 * DO NOT ADD NEW FILES.
4910	 */
4911	name = cdentry->d_name.name;
4912
4913	if (!strcmp(name, "memory.usage_in_bytes")) {
4914		event->register_event = mem_cgroup_usage_register_event;
4915		event->unregister_event = mem_cgroup_usage_unregister_event;
4916	} else if (!strcmp(name, "memory.oom_control")) {
4917		event->register_event = mem_cgroup_oom_register_event;
4918		event->unregister_event = mem_cgroup_oom_unregister_event;
4919	} else if (!strcmp(name, "memory.pressure_level")) {
4920		event->register_event = vmpressure_register_event;
4921		event->unregister_event = vmpressure_unregister_event;
4922	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923		event->register_event = memsw_cgroup_usage_register_event;
4924		event->unregister_event = memsw_cgroup_usage_unregister_event;
4925	} else {
4926		ret = -EINVAL;
4927		goto out_put_cfile;
4928	}
4929
4930	/*
4931	 * Verify @cfile should belong to @css.  Also, remaining events are
4932	 * automatically removed on cgroup destruction but the removal is
4933	 * asynchronous, so take an extra ref on @css.
4934	 */
4935	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936					       &memory_cgrp_subsys);
4937	ret = -EINVAL;
4938	if (IS_ERR(cfile_css))
4939		goto out_put_cfile;
4940	if (cfile_css != css) {
4941		css_put(cfile_css);
4942		goto out_put_cfile;
4943	}
4944
4945	ret = event->register_event(memcg, event->eventfd, buf);
4946	if (ret)
4947		goto out_put_css;
4948
4949	vfs_poll(efile.file, &event->pt);
4950
4951	spin_lock_irq(&memcg->event_list_lock);
4952	list_add(&event->list, &memcg->event_list);
4953	spin_unlock_irq(&memcg->event_list_lock);
4954
4955	fdput(cfile);
4956	fdput(efile);
4957
4958	return nbytes;
4959
4960out_put_css:
4961	css_put(css);
4962out_put_cfile:
4963	fdput(cfile);
4964out_put_eventfd:
4965	eventfd_ctx_put(event->eventfd);
4966out_put_efile:
4967	fdput(efile);
4968out_kfree:
4969	kfree(event);
4970
4971	return ret;
4972}
4973
4974#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976{
4977	/*
4978	 * Deprecated.
4979	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980	 */
4981	return 0;
4982}
4983#endif
4984
4985static struct cftype mem_cgroup_legacy_files[] = {
4986	{
4987		.name = "usage_in_bytes",
4988		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989		.read_u64 = mem_cgroup_read_u64,
4990	},
4991	{
4992		.name = "max_usage_in_bytes",
4993		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994		.write = mem_cgroup_reset,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "limit_in_bytes",
4999		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000		.write = mem_cgroup_write,
5001		.read_u64 = mem_cgroup_read_u64,
5002	},
5003	{
5004		.name = "soft_limit_in_bytes",
5005		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006		.write = mem_cgroup_write,
5007		.read_u64 = mem_cgroup_read_u64,
5008	},
5009	{
5010		.name = "failcnt",
5011		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012		.write = mem_cgroup_reset,
5013		.read_u64 = mem_cgroup_read_u64,
5014	},
5015	{
5016		.name = "stat",
5017		.seq_show = memcg_stat_show,
5018	},
5019	{
5020		.name = "force_empty",
5021		.write = mem_cgroup_force_empty_write,
5022	},
5023	{
5024		.name = "use_hierarchy",
5025		.write_u64 = mem_cgroup_hierarchy_write,
5026		.read_u64 = mem_cgroup_hierarchy_read,
5027	},
5028	{
5029		.name = "cgroup.event_control",		/* XXX: for compat */
5030		.write = memcg_write_event_control,
5031		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032	},
5033	{
5034		.name = "swappiness",
5035		.read_u64 = mem_cgroup_swappiness_read,
5036		.write_u64 = mem_cgroup_swappiness_write,
5037	},
5038	{
5039		.name = "move_charge_at_immigrate",
5040		.read_u64 = mem_cgroup_move_charge_read,
5041		.write_u64 = mem_cgroup_move_charge_write,
5042	},
5043	{
5044		.name = "oom_control",
5045		.seq_show = mem_cgroup_oom_control_read,
5046		.write_u64 = mem_cgroup_oom_control_write,
 
5047	},
5048	{
5049		.name = "pressure_level",
5050	},
5051#ifdef CONFIG_NUMA
5052	{
5053		.name = "numa_stat",
5054		.seq_show = memcg_numa_stat_show,
5055	},
5056#endif
5057	{
5058		.name = "kmem.limit_in_bytes",
5059		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060		.write = mem_cgroup_write,
5061		.read_u64 = mem_cgroup_read_u64,
5062	},
5063	{
5064		.name = "kmem.usage_in_bytes",
5065		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066		.read_u64 = mem_cgroup_read_u64,
5067	},
5068	{
5069		.name = "kmem.failcnt",
5070		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071		.write = mem_cgroup_reset,
5072		.read_u64 = mem_cgroup_read_u64,
5073	},
5074	{
5075		.name = "kmem.max_usage_in_bytes",
5076		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077		.write = mem_cgroup_reset,
5078		.read_u64 = mem_cgroup_read_u64,
5079	},
5080#if defined(CONFIG_MEMCG_KMEM) && \
5081	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082	{
5083		.name = "kmem.slabinfo",
5084		.seq_show = mem_cgroup_slab_show,
5085	},
5086#endif
5087	{
5088		.name = "kmem.tcp.limit_in_bytes",
5089		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090		.write = mem_cgroup_write,
5091		.read_u64 = mem_cgroup_read_u64,
5092	},
5093	{
5094		.name = "kmem.tcp.usage_in_bytes",
5095		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096		.read_u64 = mem_cgroup_read_u64,
5097	},
5098	{
5099		.name = "kmem.tcp.failcnt",
5100		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101		.write = mem_cgroup_reset,
5102		.read_u64 = mem_cgroup_read_u64,
5103	},
5104	{
5105		.name = "kmem.tcp.max_usage_in_bytes",
5106		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107		.write = mem_cgroup_reset,
5108		.read_u64 = mem_cgroup_read_u64,
5109	},
5110	{ },	/* terminate */
5111};
5112
5113/*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137static DEFINE_IDR(mem_cgroup_idr);
5138
5139static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140{
5141	if (memcg->id.id > 0) {
5142		idr_remove(&mem_cgroup_idr, memcg->id.id);
5143		memcg->id.id = 0;
5144	}
5145}
5146
5147static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148						  unsigned int n)
5149{
5150	refcount_add(n, &memcg->id.ref);
5151}
5152
5153static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154{
5155	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156		mem_cgroup_id_remove(memcg);
5157
5158		/* Memcg ID pins CSS */
5159		css_put(&memcg->css);
5160	}
5161}
5162
5163static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164{
5165	mem_cgroup_id_put_many(memcg, 1);
5166}
5167
5168/**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175{
5176	WARN_ON_ONCE(!rcu_read_lock_held());
5177	return idr_find(&mem_cgroup_idr, id);
5178}
5179
5180#ifdef CONFIG_SHRINKER_DEBUG
5181struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182{
5183	struct cgroup *cgrp;
5184	struct cgroup_subsys_state *css;
5185	struct mem_cgroup *memcg;
5186
5187	cgrp = cgroup_get_from_id(ino);
5188	if (IS_ERR(cgrp))
5189		return ERR_CAST(cgrp);
5190
5191	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192	if (css)
5193		memcg = container_of(css, struct mem_cgroup, css);
5194	else
5195		memcg = ERR_PTR(-ENOENT);
5196
5197	cgroup_put(cgrp);
5198
5199	return memcg;
5200}
5201#endif
5202
5203static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204{
5205	struct mem_cgroup_per_node *pn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5206
5207	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208	if (!pn)
 
 
5209		return 1;
 
5210
5211	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212						   GFP_KERNEL_ACCOUNT);
5213	if (!pn->lruvec_stats_percpu) {
 
5214		kfree(pn);
5215		return 1;
5216	}
5217
5218	lruvec_init(&pn->lruvec);
 
 
5219	pn->memcg = memcg;
5220
5221	memcg->nodeinfo[node] = pn;
5222	return 0;
5223}
5224
5225static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226{
5227	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
5229	if (!pn)
5230		return;
5231
5232	free_percpu(pn->lruvec_stats_percpu);
 
5233	kfree(pn);
5234}
5235
5236static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237{
5238	int node;
5239
5240	for_each_node(node)
5241		free_mem_cgroup_per_node_info(memcg, node);
5242	kfree(memcg->vmstats);
5243	free_percpu(memcg->vmstats_percpu);
5244	kfree(memcg);
5245}
5246
5247static void mem_cgroup_free(struct mem_cgroup *memcg)
5248{
5249	lru_gen_exit_memcg(memcg);
 
5250	memcg_wb_domain_exit(memcg);
 
 
 
 
 
 
5251	__mem_cgroup_free(memcg);
5252}
5253
5254static struct mem_cgroup *mem_cgroup_alloc(void)
5255{
5256	struct mem_cgroup *memcg;
 
5257	int node;
5258	int __maybe_unused i;
5259	long error = -ENOMEM;
5260
5261	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
 
 
 
5262	if (!memcg)
5263		return ERR_PTR(error);
5264
5265	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
 
5267	if (memcg->id.id < 0) {
5268		error = memcg->id.id;
5269		goto fail;
5270	}
5271
5272	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273	if (!memcg->vmstats)
5274		goto fail;
5275
5276	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277						 GFP_KERNEL_ACCOUNT);
5278	if (!memcg->vmstats_percpu)
5279		goto fail;
5280
5281	for_each_node(node)
5282		if (alloc_mem_cgroup_per_node_info(memcg, node))
5283			goto fail;
5284
5285	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286		goto fail;
5287
5288	INIT_WORK(&memcg->high_work, high_work_func);
5289	INIT_LIST_HEAD(&memcg->oom_notify);
5290	mutex_init(&memcg->thresholds_lock);
5291	spin_lock_init(&memcg->move_lock);
5292	vmpressure_init(&memcg->vmpressure);
5293	INIT_LIST_HEAD(&memcg->event_list);
5294	spin_lock_init(&memcg->event_list_lock);
5295	memcg->socket_pressure = jiffies;
5296#ifdef CONFIG_MEMCG_KMEM
5297	memcg->kmemcg_id = -1;
5298	INIT_LIST_HEAD(&memcg->objcg_list);
5299#endif
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301	INIT_LIST_HEAD(&memcg->cgwb_list);
5302	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303		memcg->cgwb_frn[i].done =
5304			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309	memcg->deferred_split_queue.split_queue_len = 0;
5310#endif
5311	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312	lru_gen_init_memcg(memcg);
5313	return memcg;
5314fail:
5315	mem_cgroup_id_remove(memcg);
5316	__mem_cgroup_free(memcg);
5317	return ERR_PTR(error);
5318}
5319
5320static struct cgroup_subsys_state * __ref
5321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322{
5323	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324	struct mem_cgroup *memcg, *old_memcg;
 
5325
5326	old_memcg = set_active_memcg(parent);
5327	memcg = mem_cgroup_alloc();
5328	set_active_memcg(old_memcg);
5329	if (IS_ERR(memcg))
5330		return ERR_CAST(memcg);
5331
5332	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333	memcg->soft_limit = PAGE_COUNTER_MAX;
5334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335	memcg->zswap_max = PAGE_COUNTER_MAX;
5336#endif
5337	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338	if (parent) {
5339		memcg->swappiness = mem_cgroup_swappiness(parent);
5340		memcg->oom_kill_disable = parent->oom_kill_disable;
5341
5342		page_counter_init(&memcg->memory, &parent->memory);
5343		page_counter_init(&memcg->swap, &parent->swap);
5344		page_counter_init(&memcg->kmem, &parent->kmem);
5345		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346	} else {
5347		init_memcg_events();
5348		page_counter_init(&memcg->memory, NULL);
5349		page_counter_init(&memcg->swap, NULL);
5350		page_counter_init(&memcg->kmem, NULL);
5351		page_counter_init(&memcg->tcpmem, NULL);
5352
5353		root_mem_cgroup = memcg;
5354		return &memcg->css;
5355	}
5356
 
 
 
 
 
5357	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358		static_branch_inc(&memcg_sockets_enabled_key);
5359
5360	return &memcg->css;
 
 
 
 
5361}
5362
5363static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
5367	if (memcg_online_kmem(memcg))
5368		goto remove_id;
5369
5370	/*
5371	 * A memcg must be visible for expand_shrinker_info()
5372	 * by the time the maps are allocated. So, we allocate maps
5373	 * here, when for_each_mem_cgroup() can't skip it.
5374	 */
5375	if (alloc_shrinker_info(memcg))
5376		goto offline_kmem;
 
 
5377
5378	/* Online state pins memcg ID, memcg ID pins CSS */
5379	refcount_set(&memcg->id.ref, 1);
5380	css_get(css);
5381
5382	if (unlikely(mem_cgroup_is_root(memcg)))
5383		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384				   2UL*HZ);
5385	return 0;
5386offline_kmem:
5387	memcg_offline_kmem(memcg);
5388remove_id:
5389	mem_cgroup_id_remove(memcg);
5390	return -ENOMEM;
5391}
5392
5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394{
5395	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396	struct mem_cgroup_event *event, *tmp;
5397
5398	/*
5399	 * Unregister events and notify userspace.
5400	 * Notify userspace about cgroup removing only after rmdir of cgroup
5401	 * directory to avoid race between userspace and kernelspace.
5402	 */
5403	spin_lock_irq(&memcg->event_list_lock);
5404	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405		list_del_init(&event->list);
5406		schedule_work(&event->remove);
5407	}
5408	spin_unlock_irq(&memcg->event_list_lock);
5409
5410	page_counter_set_min(&memcg->memory, 0);
5411	page_counter_set_low(&memcg->memory, 0);
5412
5413	memcg_offline_kmem(memcg);
5414	reparent_shrinker_deferred(memcg);
5415	wb_memcg_offline(memcg);
5416
5417	drain_all_stock(memcg);
5418
5419	mem_cgroup_id_put(memcg);
5420}
5421
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426	invalidate_reclaim_iterators(memcg);
5427}
5428
5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430{
5431	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432	int __maybe_unused i;
5433
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
5438	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439		static_branch_dec(&memcg_sockets_enabled_key);
5440
5441	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442		static_branch_dec(&memcg_sockets_enabled_key);
5443
5444	vmpressure_cleanup(&memcg->vmpressure);
5445	cancel_work_sync(&memcg->high_work);
5446	mem_cgroup_remove_from_trees(memcg);
5447	free_shrinker_info(memcg);
 
5448	mem_cgroup_free(memcg);
5449}
5450
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css.  This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency.  The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
5468	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472	page_counter_set_min(&memcg->memory, 0);
5473	page_counter_set_low(&memcg->memory, 0);
5474	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475	memcg->soft_limit = PAGE_COUNTER_MAX;
5476	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477	memcg_wb_domain_size_changed(memcg);
5478}
5479
5480static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481{
5482	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484	struct memcg_vmstats_percpu *statc;
5485	long delta, v;
5486	int i, nid;
5487
5488	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490	for (i = 0; i < MEMCG_NR_STAT; i++) {
5491		/*
5492		 * Collect the aggregated propagation counts of groups
5493		 * below us. We're in a per-cpu loop here and this is
5494		 * a global counter, so the first cycle will get them.
5495		 */
5496		delta = memcg->vmstats->state_pending[i];
5497		if (delta)
5498			memcg->vmstats->state_pending[i] = 0;
5499
5500		/* Add CPU changes on this level since the last flush */
5501		v = READ_ONCE(statc->state[i]);
5502		if (v != statc->state_prev[i]) {
5503			delta += v - statc->state_prev[i];
5504			statc->state_prev[i] = v;
5505		}
5506
5507		if (!delta)
5508			continue;
5509
5510		/* Aggregate counts on this level and propagate upwards */
5511		memcg->vmstats->state[i] += delta;
5512		if (parent)
5513			parent->vmstats->state_pending[i] += delta;
5514	}
5515
5516	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517		delta = memcg->vmstats->events_pending[i];
5518		if (delta)
5519			memcg->vmstats->events_pending[i] = 0;
5520
5521		v = READ_ONCE(statc->events[i]);
5522		if (v != statc->events_prev[i]) {
5523			delta += v - statc->events_prev[i];
5524			statc->events_prev[i] = v;
5525		}
5526
5527		if (!delta)
5528			continue;
5529
5530		memcg->vmstats->events[i] += delta;
5531		if (parent)
5532			parent->vmstats->events_pending[i] += delta;
5533	}
5534
5535	for_each_node_state(nid, N_MEMORY) {
5536		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537		struct mem_cgroup_per_node *ppn = NULL;
5538		struct lruvec_stats_percpu *lstatc;
5539
5540		if (parent)
5541			ppn = parent->nodeinfo[nid];
5542
5543		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546			delta = pn->lruvec_stats.state_pending[i];
5547			if (delta)
5548				pn->lruvec_stats.state_pending[i] = 0;
5549
5550			v = READ_ONCE(lstatc->state[i]);
5551			if (v != lstatc->state_prev[i]) {
5552				delta += v - lstatc->state_prev[i];
5553				lstatc->state_prev[i] = v;
5554			}
5555
5556			if (!delta)
5557				continue;
5558
5559			pn->lruvec_stats.state[i] += delta;
5560			if (ppn)
5561				ppn->lruvec_stats.state_pending[i] += delta;
5562		}
5563	}
5564}
5565
5566#ifdef CONFIG_MMU
5567/* Handlers for move charge at task migration. */
5568static int mem_cgroup_do_precharge(unsigned long count)
5569{
5570	int ret;
5571
5572	/* Try a single bulk charge without reclaim first, kswapd may wake */
5573	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574	if (!ret) {
5575		mc.precharge += count;
5576		return ret;
5577	}
5578
5579	/* Try charges one by one with reclaim, but do not retry */
5580	while (count--) {
5581		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582		if (ret)
5583			return ret;
5584		mc.precharge++;
5585		cond_resched();
5586	}
5587	return 0;
5588}
5589
5590union mc_target {
5591	struct page	*page;
5592	swp_entry_t	ent;
5593};
5594
5595enum mc_target_type {
5596	MC_TARGET_NONE = 0,
5597	MC_TARGET_PAGE,
5598	MC_TARGET_SWAP,
5599	MC_TARGET_DEVICE,
5600};
5601
5602static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603						unsigned long addr, pte_t ptent)
5604{
5605	struct page *page = vm_normal_page(vma, addr, ptent);
5606
5607	if (!page || !page_mapped(page))
5608		return NULL;
5609	if (PageAnon(page)) {
5610		if (!(mc.flags & MOVE_ANON))
5611			return NULL;
5612	} else {
5613		if (!(mc.flags & MOVE_FILE))
5614			return NULL;
5615	}
5616	if (!get_page_unless_zero(page))
5617		return NULL;
5618
5619	return page;
5620}
5621
5622#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624			pte_t ptent, swp_entry_t *entry)
5625{
5626	struct page *page = NULL;
5627	swp_entry_t ent = pte_to_swp_entry(ptent);
5628
5629	if (!(mc.flags & MOVE_ANON))
5630		return NULL;
5631
5632	/*
5633	 * Handle device private pages that are not accessible by the CPU, but
5634	 * stored as special swap entries in the page table.
 
5635	 */
5636	if (is_device_private_entry(ent)) {
5637		page = pfn_swap_entry_to_page(ent);
5638		if (!get_page_unless_zero(page))
 
 
 
 
5639			return NULL;
5640		return page;
5641	}
5642
5643	if (non_swap_entry(ent))
5644		return NULL;
5645
5646	/*
5647	 * Because swap_cache_get_folio() updates some statistics counter,
5648	 * we call find_get_page() with swapper_space directly.
5649	 */
5650	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651	entry->val = ent.val;
5652
5653	return page;
5654}
5655#else
5656static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657			pte_t ptent, swp_entry_t *entry)
5658{
5659	return NULL;
5660}
5661#endif
5662
5663static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664			unsigned long addr, pte_t ptent)
5665{
5666	unsigned long index;
5667	struct folio *folio;
5668
5669	if (!vma->vm_file) /* anonymous vma */
5670		return NULL;
5671	if (!(mc.flags & MOVE_FILE))
5672		return NULL;
5673
5674	/* folio is moved even if it's not RSS of this task(page-faulted). */
5675	/* shmem/tmpfs may report page out on swap: account for that too. */
5676	index = linear_page_index(vma, addr);
5677	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678	if (!folio)
5679		return NULL;
5680	return folio_file_page(folio, index);
5681}
5682
5683/**
5684 * mem_cgroup_move_account - move account of the page
5685 * @page: the page
5686 * @compound: charge the page as compound or small page
5687 * @from: mem_cgroup which the page is moved from.
5688 * @to:	mem_cgroup which the page is moved to. @from != @to.
5689 *
5690 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5691 *
5692 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693 * from old cgroup.
5694 */
5695static int mem_cgroup_move_account(struct page *page,
5696				   bool compound,
5697				   struct mem_cgroup *from,
5698				   struct mem_cgroup *to)
5699{
5700	struct folio *folio = page_folio(page);
5701	struct lruvec *from_vec, *to_vec;
5702	struct pglist_data *pgdat;
5703	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5704	int nid, ret;
5705
5706	VM_BUG_ON(from == to);
5707	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5708	VM_BUG_ON(compound && !folio_test_large(folio));
5709
5710	/*
5711	 * Prevent mem_cgroup_migrate() from looking at
5712	 * page's memory cgroup of its source page while we change it.
5713	 */
5714	ret = -EBUSY;
5715	if (!folio_trylock(folio))
5716		goto out;
5717
5718	ret = -EINVAL;
5719	if (folio_memcg(folio) != from)
5720		goto out_unlock;
5721
5722	pgdat = folio_pgdat(folio);
5723	from_vec = mem_cgroup_lruvec(from, pgdat);
5724	to_vec = mem_cgroup_lruvec(to, pgdat);
5725
5726	folio_memcg_lock(folio);
5727
5728	if (folio_test_anon(folio)) {
5729		if (folio_mapped(folio)) {
5730			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5732			if (folio_test_transhuge(folio)) {
5733				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5734						   -nr_pages);
5735				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5736						   nr_pages);
5737			}
5738		}
5739	} else {
5740		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742
5743		if (folio_test_swapbacked(folio)) {
5744			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746		}
5747
5748		if (folio_mapped(folio)) {
5749			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751		}
5752
5753		if (folio_test_dirty(folio)) {
5754			struct address_space *mapping = folio_mapping(folio);
5755
5756			if (mapping_can_writeback(mapping)) {
5757				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758						   -nr_pages);
5759				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760						   nr_pages);
5761			}
5762		}
5763	}
5764
5765#ifdef CONFIG_SWAP
5766	if (folio_test_swapcache(folio)) {
5767		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769	}
5770#endif
5771	if (folio_test_writeback(folio)) {
5772		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5774	}
5775
5776	/*
5777	 * All state has been migrated, let's switch to the new memcg.
5778	 *
5779	 * It is safe to change page's memcg here because the page
5780	 * is referenced, charged, isolated, and locked: we can't race
5781	 * with (un)charging, migration, LRU putback, or anything else
5782	 * that would rely on a stable page's memory cgroup.
5783	 *
5784	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5785	 * to save space. As soon as we switch page's memory cgroup to a
5786	 * new memcg that isn't locked, the above state can change
5787	 * concurrently again. Make sure we're truly done with it.
5788	 */
5789	smp_mb();
5790
5791	css_get(&to->css);
5792	css_put(&from->css);
5793
5794	folio->memcg_data = (unsigned long)to;
5795
5796	__folio_memcg_unlock(from);
5797
5798	ret = 0;
5799	nid = folio_nid(folio);
5800
5801	local_irq_disable();
5802	mem_cgroup_charge_statistics(to, nr_pages);
5803	memcg_check_events(to, nid);
5804	mem_cgroup_charge_statistics(from, -nr_pages);
5805	memcg_check_events(from, nid);
5806	local_irq_enable();
5807out_unlock:
5808	folio_unlock(folio);
5809out:
5810	return ret;
5811}
5812
5813/**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 *     move charge. if @target is not NULL, the page is stored in target->page
5824 *     with extra refcnt got(Callers should handle it).
5825 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 *     target for charge migration. if @target is not NULL, the entry is stored
5827 *     in target->ent.
5828 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5829 *   thus not on the lru.
5830 *     For now we such page is charge like a regular page would be as for all
5831 *     intent and purposes it is just special memory taking the place of a
5832 *     regular page.
5833 *
5834 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5835 *
5836 * Called with pte lock held.
5837 */
5838
5839static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840		unsigned long addr, pte_t ptent, union mc_target *target)
5841{
5842	struct page *page = NULL;
5843	enum mc_target_type ret = MC_TARGET_NONE;
5844	swp_entry_t ent = { .val = 0 };
5845
5846	if (pte_present(ptent))
5847		page = mc_handle_present_pte(vma, addr, ptent);
5848	else if (pte_none_mostly(ptent))
5849		/*
5850		 * PTE markers should be treated as a none pte here, separated
5851		 * from other swap handling below.
5852		 */
5853		page = mc_handle_file_pte(vma, addr, ptent);
5854	else if (is_swap_pte(ptent))
5855		page = mc_handle_swap_pte(vma, ptent, &ent);
 
 
5856
5857	if (!page && !ent.val)
5858		return ret;
5859	if (page) {
5860		/*
5861		 * Do only loose check w/o serialization.
5862		 * mem_cgroup_move_account() checks the page is valid or
5863		 * not under LRU exclusion.
5864		 */
5865		if (page_memcg(page) == mc.from) {
5866			ret = MC_TARGET_PAGE;
5867			if (is_device_private_page(page) ||
5868			    is_device_coherent_page(page))
5869				ret = MC_TARGET_DEVICE;
5870			if (target)
5871				target->page = page;
5872		}
5873		if (!ret || !target)
5874			put_page(page);
5875	}
5876	/*
5877	 * There is a swap entry and a page doesn't exist or isn't charged.
5878	 * But we cannot move a tail-page in a THP.
5879	 */
5880	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5881	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5882		ret = MC_TARGET_SWAP;
5883		if (target)
5884			target->ent = ent;
5885	}
5886	return ret;
5887}
5888
5889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890/*
5891 * We don't consider PMD mapped swapping or file mapped pages because THP does
5892 * not support them for now.
5893 * Caller should make sure that pmd_trans_huge(pmd) is true.
5894 */
5895static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896		unsigned long addr, pmd_t pmd, union mc_target *target)
5897{
5898	struct page *page = NULL;
5899	enum mc_target_type ret = MC_TARGET_NONE;
5900
5901	if (unlikely(is_swap_pmd(pmd))) {
5902		VM_BUG_ON(thp_migration_supported() &&
5903				  !is_pmd_migration_entry(pmd));
5904		return ret;
5905	}
5906	page = pmd_page(pmd);
5907	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908	if (!(mc.flags & MOVE_ANON))
5909		return ret;
5910	if (page_memcg(page) == mc.from) {
5911		ret = MC_TARGET_PAGE;
5912		if (target) {
5913			get_page(page);
5914			target->page = page;
5915		}
5916	}
5917	return ret;
5918}
5919#else
5920static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921		unsigned long addr, pmd_t pmd, union mc_target *target)
5922{
5923	return MC_TARGET_NONE;
5924}
5925#endif
5926
5927static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928					unsigned long addr, unsigned long end,
5929					struct mm_walk *walk)
5930{
5931	struct vm_area_struct *vma = walk->vma;
5932	pte_t *pte;
5933	spinlock_t *ptl;
5934
5935	ptl = pmd_trans_huge_lock(pmd, vma);
5936	if (ptl) {
5937		/*
5938		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5939		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940		 * this might change.
5941		 */
5942		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943			mc.precharge += HPAGE_PMD_NR;
5944		spin_unlock(ptl);
5945		return 0;
5946	}
5947
5948	if (pmd_trans_unstable(pmd))
5949		return 0;
5950	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951	for (; addr != end; pte++, addr += PAGE_SIZE)
5952		if (get_mctgt_type(vma, addr, *pte, NULL))
5953			mc.precharge++;	/* increment precharge temporarily */
5954	pte_unmap_unlock(pte - 1, ptl);
5955	cond_resched();
5956
5957	return 0;
5958}
5959
5960static const struct mm_walk_ops precharge_walk_ops = {
5961	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5962};
5963
5964static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965{
5966	unsigned long precharge;
5967
5968	mmap_read_lock(mm);
5969	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5970	mmap_read_unlock(mm);
5971
5972	precharge = mc.precharge;
5973	mc.precharge = 0;
5974
5975	return precharge;
5976}
5977
5978static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979{
5980	unsigned long precharge = mem_cgroup_count_precharge(mm);
5981
5982	VM_BUG_ON(mc.moving_task);
5983	mc.moving_task = current;
5984	return mem_cgroup_do_precharge(precharge);
5985}
5986
5987/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988static void __mem_cgroup_clear_mc(void)
5989{
5990	struct mem_cgroup *from = mc.from;
5991	struct mem_cgroup *to = mc.to;
5992
5993	/* we must uncharge all the leftover precharges from mc.to */
5994	if (mc.precharge) {
5995		cancel_charge(mc.to, mc.precharge);
5996		mc.precharge = 0;
5997	}
5998	/*
5999	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000	 * we must uncharge here.
6001	 */
6002	if (mc.moved_charge) {
6003		cancel_charge(mc.from, mc.moved_charge);
6004		mc.moved_charge = 0;
6005	}
6006	/* we must fixup refcnts and charges */
6007	if (mc.moved_swap) {
6008		/* uncharge swap account from the old cgroup */
6009		if (!mem_cgroup_is_root(mc.from))
6010			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6011
6012		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013
6014		/*
6015		 * we charged both to->memory and to->memsw, so we
6016		 * should uncharge to->memory.
6017		 */
6018		if (!mem_cgroup_is_root(mc.to))
6019			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020
6021		mc.moved_swap = 0;
6022	}
6023	memcg_oom_recover(from);
6024	memcg_oom_recover(to);
6025	wake_up_all(&mc.waitq);
6026}
6027
6028static void mem_cgroup_clear_mc(void)
6029{
6030	struct mm_struct *mm = mc.mm;
6031
6032	/*
6033	 * we must clear moving_task before waking up waiters at the end of
6034	 * task migration.
6035	 */
6036	mc.moving_task = NULL;
6037	__mem_cgroup_clear_mc();
6038	spin_lock(&mc.lock);
6039	mc.from = NULL;
6040	mc.to = NULL;
6041	mc.mm = NULL;
6042	spin_unlock(&mc.lock);
6043
6044	mmput(mm);
6045}
6046
6047static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6048{
6049	struct cgroup_subsys_state *css;
6050	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6051	struct mem_cgroup *from;
6052	struct task_struct *leader, *p;
6053	struct mm_struct *mm;
6054	unsigned long move_flags;
6055	int ret = 0;
6056
6057	/* charge immigration isn't supported on the default hierarchy */
6058	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6059		return 0;
6060
6061	/*
6062	 * Multi-process migrations only happen on the default hierarchy
6063	 * where charge immigration is not used.  Perform charge
6064	 * immigration if @tset contains a leader and whine if there are
6065	 * multiple.
6066	 */
6067	p = NULL;
6068	cgroup_taskset_for_each_leader(leader, css, tset) {
6069		WARN_ON_ONCE(p);
6070		p = leader;
6071		memcg = mem_cgroup_from_css(css);
6072	}
6073	if (!p)
6074		return 0;
6075
6076	/*
6077	 * We are now committed to this value whatever it is. Changes in this
6078	 * tunable will only affect upcoming migrations, not the current one.
6079	 * So we need to save it, and keep it going.
6080	 */
6081	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082	if (!move_flags)
6083		return 0;
6084
6085	from = mem_cgroup_from_task(p);
6086
6087	VM_BUG_ON(from == memcg);
6088
6089	mm = get_task_mm(p);
6090	if (!mm)
6091		return 0;
6092	/* We move charges only when we move a owner of the mm */
6093	if (mm->owner == p) {
6094		VM_BUG_ON(mc.from);
6095		VM_BUG_ON(mc.to);
6096		VM_BUG_ON(mc.precharge);
6097		VM_BUG_ON(mc.moved_charge);
6098		VM_BUG_ON(mc.moved_swap);
6099
6100		spin_lock(&mc.lock);
6101		mc.mm = mm;
6102		mc.from = from;
6103		mc.to = memcg;
6104		mc.flags = move_flags;
6105		spin_unlock(&mc.lock);
6106		/* We set mc.moving_task later */
6107
6108		ret = mem_cgroup_precharge_mc(mm);
6109		if (ret)
6110			mem_cgroup_clear_mc();
6111	} else {
6112		mmput(mm);
6113	}
6114	return ret;
6115}
6116
6117static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118{
6119	if (mc.to)
6120		mem_cgroup_clear_mc();
6121}
6122
6123static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124				unsigned long addr, unsigned long end,
6125				struct mm_walk *walk)
6126{
6127	int ret = 0;
6128	struct vm_area_struct *vma = walk->vma;
6129	pte_t *pte;
6130	spinlock_t *ptl;
6131	enum mc_target_type target_type;
6132	union mc_target target;
6133	struct page *page;
6134
6135	ptl = pmd_trans_huge_lock(pmd, vma);
6136	if (ptl) {
6137		if (mc.precharge < HPAGE_PMD_NR) {
6138			spin_unlock(ptl);
6139			return 0;
6140		}
6141		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142		if (target_type == MC_TARGET_PAGE) {
6143			page = target.page;
6144			if (!isolate_lru_page(page)) {
6145				if (!mem_cgroup_move_account(page, true,
6146							     mc.from, mc.to)) {
6147					mc.precharge -= HPAGE_PMD_NR;
6148					mc.moved_charge += HPAGE_PMD_NR;
6149				}
6150				putback_lru_page(page);
6151			}
6152			put_page(page);
6153		} else if (target_type == MC_TARGET_DEVICE) {
6154			page = target.page;
6155			if (!mem_cgroup_move_account(page, true,
6156						     mc.from, mc.to)) {
6157				mc.precharge -= HPAGE_PMD_NR;
6158				mc.moved_charge += HPAGE_PMD_NR;
6159			}
6160			put_page(page);
6161		}
6162		spin_unlock(ptl);
6163		return 0;
6164	}
6165
6166	if (pmd_trans_unstable(pmd))
6167		return 0;
6168retry:
6169	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170	for (; addr != end; addr += PAGE_SIZE) {
6171		pte_t ptent = *(pte++);
6172		bool device = false;
6173		swp_entry_t ent;
6174
6175		if (!mc.precharge)
6176			break;
6177
6178		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6179		case MC_TARGET_DEVICE:
6180			device = true;
6181			fallthrough;
6182		case MC_TARGET_PAGE:
6183			page = target.page;
6184			/*
6185			 * We can have a part of the split pmd here. Moving it
6186			 * can be done but it would be too convoluted so simply
6187			 * ignore such a partial THP and keep it in original
6188			 * memcg. There should be somebody mapping the head.
6189			 */
6190			if (PageTransCompound(page))
6191				goto put;
6192			if (!device && isolate_lru_page(page))
6193				goto put;
6194			if (!mem_cgroup_move_account(page, false,
6195						mc.from, mc.to)) {
6196				mc.precharge--;
6197				/* we uncharge from mc.from later. */
6198				mc.moved_charge++;
6199			}
6200			if (!device)
6201				putback_lru_page(page);
6202put:			/* get_mctgt_type() gets the page */
6203			put_page(page);
6204			break;
6205		case MC_TARGET_SWAP:
6206			ent = target.ent;
6207			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6208				mc.precharge--;
6209				mem_cgroup_id_get_many(mc.to, 1);
6210				/* we fixup other refcnts and charges later. */
6211				mc.moved_swap++;
6212			}
6213			break;
6214		default:
6215			break;
6216		}
6217	}
6218	pte_unmap_unlock(pte - 1, ptl);
6219	cond_resched();
6220
6221	if (addr != end) {
6222		/*
6223		 * We have consumed all precharges we got in can_attach().
6224		 * We try charge one by one, but don't do any additional
6225		 * charges to mc.to if we have failed in charge once in attach()
6226		 * phase.
6227		 */
6228		ret = mem_cgroup_do_precharge(1);
6229		if (!ret)
6230			goto retry;
6231	}
6232
6233	return ret;
6234}
6235
6236static const struct mm_walk_ops charge_walk_ops = {
6237	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6238};
6239
6240static void mem_cgroup_move_charge(void)
6241{
6242	lru_add_drain_all();
6243	/*
6244	 * Signal lock_page_memcg() to take the memcg's move_lock
6245	 * while we're moving its pages to another memcg. Then wait
6246	 * for already started RCU-only updates to finish.
6247	 */
6248	atomic_inc(&mc.from->moving_account);
6249	synchronize_rcu();
6250retry:
6251	if (unlikely(!mmap_read_trylock(mc.mm))) {
6252		/*
6253		 * Someone who are holding the mmap_lock might be waiting in
6254		 * waitq. So we cancel all extra charges, wake up all waiters,
6255		 * and retry. Because we cancel precharges, we might not be able
6256		 * to move enough charges, but moving charge is a best-effort
6257		 * feature anyway, so it wouldn't be a big problem.
6258		 */
6259		__mem_cgroup_clear_mc();
6260		cond_resched();
6261		goto retry;
6262	}
6263	/*
6264	 * When we have consumed all precharges and failed in doing
6265	 * additional charge, the page walk just aborts.
6266	 */
6267	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
 
 
6268	mmap_read_unlock(mc.mm);
6269	atomic_dec(&mc.from->moving_account);
6270}
6271
6272static void mem_cgroup_move_task(void)
6273{
6274	if (mc.to) {
6275		mem_cgroup_move_charge();
6276		mem_cgroup_clear_mc();
6277	}
6278}
6279#else	/* !CONFIG_MMU */
6280static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6281{
6282	return 0;
6283}
6284static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6285{
6286}
6287static void mem_cgroup_move_task(void)
6288{
6289}
6290#endif
6291
6292#ifdef CONFIG_LRU_GEN
6293static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294{
6295	struct task_struct *task;
6296	struct cgroup_subsys_state *css;
6297
6298	/* find the first leader if there is any */
6299	cgroup_taskset_for_each_leader(task, css, tset)
6300		break;
6301
6302	if (!task)
6303		return;
6304
6305	task_lock(task);
6306	if (task->mm && READ_ONCE(task->mm->owner) == task)
6307		lru_gen_migrate_mm(task->mm);
6308	task_unlock(task);
6309}
6310#else
6311static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312{
6313}
6314#endif /* CONFIG_LRU_GEN */
6315
6316static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317{
6318	if (value == PAGE_COUNTER_MAX)
6319		seq_puts(m, "max\n");
6320	else
6321		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322
6323	return 0;
6324}
6325
6326static u64 memory_current_read(struct cgroup_subsys_state *css,
6327			       struct cftype *cft)
6328{
6329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330
6331	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6332}
6333
6334static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335			    struct cftype *cft)
6336{
6337	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338
6339	return (u64)memcg->memory.watermark * PAGE_SIZE;
6340}
6341
6342static int memory_min_show(struct seq_file *m, void *v)
6343{
6344	return seq_puts_memcg_tunable(m,
6345		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6346}
6347
6348static ssize_t memory_min_write(struct kernfs_open_file *of,
6349				char *buf, size_t nbytes, loff_t off)
6350{
6351	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352	unsigned long min;
6353	int err;
6354
6355	buf = strstrip(buf);
6356	err = page_counter_memparse(buf, "max", &min);
6357	if (err)
6358		return err;
6359
6360	page_counter_set_min(&memcg->memory, min);
6361
6362	return nbytes;
6363}
6364
6365static int memory_low_show(struct seq_file *m, void *v)
6366{
6367	return seq_puts_memcg_tunable(m,
6368		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6369}
6370
6371static ssize_t memory_low_write(struct kernfs_open_file *of,
6372				char *buf, size_t nbytes, loff_t off)
6373{
6374	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375	unsigned long low;
6376	int err;
6377
6378	buf = strstrip(buf);
6379	err = page_counter_memparse(buf, "max", &low);
6380	if (err)
6381		return err;
6382
6383	page_counter_set_low(&memcg->memory, low);
6384
6385	return nbytes;
6386}
6387
6388static int memory_high_show(struct seq_file *m, void *v)
6389{
6390	return seq_puts_memcg_tunable(m,
6391		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6392}
6393
6394static ssize_t memory_high_write(struct kernfs_open_file *of,
6395				 char *buf, size_t nbytes, loff_t off)
6396{
6397	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6399	bool drained = false;
6400	unsigned long high;
6401	int err;
6402
6403	buf = strstrip(buf);
6404	err = page_counter_memparse(buf, "max", &high);
6405	if (err)
6406		return err;
6407
6408	page_counter_set_high(&memcg->memory, high);
6409
6410	for (;;) {
6411		unsigned long nr_pages = page_counter_read(&memcg->memory);
6412		unsigned long reclaimed;
6413
6414		if (nr_pages <= high)
6415			break;
6416
6417		if (signal_pending(current))
6418			break;
6419
6420		if (!drained) {
6421			drain_all_stock(memcg);
6422			drained = true;
6423			continue;
6424		}
6425
6426		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6427					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6428
6429		if (!reclaimed && !nr_retries--)
6430			break;
6431	}
6432
6433	memcg_wb_domain_size_changed(memcg);
6434	return nbytes;
6435}
6436
6437static int memory_max_show(struct seq_file *m, void *v)
6438{
6439	return seq_puts_memcg_tunable(m,
6440		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6441}
6442
6443static ssize_t memory_max_write(struct kernfs_open_file *of,
6444				char *buf, size_t nbytes, loff_t off)
6445{
6446	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6447	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6448	bool drained = false;
6449	unsigned long max;
6450	int err;
6451
6452	buf = strstrip(buf);
6453	err = page_counter_memparse(buf, "max", &max);
6454	if (err)
6455		return err;
6456
6457	xchg(&memcg->memory.max, max);
6458
6459	for (;;) {
6460		unsigned long nr_pages = page_counter_read(&memcg->memory);
6461
6462		if (nr_pages <= max)
6463			break;
6464
6465		if (signal_pending(current))
6466			break;
6467
6468		if (!drained) {
6469			drain_all_stock(memcg);
6470			drained = true;
6471			continue;
6472		}
6473
6474		if (nr_reclaims) {
6475			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6476					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6477				nr_reclaims--;
6478			continue;
6479		}
6480
6481		memcg_memory_event(memcg, MEMCG_OOM);
6482		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483			break;
6484	}
6485
6486	memcg_wb_domain_size_changed(memcg);
6487	return nbytes;
6488}
6489
6490static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491{
6492	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496	seq_printf(m, "oom_kill %lu\n",
6497		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6498	seq_printf(m, "oom_group_kill %lu\n",
6499		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6500}
6501
6502static int memory_events_show(struct seq_file *m, void *v)
6503{
6504	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505
6506	__memory_events_show(m, memcg->memory_events);
6507	return 0;
6508}
6509
6510static int memory_events_local_show(struct seq_file *m, void *v)
6511{
6512	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6513
6514	__memory_events_show(m, memcg->memory_events_local);
6515	return 0;
6516}
6517
6518static int memory_stat_show(struct seq_file *m, void *v)
6519{
6520	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6522
 
6523	if (!buf)
6524		return -ENOMEM;
6525	memory_stat_format(memcg, buf, PAGE_SIZE);
6526	seq_puts(m, buf);
6527	kfree(buf);
6528	return 0;
6529}
6530
6531#ifdef CONFIG_NUMA
6532static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533						     int item)
6534{
6535	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536}
6537
6538static int memory_numa_stat_show(struct seq_file *m, void *v)
6539{
6540	int i;
6541	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542
6543	mem_cgroup_flush_stats();
6544
6545	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546		int nid;
6547
6548		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549			continue;
6550
6551		seq_printf(m, "%s", memory_stats[i].name);
6552		for_each_node_state(nid, N_MEMORY) {
6553			u64 size;
6554			struct lruvec *lruvec;
6555
6556			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6557			size = lruvec_page_state_output(lruvec,
6558							memory_stats[i].idx);
6559			seq_printf(m, " N%d=%llu", nid, size);
6560		}
6561		seq_putc(m, '\n');
6562	}
6563
6564	return 0;
6565}
6566#endif
6567
6568static int memory_oom_group_show(struct seq_file *m, void *v)
6569{
6570	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6571
6572	seq_printf(m, "%d\n", memcg->oom_group);
6573
6574	return 0;
6575}
6576
6577static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578				      char *buf, size_t nbytes, loff_t off)
6579{
6580	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581	int ret, oom_group;
6582
6583	buf = strstrip(buf);
6584	if (!buf)
6585		return -EINVAL;
6586
6587	ret = kstrtoint(buf, 0, &oom_group);
6588	if (ret)
6589		return ret;
6590
6591	if (oom_group != 0 && oom_group != 1)
6592		return -EINVAL;
6593
6594	memcg->oom_group = oom_group;
6595
6596	return nbytes;
6597}
6598
6599static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600			      size_t nbytes, loff_t off)
6601{
6602	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6605	unsigned int reclaim_options;
6606	int err;
6607
6608	buf = strstrip(buf);
6609	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610	if (err)
6611		return err;
6612
6613	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6614	while (nr_reclaimed < nr_to_reclaim) {
6615		unsigned long reclaimed;
6616
6617		if (signal_pending(current))
6618			return -EINTR;
6619
6620		/*
6621		 * This is the final attempt, drain percpu lru caches in the
6622		 * hope of introducing more evictable pages for
6623		 * try_to_free_mem_cgroup_pages().
6624		 */
6625		if (!nr_retries)
6626			lru_add_drain_all();
6627
6628		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629						nr_to_reclaim - nr_reclaimed,
6630						GFP_KERNEL, reclaim_options);
6631
6632		if (!reclaimed && !nr_retries--)
6633			return -EAGAIN;
6634
6635		nr_reclaimed += reclaimed;
6636	}
6637
6638	return nbytes;
6639}
6640
6641static struct cftype memory_files[] = {
6642	{
6643		.name = "current",
6644		.flags = CFTYPE_NOT_ON_ROOT,
6645		.read_u64 = memory_current_read,
6646	},
6647	{
6648		.name = "peak",
6649		.flags = CFTYPE_NOT_ON_ROOT,
6650		.read_u64 = memory_peak_read,
6651	},
6652	{
6653		.name = "min",
6654		.flags = CFTYPE_NOT_ON_ROOT,
6655		.seq_show = memory_min_show,
6656		.write = memory_min_write,
6657	},
6658	{
6659		.name = "low",
6660		.flags = CFTYPE_NOT_ON_ROOT,
6661		.seq_show = memory_low_show,
6662		.write = memory_low_write,
6663	},
6664	{
6665		.name = "high",
6666		.flags = CFTYPE_NOT_ON_ROOT,
6667		.seq_show = memory_high_show,
6668		.write = memory_high_write,
6669	},
6670	{
6671		.name = "max",
6672		.flags = CFTYPE_NOT_ON_ROOT,
6673		.seq_show = memory_max_show,
6674		.write = memory_max_write,
6675	},
6676	{
6677		.name = "events",
6678		.flags = CFTYPE_NOT_ON_ROOT,
6679		.file_offset = offsetof(struct mem_cgroup, events_file),
6680		.seq_show = memory_events_show,
6681	},
6682	{
6683		.name = "events.local",
6684		.flags = CFTYPE_NOT_ON_ROOT,
6685		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6686		.seq_show = memory_events_local_show,
6687	},
6688	{
6689		.name = "stat",
6690		.seq_show = memory_stat_show,
6691	},
6692#ifdef CONFIG_NUMA
6693	{
6694		.name = "numa_stat",
6695		.seq_show = memory_numa_stat_show,
6696	},
6697#endif
6698	{
6699		.name = "oom.group",
6700		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701		.seq_show = memory_oom_group_show,
6702		.write = memory_oom_group_write,
6703	},
6704	{
6705		.name = "reclaim",
6706		.flags = CFTYPE_NS_DELEGATABLE,
6707		.write = memory_reclaim,
6708	},
6709	{ }	/* terminate */
6710};
6711
6712struct cgroup_subsys memory_cgrp_subsys = {
6713	.css_alloc = mem_cgroup_css_alloc,
6714	.css_online = mem_cgroup_css_online,
6715	.css_offline = mem_cgroup_css_offline,
6716	.css_released = mem_cgroup_css_released,
6717	.css_free = mem_cgroup_css_free,
6718	.css_reset = mem_cgroup_css_reset,
6719	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6720	.can_attach = mem_cgroup_can_attach,
6721	.attach = mem_cgroup_attach,
6722	.cancel_attach = mem_cgroup_cancel_attach,
6723	.post_attach = mem_cgroup_move_task,
6724	.dfl_cftypes = memory_files,
6725	.legacy_cftypes = mem_cgroup_legacy_files,
6726	.early_init = 0,
6727};
6728
6729/*
6730 * This function calculates an individual cgroup's effective
6731 * protection which is derived from its own memory.min/low, its
6732 * parent's and siblings' settings, as well as the actual memory
6733 * distribution in the tree.
6734 *
6735 * The following rules apply to the effective protection values:
6736 *
6737 * 1. At the first level of reclaim, effective protection is equal to
6738 *    the declared protection in memory.min and memory.low.
6739 *
6740 * 2. To enable safe delegation of the protection configuration, at
6741 *    subsequent levels the effective protection is capped to the
6742 *    parent's effective protection.
6743 *
6744 * 3. To make complex and dynamic subtrees easier to configure, the
6745 *    user is allowed to overcommit the declared protection at a given
6746 *    level. If that is the case, the parent's effective protection is
6747 *    distributed to the children in proportion to how much protection
6748 *    they have declared and how much of it they are utilizing.
6749 *
6750 *    This makes distribution proportional, but also work-conserving:
6751 *    if one cgroup claims much more protection than it uses memory,
6752 *    the unused remainder is available to its siblings.
6753 *
6754 * 4. Conversely, when the declared protection is undercommitted at a
6755 *    given level, the distribution of the larger parental protection
6756 *    budget is NOT proportional. A cgroup's protection from a sibling
6757 *    is capped to its own memory.min/low setting.
6758 *
6759 * 5. However, to allow protecting recursive subtrees from each other
6760 *    without having to declare each individual cgroup's fixed share
6761 *    of the ancestor's claim to protection, any unutilized -
6762 *    "floating" - protection from up the tree is distributed in
6763 *    proportion to each cgroup's *usage*. This makes the protection
6764 *    neutral wrt sibling cgroups and lets them compete freely over
6765 *    the shared parental protection budget, but it protects the
6766 *    subtree as a whole from neighboring subtrees.
6767 *
6768 * Note that 4. and 5. are not in conflict: 4. is about protecting
6769 * against immediate siblings whereas 5. is about protecting against
6770 * neighboring subtrees.
6771 */
6772static unsigned long effective_protection(unsigned long usage,
6773					  unsigned long parent_usage,
6774					  unsigned long setting,
6775					  unsigned long parent_effective,
6776					  unsigned long siblings_protected)
6777{
6778	unsigned long protected;
6779	unsigned long ep;
6780
6781	protected = min(usage, setting);
6782	/*
6783	 * If all cgroups at this level combined claim and use more
6784	 * protection then what the parent affords them, distribute
6785	 * shares in proportion to utilization.
6786	 *
6787	 * We are using actual utilization rather than the statically
6788	 * claimed protection in order to be work-conserving: claimed
6789	 * but unused protection is available to siblings that would
6790	 * otherwise get a smaller chunk than what they claimed.
6791	 */
6792	if (siblings_protected > parent_effective)
6793		return protected * parent_effective / siblings_protected;
6794
6795	/*
6796	 * Ok, utilized protection of all children is within what the
6797	 * parent affords them, so we know whatever this child claims
6798	 * and utilizes is effectively protected.
6799	 *
6800	 * If there is unprotected usage beyond this value, reclaim
6801	 * will apply pressure in proportion to that amount.
6802	 *
6803	 * If there is unutilized protection, the cgroup will be fully
6804	 * shielded from reclaim, but we do return a smaller value for
6805	 * protection than what the group could enjoy in theory. This
6806	 * is okay. With the overcommit distribution above, effective
6807	 * protection is always dependent on how memory is actually
6808	 * consumed among the siblings anyway.
6809	 */
6810	ep = protected;
6811
6812	/*
6813	 * If the children aren't claiming (all of) the protection
6814	 * afforded to them by the parent, distribute the remainder in
6815	 * proportion to the (unprotected) memory of each cgroup. That
6816	 * way, cgroups that aren't explicitly prioritized wrt each
6817	 * other compete freely over the allowance, but they are
6818	 * collectively protected from neighboring trees.
6819	 *
6820	 * We're using unprotected memory for the weight so that if
6821	 * some cgroups DO claim explicit protection, we don't protect
6822	 * the same bytes twice.
6823	 *
6824	 * Check both usage and parent_usage against the respective
6825	 * protected values. One should imply the other, but they
6826	 * aren't read atomically - make sure the division is sane.
6827	 */
6828	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829		return ep;
6830	if (parent_effective > siblings_protected &&
6831	    parent_usage > siblings_protected &&
6832	    usage > protected) {
6833		unsigned long unclaimed;
6834
6835		unclaimed = parent_effective - siblings_protected;
6836		unclaimed *= usage - protected;
6837		unclaimed /= parent_usage - siblings_protected;
6838
6839		ep += unclaimed;
6840	}
6841
6842	return ep;
6843}
6844
6845/**
6846 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6847 * @root: the top ancestor of the sub-tree being checked
6848 * @memcg: the memory cgroup to check
6849 *
6850 * WARNING: This function is not stateless! It can only be used as part
6851 *          of a top-down tree iteration, not for isolated queries.
6852 */
6853void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854				     struct mem_cgroup *memcg)
6855{
6856	unsigned long usage, parent_usage;
6857	struct mem_cgroup *parent;
6858
6859	if (mem_cgroup_disabled())
6860		return;
6861
6862	if (!root)
6863		root = root_mem_cgroup;
6864
6865	/*
6866	 * Effective values of the reclaim targets are ignored so they
6867	 * can be stale. Have a look at mem_cgroup_protection for more
6868	 * details.
6869	 * TODO: calculation should be more robust so that we do not need
6870	 * that special casing.
6871	 */
6872	if (memcg == root)
6873		return;
6874
6875	usage = page_counter_read(&memcg->memory);
6876	if (!usage)
6877		return;
6878
6879	parent = parent_mem_cgroup(memcg);
 
 
 
6880
6881	if (parent == root) {
6882		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6883		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6884		return;
6885	}
6886
6887	parent_usage = page_counter_read(&parent->memory);
6888
6889	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6890			READ_ONCE(memcg->memory.min),
6891			READ_ONCE(parent->memory.emin),
6892			atomic_long_read(&parent->memory.children_min_usage)));
6893
6894	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6895			READ_ONCE(memcg->memory.low),
6896			READ_ONCE(parent->memory.elow),
6897			atomic_long_read(&parent->memory.children_low_usage)));
6898}
6899
6900static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901			gfp_t gfp)
6902{
6903	long nr_pages = folio_nr_pages(folio);
6904	int ret;
6905
6906	ret = try_charge(memcg, gfp, nr_pages);
6907	if (ret)
6908		goto out;
6909
6910	css_get(&memcg->css);
6911	commit_charge(folio, memcg);
6912
6913	local_irq_disable();
6914	mem_cgroup_charge_statistics(memcg, nr_pages);
6915	memcg_check_events(memcg, folio_nid(folio));
6916	local_irq_enable();
6917out:
6918	return ret;
6919}
6920
6921int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6922{
6923	struct mem_cgroup *memcg;
6924	int ret;
6925
 
 
 
6926	memcg = get_mem_cgroup_from_mm(mm);
6927	ret = charge_memcg(folio, memcg, gfp);
6928	css_put(&memcg->css);
6929
6930	return ret;
6931}
6932
6933/**
6934 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935 * @folio: folio to charge.
6936 * @mm: mm context of the victim
6937 * @gfp: reclaim mode
6938 * @entry: swap entry for which the folio is allocated
6939 *
6940 * This function charges a folio allocated for swapin. Please call this before
6941 * adding the folio to the swapcache.
6942 *
6943 * Returns 0 on success. Otherwise, an error code is returned.
6944 */
6945int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6946				  gfp_t gfp, swp_entry_t entry)
6947{
6948	struct mem_cgroup *memcg;
6949	unsigned short id;
6950	int ret;
6951
6952	if (mem_cgroup_disabled())
6953		return 0;
6954
6955	id = lookup_swap_cgroup_id(entry);
6956	rcu_read_lock();
6957	memcg = mem_cgroup_from_id(id);
6958	if (!memcg || !css_tryget_online(&memcg->css))
6959		memcg = get_mem_cgroup_from_mm(mm);
6960	rcu_read_unlock();
6961
6962	ret = charge_memcg(folio, memcg, gfp);
6963
6964	css_put(&memcg->css);
6965	return ret;
6966}
6967
6968/*
6969 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970 * @entry: swap entry for which the page is charged
6971 *
6972 * Call this function after successfully adding the charged page to swapcache.
6973 *
6974 * Note: This function assumes the page for which swap slot is being uncharged
6975 * is order 0 page.
6976 */
6977void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978{
6979	/*
6980	 * Cgroup1's unified memory+swap counter has been charged with the
6981	 * new swapcache page, finish the transfer by uncharging the swap
6982	 * slot. The swap slot would also get uncharged when it dies, but
6983	 * it can stick around indefinitely and we'd count the page twice
6984	 * the entire time.
6985	 *
6986	 * Cgroup2 has separate resource counters for memory and swap,
6987	 * so this is a non-issue here. Memory and swap charge lifetimes
6988	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989	 * page to memory here, and uncharge swap when the slot is freed.
6990	 */
6991	if (!mem_cgroup_disabled() && do_memsw_account()) {
6992		/*
6993		 * The swap entry might not get freed for a long time,
6994		 * let's not wait for it.  The page already received a
6995		 * memory+swap charge, drop the swap entry duplicate.
6996		 */
6997		mem_cgroup_uncharge_swap(entry, 1);
6998	}
6999}
7000
7001struct uncharge_gather {
7002	struct mem_cgroup *memcg;
7003	unsigned long nr_memory;
7004	unsigned long pgpgout;
7005	unsigned long nr_kmem;
7006	int nid;
7007};
7008
7009static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7010{
7011	memset(ug, 0, sizeof(*ug));
7012}
7013
7014static void uncharge_batch(const struct uncharge_gather *ug)
7015{
7016	unsigned long flags;
7017
7018	if (ug->nr_memory) {
7019		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7020		if (do_memsw_account())
7021			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7022		if (ug->nr_kmem)
7023			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7024		memcg_oom_recover(ug->memcg);
7025	}
7026
7027	local_irq_save(flags);
7028	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7029	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7030	memcg_check_events(ug->memcg, ug->nid);
7031	local_irq_restore(flags);
7032
7033	/* drop reference from uncharge_folio */
7034	css_put(&ug->memcg->css);
7035}
7036
7037static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7038{
7039	long nr_pages;
7040	struct mem_cgroup *memcg;
7041	struct obj_cgroup *objcg;
 
7042
7043	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7044
7045	/*
7046	 * Nobody should be changing or seriously looking at
7047	 * folio memcg or objcg at this point, we have fully
7048	 * exclusive access to the folio.
7049	 */
7050	if (folio_memcg_kmem(folio)) {
7051		objcg = __folio_objcg(folio);
7052		/*
7053		 * This get matches the put at the end of the function and
7054		 * kmem pages do not hold memcg references anymore.
7055		 */
7056		memcg = get_mem_cgroup_from_objcg(objcg);
7057	} else {
7058		memcg = __folio_memcg(folio);
7059	}
7060
7061	if (!memcg)
7062		return;
7063
7064	if (ug->memcg != memcg) {
7065		if (ug->memcg) {
7066			uncharge_batch(ug);
7067			uncharge_gather_clear(ug);
7068		}
7069		ug->memcg = memcg;
7070		ug->nid = folio_nid(folio);
7071
7072		/* pairs with css_put in uncharge_batch */
7073		css_get(&memcg->css);
7074	}
7075
7076	nr_pages = folio_nr_pages(folio);
7077
7078	if (folio_memcg_kmem(folio)) {
7079		ug->nr_memory += nr_pages;
7080		ug->nr_kmem += nr_pages;
7081
7082		folio->memcg_data = 0;
7083		obj_cgroup_put(objcg);
7084	} else {
7085		/* LRU pages aren't accounted at the root level */
7086		if (!mem_cgroup_is_root(memcg))
7087			ug->nr_memory += nr_pages;
7088		ug->pgpgout++;
7089
7090		folio->memcg_data = 0;
7091	}
7092
7093	css_put(&memcg->css);
7094}
7095
7096void __mem_cgroup_uncharge(struct folio *folio)
 
 
 
 
 
 
7097{
7098	struct uncharge_gather ug;
7099
7100	/* Don't touch folio->lru of any random page, pre-check: */
7101	if (!folio_memcg(folio))
 
 
 
7102		return;
7103
7104	uncharge_gather_clear(&ug);
7105	uncharge_folio(folio, &ug);
7106	uncharge_batch(&ug);
7107}
7108
7109/**
7110 * __mem_cgroup_uncharge_list - uncharge a list of page
7111 * @page_list: list of pages to uncharge
7112 *
7113 * Uncharge a list of pages previously charged with
7114 * __mem_cgroup_charge().
7115 */
7116void __mem_cgroup_uncharge_list(struct list_head *page_list)
7117{
7118	struct uncharge_gather ug;
7119	struct folio *folio;
 
 
 
7120
7121	uncharge_gather_clear(&ug);
7122	list_for_each_entry(folio, page_list, lru)
7123		uncharge_folio(folio, &ug);
7124	if (ug.memcg)
7125		uncharge_batch(&ug);
7126}
7127
7128/**
7129 * mem_cgroup_migrate - Charge a folio's replacement.
7130 * @old: Currently circulating folio.
7131 * @new: Replacement folio.
7132 *
7133 * Charge @new as a replacement folio for @old. @old will
7134 * be uncharged upon free.
7135 *
7136 * Both folios must be locked, @new->mapping must be set up.
7137 */
7138void mem_cgroup_migrate(struct folio *old, struct folio *new)
7139{
7140	struct mem_cgroup *memcg;
7141	long nr_pages = folio_nr_pages(new);
7142	unsigned long flags;
7143
7144	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
 
7148
7149	if (mem_cgroup_disabled())
7150		return;
7151
7152	/* Page cache replacement: new folio already charged? */
7153	if (folio_memcg(new))
7154		return;
7155
7156	memcg = folio_memcg(old);
7157	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7158	if (!memcg)
7159		return;
7160
7161	/* Force-charge the new page. The old one will be freed soon */
 
 
7162	if (!mem_cgroup_is_root(memcg)) {
7163		page_counter_charge(&memcg->memory, nr_pages);
7164		if (do_memsw_account())
7165			page_counter_charge(&memcg->memsw, nr_pages);
7166	}
7167
7168	css_get(&memcg->css);
7169	commit_charge(new, memcg);
7170
7171	local_irq_save(flags);
7172	mem_cgroup_charge_statistics(memcg, nr_pages);
7173	memcg_check_events(memcg, folio_nid(new));
7174	local_irq_restore(flags);
7175}
7176
7177DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7178EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179
7180void mem_cgroup_sk_alloc(struct sock *sk)
7181{
7182	struct mem_cgroup *memcg;
7183
7184	if (!mem_cgroup_sockets_enabled)
7185		return;
7186
7187	/* Do not associate the sock with unrelated interrupted task's memcg. */
7188	if (!in_task())
7189		return;
7190
7191	rcu_read_lock();
7192	memcg = mem_cgroup_from_task(current);
7193	if (mem_cgroup_is_root(memcg))
7194		goto out;
7195	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7196		goto out;
7197	if (css_tryget(&memcg->css))
7198		sk->sk_memcg = memcg;
7199out:
7200	rcu_read_unlock();
7201}
7202
7203void mem_cgroup_sk_free(struct sock *sk)
7204{
7205	if (sk->sk_memcg)
7206		css_put(&sk->sk_memcg->css);
7207}
7208
7209/**
7210 * mem_cgroup_charge_skmem - charge socket memory
7211 * @memcg: memcg to charge
7212 * @nr_pages: number of pages to charge
7213 * @gfp_mask: reclaim mode
7214 *
7215 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7216 * @memcg's configured limit, %false if it doesn't.
7217 */
7218bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219			     gfp_t gfp_mask)
7220{
 
 
7221	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7222		struct page_counter *fail;
7223
7224		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225			memcg->tcpmem_pressure = 0;
7226			return true;
7227		}
 
7228		memcg->tcpmem_pressure = 1;
7229		if (gfp_mask & __GFP_NOFAIL) {
7230			page_counter_charge(&memcg->tcpmem, nr_pages);
7231			return true;
7232		}
7233		return false;
7234	}
7235
7236	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
 
 
 
 
 
7238		return true;
7239	}
7240
 
7241	return false;
7242}
7243
7244/**
7245 * mem_cgroup_uncharge_skmem - uncharge socket memory
7246 * @memcg: memcg to uncharge
7247 * @nr_pages: number of pages to uncharge
7248 */
7249void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250{
7251	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7252		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7253		return;
7254	}
7255
7256	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7257
7258	refill_stock(memcg, nr_pages);
7259}
7260
7261static int __init cgroup_memory(char *s)
7262{
7263	char *token;
7264
7265	while ((token = strsep(&s, ",")) != NULL) {
7266		if (!*token)
7267			continue;
7268		if (!strcmp(token, "nosocket"))
7269			cgroup_memory_nosocket = true;
7270		if (!strcmp(token, "nokmem"))
7271			cgroup_memory_nokmem = true;
7272	}
7273	return 1;
7274}
7275__setup("cgroup.memory=", cgroup_memory);
7276
7277/*
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282 * basically everything that doesn't depend on a specific mem_cgroup structure
7283 * should be initialized from here.
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287	int cpu, node;
7288
7289	/*
7290	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292	 * to work fine, we should make sure that the overfill threshold can't
7293	 * exceed S32_MAX / PAGE_SIZE.
7294	 */
7295	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296
7297	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298				  memcg_hotplug_cpu_dead);
7299
7300	for_each_possible_cpu(cpu)
7301		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302			  drain_local_stock);
7303
7304	for_each_node(node) {
7305		struct mem_cgroup_tree_per_node *rtpn;
7306
7307		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308				    node_online(node) ? node : NUMA_NO_NODE);
7309
7310		rtpn->rb_root = RB_ROOT;
7311		rtpn->rb_rightmost = NULL;
7312		spin_lock_init(&rtpn->lock);
7313		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314	}
7315
7316	return 0;
7317}
7318subsys_initcall(mem_cgroup_init);
7319
7320#ifdef CONFIG_SWAP
7321static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322{
7323	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324		/*
7325		 * The root cgroup cannot be destroyed, so it's refcount must
7326		 * always be >= 1.
7327		 */
7328		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7329			VM_BUG_ON(1);
7330			break;
7331		}
7332		memcg = parent_mem_cgroup(memcg);
7333		if (!memcg)
7334			memcg = root_mem_cgroup;
7335	}
7336	return memcg;
7337}
7338
7339/**
7340 * mem_cgroup_swapout - transfer a memsw charge to swap
7341 * @folio: folio whose memsw charge to transfer
7342 * @entry: swap entry to move the charge to
7343 *
7344 * Transfer the memsw charge of @folio to @entry.
7345 */
7346void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7347{
7348	struct mem_cgroup *memcg, *swap_memcg;
7349	unsigned int nr_entries;
7350	unsigned short oldid;
7351
7352	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7354
7355	if (mem_cgroup_disabled())
7356		return;
7357
7358	if (!do_memsw_account())
7359		return;
7360
7361	memcg = folio_memcg(folio);
7362
7363	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7364	if (!memcg)
7365		return;
7366
7367	/*
7368	 * In case the memcg owning these pages has been offlined and doesn't
7369	 * have an ID allocated to it anymore, charge the closest online
7370	 * ancestor for the swap instead and transfer the memory+swap charge.
7371	 */
7372	swap_memcg = mem_cgroup_id_get_online(memcg);
7373	nr_entries = folio_nr_pages(folio);
7374	/* Get references for the tail pages, too */
7375	if (nr_entries > 1)
7376		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378				   nr_entries);
7379	VM_BUG_ON_FOLIO(oldid, folio);
7380	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7381
7382	folio->memcg_data = 0;
7383
7384	if (!mem_cgroup_is_root(memcg))
7385		page_counter_uncharge(&memcg->memory, nr_entries);
7386
7387	if (memcg != swap_memcg) {
7388		if (!mem_cgroup_is_root(swap_memcg))
7389			page_counter_charge(&swap_memcg->memsw, nr_entries);
7390		page_counter_uncharge(&memcg->memsw, nr_entries);
7391	}
7392
7393	/*
7394	 * Interrupts should be disabled here because the caller holds the
7395	 * i_pages lock which is taken with interrupts-off. It is
7396	 * important here to have the interrupts disabled because it is the
7397	 * only synchronisation we have for updating the per-CPU variables.
7398	 */
7399	memcg_stats_lock();
7400	mem_cgroup_charge_statistics(memcg, -nr_entries);
7401	memcg_stats_unlock();
7402	memcg_check_events(memcg, folio_nid(folio));
7403
7404	css_put(&memcg->css);
7405}
7406
7407/**
7408 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409 * @folio: folio being added to swap
7410 * @entry: swap entry to charge
7411 *
7412 * Try to charge @folio's memcg for the swap space at @entry.
7413 *
7414 * Returns 0 on success, -ENOMEM on failure.
7415 */
7416int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7417{
7418	unsigned int nr_pages = folio_nr_pages(folio);
7419	struct page_counter *counter;
7420	struct mem_cgroup *memcg;
7421	unsigned short oldid;
7422
7423	if (do_memsw_account())
 
 
 
7424		return 0;
7425
7426	memcg = folio_memcg(folio);
7427
7428	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7429	if (!memcg)
7430		return 0;
7431
7432	if (!entry.val) {
7433		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7434		return 0;
7435	}
7436
7437	memcg = mem_cgroup_id_get_online(memcg);
7438
7439	if (!mem_cgroup_is_root(memcg) &&
7440	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7441		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7443		mem_cgroup_id_put(memcg);
7444		return -ENOMEM;
7445	}
7446
7447	/* Get references for the tail pages, too */
7448	if (nr_pages > 1)
7449		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7451	VM_BUG_ON_FOLIO(oldid, folio);
7452	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7453
7454	return 0;
7455}
7456
7457/**
7458 * __mem_cgroup_uncharge_swap - uncharge swap space
7459 * @entry: swap entry to uncharge
7460 * @nr_pages: the amount of swap space to uncharge
7461 */
7462void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7463{
7464	struct mem_cgroup *memcg;
7465	unsigned short id;
7466
7467	if (mem_cgroup_disabled())
7468		return;
7469
7470	id = swap_cgroup_record(entry, 0, nr_pages);
7471	rcu_read_lock();
7472	memcg = mem_cgroup_from_id(id);
7473	if (memcg) {
7474		if (!mem_cgroup_is_root(memcg)) {
7475			if (do_memsw_account())
 
 
7476				page_counter_uncharge(&memcg->memsw, nr_pages);
7477			else
7478				page_counter_uncharge(&memcg->swap, nr_pages);
7479		}
7480		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7481		mem_cgroup_id_put_many(memcg, nr_pages);
7482	}
7483	rcu_read_unlock();
7484}
7485
7486long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487{
7488	long nr_swap_pages = get_nr_swap_pages();
7489
7490	if (mem_cgroup_disabled() || do_memsw_account())
7491		return nr_swap_pages;
7492	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7493		nr_swap_pages = min_t(long, nr_swap_pages,
7494				      READ_ONCE(memcg->swap.max) -
7495				      page_counter_read(&memcg->swap));
7496	return nr_swap_pages;
7497}
7498
7499bool mem_cgroup_swap_full(struct folio *folio)
7500{
7501	struct mem_cgroup *memcg;
7502
7503	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7504
7505	if (vm_swap_full())
7506		return true;
7507	if (do_memsw_account())
7508		return false;
7509
7510	memcg = folio_memcg(folio);
7511	if (!memcg)
7512		return false;
7513
7514	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7515		unsigned long usage = page_counter_read(&memcg->swap);
7516
7517		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518		    usage * 2 >= READ_ONCE(memcg->swap.max))
7519			return true;
7520	}
7521
7522	return false;
7523}
7524
7525static int __init setup_swap_account(char *s)
7526{
7527	pr_warn_once("The swapaccount= commandline option is deprecated. "
7528		     "Please report your usecase to linux-mm@kvack.org if you "
7529		     "depend on this functionality.\n");
 
7530	return 1;
7531}
7532__setup("swapaccount=", setup_swap_account);
7533
7534static u64 swap_current_read(struct cgroup_subsys_state *css,
7535			     struct cftype *cft)
7536{
7537	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538
7539	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540}
7541
7542static int swap_high_show(struct seq_file *m, void *v)
7543{
7544	return seq_puts_memcg_tunable(m,
7545		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546}
7547
7548static ssize_t swap_high_write(struct kernfs_open_file *of,
7549			       char *buf, size_t nbytes, loff_t off)
7550{
7551	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552	unsigned long high;
7553	int err;
7554
7555	buf = strstrip(buf);
7556	err = page_counter_memparse(buf, "max", &high);
7557	if (err)
7558		return err;
7559
7560	page_counter_set_high(&memcg->swap, high);
7561
7562	return nbytes;
7563}
7564
7565static int swap_max_show(struct seq_file *m, void *v)
7566{
7567	return seq_puts_memcg_tunable(m,
7568		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7569}
7570
7571static ssize_t swap_max_write(struct kernfs_open_file *of,
7572			      char *buf, size_t nbytes, loff_t off)
7573{
7574	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575	unsigned long max;
7576	int err;
7577
7578	buf = strstrip(buf);
7579	err = page_counter_memparse(buf, "max", &max);
7580	if (err)
7581		return err;
7582
7583	xchg(&memcg->swap.max, max);
7584
7585	return nbytes;
7586}
7587
7588static int swap_events_show(struct seq_file *m, void *v)
7589{
7590	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7591
7592	seq_printf(m, "high %lu\n",
7593		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7594	seq_printf(m, "max %lu\n",
7595		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596	seq_printf(m, "fail %lu\n",
7597		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598
7599	return 0;
7600}
7601
7602static struct cftype swap_files[] = {
7603	{
7604		.name = "swap.current",
7605		.flags = CFTYPE_NOT_ON_ROOT,
7606		.read_u64 = swap_current_read,
7607	},
7608	{
7609		.name = "swap.high",
7610		.flags = CFTYPE_NOT_ON_ROOT,
7611		.seq_show = swap_high_show,
7612		.write = swap_high_write,
7613	},
7614	{
7615		.name = "swap.max",
7616		.flags = CFTYPE_NOT_ON_ROOT,
7617		.seq_show = swap_max_show,
7618		.write = swap_max_write,
7619	},
7620	{
7621		.name = "swap.events",
7622		.flags = CFTYPE_NOT_ON_ROOT,
7623		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624		.seq_show = swap_events_show,
7625	},
7626	{ }	/* terminate */
7627};
7628
7629static struct cftype memsw_files[] = {
7630	{
7631		.name = "memsw.usage_in_bytes",
7632		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633		.read_u64 = mem_cgroup_read_u64,
7634	},
7635	{
7636		.name = "memsw.max_usage_in_bytes",
7637		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638		.write = mem_cgroup_reset,
7639		.read_u64 = mem_cgroup_read_u64,
7640	},
7641	{
7642		.name = "memsw.limit_in_bytes",
7643		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644		.write = mem_cgroup_write,
7645		.read_u64 = mem_cgroup_read_u64,
7646	},
7647	{
7648		.name = "memsw.failcnt",
7649		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650		.write = mem_cgroup_reset,
7651		.read_u64 = mem_cgroup_read_u64,
7652	},
7653	{ },	/* terminate */
7654};
7655
7656#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657/**
7658 * obj_cgroup_may_zswap - check if this cgroup can zswap
7659 * @objcg: the object cgroup
7660 *
7661 * Check if the hierarchical zswap limit has been reached.
7662 *
7663 * This doesn't check for specific headroom, and it is not atomic
7664 * either. But with zswap, the size of the allocation is only known
7665 * once compression has occured, and this optimistic pre-check avoids
7666 * spending cycles on compression when there is already no room left
7667 * or zswap is disabled altogether somewhere in the hierarchy.
7668 */
7669bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670{
7671	struct mem_cgroup *memcg, *original_memcg;
7672	bool ret = true;
7673
7674	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675		return true;
7676
7677	original_memcg = get_mem_cgroup_from_objcg(objcg);
7678	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7679	     memcg = parent_mem_cgroup(memcg)) {
7680		unsigned long max = READ_ONCE(memcg->zswap_max);
7681		unsigned long pages;
7682
7683		if (max == PAGE_COUNTER_MAX)
7684			continue;
7685		if (max == 0) {
7686			ret = false;
7687			break;
7688		}
7689
7690		cgroup_rstat_flush(memcg->css.cgroup);
7691		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692		if (pages < max)
7693			continue;
7694		ret = false;
7695		break;
7696	}
7697	mem_cgroup_put(original_memcg);
7698	return ret;
7699}
7700
7701/**
7702 * obj_cgroup_charge_zswap - charge compression backend memory
7703 * @objcg: the object cgroup
7704 * @size: size of compressed object
7705 *
7706 * This forces the charge after obj_cgroup_may_swap() allowed
7707 * compression and storage in zwap for this cgroup to go ahead.
7708 */
7709void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711	struct mem_cgroup *memcg;
7712
7713	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714		return;
7715
7716	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717
7718	/* PF_MEMALLOC context, charging must succeed */
7719	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720		VM_WARN_ON_ONCE(1);
7721
7722	rcu_read_lock();
7723	memcg = obj_cgroup_memcg(objcg);
7724	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726	rcu_read_unlock();
7727}
7728
7729/**
7730 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731 * @objcg: the object cgroup
7732 * @size: size of compressed object
7733 *
7734 * Uncharges zswap memory on page in.
7735 */
7736void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737{
7738	struct mem_cgroup *memcg;
7739
7740	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741		return;
7742
7743	obj_cgroup_uncharge(objcg, size);
7744
7745	rcu_read_lock();
7746	memcg = obj_cgroup_memcg(objcg);
7747	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749	rcu_read_unlock();
7750}
7751
7752static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753			      struct cftype *cft)
7754{
7755	cgroup_rstat_flush(css->cgroup);
7756	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757}
7758
7759static int zswap_max_show(struct seq_file *m, void *v)
7760{
7761	return seq_puts_memcg_tunable(m,
7762		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763}
7764
7765static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766			       char *buf, size_t nbytes, loff_t off)
7767{
7768	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769	unsigned long max;
7770	int err;
7771
7772	buf = strstrip(buf);
7773	err = page_counter_memparse(buf, "max", &max);
7774	if (err)
7775		return err;
7776
7777	xchg(&memcg->zswap_max, max);
7778
7779	return nbytes;
7780}
7781
7782static struct cftype zswap_files[] = {
7783	{
7784		.name = "zswap.current",
7785		.flags = CFTYPE_NOT_ON_ROOT,
7786		.read_u64 = zswap_current_read,
7787	},
7788	{
7789		.name = "zswap.max",
7790		.flags = CFTYPE_NOT_ON_ROOT,
7791		.seq_show = zswap_max_show,
7792		.write = zswap_max_write,
7793	},
7794	{ }	/* terminate */
7795};
7796#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797
7798static int __init mem_cgroup_swap_init(void)
7799{
 
7800	if (mem_cgroup_disabled())
 
 
 
7801		return 0;
7802
7803	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7805#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807#endif
7808	return 0;
7809}
7810subsys_initcall(mem_cgroup_swap_init);
7811
7812#endif /* CONFIG_SWAP */