Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257extern spinlock_t css_set_lock;
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456{
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460}
461
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
464{
465 return soft_limit_tree.rb_tree_per_node[nid];
466}
467
468static struct mem_cgroup_tree_per_node *
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474}
475
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513{
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526{
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532}
533
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595}
596
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599{
600 struct mem_cgroup_per_node *mz;
601
602retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618done:
619 return mz;
620}
621
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624{
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631}
632
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
641 if (mem_cgroup_disabled())
642 return;
643
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646}
647
648/* idx can be of type enum memcg_stat_item or node_stat_item. */
649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650{
651 long x = READ_ONCE(memcg->vmstats.state[idx]);
652#ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655#endif
656 return x;
657}
658
659/* idx can be of type enum memcg_stat_item or node_stat_item. */
660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661{
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667#ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670#endif
671 return x;
672}
673
674static struct mem_cgroup_per_node *
675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676{
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
682 return parent->nodeinfo[nid];
683}
684
685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
687{
688 struct mem_cgroup_per_node *pn;
689 struct mem_cgroup *memcg;
690 long x, threshold = MEMCG_CHARGE_BATCH;
691
692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 memcg = pn->memcg;
694
695 /* Update memcg */
696 __mod_memcg_state(memcg, idx, val);
697
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 if (unlikely(abs(x) > threshold)) {
706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 struct mem_cgroup_per_node *pi;
708
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714}
715
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735}
736
737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739{
740 struct page *head = compound_head(page); /* rmap on tail pages */
741 struct mem_cgroup *memcg;
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
745 rcu_read_lock();
746 memcg = page_memcg(head);
747 /* Untracked pages have no memcg, no lruvec. Update only the node */
748 if (!memcg) {
749 rcu_read_unlock();
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 __mod_lruvec_state(lruvec, idx, val);
756 rcu_read_unlock();
757}
758EXPORT_SYMBOL(__mod_lruvec_page_state);
759
760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761{
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782}
783
784/*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
791{
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 mod_memcg_lruvec_state(lruvec, idx, nr);
799 rcu_read_unlock();
800}
801
802/**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
806 * @count: the number of events that occurred
807 */
808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810{
811 if (mem_cgroup_disabled())
812 return;
813
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816}
817
818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819{
820 return READ_ONCE(memcg->vmstats.events[event]);
821}
822
823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824{
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 return x;
831}
832
833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 struct page *page,
835 int nr_pages)
836{
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846}
847
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850{
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 default:
865 break;
866 }
867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 return true;
869 }
870 return false;
871}
872
873/*
874 * Check events in order.
875 *
876 */
877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878{
879 /* threshold event is triggered in finer grain than soft limit */
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
882 bool do_softlimit;
883
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 }
890}
891
892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893{
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903}
904EXPORT_SYMBOL(mem_cgroup_from_task);
905
906static __always_inline struct mem_cgroup *active_memcg(void)
907{
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912}
913
914/**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
924 */
925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926{
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
952
953 rcu_read_lock();
954 do {
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
957 memcg = root_mem_cgroup;
958 } while (!css_tryget(&memcg->css));
959 rcu_read_unlock();
960 return memcg;
961}
962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
964static __always_inline bool memcg_kmem_bypass(void)
965{
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975}
976
977/**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
993 */
994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 struct mem_cgroup *prev,
996 struct mem_cgroup_reclaim_cookie *reclaim)
997{
998 struct mem_cgroup_reclaim_iter *iter;
999 struct cgroup_subsys_state *css = NULL;
1000 struct mem_cgroup *memcg = NULL;
1001 struct mem_cgroup *pos = NULL;
1002
1003 if (mem_cgroup_disabled())
1004 return NULL;
1005
1006 if (!root)
1007 root = root_mem_cgroup;
1008
1009 if (prev && !reclaim)
1010 pos = prev;
1011
1012 rcu_read_lock();
1013
1014 if (reclaim) {
1015 struct mem_cgroup_per_node *mz;
1016
1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 iter = &mz->iter;
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
1023 while (1) {
1024 pos = READ_ONCE(iter->position);
1025 if (!pos || css_tryget(&pos->css))
1026 break;
1027 /*
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
1034 */
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
1054 }
1055
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
1062
1063 if (css == &root->css)
1064 break;
1065
1066 if (css_tryget(css))
1067 break;
1068
1069 memcg = NULL;
1070 }
1071
1072 if (reclaim) {
1073 /*
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
1077 */
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212 struct lruvec *lruvec;
1213
1214 lruvec = mem_cgroup_page_lruvec(page);
1215 spin_lock(&lruvec->lru_lock);
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224 struct lruvec *lruvec;
1225
1226 lruvec = mem_cgroup_page_lruvec(page);
1227 spin_lock_irq(&lruvec->lru_lock);
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236 struct lruvec *lruvec;
1237
1238 lruvec = mem_cgroup_page_lruvec(page);
1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259{
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
1360struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383#endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 cgroup_rstat_flush(memcg->css.cgroup);
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590{
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763{
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002 struct page *head = compound_head(page); /* rmap on tail pages */
2003 struct mem_cgroup *memcg;
2004 unsigned long flags;
2005
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
2010 */
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return;
2015again:
2016 memcg = page_memcg(head);
2017 if (unlikely(!memcg))
2018 return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024#endif
2025
2026 if (atomic_read(&memcg->moving_account) <= 0)
2027 return;
2028
2029 spin_lock_irqsave(&memcg->move_lock, flags);
2030 if (memcg != page_memcg(head)) {
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 goto again;
2033 }
2034
2035 /*
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047{
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
2056
2057 rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066 struct page *head = compound_head(page);
2067
2068 __unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
2075 struct pglist_data *cached_pgdat;
2076 unsigned int nr_bytes;
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
2079#else
2080 int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
2089
2090 struct work_struct work;
2091 unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE 0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108{
2109 return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_irq_restore(flags);
2177
2178 return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (stock->cached != memcg) { /* reset if necessary */
2236 drain_stock(stock);
2237 css_get(&memcg->css);
2238 stock->cached = memcg;
2239 }
2240 stock->nr_pages += nr_pages;
2241
2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 drain_stock(stock);
2244
2245 local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254 int cpu, curcpu;
2255
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
2265 curcpu = get_cpu();
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 struct mem_cgroup *memcg;
2269 bool flush = false;
2270
2271 rcu_read_lock();
2272 memcg = stock->cached;
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 }
2288 put_cpu();
2289 mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294 int nid;
2295
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
2300 int i;
2301
2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
2307
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326 return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
2332{
2333 unsigned long nr_reclaimed = 0;
2334
2335 do {
2336 unsigned long pflags;
2337
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
2340 continue;
2341
2342 memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344 psi_memstall_enter(&pflags);
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
2347 psi_memstall_leave(&pflags);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417 u64 overage;
2418
2419 if (usage <= high)
2420 return 0;
2421
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
2427
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435 u64 overage, max_overage = 0;
2436
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
2439 READ_ONCE(memcg->memory.high));
2440 max_overage = max(overage, max_overage);
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
2444 return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470{
2471 unsigned long penalty_jiffies;
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
2507 unsigned long nr_reclaimed;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 int nr_retries = MAX_RECLAIM_RETRIES;
2510 struct mem_cgroup *memcg;
2511 bool in_retry = false;
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
2517 current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
2539
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
2584{
2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 int nr_retries = MAX_RECLAIM_RETRIES;
2587 struct mem_cgroup *mem_over_limit;
2588 struct page_counter *counter;
2589 enum oom_status oom_status;
2590 unsigned long nr_reclaimed;
2591 bool may_swap = true;
2592 bool drained = false;
2593 unsigned long pflags;
2594
2595retry:
2596 if (consume_stock(memcg, nr_pages))
2597 return 0;
2598
2599 if (!do_memsw_account() ||
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 goto done_restock;
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 } else {
2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 may_swap = false;
2609 }
2610
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
2615
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
2631 if (unlikely(should_force_charge()))
2632 goto force;
2633
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
2646 if (!gfpflags_allow_blocking(gfp_mask))
2647 goto nomem;
2648
2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651 psi_memstall_enter(&pflags);
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
2654 psi_memstall_leave(&pflags);
2655
2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 goto retry;
2658
2659 if (!drained) {
2660 drain_all_stock(mem_over_limit);
2661 drained = true;
2662 goto retry;
2663 }
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
2685 if (nr_retries--)
2686 goto retry;
2687
2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 goto nomem;
2690
2691 if (fatal_signal_pending(current))
2692 goto force;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
2710nomem:
2711 if (!(gfp_mask & __GFP_NOFAIL))
2712 return -ENOMEM;
2713force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
2720 if (do_memsw_account())
2721 page_counter_charge(&memcg->memsw, nr_pages);
2722
2723 return 0;
2724
2725done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
2728
2729 /*
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
2737 */
2738 do {
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
2765 current->memcg_nr_pages_over_high += batch;
2766 set_notify_resume(current);
2767 break;
2768 }
2769 } while ((memcg = parent_mem_cgroup(memcg)));
2770
2771 return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776{
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
2789 page_counter_uncharge(&memcg->memory, nr_pages);
2790 if (do_memsw_account())
2791 page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797 VM_BUG_ON_PAGE(page_memcg(page), page);
2798 /*
2799 * Any of the following ensures page's memcg stability:
2800 *
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
2805 */
2806 page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 gfp_t gfp, bool new_page)
2833{
2834 unsigned int objects = objs_per_slab_page(s, page);
2835 unsigned long memcg_data;
2836 void *vec;
2837
2838 gfp &= ~OBJCGS_CLEAR_MASK;
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
2858 kfree(vec);
2859 return 0;
2860 }
2861
2862 kmemleak_not_leak(vec);
2863 return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
2891 */
2892 if (page_objcgs_check(page)) {
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
2897 objcg = page_objcgs(page)[off];
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979 ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011{
3012 struct page_counter *counter;
3013 struct mem_cgroup *memcg;
3014 int ret;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 if (ret)
3020 goto out;
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
3032 goto out;
3033 }
3034 cancel_charge(memcg, nr_pages);
3035 ret = -ENOMEM;
3036 }
3037out:
3038 css_put(&memcg->css);
3039
3040 return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053 struct obj_cgroup *objcg;
3054 int ret = 0;
3055
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 if (!ret) {
3060 page->memcg_data = (unsigned long)objcg |
3061 MEMCG_DATA_KMEM;
3062 return 0;
3063 }
3064 obj_cgroup_put(objcg);
3065 }
3066 return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076 struct obj_cgroup *objcg;
3077 unsigned int nr_pages = 1 << order;
3078
3079 if (!PageMemcgKmem(page))
3080 return;
3081
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 page->memcg_data = 0;
3085 obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090{
3091 unsigned long flags;
3092 struct obj_stock *stock = get_obj_stock(&flags);
3093 int *bytes;
3094
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111 if (stock->nr_slab_reclaimable_b) {
3112 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113 stock->nr_slab_reclaimable_b);
3114 stock->nr_slab_reclaimable_b = 0;
3115 }
3116 if (stock->nr_slab_unreclaimable_b) {
3117 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118 stock->nr_slab_unreclaimable_b);
3119 stock->nr_slab_unreclaimable_b = 0;
3120 }
3121 stock->cached_pgdat = pgdat;
3122 }
3123
3124 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125 : &stock->nr_slab_unreclaimable_b;
3126 /*
3127 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128 * cached locally at least once before pushing it out.
3129 */
3130 if (!*bytes) {
3131 *bytes = nr;
3132 nr = 0;
3133 } else {
3134 *bytes += nr;
3135 if (abs(*bytes) > PAGE_SIZE) {
3136 nr = *bytes;
3137 *bytes = 0;
3138 } else {
3139 nr = 0;
3140 }
3141 }
3142 if (nr)
3143 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145 put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
3150 unsigned long flags;
3151 struct obj_stock *stock = get_obj_stock(&flags);
3152 bool ret = false;
3153
3154 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155 stock->nr_bytes -= nr_bytes;
3156 ret = true;
3157 }
3158
3159 put_obj_stock(flags);
3160
3161 return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166 struct obj_cgroup *old = stock->cached_objcg;
3167
3168 if (!old)
3169 return;
3170
3171 if (stock->nr_bytes) {
3172 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175 if (nr_pages)
3176 obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178 /*
3179 * The leftover is flushed to the centralized per-memcg value.
3180 * On the next attempt to refill obj stock it will be moved
3181 * to a per-cpu stock (probably, on an other CPU), see
3182 * refill_obj_stock().
3183 *
3184 * How often it's flushed is a trade-off between the memory
3185 * limit enforcement accuracy and potential CPU contention,
3186 * so it might be changed in the future.
3187 */
3188 atomic_add(nr_bytes, &old->nr_charged_bytes);
3189 stock->nr_bytes = 0;
3190 }
3191
3192 /*
3193 * Flush the vmstat data in current stock
3194 */
3195 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196 if (stock->nr_slab_reclaimable_b) {
3197 mod_objcg_mlstate(old, stock->cached_pgdat,
3198 NR_SLAB_RECLAIMABLE_B,
3199 stock->nr_slab_reclaimable_b);
3200 stock->nr_slab_reclaimable_b = 0;
3201 }
3202 if (stock->nr_slab_unreclaimable_b) {
3203 mod_objcg_mlstate(old, stock->cached_pgdat,
3204 NR_SLAB_UNRECLAIMABLE_B,
3205 stock->nr_slab_unreclaimable_b);
3206 stock->nr_slab_unreclaimable_b = 0;
3207 }
3208 stock->cached_pgdat = NULL;
3209 }
3210
3211 obj_cgroup_put(old);
3212 stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216 struct mem_cgroup *root_memcg)
3217{
3218 struct mem_cgroup *memcg;
3219
3220 if (in_task() && stock->task_obj.cached_objcg) {
3221 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223 return true;
3224 }
3225 if (stock->irq_obj.cached_objcg) {
3226 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228 return true;
3229 }
3230
3231 return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235 bool allow_uncharge)
3236{
3237 unsigned long flags;
3238 struct obj_stock *stock = get_obj_stock(&flags);
3239 unsigned int nr_pages = 0;
3240
3241 if (stock->cached_objcg != objcg) { /* reset if necessary */
3242 drain_obj_stock(stock);
3243 obj_cgroup_get(objcg);
3244 stock->cached_objcg = objcg;
3245 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247 allow_uncharge = true; /* Allow uncharge when objcg changes */
3248 }
3249 stock->nr_bytes += nr_bytes;
3250
3251 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253 stock->nr_bytes &= (PAGE_SIZE - 1);
3254 }
3255
3256 put_obj_stock(flags);
3257
3258 if (nr_pages)
3259 obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264 unsigned int nr_pages, nr_bytes;
3265 int ret;
3266
3267 if (consume_obj_stock(objcg, size))
3268 return 0;
3269
3270 /*
3271 * In theory, objcg->nr_charged_bytes can have enough
3272 * pre-charged bytes to satisfy the allocation. However,
3273 * flushing objcg->nr_charged_bytes requires two atomic
3274 * operations, and objcg->nr_charged_bytes can't be big.
3275 * The shared objcg->nr_charged_bytes can also become a
3276 * performance bottleneck if all tasks of the same memcg are
3277 * trying to update it. So it's better to ignore it and try
3278 * grab some new pages. The stock's nr_bytes will be flushed to
3279 * objcg->nr_charged_bytes later on when objcg changes.
3280 *
3281 * The stock's nr_bytes may contain enough pre-charged bytes
3282 * to allow one less page from being charged, but we can't rely
3283 * on the pre-charged bytes not being changed outside of
3284 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285 * pre-charged bytes as well when charging pages. To avoid a
3286 * page uncharge right after a page charge, we set the
3287 * allow_uncharge flag to false when calling refill_obj_stock()
3288 * to temporarily allow the pre-charged bytes to exceed the page
3289 * size limit. The maximum reachable value of the pre-charged
3290 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291 * race.
3292 */
3293 nr_pages = size >> PAGE_SHIFT;
3294 nr_bytes = size & (PAGE_SIZE - 1);
3295
3296 if (nr_bytes)
3297 nr_pages += 1;
3298
3299 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300 if (!ret && nr_bytes)
3301 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303 return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308 refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318 struct mem_cgroup *memcg = page_memcg(head);
3319 int i;
3320
3321 if (mem_cgroup_disabled() || !memcg)
3322 return;
3323
3324 for (i = 1; i < nr; i++)
3325 head[i].memcg_data = head->memcg_data;
3326
3327 if (PageMemcgKmem(head))
3328 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329 else
3330 css_get_many(&memcg->css, nr - 1);
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from: mem_cgroup which the entry is moved from
3338 * @to: mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349 struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351 unsigned short old_id, new_id;
3352
3353 old_id = mem_cgroup_id(from);
3354 new_id = mem_cgroup_id(to);
3355
3356 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357 mod_memcg_state(from, MEMCG_SWAP, -1);
3358 mod_memcg_state(to, MEMCG_SWAP, 1);
3359 return 0;
3360 }
3361 return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365 struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367 return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374 unsigned long max, bool memsw)
3375{
3376 bool enlarge = false;
3377 bool drained = false;
3378 int ret;
3379 bool limits_invariant;
3380 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382 do {
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 break;
3386 }
3387
3388 mutex_lock(&memcg_max_mutex);
3389 /*
3390 * Make sure that the new limit (memsw or memory limit) doesn't
3391 * break our basic invariant rule memory.max <= memsw.max.
3392 */
3393 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394 max <= memcg->memsw.max;
3395 if (!limits_invariant) {
3396 mutex_unlock(&memcg_max_mutex);
3397 ret = -EINVAL;
3398 break;
3399 }
3400 if (max > counter->max)
3401 enlarge = true;
3402 ret = page_counter_set_max(counter, max);
3403 mutex_unlock(&memcg_max_mutex);
3404
3405 if (!ret)
3406 break;
3407
3408 if (!drained) {
3409 drain_all_stock(memcg);
3410 drained = true;
3411 continue;
3412 }
3413
3414 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415 GFP_KERNEL, !memsw)) {
3416 ret = -EBUSY;
3417 break;
3418 }
3419 } while (true);
3420
3421 if (!ret && enlarge)
3422 memcg_oom_recover(memcg);
3423
3424 return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 gfp_t gfp_mask,
3429 unsigned long *total_scanned)
3430{
3431 unsigned long nr_reclaimed = 0;
3432 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433 unsigned long reclaimed;
3434 int loop = 0;
3435 struct mem_cgroup_tree_per_node *mctz;
3436 unsigned long excess;
3437 unsigned long nr_scanned;
3438
3439 if (order > 0)
3440 return 0;
3441
3442 mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444 /*
3445 * Do not even bother to check the largest node if the root
3446 * is empty. Do it lockless to prevent lock bouncing. Races
3447 * are acceptable as soft limit is best effort anyway.
3448 */
3449 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450 return 0;
3451
3452 /*
3453 * This loop can run a while, specially if mem_cgroup's continuously
3454 * keep exceeding their soft limit and putting the system under
3455 * pressure
3456 */
3457 do {
3458 if (next_mz)
3459 mz = next_mz;
3460 else
3461 mz = mem_cgroup_largest_soft_limit_node(mctz);
3462 if (!mz)
3463 break;
3464
3465 nr_scanned = 0;
3466 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467 gfp_mask, &nr_scanned);
3468 nr_reclaimed += reclaimed;
3469 *total_scanned += nr_scanned;
3470 spin_lock_irq(&mctz->lock);
3471 __mem_cgroup_remove_exceeded(mz, mctz);
3472
3473 /*
3474 * If we failed to reclaim anything from this memory cgroup
3475 * it is time to move on to the next cgroup
3476 */
3477 next_mz = NULL;
3478 if (!reclaimed)
3479 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481 excess = soft_limit_excess(mz->memcg);
3482 /*
3483 * One school of thought says that we should not add
3484 * back the node to the tree if reclaim returns 0.
3485 * But our reclaim could return 0, simply because due
3486 * to priority we are exposing a smaller subset of
3487 * memory to reclaim from. Consider this as a longer
3488 * term TODO.
3489 */
3490 /* If excess == 0, no tree ops */
3491 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3492 spin_unlock_irq(&mctz->lock);
3493 css_put(&mz->memcg->css);
3494 loop++;
3495 /*
3496 * Could not reclaim anything and there are no more
3497 * mem cgroups to try or we seem to be looping without
3498 * reclaiming anything.
3499 */
3500 if (!nr_reclaimed &&
3501 (next_mz == NULL ||
3502 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 break;
3504 } while (!nr_reclaimed);
3505 if (next_mz)
3506 css_put(&next_mz->memcg->css);
3507 return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517 int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519 /* we call try-to-free pages for make this cgroup empty */
3520 lru_add_drain_all();
3521
3522 drain_all_stock(memcg);
3523
3524 /* try to free all pages in this cgroup */
3525 while (nr_retries && page_counter_read(&memcg->memory)) {
3526 int progress;
3527
3528 if (signal_pending(current))
3529 return -EINTR;
3530
3531 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532 GFP_KERNEL, true);
3533 if (!progress) {
3534 nr_retries--;
3535 /* maybe some writeback is necessary */
3536 congestion_wait(BLK_RW_ASYNC, HZ/10);
3537 }
3538
3539 }
3540
3541 return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545 char *buf, size_t nbytes,
3546 loff_t off)
3547{
3548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550 if (mem_cgroup_is_root(memcg))
3551 return -EINVAL;
3552 return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556 struct cftype *cft)
3557{
3558 return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562 struct cftype *cft, u64 val)
3563{
3564 if (val == 1)
3565 return 0;
3566
3567 pr_warn_once("Non-hierarchical mode is deprecated. "
3568 "Please report your usecase to linux-mm@kvack.org if you "
3569 "depend on this functionality.\n");
3570
3571 return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576 unsigned long val;
3577
3578 if (mem_cgroup_is_root(memcg)) {
3579 /* mem_cgroup_threshold() calls here from irqsafe context */
3580 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582 memcg_page_state(memcg, NR_ANON_MAPPED);
3583 if (swap)
3584 val += memcg_page_state(memcg, MEMCG_SWAP);
3585 } else {
3586 if (!swap)
3587 val = page_counter_read(&memcg->memory);
3588 else
3589 val = page_counter_read(&memcg->memsw);
3590 }
3591 return val;
3592}
3593
3594enum {
3595 RES_USAGE,
3596 RES_LIMIT,
3597 RES_MAX_USAGE,
3598 RES_FAILCNT,
3599 RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603 struct cftype *cft)
3604{
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(cft->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(cft->private)) {
3626 case RES_USAGE:
3627 if (counter == &memcg->memory)
3628 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629 if (counter == &memcg->memsw)
3630 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631 return (u64)page_counter_read(counter) * PAGE_SIZE;
3632 case RES_LIMIT:
3633 return (u64)counter->max * PAGE_SIZE;
3634 case RES_MAX_USAGE:
3635 return (u64)counter->watermark * PAGE_SIZE;
3636 case RES_FAILCNT:
3637 return counter->failcnt;
3638 case RES_SOFT_LIMIT:
3639 return (u64)memcg->soft_limit * PAGE_SIZE;
3640 default:
3641 BUG();
3642 }
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648 struct obj_cgroup *objcg;
3649 int memcg_id;
3650
3651 if (cgroup_memory_nokmem)
3652 return 0;
3653
3654 BUG_ON(memcg->kmemcg_id >= 0);
3655 BUG_ON(memcg->kmem_state);
3656
3657 memcg_id = memcg_alloc_cache_id();
3658 if (memcg_id < 0)
3659 return memcg_id;
3660
3661 objcg = obj_cgroup_alloc();
3662 if (!objcg) {
3663 memcg_free_cache_id(memcg_id);
3664 return -ENOMEM;
3665 }
3666 objcg->memcg = memcg;
3667 rcu_assign_pointer(memcg->objcg, objcg);
3668
3669 static_branch_enable(&memcg_kmem_enabled_key);
3670
3671 memcg->kmemcg_id = memcg_id;
3672 memcg->kmem_state = KMEM_ONLINE;
3673
3674 return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679 struct cgroup_subsys_state *css;
3680 struct mem_cgroup *parent, *child;
3681 int kmemcg_id;
3682
3683 if (memcg->kmem_state != KMEM_ONLINE)
3684 return;
3685
3686 memcg->kmem_state = KMEM_ALLOCATED;
3687
3688 parent = parent_mem_cgroup(memcg);
3689 if (!parent)
3690 parent = root_mem_cgroup;
3691
3692 memcg_reparent_objcgs(memcg, parent);
3693
3694 kmemcg_id = memcg->kmemcg_id;
3695 BUG_ON(kmemcg_id < 0);
3696
3697 /*
3698 * Change kmemcg_id of this cgroup and all its descendants to the
3699 * parent's id, and then move all entries from this cgroup's list_lrus
3700 * to ones of the parent. After we have finished, all list_lrus
3701 * corresponding to this cgroup are guaranteed to remain empty. The
3702 * ordering is imposed by list_lru_node->lock taken by
3703 * memcg_drain_all_list_lrus().
3704 */
3705 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706 css_for_each_descendant_pre(css, &memcg->css) {
3707 child = mem_cgroup_from_css(css);
3708 BUG_ON(child->kmemcg_id != kmemcg_id);
3709 child->kmemcg_id = parent->kmemcg_id;
3710 }
3711 rcu_read_unlock();
3712
3713 memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715 memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720 /* css_alloc() failed, offlining didn't happen */
3721 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722 memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738 unsigned long max)
3739{
3740 int ret;
3741
3742 mutex_lock(&memcg_max_mutex);
3743 ret = page_counter_set_max(&memcg->kmem, max);
3744 mutex_unlock(&memcg_max_mutex);
3745 return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750 int ret;
3751
3752 mutex_lock(&memcg_max_mutex);
3753
3754 ret = page_counter_set_max(&memcg->tcpmem, max);
3755 if (ret)
3756 goto out;
3757
3758 if (!memcg->tcpmem_active) {
3759 /*
3760 * The active flag needs to be written after the static_key
3761 * update. This is what guarantees that the socket activation
3762 * function is the last one to run. See mem_cgroup_sk_alloc()
3763 * for details, and note that we don't mark any socket as
3764 * belonging to this memcg until that flag is up.
3765 *
3766 * We need to do this, because static_keys will span multiple
3767 * sites, but we can't control their order. If we mark a socket
3768 * as accounted, but the accounting functions are not patched in
3769 * yet, we'll lose accounting.
3770 *
3771 * We never race with the readers in mem_cgroup_sk_alloc(),
3772 * because when this value change, the code to process it is not
3773 * patched in yet.
3774 */
3775 static_branch_inc(&memcg_sockets_enabled_key);
3776 memcg->tcpmem_active = true;
3777 }
3778out:
3779 mutex_unlock(&memcg_max_mutex);
3780 return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788 char *buf, size_t nbytes, loff_t off)
3789{
3790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791 unsigned long nr_pages;
3792 int ret;
3793
3794 buf = strstrip(buf);
3795 ret = page_counter_memparse(buf, "-1", &nr_pages);
3796 if (ret)
3797 return ret;
3798
3799 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800 case RES_LIMIT:
3801 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802 ret = -EINVAL;
3803 break;
3804 }
3805 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806 case _MEM:
3807 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808 break;
3809 case _MEMSWAP:
3810 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811 break;
3812 case _KMEM:
3813 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814 "Please report your usecase to linux-mm@kvack.org if you "
3815 "depend on this functionality.\n");
3816 ret = memcg_update_kmem_max(memcg, nr_pages);
3817 break;
3818 case _TCP:
3819 ret = memcg_update_tcp_max(memcg, nr_pages);
3820 break;
3821 }
3822 break;
3823 case RES_SOFT_LIMIT:
3824 memcg->soft_limit = nr_pages;
3825 ret = 0;
3826 break;
3827 }
3828 return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832 size_t nbytes, loff_t off)
3833{
3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835 struct page_counter *counter;
3836
3837 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838 case _MEM:
3839 counter = &memcg->memory;
3840 break;
3841 case _MEMSWAP:
3842 counter = &memcg->memsw;
3843 break;
3844 case _KMEM:
3845 counter = &memcg->kmem;
3846 break;
3847 case _TCP:
3848 counter = &memcg->tcpmem;
3849 break;
3850 default:
3851 BUG();
3852 }
3853
3854 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855 case RES_MAX_USAGE:
3856 page_counter_reset_watermark(counter);
3857 break;
3858 case RES_FAILCNT:
3859 counter->failcnt = 0;
3860 break;
3861 default:
3862 BUG();
3863 }
3864
3865 return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869 struct cftype *cft)
3870{
3871 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876 struct cftype *cft, u64 val)
3877{
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (val & ~MOVE_MASK)
3881 return -EINVAL;
3882
3883 /*
3884 * No kind of locking is needed in here, because ->can_attach() will
3885 * check this value once in the beginning of the process, and then carry
3886 * on with stale data. This means that changes to this value will only
3887 * affect task migrations starting after the change.
3888 */
3889 memcg->move_charge_at_immigrate = val;
3890 return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895{
3896 return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907 int nid, unsigned int lru_mask, bool tree)
3908{
3909 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910 unsigned long nr = 0;
3911 enum lru_list lru;
3912
3913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915 for_each_lru(lru) {
3916 if (!(BIT(lru) & lru_mask))
3917 continue;
3918 if (tree)
3919 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920 else
3921 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922 }
3923 return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927 unsigned int lru_mask,
3928 bool tree)
3929{
3930 unsigned long nr = 0;
3931 enum lru_list lru;
3932
3933 for_each_lru(lru) {
3934 if (!(BIT(lru) & lru_mask))
3935 continue;
3936 if (tree)
3937 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938 else
3939 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940 }
3941 return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946 struct numa_stat {
3947 const char *name;
3948 unsigned int lru_mask;
3949 };
3950
3951 static const struct numa_stat stats[] = {
3952 { "total", LRU_ALL },
3953 { "file", LRU_ALL_FILE },
3954 { "anon", LRU_ALL_ANON },
3955 { "unevictable", BIT(LRU_UNEVICTABLE) },
3956 };
3957 const struct numa_stat *stat;
3958 int nid;
3959 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961 cgroup_rstat_flush(memcg->css.cgroup);
3962
3963 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964 seq_printf(m, "%s=%lu", stat->name,
3965 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966 false));
3967 for_each_node_state(nid, N_MEMORY)
3968 seq_printf(m, " N%d=%lu", nid,
3969 mem_cgroup_node_nr_lru_pages(memcg, nid,
3970 stat->lru_mask, false));
3971 seq_putc(m, '\n');
3972 }
3973
3974 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 true));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, true));
3983 seq_putc(m, '\n');
3984 }
3985
3986 return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991 NR_FILE_PAGES,
3992 NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994 NR_ANON_THPS,
3995#endif
3996 NR_SHMEM,
3997 NR_FILE_MAPPED,
3998 NR_FILE_DIRTY,
3999 NR_WRITEBACK,
4000 MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004 "cache",
4005 "rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007 "rss_huge",
4008#endif
4009 "shmem",
4010 "mapped_file",
4011 "dirty",
4012 "writeback",
4013 "swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018 PGPGIN,
4019 PGPGOUT,
4020 PGFAULT,
4021 PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027 unsigned long memory, memsw;
4028 struct mem_cgroup *mi;
4029 unsigned int i;
4030
4031 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033 cgroup_rstat_flush(memcg->css.cgroup);
4034
4035 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036 unsigned long nr;
4037
4038 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039 continue;
4040 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042 }
4043
4044 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046 memcg_events_local(memcg, memcg1_events[i]));
4047
4048 for (i = 0; i < NR_LRU_LISTS; i++)
4049 seq_printf(m, "%s %lu\n", lru_list_name(i),
4050 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051 PAGE_SIZE);
4052
4053 /* Hierarchical information */
4054 memory = memsw = PAGE_COUNTER_MAX;
4055 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056 memory = min(memory, READ_ONCE(mi->memory.max));
4057 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058 }
4059 seq_printf(m, "hierarchical_memory_limit %llu\n",
4060 (u64)memory * PAGE_SIZE);
4061 if (do_memsw_account())
4062 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063 (u64)memsw * PAGE_SIZE);
4064
4065 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066 unsigned long nr;
4067
4068 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069 continue;
4070 nr = memcg_page_state(memcg, memcg1_stats[i]);
4071 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072 (u64)nr * PAGE_SIZE);
4073 }
4074
4075 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076 seq_printf(m, "total_%s %llu\n",
4077 vm_event_name(memcg1_events[i]),
4078 (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083 PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086 {
4087 pg_data_t *pgdat;
4088 struct mem_cgroup_per_node *mz;
4089 unsigned long anon_cost = 0;
4090 unsigned long file_cost = 0;
4091
4092 for_each_online_pgdat(pgdat) {
4093 mz = memcg->nodeinfo[pgdat->node_id];
4094
4095 anon_cost += mz->lruvec.anon_cost;
4096 file_cost += mz->lruvec.file_cost;
4097 }
4098 seq_printf(m, "anon_cost %lu\n", anon_cost);
4099 seq_printf(m, "file_cost %lu\n", file_cost);
4100 }
4101#endif
4102
4103 return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
4116{
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119 if (val > 100)
4120 return -EINVAL;
4121
4122 if (!mem_cgroup_is_root(memcg))
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
4126
4127 return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132 struct mem_cgroup_threshold_ary *t;
4133 unsigned long usage;
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
4138 t = rcu_dereference(memcg->thresholds.primary);
4139 else
4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142 if (!t)
4143 goto unlock;
4144
4145 usage = mem_cgroup_usage(memcg, swap);
4146
4147 /*
4148 * current_threshold points to threshold just below or equal to usage.
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
4152 i = t->current_threshold;
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
4176 t->current_threshold = i - 1;
4177unlock:
4178 rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_memsw_account())
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208 struct mem_cgroup_eventfd_list *ev;
4209
4210 spin_lock(&memcg_oom_lock);
4211
4212 list_for_each_entry(ev, &memcg->oom_notify, list)
4213 eventfd_signal(ev->eventfd, 1);
4214
4215 spin_unlock(&memcg_oom_lock);
4216 return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, memcg)
4224 mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
4232 unsigned long threshold;
4233 unsigned long usage;
4234 int i, size, ret;
4235
4236 ret = page_counter_memparse(args, "-1", &threshold);
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
4241
4242 if (type == _MEM) {
4243 thresholds = &memcg->thresholds;
4244 usage = mem_cgroup_usage(memcg, false);
4245 } else if (type == _MEMSWAP) {
4246 thresholds = &memcg->memsw_thresholds;
4247 usage = mem_cgroup_usage(memcg, true);
4248 } else
4249 BUG();
4250
4251 /* Check if a threshold crossed before adding a new one */
4252 if (thresholds->primary)
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257 /* Allocate memory for new array of thresholds */
4258 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259 if (!new) {
4260 ret = -ENOMEM;
4261 goto unlock;
4262 }
4263 new->size = size;
4264
4265 /* Copy thresholds (if any) to new array */
4266 if (thresholds->primary)
4267 memcpy(new->entries, thresholds->primary->entries,
4268 flex_array_size(new, entries, size - 1));
4269
4270 /* Add new threshold */
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
4275 sort(new->entries, size, sizeof(*new->entries),
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0; i < size; i++) {
4281 if (new->entries[i].threshold <= usage) {
4282 /*
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
4285 * it here.
4286 */
4287 ++new->current_threshold;
4288 } else
4289 break;
4290 }
4291
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
4297
4298 /* To be sure that nobody uses thresholds */
4299 synchronize_rcu();
4300
4301unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308 struct eventfd_ctx *eventfd, const char *args)
4309{
4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314 struct eventfd_ctx *eventfd, const char *args)
4315{
4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320 struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
4324 unsigned long usage;
4325 int i, j, size, entries;
4326
4327 mutex_lock(&memcg->thresholds_lock);
4328
4329 if (type == _MEM) {
4330 thresholds = &memcg->thresholds;
4331 usage = mem_cgroup_usage(memcg, false);
4332 } else if (type == _MEMSWAP) {
4333 thresholds = &memcg->memsw_thresholds;
4334 usage = mem_cgroup_usage(memcg, true);
4335 } else
4336 BUG();
4337
4338 if (!thresholds->primary)
4339 goto unlock;
4340
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
4345 size = entries = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
4348 size++;
4349 else
4350 entries++;
4351 }
4352
4353 new = thresholds->spare;
4354
4355 /* If no items related to eventfd have been cleared, nothing to do */
4356 if (!entries)
4357 goto unlock;
4358
4359 /* Set thresholds array to NULL if we don't have thresholds */
4360 if (!size) {
4361 kfree(new);
4362 new = NULL;
4363 goto swap_buffers;
4364 }
4365
4366 new->size = size;
4367
4368 /* Copy thresholds and find current threshold */
4369 new->current_threshold = -1;
4370 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371 if (thresholds->primary->entries[i].eventfd == eventfd)
4372 continue;
4373
4374 new->entries[j] = thresholds->primary->entries[i];
4375 if (new->entries[j].threshold <= usage) {
4376 /*
4377 * new->current_threshold will not be used
4378 * until rcu_assign_pointer(), so it's safe to increment
4379 * it here.
4380 */
4381 ++new->current_threshold;
4382 }
4383 j++;
4384 }
4385
4386swap_buffers:
4387 /* Swap primary and spare array */
4388 thresholds->spare = thresholds->primary;
4389
4390 rcu_assign_pointer(thresholds->primary, new);
4391
4392 /* To be sure that nobody uses thresholds */
4393 synchronize_rcu();
4394
4395 /* If all events are unregistered, free the spare array */
4396 if (!new) {
4397 kfree(thresholds->spare);
4398 thresholds->spare = NULL;
4399 }
4400unlock:
4401 mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405 struct eventfd_ctx *eventfd)
4406{
4407 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411 struct eventfd_ctx *eventfd)
4412{
4413 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd, const char *args)
4418{
4419 struct mem_cgroup_eventfd_list *event;
4420
4421 event = kmalloc(sizeof(*event), GFP_KERNEL);
4422 if (!event)
4423 return -ENOMEM;
4424
4425 spin_lock(&memcg_oom_lock);
4426
4427 event->eventfd = eventfd;
4428 list_add(&event->list, &memcg->oom_notify);
4429
4430 /* already in OOM ? */
4431 if (memcg->under_oom)
4432 eventfd_signal(eventfd, 1);
4433 spin_unlock(&memcg_oom_lock);
4434
4435 return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439 struct eventfd_ctx *eventfd)
4440{
4441 struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443 spin_lock(&memcg_oom_lock);
4444
4445 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446 if (ev->eventfd == eventfd) {
4447 list_del(&ev->list);
4448 kfree(ev);
4449 }
4450 }
4451
4452 spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461 seq_printf(sf, "oom_kill %lu\n",
4462 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463 return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467 struct cftype *cft, u64 val)
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471 /* cannot set to root cgroup and only 0 and 1 are allowed */
4472 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473 return -EINVAL;
4474
4475 memcg->oom_kill_disable = val;
4476 if (!val)
4477 memcg_oom_recover(memcg);
4478
4479 return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488 return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493 wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498 wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505 if (!memcg->css.parent)
4506 return NULL;
4507
4508 return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors. Note that this doesn't consider the actual amount of
4526 * available memory in the system. The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530 unsigned long *pheadroom, unsigned long *pdirty,
4531 unsigned long *pwriteback)
4532{
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534 struct mem_cgroup *parent;
4535
4536 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541 memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543 *pheadroom = PAGE_COUNTER_MAX;
4544 while ((parent = parent_mem_cgroup(memcg))) {
4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546 READ_ONCE(memcg->memory.high));
4547 unsigned long used = page_counter_read(&memcg->memory);
4548
4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550 memcg = parent;
4551 }
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback. The former
4558 * tracks ownership per-page while the latter per-inode. This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases. For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode. B owns the inode and
4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback. A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction. However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism. When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired. Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599 struct bdi_writeback *wb)
4600{
4601 struct mem_cgroup *memcg = page_memcg(page);
4602 struct memcg_cgwb_frn *frn;
4603 u64 now = get_jiffies_64();
4604 u64 oldest_at = now;
4605 int oldest = -1;
4606 int i;
4607
4608 trace_track_foreign_dirty(page, wb);
4609
4610 /*
4611 * Pick the slot to use. If there is already a slot for @wb, keep
4612 * using it. If not replace the oldest one which isn't being
4613 * written out.
4614 */
4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616 frn = &memcg->cgwb_frn[i];
4617 if (frn->bdi_id == wb->bdi->id &&
4618 frn->memcg_id == wb->memcg_css->id)
4619 break;
4620 if (time_before64(frn->at, oldest_at) &&
4621 atomic_read(&frn->done.cnt) == 1) {
4622 oldest = i;
4623 oldest_at = frn->at;
4624 }
4625 }
4626
4627 if (i < MEMCG_CGWB_FRN_CNT) {
4628 /*
4629 * Re-using an existing one. Update timestamp lazily to
4630 * avoid making the cacheline hot. We want them to be
4631 * reasonably up-to-date and significantly shorter than
4632 * dirty_expire_interval as that's what expires the record.
4633 * Use the shorter of 1s and dirty_expire_interval / 8.
4634 */
4635 unsigned long update_intv =
4636 min_t(unsigned long, HZ,
4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639 if (time_before64(frn->at, now - update_intv))
4640 frn->at = now;
4641 } else if (oldest >= 0) {
4642 /* replace the oldest free one */
4643 frn = &memcg->cgwb_frn[oldest];
4644 frn->bdi_id = wb->bdi->id;
4645 frn->memcg_id = wb->memcg_css->id;
4646 frn->at = now;
4647 }
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655 u64 now = jiffies_64;
4656 int i;
4657
4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661 /*
4662 * If the record is older than dirty_expire_interval,
4663 * writeback on it has already started. No need to kick it
4664 * off again. Also, don't start a new one if there's
4665 * already one in flight.
4666 */
4667 if (time_after64(frn->at, now - intv) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 frn->at = 0;
4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672 WB_REASON_FOREIGN_FLUSH,
4673 &frn->done);
4674 }
4675 }
4676}
4677
4678#else /* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682 return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif /* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered. It tries to support fully configurable
4701 * events for each user. Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715 struct mem_cgroup_event *event =
4716 container_of(work, struct mem_cgroup_event, remove);
4717 struct mem_cgroup *memcg = event->memcg;
4718
4719 remove_wait_queue(event->wqh, &event->wait);
4720
4721 event->unregister_event(memcg, event->eventfd);
4722
4723 /* Notify userspace the event is going away. */
4724 eventfd_signal(event->eventfd, 1);
4725
4726 eventfd_ctx_put(event->eventfd);
4727 kfree(event);
4728 css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737 int sync, void *key)
4738{
4739 struct mem_cgroup_event *event =
4740 container_of(wait, struct mem_cgroup_event, wait);
4741 struct mem_cgroup *memcg = event->memcg;
4742 __poll_t flags = key_to_poll(key);
4743
4744 if (flags & EPOLLHUP) {
4745 /*
4746 * If the event has been detached at cgroup removal, we
4747 * can simply return knowing the other side will cleanup
4748 * for us.
4749 *
4750 * We can't race against event freeing since the other
4751 * side will require wqh->lock via remove_wait_queue(),
4752 * which we hold.
4753 */
4754 spin_lock(&memcg->event_list_lock);
4755 if (!list_empty(&event->list)) {
4756 list_del_init(&event->list);
4757 /*
4758 * We are in atomic context, but cgroup_event_remove()
4759 * may sleep, so we have to call it in workqueue.
4760 */
4761 schedule_work(&event->remove);
4762 }
4763 spin_unlock(&memcg->event_list_lock);
4764 }
4765
4766 return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770 wait_queue_head_t *wqh, poll_table *pt)
4771{
4772 struct mem_cgroup_event *event =
4773 container_of(pt, struct mem_cgroup_event, pt);
4774
4775 event->wqh = wqh;
4776 add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788 char *buf, size_t nbytes, loff_t off)
4789{
4790 struct cgroup_subsys_state *css = of_css(of);
4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792 struct mem_cgroup_event *event;
4793 struct cgroup_subsys_state *cfile_css;
4794 unsigned int efd, cfd;
4795 struct fd efile;
4796 struct fd cfile;
4797 const char *name;
4798 char *endp;
4799 int ret;
4800
4801 buf = strstrip(buf);
4802
4803 efd = simple_strtoul(buf, &endp, 10);
4804 if (*endp != ' ')
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 cfd = simple_strtoul(buf, &endp, 10);
4809 if ((*endp != ' ') && (*endp != '\0'))
4810 return -EINVAL;
4811 buf = endp + 1;
4812
4813 event = kzalloc(sizeof(*event), GFP_KERNEL);
4814 if (!event)
4815 return -ENOMEM;
4816
4817 event->memcg = memcg;
4818 INIT_LIST_HEAD(&event->list);
4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821 INIT_WORK(&event->remove, memcg_event_remove);
4822
4823 efile = fdget(efd);
4824 if (!efile.file) {
4825 ret = -EBADF;
4826 goto out_kfree;
4827 }
4828
4829 event->eventfd = eventfd_ctx_fileget(efile.file);
4830 if (IS_ERR(event->eventfd)) {
4831 ret = PTR_ERR(event->eventfd);
4832 goto out_put_efile;
4833 }
4834
4835 cfile = fdget(cfd);
4836 if (!cfile.file) {
4837 ret = -EBADF;
4838 goto out_put_eventfd;
4839 }
4840
4841 /* the process need read permission on control file */
4842 /* AV: shouldn't we check that it's been opened for read instead? */
4843 ret = file_permission(cfile.file, MAY_READ);
4844 if (ret < 0)
4845 goto out_put_cfile;
4846
4847 /*
4848 * Determine the event callbacks and set them in @event. This used
4849 * to be done via struct cftype but cgroup core no longer knows
4850 * about these events. The following is crude but the whole thing
4851 * is for compatibility anyway.
4852 *
4853 * DO NOT ADD NEW FILES.
4854 */
4855 name = cfile.file->f_path.dentry->d_name.name;
4856
4857 if (!strcmp(name, "memory.usage_in_bytes")) {
4858 event->register_event = mem_cgroup_usage_register_event;
4859 event->unregister_event = mem_cgroup_usage_unregister_event;
4860 } else if (!strcmp(name, "memory.oom_control")) {
4861 event->register_event = mem_cgroup_oom_register_event;
4862 event->unregister_event = mem_cgroup_oom_unregister_event;
4863 } else if (!strcmp(name, "memory.pressure_level")) {
4864 event->register_event = vmpressure_register_event;
4865 event->unregister_event = vmpressure_unregister_event;
4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867 event->register_event = memsw_cgroup_usage_register_event;
4868 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869 } else {
4870 ret = -EINVAL;
4871 goto out_put_cfile;
4872 }
4873
4874 /*
4875 * Verify @cfile should belong to @css. Also, remaining events are
4876 * automatically removed on cgroup destruction but the removal is
4877 * asynchronous, so take an extra ref on @css.
4878 */
4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880 &memory_cgrp_subsys);
4881 ret = -EINVAL;
4882 if (IS_ERR(cfile_css))
4883 goto out_put_cfile;
4884 if (cfile_css != css) {
4885 css_put(cfile_css);
4886 goto out_put_cfile;
4887 }
4888
4889 ret = event->register_event(memcg, event->eventfd, buf);
4890 if (ret)
4891 goto out_put_css;
4892
4893 vfs_poll(efile.file, &event->pt);
4894
4895 spin_lock(&memcg->event_list_lock);
4896 list_add(&event->list, &memcg->event_list);
4897 spin_unlock(&memcg->event_list_lock);
4898
4899 fdput(cfile);
4900 fdput(efile);
4901
4902 return nbytes;
4903
4904out_put_css:
4905 css_put(css);
4906out_put_cfile:
4907 fdput(cfile);
4908out_put_eventfd:
4909 eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911 fdput(efile);
4912out_kfree:
4913 kfree(event);
4914
4915 return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919 {
4920 .name = "usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930 {
4931 .name = "limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "soft_limit_in_bytes",
4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939 .write = mem_cgroup_write,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "failcnt",
4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "stat",
4950 .seq_show = memcg_stat_show,
4951 },
4952 {
4953 .name = "force_empty",
4954 .write = mem_cgroup_force_empty_write,
4955 },
4956 {
4957 .name = "use_hierarchy",
4958 .write_u64 = mem_cgroup_hierarchy_write,
4959 .read_u64 = mem_cgroup_hierarchy_read,
4960 },
4961 {
4962 .name = "cgroup.event_control", /* XXX: for compat */
4963 .write = memcg_write_event_control,
4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965 },
4966 {
4967 .name = "swappiness",
4968 .read_u64 = mem_cgroup_swappiness_read,
4969 .write_u64 = mem_cgroup_swappiness_write,
4970 },
4971 {
4972 .name = "move_charge_at_immigrate",
4973 .read_u64 = mem_cgroup_move_charge_read,
4974 .write_u64 = mem_cgroup_move_charge_write,
4975 },
4976 {
4977 .name = "oom_control",
4978 .seq_show = mem_cgroup_oom_control_read,
4979 .write_u64 = mem_cgroup_oom_control_write,
4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981 },
4982 {
4983 .name = "pressure_level",
4984 },
4985#ifdef CONFIG_NUMA
4986 {
4987 .name = "numa_stat",
4988 .seq_show = memcg_numa_stat_show,
4989 },
4990#endif
4991 {
4992 .name = "kmem.limit_in_bytes",
4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994 .write = mem_cgroup_write,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.usage_in_bytes",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "kmem.failcnt",
5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005 .write = mem_cgroup_reset,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "kmem.max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016 {
5017 .name = "kmem.slabinfo",
5018 .seq_show = memcg_slab_show,
5019 },
5020#endif
5021 {
5022 .name = "kmem.tcp.limit_in_bytes",
5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024 .write = mem_cgroup_write,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "kmem.tcp.failcnt",
5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "kmem.tcp.max_usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 { }, /* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075 if (memcg->id.id > 0) {
5076 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077 memcg->id.id = 0;
5078 }
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082 unsigned int n)
5083{
5084 refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090 mem_cgroup_id_remove(memcg);
5091
5092 /* Memcg ID pins CSS */
5093 css_put(&memcg->css);
5094 }
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099 mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110 WARN_ON_ONCE(!rcu_read_lock_held());
5111 return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116 struct mem_cgroup_per_node *pn;
5117 int tmp = node;
5118 /*
5119 * This routine is called against possible nodes.
5120 * But it's BUG to call kmalloc() against offline node.
5121 *
5122 * TODO: this routine can waste much memory for nodes which will
5123 * never be onlined. It's better to use memory hotplug callback
5124 * function.
5125 */
5126 if (!node_state(node, N_NORMAL_MEMORY))
5127 tmp = -1;
5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129 if (!pn)
5130 return 1;
5131
5132 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133 GFP_KERNEL_ACCOUNT);
5134 if (!pn->lruvec_stat_local) {
5135 kfree(pn);
5136 return 1;
5137 }
5138
5139 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140 GFP_KERNEL_ACCOUNT);
5141 if (!pn->lruvec_stat_cpu) {
5142 free_percpu(pn->lruvec_stat_local);
5143 kfree(pn);
5144 return 1;
5145 }
5146
5147 lruvec_init(&pn->lruvec);
5148 pn->usage_in_excess = 0;
5149 pn->on_tree = false;
5150 pn->memcg = memcg;
5151
5152 memcg->nodeinfo[node] = pn;
5153 return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160 if (!pn)
5161 return;
5162
5163 free_percpu(pn->lruvec_stat_cpu);
5164 free_percpu(pn->lruvec_stat_local);
5165 kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170 int node;
5171
5172 for_each_node(node)
5173 free_mem_cgroup_per_node_info(memcg, node);
5174 free_percpu(memcg->vmstats_percpu);
5175 kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180 int cpu;
5181
5182 memcg_wb_domain_exit(memcg);
5183 /*
5184 * Flush percpu lruvec stats to guarantee the value
5185 * correctness on parent's and all ancestor levels.
5186 */
5187 for_each_online_cpu(cpu)
5188 memcg_flush_lruvec_page_state(memcg, cpu);
5189 __mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194 struct mem_cgroup *memcg;
5195 unsigned int size;
5196 int node;
5197 int __maybe_unused i;
5198 long error = -ENOMEM;
5199
5200 size = sizeof(struct mem_cgroup);
5201 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203 memcg = kzalloc(size, GFP_KERNEL);
5204 if (!memcg)
5205 return ERR_PTR(error);
5206
5207 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208 1, MEM_CGROUP_ID_MAX,
5209 GFP_KERNEL);
5210 if (memcg->id.id < 0) {
5211 error = memcg->id.id;
5212 goto fail;
5213 }
5214
5215 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216 GFP_KERNEL_ACCOUNT);
5217 if (!memcg->vmstats_percpu)
5218 goto fail;
5219
5220 for_each_node(node)
5221 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222 goto fail;
5223
5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225 goto fail;
5226
5227 INIT_WORK(&memcg->high_work, high_work_func);
5228 INIT_LIST_HEAD(&memcg->oom_notify);
5229 mutex_init(&memcg->thresholds_lock);
5230 spin_lock_init(&memcg->move_lock);
5231 vmpressure_init(&memcg->vmpressure);
5232 INIT_LIST_HEAD(&memcg->event_list);
5233 spin_lock_init(&memcg->event_list_lock);
5234 memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236 memcg->kmemcg_id = -1;
5237 INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240 INIT_LIST_HEAD(&memcg->cgwb_list);
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 memcg->cgwb_frn[i].done =
5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248 memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251 return memcg;
5252fail:
5253 mem_cgroup_id_remove(memcg);
5254 __mem_cgroup_free(memcg);
5255 return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262 struct mem_cgroup *memcg, *old_memcg;
5263 long error = -ENOMEM;
5264
5265 old_memcg = set_active_memcg(parent);
5266 memcg = mem_cgroup_alloc();
5267 set_active_memcg(old_memcg);
5268 if (IS_ERR(memcg))
5269 return ERR_CAST(memcg);
5270
5271 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272 memcg->soft_limit = PAGE_COUNTER_MAX;
5273 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274 if (parent) {
5275 memcg->swappiness = mem_cgroup_swappiness(parent);
5276 memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278 page_counter_init(&memcg->memory, &parent->memory);
5279 page_counter_init(&memcg->swap, &parent->swap);
5280 page_counter_init(&memcg->kmem, &parent->kmem);
5281 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282 } else {
5283 page_counter_init(&memcg->memory, NULL);
5284 page_counter_init(&memcg->swap, NULL);
5285 page_counter_init(&memcg->kmem, NULL);
5286 page_counter_init(&memcg->tcpmem, NULL);
5287
5288 root_mem_cgroup = memcg;
5289 return &memcg->css;
5290 }
5291
5292 /* The following stuff does not apply to the root */
5293 error = memcg_online_kmem(memcg);
5294 if (error)
5295 goto fail;
5296
5297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298 static_branch_inc(&memcg_sockets_enabled_key);
5299
5300 return &memcg->css;
5301fail:
5302 mem_cgroup_id_remove(memcg);
5303 mem_cgroup_free(memcg);
5304 return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311 /*
5312 * A memcg must be visible for expand_shrinker_info()
5313 * by the time the maps are allocated. So, we allocate maps
5314 * here, when for_each_mem_cgroup() can't skip it.
5315 */
5316 if (alloc_shrinker_info(memcg)) {
5317 mem_cgroup_id_remove(memcg);
5318 return -ENOMEM;
5319 }
5320
5321 /* Online state pins memcg ID, memcg ID pins CSS */
5322 refcount_set(&memcg->id.ref, 1);
5323 css_get(css);
5324 return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 struct mem_cgroup_event *event, *tmp;
5331
5332 /*
5333 * Unregister events and notify userspace.
5334 * Notify userspace about cgroup removing only after rmdir of cgroup
5335 * directory to avoid race between userspace and kernelspace.
5336 */
5337 spin_lock(&memcg->event_list_lock);
5338 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339 list_del_init(&event->list);
5340 schedule_work(&event->remove);
5341 }
5342 spin_unlock(&memcg->event_list_lock);
5343
5344 page_counter_set_min(&memcg->memory, 0);
5345 page_counter_set_low(&memcg->memory, 0);
5346
5347 memcg_offline_kmem(memcg);
5348 reparent_shrinker_deferred(memcg);
5349 wb_memcg_offline(memcg);
5350
5351 drain_all_stock(memcg);
5352
5353 mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360 invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373 static_branch_dec(&memcg_sockets_enabled_key);
5374
5375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376 static_branch_dec(&memcg_sockets_enabled_key);
5377
5378 vmpressure_cleanup(&memcg->vmpressure);
5379 cancel_work_sync(&memcg->high_work);
5380 mem_cgroup_remove_from_trees(memcg);
5381 free_shrinker_info(memcg);
5382 memcg_free_kmem(memcg);
5383 mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css. This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency. The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5409 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410 memcg->soft_limit = PAGE_COUNTER_MAX;
5411 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412 memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419 struct memcg_vmstats_percpu *statc;
5420 long delta, v;
5421 int i;
5422
5423 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425 for (i = 0; i < MEMCG_NR_STAT; i++) {
5426 /*
5427 * Collect the aggregated propagation counts of groups
5428 * below us. We're in a per-cpu loop here and this is
5429 * a global counter, so the first cycle will get them.
5430 */
5431 delta = memcg->vmstats.state_pending[i];
5432 if (delta)
5433 memcg->vmstats.state_pending[i] = 0;
5434
5435 /* Add CPU changes on this level since the last flush */
5436 v = READ_ONCE(statc->state[i]);
5437 if (v != statc->state_prev[i]) {
5438 delta += v - statc->state_prev[i];
5439 statc->state_prev[i] = v;
5440 }
5441
5442 if (!delta)
5443 continue;
5444
5445 /* Aggregate counts on this level and propagate upwards */
5446 memcg->vmstats.state[i] += delta;
5447 if (parent)
5448 parent->vmstats.state_pending[i] += delta;
5449 }
5450
5451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452 delta = memcg->vmstats.events_pending[i];
5453 if (delta)
5454 memcg->vmstats.events_pending[i] = 0;
5455
5456 v = READ_ONCE(statc->events[i]);
5457 if (v != statc->events_prev[i]) {
5458 delta += v - statc->events_prev[i];
5459 statc->events_prev[i] = v;
5460 }
5461
5462 if (!delta)
5463 continue;
5464
5465 memcg->vmstats.events[i] += delta;
5466 if (parent)
5467 parent->vmstats.events_pending[i] += delta;
5468 }
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475 int ret;
5476
5477 /* Try a single bulk charge without reclaim first, kswapd may wake */
5478 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479 if (!ret) {
5480 mc.precharge += count;
5481 return ret;
5482 }
5483
5484 /* Try charges one by one with reclaim, but do not retry */
5485 while (count--) {
5486 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487 if (ret)
5488 return ret;
5489 mc.precharge++;
5490 cond_resched();
5491 }
5492 return 0;
5493}
5494
5495union mc_target {
5496 struct page *page;
5497 swp_entry_t ent;
5498};
5499
5500enum mc_target_type {
5501 MC_TARGET_NONE = 0,
5502 MC_TARGET_PAGE,
5503 MC_TARGET_SWAP,
5504 MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508 unsigned long addr, pte_t ptent)
5509{
5510 struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512 if (!page || !page_mapped(page))
5513 return NULL;
5514 if (PageAnon(page)) {
5515 if (!(mc.flags & MOVE_ANON))
5516 return NULL;
5517 } else {
5518 if (!(mc.flags & MOVE_FILE))
5519 return NULL;
5520 }
5521 if (!get_page_unless_zero(page))
5522 return NULL;
5523
5524 return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529 pte_t ptent, swp_entry_t *entry)
5530{
5531 struct page *page = NULL;
5532 swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534 if (!(mc.flags & MOVE_ANON))
5535 return NULL;
5536
5537 /*
5538 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539 * a device and because they are not accessible by CPU they are store
5540 * as special swap entry in the CPU page table.
5541 */
5542 if (is_device_private_entry(ent)) {
5543 page = pfn_swap_entry_to_page(ent);
5544 /*
5545 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546 * a refcount of 1 when free (unlike normal page)
5547 */
5548 if (!page_ref_add_unless(page, 1, 1))
5549 return NULL;
5550 return page;
5551 }
5552
5553 if (non_swap_entry(ent))
5554 return NULL;
5555
5556 /*
5557 * Because lookup_swap_cache() updates some statistics counter,
5558 * we call find_get_page() with swapper_space directly.
5559 */
5560 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561 entry->val = ent.val;
5562
5563 return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567 pte_t ptent, swp_entry_t *entry)
5568{
5569 return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
5576 if (!vma->vm_file) /* anonymous vma */
5577 return NULL;
5578 if (!(mc.flags & MOVE_FILE))
5579 return NULL;
5580
5581 /* page is moved even if it's not RSS of this task(page-faulted). */
5582 /* shmem/tmpfs may report page out on swap: account for that too. */
5583 return find_get_incore_page(vma->vm_file->f_mapping,
5584 linear_page_index(vma, addr));
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to: mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600 bool compound,
5601 struct mem_cgroup *from,
5602 struct mem_cgroup *to)
5603{
5604 struct lruvec *from_vec, *to_vec;
5605 struct pglist_data *pgdat;
5606 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607 int ret;
5608
5609 VM_BUG_ON(from == to);
5610 VM_BUG_ON_PAGE(PageLRU(page), page);
5611 VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613 /*
5614 * Prevent mem_cgroup_migrate() from looking at
5615 * page's memory cgroup of its source page while we change it.
5616 */
5617 ret = -EBUSY;
5618 if (!trylock_page(page))
5619 goto out;
5620
5621 ret = -EINVAL;
5622 if (page_memcg(page) != from)
5623 goto out_unlock;
5624
5625 pgdat = page_pgdat(page);
5626 from_vec = mem_cgroup_lruvec(from, pgdat);
5627 to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629 lock_page_memcg(page);
5630
5631 if (PageAnon(page)) {
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635 if (PageTransHuge(page)) {
5636 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5637 -nr_pages);
5638 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5639 nr_pages);
5640 }
5641 }
5642 } else {
5643 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646 if (PageSwapBacked(page)) {
5647 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649 }
5650
5651 if (page_mapped(page)) {
5652 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654 }
5655
5656 if (PageDirty(page)) {
5657 struct address_space *mapping = page_mapping(page);
5658
5659 if (mapping_can_writeback(mapping)) {
5660 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661 -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663 nr_pages);
5664 }
5665 }
5666 }
5667
5668 if (PageWriteback(page)) {
5669 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671 }
5672
5673 /*
5674 * All state has been migrated, let's switch to the new memcg.
5675 *
5676 * It is safe to change page's memcg here because the page
5677 * is referenced, charged, isolated, and locked: we can't race
5678 * with (un)charging, migration, LRU putback, or anything else
5679 * that would rely on a stable page's memory cgroup.
5680 *
5681 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682 * to save space. As soon as we switch page's memory cgroup to a
5683 * new memcg that isn't locked, the above state can change
5684 * concurrently again. Make sure we're truly done with it.
5685 */
5686 smp_mb();
5687
5688 css_get(&to->css);
5689 css_put(&from->css);
5690
5691 page->memcg_data = (unsigned long)to;
5692
5693 __unlock_page_memcg(from);
5694
5695 ret = 0;
5696
5697 local_irq_disable();
5698 mem_cgroup_charge_statistics(to, page, nr_pages);
5699 memcg_check_events(to, page);
5700 mem_cgroup_charge_statistics(from, page, -nr_pages);
5701 memcg_check_events(from, page);
5702 local_irq_enable();
5703out_unlock:
5704 unlock_page(page);
5705out:
5706 return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 * move charge. if @target is not NULL, the page is stored in target->page
5720 * with extra refcnt got(Callers should handle it).
5721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 * target for charge migration. if @target is not NULL, the entry is stored
5723 * in target->ent.
5724 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5725 * (so ZONE_DEVICE page and thus not on the lru).
5726 * For now we such page is charge like a regular page would be as for all
5727 * intent and purposes it is just special memory taking the place of a
5728 * regular page.
5729 *
5730 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736 unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738 struct page *page = NULL;
5739 enum mc_target_type ret = MC_TARGET_NONE;
5740 swp_entry_t ent = { .val = 0 };
5741
5742 if (pte_present(ptent))
5743 page = mc_handle_present_pte(vma, addr, ptent);
5744 else if (is_swap_pte(ptent))
5745 page = mc_handle_swap_pte(vma, ptent, &ent);
5746 else if (pte_none(ptent))
5747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749 if (!page && !ent.val)
5750 return ret;
5751 if (page) {
5752 /*
5753 * Do only loose check w/o serialization.
5754 * mem_cgroup_move_account() checks the page is valid or
5755 * not under LRU exclusion.
5756 */
5757 if (page_memcg(page) == mc.from) {
5758 ret = MC_TARGET_PAGE;
5759 if (is_device_private_page(page))
5760 ret = MC_TARGET_DEVICE;
5761 if (target)
5762 target->page = page;
5763 }
5764 if (!ret || !target)
5765 put_page(page);
5766 }
5767 /*
5768 * There is a swap entry and a page doesn't exist or isn't charged.
5769 * But we cannot move a tail-page in a THP.
5770 */
5771 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773 ret = MC_TARGET_SWAP;
5774 if (target)
5775 target->ent = ent;
5776 }
5777 return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787 unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789 struct page *page = NULL;
5790 enum mc_target_type ret = MC_TARGET_NONE;
5791
5792 if (unlikely(is_swap_pmd(pmd))) {
5793 VM_BUG_ON(thp_migration_supported() &&
5794 !is_pmd_migration_entry(pmd));
5795 return ret;
5796 }
5797 page = pmd_page(pmd);
5798 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799 if (!(mc.flags & MOVE_ANON))
5800 return ret;
5801 if (page_memcg(page) == mc.from) {
5802 ret = MC_TARGET_PAGE;
5803 if (target) {
5804 get_page(page);
5805 target->page = page;
5806 }
5807 }
5808 return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812 unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814 return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819 unsigned long addr, unsigned long end,
5820 struct mm_walk *walk)
5821{
5822 struct vm_area_struct *vma = walk->vma;
5823 pte_t *pte;
5824 spinlock_t *ptl;
5825
5826 ptl = pmd_trans_huge_lock(pmd, vma);
5827 if (ptl) {
5828 /*
5829 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831 * this might change.
5832 */
5833 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834 mc.precharge += HPAGE_PMD_NR;
5835 spin_unlock(ptl);
5836 return 0;
5837 }
5838
5839 if (pmd_trans_unstable(pmd))
5840 return 0;
5841 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842 for (; addr != end; pte++, addr += PAGE_SIZE)
5843 if (get_mctgt_type(vma, addr, *pte, NULL))
5844 mc.precharge++; /* increment precharge temporarily */
5845 pte_unmap_unlock(pte - 1, ptl);
5846 cond_resched();
5847
5848 return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857 unsigned long precharge;
5858
5859 mmap_read_lock(mm);
5860 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861 mmap_read_unlock(mm);
5862
5863 precharge = mc.precharge;
5864 mc.precharge = 0;
5865
5866 return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871 unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873 VM_BUG_ON(mc.moving_task);
5874 mc.moving_task = current;
5875 return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881 struct mem_cgroup *from = mc.from;
5882 struct mem_cgroup *to = mc.to;
5883
5884 /* we must uncharge all the leftover precharges from mc.to */
5885 if (mc.precharge) {
5886 cancel_charge(mc.to, mc.precharge);
5887 mc.precharge = 0;
5888 }
5889 /*
5890 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891 * we must uncharge here.
5892 */
5893 if (mc.moved_charge) {
5894 cancel_charge(mc.from, mc.moved_charge);
5895 mc.moved_charge = 0;
5896 }
5897 /* we must fixup refcnts and charges */
5898 if (mc.moved_swap) {
5899 /* uncharge swap account from the old cgroup */
5900 if (!mem_cgroup_is_root(mc.from))
5901 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905 /*
5906 * we charged both to->memory and to->memsw, so we
5907 * should uncharge to->memory.
5908 */
5909 if (!mem_cgroup_is_root(mc.to))
5910 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912 mc.moved_swap = 0;
5913 }
5914 memcg_oom_recover(from);
5915 memcg_oom_recover(to);
5916 wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921 struct mm_struct *mm = mc.mm;
5922
5923 /*
5924 * we must clear moving_task before waking up waiters at the end of
5925 * task migration.
5926 */
5927 mc.moving_task = NULL;
5928 __mem_cgroup_clear_mc();
5929 spin_lock(&mc.lock);
5930 mc.from = NULL;
5931 mc.to = NULL;
5932 mc.mm = NULL;
5933 spin_unlock(&mc.lock);
5934
5935 mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940 struct cgroup_subsys_state *css;
5941 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942 struct mem_cgroup *from;
5943 struct task_struct *leader, *p;
5944 struct mm_struct *mm;
5945 unsigned long move_flags;
5946 int ret = 0;
5947
5948 /* charge immigration isn't supported on the default hierarchy */
5949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950 return 0;
5951
5952 /*
5953 * Multi-process migrations only happen on the default hierarchy
5954 * where charge immigration is not used. Perform charge
5955 * immigration if @tset contains a leader and whine if there are
5956 * multiple.
5957 */
5958 p = NULL;
5959 cgroup_taskset_for_each_leader(leader, css, tset) {
5960 WARN_ON_ONCE(p);
5961 p = leader;
5962 memcg = mem_cgroup_from_css(css);
5963 }
5964 if (!p)
5965 return 0;
5966
5967 /*
5968 * We are now committed to this value whatever it is. Changes in this
5969 * tunable will only affect upcoming migrations, not the current one.
5970 * So we need to save it, and keep it going.
5971 */
5972 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973 if (!move_flags)
5974 return 0;
5975
5976 from = mem_cgroup_from_task(p);
5977
5978 VM_BUG_ON(from == memcg);
5979
5980 mm = get_task_mm(p);
5981 if (!mm)
5982 return 0;
5983 /* We move charges only when we move a owner of the mm */
5984 if (mm->owner == p) {
5985 VM_BUG_ON(mc.from);
5986 VM_BUG_ON(mc.to);
5987 VM_BUG_ON(mc.precharge);
5988 VM_BUG_ON(mc.moved_charge);
5989 VM_BUG_ON(mc.moved_swap);
5990
5991 spin_lock(&mc.lock);
5992 mc.mm = mm;
5993 mc.from = from;
5994 mc.to = memcg;
5995 mc.flags = move_flags;
5996 spin_unlock(&mc.lock);
5997 /* We set mc.moving_task later */
5998
5999 ret = mem_cgroup_precharge_mc(mm);
6000 if (ret)
6001 mem_cgroup_clear_mc();
6002 } else {
6003 mmput(mm);
6004 }
6005 return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010 if (mc.to)
6011 mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015 unsigned long addr, unsigned long end,
6016 struct mm_walk *walk)
6017{
6018 int ret = 0;
6019 struct vm_area_struct *vma = walk->vma;
6020 pte_t *pte;
6021 spinlock_t *ptl;
6022 enum mc_target_type target_type;
6023 union mc_target target;
6024 struct page *page;
6025
6026 ptl = pmd_trans_huge_lock(pmd, vma);
6027 if (ptl) {
6028 if (mc.precharge < HPAGE_PMD_NR) {
6029 spin_unlock(ptl);
6030 return 0;
6031 }
6032 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033 if (target_type == MC_TARGET_PAGE) {
6034 page = target.page;
6035 if (!isolate_lru_page(page)) {
6036 if (!mem_cgroup_move_account(page, true,
6037 mc.from, mc.to)) {
6038 mc.precharge -= HPAGE_PMD_NR;
6039 mc.moved_charge += HPAGE_PMD_NR;
6040 }
6041 putback_lru_page(page);
6042 }
6043 put_page(page);
6044 } else if (target_type == MC_TARGET_DEVICE) {
6045 page = target.page;
6046 if (!mem_cgroup_move_account(page, true,
6047 mc.from, mc.to)) {
6048 mc.precharge -= HPAGE_PMD_NR;
6049 mc.moved_charge += HPAGE_PMD_NR;
6050 }
6051 put_page(page);
6052 }
6053 spin_unlock(ptl);
6054 return 0;
6055 }
6056
6057 if (pmd_trans_unstable(pmd))
6058 return 0;
6059retry:
6060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061 for (; addr != end; addr += PAGE_SIZE) {
6062 pte_t ptent = *(pte++);
6063 bool device = false;
6064 swp_entry_t ent;
6065
6066 if (!mc.precharge)
6067 break;
6068
6069 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070 case MC_TARGET_DEVICE:
6071 device = true;
6072 fallthrough;
6073 case MC_TARGET_PAGE:
6074 page = target.page;
6075 /*
6076 * We can have a part of the split pmd here. Moving it
6077 * can be done but it would be too convoluted so simply
6078 * ignore such a partial THP and keep it in original
6079 * memcg. There should be somebody mapping the head.
6080 */
6081 if (PageTransCompound(page))
6082 goto put;
6083 if (!device && isolate_lru_page(page))
6084 goto put;
6085 if (!mem_cgroup_move_account(page, false,
6086 mc.from, mc.to)) {
6087 mc.precharge--;
6088 /* we uncharge from mc.from later. */
6089 mc.moved_charge++;
6090 }
6091 if (!device)
6092 putback_lru_page(page);
6093put: /* get_mctgt_type() gets the page */
6094 put_page(page);
6095 break;
6096 case MC_TARGET_SWAP:
6097 ent = target.ent;
6098 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099 mc.precharge--;
6100 mem_cgroup_id_get_many(mc.to, 1);
6101 /* we fixup other refcnts and charges later. */
6102 mc.moved_swap++;
6103 }
6104 break;
6105 default:
6106 break;
6107 }
6108 }
6109 pte_unmap_unlock(pte - 1, ptl);
6110 cond_resched();
6111
6112 if (addr != end) {
6113 /*
6114 * We have consumed all precharges we got in can_attach().
6115 * We try charge one by one, but don't do any additional
6116 * charges to mc.to if we have failed in charge once in attach()
6117 * phase.
6118 */
6119 ret = mem_cgroup_do_precharge(1);
6120 if (!ret)
6121 goto retry;
6122 }
6123
6124 return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128 .pmd_entry = mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133 lru_add_drain_all();
6134 /*
6135 * Signal lock_page_memcg() to take the memcg's move_lock
6136 * while we're moving its pages to another memcg. Then wait
6137 * for already started RCU-only updates to finish.
6138 */
6139 atomic_inc(&mc.from->moving_account);
6140 synchronize_rcu();
6141retry:
6142 if (unlikely(!mmap_read_trylock(mc.mm))) {
6143 /*
6144 * Someone who are holding the mmap_lock might be waiting in
6145 * waitq. So we cancel all extra charges, wake up all waiters,
6146 * and retry. Because we cancel precharges, we might not be able
6147 * to move enough charges, but moving charge is a best-effort
6148 * feature anyway, so it wouldn't be a big problem.
6149 */
6150 __mem_cgroup_clear_mc();
6151 cond_resched();
6152 goto retry;
6153 }
6154 /*
6155 * When we have consumed all precharges and failed in doing
6156 * additional charge, the page walk just aborts.
6157 */
6158 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159 NULL);
6160
6161 mmap_read_unlock(mc.mm);
6162 atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167 if (mc.to) {
6168 mem_cgroup_move_charge();
6169 mem_cgroup_clear_mc();
6170 }
6171}
6172#else /* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175 return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187 if (value == PAGE_COUNTER_MAX)
6188 seq_puts(m, "max\n");
6189 else
6190 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192 return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196 struct cftype *cft)
6197{
6198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205 return seq_puts_memcg_tunable(m,
6206 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210 char *buf, size_t nbytes, loff_t off)
6211{
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213 unsigned long min;
6214 int err;
6215
6216 buf = strstrip(buf);
6217 err = page_counter_memparse(buf, "max", &min);
6218 if (err)
6219 return err;
6220
6221 page_counter_set_min(&memcg->memory, min);
6222
6223 return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228 return seq_puts_memcg_tunable(m,
6229 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233 char *buf, size_t nbytes, loff_t off)
6234{
6235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236 unsigned long low;
6237 int err;
6238
6239 buf = strstrip(buf);
6240 err = page_counter_memparse(buf, "max", &low);
6241 if (err)
6242 return err;
6243
6244 page_counter_set_low(&memcg->memory, low);
6245
6246 return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260 bool drained = false;
6261 unsigned long high;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &high);
6266 if (err)
6267 return err;
6268
6269 page_counter_set_high(&memcg->memory, high);
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273 unsigned long reclaimed;
6274
6275 if (nr_pages <= high)
6276 break;
6277
6278 if (signal_pending(current))
6279 break;
6280
6281 if (!drained) {
6282 drain_all_stock(memcg);
6283 drained = true;
6284 continue;
6285 }
6286
6287 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288 GFP_KERNEL, true);
6289
6290 if (!reclaimed && !nr_retries--)
6291 break;
6292 }
6293
6294 memcg_wb_domain_size_changed(memcg);
6295 return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300 return seq_puts_memcg_tunable(m,
6301 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305 char *buf, size_t nbytes, loff_t off)
6306{
6307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309 bool drained = false;
6310 unsigned long max;
6311 int err;
6312
6313 buf = strstrip(buf);
6314 err = page_counter_memparse(buf, "max", &max);
6315 if (err)
6316 return err;
6317
6318 xchg(&memcg->memory.max, max);
6319
6320 for (;;) {
6321 unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323 if (nr_pages <= max)
6324 break;
6325
6326 if (signal_pending(current))
6327 break;
6328
6329 if (!drained) {
6330 drain_all_stock(memcg);
6331 drained = true;
6332 continue;
6333 }
6334
6335 if (nr_reclaims) {
6336 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337 GFP_KERNEL, true))
6338 nr_reclaims--;
6339 continue;
6340 }
6341
6342 memcg_memory_event(memcg, MEMCG_OOM);
6343 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344 break;
6345 }
6346
6347 memcg_wb_domain_size_changed(memcg);
6348 return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357 seq_printf(m, "oom_kill %lu\n",
6358 atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365 __memory_events_show(m, memcg->memory_events);
6366 return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373 __memory_events_show(m, memcg->memory_events_local);
6374 return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 char *buf;
6381
6382 buf = memory_stat_format(memcg);
6383 if (!buf)
6384 return -ENOMEM;
6385 seq_puts(m, buf);
6386 kfree(buf);
6387 return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392 int item)
6393{
6394 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399 int i;
6400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403 int nid;
6404
6405 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406 continue;
6407
6408 seq_printf(m, "%s", memory_stats[i].name);
6409 for_each_node_state(nid, N_MEMORY) {
6410 u64 size;
6411 struct lruvec *lruvec;
6412
6413 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414 size = lruvec_page_state_output(lruvec,
6415 memory_stats[i].idx);
6416 seq_printf(m, " N%d=%llu", nid, size);
6417 }
6418 seq_putc(m, '\n');
6419 }
6420
6421 return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429 seq_printf(m, "%d\n", memcg->oom_group);
6430
6431 return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435 char *buf, size_t nbytes, loff_t off)
6436{
6437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438 int ret, oom_group;
6439
6440 buf = strstrip(buf);
6441 if (!buf)
6442 return -EINVAL;
6443
6444 ret = kstrtoint(buf, 0, &oom_group);
6445 if (ret)
6446 return ret;
6447
6448 if (oom_group != 0 && oom_group != 1)
6449 return -EINVAL;
6450
6451 memcg->oom_group = oom_group;
6452
6453 return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457 {
6458 .name = "current",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .read_u64 = memory_current_read,
6461 },
6462 {
6463 .name = "min",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .seq_show = memory_min_show,
6466 .write = memory_min_write,
6467 },
6468 {
6469 .name = "low",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_low_show,
6472 .write = memory_low_write,
6473 },
6474 {
6475 .name = "high",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_high_show,
6478 .write = memory_high_write,
6479 },
6480 {
6481 .name = "max",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_max_show,
6484 .write = memory_max_write,
6485 },
6486 {
6487 .name = "events",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .file_offset = offsetof(struct mem_cgroup, events_file),
6490 .seq_show = memory_events_show,
6491 },
6492 {
6493 .name = "events.local",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6496 .seq_show = memory_events_local_show,
6497 },
6498 {
6499 .name = "stat",
6500 .seq_show = memory_stat_show,
6501 },
6502#ifdef CONFIG_NUMA
6503 {
6504 .name = "numa_stat",
6505 .seq_show = memory_numa_stat_show,
6506 },
6507#endif
6508 {
6509 .name = "oom.group",
6510 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511 .seq_show = memory_oom_group_show,
6512 .write = memory_oom_group_write,
6513 },
6514 { } /* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518 .css_alloc = mem_cgroup_css_alloc,
6519 .css_online = mem_cgroup_css_online,
6520 .css_offline = mem_cgroup_css_offline,
6521 .css_released = mem_cgroup_css_released,
6522 .css_free = mem_cgroup_css_free,
6523 .css_reset = mem_cgroup_css_reset,
6524 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6525 .can_attach = mem_cgroup_can_attach,
6526 .cancel_attach = mem_cgroup_cancel_attach,
6527 .post_attach = mem_cgroup_move_task,
6528 .dfl_cftypes = memory_files,
6529 .legacy_cftypes = mem_cgroup_legacy_files,
6530 .early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 * the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 * subsequent levels the effective protection is capped to the
6546 * parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 * user is allowed to overcommit the declared protection at a given
6550 * level. If that is the case, the parent's effective protection is
6551 * distributed to the children in proportion to how much protection
6552 * they have declared and how much of it they are utilizing.
6553 *
6554 * This makes distribution proportional, but also work-conserving:
6555 * if one cgroup claims much more protection than it uses memory,
6556 * the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 * given level, the distribution of the larger parental protection
6560 * budget is NOT proportional. A cgroup's protection from a sibling
6561 * is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 * without having to declare each individual cgroup's fixed share
6565 * of the ancestor's claim to protection, any unutilized -
6566 * "floating" - protection from up the tree is distributed in
6567 * proportion to each cgroup's *usage*. This makes the protection
6568 * neutral wrt sibling cgroups and lets them compete freely over
6569 * the shared parental protection budget, but it protects the
6570 * subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577 unsigned long parent_usage,
6578 unsigned long setting,
6579 unsigned long parent_effective,
6580 unsigned long siblings_protected)
6581{
6582 unsigned long protected;
6583 unsigned long ep;
6584
6585 protected = min(usage, setting);
6586 /*
6587 * If all cgroups at this level combined claim and use more
6588 * protection then what the parent affords them, distribute
6589 * shares in proportion to utilization.
6590 *
6591 * We are using actual utilization rather than the statically
6592 * claimed protection in order to be work-conserving: claimed
6593 * but unused protection is available to siblings that would
6594 * otherwise get a smaller chunk than what they claimed.
6595 */
6596 if (siblings_protected > parent_effective)
6597 return protected * parent_effective / siblings_protected;
6598
6599 /*
6600 * Ok, utilized protection of all children is within what the
6601 * parent affords them, so we know whatever this child claims
6602 * and utilizes is effectively protected.
6603 *
6604 * If there is unprotected usage beyond this value, reclaim
6605 * will apply pressure in proportion to that amount.
6606 *
6607 * If there is unutilized protection, the cgroup will be fully
6608 * shielded from reclaim, but we do return a smaller value for
6609 * protection than what the group could enjoy in theory. This
6610 * is okay. With the overcommit distribution above, effective
6611 * protection is always dependent on how memory is actually
6612 * consumed among the siblings anyway.
6613 */
6614 ep = protected;
6615
6616 /*
6617 * If the children aren't claiming (all of) the protection
6618 * afforded to them by the parent, distribute the remainder in
6619 * proportion to the (unprotected) memory of each cgroup. That
6620 * way, cgroups that aren't explicitly prioritized wrt each
6621 * other compete freely over the allowance, but they are
6622 * collectively protected from neighboring trees.
6623 *
6624 * We're using unprotected memory for the weight so that if
6625 * some cgroups DO claim explicit protection, we don't protect
6626 * the same bytes twice.
6627 *
6628 * Check both usage and parent_usage against the respective
6629 * protected values. One should imply the other, but they
6630 * aren't read atomically - make sure the division is sane.
6631 */
6632 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633 return ep;
6634 if (parent_effective > siblings_protected &&
6635 parent_usage > siblings_protected &&
6636 usage > protected) {
6637 unsigned long unclaimed;
6638
6639 unclaimed = parent_effective - siblings_protected;
6640 unclaimed *= usage - protected;
6641 unclaimed /= parent_usage - siblings_protected;
6642
6643 ep += unclaimed;
6644 }
6645
6646 return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 * of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658 struct mem_cgroup *memcg)
6659{
6660 unsigned long usage, parent_usage;
6661 struct mem_cgroup *parent;
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 if (!root)
6667 root = root_mem_cgroup;
6668
6669 /*
6670 * Effective values of the reclaim targets are ignored so they
6671 * can be stale. Have a look at mem_cgroup_protection for more
6672 * details.
6673 * TODO: calculation should be more robust so that we do not need
6674 * that special casing.
6675 */
6676 if (memcg == root)
6677 return;
6678
6679 usage = page_counter_read(&memcg->memory);
6680 if (!usage)
6681 return;
6682
6683 parent = parent_mem_cgroup(memcg);
6684 /* No parent means a non-hierarchical mode on v1 memcg */
6685 if (!parent)
6686 return;
6687
6688 if (parent == root) {
6689 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691 return;
6692 }
6693
6694 parent_usage = page_counter_read(&parent->memory);
6695
6696 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697 READ_ONCE(memcg->memory.min),
6698 READ_ONCE(parent->memory.emin),
6699 atomic_long_read(&parent->memory.children_min_usage)));
6700
6701 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.low),
6703 READ_ONCE(parent->memory.elow),
6704 atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708 gfp_t gfp)
6709{
6710 unsigned int nr_pages = thp_nr_pages(page);
6711 int ret;
6712
6713 ret = try_charge(memcg, gfp, nr_pages);
6714 if (ret)
6715 goto out;
6716
6717 css_get(&memcg->css);
6718 commit_charge(page, memcg);
6719
6720 local_irq_disable();
6721 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722 memcg_check_events(memcg, page);
6723 local_irq_enable();
6724out:
6725 return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744 struct mem_cgroup *memcg;
6745 int ret;
6746
6747 if (mem_cgroup_disabled())
6748 return 0;
6749
6750 memcg = get_mem_cgroup_from_mm(mm);
6751 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752 css_put(&memcg->css);
6753
6754 return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770 gfp_t gfp, swp_entry_t entry)
6771{
6772 struct mem_cgroup *memcg;
6773 unsigned short id;
6774 int ret;
6775
6776 if (mem_cgroup_disabled())
6777 return 0;
6778
6779 id = lookup_swap_cgroup_id(entry);
6780 rcu_read_lock();
6781 memcg = mem_cgroup_from_id(id);
6782 if (!memcg || !css_tryget_online(&memcg->css))
6783 memcg = get_mem_cgroup_from_mm(mm);
6784 rcu_read_unlock();
6785
6786 ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788 css_put(&memcg->css);
6789 return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803 /*
6804 * Cgroup1's unified memory+swap counter has been charged with the
6805 * new swapcache page, finish the transfer by uncharging the swap
6806 * slot. The swap slot would also get uncharged when it dies, but
6807 * it can stick around indefinitely and we'd count the page twice
6808 * the entire time.
6809 *
6810 * Cgroup2 has separate resource counters for memory and swap,
6811 * so this is a non-issue here. Memory and swap charge lifetimes
6812 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813 * page to memory here, and uncharge swap when the slot is freed.
6814 */
6815 if (!mem_cgroup_disabled() && do_memsw_account()) {
6816 /*
6817 * The swap entry might not get freed for a long time,
6818 * let's not wait for it. The page already received a
6819 * memory+swap charge, drop the swap entry duplicate.
6820 */
6821 mem_cgroup_uncharge_swap(entry, 1);
6822 }
6823}
6824
6825struct uncharge_gather {
6826 struct mem_cgroup *memcg;
6827 unsigned long nr_memory;
6828 unsigned long pgpgout;
6829 unsigned long nr_kmem;
6830 struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835 memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840 unsigned long flags;
6841
6842 if (ug->nr_memory) {
6843 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844 if (do_memsw_account())
6845 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848 memcg_oom_recover(ug->memcg);
6849 }
6850
6851 local_irq_save(flags);
6852 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854 memcg_check_events(ug->memcg, ug->dummy_page);
6855 local_irq_restore(flags);
6856
6857 /* drop reference from uncharge_page */
6858 css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863 unsigned long nr_pages;
6864 struct mem_cgroup *memcg;
6865 struct obj_cgroup *objcg;
6866 bool use_objcg = PageMemcgKmem(page);
6867
6868 VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870 /*
6871 * Nobody should be changing or seriously looking at
6872 * page memcg or objcg at this point, we have fully
6873 * exclusive access to the page.
6874 */
6875 if (use_objcg) {
6876 objcg = __page_objcg(page);
6877 /*
6878 * This get matches the put at the end of the function and
6879 * kmem pages do not hold memcg references anymore.
6880 */
6881 memcg = get_mem_cgroup_from_objcg(objcg);
6882 } else {
6883 memcg = __page_memcg(page);
6884 }
6885
6886 if (!memcg)
6887 return;
6888
6889 if (ug->memcg != memcg) {
6890 if (ug->memcg) {
6891 uncharge_batch(ug);
6892 uncharge_gather_clear(ug);
6893 }
6894 ug->memcg = memcg;
6895 ug->dummy_page = page;
6896
6897 /* pairs with css_put in uncharge_batch */
6898 css_get(&memcg->css);
6899 }
6900
6901 nr_pages = compound_nr(page);
6902
6903 if (use_objcg) {
6904 ug->nr_memory += nr_pages;
6905 ug->nr_kmem += nr_pages;
6906
6907 page->memcg_data = 0;
6908 obj_cgroup_put(objcg);
6909 } else {
6910 /* LRU pages aren't accounted at the root level */
6911 if (!mem_cgroup_is_root(memcg))
6912 ug->nr_memory += nr_pages;
6913 ug->pgpgout++;
6914
6915 page->memcg_data = 0;
6916 }
6917
6918 css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929 struct uncharge_gather ug;
6930
6931 if (mem_cgroup_disabled())
6932 return;
6933
6934 /* Don't touch page->lru of any random page, pre-check: */
6935 if (!page_memcg(page))
6936 return;
6937
6938 uncharge_gather_clear(&ug);
6939 uncharge_page(page, &ug);
6940 uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952 struct uncharge_gather ug;
6953 struct page *page;
6954
6955 if (mem_cgroup_disabled())
6956 return;
6957
6958 uncharge_gather_clear(&ug);
6959 list_for_each_entry(page, page_list, lru)
6960 uncharge_page(page, &ug);
6961 if (ug.memcg)
6962 uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977 struct mem_cgroup *memcg;
6978 unsigned int nr_pages;
6979 unsigned long flags;
6980
6981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985 newpage);
6986
6987 if (mem_cgroup_disabled())
6988 return;
6989
6990 /* Page cache replacement: new page already charged? */
6991 if (page_memcg(newpage))
6992 return;
6993
6994 memcg = page_memcg(oldpage);
6995 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996 if (!memcg)
6997 return;
6998
6999 /* Force-charge the new page. The old one will be freed soon */
7000 nr_pages = thp_nr_pages(newpage);
7001
7002 if (!mem_cgroup_is_root(memcg)) {
7003 page_counter_charge(&memcg->memory, nr_pages);
7004 if (do_memsw_account())
7005 page_counter_charge(&memcg->memsw, nr_pages);
7006 }
7007
7008 css_get(&memcg->css);
7009 commit_charge(newpage, memcg);
7010
7011 local_irq_save(flags);
7012 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013 memcg_check_events(memcg, newpage);
7014 local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022 struct mem_cgroup *memcg;
7023
7024 if (!mem_cgroup_sockets_enabled)
7025 return;
7026
7027 /* Do not associate the sock with unrelated interrupted task's memcg. */
7028 if (in_interrupt())
7029 return;
7030
7031 rcu_read_lock();
7032 memcg = mem_cgroup_from_task(current);
7033 if (memcg == root_mem_cgroup)
7034 goto out;
7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036 goto out;
7037 if (css_tryget(&memcg->css))
7038 sk->sk_memcg = memcg;
7039out:
7040 rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045 if (sk->sk_memcg)
7046 css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059 gfp_t gfp_mask = GFP_KERNEL;
7060
7061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062 struct page_counter *fail;
7063
7064 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065 memcg->tcpmem_pressure = 0;
7066 return true;
7067 }
7068 page_counter_charge(&memcg->tcpmem, nr_pages);
7069 memcg->tcpmem_pressure = 1;
7070 return false;
7071 }
7072
7073 /* Don't block in the packet receive path */
7074 if (in_softirq())
7075 gfp_mask = GFP_NOWAIT;
7076
7077 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080 return true;
7081
7082 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083 return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095 return;
7096 }
7097
7098 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100 refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105 char *token;
7106
7107 while ((token = strsep(&s, ",")) != NULL) {
7108 if (!*token)
7109 continue;
7110 if (!strcmp(token, "nosocket"))
7111 cgroup_memory_nosocket = true;
7112 if (!strcmp(token, "nokmem"))
7113 cgroup_memory_nokmem = true;
7114 }
7115 return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129 int cpu, node;
7130
7131 /*
7132 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134 * to work fine, we should make sure that the overfill threshold can't
7135 * exceed S32_MAX / PAGE_SIZE.
7136 */
7137 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140 memcg_hotplug_cpu_dead);
7141
7142 for_each_possible_cpu(cpu)
7143 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144 drain_local_stock);
7145
7146 for_each_node(node) {
7147 struct mem_cgroup_tree_per_node *rtpn;
7148
7149 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150 node_online(node) ? node : NUMA_NO_NODE);
7151
7152 rtpn->rb_root = RB_ROOT;
7153 rtpn->rb_rightmost = NULL;
7154 spin_lock_init(&rtpn->lock);
7155 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156 }
7157
7158 return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166 /*
7167 * The root cgroup cannot be destroyed, so it's refcount must
7168 * always be >= 1.
7169 */
7170 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171 VM_BUG_ON(1);
7172 break;
7173 }
7174 memcg = parent_mem_cgroup(memcg);
7175 if (!memcg)
7176 memcg = root_mem_cgroup;
7177 }
7178 return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190 struct mem_cgroup *memcg, *swap_memcg;
7191 unsigned int nr_entries;
7192 unsigned short oldid;
7193
7194 VM_BUG_ON_PAGE(PageLRU(page), page);
7195 VM_BUG_ON_PAGE(page_count(page), page);
7196
7197 if (mem_cgroup_disabled())
7198 return;
7199
7200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 return;
7202
7203 memcg = page_memcg(page);
7204
7205 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 if (!memcg)
7207 return;
7208
7209 /*
7210 * In case the memcg owning these pages has been offlined and doesn't
7211 * have an ID allocated to it anymore, charge the closest online
7212 * ancestor for the swap instead and transfer the memory+swap charge.
7213 */
7214 swap_memcg = mem_cgroup_id_get_online(memcg);
7215 nr_entries = thp_nr_pages(page);
7216 /* Get references for the tail pages, too */
7217 if (nr_entries > 1)
7218 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220 nr_entries);
7221 VM_BUG_ON_PAGE(oldid, page);
7222 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224 page->memcg_data = 0;
7225
7226 if (!mem_cgroup_is_root(memcg))
7227 page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230 if (!mem_cgroup_is_root(swap_memcg))
7231 page_counter_charge(&swap_memcg->memsw, nr_entries);
7232 page_counter_uncharge(&memcg->memsw, nr_entries);
7233 }
7234
7235 /*
7236 * Interrupts should be disabled here because the caller holds the
7237 * i_pages lock which is taken with interrupts-off. It is
7238 * important here to have the interrupts disabled because it is the
7239 * only synchronisation we have for updating the per-CPU variables.
7240 */
7241 VM_BUG_ON(!irqs_disabled());
7242 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243 memcg_check_events(memcg, page);
7244
7245 css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259 unsigned int nr_pages = thp_nr_pages(page);
7260 struct page_counter *counter;
7261 struct mem_cgroup *memcg;
7262 unsigned short oldid;
7263
7264 if (mem_cgroup_disabled())
7265 return 0;
7266
7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268 return 0;
7269
7270 memcg = page_memcg(page);
7271
7272 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273 if (!memcg)
7274 return 0;
7275
7276 if (!entry.val) {
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 return 0;
7279 }
7280
7281 memcg = mem_cgroup_id_get_online(memcg);
7282
7283 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287 mem_cgroup_id_put(memcg);
7288 return -ENOMEM;
7289 }
7290
7291 /* Get references for the tail pages, too */
7292 if (nr_pages > 1)
7293 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295 VM_BUG_ON_PAGE(oldid, page);
7296 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298 return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308 struct mem_cgroup *memcg;
7309 unsigned short id;
7310
7311 id = swap_cgroup_record(entry, 0, nr_pages);
7312 rcu_read_lock();
7313 memcg = mem_cgroup_from_id(id);
7314 if (memcg) {
7315 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 page_counter_uncharge(&memcg->swap, nr_pages);
7318 else
7319 page_counter_uncharge(&memcg->memsw, nr_pages);
7320 }
7321 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322 mem_cgroup_id_put_many(memcg, nr_pages);
7323 }
7324 rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329 long nr_swap_pages = get_nr_swap_pages();
7330
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return nr_swap_pages;
7333 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334 nr_swap_pages = min_t(long, nr_swap_pages,
7335 READ_ONCE(memcg->swap.max) -
7336 page_counter_read(&memcg->swap));
7337 return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342 struct mem_cgroup *memcg;
7343
7344 VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346 if (vm_swap_full())
7347 return true;
7348 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349 return false;
7350
7351 memcg = page_memcg(page);
7352 if (!memcg)
7353 return false;
7354
7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356 unsigned long usage = page_counter_read(&memcg->swap);
7357
7358 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359 usage * 2 >= READ_ONCE(memcg->swap.max))
7360 return true;
7361 }
7362
7363 return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368 if (!strcmp(s, "1"))
7369 cgroup_memory_noswap = false;
7370 else if (!strcmp(s, "0"))
7371 cgroup_memory_noswap = true;
7372 return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
7378{
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386 return seq_puts_memcg_tunable(m,
7387 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes, loff_t off)
7392{
7393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394 unsigned long high;
7395 int err;
7396
7397 buf = strstrip(buf);
7398 err = page_counter_memparse(buf, "max", &high);
7399 if (err)
7400 return err;
7401
7402 page_counter_set_high(&memcg->swap, high);
7403
7404 return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409 return seq_puts_memcg_tunable(m,
7410 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414 char *buf, size_t nbytes, loff_t off)
7415{
7416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417 unsigned long max;
7418 int err;
7419
7420 buf = strstrip(buf);
7421 err = page_counter_memparse(buf, "max", &max);
7422 if (err)
7423 return err;
7424
7425 xchg(&memcg->swap.max, max);
7426
7427 return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434 seq_printf(m, "high %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436 seq_printf(m, "max %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438 seq_printf(m, "fail %lu\n",
7439 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441 return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445 {
7446 .name = "swap.current",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .read_u64 = swap_current_read,
7449 },
7450 {
7451 .name = "swap.high",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .seq_show = swap_high_show,
7454 .write = swap_high_write,
7455 },
7456 {
7457 .name = "swap.max",
7458 .flags = CFTYPE_NOT_ON_ROOT,
7459 .seq_show = swap_max_show,
7460 .write = swap_max_write,
7461 },
7462 {
7463 .name = "swap.events",
7464 .flags = CFTYPE_NOT_ON_ROOT,
7465 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466 .seq_show = swap_events_show,
7467 },
7468 { } /* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472 {
7473 .name = "memsw.usage_in_bytes",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.max_usage_in_bytes",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 {
7484 .name = "memsw.limit_in_bytes",
7485 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486 .write = mem_cgroup_write,
7487 .read_u64 = mem_cgroup_read_u64,
7488 },
7489 {
7490 .name = "memsw.failcnt",
7491 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492 .write = mem_cgroup_reset,
7493 .read_u64 = mem_cgroup_read_u64,
7494 },
7495 { }, /* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507 /* No memory control -> no swap control */
7508 if (mem_cgroup_disabled())
7509 cgroup_memory_noswap = true;
7510
7511 if (cgroup_memory_noswap)
7512 return 0;
7513
7514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517 return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "swap.h"
71
72#include <linux/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket __ro_after_init;
87
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem __ro_after_init;
90
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99}
100
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
103
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113};
114
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
126
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
130struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165};
166
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170/* Stuffs for move charges at task migration. */
171/*
172 * Types of charges to be moved.
173 */
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
194
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202/* for encoding cft->private value on file */
203enum res_type {
204 _MEM,
205 _MEMSWAP,
206 _KMEM,
207 _TCP,
208};
209
210#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214/*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219#define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224#define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
229static inline bool task_is_dying(void)
230{
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233}
234
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244{
245 return container_of(vmpr, struct mem_cgroup, vmpressure);
246}
247
248#ifdef CONFIG_MEMCG_KMEM
249static DEFINE_SPINLOCK(objcg_lock);
250
251bool mem_cgroup_kmem_disabled(void)
252{
253 return cgroup_memory_nokmem;
254}
255
256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
258
259static void obj_cgroup_release(struct percpu_ref *ref)
260{
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 if (nr_pages)
291 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293 spin_lock_irqsave(&objcg_lock, flags);
294 list_del(&objcg->list);
295 spin_unlock_irqrestore(&objcg_lock, flags);
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299}
300
301static struct obj_cgroup *obj_cgroup_alloc(void)
302{
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318}
319
320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322{
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327 spin_lock_irq(&objcg_lock);
328
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337 spin_unlock_irq(&objcg_lock);
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
342/*
343 * A lot of the calls to the cache allocation functions are expected to be
344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349EXPORT_SYMBOL(memcg_kmem_enabled_key);
350#endif
351
352/**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
362 */
363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364{
365 struct mem_cgroup *memcg;
366
367 memcg = page_memcg(page);
368
369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370 memcg = root_mem_cgroup;
371
372 return &memcg->css;
373}
374
375/**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
388ino_t page_cgroup_ino(struct page *page)
389{
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
394 memcg = page_memcg_check(page);
395
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402}
403
404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
406 unsigned long new_usage_in_excess)
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_node *mz_node;
411 bool rightmost = true;
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424 p = &(*p)->rb_left;
425 rightmost = false;
426 } else {
427 p = &(*p)->rb_right;
428 }
429 }
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
441{
442 if (!mz->on_tree)
443 return;
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450}
451
452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
454{
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
458 __mem_cgroup_remove_exceeded(mz, mctz);
459 spin_unlock_irqrestore(&mctz->lock, flags);
460}
461
462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463{
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472}
473
474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475{
476 unsigned long excess;
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
479
480 mctz = soft_limit_tree.rb_tree_per_node[nid];
481 if (!mctz)
482 return;
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488 mz = memcg->nodeinfo[nid];
489 excess = soft_limit_excess(memcg);
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
498 /* if on-tree, remove it */
499 if (mz->on_tree)
500 __mem_cgroup_remove_exceeded(mz, mctz);
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
506 spin_unlock_irqrestore(&mctz->lock, flags);
507 }
508 }
509}
510
511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512{
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
516
517 for_each_node(nid) {
518 mz = memcg->nodeinfo[nid];
519 mctz = soft_limit_tree.rb_tree_per_node[nid];
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
522 }
523}
524
525static struct mem_cgroup_per_node *
526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527{
528 struct mem_cgroup_per_node *mz;
529
530retry:
531 mz = NULL;
532 if (!mctz->rb_rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
542 __mem_cgroup_remove_exceeded(mz, mctz);
543 if (!soft_limit_excess(mz->memcg) ||
544 !css_tryget(&mz->memcg->css))
545 goto retry;
546done:
547 return mz;
548}
549
550static struct mem_cgroup_per_node *
551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552{
553 struct mem_cgroup_per_node *mz;
554
555 spin_lock_irq(&mctz->lock);
556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
557 spin_unlock_irq(&mctz->lock);
558 return mz;
559}
560
561/*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576static void flush_memcg_stats_dwork(struct work_struct *w);
577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578static DEFINE_SPINLOCK(stats_flush_lock);
579static DEFINE_PER_CPU(unsigned int, stats_updates);
580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581static u64 flush_next_time;
582
583#define FLUSH_TIME (2UL*HZ)
584
585/*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
591static void memcg_stats_lock(void)
592{
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
595}
596
597static void __memcg_stats_lock(void)
598{
599 preempt_disable_nested();
600}
601
602static void memcg_stats_unlock(void)
603{
604 preempt_enable_nested();
605}
606
607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608{
609 unsigned int x;
610
611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623 __this_cpu_write(stats_updates, 0);
624 }
625}
626
627static void __mem_cgroup_flush_stats(void)
628{
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632 return;
633
634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
637 spin_unlock_irqrestore(&stats_flush_lock, flag);
638}
639
640void mem_cgroup_flush_stats(void)
641{
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644}
645
646void mem_cgroup_flush_stats_delayed(void)
647{
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650}
651
652static void flush_memcg_stats_dwork(struct work_struct *w)
653{
654 __mem_cgroup_flush_stats();
655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656}
657
658/* Subset of vm_event_item to report for memcg event stats */
659static const unsigned int memcg_vm_event_stat[] = {
660 PGPGIN,
661 PGPGOUT,
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
664 PGSCAN_KHUGEPAGED,
665 PGSTEAL_KSWAPD,
666 PGSTEAL_DIRECT,
667 PGSTEAL_KHUGEPAGED,
668 PGFAULT,
669 PGMAJFAULT,
670 PGREFILL,
671 PGACTIVATE,
672 PGDEACTIVATE,
673 PGLAZYFREE,
674 PGLAZYFREED,
675#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
676 ZSWPIN,
677 ZSWPOUT,
678#endif
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 THP_FAULT_ALLOC,
681 THP_COLLAPSE_ALLOC,
682#endif
683};
684
685#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
686static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
687
688static void init_memcg_events(void)
689{
690 int i;
691
692 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
693 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
694}
695
696static inline int memcg_events_index(enum vm_event_item idx)
697{
698 return mem_cgroup_events_index[idx] - 1;
699}
700
701struct memcg_vmstats_percpu {
702 /* Local (CPU and cgroup) page state & events */
703 long state[MEMCG_NR_STAT];
704 unsigned long events[NR_MEMCG_EVENTS];
705
706 /* Delta calculation for lockless upward propagation */
707 long state_prev[MEMCG_NR_STAT];
708 unsigned long events_prev[NR_MEMCG_EVENTS];
709
710 /* Cgroup1: threshold notifications & softlimit tree updates */
711 unsigned long nr_page_events;
712 unsigned long targets[MEM_CGROUP_NTARGETS];
713};
714
715struct memcg_vmstats {
716 /* Aggregated (CPU and subtree) page state & events */
717 long state[MEMCG_NR_STAT];
718 unsigned long events[NR_MEMCG_EVENTS];
719
720 /* Pending child counts during tree propagation */
721 long state_pending[MEMCG_NR_STAT];
722 unsigned long events_pending[NR_MEMCG_EVENTS];
723};
724
725unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
726{
727 long x = READ_ONCE(memcg->vmstats->state[idx]);
728#ifdef CONFIG_SMP
729 if (x < 0)
730 x = 0;
731#endif
732 return x;
733}
734
735/**
736 * __mod_memcg_state - update cgroup memory statistics
737 * @memcg: the memory cgroup
738 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
739 * @val: delta to add to the counter, can be negative
740 */
741void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
742{
743 if (mem_cgroup_disabled())
744 return;
745
746 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
747 memcg_rstat_updated(memcg, val);
748}
749
750/* idx can be of type enum memcg_stat_item or node_stat_item. */
751static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
752{
753 long x = 0;
754 int cpu;
755
756 for_each_possible_cpu(cpu)
757 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
758#ifdef CONFIG_SMP
759 if (x < 0)
760 x = 0;
761#endif
762 return x;
763}
764
765void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
766 int val)
767{
768 struct mem_cgroup_per_node *pn;
769 struct mem_cgroup *memcg;
770
771 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
772 memcg = pn->memcg;
773
774 /*
775 * The caller from rmap relay on disabled preemption becase they never
776 * update their counter from in-interrupt context. For these two
777 * counters we check that the update is never performed from an
778 * interrupt context while other caller need to have disabled interrupt.
779 */
780 __memcg_stats_lock();
781 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
782 switch (idx) {
783 case NR_ANON_MAPPED:
784 case NR_FILE_MAPPED:
785 case NR_ANON_THPS:
786 case NR_SHMEM_PMDMAPPED:
787 case NR_FILE_PMDMAPPED:
788 WARN_ON_ONCE(!in_task());
789 break;
790 default:
791 VM_WARN_ON_IRQS_ENABLED();
792 }
793 }
794
795 /* Update memcg */
796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797
798 /* Update lruvec */
799 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
800
801 memcg_rstat_updated(memcg, val);
802 memcg_stats_unlock();
803}
804
805/**
806 * __mod_lruvec_state - update lruvec memory statistics
807 * @lruvec: the lruvec
808 * @idx: the stat item
809 * @val: delta to add to the counter, can be negative
810 *
811 * The lruvec is the intersection of the NUMA node and a cgroup. This
812 * function updates the all three counters that are affected by a
813 * change of state at this level: per-node, per-cgroup, per-lruvec.
814 */
815void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
816 int val)
817{
818 /* Update node */
819 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
820
821 /* Update memcg and lruvec */
822 if (!mem_cgroup_disabled())
823 __mod_memcg_lruvec_state(lruvec, idx, val);
824}
825
826void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
827 int val)
828{
829 struct page *head = compound_head(page); /* rmap on tail pages */
830 struct mem_cgroup *memcg;
831 pg_data_t *pgdat = page_pgdat(page);
832 struct lruvec *lruvec;
833
834 rcu_read_lock();
835 memcg = page_memcg(head);
836 /* Untracked pages have no memcg, no lruvec. Update only the node */
837 if (!memcg) {
838 rcu_read_unlock();
839 __mod_node_page_state(pgdat, idx, val);
840 return;
841 }
842
843 lruvec = mem_cgroup_lruvec(memcg, pgdat);
844 __mod_lruvec_state(lruvec, idx, val);
845 rcu_read_unlock();
846}
847EXPORT_SYMBOL(__mod_lruvec_page_state);
848
849void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
850{
851 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
852 struct mem_cgroup *memcg;
853 struct lruvec *lruvec;
854
855 rcu_read_lock();
856 memcg = mem_cgroup_from_slab_obj(p);
857
858 /*
859 * Untracked pages have no memcg, no lruvec. Update only the
860 * node. If we reparent the slab objects to the root memcg,
861 * when we free the slab object, we need to update the per-memcg
862 * vmstats to keep it correct for the root memcg.
863 */
864 if (!memcg) {
865 __mod_node_page_state(pgdat, idx, val);
866 } else {
867 lruvec = mem_cgroup_lruvec(memcg, pgdat);
868 __mod_lruvec_state(lruvec, idx, val);
869 }
870 rcu_read_unlock();
871}
872
873/**
874 * __count_memcg_events - account VM events in a cgroup
875 * @memcg: the memory cgroup
876 * @idx: the event item
877 * @count: the number of events that occurred
878 */
879void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
880 unsigned long count)
881{
882 int index = memcg_events_index(idx);
883
884 if (mem_cgroup_disabled() || index < 0)
885 return;
886
887 memcg_stats_lock();
888 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
889 memcg_rstat_updated(memcg, count);
890 memcg_stats_unlock();
891}
892
893static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
894{
895 int index = memcg_events_index(event);
896
897 if (index < 0)
898 return 0;
899 return READ_ONCE(memcg->vmstats->events[index]);
900}
901
902static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
903{
904 long x = 0;
905 int cpu;
906 int index = memcg_events_index(event);
907
908 if (index < 0)
909 return 0;
910
911 for_each_possible_cpu(cpu)
912 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
913 return x;
914}
915
916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917 int nr_pages)
918{
919 /* pagein of a big page is an event. So, ignore page size */
920 if (nr_pages > 0)
921 __count_memcg_events(memcg, PGPGIN, 1);
922 else {
923 __count_memcg_events(memcg, PGPGOUT, 1);
924 nr_pages = -nr_pages; /* for event */
925 }
926
927 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
928}
929
930static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
931 enum mem_cgroup_events_target target)
932{
933 unsigned long val, next;
934
935 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
936 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
937 /* from time_after() in jiffies.h */
938 if ((long)(next - val) < 0) {
939 switch (target) {
940 case MEM_CGROUP_TARGET_THRESH:
941 next = val + THRESHOLDS_EVENTS_TARGET;
942 break;
943 case MEM_CGROUP_TARGET_SOFTLIMIT:
944 next = val + SOFTLIMIT_EVENTS_TARGET;
945 break;
946 default:
947 break;
948 }
949 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
950 return true;
951 }
952 return false;
953}
954
955/*
956 * Check events in order.
957 *
958 */
959static void memcg_check_events(struct mem_cgroup *memcg, int nid)
960{
961 if (IS_ENABLED(CONFIG_PREEMPT_RT))
962 return;
963
964 /* threshold event is triggered in finer grain than soft limit */
965 if (unlikely(mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_THRESH))) {
967 bool do_softlimit;
968
969 do_softlimit = mem_cgroup_event_ratelimit(memcg,
970 MEM_CGROUP_TARGET_SOFTLIMIT);
971 mem_cgroup_threshold(memcg);
972 if (unlikely(do_softlimit))
973 mem_cgroup_update_tree(memcg, nid);
974 }
975}
976
977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978{
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988}
989EXPORT_SYMBOL(mem_cgroup_from_task);
990
991static __always_inline struct mem_cgroup *active_memcg(void)
992{
993 if (!in_task())
994 return this_cpu_read(int_active_memcg);
995 else
996 return current->active_memcg;
997}
998
999/**
1000 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001 * @mm: mm from which memcg should be extracted. It can be NULL.
1002 *
1003 * Obtain a reference on mm->memcg and returns it if successful. If mm
1004 * is NULL, then the memcg is chosen as follows:
1005 * 1) The active memcg, if set.
1006 * 2) current->mm->memcg, if available
1007 * 3) root memcg
1008 * If mem_cgroup is disabled, NULL is returned.
1009 */
1010struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1011{
1012 struct mem_cgroup *memcg;
1013
1014 if (mem_cgroup_disabled())
1015 return NULL;
1016
1017 /*
1018 * Page cache insertions can happen without an
1019 * actual mm context, e.g. during disk probing
1020 * on boot, loopback IO, acct() writes etc.
1021 *
1022 * No need to css_get on root memcg as the reference
1023 * counting is disabled on the root level in the
1024 * cgroup core. See CSS_NO_REF.
1025 */
1026 if (unlikely(!mm)) {
1027 memcg = active_memcg();
1028 if (unlikely(memcg)) {
1029 /* remote memcg must hold a ref */
1030 css_get(&memcg->css);
1031 return memcg;
1032 }
1033 mm = current->mm;
1034 if (unlikely(!mm))
1035 return root_mem_cgroup;
1036 }
1037
1038 rcu_read_lock();
1039 do {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049static __always_inline bool memcg_kmem_bypass(void)
1050{
1051 /* Allow remote memcg charging from any context. */
1052 if (unlikely(active_memcg()))
1053 return false;
1054
1055 /* Memcg to charge can't be determined. */
1056 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1057 return true;
1058
1059 return false;
1060}
1061
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 *
1068 * Returns references to children of the hierarchy below @root, or
1069 * @root itself, or %NULL after a full round-trip.
1070 *
1071 * Caller must pass the return value in @prev on subsequent
1072 * invocations for reference counting, or use mem_cgroup_iter_break()
1073 * to cancel a hierarchy walk before the round-trip is complete.
1074 *
1075 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076 * in the hierarchy among all concurrent reclaimers operating on the
1077 * same node.
1078 */
1079struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1080 struct mem_cgroup *prev,
1081 struct mem_cgroup_reclaim_cookie *reclaim)
1082{
1083 struct mem_cgroup_reclaim_iter *iter;
1084 struct cgroup_subsys_state *css = NULL;
1085 struct mem_cgroup *memcg = NULL;
1086 struct mem_cgroup *pos = NULL;
1087
1088 if (mem_cgroup_disabled())
1089 return NULL;
1090
1091 if (!root)
1092 root = root_mem_cgroup;
1093
1094 rcu_read_lock();
1095
1096 if (reclaim) {
1097 struct mem_cgroup_per_node *mz;
1098
1099 mz = root->nodeinfo[reclaim->pgdat->node_id];
1100 iter = &mz->iter;
1101
1102 /*
1103 * On start, join the current reclaim iteration cycle.
1104 * Exit when a concurrent walker completes it.
1105 */
1106 if (!prev)
1107 reclaim->generation = iter->generation;
1108 else if (reclaim->generation != iter->generation)
1109 goto out_unlock;
1110
1111 while (1) {
1112 pos = READ_ONCE(iter->position);
1113 if (!pos || css_tryget(&pos->css))
1114 break;
1115 /*
1116 * css reference reached zero, so iter->position will
1117 * be cleared by ->css_released. However, we should not
1118 * rely on this happening soon, because ->css_released
1119 * is called from a work queue, and by busy-waiting we
1120 * might block it. So we clear iter->position right
1121 * away.
1122 */
1123 (void)cmpxchg(&iter->position, pos, NULL);
1124 }
1125 } else if (prev) {
1126 pos = prev;
1127 }
1128
1129 if (pos)
1130 css = &pos->css;
1131
1132 for (;;) {
1133 css = css_next_descendant_pre(css, &root->css);
1134 if (!css) {
1135 /*
1136 * Reclaimers share the hierarchy walk, and a
1137 * new one might jump in right at the end of
1138 * the hierarchy - make sure they see at least
1139 * one group and restart from the beginning.
1140 */
1141 if (!prev)
1142 continue;
1143 break;
1144 }
1145
1146 /*
1147 * Verify the css and acquire a reference. The root
1148 * is provided by the caller, so we know it's alive
1149 * and kicking, and don't take an extra reference.
1150 */
1151 if (css == &root->css || css_tryget(css)) {
1152 memcg = mem_cgroup_from_css(css);
1153 break;
1154 }
1155 }
1156
1157 if (reclaim) {
1158 /*
1159 * The position could have already been updated by a competing
1160 * thread, so check that the value hasn't changed since we read
1161 * it to avoid reclaiming from the same cgroup twice.
1162 */
1163 (void)cmpxchg(&iter->position, pos, memcg);
1164
1165 if (pos)
1166 css_put(&pos->css);
1167
1168 if (!memcg)
1169 iter->generation++;
1170 }
1171
1172out_unlock:
1173 rcu_read_unlock();
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176
1177 return memcg;
1178}
1179
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 struct mem_cgroup *prev)
1187{
1188 if (!root)
1189 root = root_mem_cgroup;
1190 if (prev && prev != root)
1191 css_put(&prev->css);
1192}
1193
1194static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195 struct mem_cgroup *dead_memcg)
1196{
1197 struct mem_cgroup_reclaim_iter *iter;
1198 struct mem_cgroup_per_node *mz;
1199 int nid;
1200
1201 for_each_node(nid) {
1202 mz = from->nodeinfo[nid];
1203 iter = &mz->iter;
1204 cmpxchg(&iter->position, dead_memcg, NULL);
1205 }
1206}
1207
1208static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209{
1210 struct mem_cgroup *memcg = dead_memcg;
1211 struct mem_cgroup *last;
1212
1213 do {
1214 __invalidate_reclaim_iterators(memcg, dead_memcg);
1215 last = memcg;
1216 } while ((memcg = parent_mem_cgroup(memcg)));
1217
1218 /*
1219 * When cgroup1 non-hierarchy mode is used,
1220 * parent_mem_cgroup() does not walk all the way up to the
1221 * cgroup root (root_mem_cgroup). So we have to handle
1222 * dead_memcg from cgroup root separately.
1223 */
1224 if (!mem_cgroup_is_root(last))
1225 __invalidate_reclaim_iterators(root_mem_cgroup,
1226 dead_memcg);
1227}
1228
1229/**
1230 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231 * @memcg: hierarchy root
1232 * @fn: function to call for each task
1233 * @arg: argument passed to @fn
1234 *
1235 * This function iterates over tasks attached to @memcg or to any of its
1236 * descendants and calls @fn for each task. If @fn returns a non-zero
1237 * value, the function breaks the iteration loop and returns the value.
1238 * Otherwise, it will iterate over all tasks and return 0.
1239 *
1240 * This function must not be called for the root memory cgroup.
1241 */
1242int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243 int (*fn)(struct task_struct *, void *), void *arg)
1244{
1245 struct mem_cgroup *iter;
1246 int ret = 0;
1247
1248 BUG_ON(mem_cgroup_is_root(memcg));
1249
1250 for_each_mem_cgroup_tree(iter, memcg) {
1251 struct css_task_iter it;
1252 struct task_struct *task;
1253
1254 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1255 while (!ret && (task = css_task_iter_next(&it)))
1256 ret = fn(task, arg);
1257 css_task_iter_end(&it);
1258 if (ret) {
1259 mem_cgroup_iter_break(memcg, iter);
1260 break;
1261 }
1262 }
1263 return ret;
1264}
1265
1266#ifdef CONFIG_DEBUG_VM
1267void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268{
1269 struct mem_cgroup *memcg;
1270
1271 if (mem_cgroup_disabled())
1272 return;
1273
1274 memcg = folio_memcg(folio);
1275
1276 if (!memcg)
1277 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1278 else
1279 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1280}
1281#endif
1282
1283/**
1284 * folio_lruvec_lock - Lock the lruvec for a folio.
1285 * @folio: Pointer to the folio.
1286 *
1287 * These functions are safe to use under any of the following conditions:
1288 * - folio locked
1289 * - folio_test_lru false
1290 * - folio_memcg_lock()
1291 * - folio frozen (refcount of 0)
1292 *
1293 * Return: The lruvec this folio is on with its lock held.
1294 */
1295struct lruvec *folio_lruvec_lock(struct folio *folio)
1296{
1297 struct lruvec *lruvec = folio_lruvec(folio);
1298
1299 spin_lock(&lruvec->lru_lock);
1300 lruvec_memcg_debug(lruvec, folio);
1301
1302 return lruvec;
1303}
1304
1305/**
1306 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307 * @folio: Pointer to the folio.
1308 *
1309 * These functions are safe to use under any of the following conditions:
1310 * - folio locked
1311 * - folio_test_lru false
1312 * - folio_memcg_lock()
1313 * - folio frozen (refcount of 0)
1314 *
1315 * Return: The lruvec this folio is on with its lock held and interrupts
1316 * disabled.
1317 */
1318struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1319{
1320 struct lruvec *lruvec = folio_lruvec(folio);
1321
1322 spin_lock_irq(&lruvec->lru_lock);
1323 lruvec_memcg_debug(lruvec, folio);
1324
1325 return lruvec;
1326}
1327
1328/**
1329 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330 * @folio: Pointer to the folio.
1331 * @flags: Pointer to irqsave flags.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 unsigned long *flags)
1344{
1345 struct lruvec *lruvec = folio_lruvec(folio);
1346
1347 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1348 lruvec_memcg_debug(lruvec, folio);
1349
1350 return lruvec;
1351}
1352
1353/**
1354 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355 * @lruvec: mem_cgroup per zone lru vector
1356 * @lru: index of lru list the page is sitting on
1357 * @zid: zone id of the accounted pages
1358 * @nr_pages: positive when adding or negative when removing
1359 *
1360 * This function must be called under lru_lock, just before a page is added
1361 * to or just after a page is removed from an lru list.
1362 */
1363void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1364 int zid, int nr_pages)
1365{
1366 struct mem_cgroup_per_node *mz;
1367 unsigned long *lru_size;
1368 long size;
1369
1370 if (mem_cgroup_disabled())
1371 return;
1372
1373 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1374 lru_size = &mz->lru_zone_size[zid][lru];
1375
1376 if (nr_pages < 0)
1377 *lru_size += nr_pages;
1378
1379 size = *lru_size;
1380 if (WARN_ONCE(size < 0,
1381 "%s(%p, %d, %d): lru_size %ld\n",
1382 __func__, lruvec, lru, nr_pages, size)) {
1383 VM_BUG_ON(1);
1384 *lru_size = 0;
1385 }
1386
1387 if (nr_pages > 0)
1388 *lru_size += nr_pages;
1389}
1390
1391/**
1392 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1393 * @memcg: the memory cgroup
1394 *
1395 * Returns the maximum amount of memory @mem can be charged with, in
1396 * pages.
1397 */
1398static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1399{
1400 unsigned long margin = 0;
1401 unsigned long count;
1402 unsigned long limit;
1403
1404 count = page_counter_read(&memcg->memory);
1405 limit = READ_ONCE(memcg->memory.max);
1406 if (count < limit)
1407 margin = limit - count;
1408
1409 if (do_memsw_account()) {
1410 count = page_counter_read(&memcg->memsw);
1411 limit = READ_ONCE(memcg->memsw.max);
1412 if (count < limit)
1413 margin = min(margin, limit - count);
1414 else
1415 margin = 0;
1416 }
1417
1418 return margin;
1419}
1420
1421/*
1422 * A routine for checking "mem" is under move_account() or not.
1423 *
1424 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425 * moving cgroups. This is for waiting at high-memory pressure
1426 * caused by "move".
1427 */
1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429{
1430 struct mem_cgroup *from;
1431 struct mem_cgroup *to;
1432 bool ret = false;
1433 /*
1434 * Unlike task_move routines, we access mc.to, mc.from not under
1435 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 */
1437 spin_lock(&mc.lock);
1438 from = mc.from;
1439 to = mc.to;
1440 if (!from)
1441 goto unlock;
1442
1443 ret = mem_cgroup_is_descendant(from, memcg) ||
1444 mem_cgroup_is_descendant(to, memcg);
1445unlock:
1446 spin_unlock(&mc.lock);
1447 return ret;
1448}
1449
1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451{
1452 if (mc.moving_task && current != mc.moving_task) {
1453 if (mem_cgroup_under_move(memcg)) {
1454 DEFINE_WAIT(wait);
1455 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 /* moving charge context might have finished. */
1457 if (mc.moving_task)
1458 schedule();
1459 finish_wait(&mc.waitq, &wait);
1460 return true;
1461 }
1462 }
1463 return false;
1464}
1465
1466struct memory_stat {
1467 const char *name;
1468 unsigned int idx;
1469};
1470
1471static const struct memory_stat memory_stats[] = {
1472 { "anon", NR_ANON_MAPPED },
1473 { "file", NR_FILE_PAGES },
1474 { "kernel", MEMCG_KMEM },
1475 { "kernel_stack", NR_KERNEL_STACK_KB },
1476 { "pagetables", NR_PAGETABLE },
1477 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1478 { "percpu", MEMCG_PERCPU_B },
1479 { "sock", MEMCG_SOCK },
1480 { "vmalloc", MEMCG_VMALLOC },
1481 { "shmem", NR_SHMEM },
1482#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483 { "zswap", MEMCG_ZSWAP_B },
1484 { "zswapped", MEMCG_ZSWAPPED },
1485#endif
1486 { "file_mapped", NR_FILE_MAPPED },
1487 { "file_dirty", NR_FILE_DIRTY },
1488 { "file_writeback", NR_WRITEBACK },
1489#ifdef CONFIG_SWAP
1490 { "swapcached", NR_SWAPCACHE },
1491#endif
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493 { "anon_thp", NR_ANON_THPS },
1494 { "file_thp", NR_FILE_THPS },
1495 { "shmem_thp", NR_SHMEM_THPS },
1496#endif
1497 { "inactive_anon", NR_INACTIVE_ANON },
1498 { "active_anon", NR_ACTIVE_ANON },
1499 { "inactive_file", NR_INACTIVE_FILE },
1500 { "active_file", NR_ACTIVE_FILE },
1501 { "unevictable", NR_UNEVICTABLE },
1502 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1503 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1504
1505 /* The memory events */
1506 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1507 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1508 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1509 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1510 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1511 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1512 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1513};
1514
1515/* Translate stat items to the correct unit for memory.stat output */
1516static int memcg_page_state_unit(int item)
1517{
1518 switch (item) {
1519 case MEMCG_PERCPU_B:
1520 case MEMCG_ZSWAP_B:
1521 case NR_SLAB_RECLAIMABLE_B:
1522 case NR_SLAB_UNRECLAIMABLE_B:
1523 case WORKINGSET_REFAULT_ANON:
1524 case WORKINGSET_REFAULT_FILE:
1525 case WORKINGSET_ACTIVATE_ANON:
1526 case WORKINGSET_ACTIVATE_FILE:
1527 case WORKINGSET_RESTORE_ANON:
1528 case WORKINGSET_RESTORE_FILE:
1529 case WORKINGSET_NODERECLAIM:
1530 return 1;
1531 case NR_KERNEL_STACK_KB:
1532 return SZ_1K;
1533 default:
1534 return PAGE_SIZE;
1535 }
1536}
1537
1538static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539 int item)
1540{
1541 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542}
1543
1544static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1545{
1546 struct seq_buf s;
1547 int i;
1548
1549 seq_buf_init(&s, buf, bufsize);
1550
1551 /*
1552 * Provide statistics on the state of the memory subsystem as
1553 * well as cumulative event counters that show past behavior.
1554 *
1555 * This list is ordered following a combination of these gradients:
1556 * 1) generic big picture -> specifics and details
1557 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 *
1559 * Current memory state:
1560 */
1561 mem_cgroup_flush_stats();
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 u64 size;
1565
1566 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1567 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1568
1569 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570 size += memcg_page_state_output(memcg,
1571 NR_SLAB_RECLAIMABLE_B);
1572 seq_buf_printf(&s, "slab %llu\n", size);
1573 }
1574 }
1575
1576 /* Accumulated memory events */
1577 seq_buf_printf(&s, "pgscan %lu\n",
1578 memcg_events(memcg, PGSCAN_KSWAPD) +
1579 memcg_events(memcg, PGSCAN_DIRECT) +
1580 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1581 seq_buf_printf(&s, "pgsteal %lu\n",
1582 memcg_events(memcg, PGSTEAL_KSWAPD) +
1583 memcg_events(memcg, PGSTEAL_DIRECT) +
1584 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1585
1586 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587 if (memcg_vm_event_stat[i] == PGPGIN ||
1588 memcg_vm_event_stat[i] == PGPGOUT)
1589 continue;
1590
1591 seq_buf_printf(&s, "%s %lu\n",
1592 vm_event_name(memcg_vm_event_stat[i]),
1593 memcg_events(memcg, memcg_vm_event_stat[i]));
1594 }
1595
1596 /* The above should easily fit into one page */
1597 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1598}
1599
1600#define K(x) ((x) << (PAGE_SHIFT-10))
1601/**
1602 * mem_cgroup_print_oom_context: Print OOM information relevant to
1603 * memory controller.
1604 * @memcg: The memory cgroup that went over limit
1605 * @p: Task that is going to be killed
1606 *
1607 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608 * enabled
1609 */
1610void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1611{
1612 rcu_read_lock();
1613
1614 if (memcg) {
1615 pr_cont(",oom_memcg=");
1616 pr_cont_cgroup_path(memcg->css.cgroup);
1617 } else
1618 pr_cont(",global_oom");
1619 if (p) {
1620 pr_cont(",task_memcg=");
1621 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1622 }
1623 rcu_read_unlock();
1624}
1625
1626/**
1627 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628 * memory controller.
1629 * @memcg: The memory cgroup that went over limit
1630 */
1631void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632{
1633 /* Use static buffer, for the caller is holding oom_lock. */
1634 static char buf[PAGE_SIZE];
1635
1636 lockdep_assert_held(&oom_lock);
1637
1638 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->memory)),
1640 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1641 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->swap)),
1644 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1645 else {
1646 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 K((u64)page_counter_read(&memcg->memsw)),
1648 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650 K((u64)page_counter_read(&memcg->kmem)),
1651 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1652 }
1653
1654 pr_info("Memory cgroup stats for ");
1655 pr_cont_cgroup_path(memcg->css.cgroup);
1656 pr_cont(":");
1657 memory_stat_format(memcg, buf, sizeof(buf));
1658 pr_info("%s", buf);
1659}
1660
1661/*
1662 * Return the memory (and swap, if configured) limit for a memcg.
1663 */
1664unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1665{
1666 unsigned long max = READ_ONCE(memcg->memory.max);
1667
1668 if (do_memsw_account()) {
1669 if (mem_cgroup_swappiness(memcg)) {
1670 /* Calculate swap excess capacity from memsw limit */
1671 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672
1673 max += min(swap, (unsigned long)total_swap_pages);
1674 }
1675 } else {
1676 if (mem_cgroup_swappiness(memcg))
1677 max += min(READ_ONCE(memcg->swap.max),
1678 (unsigned long)total_swap_pages);
1679 }
1680 return max;
1681}
1682
1683unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684{
1685 return page_counter_read(&memcg->memory);
1686}
1687
1688static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1689 int order)
1690{
1691 struct oom_control oc = {
1692 .zonelist = NULL,
1693 .nodemask = NULL,
1694 .memcg = memcg,
1695 .gfp_mask = gfp_mask,
1696 .order = order,
1697 };
1698 bool ret = true;
1699
1700 if (mutex_lock_killable(&oom_lock))
1701 return true;
1702
1703 if (mem_cgroup_margin(memcg) >= (1 << order))
1704 goto unlock;
1705
1706 /*
1707 * A few threads which were not waiting at mutex_lock_killable() can
1708 * fail to bail out. Therefore, check again after holding oom_lock.
1709 */
1710 ret = task_is_dying() || out_of_memory(&oc);
1711
1712unlock:
1713 mutex_unlock(&oom_lock);
1714 return ret;
1715}
1716
1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 pg_data_t *pgdat,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721{
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .pgdat = pgdat,
1729 };
1730
1731 excess = soft_limit_excess(root_memcg);
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
1757 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1758 pgdat, &nr_scanned);
1759 *total_scanned += nr_scanned;
1760 if (!soft_limit_excess(root_memcg))
1761 break;
1762 }
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
1765}
1766
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770};
1771#endif
1772
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780{
1781 struct mem_cgroup *iter, *failed = NULL;
1782
1783 spin_lock(&memcg_oom_lock);
1784
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 if (iter->oom_lock) {
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
1791 failed = iter;
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 } else
1795 iter->oom_lock = true;
1796 }
1797
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
1809 }
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
1816}
1817
1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819{
1820 struct mem_cgroup *iter;
1821
1822 spin_lock(&memcg_oom_lock);
1823 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 iter->oom_lock = false;
1826 spin_unlock(&memcg_oom_lock);
1827}
1828
1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830{
1831 struct mem_cgroup *iter;
1832
1833 spin_lock(&memcg_oom_lock);
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 iter->under_oom++;
1836 spin_unlock(&memcg_oom_lock);
1837}
1838
1839static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1840{
1841 struct mem_cgroup *iter;
1842
1843 /*
1844 * Be careful about under_oom underflows because a child memcg
1845 * could have been added after mem_cgroup_mark_under_oom.
1846 */
1847 spin_lock(&memcg_oom_lock);
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 if (iter->under_oom > 0)
1850 iter->under_oom--;
1851 spin_unlock(&memcg_oom_lock);
1852}
1853
1854static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855
1856struct oom_wait_info {
1857 struct mem_cgroup *memcg;
1858 wait_queue_entry_t wait;
1859};
1860
1861static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1862 unsigned mode, int sync, void *arg)
1863{
1864 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865 struct mem_cgroup *oom_wait_memcg;
1866 struct oom_wait_info *oom_wait_info;
1867
1868 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1869 oom_wait_memcg = oom_wait_info->memcg;
1870
1871 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1873 return 0;
1874 return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
1877static void memcg_oom_recover(struct mem_cgroup *memcg)
1878{
1879 /*
1880 * For the following lockless ->under_oom test, the only required
1881 * guarantee is that it must see the state asserted by an OOM when
1882 * this function is called as a result of userland actions
1883 * triggered by the notification of the OOM. This is trivially
1884 * achieved by invoking mem_cgroup_mark_under_oom() before
1885 * triggering notification.
1886 */
1887 if (memcg && memcg->under_oom)
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889}
1890
1891/*
1892 * Returns true if successfully killed one or more processes. Though in some
1893 * corner cases it can return true even without killing any process.
1894 */
1895static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896{
1897 bool locked, ret;
1898
1899 if (order > PAGE_ALLOC_COSTLY_ORDER)
1900 return false;
1901
1902 memcg_memory_event(memcg, MEMCG_OOM);
1903
1904 /*
1905 * We are in the middle of the charge context here, so we
1906 * don't want to block when potentially sitting on a callstack
1907 * that holds all kinds of filesystem and mm locks.
1908 *
1909 * cgroup1 allows disabling the OOM killer and waiting for outside
1910 * handling until the charge can succeed; remember the context and put
1911 * the task to sleep at the end of the page fault when all locks are
1912 * released.
1913 *
1914 * On the other hand, in-kernel OOM killer allows for an async victim
1915 * memory reclaim (oom_reaper) and that means that we are not solely
1916 * relying on the oom victim to make a forward progress and we can
1917 * invoke the oom killer here.
1918 *
1919 * Please note that mem_cgroup_out_of_memory might fail to find a
1920 * victim and then we have to bail out from the charge path.
1921 */
1922 if (memcg->oom_kill_disable) {
1923 if (current->in_user_fault) {
1924 css_get(&memcg->css);
1925 current->memcg_in_oom = memcg;
1926 current->memcg_oom_gfp_mask = mask;
1927 current->memcg_oom_order = order;
1928 }
1929 return false;
1930 }
1931
1932 mem_cgroup_mark_under_oom(memcg);
1933
1934 locked = mem_cgroup_oom_trylock(memcg);
1935
1936 if (locked)
1937 mem_cgroup_oom_notify(memcg);
1938
1939 mem_cgroup_unmark_under_oom(memcg);
1940 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1941
1942 if (locked)
1943 mem_cgroup_oom_unlock(memcg);
1944
1945 return ret;
1946}
1947
1948/**
1949 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1950 * @handle: actually kill/wait or just clean up the OOM state
1951 *
1952 * This has to be called at the end of a page fault if the memcg OOM
1953 * handler was enabled.
1954 *
1955 * Memcg supports userspace OOM handling where failed allocations must
1956 * sleep on a waitqueue until the userspace task resolves the
1957 * situation. Sleeping directly in the charge context with all kinds
1958 * of locks held is not a good idea, instead we remember an OOM state
1959 * in the task and mem_cgroup_oom_synchronize() has to be called at
1960 * the end of the page fault to complete the OOM handling.
1961 *
1962 * Returns %true if an ongoing memcg OOM situation was detected and
1963 * completed, %false otherwise.
1964 */
1965bool mem_cgroup_oom_synchronize(bool handle)
1966{
1967 struct mem_cgroup *memcg = current->memcg_in_oom;
1968 struct oom_wait_info owait;
1969 bool locked;
1970
1971 /* OOM is global, do not handle */
1972 if (!memcg)
1973 return false;
1974
1975 if (!handle)
1976 goto cleanup;
1977
1978 owait.memcg = memcg;
1979 owait.wait.flags = 0;
1980 owait.wait.func = memcg_oom_wake_function;
1981 owait.wait.private = current;
1982 INIT_LIST_HEAD(&owait.wait.entry);
1983
1984 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 if (locked && !memcg->oom_kill_disable) {
1993 mem_cgroup_unmark_under_oom(memcg);
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
1995 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996 current->memcg_oom_order);
1997 } else {
1998 schedule();
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 }
2002
2003 if (locked) {
2004 mem_cgroup_oom_unlock(memcg);
2005 /*
2006 * There is no guarantee that an OOM-lock contender
2007 * sees the wakeups triggered by the OOM kill
2008 * uncharges. Wake any sleepers explicitly.
2009 */
2010 memcg_oom_recover(memcg);
2011 }
2012cleanup:
2013 current->memcg_in_oom = NULL;
2014 css_put(&memcg->css);
2015 return true;
2016}
2017
2018/**
2019 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020 * @victim: task to be killed by the OOM killer
2021 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022 *
2023 * Returns a pointer to a memory cgroup, which has to be cleaned up
2024 * by killing all belonging OOM-killable tasks.
2025 *
2026 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027 */
2028struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029 struct mem_cgroup *oom_domain)
2030{
2031 struct mem_cgroup *oom_group = NULL;
2032 struct mem_cgroup *memcg;
2033
2034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035 return NULL;
2036
2037 if (!oom_domain)
2038 oom_domain = root_mem_cgroup;
2039
2040 rcu_read_lock();
2041
2042 memcg = mem_cgroup_from_task(victim);
2043 if (mem_cgroup_is_root(memcg))
2044 goto out;
2045
2046 /*
2047 * If the victim task has been asynchronously moved to a different
2048 * memory cgroup, we might end up killing tasks outside oom_domain.
2049 * In this case it's better to ignore memory.group.oom.
2050 */
2051 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052 goto out;
2053
2054 /*
2055 * Traverse the memory cgroup hierarchy from the victim task's
2056 * cgroup up to the OOMing cgroup (or root) to find the
2057 * highest-level memory cgroup with oom.group set.
2058 */
2059 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060 if (memcg->oom_group)
2061 oom_group = memcg;
2062
2063 if (memcg == oom_domain)
2064 break;
2065 }
2066
2067 if (oom_group)
2068 css_get(&oom_group->css);
2069out:
2070 rcu_read_unlock();
2071
2072 return oom_group;
2073}
2074
2075void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076{
2077 pr_info("Tasks in ");
2078 pr_cont_cgroup_path(memcg->css.cgroup);
2079 pr_cont(" are going to be killed due to memory.oom.group set\n");
2080}
2081
2082/**
2083 * folio_memcg_lock - Bind a folio to its memcg.
2084 * @folio: The folio.
2085 *
2086 * This function prevents unlocked LRU folios from being moved to
2087 * another cgroup.
2088 *
2089 * It ensures lifetime of the bound memcg. The caller is responsible
2090 * for the lifetime of the folio.
2091 */
2092void folio_memcg_lock(struct folio *folio)
2093{
2094 struct mem_cgroup *memcg;
2095 unsigned long flags;
2096
2097 /*
2098 * The RCU lock is held throughout the transaction. The fast
2099 * path can get away without acquiring the memcg->move_lock
2100 * because page moving starts with an RCU grace period.
2101 */
2102 rcu_read_lock();
2103
2104 if (mem_cgroup_disabled())
2105 return;
2106again:
2107 memcg = folio_memcg(folio);
2108 if (unlikely(!memcg))
2109 return;
2110
2111#ifdef CONFIG_PROVE_LOCKING
2112 local_irq_save(flags);
2113 might_lock(&memcg->move_lock);
2114 local_irq_restore(flags);
2115#endif
2116
2117 if (atomic_read(&memcg->moving_account) <= 0)
2118 return;
2119
2120 spin_lock_irqsave(&memcg->move_lock, flags);
2121 if (memcg != folio_memcg(folio)) {
2122 spin_unlock_irqrestore(&memcg->move_lock, flags);
2123 goto again;
2124 }
2125
2126 /*
2127 * When charge migration first begins, we can have multiple
2128 * critical sections holding the fast-path RCU lock and one
2129 * holding the slowpath move_lock. Track the task who has the
2130 * move_lock for unlock_page_memcg().
2131 */
2132 memcg->move_lock_task = current;
2133 memcg->move_lock_flags = flags;
2134}
2135
2136void lock_page_memcg(struct page *page)
2137{
2138 folio_memcg_lock(page_folio(page));
2139}
2140
2141static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2142{
2143 if (memcg && memcg->move_lock_task == current) {
2144 unsigned long flags = memcg->move_lock_flags;
2145
2146 memcg->move_lock_task = NULL;
2147 memcg->move_lock_flags = 0;
2148
2149 spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 }
2151
2152 rcu_read_unlock();
2153}
2154
2155/**
2156 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157 * @folio: The folio.
2158 *
2159 * This releases the binding created by folio_memcg_lock(). This does
2160 * not change the accounting of this folio to its memcg, but it does
2161 * permit others to change it.
2162 */
2163void folio_memcg_unlock(struct folio *folio)
2164{
2165 __folio_memcg_unlock(folio_memcg(folio));
2166}
2167
2168void unlock_page_memcg(struct page *page)
2169{
2170 folio_memcg_unlock(page_folio(page));
2171}
2172
2173struct memcg_stock_pcp {
2174 local_lock_t stock_lock;
2175 struct mem_cgroup *cached; /* this never be root cgroup */
2176 unsigned int nr_pages;
2177
2178#ifdef CONFIG_MEMCG_KMEM
2179 struct obj_cgroup *cached_objcg;
2180 struct pglist_data *cached_pgdat;
2181 unsigned int nr_bytes;
2182 int nr_slab_reclaimable_b;
2183 int nr_slab_unreclaimable_b;
2184#endif
2185
2186 struct work_struct work;
2187 unsigned long flags;
2188#define FLUSHING_CACHED_CHARGE 0
2189};
2190static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192};
2193static DEFINE_MUTEX(percpu_charge_mutex);
2194
2195#ifdef CONFIG_MEMCG_KMEM
2196static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198 struct mem_cgroup *root_memcg);
2199static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2200
2201#else
2202static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2203{
2204 return NULL;
2205}
2206static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 struct mem_cgroup *root_memcg)
2208{
2209 return false;
2210}
2211static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2212{
2213}
2214#endif
2215
2216/**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock. Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
2226 */
2227static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231 bool ret = false;
2232
2233 if (nr_pages > MEMCG_CHARGE_BATCH)
2234 return ret;
2235
2236 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2237
2238 stock = this_cpu_ptr(&memcg_stock);
2239 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240 stock->nr_pages -= nr_pages;
2241 ret = true;
2242 }
2243
2244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2245
2246 return ret;
2247}
2248
2249/*
2250 * Returns stocks cached in percpu and reset cached information.
2251 */
2252static void drain_stock(struct memcg_stock_pcp *stock)
2253{
2254 struct mem_cgroup *old = stock->cached;
2255
2256 if (!old)
2257 return;
2258
2259 if (stock->nr_pages) {
2260 page_counter_uncharge(&old->memory, stock->nr_pages);
2261 if (do_memsw_account())
2262 page_counter_uncharge(&old->memsw, stock->nr_pages);
2263 stock->nr_pages = 0;
2264 }
2265
2266 css_put(&old->css);
2267 stock->cached = NULL;
2268}
2269
2270static void drain_local_stock(struct work_struct *dummy)
2271{
2272 struct memcg_stock_pcp *stock;
2273 struct obj_cgroup *old = NULL;
2274 unsigned long flags;
2275
2276 /*
2277 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278 * drain_stock races is that we always operate on local CPU stock
2279 * here with IRQ disabled
2280 */
2281 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2282
2283 stock = this_cpu_ptr(&memcg_stock);
2284 old = drain_obj_stock(stock);
2285 drain_stock(stock);
2286 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2287
2288 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289 if (old)
2290 obj_cgroup_put(old);
2291}
2292
2293/*
2294 * Cache charges(val) to local per_cpu area.
2295 * This will be consumed by consume_stock() function, later.
2296 */
2297static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298{
2299 struct memcg_stock_pcp *stock;
2300
2301 stock = this_cpu_ptr(&memcg_stock);
2302 if (stock->cached != memcg) { /* reset if necessary */
2303 drain_stock(stock);
2304 css_get(&memcg->css);
2305 stock->cached = memcg;
2306 }
2307 stock->nr_pages += nr_pages;
2308
2309 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2310 drain_stock(stock);
2311}
2312
2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314{
2315 unsigned long flags;
2316
2317 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318 __refill_stock(memcg, nr_pages);
2319 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2320}
2321
2322/*
2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2324 * of the hierarchy under it.
2325 */
2326static void drain_all_stock(struct mem_cgroup *root_memcg)
2327{
2328 int cpu, curcpu;
2329
2330 /* If someone's already draining, avoid adding running more workers. */
2331 if (!mutex_trylock(&percpu_charge_mutex))
2332 return;
2333 /*
2334 * Notify other cpus that system-wide "drain" is running
2335 * We do not care about races with the cpu hotplug because cpu down
2336 * as well as workers from this path always operate on the local
2337 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 */
2339 migrate_disable();
2340 curcpu = smp_processor_id();
2341 for_each_online_cpu(cpu) {
2342 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343 struct mem_cgroup *memcg;
2344 bool flush = false;
2345
2346 rcu_read_lock();
2347 memcg = stock->cached;
2348 if (memcg && stock->nr_pages &&
2349 mem_cgroup_is_descendant(memcg, root_memcg))
2350 flush = true;
2351 else if (obj_stock_flush_required(stock, root_memcg))
2352 flush = true;
2353 rcu_read_unlock();
2354
2355 if (flush &&
2356 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357 if (cpu == curcpu)
2358 drain_local_stock(&stock->work);
2359 else
2360 schedule_work_on(cpu, &stock->work);
2361 }
2362 }
2363 migrate_enable();
2364 mutex_unlock(&percpu_charge_mutex);
2365}
2366
2367static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368{
2369 struct memcg_stock_pcp *stock;
2370
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
2373
2374 return 0;
2375}
2376
2377static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378 unsigned int nr_pages,
2379 gfp_t gfp_mask)
2380{
2381 unsigned long nr_reclaimed = 0;
2382
2383 do {
2384 unsigned long pflags;
2385
2386 if (page_counter_read(&memcg->memory) <=
2387 READ_ONCE(memcg->memory.high))
2388 continue;
2389
2390 memcg_memory_event(memcg, MEMCG_HIGH);
2391
2392 psi_memstall_enter(&pflags);
2393 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2394 gfp_mask,
2395 MEMCG_RECLAIM_MAY_SWAP);
2396 psi_memstall_leave(&pflags);
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
2399
2400 return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466 u64 overage;
2467
2468 if (usage <= high)
2469 return 0;
2470
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
2476
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
2488 READ_ONCE(memcg->memory.high));
2489 max_overage = max(overage, max_overage);
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
2493 return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
2522 if (!max_overage)
2523 return 0;
2524
2525 /*
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
2556 unsigned long nr_reclaimed;
2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 int nr_retries = MAX_RECLAIM_RETRIES;
2559 struct mem_cgroup *memcg;
2560 bool in_retry = false;
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
2566 current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
2588
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
2629}
2630
2631static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
2633{
2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *mem_over_limit;
2637 struct page_counter *counter;
2638 unsigned long nr_reclaimed;
2639 bool passed_oom = false;
2640 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2641 bool drained = false;
2642 bool raised_max_event = false;
2643 unsigned long pflags;
2644
2645retry:
2646 if (consume_stock(memcg, nr_pages))
2647 return 0;
2648
2649 if (!do_memsw_account() ||
2650 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2652 goto done_restock;
2653 if (do_memsw_account())
2654 page_counter_uncharge(&memcg->memsw, batch);
2655 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2656 } else {
2657 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2658 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2659 }
2660
2661 if (batch > nr_pages) {
2662 batch = nr_pages;
2663 goto retry;
2664 }
2665
2666 /*
2667 * Prevent unbounded recursion when reclaim operations need to
2668 * allocate memory. This might exceed the limits temporarily,
2669 * but we prefer facilitating memory reclaim and getting back
2670 * under the limit over triggering OOM kills in these cases.
2671 */
2672 if (unlikely(current->flags & PF_MEMALLOC))
2673 goto force;
2674
2675 if (unlikely(task_in_memcg_oom(current)))
2676 goto nomem;
2677
2678 if (!gfpflags_allow_blocking(gfp_mask))
2679 goto nomem;
2680
2681 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2682 raised_max_event = true;
2683
2684 psi_memstall_enter(&pflags);
2685 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2686 gfp_mask, reclaim_options);
2687 psi_memstall_leave(&pflags);
2688
2689 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2690 goto retry;
2691
2692 if (!drained) {
2693 drain_all_stock(mem_over_limit);
2694 drained = true;
2695 goto retry;
2696 }
2697
2698 if (gfp_mask & __GFP_NORETRY)
2699 goto nomem;
2700 /*
2701 * Even though the limit is exceeded at this point, reclaim
2702 * may have been able to free some pages. Retry the charge
2703 * before killing the task.
2704 *
2705 * Only for regular pages, though: huge pages are rather
2706 * unlikely to succeed so close to the limit, and we fall back
2707 * to regular pages anyway in case of failure.
2708 */
2709 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2710 goto retry;
2711 /*
2712 * At task move, charge accounts can be doubly counted. So, it's
2713 * better to wait until the end of task_move if something is going on.
2714 */
2715 if (mem_cgroup_wait_acct_move(mem_over_limit))
2716 goto retry;
2717
2718 if (nr_retries--)
2719 goto retry;
2720
2721 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2722 goto nomem;
2723
2724 /* Avoid endless loop for tasks bypassed by the oom killer */
2725 if (passed_oom && task_is_dying())
2726 goto nomem;
2727
2728 /*
2729 * keep retrying as long as the memcg oom killer is able to make
2730 * a forward progress or bypass the charge if the oom killer
2731 * couldn't make any progress.
2732 */
2733 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734 get_order(nr_pages * PAGE_SIZE))) {
2735 passed_oom = true;
2736 nr_retries = MAX_RECLAIM_RETRIES;
2737 goto retry;
2738 }
2739nomem:
2740 /*
2741 * Memcg doesn't have a dedicated reserve for atomic
2742 * allocations. But like the global atomic pool, we need to
2743 * put the burden of reclaim on regular allocation requests
2744 * and let these go through as privileged allocations.
2745 */
2746 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2747 return -ENOMEM;
2748force:
2749 /*
2750 * If the allocation has to be enforced, don't forget to raise
2751 * a MEMCG_MAX event.
2752 */
2753 if (!raised_max_event)
2754 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
2756 /*
2757 * The allocation either can't fail or will lead to more memory
2758 * being freed very soon. Allow memory usage go over the limit
2759 * temporarily by force charging it.
2760 */
2761 page_counter_charge(&memcg->memory, nr_pages);
2762 if (do_memsw_account())
2763 page_counter_charge(&memcg->memsw, nr_pages);
2764
2765 return 0;
2766
2767done_restock:
2768 if (batch > nr_pages)
2769 refill_stock(memcg, batch - nr_pages);
2770
2771 /*
2772 * If the hierarchy is above the normal consumption range, schedule
2773 * reclaim on returning to userland. We can perform reclaim here
2774 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2775 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2776 * not recorded as it most likely matches current's and won't
2777 * change in the meantime. As high limit is checked again before
2778 * reclaim, the cost of mismatch is negligible.
2779 */
2780 do {
2781 bool mem_high, swap_high;
2782
2783 mem_high = page_counter_read(&memcg->memory) >
2784 READ_ONCE(memcg->memory.high);
2785 swap_high = page_counter_read(&memcg->swap) >
2786 READ_ONCE(memcg->swap.high);
2787
2788 /* Don't bother a random interrupted task */
2789 if (!in_task()) {
2790 if (mem_high) {
2791 schedule_work(&memcg->high_work);
2792 break;
2793 }
2794 continue;
2795 }
2796
2797 if (mem_high || swap_high) {
2798 /*
2799 * The allocating tasks in this cgroup will need to do
2800 * reclaim or be throttled to prevent further growth
2801 * of the memory or swap footprints.
2802 *
2803 * Target some best-effort fairness between the tasks,
2804 * and distribute reclaim work and delay penalties
2805 * based on how much each task is actually allocating.
2806 */
2807 current->memcg_nr_pages_over_high += batch;
2808 set_notify_resume(current);
2809 break;
2810 }
2811 } while ((memcg = parent_mem_cgroup(memcg)));
2812
2813 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814 !(current->flags & PF_MEMALLOC) &&
2815 gfpflags_allow_blocking(gfp_mask)) {
2816 mem_cgroup_handle_over_high();
2817 }
2818 return 0;
2819}
2820
2821static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822 unsigned int nr_pages)
2823{
2824 if (mem_cgroup_is_root(memcg))
2825 return 0;
2826
2827 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828}
2829
2830static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2831{
2832 if (mem_cgroup_is_root(memcg))
2833 return;
2834
2835 page_counter_uncharge(&memcg->memory, nr_pages);
2836 if (do_memsw_account())
2837 page_counter_uncharge(&memcg->memsw, nr_pages);
2838}
2839
2840static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2841{
2842 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2843 /*
2844 * Any of the following ensures page's memcg stability:
2845 *
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
2850 * - mem_cgroup_trylock_pages()
2851 */
2852 folio->memcg_data = (unsigned long)memcg;
2853}
2854
2855#ifdef CONFIG_MEMCG_KMEM
2856/*
2857 * The allocated objcg pointers array is not accounted directly.
2858 * Moreover, it should not come from DMA buffer and is not readily
2859 * reclaimable. So those GFP bits should be masked off.
2860 */
2861#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862
2863/*
2864 * mod_objcg_mlstate() may be called with irq enabled, so
2865 * mod_memcg_lruvec_state() should be used.
2866 */
2867static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868 struct pglist_data *pgdat,
2869 enum node_stat_item idx, int nr)
2870{
2871 struct mem_cgroup *memcg;
2872 struct lruvec *lruvec;
2873
2874 rcu_read_lock();
2875 memcg = obj_cgroup_memcg(objcg);
2876 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877 mod_memcg_lruvec_state(lruvec, idx, nr);
2878 rcu_read_unlock();
2879}
2880
2881int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882 gfp_t gfp, bool new_slab)
2883{
2884 unsigned int objects = objs_per_slab(s, slab);
2885 unsigned long memcg_data;
2886 void *vec;
2887
2888 gfp &= ~OBJCGS_CLEAR_MASK;
2889 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2890 slab_nid(slab));
2891 if (!vec)
2892 return -ENOMEM;
2893
2894 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2895 if (new_slab) {
2896 /*
2897 * If the slab is brand new and nobody can yet access its
2898 * memcg_data, no synchronization is required and memcg_data can
2899 * be simply assigned.
2900 */
2901 slab->memcg_data = memcg_data;
2902 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2903 /*
2904 * If the slab is already in use, somebody can allocate and
2905 * assign obj_cgroups in parallel. In this case the existing
2906 * objcg vector should be reused.
2907 */
2908 kfree(vec);
2909 return 0;
2910 }
2911
2912 kmemleak_not_leak(vec);
2913 return 0;
2914}
2915
2916static __always_inline
2917struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2918{
2919 /*
2920 * Slab objects are accounted individually, not per-page.
2921 * Memcg membership data for each individual object is saved in
2922 * slab->memcg_data.
2923 */
2924 if (folio_test_slab(folio)) {
2925 struct obj_cgroup **objcgs;
2926 struct slab *slab;
2927 unsigned int off;
2928
2929 slab = folio_slab(folio);
2930 objcgs = slab_objcgs(slab);
2931 if (!objcgs)
2932 return NULL;
2933
2934 off = obj_to_index(slab->slab_cache, slab, p);
2935 if (objcgs[off])
2936 return obj_cgroup_memcg(objcgs[off]);
2937
2938 return NULL;
2939 }
2940
2941 /*
2942 * page_memcg_check() is used here, because in theory we can encounter
2943 * a folio where the slab flag has been cleared already, but
2944 * slab->memcg_data has not been freed yet
2945 * page_memcg_check(page) will guarantee that a proper memory
2946 * cgroup pointer or NULL will be returned.
2947 */
2948 return page_memcg_check(folio_page(folio, 0));
2949}
2950
2951/*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * A passed kernel object can be a slab object, vmalloc object or a generic
2955 * kernel page, so different mechanisms for getting the memory cgroup pointer
2956 * should be used.
2957 *
2958 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959 * can not know for sure how the kernel object is implemented.
2960 * mem_cgroup_from_obj() can be safely used in such cases.
2961 *
2962 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963 * cgroup_mutex, etc.
2964 */
2965struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966{
2967 struct folio *folio;
2968
2969 if (mem_cgroup_disabled())
2970 return NULL;
2971
2972 if (unlikely(is_vmalloc_addr(p)))
2973 folio = page_folio(vmalloc_to_page(p));
2974 else
2975 folio = virt_to_folio(p);
2976
2977 return mem_cgroup_from_obj_folio(folio, p);
2978}
2979
2980/*
2981 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983 * allocated using vmalloc().
2984 *
2985 * A passed kernel object must be a slab object or a generic kernel page.
2986 *
2987 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988 * cgroup_mutex, etc.
2989 */
2990struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991{
2992 if (mem_cgroup_disabled())
2993 return NULL;
2994
2995 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996}
2997
2998static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999{
3000 struct obj_cgroup *objcg = NULL;
3001
3002 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3003 objcg = rcu_dereference(memcg->objcg);
3004 if (objcg && obj_cgroup_tryget(objcg))
3005 break;
3006 objcg = NULL;
3007 }
3008 return objcg;
3009}
3010
3011__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012{
3013 struct obj_cgroup *objcg = NULL;
3014 struct mem_cgroup *memcg;
3015
3016 if (memcg_kmem_bypass())
3017 return NULL;
3018
3019 rcu_read_lock();
3020 if (unlikely(active_memcg()))
3021 memcg = active_memcg();
3022 else
3023 memcg = mem_cgroup_from_task(current);
3024 objcg = __get_obj_cgroup_from_memcg(memcg);
3025 rcu_read_unlock();
3026 return objcg;
3027}
3028
3029struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030{
3031 struct obj_cgroup *objcg;
3032
3033 if (!memcg_kmem_enabled())
3034 return NULL;
3035
3036 if (PageMemcgKmem(page)) {
3037 objcg = __folio_objcg(page_folio(page));
3038 obj_cgroup_get(objcg);
3039 } else {
3040 struct mem_cgroup *memcg;
3041
3042 rcu_read_lock();
3043 memcg = __folio_memcg(page_folio(page));
3044 if (memcg)
3045 objcg = __get_obj_cgroup_from_memcg(memcg);
3046 else
3047 objcg = NULL;
3048 rcu_read_unlock();
3049 }
3050 return objcg;
3051}
3052
3053static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054{
3055 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057 if (nr_pages > 0)
3058 page_counter_charge(&memcg->kmem, nr_pages);
3059 else
3060 page_counter_uncharge(&memcg->kmem, -nr_pages);
3061 }
3062}
3063
3064
3065/*
3066 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067 * @objcg: object cgroup to uncharge
3068 * @nr_pages: number of pages to uncharge
3069 */
3070static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071 unsigned int nr_pages)
3072{
3073 struct mem_cgroup *memcg;
3074
3075 memcg = get_mem_cgroup_from_objcg(objcg);
3076
3077 memcg_account_kmem(memcg, -nr_pages);
3078 refill_stock(memcg, nr_pages);
3079
3080 css_put(&memcg->css);
3081}
3082
3083/*
3084 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085 * @objcg: object cgroup to charge
3086 * @gfp: reclaim mode
3087 * @nr_pages: number of pages to charge
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
3091static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092 unsigned int nr_pages)
3093{
3094 struct mem_cgroup *memcg;
3095 int ret;
3096
3097 memcg = get_mem_cgroup_from_objcg(objcg);
3098
3099 ret = try_charge_memcg(memcg, gfp, nr_pages);
3100 if (ret)
3101 goto out;
3102
3103 memcg_account_kmem(memcg, nr_pages);
3104out:
3105 css_put(&memcg->css);
3106
3107 return ret;
3108}
3109
3110/**
3111 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3112 * @page: page to charge
3113 * @gfp: reclaim mode
3114 * @order: allocation order
3115 *
3116 * Returns 0 on success, an error code on failure.
3117 */
3118int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3119{
3120 struct obj_cgroup *objcg;
3121 int ret = 0;
3122
3123 objcg = get_obj_cgroup_from_current();
3124 if (objcg) {
3125 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3126 if (!ret) {
3127 page->memcg_data = (unsigned long)objcg |
3128 MEMCG_DATA_KMEM;
3129 return 0;
3130 }
3131 obj_cgroup_put(objcg);
3132 }
3133 return ret;
3134}
3135
3136/**
3137 * __memcg_kmem_uncharge_page: uncharge a kmem page
3138 * @page: page to uncharge
3139 * @order: allocation order
3140 */
3141void __memcg_kmem_uncharge_page(struct page *page, int order)
3142{
3143 struct folio *folio = page_folio(page);
3144 struct obj_cgroup *objcg;
3145 unsigned int nr_pages = 1 << order;
3146
3147 if (!folio_memcg_kmem(folio))
3148 return;
3149
3150 objcg = __folio_objcg(folio);
3151 obj_cgroup_uncharge_pages(objcg, nr_pages);
3152 folio->memcg_data = 0;
3153 obj_cgroup_put(objcg);
3154}
3155
3156void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157 enum node_stat_item idx, int nr)
3158{
3159 struct memcg_stock_pcp *stock;
3160 struct obj_cgroup *old = NULL;
3161 unsigned long flags;
3162 int *bytes;
3163
3164 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3165 stock = this_cpu_ptr(&memcg_stock);
3166
3167 /*
3168 * Save vmstat data in stock and skip vmstat array update unless
3169 * accumulating over a page of vmstat data or when pgdat or idx
3170 * changes.
3171 */
3172 if (stock->cached_objcg != objcg) {
3173 old = drain_obj_stock(stock);
3174 obj_cgroup_get(objcg);
3175 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177 stock->cached_objcg = objcg;
3178 stock->cached_pgdat = pgdat;
3179 } else if (stock->cached_pgdat != pgdat) {
3180 /* Flush the existing cached vmstat data */
3181 struct pglist_data *oldpg = stock->cached_pgdat;
3182
3183 if (stock->nr_slab_reclaimable_b) {
3184 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3185 stock->nr_slab_reclaimable_b);
3186 stock->nr_slab_reclaimable_b = 0;
3187 }
3188 if (stock->nr_slab_unreclaimable_b) {
3189 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3190 stock->nr_slab_unreclaimable_b);
3191 stock->nr_slab_unreclaimable_b = 0;
3192 }
3193 stock->cached_pgdat = pgdat;
3194 }
3195
3196 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197 : &stock->nr_slab_unreclaimable_b;
3198 /*
3199 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200 * cached locally at least once before pushing it out.
3201 */
3202 if (!*bytes) {
3203 *bytes = nr;
3204 nr = 0;
3205 } else {
3206 *bytes += nr;
3207 if (abs(*bytes) > PAGE_SIZE) {
3208 nr = *bytes;
3209 *bytes = 0;
3210 } else {
3211 nr = 0;
3212 }
3213 }
3214 if (nr)
3215 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216
3217 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218 if (old)
3219 obj_cgroup_put(old);
3220}
3221
3222static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223{
3224 struct memcg_stock_pcp *stock;
3225 unsigned long flags;
3226 bool ret = false;
3227
3228 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3229
3230 stock = this_cpu_ptr(&memcg_stock);
3231 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232 stock->nr_bytes -= nr_bytes;
3233 ret = true;
3234 }
3235
3236 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3237
3238 return ret;
3239}
3240
3241static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3242{
3243 struct obj_cgroup *old = stock->cached_objcg;
3244
3245 if (!old)
3246 return NULL;
3247
3248 if (stock->nr_bytes) {
3249 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251
3252 if (nr_pages) {
3253 struct mem_cgroup *memcg;
3254
3255 memcg = get_mem_cgroup_from_objcg(old);
3256
3257 memcg_account_kmem(memcg, -nr_pages);
3258 __refill_stock(memcg, nr_pages);
3259
3260 css_put(&memcg->css);
3261 }
3262
3263 /*
3264 * The leftover is flushed to the centralized per-memcg value.
3265 * On the next attempt to refill obj stock it will be moved
3266 * to a per-cpu stock (probably, on an other CPU), see
3267 * refill_obj_stock().
3268 *
3269 * How often it's flushed is a trade-off between the memory
3270 * limit enforcement accuracy and potential CPU contention,
3271 * so it might be changed in the future.
3272 */
3273 atomic_add(nr_bytes, &old->nr_charged_bytes);
3274 stock->nr_bytes = 0;
3275 }
3276
3277 /*
3278 * Flush the vmstat data in current stock
3279 */
3280 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281 if (stock->nr_slab_reclaimable_b) {
3282 mod_objcg_mlstate(old, stock->cached_pgdat,
3283 NR_SLAB_RECLAIMABLE_B,
3284 stock->nr_slab_reclaimable_b);
3285 stock->nr_slab_reclaimable_b = 0;
3286 }
3287 if (stock->nr_slab_unreclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_UNRECLAIMABLE_B,
3290 stock->nr_slab_unreclaimable_b);
3291 stock->nr_slab_unreclaimable_b = 0;
3292 }
3293 stock->cached_pgdat = NULL;
3294 }
3295
3296 stock->cached_objcg = NULL;
3297 /*
3298 * The `old' objects needs to be released by the caller via
3299 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300 */
3301 return old;
3302}
3303
3304static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305 struct mem_cgroup *root_memcg)
3306{
3307 struct mem_cgroup *memcg;
3308
3309 if (stock->cached_objcg) {
3310 memcg = obj_cgroup_memcg(stock->cached_objcg);
3311 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312 return true;
3313 }
3314
3315 return false;
3316}
3317
3318static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319 bool allow_uncharge)
3320{
3321 struct memcg_stock_pcp *stock;
3322 struct obj_cgroup *old = NULL;
3323 unsigned long flags;
3324 unsigned int nr_pages = 0;
3325
3326 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3327
3328 stock = this_cpu_ptr(&memcg_stock);
3329 if (stock->cached_objcg != objcg) { /* reset if necessary */
3330 old = drain_obj_stock(stock);
3331 obj_cgroup_get(objcg);
3332 stock->cached_objcg = objcg;
3333 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335 allow_uncharge = true; /* Allow uncharge when objcg changes */
3336 }
3337 stock->nr_bytes += nr_bytes;
3338
3339 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341 stock->nr_bytes &= (PAGE_SIZE - 1);
3342 }
3343
3344 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345 if (old)
3346 obj_cgroup_put(old);
3347
3348 if (nr_pages)
3349 obj_cgroup_uncharge_pages(objcg, nr_pages);
3350}
3351
3352int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353{
3354 unsigned int nr_pages, nr_bytes;
3355 int ret;
3356
3357 if (consume_obj_stock(objcg, size))
3358 return 0;
3359
3360 /*
3361 * In theory, objcg->nr_charged_bytes can have enough
3362 * pre-charged bytes to satisfy the allocation. However,
3363 * flushing objcg->nr_charged_bytes requires two atomic
3364 * operations, and objcg->nr_charged_bytes can't be big.
3365 * The shared objcg->nr_charged_bytes can also become a
3366 * performance bottleneck if all tasks of the same memcg are
3367 * trying to update it. So it's better to ignore it and try
3368 * grab some new pages. The stock's nr_bytes will be flushed to
3369 * objcg->nr_charged_bytes later on when objcg changes.
3370 *
3371 * The stock's nr_bytes may contain enough pre-charged bytes
3372 * to allow one less page from being charged, but we can't rely
3373 * on the pre-charged bytes not being changed outside of
3374 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375 * pre-charged bytes as well when charging pages. To avoid a
3376 * page uncharge right after a page charge, we set the
3377 * allow_uncharge flag to false when calling refill_obj_stock()
3378 * to temporarily allow the pre-charged bytes to exceed the page
3379 * size limit. The maximum reachable value of the pre-charged
3380 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381 * race.
3382 */
3383 nr_pages = size >> PAGE_SHIFT;
3384 nr_bytes = size & (PAGE_SIZE - 1);
3385
3386 if (nr_bytes)
3387 nr_pages += 1;
3388
3389 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3390 if (!ret && nr_bytes)
3391 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3392
3393 return ret;
3394}
3395
3396void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397{
3398 refill_obj_stock(objcg, size, true);
3399}
3400
3401#endif /* CONFIG_MEMCG_KMEM */
3402
3403/*
3404 * Because page_memcg(head) is not set on tails, set it now.
3405 */
3406void split_page_memcg(struct page *head, unsigned int nr)
3407{
3408 struct folio *folio = page_folio(head);
3409 struct mem_cgroup *memcg = folio_memcg(folio);
3410 int i;
3411
3412 if (mem_cgroup_disabled() || !memcg)
3413 return;
3414
3415 for (i = 1; i < nr; i++)
3416 folio_page(folio, i)->memcg_data = folio->memcg_data;
3417
3418 if (folio_memcg_kmem(folio))
3419 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3420 else
3421 css_get_many(&memcg->css, nr - 1);
3422}
3423
3424#ifdef CONFIG_SWAP
3425/**
3426 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427 * @entry: swap entry to be moved
3428 * @from: mem_cgroup which the entry is moved from
3429 * @to: mem_cgroup which the entry is moved to
3430 *
3431 * It succeeds only when the swap_cgroup's record for this entry is the same
3432 * as the mem_cgroup's id of @from.
3433 *
3434 * Returns 0 on success, -EINVAL on failure.
3435 *
3436 * The caller must have charged to @to, IOW, called page_counter_charge() about
3437 * both res and memsw, and called css_get().
3438 */
3439static int mem_cgroup_move_swap_account(swp_entry_t entry,
3440 struct mem_cgroup *from, struct mem_cgroup *to)
3441{
3442 unsigned short old_id, new_id;
3443
3444 old_id = mem_cgroup_id(from);
3445 new_id = mem_cgroup_id(to);
3446
3447 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3448 mod_memcg_state(from, MEMCG_SWAP, -1);
3449 mod_memcg_state(to, MEMCG_SWAP, 1);
3450 return 0;
3451 }
3452 return -EINVAL;
3453}
3454#else
3455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3456 struct mem_cgroup *from, struct mem_cgroup *to)
3457{
3458 return -EINVAL;
3459}
3460#endif
3461
3462static DEFINE_MUTEX(memcg_max_mutex);
3463
3464static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465 unsigned long max, bool memsw)
3466{
3467 bool enlarge = false;
3468 bool drained = false;
3469 int ret;
3470 bool limits_invariant;
3471 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3472
3473 do {
3474 if (signal_pending(current)) {
3475 ret = -EINTR;
3476 break;
3477 }
3478
3479 mutex_lock(&memcg_max_mutex);
3480 /*
3481 * Make sure that the new limit (memsw or memory limit) doesn't
3482 * break our basic invariant rule memory.max <= memsw.max.
3483 */
3484 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3485 max <= memcg->memsw.max;
3486 if (!limits_invariant) {
3487 mutex_unlock(&memcg_max_mutex);
3488 ret = -EINVAL;
3489 break;
3490 }
3491 if (max > counter->max)
3492 enlarge = true;
3493 ret = page_counter_set_max(counter, max);
3494 mutex_unlock(&memcg_max_mutex);
3495
3496 if (!ret)
3497 break;
3498
3499 if (!drained) {
3500 drain_all_stock(memcg);
3501 drained = true;
3502 continue;
3503 }
3504
3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3506 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3507 ret = -EBUSY;
3508 break;
3509 }
3510 } while (true);
3511
3512 if (!ret && enlarge)
3513 memcg_oom_recover(memcg);
3514
3515 return ret;
3516}
3517
3518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3519 gfp_t gfp_mask,
3520 unsigned long *total_scanned)
3521{
3522 unsigned long nr_reclaimed = 0;
3523 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3524 unsigned long reclaimed;
3525 int loop = 0;
3526 struct mem_cgroup_tree_per_node *mctz;
3527 unsigned long excess;
3528
3529 if (order > 0)
3530 return 0;
3531
3532 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3533
3534 /*
3535 * Do not even bother to check the largest node if the root
3536 * is empty. Do it lockless to prevent lock bouncing. Races
3537 * are acceptable as soft limit is best effort anyway.
3538 */
3539 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3540 return 0;
3541
3542 /*
3543 * This loop can run a while, specially if mem_cgroup's continuously
3544 * keep exceeding their soft limit and putting the system under
3545 * pressure
3546 */
3547 do {
3548 if (next_mz)
3549 mz = next_mz;
3550 else
3551 mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 if (!mz)
3553 break;
3554
3555 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3556 gfp_mask, total_scanned);
3557 nr_reclaimed += reclaimed;
3558 spin_lock_irq(&mctz->lock);
3559
3560 /*
3561 * If we failed to reclaim anything from this memory cgroup
3562 * it is time to move on to the next cgroup
3563 */
3564 next_mz = NULL;
3565 if (!reclaimed)
3566 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567
3568 excess = soft_limit_excess(mz->memcg);
3569 /*
3570 * One school of thought says that we should not add
3571 * back the node to the tree if reclaim returns 0.
3572 * But our reclaim could return 0, simply because due
3573 * to priority we are exposing a smaller subset of
3574 * memory to reclaim from. Consider this as a longer
3575 * term TODO.
3576 */
3577 /* If excess == 0, no tree ops */
3578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3579 spin_unlock_irq(&mctz->lock);
3580 css_put(&mz->memcg->css);
3581 loop++;
3582 /*
3583 * Could not reclaim anything and there are no more
3584 * mem cgroups to try or we seem to be looping without
3585 * reclaiming anything.
3586 */
3587 if (!nr_reclaimed &&
3588 (next_mz == NULL ||
3589 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590 break;
3591 } while (!nr_reclaimed);
3592 if (next_mz)
3593 css_put(&next_mz->memcg->css);
3594 return nr_reclaimed;
3595}
3596
3597/*
3598 * Reclaims as many pages from the given memcg as possible.
3599 *
3600 * Caller is responsible for holding css reference for memcg.
3601 */
3602static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603{
3604 int nr_retries = MAX_RECLAIM_RETRIES;
3605
3606 /* we call try-to-free pages for make this cgroup empty */
3607 lru_add_drain_all();
3608
3609 drain_all_stock(memcg);
3610
3611 /* try to free all pages in this cgroup */
3612 while (nr_retries && page_counter_read(&memcg->memory)) {
3613 if (signal_pending(current))
3614 return -EINTR;
3615
3616 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3617 MEMCG_RECLAIM_MAY_SWAP))
3618 nr_retries--;
3619 }
3620
3621 return 0;
3622}
3623
3624static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
3627{
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3629
3630 if (mem_cgroup_is_root(memcg))
3631 return -EINVAL;
3632 return mem_cgroup_force_empty(memcg) ?: nbytes;
3633}
3634
3635static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636 struct cftype *cft)
3637{
3638 return 1;
3639}
3640
3641static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642 struct cftype *cft, u64 val)
3643{
3644 if (val == 1)
3645 return 0;
3646
3647 pr_warn_once("Non-hierarchical mode is deprecated. "
3648 "Please report your usecase to linux-mm@kvack.org if you "
3649 "depend on this functionality.\n");
3650
3651 return -EINVAL;
3652}
3653
3654static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3655{
3656 unsigned long val;
3657
3658 if (mem_cgroup_is_root(memcg)) {
3659 mem_cgroup_flush_stats();
3660 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3661 memcg_page_state(memcg, NR_ANON_MAPPED);
3662 if (swap)
3663 val += memcg_page_state(memcg, MEMCG_SWAP);
3664 } else {
3665 if (!swap)
3666 val = page_counter_read(&memcg->memory);
3667 else
3668 val = page_counter_read(&memcg->memsw);
3669 }
3670 return val;
3671}
3672
3673enum {
3674 RES_USAGE,
3675 RES_LIMIT,
3676 RES_MAX_USAGE,
3677 RES_FAILCNT,
3678 RES_SOFT_LIMIT,
3679};
3680
3681static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3682 struct cftype *cft)
3683{
3684 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3685 struct page_counter *counter;
3686
3687 switch (MEMFILE_TYPE(cft->private)) {
3688 case _MEM:
3689 counter = &memcg->memory;
3690 break;
3691 case _MEMSWAP:
3692 counter = &memcg->memsw;
3693 break;
3694 case _KMEM:
3695 counter = &memcg->kmem;
3696 break;
3697 case _TCP:
3698 counter = &memcg->tcpmem;
3699 break;
3700 default:
3701 BUG();
3702 }
3703
3704 switch (MEMFILE_ATTR(cft->private)) {
3705 case RES_USAGE:
3706 if (counter == &memcg->memory)
3707 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3708 if (counter == &memcg->memsw)
3709 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3710 return (u64)page_counter_read(counter) * PAGE_SIZE;
3711 case RES_LIMIT:
3712 return (u64)counter->max * PAGE_SIZE;
3713 case RES_MAX_USAGE:
3714 return (u64)counter->watermark * PAGE_SIZE;
3715 case RES_FAILCNT:
3716 return counter->failcnt;
3717 case RES_SOFT_LIMIT:
3718 return (u64)memcg->soft_limit * PAGE_SIZE;
3719 default:
3720 BUG();
3721 }
3722}
3723
3724#ifdef CONFIG_MEMCG_KMEM
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 struct obj_cgroup *objcg;
3728
3729 if (mem_cgroup_kmem_disabled())
3730 return 0;
3731
3732 if (unlikely(mem_cgroup_is_root(memcg)))
3733 return 0;
3734
3735 objcg = obj_cgroup_alloc();
3736 if (!objcg)
3737 return -ENOMEM;
3738
3739 objcg->memcg = memcg;
3740 rcu_assign_pointer(memcg->objcg, objcg);
3741
3742 static_branch_enable(&memcg_kmem_enabled_key);
3743
3744 memcg->kmemcg_id = memcg->id.id;
3745
3746 return 0;
3747}
3748
3749static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750{
3751 struct mem_cgroup *parent;
3752
3753 if (mem_cgroup_kmem_disabled())
3754 return;
3755
3756 if (unlikely(mem_cgroup_is_root(memcg)))
3757 return;
3758
3759 parent = parent_mem_cgroup(memcg);
3760 if (!parent)
3761 parent = root_mem_cgroup;
3762
3763 memcg_reparent_objcgs(memcg, parent);
3764
3765 /*
3766 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767 * corresponding to this cgroup are guaranteed to remain empty.
3768 * The ordering is imposed by list_lru_node->lock taken by
3769 * memcg_reparent_list_lrus().
3770 */
3771 memcg_reparent_list_lrus(memcg, parent);
3772}
3773#else
3774static int memcg_online_kmem(struct mem_cgroup *memcg)
3775{
3776 return 0;
3777}
3778static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779{
3780}
3781#endif /* CONFIG_MEMCG_KMEM */
3782
3783static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3784{
3785 int ret;
3786
3787 mutex_lock(&memcg_max_mutex);
3788
3789 ret = page_counter_set_max(&memcg->tcpmem, max);
3790 if (ret)
3791 goto out;
3792
3793 if (!memcg->tcpmem_active) {
3794 /*
3795 * The active flag needs to be written after the static_key
3796 * update. This is what guarantees that the socket activation
3797 * function is the last one to run. See mem_cgroup_sk_alloc()
3798 * for details, and note that we don't mark any socket as
3799 * belonging to this memcg until that flag is up.
3800 *
3801 * We need to do this, because static_keys will span multiple
3802 * sites, but we can't control their order. If we mark a socket
3803 * as accounted, but the accounting functions are not patched in
3804 * yet, we'll lose accounting.
3805 *
3806 * We never race with the readers in mem_cgroup_sk_alloc(),
3807 * because when this value change, the code to process it is not
3808 * patched in yet.
3809 */
3810 static_branch_inc(&memcg_sockets_enabled_key);
3811 memcg->tcpmem_active = true;
3812 }
3813out:
3814 mutex_unlock(&memcg_max_mutex);
3815 return ret;
3816}
3817
3818/*
3819 * The user of this function is...
3820 * RES_LIMIT.
3821 */
3822static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823 char *buf, size_t nbytes, loff_t off)
3824{
3825 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826 unsigned long nr_pages;
3827 int ret;
3828
3829 buf = strstrip(buf);
3830 ret = page_counter_memparse(buf, "-1", &nr_pages);
3831 if (ret)
3832 return ret;
3833
3834 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3835 case RES_LIMIT:
3836 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837 ret = -EINVAL;
3838 break;
3839 }
3840 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841 case _MEM:
3842 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3843 break;
3844 case _MEMSWAP:
3845 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3846 break;
3847 case _KMEM:
3848 /* kmem.limit_in_bytes is deprecated. */
3849 ret = -EOPNOTSUPP;
3850 break;
3851 case _TCP:
3852 ret = memcg_update_tcp_max(memcg, nr_pages);
3853 break;
3854 }
3855 break;
3856 case RES_SOFT_LIMIT:
3857 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858 ret = -EOPNOTSUPP;
3859 } else {
3860 memcg->soft_limit = nr_pages;
3861 ret = 0;
3862 }
3863 break;
3864 }
3865 return ret ?: nbytes;
3866}
3867
3868static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869 size_t nbytes, loff_t off)
3870{
3871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872 struct page_counter *counter;
3873
3874 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875 case _MEM:
3876 counter = &memcg->memory;
3877 break;
3878 case _MEMSWAP:
3879 counter = &memcg->memsw;
3880 break;
3881 case _KMEM:
3882 counter = &memcg->kmem;
3883 break;
3884 case _TCP:
3885 counter = &memcg->tcpmem;
3886 break;
3887 default:
3888 BUG();
3889 }
3890
3891 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892 case RES_MAX_USAGE:
3893 page_counter_reset_watermark(counter);
3894 break;
3895 case RES_FAILCNT:
3896 counter->failcnt = 0;
3897 break;
3898 default:
3899 BUG();
3900 }
3901
3902 return nbytes;
3903}
3904
3905static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906 struct cftype *cft)
3907{
3908 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909}
3910
3911#ifdef CONFIG_MMU
3912static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 struct cftype *cft, u64 val)
3914{
3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916
3917 if (val & ~MOVE_MASK)
3918 return -EINVAL;
3919
3920 /*
3921 * No kind of locking is needed in here, because ->can_attach() will
3922 * check this value once in the beginning of the process, and then carry
3923 * on with stale data. This means that changes to this value will only
3924 * affect task migrations starting after the change.
3925 */
3926 memcg->move_charge_at_immigrate = val;
3927 return 0;
3928}
3929#else
3930static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 struct cftype *cft, u64 val)
3932{
3933 return -ENOSYS;
3934}
3935#endif
3936
3937#ifdef CONFIG_NUMA
3938
3939#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3942
3943static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944 int nid, unsigned int lru_mask, bool tree)
3945{
3946 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947 unsigned long nr = 0;
3948 enum lru_list lru;
3949
3950 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952 for_each_lru(lru) {
3953 if (!(BIT(lru) & lru_mask))
3954 continue;
3955 if (tree)
3956 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957 else
3958 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959 }
3960 return nr;
3961}
3962
3963static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964 unsigned int lru_mask,
3965 bool tree)
3966{
3967 unsigned long nr = 0;
3968 enum lru_list lru;
3969
3970 for_each_lru(lru) {
3971 if (!(BIT(lru) & lru_mask))
3972 continue;
3973 if (tree)
3974 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975 else
3976 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977 }
3978 return nr;
3979}
3980
3981static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982{
3983 struct numa_stat {
3984 const char *name;
3985 unsigned int lru_mask;
3986 };
3987
3988 static const struct numa_stat stats[] = {
3989 { "total", LRU_ALL },
3990 { "file", LRU_ALL_FILE },
3991 { "anon", LRU_ALL_ANON },
3992 { "unevictable", BIT(LRU_UNEVICTABLE) },
3993 };
3994 const struct numa_stat *stat;
3995 int nid;
3996 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997
3998 mem_cgroup_flush_stats();
3999
4000 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 seq_printf(m, "%s=%lu", stat->name,
4002 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 false));
4004 for_each_node_state(nid, N_MEMORY)
4005 seq_printf(m, " N%d=%lu", nid,
4006 mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 stat->lru_mask, false));
4008 seq_putc(m, '\n');
4009 }
4010
4011 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 true));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, true));
4020 seq_putc(m, '\n');
4021 }
4022
4023 return 0;
4024}
4025#endif /* CONFIG_NUMA */
4026
4027static const unsigned int memcg1_stats[] = {
4028 NR_FILE_PAGES,
4029 NR_ANON_MAPPED,
4030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 NR_ANON_THPS,
4032#endif
4033 NR_SHMEM,
4034 NR_FILE_MAPPED,
4035 NR_FILE_DIRTY,
4036 NR_WRITEBACK,
4037 WORKINGSET_REFAULT_ANON,
4038 WORKINGSET_REFAULT_FILE,
4039 MEMCG_SWAP,
4040};
4041
4042static const char *const memcg1_stat_names[] = {
4043 "cache",
4044 "rss",
4045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 "rss_huge",
4047#endif
4048 "shmem",
4049 "mapped_file",
4050 "dirty",
4051 "writeback",
4052 "workingset_refault_anon",
4053 "workingset_refault_file",
4054 "swap",
4055};
4056
4057/* Universal VM events cgroup1 shows, original sort order */
4058static const unsigned int memcg1_events[] = {
4059 PGPGIN,
4060 PGPGOUT,
4061 PGFAULT,
4062 PGMAJFAULT,
4063};
4064
4065static int memcg_stat_show(struct seq_file *m, void *v)
4066{
4067 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068 unsigned long memory, memsw;
4069 struct mem_cgroup *mi;
4070 unsigned int i;
4071
4072 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073
4074 mem_cgroup_flush_stats();
4075
4076 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077 unsigned long nr;
4078
4079 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080 continue;
4081 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083 nr * memcg_page_state_unit(memcg1_stats[i]));
4084 }
4085
4086 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088 memcg_events_local(memcg, memcg1_events[i]));
4089
4090 for (i = 0; i < NR_LRU_LISTS; i++)
4091 seq_printf(m, "%s %lu\n", lru_list_name(i),
4092 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093 PAGE_SIZE);
4094
4095 /* Hierarchical information */
4096 memory = memsw = PAGE_COUNTER_MAX;
4097 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098 memory = min(memory, READ_ONCE(mi->memory.max));
4099 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100 }
4101 seq_printf(m, "hierarchical_memory_limit %llu\n",
4102 (u64)memory * PAGE_SIZE);
4103 if (do_memsw_account())
4104 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105 (u64)memsw * PAGE_SIZE);
4106
4107 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108 unsigned long nr;
4109
4110 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111 continue;
4112 nr = memcg_page_state(memcg, memcg1_stats[i]);
4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115 }
4116
4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118 seq_printf(m, "total_%s %llu\n",
4119 vm_event_name(memcg1_events[i]),
4120 (u64)memcg_events(memcg, memcg1_events[i]));
4121
4122 for (i = 0; i < NR_LRU_LISTS; i++)
4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 PAGE_SIZE);
4126
4127#ifdef CONFIG_DEBUG_VM
4128 {
4129 pg_data_t *pgdat;
4130 struct mem_cgroup_per_node *mz;
4131 unsigned long anon_cost = 0;
4132 unsigned long file_cost = 0;
4133
4134 for_each_online_pgdat(pgdat) {
4135 mz = memcg->nodeinfo[pgdat->node_id];
4136
4137 anon_cost += mz->lruvec.anon_cost;
4138 file_cost += mz->lruvec.file_cost;
4139 }
4140 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 seq_printf(m, "file_cost %lu\n", file_cost);
4142 }
4143#endif
4144
4145 return 0;
4146}
4147
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 struct cftype *cft)
4150{
4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152
4153 return mem_cgroup_swappiness(memcg);
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
4158{
4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160
4161 if (val > 200)
4162 return -EINVAL;
4163
4164 if (!mem_cgroup_is_root(memcg))
4165 memcg->swappiness = val;
4166 else
4167 vm_swappiness = val;
4168
4169 return 0;
4170}
4171
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174 struct mem_cgroup_threshold_ary *t;
4175 unsigned long usage;
4176 int i;
4177
4178 rcu_read_lock();
4179 if (!swap)
4180 t = rcu_dereference(memcg->thresholds.primary);
4181 else
4182 t = rcu_dereference(memcg->memsw_thresholds.primary);
4183
4184 if (!t)
4185 goto unlock;
4186
4187 usage = mem_cgroup_usage(memcg, swap);
4188
4189 /*
4190 * current_threshold points to threshold just below or equal to usage.
4191 * If it's not true, a threshold was crossed after last
4192 * call of __mem_cgroup_threshold().
4193 */
4194 i = t->current_threshold;
4195
4196 /*
4197 * Iterate backward over array of thresholds starting from
4198 * current_threshold and check if a threshold is crossed.
4199 * If none of thresholds below usage is crossed, we read
4200 * only one element of the array here.
4201 */
4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205 /* i = current_threshold + 1 */
4206 i++;
4207
4208 /*
4209 * Iterate forward over array of thresholds starting from
4210 * current_threshold+1 and check if a threshold is crossed.
4211 * If none of thresholds above usage is crossed, we read
4212 * only one element of the array here.
4213 */
4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217 /* Update current_threshold */
4218 t->current_threshold = i - 1;
4219unlock:
4220 rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
4225 while (memcg) {
4226 __mem_cgroup_threshold(memcg, false);
4227 if (do_memsw_account())
4228 __mem_cgroup_threshold(memcg, true);
4229
4230 memcg = parent_mem_cgroup(memcg);
4231 }
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236 const struct mem_cgroup_threshold *_a = a;
4237 const struct mem_cgroup_threshold *_b = b;
4238
4239 if (_a->threshold > _b->threshold)
4240 return 1;
4241
4242 if (_a->threshold < _b->threshold)
4243 return -1;
4244
4245 return 0;
4246}
4247
4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249{
4250 struct mem_cgroup_eventfd_list *ev;
4251
4252 spin_lock(&memcg_oom_lock);
4253
4254 list_for_each_entry(ev, &memcg->oom_notify, list)
4255 eventfd_signal(ev->eventfd, 1);
4256
4257 spin_unlock(&memcg_oom_lock);
4258 return 0;
4259}
4260
4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262{
4263 struct mem_cgroup *iter;
4264
4265 for_each_mem_cgroup_tree(iter, memcg)
4266 mem_cgroup_oom_notify_cb(iter);
4267}
4268
4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271{
4272 struct mem_cgroup_thresholds *thresholds;
4273 struct mem_cgroup_threshold_ary *new;
4274 unsigned long threshold;
4275 unsigned long usage;
4276 int i, size, ret;
4277
4278 ret = page_counter_memparse(args, "-1", &threshold);
4279 if (ret)
4280 return ret;
4281
4282 mutex_lock(&memcg->thresholds_lock);
4283
4284 if (type == _MEM) {
4285 thresholds = &memcg->thresholds;
4286 usage = mem_cgroup_usage(memcg, false);
4287 } else if (type == _MEMSWAP) {
4288 thresholds = &memcg->memsw_thresholds;
4289 usage = mem_cgroup_usage(memcg, true);
4290 } else
4291 BUG();
4292
4293 /* Check if a threshold crossed before adding a new one */
4294 if (thresholds->primary)
4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298
4299 /* Allocate memory for new array of thresholds */
4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301 if (!new) {
4302 ret = -ENOMEM;
4303 goto unlock;
4304 }
4305 new->size = size;
4306
4307 /* Copy thresholds (if any) to new array */
4308 if (thresholds->primary)
4309 memcpy(new->entries, thresholds->primary->entries,
4310 flex_array_size(new, entries, size - 1));
4311
4312 /* Add new threshold */
4313 new->entries[size - 1].eventfd = eventfd;
4314 new->entries[size - 1].threshold = threshold;
4315
4316 /* Sort thresholds. Registering of new threshold isn't time-critical */
4317 sort(new->entries, size, sizeof(*new->entries),
4318 compare_thresholds, NULL);
4319
4320 /* Find current threshold */
4321 new->current_threshold = -1;
4322 for (i = 0; i < size; i++) {
4323 if (new->entries[i].threshold <= usage) {
4324 /*
4325 * new->current_threshold will not be used until
4326 * rcu_assign_pointer(), so it's safe to increment
4327 * it here.
4328 */
4329 ++new->current_threshold;
4330 } else
4331 break;
4332 }
4333
4334 /* Free old spare buffer and save old primary buffer as spare */
4335 kfree(thresholds->spare);
4336 thresholds->spare = thresholds->primary;
4337
4338 rcu_assign_pointer(thresholds->primary, new);
4339
4340 /* To be sure that nobody uses thresholds */
4341 synchronize_rcu();
4342
4343unlock:
4344 mutex_unlock(&memcg->thresholds_lock);
4345
4346 return ret;
4347}
4348
4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350 struct eventfd_ctx *eventfd, const char *args)
4351{
4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353}
4354
4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359}
4360
4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362 struct eventfd_ctx *eventfd, enum res_type type)
4363{
4364 struct mem_cgroup_thresholds *thresholds;
4365 struct mem_cgroup_threshold_ary *new;
4366 unsigned long usage;
4367 int i, j, size, entries;
4368
4369 mutex_lock(&memcg->thresholds_lock);
4370
4371 if (type == _MEM) {
4372 thresholds = &memcg->thresholds;
4373 usage = mem_cgroup_usage(memcg, false);
4374 } else if (type == _MEMSWAP) {
4375 thresholds = &memcg->memsw_thresholds;
4376 usage = mem_cgroup_usage(memcg, true);
4377 } else
4378 BUG();
4379
4380 if (!thresholds->primary)
4381 goto unlock;
4382
4383 /* Check if a threshold crossed before removing */
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386 /* Calculate new number of threshold */
4387 size = entries = 0;
4388 for (i = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd != eventfd)
4390 size++;
4391 else
4392 entries++;
4393 }
4394
4395 new = thresholds->spare;
4396
4397 /* If no items related to eventfd have been cleared, nothing to do */
4398 if (!entries)
4399 goto unlock;
4400
4401 /* Set thresholds array to NULL if we don't have thresholds */
4402 if (!size) {
4403 kfree(new);
4404 new = NULL;
4405 goto swap_buffers;
4406 }
4407
4408 new->size = size;
4409
4410 /* Copy thresholds and find current threshold */
4411 new->current_threshold = -1;
4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd == eventfd)
4414 continue;
4415
4416 new->entries[j] = thresholds->primary->entries[i];
4417 if (new->entries[j].threshold <= usage) {
4418 /*
4419 * new->current_threshold will not be used
4420 * until rcu_assign_pointer(), so it's safe to increment
4421 * it here.
4422 */
4423 ++new->current_threshold;
4424 }
4425 j++;
4426 }
4427
4428swap_buffers:
4429 /* Swap primary and spare array */
4430 thresholds->spare = thresholds->primary;
4431
4432 rcu_assign_pointer(thresholds->primary, new);
4433
4434 /* To be sure that nobody uses thresholds */
4435 synchronize_rcu();
4436
4437 /* If all events are unregistered, free the spare array */
4438 if (!new) {
4439 kfree(thresholds->spare);
4440 thresholds->spare = NULL;
4441 }
4442unlock:
4443 mutex_unlock(&memcg->thresholds_lock);
4444}
4445
4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447 struct eventfd_ctx *eventfd)
4448{
4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450}
4451
4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453 struct eventfd_ctx *eventfd)
4454{
4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456}
4457
4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459 struct eventfd_ctx *eventfd, const char *args)
4460{
4461 struct mem_cgroup_eventfd_list *event;
4462
4463 event = kmalloc(sizeof(*event), GFP_KERNEL);
4464 if (!event)
4465 return -ENOMEM;
4466
4467 spin_lock(&memcg_oom_lock);
4468
4469 event->eventfd = eventfd;
4470 list_add(&event->list, &memcg->oom_notify);
4471
4472 /* already in OOM ? */
4473 if (memcg->under_oom)
4474 eventfd_signal(eventfd, 1);
4475 spin_unlock(&memcg_oom_lock);
4476
4477 return 0;
4478}
4479
4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd)
4482{
4483 struct mem_cgroup_eventfd_list *ev, *tmp;
4484
4485 spin_lock(&memcg_oom_lock);
4486
4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488 if (ev->eventfd == eventfd) {
4489 list_del(&ev->list);
4490 kfree(ev);
4491 }
4492 }
4493
4494 spin_unlock(&memcg_oom_lock);
4495}
4496
4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500
4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503 seq_printf(sf, "oom_kill %lu\n",
4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505 return 0;
4506}
4507
4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509 struct cftype *cft, u64 val)
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513 /* cannot set to root cgroup and only 0 and 1 are allowed */
4514 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515 return -EINVAL;
4516
4517 memcg->oom_kill_disable = val;
4518 if (!val)
4519 memcg_oom_recover(memcg);
4520
4521 return 0;
4522}
4523
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
4526#include <trace/events/writeback.h>
4527
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530 return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535 wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540 wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547 if (!memcg->css.parent)
4548 return NULL;
4549
4550 return &memcg->cgwb_domain;
4551}
4552
4553/**
4554 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555 * @wb: bdi_writeback in question
4556 * @pfilepages: out parameter for number of file pages
4557 * @pheadroom: out parameter for number of allocatable pages according to memcg
4558 * @pdirty: out parameter for number of dirty pages
4559 * @pwriteback: out parameter for number of pages under writeback
4560 *
4561 * Determine the numbers of file, headroom, dirty, and writeback pages in
4562 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4563 * is a bit more involved.
4564 *
4565 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4566 * headroom is calculated as the lowest headroom of itself and the
4567 * ancestors. Note that this doesn't consider the actual amount of
4568 * available memory in the system. The caller should further cap
4569 * *@pheadroom accordingly.
4570 */
4571void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572 unsigned long *pheadroom, unsigned long *pdirty,
4573 unsigned long *pwriteback)
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576 struct mem_cgroup *parent;
4577
4578 mem_cgroup_flush_stats();
4579
4580 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583 memcg_page_state(memcg, NR_ACTIVE_FILE);
4584
4585 *pheadroom = PAGE_COUNTER_MAX;
4586 while ((parent = parent_mem_cgroup(memcg))) {
4587 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588 READ_ONCE(memcg->memory.high));
4589 unsigned long used = page_counter_read(&memcg->memory);
4590
4591 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592 memcg = parent;
4593 }
4594}
4595
4596/*
4597 * Foreign dirty flushing
4598 *
4599 * There's an inherent mismatch between memcg and writeback. The former
4600 * tracks ownership per-page while the latter per-inode. This was a
4601 * deliberate design decision because honoring per-page ownership in the
4602 * writeback path is complicated, may lead to higher CPU and IO overheads
4603 * and deemed unnecessary given that write-sharing an inode across
4604 * different cgroups isn't a common use-case.
4605 *
4606 * Combined with inode majority-writer ownership switching, this works well
4607 * enough in most cases but there are some pathological cases. For
4608 * example, let's say there are two cgroups A and B which keep writing to
4609 * different but confined parts of the same inode. B owns the inode and
4610 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4611 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612 * triggering background writeback. A will be slowed down without a way to
4613 * make writeback of the dirty pages happen.
4614 *
4615 * Conditions like the above can lead to a cgroup getting repeatedly and
4616 * severely throttled after making some progress after each
4617 * dirty_expire_interval while the underlying IO device is almost
4618 * completely idle.
4619 *
4620 * Solving this problem completely requires matching the ownership tracking
4621 * granularities between memcg and writeback in either direction. However,
4622 * the more egregious behaviors can be avoided by simply remembering the
4623 * most recent foreign dirtying events and initiating remote flushes on
4624 * them when local writeback isn't enough to keep the memory clean enough.
4625 *
4626 * The following two functions implement such mechanism. When a foreign
4627 * page - a page whose memcg and writeback ownerships don't match - is
4628 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4630 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632 * foreign bdi_writebacks which haven't expired. Both the numbers of
4633 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634 * limited to MEMCG_CGWB_FRN_CNT.
4635 *
4636 * The mechanism only remembers IDs and doesn't hold any object references.
4637 * As being wrong occasionally doesn't matter, updates and accesses to the
4638 * records are lockless and racy.
4639 */
4640void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641 struct bdi_writeback *wb)
4642{
4643 struct mem_cgroup *memcg = folio_memcg(folio);
4644 struct memcg_cgwb_frn *frn;
4645 u64 now = get_jiffies_64();
4646 u64 oldest_at = now;
4647 int oldest = -1;
4648 int i;
4649
4650 trace_track_foreign_dirty(folio, wb);
4651
4652 /*
4653 * Pick the slot to use. If there is already a slot for @wb, keep
4654 * using it. If not replace the oldest one which isn't being
4655 * written out.
4656 */
4657 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658 frn = &memcg->cgwb_frn[i];
4659 if (frn->bdi_id == wb->bdi->id &&
4660 frn->memcg_id == wb->memcg_css->id)
4661 break;
4662 if (time_before64(frn->at, oldest_at) &&
4663 atomic_read(&frn->done.cnt) == 1) {
4664 oldest = i;
4665 oldest_at = frn->at;
4666 }
4667 }
4668
4669 if (i < MEMCG_CGWB_FRN_CNT) {
4670 /*
4671 * Re-using an existing one. Update timestamp lazily to
4672 * avoid making the cacheline hot. We want them to be
4673 * reasonably up-to-date and significantly shorter than
4674 * dirty_expire_interval as that's what expires the record.
4675 * Use the shorter of 1s and dirty_expire_interval / 8.
4676 */
4677 unsigned long update_intv =
4678 min_t(unsigned long, HZ,
4679 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681 if (time_before64(frn->at, now - update_intv))
4682 frn->at = now;
4683 } else if (oldest >= 0) {
4684 /* replace the oldest free one */
4685 frn = &memcg->cgwb_frn[oldest];
4686 frn->bdi_id = wb->bdi->id;
4687 frn->memcg_id = wb->memcg_css->id;
4688 frn->at = now;
4689 }
4690}
4691
4692/* issue foreign writeback flushes for recorded foreign dirtying events */
4693void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694{
4695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697 u64 now = jiffies_64;
4698 int i;
4699
4700 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703 /*
4704 * If the record is older than dirty_expire_interval,
4705 * writeback on it has already started. No need to kick it
4706 * off again. Also, don't start a new one if there's
4707 * already one in flight.
4708 */
4709 if (time_after64(frn->at, now - intv) &&
4710 atomic_read(&frn->done.cnt) == 1) {
4711 frn->at = 0;
4712 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714 WB_REASON_FOREIGN_FLUSH,
4715 &frn->done);
4716 }
4717 }
4718}
4719
4720#else /* CONFIG_CGROUP_WRITEBACK */
4721
4722static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723{
4724 return 0;
4725}
4726
4727static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728{
4729}
4730
4731static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732{
4733}
4734
4735#endif /* CONFIG_CGROUP_WRITEBACK */
4736
4737/*
4738 * DO NOT USE IN NEW FILES.
4739 *
4740 * "cgroup.event_control" implementation.
4741 *
4742 * This is way over-engineered. It tries to support fully configurable
4743 * events for each user. Such level of flexibility is completely
4744 * unnecessary especially in the light of the planned unified hierarchy.
4745 *
4746 * Please deprecate this and replace with something simpler if at all
4747 * possible.
4748 */
4749
4750/*
4751 * Unregister event and free resources.
4752 *
4753 * Gets called from workqueue.
4754 */
4755static void memcg_event_remove(struct work_struct *work)
4756{
4757 struct mem_cgroup_event *event =
4758 container_of(work, struct mem_cgroup_event, remove);
4759 struct mem_cgroup *memcg = event->memcg;
4760
4761 remove_wait_queue(event->wqh, &event->wait);
4762
4763 event->unregister_event(memcg, event->eventfd);
4764
4765 /* Notify userspace the event is going away. */
4766 eventfd_signal(event->eventfd, 1);
4767
4768 eventfd_ctx_put(event->eventfd);
4769 kfree(event);
4770 css_put(&memcg->css);
4771}
4772
4773/*
4774 * Gets called on EPOLLHUP on eventfd when user closes it.
4775 *
4776 * Called with wqh->lock held and interrupts disabled.
4777 */
4778static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779 int sync, void *key)
4780{
4781 struct mem_cgroup_event *event =
4782 container_of(wait, struct mem_cgroup_event, wait);
4783 struct mem_cgroup *memcg = event->memcg;
4784 __poll_t flags = key_to_poll(key);
4785
4786 if (flags & EPOLLHUP) {
4787 /*
4788 * If the event has been detached at cgroup removal, we
4789 * can simply return knowing the other side will cleanup
4790 * for us.
4791 *
4792 * We can't race against event freeing since the other
4793 * side will require wqh->lock via remove_wait_queue(),
4794 * which we hold.
4795 */
4796 spin_lock(&memcg->event_list_lock);
4797 if (!list_empty(&event->list)) {
4798 list_del_init(&event->list);
4799 /*
4800 * We are in atomic context, but cgroup_event_remove()
4801 * may sleep, so we have to call it in workqueue.
4802 */
4803 schedule_work(&event->remove);
4804 }
4805 spin_unlock(&memcg->event_list_lock);
4806 }
4807
4808 return 0;
4809}
4810
4811static void memcg_event_ptable_queue_proc(struct file *file,
4812 wait_queue_head_t *wqh, poll_table *pt)
4813{
4814 struct mem_cgroup_event *event =
4815 container_of(pt, struct mem_cgroup_event, pt);
4816
4817 event->wqh = wqh;
4818 add_wait_queue(wqh, &event->wait);
4819}
4820
4821/*
4822 * DO NOT USE IN NEW FILES.
4823 *
4824 * Parse input and register new cgroup event handler.
4825 *
4826 * Input must be in format '<event_fd> <control_fd> <args>'.
4827 * Interpretation of args is defined by control file implementation.
4828 */
4829static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830 char *buf, size_t nbytes, loff_t off)
4831{
4832 struct cgroup_subsys_state *css = of_css(of);
4833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834 struct mem_cgroup_event *event;
4835 struct cgroup_subsys_state *cfile_css;
4836 unsigned int efd, cfd;
4837 struct fd efile;
4838 struct fd cfile;
4839 struct dentry *cdentry;
4840 const char *name;
4841 char *endp;
4842 int ret;
4843
4844 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845 return -EOPNOTSUPP;
4846
4847 buf = strstrip(buf);
4848
4849 efd = simple_strtoul(buf, &endp, 10);
4850 if (*endp != ' ')
4851 return -EINVAL;
4852 buf = endp + 1;
4853
4854 cfd = simple_strtoul(buf, &endp, 10);
4855 if ((*endp != ' ') && (*endp != '\0'))
4856 return -EINVAL;
4857 buf = endp + 1;
4858
4859 event = kzalloc(sizeof(*event), GFP_KERNEL);
4860 if (!event)
4861 return -ENOMEM;
4862
4863 event->memcg = memcg;
4864 INIT_LIST_HEAD(&event->list);
4865 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867 INIT_WORK(&event->remove, memcg_event_remove);
4868
4869 efile = fdget(efd);
4870 if (!efile.file) {
4871 ret = -EBADF;
4872 goto out_kfree;
4873 }
4874
4875 event->eventfd = eventfd_ctx_fileget(efile.file);
4876 if (IS_ERR(event->eventfd)) {
4877 ret = PTR_ERR(event->eventfd);
4878 goto out_put_efile;
4879 }
4880
4881 cfile = fdget(cfd);
4882 if (!cfile.file) {
4883 ret = -EBADF;
4884 goto out_put_eventfd;
4885 }
4886
4887 /* the process need read permission on control file */
4888 /* AV: shouldn't we check that it's been opened for read instead? */
4889 ret = file_permission(cfile.file, MAY_READ);
4890 if (ret < 0)
4891 goto out_put_cfile;
4892
4893 /*
4894 * The control file must be a regular cgroup1 file. As a regular cgroup
4895 * file can't be renamed, it's safe to access its name afterwards.
4896 */
4897 cdentry = cfile.file->f_path.dentry;
4898 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899 ret = -EINVAL;
4900 goto out_put_cfile;
4901 }
4902
4903 /*
4904 * Determine the event callbacks and set them in @event. This used
4905 * to be done via struct cftype but cgroup core no longer knows
4906 * about these events. The following is crude but the whole thing
4907 * is for compatibility anyway.
4908 *
4909 * DO NOT ADD NEW FILES.
4910 */
4911 name = cdentry->d_name.name;
4912
4913 if (!strcmp(name, "memory.usage_in_bytes")) {
4914 event->register_event = mem_cgroup_usage_register_event;
4915 event->unregister_event = mem_cgroup_usage_unregister_event;
4916 } else if (!strcmp(name, "memory.oom_control")) {
4917 event->register_event = mem_cgroup_oom_register_event;
4918 event->unregister_event = mem_cgroup_oom_unregister_event;
4919 } else if (!strcmp(name, "memory.pressure_level")) {
4920 event->register_event = vmpressure_register_event;
4921 event->unregister_event = vmpressure_unregister_event;
4922 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923 event->register_event = memsw_cgroup_usage_register_event;
4924 event->unregister_event = memsw_cgroup_usage_unregister_event;
4925 } else {
4926 ret = -EINVAL;
4927 goto out_put_cfile;
4928 }
4929
4930 /*
4931 * Verify @cfile should belong to @css. Also, remaining events are
4932 * automatically removed on cgroup destruction but the removal is
4933 * asynchronous, so take an extra ref on @css.
4934 */
4935 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936 &memory_cgrp_subsys);
4937 ret = -EINVAL;
4938 if (IS_ERR(cfile_css))
4939 goto out_put_cfile;
4940 if (cfile_css != css) {
4941 css_put(cfile_css);
4942 goto out_put_cfile;
4943 }
4944
4945 ret = event->register_event(memcg, event->eventfd, buf);
4946 if (ret)
4947 goto out_put_css;
4948
4949 vfs_poll(efile.file, &event->pt);
4950
4951 spin_lock_irq(&memcg->event_list_lock);
4952 list_add(&event->list, &memcg->event_list);
4953 spin_unlock_irq(&memcg->event_list_lock);
4954
4955 fdput(cfile);
4956 fdput(efile);
4957
4958 return nbytes;
4959
4960out_put_css:
4961 css_put(css);
4962out_put_cfile:
4963 fdput(cfile);
4964out_put_eventfd:
4965 eventfd_ctx_put(event->eventfd);
4966out_put_efile:
4967 fdput(efile);
4968out_kfree:
4969 kfree(event);
4970
4971 return ret;
4972}
4973
4974#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976{
4977 /*
4978 * Deprecated.
4979 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980 */
4981 return 0;
4982}
4983#endif
4984
4985static struct cftype mem_cgroup_legacy_files[] = {
4986 {
4987 .name = "usage_in_bytes",
4988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
4991 {
4992 .name = "max_usage_in_bytes",
4993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994 .write = mem_cgroup_reset,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "limit_in_bytes",
4999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000 .write = mem_cgroup_write,
5001 .read_u64 = mem_cgroup_read_u64,
5002 },
5003 {
5004 .name = "soft_limit_in_bytes",
5005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006 .write = mem_cgroup_write,
5007 .read_u64 = mem_cgroup_read_u64,
5008 },
5009 {
5010 .name = "failcnt",
5011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012 .write = mem_cgroup_reset,
5013 .read_u64 = mem_cgroup_read_u64,
5014 },
5015 {
5016 .name = "stat",
5017 .seq_show = memcg_stat_show,
5018 },
5019 {
5020 .name = "force_empty",
5021 .write = mem_cgroup_force_empty_write,
5022 },
5023 {
5024 .name = "use_hierarchy",
5025 .write_u64 = mem_cgroup_hierarchy_write,
5026 .read_u64 = mem_cgroup_hierarchy_read,
5027 },
5028 {
5029 .name = "cgroup.event_control", /* XXX: for compat */
5030 .write = memcg_write_event_control,
5031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032 },
5033 {
5034 .name = "swappiness",
5035 .read_u64 = mem_cgroup_swappiness_read,
5036 .write_u64 = mem_cgroup_swappiness_write,
5037 },
5038 {
5039 .name = "move_charge_at_immigrate",
5040 .read_u64 = mem_cgroup_move_charge_read,
5041 .write_u64 = mem_cgroup_move_charge_write,
5042 },
5043 {
5044 .name = "oom_control",
5045 .seq_show = mem_cgroup_oom_control_read,
5046 .write_u64 = mem_cgroup_oom_control_write,
5047 },
5048 {
5049 .name = "pressure_level",
5050 },
5051#ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
5054 .seq_show = memcg_numa_stat_show,
5055 },
5056#endif
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080#if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 {
5083 .name = "kmem.slabinfo",
5084 .seq_show = mem_cgroup_slab_show,
5085 },
5086#endif
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 { }, /* terminate */
5111};
5112
5113/*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137static DEFINE_IDR(mem_cgroup_idr);
5138
5139static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140{
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145}
5146
5147static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
5149{
5150 refcount_add(n, &memcg->id.ref);
5151}
5152
5153static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154{
5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 mem_cgroup_id_remove(memcg);
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161}
5162
5163static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164{
5165 mem_cgroup_id_put_many(memcg, 1);
5166}
5167
5168/**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175{
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178}
5179
5180#ifdef CONFIG_SHRINKER_DEBUG
5181struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182{
5183 struct cgroup *cgrp;
5184 struct cgroup_subsys_state *css;
5185 struct mem_cgroup *memcg;
5186
5187 cgrp = cgroup_get_from_id(ino);
5188 if (IS_ERR(cgrp))
5189 return ERR_CAST(cgrp);
5190
5191 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192 if (css)
5193 memcg = container_of(css, struct mem_cgroup, css);
5194 else
5195 memcg = ERR_PTR(-ENOENT);
5196
5197 cgroup_put(cgrp);
5198
5199 return memcg;
5200}
5201#endif
5202
5203static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204{
5205 struct mem_cgroup_per_node *pn;
5206
5207 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208 if (!pn)
5209 return 1;
5210
5211 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212 GFP_KERNEL_ACCOUNT);
5213 if (!pn->lruvec_stats_percpu) {
5214 kfree(pn);
5215 return 1;
5216 }
5217
5218 lruvec_init(&pn->lruvec);
5219 pn->memcg = memcg;
5220
5221 memcg->nodeinfo[node] = pn;
5222 return 0;
5223}
5224
5225static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226{
5227 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
5229 if (!pn)
5230 return;
5231
5232 free_percpu(pn->lruvec_stats_percpu);
5233 kfree(pn);
5234}
5235
5236static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237{
5238 int node;
5239
5240 for_each_node(node)
5241 free_mem_cgroup_per_node_info(memcg, node);
5242 kfree(memcg->vmstats);
5243 free_percpu(memcg->vmstats_percpu);
5244 kfree(memcg);
5245}
5246
5247static void mem_cgroup_free(struct mem_cgroup *memcg)
5248{
5249 lru_gen_exit_memcg(memcg);
5250 memcg_wb_domain_exit(memcg);
5251 __mem_cgroup_free(memcg);
5252}
5253
5254static struct mem_cgroup *mem_cgroup_alloc(void)
5255{
5256 struct mem_cgroup *memcg;
5257 int node;
5258 int __maybe_unused i;
5259 long error = -ENOMEM;
5260
5261 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5262 if (!memcg)
5263 return ERR_PTR(error);
5264
5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5267 if (memcg->id.id < 0) {
5268 error = memcg->id.id;
5269 goto fail;
5270 }
5271
5272 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273 if (!memcg->vmstats)
5274 goto fail;
5275
5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
5278 if (!memcg->vmstats_percpu)
5279 goto fail;
5280
5281 for_each_node(node)
5282 if (alloc_mem_cgroup_per_node_info(memcg, node))
5283 goto fail;
5284
5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 goto fail;
5287
5288 INIT_WORK(&memcg->high_work, high_work_func);
5289 INIT_LIST_HEAD(&memcg->oom_notify);
5290 mutex_init(&memcg->thresholds_lock);
5291 spin_lock_init(&memcg->move_lock);
5292 vmpressure_init(&memcg->vmpressure);
5293 INIT_LIST_HEAD(&memcg->event_list);
5294 spin_lock_init(&memcg->event_list_lock);
5295 memcg->socket_pressure = jiffies;
5296#ifdef CONFIG_MEMCG_KMEM
5297 memcg->kmemcg_id = -1;
5298 INIT_LIST_HEAD(&memcg->objcg_list);
5299#endif
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301 INIT_LIST_HEAD(&memcg->cgwb_list);
5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 memcg->cgwb_frn[i].done =
5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 memcg->deferred_split_queue.split_queue_len = 0;
5310#endif
5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312 lru_gen_init_memcg(memcg);
5313 return memcg;
5314fail:
5315 mem_cgroup_id_remove(memcg);
5316 __mem_cgroup_free(memcg);
5317 return ERR_PTR(error);
5318}
5319
5320static struct cgroup_subsys_state * __ref
5321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322{
5323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 struct mem_cgroup *memcg, *old_memcg;
5325
5326 old_memcg = set_active_memcg(parent);
5327 memcg = mem_cgroup_alloc();
5328 set_active_memcg(old_memcg);
5329 if (IS_ERR(memcg))
5330 return ERR_CAST(memcg);
5331
5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333 memcg->soft_limit = PAGE_COUNTER_MAX;
5334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335 memcg->zswap_max = PAGE_COUNTER_MAX;
5336#endif
5337 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 if (parent) {
5339 memcg->swappiness = mem_cgroup_swappiness(parent);
5340 memcg->oom_kill_disable = parent->oom_kill_disable;
5341
5342 page_counter_init(&memcg->memory, &parent->memory);
5343 page_counter_init(&memcg->swap, &parent->swap);
5344 page_counter_init(&memcg->kmem, &parent->kmem);
5345 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346 } else {
5347 init_memcg_events();
5348 page_counter_init(&memcg->memory, NULL);
5349 page_counter_init(&memcg->swap, NULL);
5350 page_counter_init(&memcg->kmem, NULL);
5351 page_counter_init(&memcg->tcpmem, NULL);
5352
5353 root_mem_cgroup = memcg;
5354 return &memcg->css;
5355 }
5356
5357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358 static_branch_inc(&memcg_sockets_enabled_key);
5359
5360 return &memcg->css;
5361}
5362
5363static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
5367 if (memcg_online_kmem(memcg))
5368 goto remove_id;
5369
5370 /*
5371 * A memcg must be visible for expand_shrinker_info()
5372 * by the time the maps are allocated. So, we allocate maps
5373 * here, when for_each_mem_cgroup() can't skip it.
5374 */
5375 if (alloc_shrinker_info(memcg))
5376 goto offline_kmem;
5377
5378 /* Online state pins memcg ID, memcg ID pins CSS */
5379 refcount_set(&memcg->id.ref, 1);
5380 css_get(css);
5381
5382 if (unlikely(mem_cgroup_is_root(memcg)))
5383 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384 2UL*HZ);
5385 return 0;
5386offline_kmem:
5387 memcg_offline_kmem(memcg);
5388remove_id:
5389 mem_cgroup_id_remove(memcg);
5390 return -ENOMEM;
5391}
5392
5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394{
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396 struct mem_cgroup_event *event, *tmp;
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
5403 spin_lock_irq(&memcg->event_list_lock);
5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
5408 spin_unlock_irq(&memcg->event_list_lock);
5409
5410 page_counter_set_min(&memcg->memory, 0);
5411 page_counter_set_low(&memcg->memory, 0);
5412
5413 memcg_offline_kmem(memcg);
5414 reparent_shrinker_deferred(memcg);
5415 wb_memcg_offline(memcg);
5416
5417 drain_all_stock(memcg);
5418
5419 mem_cgroup_id_put(memcg);
5420}
5421
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426 invalidate_reclaim_iterators(memcg);
5427}
5428
5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430{
5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 int __maybe_unused i;
5433
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
5438 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439 static_branch_dec(&memcg_sockets_enabled_key);
5440
5441 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442 static_branch_dec(&memcg_sockets_enabled_key);
5443
5444 vmpressure_cleanup(&memcg->vmpressure);
5445 cancel_work_sync(&memcg->high_work);
5446 mem_cgroup_remove_from_trees(memcg);
5447 free_shrinker_info(memcg);
5448 mem_cgroup_free(memcg);
5449}
5450
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css. This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency. The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
5468 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472 page_counter_set_min(&memcg->memory, 0);
5473 page_counter_set_low(&memcg->memory, 0);
5474 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475 memcg->soft_limit = PAGE_COUNTER_MAX;
5476 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477 memcg_wb_domain_size_changed(memcg);
5478}
5479
5480static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481{
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484 struct memcg_vmstats_percpu *statc;
5485 long delta, v;
5486 int i, nid;
5487
5488 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490 for (i = 0; i < MEMCG_NR_STAT; i++) {
5491 /*
5492 * Collect the aggregated propagation counts of groups
5493 * below us. We're in a per-cpu loop here and this is
5494 * a global counter, so the first cycle will get them.
5495 */
5496 delta = memcg->vmstats->state_pending[i];
5497 if (delta)
5498 memcg->vmstats->state_pending[i] = 0;
5499
5500 /* Add CPU changes on this level since the last flush */
5501 v = READ_ONCE(statc->state[i]);
5502 if (v != statc->state_prev[i]) {
5503 delta += v - statc->state_prev[i];
5504 statc->state_prev[i] = v;
5505 }
5506
5507 if (!delta)
5508 continue;
5509
5510 /* Aggregate counts on this level and propagate upwards */
5511 memcg->vmstats->state[i] += delta;
5512 if (parent)
5513 parent->vmstats->state_pending[i] += delta;
5514 }
5515
5516 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517 delta = memcg->vmstats->events_pending[i];
5518 if (delta)
5519 memcg->vmstats->events_pending[i] = 0;
5520
5521 v = READ_ONCE(statc->events[i]);
5522 if (v != statc->events_prev[i]) {
5523 delta += v - statc->events_prev[i];
5524 statc->events_prev[i] = v;
5525 }
5526
5527 if (!delta)
5528 continue;
5529
5530 memcg->vmstats->events[i] += delta;
5531 if (parent)
5532 parent->vmstats->events_pending[i] += delta;
5533 }
5534
5535 for_each_node_state(nid, N_MEMORY) {
5536 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537 struct mem_cgroup_per_node *ppn = NULL;
5538 struct lruvec_stats_percpu *lstatc;
5539
5540 if (parent)
5541 ppn = parent->nodeinfo[nid];
5542
5543 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546 delta = pn->lruvec_stats.state_pending[i];
5547 if (delta)
5548 pn->lruvec_stats.state_pending[i] = 0;
5549
5550 v = READ_ONCE(lstatc->state[i]);
5551 if (v != lstatc->state_prev[i]) {
5552 delta += v - lstatc->state_prev[i];
5553 lstatc->state_prev[i] = v;
5554 }
5555
5556 if (!delta)
5557 continue;
5558
5559 pn->lruvec_stats.state[i] += delta;
5560 if (ppn)
5561 ppn->lruvec_stats.state_pending[i] += delta;
5562 }
5563 }
5564}
5565
5566#ifdef CONFIG_MMU
5567/* Handlers for move charge at task migration. */
5568static int mem_cgroup_do_precharge(unsigned long count)
5569{
5570 int ret;
5571
5572 /* Try a single bulk charge without reclaim first, kswapd may wake */
5573 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574 if (!ret) {
5575 mc.precharge += count;
5576 return ret;
5577 }
5578
5579 /* Try charges one by one with reclaim, but do not retry */
5580 while (count--) {
5581 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582 if (ret)
5583 return ret;
5584 mc.precharge++;
5585 cond_resched();
5586 }
5587 return 0;
5588}
5589
5590union mc_target {
5591 struct page *page;
5592 swp_entry_t ent;
5593};
5594
5595enum mc_target_type {
5596 MC_TARGET_NONE = 0,
5597 MC_TARGET_PAGE,
5598 MC_TARGET_SWAP,
5599 MC_TARGET_DEVICE,
5600};
5601
5602static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent)
5604{
5605 struct page *page = vm_normal_page(vma, addr, ptent);
5606
5607 if (!page || !page_mapped(page))
5608 return NULL;
5609 if (PageAnon(page)) {
5610 if (!(mc.flags & MOVE_ANON))
5611 return NULL;
5612 } else {
5613 if (!(mc.flags & MOVE_FILE))
5614 return NULL;
5615 }
5616 if (!get_page_unless_zero(page))
5617 return NULL;
5618
5619 return page;
5620}
5621
5622#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624 pte_t ptent, swp_entry_t *entry)
5625{
5626 struct page *page = NULL;
5627 swp_entry_t ent = pte_to_swp_entry(ptent);
5628
5629 if (!(mc.flags & MOVE_ANON))
5630 return NULL;
5631
5632 /*
5633 * Handle device private pages that are not accessible by the CPU, but
5634 * stored as special swap entries in the page table.
5635 */
5636 if (is_device_private_entry(ent)) {
5637 page = pfn_swap_entry_to_page(ent);
5638 if (!get_page_unless_zero(page))
5639 return NULL;
5640 return page;
5641 }
5642
5643 if (non_swap_entry(ent))
5644 return NULL;
5645
5646 /*
5647 * Because swap_cache_get_folio() updates some statistics counter,
5648 * we call find_get_page() with swapper_space directly.
5649 */
5650 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651 entry->val = ent.val;
5652
5653 return page;
5654}
5655#else
5656static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657 pte_t ptent, swp_entry_t *entry)
5658{
5659 return NULL;
5660}
5661#endif
5662
5663static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664 unsigned long addr, pte_t ptent)
5665{
5666 unsigned long index;
5667 struct folio *folio;
5668
5669 if (!vma->vm_file) /* anonymous vma */
5670 return NULL;
5671 if (!(mc.flags & MOVE_FILE))
5672 return NULL;
5673
5674 /* folio is moved even if it's not RSS of this task(page-faulted). */
5675 /* shmem/tmpfs may report page out on swap: account for that too. */
5676 index = linear_page_index(vma, addr);
5677 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678 if (!folio)
5679 return NULL;
5680 return folio_file_page(folio, index);
5681}
5682
5683/**
5684 * mem_cgroup_move_account - move account of the page
5685 * @page: the page
5686 * @compound: charge the page as compound or small page
5687 * @from: mem_cgroup which the page is moved from.
5688 * @to: mem_cgroup which the page is moved to. @from != @to.
5689 *
5690 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5691 *
5692 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693 * from old cgroup.
5694 */
5695static int mem_cgroup_move_account(struct page *page,
5696 bool compound,
5697 struct mem_cgroup *from,
5698 struct mem_cgroup *to)
5699{
5700 struct folio *folio = page_folio(page);
5701 struct lruvec *from_vec, *to_vec;
5702 struct pglist_data *pgdat;
5703 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5704 int nid, ret;
5705
5706 VM_BUG_ON(from == to);
5707 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5708 VM_BUG_ON(compound && !folio_test_large(folio));
5709
5710 /*
5711 * Prevent mem_cgroup_migrate() from looking at
5712 * page's memory cgroup of its source page while we change it.
5713 */
5714 ret = -EBUSY;
5715 if (!folio_trylock(folio))
5716 goto out;
5717
5718 ret = -EINVAL;
5719 if (folio_memcg(folio) != from)
5720 goto out_unlock;
5721
5722 pgdat = folio_pgdat(folio);
5723 from_vec = mem_cgroup_lruvec(from, pgdat);
5724 to_vec = mem_cgroup_lruvec(to, pgdat);
5725
5726 folio_memcg_lock(folio);
5727
5728 if (folio_test_anon(folio)) {
5729 if (folio_mapped(folio)) {
5730 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5732 if (folio_test_transhuge(folio)) {
5733 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5734 -nr_pages);
5735 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5736 nr_pages);
5737 }
5738 }
5739 } else {
5740 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742
5743 if (folio_test_swapbacked(folio)) {
5744 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746 }
5747
5748 if (folio_mapped(folio)) {
5749 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751 }
5752
5753 if (folio_test_dirty(folio)) {
5754 struct address_space *mapping = folio_mapping(folio);
5755
5756 if (mapping_can_writeback(mapping)) {
5757 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758 -nr_pages);
5759 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760 nr_pages);
5761 }
5762 }
5763 }
5764
5765#ifdef CONFIG_SWAP
5766 if (folio_test_swapcache(folio)) {
5767 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769 }
5770#endif
5771 if (folio_test_writeback(folio)) {
5772 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5774 }
5775
5776 /*
5777 * All state has been migrated, let's switch to the new memcg.
5778 *
5779 * It is safe to change page's memcg here because the page
5780 * is referenced, charged, isolated, and locked: we can't race
5781 * with (un)charging, migration, LRU putback, or anything else
5782 * that would rely on a stable page's memory cgroup.
5783 *
5784 * Note that lock_page_memcg is a memcg lock, not a page lock,
5785 * to save space. As soon as we switch page's memory cgroup to a
5786 * new memcg that isn't locked, the above state can change
5787 * concurrently again. Make sure we're truly done with it.
5788 */
5789 smp_mb();
5790
5791 css_get(&to->css);
5792 css_put(&from->css);
5793
5794 folio->memcg_data = (unsigned long)to;
5795
5796 __folio_memcg_unlock(from);
5797
5798 ret = 0;
5799 nid = folio_nid(folio);
5800
5801 local_irq_disable();
5802 mem_cgroup_charge_statistics(to, nr_pages);
5803 memcg_check_events(to, nid);
5804 mem_cgroup_charge_statistics(from, -nr_pages);
5805 memcg_check_events(from, nid);
5806 local_irq_enable();
5807out_unlock:
5808 folio_unlock(folio);
5809out:
5810 return ret;
5811}
5812
5813/**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 * move charge. if @target is not NULL, the page is stored in target->page
5824 * with extra refcnt got(Callers should handle it).
5825 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 * target for charge migration. if @target is not NULL, the entry is stored
5827 * in target->ent.
5828 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5829 * thus not on the lru.
5830 * For now we such page is charge like a regular page would be as for all
5831 * intent and purposes it is just special memory taking the place of a
5832 * regular page.
5833 *
5834 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5835 *
5836 * Called with pte lock held.
5837 */
5838
5839static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840 unsigned long addr, pte_t ptent, union mc_target *target)
5841{
5842 struct page *page = NULL;
5843 enum mc_target_type ret = MC_TARGET_NONE;
5844 swp_entry_t ent = { .val = 0 };
5845
5846 if (pte_present(ptent))
5847 page = mc_handle_present_pte(vma, addr, ptent);
5848 else if (pte_none_mostly(ptent))
5849 /*
5850 * PTE markers should be treated as a none pte here, separated
5851 * from other swap handling below.
5852 */
5853 page = mc_handle_file_pte(vma, addr, ptent);
5854 else if (is_swap_pte(ptent))
5855 page = mc_handle_swap_pte(vma, ptent, &ent);
5856
5857 if (!page && !ent.val)
5858 return ret;
5859 if (page) {
5860 /*
5861 * Do only loose check w/o serialization.
5862 * mem_cgroup_move_account() checks the page is valid or
5863 * not under LRU exclusion.
5864 */
5865 if (page_memcg(page) == mc.from) {
5866 ret = MC_TARGET_PAGE;
5867 if (is_device_private_page(page) ||
5868 is_device_coherent_page(page))
5869 ret = MC_TARGET_DEVICE;
5870 if (target)
5871 target->page = page;
5872 }
5873 if (!ret || !target)
5874 put_page(page);
5875 }
5876 /*
5877 * There is a swap entry and a page doesn't exist or isn't charged.
5878 * But we cannot move a tail-page in a THP.
5879 */
5880 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5881 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5882 ret = MC_TARGET_SWAP;
5883 if (target)
5884 target->ent = ent;
5885 }
5886 return ret;
5887}
5888
5889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890/*
5891 * We don't consider PMD mapped swapping or file mapped pages because THP does
5892 * not support them for now.
5893 * Caller should make sure that pmd_trans_huge(pmd) is true.
5894 */
5895static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 unsigned long addr, pmd_t pmd, union mc_target *target)
5897{
5898 struct page *page = NULL;
5899 enum mc_target_type ret = MC_TARGET_NONE;
5900
5901 if (unlikely(is_swap_pmd(pmd))) {
5902 VM_BUG_ON(thp_migration_supported() &&
5903 !is_pmd_migration_entry(pmd));
5904 return ret;
5905 }
5906 page = pmd_page(pmd);
5907 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908 if (!(mc.flags & MOVE_ANON))
5909 return ret;
5910 if (page_memcg(page) == mc.from) {
5911 ret = MC_TARGET_PAGE;
5912 if (target) {
5913 get_page(page);
5914 target->page = page;
5915 }
5916 }
5917 return ret;
5918}
5919#else
5920static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921 unsigned long addr, pmd_t pmd, union mc_target *target)
5922{
5923 return MC_TARGET_NONE;
5924}
5925#endif
5926
5927static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928 unsigned long addr, unsigned long end,
5929 struct mm_walk *walk)
5930{
5931 struct vm_area_struct *vma = walk->vma;
5932 pte_t *pte;
5933 spinlock_t *ptl;
5934
5935 ptl = pmd_trans_huge_lock(pmd, vma);
5936 if (ptl) {
5937 /*
5938 * Note their can not be MC_TARGET_DEVICE for now as we do not
5939 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940 * this might change.
5941 */
5942 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943 mc.precharge += HPAGE_PMD_NR;
5944 spin_unlock(ptl);
5945 return 0;
5946 }
5947
5948 if (pmd_trans_unstable(pmd))
5949 return 0;
5950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951 for (; addr != end; pte++, addr += PAGE_SIZE)
5952 if (get_mctgt_type(vma, addr, *pte, NULL))
5953 mc.precharge++; /* increment precharge temporarily */
5954 pte_unmap_unlock(pte - 1, ptl);
5955 cond_resched();
5956
5957 return 0;
5958}
5959
5960static const struct mm_walk_ops precharge_walk_ops = {
5961 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5962};
5963
5964static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965{
5966 unsigned long precharge;
5967
5968 mmap_read_lock(mm);
5969 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5970 mmap_read_unlock(mm);
5971
5972 precharge = mc.precharge;
5973 mc.precharge = 0;
5974
5975 return precharge;
5976}
5977
5978static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979{
5980 unsigned long precharge = mem_cgroup_count_precharge(mm);
5981
5982 VM_BUG_ON(mc.moving_task);
5983 mc.moving_task = current;
5984 return mem_cgroup_do_precharge(precharge);
5985}
5986
5987/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988static void __mem_cgroup_clear_mc(void)
5989{
5990 struct mem_cgroup *from = mc.from;
5991 struct mem_cgroup *to = mc.to;
5992
5993 /* we must uncharge all the leftover precharges from mc.to */
5994 if (mc.precharge) {
5995 cancel_charge(mc.to, mc.precharge);
5996 mc.precharge = 0;
5997 }
5998 /*
5999 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000 * we must uncharge here.
6001 */
6002 if (mc.moved_charge) {
6003 cancel_charge(mc.from, mc.moved_charge);
6004 mc.moved_charge = 0;
6005 }
6006 /* we must fixup refcnts and charges */
6007 if (mc.moved_swap) {
6008 /* uncharge swap account from the old cgroup */
6009 if (!mem_cgroup_is_root(mc.from))
6010 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6011
6012 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013
6014 /*
6015 * we charged both to->memory and to->memsw, so we
6016 * should uncharge to->memory.
6017 */
6018 if (!mem_cgroup_is_root(mc.to))
6019 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020
6021 mc.moved_swap = 0;
6022 }
6023 memcg_oom_recover(from);
6024 memcg_oom_recover(to);
6025 wake_up_all(&mc.waitq);
6026}
6027
6028static void mem_cgroup_clear_mc(void)
6029{
6030 struct mm_struct *mm = mc.mm;
6031
6032 /*
6033 * we must clear moving_task before waking up waiters at the end of
6034 * task migration.
6035 */
6036 mc.moving_task = NULL;
6037 __mem_cgroup_clear_mc();
6038 spin_lock(&mc.lock);
6039 mc.from = NULL;
6040 mc.to = NULL;
6041 mc.mm = NULL;
6042 spin_unlock(&mc.lock);
6043
6044 mmput(mm);
6045}
6046
6047static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6048{
6049 struct cgroup_subsys_state *css;
6050 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6051 struct mem_cgroup *from;
6052 struct task_struct *leader, *p;
6053 struct mm_struct *mm;
6054 unsigned long move_flags;
6055 int ret = 0;
6056
6057 /* charge immigration isn't supported on the default hierarchy */
6058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6059 return 0;
6060
6061 /*
6062 * Multi-process migrations only happen on the default hierarchy
6063 * where charge immigration is not used. Perform charge
6064 * immigration if @tset contains a leader and whine if there are
6065 * multiple.
6066 */
6067 p = NULL;
6068 cgroup_taskset_for_each_leader(leader, css, tset) {
6069 WARN_ON_ONCE(p);
6070 p = leader;
6071 memcg = mem_cgroup_from_css(css);
6072 }
6073 if (!p)
6074 return 0;
6075
6076 /*
6077 * We are now committed to this value whatever it is. Changes in this
6078 * tunable will only affect upcoming migrations, not the current one.
6079 * So we need to save it, and keep it going.
6080 */
6081 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082 if (!move_flags)
6083 return 0;
6084
6085 from = mem_cgroup_from_task(p);
6086
6087 VM_BUG_ON(from == memcg);
6088
6089 mm = get_task_mm(p);
6090 if (!mm)
6091 return 0;
6092 /* We move charges only when we move a owner of the mm */
6093 if (mm->owner == p) {
6094 VM_BUG_ON(mc.from);
6095 VM_BUG_ON(mc.to);
6096 VM_BUG_ON(mc.precharge);
6097 VM_BUG_ON(mc.moved_charge);
6098 VM_BUG_ON(mc.moved_swap);
6099
6100 spin_lock(&mc.lock);
6101 mc.mm = mm;
6102 mc.from = from;
6103 mc.to = memcg;
6104 mc.flags = move_flags;
6105 spin_unlock(&mc.lock);
6106 /* We set mc.moving_task later */
6107
6108 ret = mem_cgroup_precharge_mc(mm);
6109 if (ret)
6110 mem_cgroup_clear_mc();
6111 } else {
6112 mmput(mm);
6113 }
6114 return ret;
6115}
6116
6117static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118{
6119 if (mc.to)
6120 mem_cgroup_clear_mc();
6121}
6122
6123static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124 unsigned long addr, unsigned long end,
6125 struct mm_walk *walk)
6126{
6127 int ret = 0;
6128 struct vm_area_struct *vma = walk->vma;
6129 pte_t *pte;
6130 spinlock_t *ptl;
6131 enum mc_target_type target_type;
6132 union mc_target target;
6133 struct page *page;
6134
6135 ptl = pmd_trans_huge_lock(pmd, vma);
6136 if (ptl) {
6137 if (mc.precharge < HPAGE_PMD_NR) {
6138 spin_unlock(ptl);
6139 return 0;
6140 }
6141 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142 if (target_type == MC_TARGET_PAGE) {
6143 page = target.page;
6144 if (!isolate_lru_page(page)) {
6145 if (!mem_cgroup_move_account(page, true,
6146 mc.from, mc.to)) {
6147 mc.precharge -= HPAGE_PMD_NR;
6148 mc.moved_charge += HPAGE_PMD_NR;
6149 }
6150 putback_lru_page(page);
6151 }
6152 put_page(page);
6153 } else if (target_type == MC_TARGET_DEVICE) {
6154 page = target.page;
6155 if (!mem_cgroup_move_account(page, true,
6156 mc.from, mc.to)) {
6157 mc.precharge -= HPAGE_PMD_NR;
6158 mc.moved_charge += HPAGE_PMD_NR;
6159 }
6160 put_page(page);
6161 }
6162 spin_unlock(ptl);
6163 return 0;
6164 }
6165
6166 if (pmd_trans_unstable(pmd))
6167 return 0;
6168retry:
6169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170 for (; addr != end; addr += PAGE_SIZE) {
6171 pte_t ptent = *(pte++);
6172 bool device = false;
6173 swp_entry_t ent;
6174
6175 if (!mc.precharge)
6176 break;
6177
6178 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6179 case MC_TARGET_DEVICE:
6180 device = true;
6181 fallthrough;
6182 case MC_TARGET_PAGE:
6183 page = target.page;
6184 /*
6185 * We can have a part of the split pmd here. Moving it
6186 * can be done but it would be too convoluted so simply
6187 * ignore such a partial THP and keep it in original
6188 * memcg. There should be somebody mapping the head.
6189 */
6190 if (PageTransCompound(page))
6191 goto put;
6192 if (!device && isolate_lru_page(page))
6193 goto put;
6194 if (!mem_cgroup_move_account(page, false,
6195 mc.from, mc.to)) {
6196 mc.precharge--;
6197 /* we uncharge from mc.from later. */
6198 mc.moved_charge++;
6199 }
6200 if (!device)
6201 putback_lru_page(page);
6202put: /* get_mctgt_type() gets the page */
6203 put_page(page);
6204 break;
6205 case MC_TARGET_SWAP:
6206 ent = target.ent;
6207 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6208 mc.precharge--;
6209 mem_cgroup_id_get_many(mc.to, 1);
6210 /* we fixup other refcnts and charges later. */
6211 mc.moved_swap++;
6212 }
6213 break;
6214 default:
6215 break;
6216 }
6217 }
6218 pte_unmap_unlock(pte - 1, ptl);
6219 cond_resched();
6220
6221 if (addr != end) {
6222 /*
6223 * We have consumed all precharges we got in can_attach().
6224 * We try charge one by one, but don't do any additional
6225 * charges to mc.to if we have failed in charge once in attach()
6226 * phase.
6227 */
6228 ret = mem_cgroup_do_precharge(1);
6229 if (!ret)
6230 goto retry;
6231 }
6232
6233 return ret;
6234}
6235
6236static const struct mm_walk_ops charge_walk_ops = {
6237 .pmd_entry = mem_cgroup_move_charge_pte_range,
6238};
6239
6240static void mem_cgroup_move_charge(void)
6241{
6242 lru_add_drain_all();
6243 /*
6244 * Signal lock_page_memcg() to take the memcg's move_lock
6245 * while we're moving its pages to another memcg. Then wait
6246 * for already started RCU-only updates to finish.
6247 */
6248 atomic_inc(&mc.from->moving_account);
6249 synchronize_rcu();
6250retry:
6251 if (unlikely(!mmap_read_trylock(mc.mm))) {
6252 /*
6253 * Someone who are holding the mmap_lock might be waiting in
6254 * waitq. So we cancel all extra charges, wake up all waiters,
6255 * and retry. Because we cancel precharges, we might not be able
6256 * to move enough charges, but moving charge is a best-effort
6257 * feature anyway, so it wouldn't be a big problem.
6258 */
6259 __mem_cgroup_clear_mc();
6260 cond_resched();
6261 goto retry;
6262 }
6263 /*
6264 * When we have consumed all precharges and failed in doing
6265 * additional charge, the page walk just aborts.
6266 */
6267 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6268 mmap_read_unlock(mc.mm);
6269 atomic_dec(&mc.from->moving_account);
6270}
6271
6272static void mem_cgroup_move_task(void)
6273{
6274 if (mc.to) {
6275 mem_cgroup_move_charge();
6276 mem_cgroup_clear_mc();
6277 }
6278}
6279#else /* !CONFIG_MMU */
6280static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6281{
6282 return 0;
6283}
6284static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6285{
6286}
6287static void mem_cgroup_move_task(void)
6288{
6289}
6290#endif
6291
6292#ifdef CONFIG_LRU_GEN
6293static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294{
6295 struct task_struct *task;
6296 struct cgroup_subsys_state *css;
6297
6298 /* find the first leader if there is any */
6299 cgroup_taskset_for_each_leader(task, css, tset)
6300 break;
6301
6302 if (!task)
6303 return;
6304
6305 task_lock(task);
6306 if (task->mm && READ_ONCE(task->mm->owner) == task)
6307 lru_gen_migrate_mm(task->mm);
6308 task_unlock(task);
6309}
6310#else
6311static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312{
6313}
6314#endif /* CONFIG_LRU_GEN */
6315
6316static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317{
6318 if (value == PAGE_COUNTER_MAX)
6319 seq_puts(m, "max\n");
6320 else
6321 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322
6323 return 0;
6324}
6325
6326static u64 memory_current_read(struct cgroup_subsys_state *css,
6327 struct cftype *cft)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330
6331 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6332}
6333
6334static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335 struct cftype *cft)
6336{
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338
6339 return (u64)memcg->memory.watermark * PAGE_SIZE;
6340}
6341
6342static int memory_min_show(struct seq_file *m, void *v)
6343{
6344 return seq_puts_memcg_tunable(m,
6345 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6346}
6347
6348static ssize_t memory_min_write(struct kernfs_open_file *of,
6349 char *buf, size_t nbytes, loff_t off)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 unsigned long min;
6353 int err;
6354
6355 buf = strstrip(buf);
6356 err = page_counter_memparse(buf, "max", &min);
6357 if (err)
6358 return err;
6359
6360 page_counter_set_min(&memcg->memory, min);
6361
6362 return nbytes;
6363}
6364
6365static int memory_low_show(struct seq_file *m, void *v)
6366{
6367 return seq_puts_memcg_tunable(m,
6368 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6369}
6370
6371static ssize_t memory_low_write(struct kernfs_open_file *of,
6372 char *buf, size_t nbytes, loff_t off)
6373{
6374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375 unsigned long low;
6376 int err;
6377
6378 buf = strstrip(buf);
6379 err = page_counter_memparse(buf, "max", &low);
6380 if (err)
6381 return err;
6382
6383 page_counter_set_low(&memcg->memory, low);
6384
6385 return nbytes;
6386}
6387
6388static int memory_high_show(struct seq_file *m, void *v)
6389{
6390 return seq_puts_memcg_tunable(m,
6391 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6392}
6393
6394static ssize_t memory_high_write(struct kernfs_open_file *of,
6395 char *buf, size_t nbytes, loff_t off)
6396{
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6399 bool drained = false;
6400 unsigned long high;
6401 int err;
6402
6403 buf = strstrip(buf);
6404 err = page_counter_memparse(buf, "max", &high);
6405 if (err)
6406 return err;
6407
6408 page_counter_set_high(&memcg->memory, high);
6409
6410 for (;;) {
6411 unsigned long nr_pages = page_counter_read(&memcg->memory);
6412 unsigned long reclaimed;
6413
6414 if (nr_pages <= high)
6415 break;
6416
6417 if (signal_pending(current))
6418 break;
6419
6420 if (!drained) {
6421 drain_all_stock(memcg);
6422 drained = true;
6423 continue;
6424 }
6425
6426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6428
6429 if (!reclaimed && !nr_retries--)
6430 break;
6431 }
6432
6433 memcg_wb_domain_size_changed(memcg);
6434 return nbytes;
6435}
6436
6437static int memory_max_show(struct seq_file *m, void *v)
6438{
6439 return seq_puts_memcg_tunable(m,
6440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6441}
6442
6443static ssize_t memory_max_write(struct kernfs_open_file *of,
6444 char *buf, size_t nbytes, loff_t off)
6445{
6446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6448 bool drained = false;
6449 unsigned long max;
6450 int err;
6451
6452 buf = strstrip(buf);
6453 err = page_counter_memparse(buf, "max", &max);
6454 if (err)
6455 return err;
6456
6457 xchg(&memcg->memory.max, max);
6458
6459 for (;;) {
6460 unsigned long nr_pages = page_counter_read(&memcg->memory);
6461
6462 if (nr_pages <= max)
6463 break;
6464
6465 if (signal_pending(current))
6466 break;
6467
6468 if (!drained) {
6469 drain_all_stock(memcg);
6470 drained = true;
6471 continue;
6472 }
6473
6474 if (nr_reclaims) {
6475 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6476 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6477 nr_reclaims--;
6478 continue;
6479 }
6480
6481 memcg_memory_event(memcg, MEMCG_OOM);
6482 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483 break;
6484 }
6485
6486 memcg_wb_domain_size_changed(memcg);
6487 return nbytes;
6488}
6489
6490static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491{
6492 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496 seq_printf(m, "oom_kill %lu\n",
6497 atomic_long_read(&events[MEMCG_OOM_KILL]));
6498 seq_printf(m, "oom_group_kill %lu\n",
6499 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6500}
6501
6502static int memory_events_show(struct seq_file *m, void *v)
6503{
6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505
6506 __memory_events_show(m, memcg->memory_events);
6507 return 0;
6508}
6509
6510static int memory_events_local_show(struct seq_file *m, void *v)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6513
6514 __memory_events_show(m, memcg->memory_events_local);
6515 return 0;
6516}
6517
6518static int memory_stat_show(struct seq_file *m, void *v)
6519{
6520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6522
6523 if (!buf)
6524 return -ENOMEM;
6525 memory_stat_format(memcg, buf, PAGE_SIZE);
6526 seq_puts(m, buf);
6527 kfree(buf);
6528 return 0;
6529}
6530
6531#ifdef CONFIG_NUMA
6532static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533 int item)
6534{
6535 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536}
6537
6538static int memory_numa_stat_show(struct seq_file *m, void *v)
6539{
6540 int i;
6541 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542
6543 mem_cgroup_flush_stats();
6544
6545 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546 int nid;
6547
6548 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549 continue;
6550
6551 seq_printf(m, "%s", memory_stats[i].name);
6552 for_each_node_state(nid, N_MEMORY) {
6553 u64 size;
6554 struct lruvec *lruvec;
6555
6556 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6557 size = lruvec_page_state_output(lruvec,
6558 memory_stats[i].idx);
6559 seq_printf(m, " N%d=%llu", nid, size);
6560 }
6561 seq_putc(m, '\n');
6562 }
6563
6564 return 0;
6565}
6566#endif
6567
6568static int memory_oom_group_show(struct seq_file *m, void *v)
6569{
6570 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6571
6572 seq_printf(m, "%d\n", memcg->oom_group);
6573
6574 return 0;
6575}
6576
6577static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578 char *buf, size_t nbytes, loff_t off)
6579{
6580 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581 int ret, oom_group;
6582
6583 buf = strstrip(buf);
6584 if (!buf)
6585 return -EINVAL;
6586
6587 ret = kstrtoint(buf, 0, &oom_group);
6588 if (ret)
6589 return ret;
6590
6591 if (oom_group != 0 && oom_group != 1)
6592 return -EINVAL;
6593
6594 memcg->oom_group = oom_group;
6595
6596 return nbytes;
6597}
6598
6599static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600 size_t nbytes, loff_t off)
6601{
6602 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6605 unsigned int reclaim_options;
6606 int err;
6607
6608 buf = strstrip(buf);
6609 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610 if (err)
6611 return err;
6612
6613 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6614 while (nr_reclaimed < nr_to_reclaim) {
6615 unsigned long reclaimed;
6616
6617 if (signal_pending(current))
6618 return -EINTR;
6619
6620 /*
6621 * This is the final attempt, drain percpu lru caches in the
6622 * hope of introducing more evictable pages for
6623 * try_to_free_mem_cgroup_pages().
6624 */
6625 if (!nr_retries)
6626 lru_add_drain_all();
6627
6628 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629 nr_to_reclaim - nr_reclaimed,
6630 GFP_KERNEL, reclaim_options);
6631
6632 if (!reclaimed && !nr_retries--)
6633 return -EAGAIN;
6634
6635 nr_reclaimed += reclaimed;
6636 }
6637
6638 return nbytes;
6639}
6640
6641static struct cftype memory_files[] = {
6642 {
6643 .name = "current",
6644 .flags = CFTYPE_NOT_ON_ROOT,
6645 .read_u64 = memory_current_read,
6646 },
6647 {
6648 .name = "peak",
6649 .flags = CFTYPE_NOT_ON_ROOT,
6650 .read_u64 = memory_peak_read,
6651 },
6652 {
6653 .name = "min",
6654 .flags = CFTYPE_NOT_ON_ROOT,
6655 .seq_show = memory_min_show,
6656 .write = memory_min_write,
6657 },
6658 {
6659 .name = "low",
6660 .flags = CFTYPE_NOT_ON_ROOT,
6661 .seq_show = memory_low_show,
6662 .write = memory_low_write,
6663 },
6664 {
6665 .name = "high",
6666 .flags = CFTYPE_NOT_ON_ROOT,
6667 .seq_show = memory_high_show,
6668 .write = memory_high_write,
6669 },
6670 {
6671 .name = "max",
6672 .flags = CFTYPE_NOT_ON_ROOT,
6673 .seq_show = memory_max_show,
6674 .write = memory_max_write,
6675 },
6676 {
6677 .name = "events",
6678 .flags = CFTYPE_NOT_ON_ROOT,
6679 .file_offset = offsetof(struct mem_cgroup, events_file),
6680 .seq_show = memory_events_show,
6681 },
6682 {
6683 .name = "events.local",
6684 .flags = CFTYPE_NOT_ON_ROOT,
6685 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6686 .seq_show = memory_events_local_show,
6687 },
6688 {
6689 .name = "stat",
6690 .seq_show = memory_stat_show,
6691 },
6692#ifdef CONFIG_NUMA
6693 {
6694 .name = "numa_stat",
6695 .seq_show = memory_numa_stat_show,
6696 },
6697#endif
6698 {
6699 .name = "oom.group",
6700 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701 .seq_show = memory_oom_group_show,
6702 .write = memory_oom_group_write,
6703 },
6704 {
6705 .name = "reclaim",
6706 .flags = CFTYPE_NS_DELEGATABLE,
6707 .write = memory_reclaim,
6708 },
6709 { } /* terminate */
6710};
6711
6712struct cgroup_subsys memory_cgrp_subsys = {
6713 .css_alloc = mem_cgroup_css_alloc,
6714 .css_online = mem_cgroup_css_online,
6715 .css_offline = mem_cgroup_css_offline,
6716 .css_released = mem_cgroup_css_released,
6717 .css_free = mem_cgroup_css_free,
6718 .css_reset = mem_cgroup_css_reset,
6719 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6720 .can_attach = mem_cgroup_can_attach,
6721 .attach = mem_cgroup_attach,
6722 .cancel_attach = mem_cgroup_cancel_attach,
6723 .post_attach = mem_cgroup_move_task,
6724 .dfl_cftypes = memory_files,
6725 .legacy_cftypes = mem_cgroup_legacy_files,
6726 .early_init = 0,
6727};
6728
6729/*
6730 * This function calculates an individual cgroup's effective
6731 * protection which is derived from its own memory.min/low, its
6732 * parent's and siblings' settings, as well as the actual memory
6733 * distribution in the tree.
6734 *
6735 * The following rules apply to the effective protection values:
6736 *
6737 * 1. At the first level of reclaim, effective protection is equal to
6738 * the declared protection in memory.min and memory.low.
6739 *
6740 * 2. To enable safe delegation of the protection configuration, at
6741 * subsequent levels the effective protection is capped to the
6742 * parent's effective protection.
6743 *
6744 * 3. To make complex and dynamic subtrees easier to configure, the
6745 * user is allowed to overcommit the declared protection at a given
6746 * level. If that is the case, the parent's effective protection is
6747 * distributed to the children in proportion to how much protection
6748 * they have declared and how much of it they are utilizing.
6749 *
6750 * This makes distribution proportional, but also work-conserving:
6751 * if one cgroup claims much more protection than it uses memory,
6752 * the unused remainder is available to its siblings.
6753 *
6754 * 4. Conversely, when the declared protection is undercommitted at a
6755 * given level, the distribution of the larger parental protection
6756 * budget is NOT proportional. A cgroup's protection from a sibling
6757 * is capped to its own memory.min/low setting.
6758 *
6759 * 5. However, to allow protecting recursive subtrees from each other
6760 * without having to declare each individual cgroup's fixed share
6761 * of the ancestor's claim to protection, any unutilized -
6762 * "floating" - protection from up the tree is distributed in
6763 * proportion to each cgroup's *usage*. This makes the protection
6764 * neutral wrt sibling cgroups and lets them compete freely over
6765 * the shared parental protection budget, but it protects the
6766 * subtree as a whole from neighboring subtrees.
6767 *
6768 * Note that 4. and 5. are not in conflict: 4. is about protecting
6769 * against immediate siblings whereas 5. is about protecting against
6770 * neighboring subtrees.
6771 */
6772static unsigned long effective_protection(unsigned long usage,
6773 unsigned long parent_usage,
6774 unsigned long setting,
6775 unsigned long parent_effective,
6776 unsigned long siblings_protected)
6777{
6778 unsigned long protected;
6779 unsigned long ep;
6780
6781 protected = min(usage, setting);
6782 /*
6783 * If all cgroups at this level combined claim and use more
6784 * protection then what the parent affords them, distribute
6785 * shares in proportion to utilization.
6786 *
6787 * We are using actual utilization rather than the statically
6788 * claimed protection in order to be work-conserving: claimed
6789 * but unused protection is available to siblings that would
6790 * otherwise get a smaller chunk than what they claimed.
6791 */
6792 if (siblings_protected > parent_effective)
6793 return protected * parent_effective / siblings_protected;
6794
6795 /*
6796 * Ok, utilized protection of all children is within what the
6797 * parent affords them, so we know whatever this child claims
6798 * and utilizes is effectively protected.
6799 *
6800 * If there is unprotected usage beyond this value, reclaim
6801 * will apply pressure in proportion to that amount.
6802 *
6803 * If there is unutilized protection, the cgroup will be fully
6804 * shielded from reclaim, but we do return a smaller value for
6805 * protection than what the group could enjoy in theory. This
6806 * is okay. With the overcommit distribution above, effective
6807 * protection is always dependent on how memory is actually
6808 * consumed among the siblings anyway.
6809 */
6810 ep = protected;
6811
6812 /*
6813 * If the children aren't claiming (all of) the protection
6814 * afforded to them by the parent, distribute the remainder in
6815 * proportion to the (unprotected) memory of each cgroup. That
6816 * way, cgroups that aren't explicitly prioritized wrt each
6817 * other compete freely over the allowance, but they are
6818 * collectively protected from neighboring trees.
6819 *
6820 * We're using unprotected memory for the weight so that if
6821 * some cgroups DO claim explicit protection, we don't protect
6822 * the same bytes twice.
6823 *
6824 * Check both usage and parent_usage against the respective
6825 * protected values. One should imply the other, but they
6826 * aren't read atomically - make sure the division is sane.
6827 */
6828 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829 return ep;
6830 if (parent_effective > siblings_protected &&
6831 parent_usage > siblings_protected &&
6832 usage > protected) {
6833 unsigned long unclaimed;
6834
6835 unclaimed = parent_effective - siblings_protected;
6836 unclaimed *= usage - protected;
6837 unclaimed /= parent_usage - siblings_protected;
6838
6839 ep += unclaimed;
6840 }
6841
6842 return ep;
6843}
6844
6845/**
6846 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6847 * @root: the top ancestor of the sub-tree being checked
6848 * @memcg: the memory cgroup to check
6849 *
6850 * WARNING: This function is not stateless! It can only be used as part
6851 * of a top-down tree iteration, not for isolated queries.
6852 */
6853void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854 struct mem_cgroup *memcg)
6855{
6856 unsigned long usage, parent_usage;
6857 struct mem_cgroup *parent;
6858
6859 if (mem_cgroup_disabled())
6860 return;
6861
6862 if (!root)
6863 root = root_mem_cgroup;
6864
6865 /*
6866 * Effective values of the reclaim targets are ignored so they
6867 * can be stale. Have a look at mem_cgroup_protection for more
6868 * details.
6869 * TODO: calculation should be more robust so that we do not need
6870 * that special casing.
6871 */
6872 if (memcg == root)
6873 return;
6874
6875 usage = page_counter_read(&memcg->memory);
6876 if (!usage)
6877 return;
6878
6879 parent = parent_mem_cgroup(memcg);
6880
6881 if (parent == root) {
6882 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6883 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6884 return;
6885 }
6886
6887 parent_usage = page_counter_read(&parent->memory);
6888
6889 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6890 READ_ONCE(memcg->memory.min),
6891 READ_ONCE(parent->memory.emin),
6892 atomic_long_read(&parent->memory.children_min_usage)));
6893
6894 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6895 READ_ONCE(memcg->memory.low),
6896 READ_ONCE(parent->memory.elow),
6897 atomic_long_read(&parent->memory.children_low_usage)));
6898}
6899
6900static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901 gfp_t gfp)
6902{
6903 long nr_pages = folio_nr_pages(folio);
6904 int ret;
6905
6906 ret = try_charge(memcg, gfp, nr_pages);
6907 if (ret)
6908 goto out;
6909
6910 css_get(&memcg->css);
6911 commit_charge(folio, memcg);
6912
6913 local_irq_disable();
6914 mem_cgroup_charge_statistics(memcg, nr_pages);
6915 memcg_check_events(memcg, folio_nid(folio));
6916 local_irq_enable();
6917out:
6918 return ret;
6919}
6920
6921int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6922{
6923 struct mem_cgroup *memcg;
6924 int ret;
6925
6926 memcg = get_mem_cgroup_from_mm(mm);
6927 ret = charge_memcg(folio, memcg, gfp);
6928 css_put(&memcg->css);
6929
6930 return ret;
6931}
6932
6933/**
6934 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935 * @folio: folio to charge.
6936 * @mm: mm context of the victim
6937 * @gfp: reclaim mode
6938 * @entry: swap entry for which the folio is allocated
6939 *
6940 * This function charges a folio allocated for swapin. Please call this before
6941 * adding the folio to the swapcache.
6942 *
6943 * Returns 0 on success. Otherwise, an error code is returned.
6944 */
6945int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6946 gfp_t gfp, swp_entry_t entry)
6947{
6948 struct mem_cgroup *memcg;
6949 unsigned short id;
6950 int ret;
6951
6952 if (mem_cgroup_disabled())
6953 return 0;
6954
6955 id = lookup_swap_cgroup_id(entry);
6956 rcu_read_lock();
6957 memcg = mem_cgroup_from_id(id);
6958 if (!memcg || !css_tryget_online(&memcg->css))
6959 memcg = get_mem_cgroup_from_mm(mm);
6960 rcu_read_unlock();
6961
6962 ret = charge_memcg(folio, memcg, gfp);
6963
6964 css_put(&memcg->css);
6965 return ret;
6966}
6967
6968/*
6969 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970 * @entry: swap entry for which the page is charged
6971 *
6972 * Call this function after successfully adding the charged page to swapcache.
6973 *
6974 * Note: This function assumes the page for which swap slot is being uncharged
6975 * is order 0 page.
6976 */
6977void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978{
6979 /*
6980 * Cgroup1's unified memory+swap counter has been charged with the
6981 * new swapcache page, finish the transfer by uncharging the swap
6982 * slot. The swap slot would also get uncharged when it dies, but
6983 * it can stick around indefinitely and we'd count the page twice
6984 * the entire time.
6985 *
6986 * Cgroup2 has separate resource counters for memory and swap,
6987 * so this is a non-issue here. Memory and swap charge lifetimes
6988 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989 * page to memory here, and uncharge swap when the slot is freed.
6990 */
6991 if (!mem_cgroup_disabled() && do_memsw_account()) {
6992 /*
6993 * The swap entry might not get freed for a long time,
6994 * let's not wait for it. The page already received a
6995 * memory+swap charge, drop the swap entry duplicate.
6996 */
6997 mem_cgroup_uncharge_swap(entry, 1);
6998 }
6999}
7000
7001struct uncharge_gather {
7002 struct mem_cgroup *memcg;
7003 unsigned long nr_memory;
7004 unsigned long pgpgout;
7005 unsigned long nr_kmem;
7006 int nid;
7007};
7008
7009static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7010{
7011 memset(ug, 0, sizeof(*ug));
7012}
7013
7014static void uncharge_batch(const struct uncharge_gather *ug)
7015{
7016 unsigned long flags;
7017
7018 if (ug->nr_memory) {
7019 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7020 if (do_memsw_account())
7021 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7022 if (ug->nr_kmem)
7023 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7024 memcg_oom_recover(ug->memcg);
7025 }
7026
7027 local_irq_save(flags);
7028 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7029 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7030 memcg_check_events(ug->memcg, ug->nid);
7031 local_irq_restore(flags);
7032
7033 /* drop reference from uncharge_folio */
7034 css_put(&ug->memcg->css);
7035}
7036
7037static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7038{
7039 long nr_pages;
7040 struct mem_cgroup *memcg;
7041 struct obj_cgroup *objcg;
7042
7043 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7044
7045 /*
7046 * Nobody should be changing or seriously looking at
7047 * folio memcg or objcg at this point, we have fully
7048 * exclusive access to the folio.
7049 */
7050 if (folio_memcg_kmem(folio)) {
7051 objcg = __folio_objcg(folio);
7052 /*
7053 * This get matches the put at the end of the function and
7054 * kmem pages do not hold memcg references anymore.
7055 */
7056 memcg = get_mem_cgroup_from_objcg(objcg);
7057 } else {
7058 memcg = __folio_memcg(folio);
7059 }
7060
7061 if (!memcg)
7062 return;
7063
7064 if (ug->memcg != memcg) {
7065 if (ug->memcg) {
7066 uncharge_batch(ug);
7067 uncharge_gather_clear(ug);
7068 }
7069 ug->memcg = memcg;
7070 ug->nid = folio_nid(folio);
7071
7072 /* pairs with css_put in uncharge_batch */
7073 css_get(&memcg->css);
7074 }
7075
7076 nr_pages = folio_nr_pages(folio);
7077
7078 if (folio_memcg_kmem(folio)) {
7079 ug->nr_memory += nr_pages;
7080 ug->nr_kmem += nr_pages;
7081
7082 folio->memcg_data = 0;
7083 obj_cgroup_put(objcg);
7084 } else {
7085 /* LRU pages aren't accounted at the root level */
7086 if (!mem_cgroup_is_root(memcg))
7087 ug->nr_memory += nr_pages;
7088 ug->pgpgout++;
7089
7090 folio->memcg_data = 0;
7091 }
7092
7093 css_put(&memcg->css);
7094}
7095
7096void __mem_cgroup_uncharge(struct folio *folio)
7097{
7098 struct uncharge_gather ug;
7099
7100 /* Don't touch folio->lru of any random page, pre-check: */
7101 if (!folio_memcg(folio))
7102 return;
7103
7104 uncharge_gather_clear(&ug);
7105 uncharge_folio(folio, &ug);
7106 uncharge_batch(&ug);
7107}
7108
7109/**
7110 * __mem_cgroup_uncharge_list - uncharge a list of page
7111 * @page_list: list of pages to uncharge
7112 *
7113 * Uncharge a list of pages previously charged with
7114 * __mem_cgroup_charge().
7115 */
7116void __mem_cgroup_uncharge_list(struct list_head *page_list)
7117{
7118 struct uncharge_gather ug;
7119 struct folio *folio;
7120
7121 uncharge_gather_clear(&ug);
7122 list_for_each_entry(folio, page_list, lru)
7123 uncharge_folio(folio, &ug);
7124 if (ug.memcg)
7125 uncharge_batch(&ug);
7126}
7127
7128/**
7129 * mem_cgroup_migrate - Charge a folio's replacement.
7130 * @old: Currently circulating folio.
7131 * @new: Replacement folio.
7132 *
7133 * Charge @new as a replacement folio for @old. @old will
7134 * be uncharged upon free.
7135 *
7136 * Both folios must be locked, @new->mapping must be set up.
7137 */
7138void mem_cgroup_migrate(struct folio *old, struct folio *new)
7139{
7140 struct mem_cgroup *memcg;
7141 long nr_pages = folio_nr_pages(new);
7142 unsigned long flags;
7143
7144 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7148
7149 if (mem_cgroup_disabled())
7150 return;
7151
7152 /* Page cache replacement: new folio already charged? */
7153 if (folio_memcg(new))
7154 return;
7155
7156 memcg = folio_memcg(old);
7157 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7158 if (!memcg)
7159 return;
7160
7161 /* Force-charge the new page. The old one will be freed soon */
7162 if (!mem_cgroup_is_root(memcg)) {
7163 page_counter_charge(&memcg->memory, nr_pages);
7164 if (do_memsw_account())
7165 page_counter_charge(&memcg->memsw, nr_pages);
7166 }
7167
7168 css_get(&memcg->css);
7169 commit_charge(new, memcg);
7170
7171 local_irq_save(flags);
7172 mem_cgroup_charge_statistics(memcg, nr_pages);
7173 memcg_check_events(memcg, folio_nid(new));
7174 local_irq_restore(flags);
7175}
7176
7177DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7178EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179
7180void mem_cgroup_sk_alloc(struct sock *sk)
7181{
7182 struct mem_cgroup *memcg;
7183
7184 if (!mem_cgroup_sockets_enabled)
7185 return;
7186
7187 /* Do not associate the sock with unrelated interrupted task's memcg. */
7188 if (!in_task())
7189 return;
7190
7191 rcu_read_lock();
7192 memcg = mem_cgroup_from_task(current);
7193 if (mem_cgroup_is_root(memcg))
7194 goto out;
7195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7196 goto out;
7197 if (css_tryget(&memcg->css))
7198 sk->sk_memcg = memcg;
7199out:
7200 rcu_read_unlock();
7201}
7202
7203void mem_cgroup_sk_free(struct sock *sk)
7204{
7205 if (sk->sk_memcg)
7206 css_put(&sk->sk_memcg->css);
7207}
7208
7209/**
7210 * mem_cgroup_charge_skmem - charge socket memory
7211 * @memcg: memcg to charge
7212 * @nr_pages: number of pages to charge
7213 * @gfp_mask: reclaim mode
7214 *
7215 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7216 * @memcg's configured limit, %false if it doesn't.
7217 */
7218bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219 gfp_t gfp_mask)
7220{
7221 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7222 struct page_counter *fail;
7223
7224 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225 memcg->tcpmem_pressure = 0;
7226 return true;
7227 }
7228 memcg->tcpmem_pressure = 1;
7229 if (gfp_mask & __GFP_NOFAIL) {
7230 page_counter_charge(&memcg->tcpmem, nr_pages);
7231 return true;
7232 }
7233 return false;
7234 }
7235
7236 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7238 return true;
7239 }
7240
7241 return false;
7242}
7243
7244/**
7245 * mem_cgroup_uncharge_skmem - uncharge socket memory
7246 * @memcg: memcg to uncharge
7247 * @nr_pages: number of pages to uncharge
7248 */
7249void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250{
7251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7252 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7253 return;
7254 }
7255
7256 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7257
7258 refill_stock(memcg, nr_pages);
7259}
7260
7261static int __init cgroup_memory(char *s)
7262{
7263 char *token;
7264
7265 while ((token = strsep(&s, ",")) != NULL) {
7266 if (!*token)
7267 continue;
7268 if (!strcmp(token, "nosocket"))
7269 cgroup_memory_nosocket = true;
7270 if (!strcmp(token, "nokmem"))
7271 cgroup_memory_nokmem = true;
7272 }
7273 return 1;
7274}
7275__setup("cgroup.memory=", cgroup_memory);
7276
7277/*
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282 * basically everything that doesn't depend on a specific mem_cgroup structure
7283 * should be initialized from here.
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287 int cpu, node;
7288
7289 /*
7290 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292 * to work fine, we should make sure that the overfill threshold can't
7293 * exceed S32_MAX / PAGE_SIZE.
7294 */
7295 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296
7297 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298 memcg_hotplug_cpu_dead);
7299
7300 for_each_possible_cpu(cpu)
7301 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302 drain_local_stock);
7303
7304 for_each_node(node) {
7305 struct mem_cgroup_tree_per_node *rtpn;
7306
7307 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308 node_online(node) ? node : NUMA_NO_NODE);
7309
7310 rtpn->rb_root = RB_ROOT;
7311 rtpn->rb_rightmost = NULL;
7312 spin_lock_init(&rtpn->lock);
7313 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314 }
7315
7316 return 0;
7317}
7318subsys_initcall(mem_cgroup_init);
7319
7320#ifdef CONFIG_SWAP
7321static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322{
7323 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324 /*
7325 * The root cgroup cannot be destroyed, so it's refcount must
7326 * always be >= 1.
7327 */
7328 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7329 VM_BUG_ON(1);
7330 break;
7331 }
7332 memcg = parent_mem_cgroup(memcg);
7333 if (!memcg)
7334 memcg = root_mem_cgroup;
7335 }
7336 return memcg;
7337}
7338
7339/**
7340 * mem_cgroup_swapout - transfer a memsw charge to swap
7341 * @folio: folio whose memsw charge to transfer
7342 * @entry: swap entry to move the charge to
7343 *
7344 * Transfer the memsw charge of @folio to @entry.
7345 */
7346void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7347{
7348 struct mem_cgroup *memcg, *swap_memcg;
7349 unsigned int nr_entries;
7350 unsigned short oldid;
7351
7352 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7354
7355 if (mem_cgroup_disabled())
7356 return;
7357
7358 if (!do_memsw_account())
7359 return;
7360
7361 memcg = folio_memcg(folio);
7362
7363 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7364 if (!memcg)
7365 return;
7366
7367 /*
7368 * In case the memcg owning these pages has been offlined and doesn't
7369 * have an ID allocated to it anymore, charge the closest online
7370 * ancestor for the swap instead and transfer the memory+swap charge.
7371 */
7372 swap_memcg = mem_cgroup_id_get_online(memcg);
7373 nr_entries = folio_nr_pages(folio);
7374 /* Get references for the tail pages, too */
7375 if (nr_entries > 1)
7376 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378 nr_entries);
7379 VM_BUG_ON_FOLIO(oldid, folio);
7380 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7381
7382 folio->memcg_data = 0;
7383
7384 if (!mem_cgroup_is_root(memcg))
7385 page_counter_uncharge(&memcg->memory, nr_entries);
7386
7387 if (memcg != swap_memcg) {
7388 if (!mem_cgroup_is_root(swap_memcg))
7389 page_counter_charge(&swap_memcg->memsw, nr_entries);
7390 page_counter_uncharge(&memcg->memsw, nr_entries);
7391 }
7392
7393 /*
7394 * Interrupts should be disabled here because the caller holds the
7395 * i_pages lock which is taken with interrupts-off. It is
7396 * important here to have the interrupts disabled because it is the
7397 * only synchronisation we have for updating the per-CPU variables.
7398 */
7399 memcg_stats_lock();
7400 mem_cgroup_charge_statistics(memcg, -nr_entries);
7401 memcg_stats_unlock();
7402 memcg_check_events(memcg, folio_nid(folio));
7403
7404 css_put(&memcg->css);
7405}
7406
7407/**
7408 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409 * @folio: folio being added to swap
7410 * @entry: swap entry to charge
7411 *
7412 * Try to charge @folio's memcg for the swap space at @entry.
7413 *
7414 * Returns 0 on success, -ENOMEM on failure.
7415 */
7416int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7417{
7418 unsigned int nr_pages = folio_nr_pages(folio);
7419 struct page_counter *counter;
7420 struct mem_cgroup *memcg;
7421 unsigned short oldid;
7422
7423 if (do_memsw_account())
7424 return 0;
7425
7426 memcg = folio_memcg(folio);
7427
7428 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7429 if (!memcg)
7430 return 0;
7431
7432 if (!entry.val) {
7433 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7434 return 0;
7435 }
7436
7437 memcg = mem_cgroup_id_get_online(memcg);
7438
7439 if (!mem_cgroup_is_root(memcg) &&
7440 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7441 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7443 mem_cgroup_id_put(memcg);
7444 return -ENOMEM;
7445 }
7446
7447 /* Get references for the tail pages, too */
7448 if (nr_pages > 1)
7449 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7451 VM_BUG_ON_FOLIO(oldid, folio);
7452 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7453
7454 return 0;
7455}
7456
7457/**
7458 * __mem_cgroup_uncharge_swap - uncharge swap space
7459 * @entry: swap entry to uncharge
7460 * @nr_pages: the amount of swap space to uncharge
7461 */
7462void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7463{
7464 struct mem_cgroup *memcg;
7465 unsigned short id;
7466
7467 if (mem_cgroup_disabled())
7468 return;
7469
7470 id = swap_cgroup_record(entry, 0, nr_pages);
7471 rcu_read_lock();
7472 memcg = mem_cgroup_from_id(id);
7473 if (memcg) {
7474 if (!mem_cgroup_is_root(memcg)) {
7475 if (do_memsw_account())
7476 page_counter_uncharge(&memcg->memsw, nr_pages);
7477 else
7478 page_counter_uncharge(&memcg->swap, nr_pages);
7479 }
7480 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7481 mem_cgroup_id_put_many(memcg, nr_pages);
7482 }
7483 rcu_read_unlock();
7484}
7485
7486long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487{
7488 long nr_swap_pages = get_nr_swap_pages();
7489
7490 if (mem_cgroup_disabled() || do_memsw_account())
7491 return nr_swap_pages;
7492 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7493 nr_swap_pages = min_t(long, nr_swap_pages,
7494 READ_ONCE(memcg->swap.max) -
7495 page_counter_read(&memcg->swap));
7496 return nr_swap_pages;
7497}
7498
7499bool mem_cgroup_swap_full(struct folio *folio)
7500{
7501 struct mem_cgroup *memcg;
7502
7503 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7504
7505 if (vm_swap_full())
7506 return true;
7507 if (do_memsw_account())
7508 return false;
7509
7510 memcg = folio_memcg(folio);
7511 if (!memcg)
7512 return false;
7513
7514 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7515 unsigned long usage = page_counter_read(&memcg->swap);
7516
7517 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518 usage * 2 >= READ_ONCE(memcg->swap.max))
7519 return true;
7520 }
7521
7522 return false;
7523}
7524
7525static int __init setup_swap_account(char *s)
7526{
7527 pr_warn_once("The swapaccount= commandline option is deprecated. "
7528 "Please report your usecase to linux-mm@kvack.org if you "
7529 "depend on this functionality.\n");
7530 return 1;
7531}
7532__setup("swapaccount=", setup_swap_account);
7533
7534static u64 swap_current_read(struct cgroup_subsys_state *css,
7535 struct cftype *cft)
7536{
7537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538
7539 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540}
7541
7542static int swap_high_show(struct seq_file *m, void *v)
7543{
7544 return seq_puts_memcg_tunable(m,
7545 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546}
7547
7548static ssize_t swap_high_write(struct kernfs_open_file *of,
7549 char *buf, size_t nbytes, loff_t off)
7550{
7551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552 unsigned long high;
7553 int err;
7554
7555 buf = strstrip(buf);
7556 err = page_counter_memparse(buf, "max", &high);
7557 if (err)
7558 return err;
7559
7560 page_counter_set_high(&memcg->swap, high);
7561
7562 return nbytes;
7563}
7564
7565static int swap_max_show(struct seq_file *m, void *v)
7566{
7567 return seq_puts_memcg_tunable(m,
7568 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7569}
7570
7571static ssize_t swap_max_write(struct kernfs_open_file *of,
7572 char *buf, size_t nbytes, loff_t off)
7573{
7574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575 unsigned long max;
7576 int err;
7577
7578 buf = strstrip(buf);
7579 err = page_counter_memparse(buf, "max", &max);
7580 if (err)
7581 return err;
7582
7583 xchg(&memcg->swap.max, max);
7584
7585 return nbytes;
7586}
7587
7588static int swap_events_show(struct seq_file *m, void *v)
7589{
7590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7591
7592 seq_printf(m, "high %lu\n",
7593 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7594 seq_printf(m, "max %lu\n",
7595 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596 seq_printf(m, "fail %lu\n",
7597 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598
7599 return 0;
7600}
7601
7602static struct cftype swap_files[] = {
7603 {
7604 .name = "swap.current",
7605 .flags = CFTYPE_NOT_ON_ROOT,
7606 .read_u64 = swap_current_read,
7607 },
7608 {
7609 .name = "swap.high",
7610 .flags = CFTYPE_NOT_ON_ROOT,
7611 .seq_show = swap_high_show,
7612 .write = swap_high_write,
7613 },
7614 {
7615 .name = "swap.max",
7616 .flags = CFTYPE_NOT_ON_ROOT,
7617 .seq_show = swap_max_show,
7618 .write = swap_max_write,
7619 },
7620 {
7621 .name = "swap.events",
7622 .flags = CFTYPE_NOT_ON_ROOT,
7623 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624 .seq_show = swap_events_show,
7625 },
7626 { } /* terminate */
7627};
7628
7629static struct cftype memsw_files[] = {
7630 {
7631 .name = "memsw.usage_in_bytes",
7632 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633 .read_u64 = mem_cgroup_read_u64,
7634 },
7635 {
7636 .name = "memsw.max_usage_in_bytes",
7637 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638 .write = mem_cgroup_reset,
7639 .read_u64 = mem_cgroup_read_u64,
7640 },
7641 {
7642 .name = "memsw.limit_in_bytes",
7643 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644 .write = mem_cgroup_write,
7645 .read_u64 = mem_cgroup_read_u64,
7646 },
7647 {
7648 .name = "memsw.failcnt",
7649 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650 .write = mem_cgroup_reset,
7651 .read_u64 = mem_cgroup_read_u64,
7652 },
7653 { }, /* terminate */
7654};
7655
7656#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657/**
7658 * obj_cgroup_may_zswap - check if this cgroup can zswap
7659 * @objcg: the object cgroup
7660 *
7661 * Check if the hierarchical zswap limit has been reached.
7662 *
7663 * This doesn't check for specific headroom, and it is not atomic
7664 * either. But with zswap, the size of the allocation is only known
7665 * once compression has occured, and this optimistic pre-check avoids
7666 * spending cycles on compression when there is already no room left
7667 * or zswap is disabled altogether somewhere in the hierarchy.
7668 */
7669bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670{
7671 struct mem_cgroup *memcg, *original_memcg;
7672 bool ret = true;
7673
7674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675 return true;
7676
7677 original_memcg = get_mem_cgroup_from_objcg(objcg);
7678 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7679 memcg = parent_mem_cgroup(memcg)) {
7680 unsigned long max = READ_ONCE(memcg->zswap_max);
7681 unsigned long pages;
7682
7683 if (max == PAGE_COUNTER_MAX)
7684 continue;
7685 if (max == 0) {
7686 ret = false;
7687 break;
7688 }
7689
7690 cgroup_rstat_flush(memcg->css.cgroup);
7691 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692 if (pages < max)
7693 continue;
7694 ret = false;
7695 break;
7696 }
7697 mem_cgroup_put(original_memcg);
7698 return ret;
7699}
7700
7701/**
7702 * obj_cgroup_charge_zswap - charge compression backend memory
7703 * @objcg: the object cgroup
7704 * @size: size of compressed object
7705 *
7706 * This forces the charge after obj_cgroup_may_swap() allowed
7707 * compression and storage in zwap for this cgroup to go ahead.
7708 */
7709void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711 struct mem_cgroup *memcg;
7712
7713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 return;
7715
7716 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717
7718 /* PF_MEMALLOC context, charging must succeed */
7719 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720 VM_WARN_ON_ONCE(1);
7721
7722 rcu_read_lock();
7723 memcg = obj_cgroup_memcg(objcg);
7724 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726 rcu_read_unlock();
7727}
7728
7729/**
7730 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731 * @objcg: the object cgroup
7732 * @size: size of compressed object
7733 *
7734 * Uncharges zswap memory on page in.
7735 */
7736void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737{
7738 struct mem_cgroup *memcg;
7739
7740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741 return;
7742
7743 obj_cgroup_uncharge(objcg, size);
7744
7745 rcu_read_lock();
7746 memcg = obj_cgroup_memcg(objcg);
7747 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749 rcu_read_unlock();
7750}
7751
7752static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
7754{
7755 cgroup_rstat_flush(css->cgroup);
7756 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757}
7758
7759static int zswap_max_show(struct seq_file *m, void *v)
7760{
7761 return seq_puts_memcg_tunable(m,
7762 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763}
7764
7765static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766 char *buf, size_t nbytes, loff_t off)
7767{
7768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769 unsigned long max;
7770 int err;
7771
7772 buf = strstrip(buf);
7773 err = page_counter_memparse(buf, "max", &max);
7774 if (err)
7775 return err;
7776
7777 xchg(&memcg->zswap_max, max);
7778
7779 return nbytes;
7780}
7781
7782static struct cftype zswap_files[] = {
7783 {
7784 .name = "zswap.current",
7785 .flags = CFTYPE_NOT_ON_ROOT,
7786 .read_u64 = zswap_current_read,
7787 },
7788 {
7789 .name = "zswap.max",
7790 .flags = CFTYPE_NOT_ON_ROOT,
7791 .seq_show = zswap_max_show,
7792 .write = zswap_max_write,
7793 },
7794 { } /* terminate */
7795};
7796#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797
7798static int __init mem_cgroup_swap_init(void)
7799{
7800 if (mem_cgroup_disabled())
7801 return 0;
7802
7803 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7805#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807#endif
7808 return 0;
7809}
7810subsys_initcall(mem_cgroup_swap_init);
7811
7812#endif /* CONFIG_SWAP */