Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257extern spinlock_t css_set_lock;
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456{
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460}
461
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
464{
465 return soft_limit_tree.rb_tree_per_node[nid];
466}
467
468static struct mem_cgroup_tree_per_node *
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474}
475
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513{
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526{
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532}
533
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595}
596
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599{
600 struct mem_cgroup_per_node *mz;
601
602retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618done:
619 return mz;
620}
621
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624{
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631}
632
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
641 if (mem_cgroup_disabled())
642 return;
643
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646}
647
648/* idx can be of type enum memcg_stat_item or node_stat_item. */
649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650{
651 long x = READ_ONCE(memcg->vmstats.state[idx]);
652#ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655#endif
656 return x;
657}
658
659/* idx can be of type enum memcg_stat_item or node_stat_item. */
660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661{
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667#ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670#endif
671 return x;
672}
673
674static struct mem_cgroup_per_node *
675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676{
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
682 return parent->nodeinfo[nid];
683}
684
685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
687{
688 struct mem_cgroup_per_node *pn;
689 struct mem_cgroup *memcg;
690 long x, threshold = MEMCG_CHARGE_BATCH;
691
692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 memcg = pn->memcg;
694
695 /* Update memcg */
696 __mod_memcg_state(memcg, idx, val);
697
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 if (unlikely(abs(x) > threshold)) {
706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 struct mem_cgroup_per_node *pi;
708
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714}
715
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735}
736
737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739{
740 struct page *head = compound_head(page); /* rmap on tail pages */
741 struct mem_cgroup *memcg;
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
745 rcu_read_lock();
746 memcg = page_memcg(head);
747 /* Untracked pages have no memcg, no lruvec. Update only the node */
748 if (!memcg) {
749 rcu_read_unlock();
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 __mod_lruvec_state(lruvec, idx, val);
756 rcu_read_unlock();
757}
758EXPORT_SYMBOL(__mod_lruvec_page_state);
759
760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761{
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782}
783
784/*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
791{
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 mod_memcg_lruvec_state(lruvec, idx, nr);
799 rcu_read_unlock();
800}
801
802/**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
806 * @count: the number of events that occurred
807 */
808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810{
811 if (mem_cgroup_disabled())
812 return;
813
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816}
817
818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819{
820 return READ_ONCE(memcg->vmstats.events[event]);
821}
822
823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824{
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 return x;
831}
832
833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 struct page *page,
835 int nr_pages)
836{
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846}
847
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850{
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 default:
865 break;
866 }
867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 return true;
869 }
870 return false;
871}
872
873/*
874 * Check events in order.
875 *
876 */
877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878{
879 /* threshold event is triggered in finer grain than soft limit */
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
882 bool do_softlimit;
883
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 }
890}
891
892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893{
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903}
904EXPORT_SYMBOL(mem_cgroup_from_task);
905
906static __always_inline struct mem_cgroup *active_memcg(void)
907{
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912}
913
914/**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
924 */
925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926{
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
952
953 rcu_read_lock();
954 do {
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
957 memcg = root_mem_cgroup;
958 } while (!css_tryget(&memcg->css));
959 rcu_read_unlock();
960 return memcg;
961}
962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
964static __always_inline bool memcg_kmem_bypass(void)
965{
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975}
976
977/**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
993 */
994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 struct mem_cgroup *prev,
996 struct mem_cgroup_reclaim_cookie *reclaim)
997{
998 struct mem_cgroup_reclaim_iter *iter;
999 struct cgroup_subsys_state *css = NULL;
1000 struct mem_cgroup *memcg = NULL;
1001 struct mem_cgroup *pos = NULL;
1002
1003 if (mem_cgroup_disabled())
1004 return NULL;
1005
1006 if (!root)
1007 root = root_mem_cgroup;
1008
1009 if (prev && !reclaim)
1010 pos = prev;
1011
1012 rcu_read_lock();
1013
1014 if (reclaim) {
1015 struct mem_cgroup_per_node *mz;
1016
1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 iter = &mz->iter;
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
1023 while (1) {
1024 pos = READ_ONCE(iter->position);
1025 if (!pos || css_tryget(&pos->css))
1026 break;
1027 /*
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
1034 */
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
1054 }
1055
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
1062
1063 if (css == &root->css)
1064 break;
1065
1066 if (css_tryget(css))
1067 break;
1068
1069 memcg = NULL;
1070 }
1071
1072 if (reclaim) {
1073 /*
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
1077 */
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212 struct lruvec *lruvec;
1213
1214 lruvec = mem_cgroup_page_lruvec(page);
1215 spin_lock(&lruvec->lru_lock);
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224 struct lruvec *lruvec;
1225
1226 lruvec = mem_cgroup_page_lruvec(page);
1227 spin_lock_irq(&lruvec->lru_lock);
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236 struct lruvec *lruvec;
1237
1238 lruvec = mem_cgroup_page_lruvec(page);
1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259{
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
1360struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383#endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 cgroup_rstat_flush(memcg->css.cgroup);
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590{
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763{
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002 struct page *head = compound_head(page); /* rmap on tail pages */
2003 struct mem_cgroup *memcg;
2004 unsigned long flags;
2005
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
2010 */
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return;
2015again:
2016 memcg = page_memcg(head);
2017 if (unlikely(!memcg))
2018 return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024#endif
2025
2026 if (atomic_read(&memcg->moving_account) <= 0)
2027 return;
2028
2029 spin_lock_irqsave(&memcg->move_lock, flags);
2030 if (memcg != page_memcg(head)) {
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 goto again;
2033 }
2034
2035 /*
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047{
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
2056
2057 rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066 struct page *head = compound_head(page);
2067
2068 __unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
2075 struct pglist_data *cached_pgdat;
2076 unsigned int nr_bytes;
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
2079#else
2080 int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
2089
2090 struct work_struct work;
2091 unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE 0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108{
2109 return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_irq_restore(flags);
2177
2178 return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (stock->cached != memcg) { /* reset if necessary */
2236 drain_stock(stock);
2237 css_get(&memcg->css);
2238 stock->cached = memcg;
2239 }
2240 stock->nr_pages += nr_pages;
2241
2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 drain_stock(stock);
2244
2245 local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254 int cpu, curcpu;
2255
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
2265 curcpu = get_cpu();
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 struct mem_cgroup *memcg;
2269 bool flush = false;
2270
2271 rcu_read_lock();
2272 memcg = stock->cached;
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 }
2288 put_cpu();
2289 mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294 int nid;
2295
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
2300 int i;
2301
2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
2307
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326 return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
2332{
2333 unsigned long nr_reclaimed = 0;
2334
2335 do {
2336 unsigned long pflags;
2337
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
2340 continue;
2341
2342 memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344 psi_memstall_enter(&pflags);
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
2347 psi_memstall_leave(&pflags);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417 u64 overage;
2418
2419 if (usage <= high)
2420 return 0;
2421
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
2427
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435 u64 overage, max_overage = 0;
2436
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
2439 READ_ONCE(memcg->memory.high));
2440 max_overage = max(overage, max_overage);
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
2444 return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470{
2471 unsigned long penalty_jiffies;
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
2507 unsigned long nr_reclaimed;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 int nr_retries = MAX_RECLAIM_RETRIES;
2510 struct mem_cgroup *memcg;
2511 bool in_retry = false;
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
2517 current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
2539
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
2584{
2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 int nr_retries = MAX_RECLAIM_RETRIES;
2587 struct mem_cgroup *mem_over_limit;
2588 struct page_counter *counter;
2589 enum oom_status oom_status;
2590 unsigned long nr_reclaimed;
2591 bool may_swap = true;
2592 bool drained = false;
2593 unsigned long pflags;
2594
2595retry:
2596 if (consume_stock(memcg, nr_pages))
2597 return 0;
2598
2599 if (!do_memsw_account() ||
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 goto done_restock;
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 } else {
2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 may_swap = false;
2609 }
2610
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
2615
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
2631 if (unlikely(should_force_charge()))
2632 goto force;
2633
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
2646 if (!gfpflags_allow_blocking(gfp_mask))
2647 goto nomem;
2648
2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651 psi_memstall_enter(&pflags);
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
2654 psi_memstall_leave(&pflags);
2655
2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 goto retry;
2658
2659 if (!drained) {
2660 drain_all_stock(mem_over_limit);
2661 drained = true;
2662 goto retry;
2663 }
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
2685 if (nr_retries--)
2686 goto retry;
2687
2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 goto nomem;
2690
2691 if (fatal_signal_pending(current))
2692 goto force;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
2710nomem:
2711 if (!(gfp_mask & __GFP_NOFAIL))
2712 return -ENOMEM;
2713force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
2720 if (do_memsw_account())
2721 page_counter_charge(&memcg->memsw, nr_pages);
2722
2723 return 0;
2724
2725done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
2728
2729 /*
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
2737 */
2738 do {
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
2765 current->memcg_nr_pages_over_high += batch;
2766 set_notify_resume(current);
2767 break;
2768 }
2769 } while ((memcg = parent_mem_cgroup(memcg)));
2770
2771 return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776{
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
2789 page_counter_uncharge(&memcg->memory, nr_pages);
2790 if (do_memsw_account())
2791 page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797 VM_BUG_ON_PAGE(page_memcg(page), page);
2798 /*
2799 * Any of the following ensures page's memcg stability:
2800 *
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
2805 */
2806 page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 gfp_t gfp, bool new_page)
2833{
2834 unsigned int objects = objs_per_slab_page(s, page);
2835 unsigned long memcg_data;
2836 void *vec;
2837
2838 gfp &= ~OBJCGS_CLEAR_MASK;
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
2858 kfree(vec);
2859 return 0;
2860 }
2861
2862 kmemleak_not_leak(vec);
2863 return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
2891 */
2892 if (page_objcgs_check(page)) {
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
2897 objcg = page_objcgs(page)[off];
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979 ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011{
3012 struct page_counter *counter;
3013 struct mem_cgroup *memcg;
3014 int ret;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 if (ret)
3020 goto out;
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
3032 goto out;
3033 }
3034 cancel_charge(memcg, nr_pages);
3035 ret = -ENOMEM;
3036 }
3037out:
3038 css_put(&memcg->css);
3039
3040 return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053 struct obj_cgroup *objcg;
3054 int ret = 0;
3055
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 if (!ret) {
3060 page->memcg_data = (unsigned long)objcg |
3061 MEMCG_DATA_KMEM;
3062 return 0;
3063 }
3064 obj_cgroup_put(objcg);
3065 }
3066 return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076 struct obj_cgroup *objcg;
3077 unsigned int nr_pages = 1 << order;
3078
3079 if (!PageMemcgKmem(page))
3080 return;
3081
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 page->memcg_data = 0;
3085 obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090{
3091 unsigned long flags;
3092 struct obj_stock *stock = get_obj_stock(&flags);
3093 int *bytes;
3094
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111 if (stock->nr_slab_reclaimable_b) {
3112 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113 stock->nr_slab_reclaimable_b);
3114 stock->nr_slab_reclaimable_b = 0;
3115 }
3116 if (stock->nr_slab_unreclaimable_b) {
3117 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118 stock->nr_slab_unreclaimable_b);
3119 stock->nr_slab_unreclaimable_b = 0;
3120 }
3121 stock->cached_pgdat = pgdat;
3122 }
3123
3124 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125 : &stock->nr_slab_unreclaimable_b;
3126 /*
3127 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128 * cached locally at least once before pushing it out.
3129 */
3130 if (!*bytes) {
3131 *bytes = nr;
3132 nr = 0;
3133 } else {
3134 *bytes += nr;
3135 if (abs(*bytes) > PAGE_SIZE) {
3136 nr = *bytes;
3137 *bytes = 0;
3138 } else {
3139 nr = 0;
3140 }
3141 }
3142 if (nr)
3143 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145 put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
3150 unsigned long flags;
3151 struct obj_stock *stock = get_obj_stock(&flags);
3152 bool ret = false;
3153
3154 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155 stock->nr_bytes -= nr_bytes;
3156 ret = true;
3157 }
3158
3159 put_obj_stock(flags);
3160
3161 return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166 struct obj_cgroup *old = stock->cached_objcg;
3167
3168 if (!old)
3169 return;
3170
3171 if (stock->nr_bytes) {
3172 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175 if (nr_pages)
3176 obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178 /*
3179 * The leftover is flushed to the centralized per-memcg value.
3180 * On the next attempt to refill obj stock it will be moved
3181 * to a per-cpu stock (probably, on an other CPU), see
3182 * refill_obj_stock().
3183 *
3184 * How often it's flushed is a trade-off between the memory
3185 * limit enforcement accuracy and potential CPU contention,
3186 * so it might be changed in the future.
3187 */
3188 atomic_add(nr_bytes, &old->nr_charged_bytes);
3189 stock->nr_bytes = 0;
3190 }
3191
3192 /*
3193 * Flush the vmstat data in current stock
3194 */
3195 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196 if (stock->nr_slab_reclaimable_b) {
3197 mod_objcg_mlstate(old, stock->cached_pgdat,
3198 NR_SLAB_RECLAIMABLE_B,
3199 stock->nr_slab_reclaimable_b);
3200 stock->nr_slab_reclaimable_b = 0;
3201 }
3202 if (stock->nr_slab_unreclaimable_b) {
3203 mod_objcg_mlstate(old, stock->cached_pgdat,
3204 NR_SLAB_UNRECLAIMABLE_B,
3205 stock->nr_slab_unreclaimable_b);
3206 stock->nr_slab_unreclaimable_b = 0;
3207 }
3208 stock->cached_pgdat = NULL;
3209 }
3210
3211 obj_cgroup_put(old);
3212 stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216 struct mem_cgroup *root_memcg)
3217{
3218 struct mem_cgroup *memcg;
3219
3220 if (in_task() && stock->task_obj.cached_objcg) {
3221 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223 return true;
3224 }
3225 if (stock->irq_obj.cached_objcg) {
3226 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228 return true;
3229 }
3230
3231 return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235 bool allow_uncharge)
3236{
3237 unsigned long flags;
3238 struct obj_stock *stock = get_obj_stock(&flags);
3239 unsigned int nr_pages = 0;
3240
3241 if (stock->cached_objcg != objcg) { /* reset if necessary */
3242 drain_obj_stock(stock);
3243 obj_cgroup_get(objcg);
3244 stock->cached_objcg = objcg;
3245 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247 allow_uncharge = true; /* Allow uncharge when objcg changes */
3248 }
3249 stock->nr_bytes += nr_bytes;
3250
3251 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253 stock->nr_bytes &= (PAGE_SIZE - 1);
3254 }
3255
3256 put_obj_stock(flags);
3257
3258 if (nr_pages)
3259 obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264 unsigned int nr_pages, nr_bytes;
3265 int ret;
3266
3267 if (consume_obj_stock(objcg, size))
3268 return 0;
3269
3270 /*
3271 * In theory, objcg->nr_charged_bytes can have enough
3272 * pre-charged bytes to satisfy the allocation. However,
3273 * flushing objcg->nr_charged_bytes requires two atomic
3274 * operations, and objcg->nr_charged_bytes can't be big.
3275 * The shared objcg->nr_charged_bytes can also become a
3276 * performance bottleneck if all tasks of the same memcg are
3277 * trying to update it. So it's better to ignore it and try
3278 * grab some new pages. The stock's nr_bytes will be flushed to
3279 * objcg->nr_charged_bytes later on when objcg changes.
3280 *
3281 * The stock's nr_bytes may contain enough pre-charged bytes
3282 * to allow one less page from being charged, but we can't rely
3283 * on the pre-charged bytes not being changed outside of
3284 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285 * pre-charged bytes as well when charging pages. To avoid a
3286 * page uncharge right after a page charge, we set the
3287 * allow_uncharge flag to false when calling refill_obj_stock()
3288 * to temporarily allow the pre-charged bytes to exceed the page
3289 * size limit. The maximum reachable value of the pre-charged
3290 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291 * race.
3292 */
3293 nr_pages = size >> PAGE_SHIFT;
3294 nr_bytes = size & (PAGE_SIZE - 1);
3295
3296 if (nr_bytes)
3297 nr_pages += 1;
3298
3299 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300 if (!ret && nr_bytes)
3301 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303 return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308 refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318 struct mem_cgroup *memcg = page_memcg(head);
3319 int i;
3320
3321 if (mem_cgroup_disabled() || !memcg)
3322 return;
3323
3324 for (i = 1; i < nr; i++)
3325 head[i].memcg_data = head->memcg_data;
3326
3327 if (PageMemcgKmem(head))
3328 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329 else
3330 css_get_many(&memcg->css, nr - 1);
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from: mem_cgroup which the entry is moved from
3338 * @to: mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349 struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351 unsigned short old_id, new_id;
3352
3353 old_id = mem_cgroup_id(from);
3354 new_id = mem_cgroup_id(to);
3355
3356 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357 mod_memcg_state(from, MEMCG_SWAP, -1);
3358 mod_memcg_state(to, MEMCG_SWAP, 1);
3359 return 0;
3360 }
3361 return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365 struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367 return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374 unsigned long max, bool memsw)
3375{
3376 bool enlarge = false;
3377 bool drained = false;
3378 int ret;
3379 bool limits_invariant;
3380 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382 do {
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 break;
3386 }
3387
3388 mutex_lock(&memcg_max_mutex);
3389 /*
3390 * Make sure that the new limit (memsw or memory limit) doesn't
3391 * break our basic invariant rule memory.max <= memsw.max.
3392 */
3393 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394 max <= memcg->memsw.max;
3395 if (!limits_invariant) {
3396 mutex_unlock(&memcg_max_mutex);
3397 ret = -EINVAL;
3398 break;
3399 }
3400 if (max > counter->max)
3401 enlarge = true;
3402 ret = page_counter_set_max(counter, max);
3403 mutex_unlock(&memcg_max_mutex);
3404
3405 if (!ret)
3406 break;
3407
3408 if (!drained) {
3409 drain_all_stock(memcg);
3410 drained = true;
3411 continue;
3412 }
3413
3414 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415 GFP_KERNEL, !memsw)) {
3416 ret = -EBUSY;
3417 break;
3418 }
3419 } while (true);
3420
3421 if (!ret && enlarge)
3422 memcg_oom_recover(memcg);
3423
3424 return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 gfp_t gfp_mask,
3429 unsigned long *total_scanned)
3430{
3431 unsigned long nr_reclaimed = 0;
3432 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433 unsigned long reclaimed;
3434 int loop = 0;
3435 struct mem_cgroup_tree_per_node *mctz;
3436 unsigned long excess;
3437 unsigned long nr_scanned;
3438
3439 if (order > 0)
3440 return 0;
3441
3442 mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444 /*
3445 * Do not even bother to check the largest node if the root
3446 * is empty. Do it lockless to prevent lock bouncing. Races
3447 * are acceptable as soft limit is best effort anyway.
3448 */
3449 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450 return 0;
3451
3452 /*
3453 * This loop can run a while, specially if mem_cgroup's continuously
3454 * keep exceeding their soft limit and putting the system under
3455 * pressure
3456 */
3457 do {
3458 if (next_mz)
3459 mz = next_mz;
3460 else
3461 mz = mem_cgroup_largest_soft_limit_node(mctz);
3462 if (!mz)
3463 break;
3464
3465 nr_scanned = 0;
3466 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467 gfp_mask, &nr_scanned);
3468 nr_reclaimed += reclaimed;
3469 *total_scanned += nr_scanned;
3470 spin_lock_irq(&mctz->lock);
3471 __mem_cgroup_remove_exceeded(mz, mctz);
3472
3473 /*
3474 * If we failed to reclaim anything from this memory cgroup
3475 * it is time to move on to the next cgroup
3476 */
3477 next_mz = NULL;
3478 if (!reclaimed)
3479 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481 excess = soft_limit_excess(mz->memcg);
3482 /*
3483 * One school of thought says that we should not add
3484 * back the node to the tree if reclaim returns 0.
3485 * But our reclaim could return 0, simply because due
3486 * to priority we are exposing a smaller subset of
3487 * memory to reclaim from. Consider this as a longer
3488 * term TODO.
3489 */
3490 /* If excess == 0, no tree ops */
3491 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3492 spin_unlock_irq(&mctz->lock);
3493 css_put(&mz->memcg->css);
3494 loop++;
3495 /*
3496 * Could not reclaim anything and there are no more
3497 * mem cgroups to try or we seem to be looping without
3498 * reclaiming anything.
3499 */
3500 if (!nr_reclaimed &&
3501 (next_mz == NULL ||
3502 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 break;
3504 } while (!nr_reclaimed);
3505 if (next_mz)
3506 css_put(&next_mz->memcg->css);
3507 return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517 int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519 /* we call try-to-free pages for make this cgroup empty */
3520 lru_add_drain_all();
3521
3522 drain_all_stock(memcg);
3523
3524 /* try to free all pages in this cgroup */
3525 while (nr_retries && page_counter_read(&memcg->memory)) {
3526 int progress;
3527
3528 if (signal_pending(current))
3529 return -EINTR;
3530
3531 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532 GFP_KERNEL, true);
3533 if (!progress) {
3534 nr_retries--;
3535 /* maybe some writeback is necessary */
3536 congestion_wait(BLK_RW_ASYNC, HZ/10);
3537 }
3538
3539 }
3540
3541 return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545 char *buf, size_t nbytes,
3546 loff_t off)
3547{
3548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550 if (mem_cgroup_is_root(memcg))
3551 return -EINVAL;
3552 return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556 struct cftype *cft)
3557{
3558 return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562 struct cftype *cft, u64 val)
3563{
3564 if (val == 1)
3565 return 0;
3566
3567 pr_warn_once("Non-hierarchical mode is deprecated. "
3568 "Please report your usecase to linux-mm@kvack.org if you "
3569 "depend on this functionality.\n");
3570
3571 return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576 unsigned long val;
3577
3578 if (mem_cgroup_is_root(memcg)) {
3579 /* mem_cgroup_threshold() calls here from irqsafe context */
3580 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582 memcg_page_state(memcg, NR_ANON_MAPPED);
3583 if (swap)
3584 val += memcg_page_state(memcg, MEMCG_SWAP);
3585 } else {
3586 if (!swap)
3587 val = page_counter_read(&memcg->memory);
3588 else
3589 val = page_counter_read(&memcg->memsw);
3590 }
3591 return val;
3592}
3593
3594enum {
3595 RES_USAGE,
3596 RES_LIMIT,
3597 RES_MAX_USAGE,
3598 RES_FAILCNT,
3599 RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603 struct cftype *cft)
3604{
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(cft->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(cft->private)) {
3626 case RES_USAGE:
3627 if (counter == &memcg->memory)
3628 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629 if (counter == &memcg->memsw)
3630 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631 return (u64)page_counter_read(counter) * PAGE_SIZE;
3632 case RES_LIMIT:
3633 return (u64)counter->max * PAGE_SIZE;
3634 case RES_MAX_USAGE:
3635 return (u64)counter->watermark * PAGE_SIZE;
3636 case RES_FAILCNT:
3637 return counter->failcnt;
3638 case RES_SOFT_LIMIT:
3639 return (u64)memcg->soft_limit * PAGE_SIZE;
3640 default:
3641 BUG();
3642 }
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648 struct obj_cgroup *objcg;
3649 int memcg_id;
3650
3651 if (cgroup_memory_nokmem)
3652 return 0;
3653
3654 BUG_ON(memcg->kmemcg_id >= 0);
3655 BUG_ON(memcg->kmem_state);
3656
3657 memcg_id = memcg_alloc_cache_id();
3658 if (memcg_id < 0)
3659 return memcg_id;
3660
3661 objcg = obj_cgroup_alloc();
3662 if (!objcg) {
3663 memcg_free_cache_id(memcg_id);
3664 return -ENOMEM;
3665 }
3666 objcg->memcg = memcg;
3667 rcu_assign_pointer(memcg->objcg, objcg);
3668
3669 static_branch_enable(&memcg_kmem_enabled_key);
3670
3671 memcg->kmemcg_id = memcg_id;
3672 memcg->kmem_state = KMEM_ONLINE;
3673
3674 return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679 struct cgroup_subsys_state *css;
3680 struct mem_cgroup *parent, *child;
3681 int kmemcg_id;
3682
3683 if (memcg->kmem_state != KMEM_ONLINE)
3684 return;
3685
3686 memcg->kmem_state = KMEM_ALLOCATED;
3687
3688 parent = parent_mem_cgroup(memcg);
3689 if (!parent)
3690 parent = root_mem_cgroup;
3691
3692 memcg_reparent_objcgs(memcg, parent);
3693
3694 kmemcg_id = memcg->kmemcg_id;
3695 BUG_ON(kmemcg_id < 0);
3696
3697 /*
3698 * Change kmemcg_id of this cgroup and all its descendants to the
3699 * parent's id, and then move all entries from this cgroup's list_lrus
3700 * to ones of the parent. After we have finished, all list_lrus
3701 * corresponding to this cgroup are guaranteed to remain empty. The
3702 * ordering is imposed by list_lru_node->lock taken by
3703 * memcg_drain_all_list_lrus().
3704 */
3705 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706 css_for_each_descendant_pre(css, &memcg->css) {
3707 child = mem_cgroup_from_css(css);
3708 BUG_ON(child->kmemcg_id != kmemcg_id);
3709 child->kmemcg_id = parent->kmemcg_id;
3710 }
3711 rcu_read_unlock();
3712
3713 memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715 memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720 /* css_alloc() failed, offlining didn't happen */
3721 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722 memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738 unsigned long max)
3739{
3740 int ret;
3741
3742 mutex_lock(&memcg_max_mutex);
3743 ret = page_counter_set_max(&memcg->kmem, max);
3744 mutex_unlock(&memcg_max_mutex);
3745 return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750 int ret;
3751
3752 mutex_lock(&memcg_max_mutex);
3753
3754 ret = page_counter_set_max(&memcg->tcpmem, max);
3755 if (ret)
3756 goto out;
3757
3758 if (!memcg->tcpmem_active) {
3759 /*
3760 * The active flag needs to be written after the static_key
3761 * update. This is what guarantees that the socket activation
3762 * function is the last one to run. See mem_cgroup_sk_alloc()
3763 * for details, and note that we don't mark any socket as
3764 * belonging to this memcg until that flag is up.
3765 *
3766 * We need to do this, because static_keys will span multiple
3767 * sites, but we can't control their order. If we mark a socket
3768 * as accounted, but the accounting functions are not patched in
3769 * yet, we'll lose accounting.
3770 *
3771 * We never race with the readers in mem_cgroup_sk_alloc(),
3772 * because when this value change, the code to process it is not
3773 * patched in yet.
3774 */
3775 static_branch_inc(&memcg_sockets_enabled_key);
3776 memcg->tcpmem_active = true;
3777 }
3778out:
3779 mutex_unlock(&memcg_max_mutex);
3780 return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788 char *buf, size_t nbytes, loff_t off)
3789{
3790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791 unsigned long nr_pages;
3792 int ret;
3793
3794 buf = strstrip(buf);
3795 ret = page_counter_memparse(buf, "-1", &nr_pages);
3796 if (ret)
3797 return ret;
3798
3799 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800 case RES_LIMIT:
3801 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802 ret = -EINVAL;
3803 break;
3804 }
3805 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806 case _MEM:
3807 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808 break;
3809 case _MEMSWAP:
3810 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811 break;
3812 case _KMEM:
3813 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814 "Please report your usecase to linux-mm@kvack.org if you "
3815 "depend on this functionality.\n");
3816 ret = memcg_update_kmem_max(memcg, nr_pages);
3817 break;
3818 case _TCP:
3819 ret = memcg_update_tcp_max(memcg, nr_pages);
3820 break;
3821 }
3822 break;
3823 case RES_SOFT_LIMIT:
3824 memcg->soft_limit = nr_pages;
3825 ret = 0;
3826 break;
3827 }
3828 return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832 size_t nbytes, loff_t off)
3833{
3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835 struct page_counter *counter;
3836
3837 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838 case _MEM:
3839 counter = &memcg->memory;
3840 break;
3841 case _MEMSWAP:
3842 counter = &memcg->memsw;
3843 break;
3844 case _KMEM:
3845 counter = &memcg->kmem;
3846 break;
3847 case _TCP:
3848 counter = &memcg->tcpmem;
3849 break;
3850 default:
3851 BUG();
3852 }
3853
3854 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855 case RES_MAX_USAGE:
3856 page_counter_reset_watermark(counter);
3857 break;
3858 case RES_FAILCNT:
3859 counter->failcnt = 0;
3860 break;
3861 default:
3862 BUG();
3863 }
3864
3865 return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869 struct cftype *cft)
3870{
3871 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876 struct cftype *cft, u64 val)
3877{
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (val & ~MOVE_MASK)
3881 return -EINVAL;
3882
3883 /*
3884 * No kind of locking is needed in here, because ->can_attach() will
3885 * check this value once in the beginning of the process, and then carry
3886 * on with stale data. This means that changes to this value will only
3887 * affect task migrations starting after the change.
3888 */
3889 memcg->move_charge_at_immigrate = val;
3890 return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895{
3896 return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907 int nid, unsigned int lru_mask, bool tree)
3908{
3909 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910 unsigned long nr = 0;
3911 enum lru_list lru;
3912
3913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915 for_each_lru(lru) {
3916 if (!(BIT(lru) & lru_mask))
3917 continue;
3918 if (tree)
3919 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920 else
3921 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922 }
3923 return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927 unsigned int lru_mask,
3928 bool tree)
3929{
3930 unsigned long nr = 0;
3931 enum lru_list lru;
3932
3933 for_each_lru(lru) {
3934 if (!(BIT(lru) & lru_mask))
3935 continue;
3936 if (tree)
3937 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938 else
3939 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940 }
3941 return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946 struct numa_stat {
3947 const char *name;
3948 unsigned int lru_mask;
3949 };
3950
3951 static const struct numa_stat stats[] = {
3952 { "total", LRU_ALL },
3953 { "file", LRU_ALL_FILE },
3954 { "anon", LRU_ALL_ANON },
3955 { "unevictable", BIT(LRU_UNEVICTABLE) },
3956 };
3957 const struct numa_stat *stat;
3958 int nid;
3959 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961 cgroup_rstat_flush(memcg->css.cgroup);
3962
3963 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964 seq_printf(m, "%s=%lu", stat->name,
3965 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966 false));
3967 for_each_node_state(nid, N_MEMORY)
3968 seq_printf(m, " N%d=%lu", nid,
3969 mem_cgroup_node_nr_lru_pages(memcg, nid,
3970 stat->lru_mask, false));
3971 seq_putc(m, '\n');
3972 }
3973
3974 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 true));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, true));
3983 seq_putc(m, '\n');
3984 }
3985
3986 return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991 NR_FILE_PAGES,
3992 NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994 NR_ANON_THPS,
3995#endif
3996 NR_SHMEM,
3997 NR_FILE_MAPPED,
3998 NR_FILE_DIRTY,
3999 NR_WRITEBACK,
4000 MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004 "cache",
4005 "rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007 "rss_huge",
4008#endif
4009 "shmem",
4010 "mapped_file",
4011 "dirty",
4012 "writeback",
4013 "swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018 PGPGIN,
4019 PGPGOUT,
4020 PGFAULT,
4021 PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027 unsigned long memory, memsw;
4028 struct mem_cgroup *mi;
4029 unsigned int i;
4030
4031 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033 cgroup_rstat_flush(memcg->css.cgroup);
4034
4035 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036 unsigned long nr;
4037
4038 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039 continue;
4040 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042 }
4043
4044 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046 memcg_events_local(memcg, memcg1_events[i]));
4047
4048 for (i = 0; i < NR_LRU_LISTS; i++)
4049 seq_printf(m, "%s %lu\n", lru_list_name(i),
4050 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051 PAGE_SIZE);
4052
4053 /* Hierarchical information */
4054 memory = memsw = PAGE_COUNTER_MAX;
4055 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056 memory = min(memory, READ_ONCE(mi->memory.max));
4057 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058 }
4059 seq_printf(m, "hierarchical_memory_limit %llu\n",
4060 (u64)memory * PAGE_SIZE);
4061 if (do_memsw_account())
4062 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063 (u64)memsw * PAGE_SIZE);
4064
4065 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066 unsigned long nr;
4067
4068 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069 continue;
4070 nr = memcg_page_state(memcg, memcg1_stats[i]);
4071 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072 (u64)nr * PAGE_SIZE);
4073 }
4074
4075 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076 seq_printf(m, "total_%s %llu\n",
4077 vm_event_name(memcg1_events[i]),
4078 (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083 PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086 {
4087 pg_data_t *pgdat;
4088 struct mem_cgroup_per_node *mz;
4089 unsigned long anon_cost = 0;
4090 unsigned long file_cost = 0;
4091
4092 for_each_online_pgdat(pgdat) {
4093 mz = memcg->nodeinfo[pgdat->node_id];
4094
4095 anon_cost += mz->lruvec.anon_cost;
4096 file_cost += mz->lruvec.file_cost;
4097 }
4098 seq_printf(m, "anon_cost %lu\n", anon_cost);
4099 seq_printf(m, "file_cost %lu\n", file_cost);
4100 }
4101#endif
4102
4103 return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
4116{
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119 if (val > 100)
4120 return -EINVAL;
4121
4122 if (!mem_cgroup_is_root(memcg))
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
4126
4127 return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132 struct mem_cgroup_threshold_ary *t;
4133 unsigned long usage;
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
4138 t = rcu_dereference(memcg->thresholds.primary);
4139 else
4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142 if (!t)
4143 goto unlock;
4144
4145 usage = mem_cgroup_usage(memcg, swap);
4146
4147 /*
4148 * current_threshold points to threshold just below or equal to usage.
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
4152 i = t->current_threshold;
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
4176 t->current_threshold = i - 1;
4177unlock:
4178 rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_memsw_account())
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208 struct mem_cgroup_eventfd_list *ev;
4209
4210 spin_lock(&memcg_oom_lock);
4211
4212 list_for_each_entry(ev, &memcg->oom_notify, list)
4213 eventfd_signal(ev->eventfd, 1);
4214
4215 spin_unlock(&memcg_oom_lock);
4216 return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, memcg)
4224 mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
4232 unsigned long threshold;
4233 unsigned long usage;
4234 int i, size, ret;
4235
4236 ret = page_counter_memparse(args, "-1", &threshold);
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
4241
4242 if (type == _MEM) {
4243 thresholds = &memcg->thresholds;
4244 usage = mem_cgroup_usage(memcg, false);
4245 } else if (type == _MEMSWAP) {
4246 thresholds = &memcg->memsw_thresholds;
4247 usage = mem_cgroup_usage(memcg, true);
4248 } else
4249 BUG();
4250
4251 /* Check if a threshold crossed before adding a new one */
4252 if (thresholds->primary)
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257 /* Allocate memory for new array of thresholds */
4258 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259 if (!new) {
4260 ret = -ENOMEM;
4261 goto unlock;
4262 }
4263 new->size = size;
4264
4265 /* Copy thresholds (if any) to new array */
4266 if (thresholds->primary)
4267 memcpy(new->entries, thresholds->primary->entries,
4268 flex_array_size(new, entries, size - 1));
4269
4270 /* Add new threshold */
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
4275 sort(new->entries, size, sizeof(*new->entries),
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0; i < size; i++) {
4281 if (new->entries[i].threshold <= usage) {
4282 /*
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
4285 * it here.
4286 */
4287 ++new->current_threshold;
4288 } else
4289 break;
4290 }
4291
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
4297
4298 /* To be sure that nobody uses thresholds */
4299 synchronize_rcu();
4300
4301unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308 struct eventfd_ctx *eventfd, const char *args)
4309{
4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314 struct eventfd_ctx *eventfd, const char *args)
4315{
4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320 struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
4324 unsigned long usage;
4325 int i, j, size, entries;
4326
4327 mutex_lock(&memcg->thresholds_lock);
4328
4329 if (type == _MEM) {
4330 thresholds = &memcg->thresholds;
4331 usage = mem_cgroup_usage(memcg, false);
4332 } else if (type == _MEMSWAP) {
4333 thresholds = &memcg->memsw_thresholds;
4334 usage = mem_cgroup_usage(memcg, true);
4335 } else
4336 BUG();
4337
4338 if (!thresholds->primary)
4339 goto unlock;
4340
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
4345 size = entries = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
4348 size++;
4349 else
4350 entries++;
4351 }
4352
4353 new = thresholds->spare;
4354
4355 /* If no items related to eventfd have been cleared, nothing to do */
4356 if (!entries)
4357 goto unlock;
4358
4359 /* Set thresholds array to NULL if we don't have thresholds */
4360 if (!size) {
4361 kfree(new);
4362 new = NULL;
4363 goto swap_buffers;
4364 }
4365
4366 new->size = size;
4367
4368 /* Copy thresholds and find current threshold */
4369 new->current_threshold = -1;
4370 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371 if (thresholds->primary->entries[i].eventfd == eventfd)
4372 continue;
4373
4374 new->entries[j] = thresholds->primary->entries[i];
4375 if (new->entries[j].threshold <= usage) {
4376 /*
4377 * new->current_threshold will not be used
4378 * until rcu_assign_pointer(), so it's safe to increment
4379 * it here.
4380 */
4381 ++new->current_threshold;
4382 }
4383 j++;
4384 }
4385
4386swap_buffers:
4387 /* Swap primary and spare array */
4388 thresholds->spare = thresholds->primary;
4389
4390 rcu_assign_pointer(thresholds->primary, new);
4391
4392 /* To be sure that nobody uses thresholds */
4393 synchronize_rcu();
4394
4395 /* If all events are unregistered, free the spare array */
4396 if (!new) {
4397 kfree(thresholds->spare);
4398 thresholds->spare = NULL;
4399 }
4400unlock:
4401 mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405 struct eventfd_ctx *eventfd)
4406{
4407 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411 struct eventfd_ctx *eventfd)
4412{
4413 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd, const char *args)
4418{
4419 struct mem_cgroup_eventfd_list *event;
4420
4421 event = kmalloc(sizeof(*event), GFP_KERNEL);
4422 if (!event)
4423 return -ENOMEM;
4424
4425 spin_lock(&memcg_oom_lock);
4426
4427 event->eventfd = eventfd;
4428 list_add(&event->list, &memcg->oom_notify);
4429
4430 /* already in OOM ? */
4431 if (memcg->under_oom)
4432 eventfd_signal(eventfd, 1);
4433 spin_unlock(&memcg_oom_lock);
4434
4435 return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439 struct eventfd_ctx *eventfd)
4440{
4441 struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443 spin_lock(&memcg_oom_lock);
4444
4445 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446 if (ev->eventfd == eventfd) {
4447 list_del(&ev->list);
4448 kfree(ev);
4449 }
4450 }
4451
4452 spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461 seq_printf(sf, "oom_kill %lu\n",
4462 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463 return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467 struct cftype *cft, u64 val)
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471 /* cannot set to root cgroup and only 0 and 1 are allowed */
4472 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473 return -EINVAL;
4474
4475 memcg->oom_kill_disable = val;
4476 if (!val)
4477 memcg_oom_recover(memcg);
4478
4479 return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488 return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493 wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498 wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505 if (!memcg->css.parent)
4506 return NULL;
4507
4508 return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors. Note that this doesn't consider the actual amount of
4526 * available memory in the system. The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530 unsigned long *pheadroom, unsigned long *pdirty,
4531 unsigned long *pwriteback)
4532{
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534 struct mem_cgroup *parent;
4535
4536 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541 memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543 *pheadroom = PAGE_COUNTER_MAX;
4544 while ((parent = parent_mem_cgroup(memcg))) {
4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546 READ_ONCE(memcg->memory.high));
4547 unsigned long used = page_counter_read(&memcg->memory);
4548
4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550 memcg = parent;
4551 }
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback. The former
4558 * tracks ownership per-page while the latter per-inode. This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases. For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode. B owns the inode and
4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback. A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction. However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism. When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired. Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599 struct bdi_writeback *wb)
4600{
4601 struct mem_cgroup *memcg = page_memcg(page);
4602 struct memcg_cgwb_frn *frn;
4603 u64 now = get_jiffies_64();
4604 u64 oldest_at = now;
4605 int oldest = -1;
4606 int i;
4607
4608 trace_track_foreign_dirty(page, wb);
4609
4610 /*
4611 * Pick the slot to use. If there is already a slot for @wb, keep
4612 * using it. If not replace the oldest one which isn't being
4613 * written out.
4614 */
4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616 frn = &memcg->cgwb_frn[i];
4617 if (frn->bdi_id == wb->bdi->id &&
4618 frn->memcg_id == wb->memcg_css->id)
4619 break;
4620 if (time_before64(frn->at, oldest_at) &&
4621 atomic_read(&frn->done.cnt) == 1) {
4622 oldest = i;
4623 oldest_at = frn->at;
4624 }
4625 }
4626
4627 if (i < MEMCG_CGWB_FRN_CNT) {
4628 /*
4629 * Re-using an existing one. Update timestamp lazily to
4630 * avoid making the cacheline hot. We want them to be
4631 * reasonably up-to-date and significantly shorter than
4632 * dirty_expire_interval as that's what expires the record.
4633 * Use the shorter of 1s and dirty_expire_interval / 8.
4634 */
4635 unsigned long update_intv =
4636 min_t(unsigned long, HZ,
4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639 if (time_before64(frn->at, now - update_intv))
4640 frn->at = now;
4641 } else if (oldest >= 0) {
4642 /* replace the oldest free one */
4643 frn = &memcg->cgwb_frn[oldest];
4644 frn->bdi_id = wb->bdi->id;
4645 frn->memcg_id = wb->memcg_css->id;
4646 frn->at = now;
4647 }
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655 u64 now = jiffies_64;
4656 int i;
4657
4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661 /*
4662 * If the record is older than dirty_expire_interval,
4663 * writeback on it has already started. No need to kick it
4664 * off again. Also, don't start a new one if there's
4665 * already one in flight.
4666 */
4667 if (time_after64(frn->at, now - intv) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 frn->at = 0;
4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672 WB_REASON_FOREIGN_FLUSH,
4673 &frn->done);
4674 }
4675 }
4676}
4677
4678#else /* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682 return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif /* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered. It tries to support fully configurable
4701 * events for each user. Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715 struct mem_cgroup_event *event =
4716 container_of(work, struct mem_cgroup_event, remove);
4717 struct mem_cgroup *memcg = event->memcg;
4718
4719 remove_wait_queue(event->wqh, &event->wait);
4720
4721 event->unregister_event(memcg, event->eventfd);
4722
4723 /* Notify userspace the event is going away. */
4724 eventfd_signal(event->eventfd, 1);
4725
4726 eventfd_ctx_put(event->eventfd);
4727 kfree(event);
4728 css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737 int sync, void *key)
4738{
4739 struct mem_cgroup_event *event =
4740 container_of(wait, struct mem_cgroup_event, wait);
4741 struct mem_cgroup *memcg = event->memcg;
4742 __poll_t flags = key_to_poll(key);
4743
4744 if (flags & EPOLLHUP) {
4745 /*
4746 * If the event has been detached at cgroup removal, we
4747 * can simply return knowing the other side will cleanup
4748 * for us.
4749 *
4750 * We can't race against event freeing since the other
4751 * side will require wqh->lock via remove_wait_queue(),
4752 * which we hold.
4753 */
4754 spin_lock(&memcg->event_list_lock);
4755 if (!list_empty(&event->list)) {
4756 list_del_init(&event->list);
4757 /*
4758 * We are in atomic context, but cgroup_event_remove()
4759 * may sleep, so we have to call it in workqueue.
4760 */
4761 schedule_work(&event->remove);
4762 }
4763 spin_unlock(&memcg->event_list_lock);
4764 }
4765
4766 return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770 wait_queue_head_t *wqh, poll_table *pt)
4771{
4772 struct mem_cgroup_event *event =
4773 container_of(pt, struct mem_cgroup_event, pt);
4774
4775 event->wqh = wqh;
4776 add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788 char *buf, size_t nbytes, loff_t off)
4789{
4790 struct cgroup_subsys_state *css = of_css(of);
4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792 struct mem_cgroup_event *event;
4793 struct cgroup_subsys_state *cfile_css;
4794 unsigned int efd, cfd;
4795 struct fd efile;
4796 struct fd cfile;
4797 const char *name;
4798 char *endp;
4799 int ret;
4800
4801 buf = strstrip(buf);
4802
4803 efd = simple_strtoul(buf, &endp, 10);
4804 if (*endp != ' ')
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 cfd = simple_strtoul(buf, &endp, 10);
4809 if ((*endp != ' ') && (*endp != '\0'))
4810 return -EINVAL;
4811 buf = endp + 1;
4812
4813 event = kzalloc(sizeof(*event), GFP_KERNEL);
4814 if (!event)
4815 return -ENOMEM;
4816
4817 event->memcg = memcg;
4818 INIT_LIST_HEAD(&event->list);
4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821 INIT_WORK(&event->remove, memcg_event_remove);
4822
4823 efile = fdget(efd);
4824 if (!efile.file) {
4825 ret = -EBADF;
4826 goto out_kfree;
4827 }
4828
4829 event->eventfd = eventfd_ctx_fileget(efile.file);
4830 if (IS_ERR(event->eventfd)) {
4831 ret = PTR_ERR(event->eventfd);
4832 goto out_put_efile;
4833 }
4834
4835 cfile = fdget(cfd);
4836 if (!cfile.file) {
4837 ret = -EBADF;
4838 goto out_put_eventfd;
4839 }
4840
4841 /* the process need read permission on control file */
4842 /* AV: shouldn't we check that it's been opened for read instead? */
4843 ret = file_permission(cfile.file, MAY_READ);
4844 if (ret < 0)
4845 goto out_put_cfile;
4846
4847 /*
4848 * Determine the event callbacks and set them in @event. This used
4849 * to be done via struct cftype but cgroup core no longer knows
4850 * about these events. The following is crude but the whole thing
4851 * is for compatibility anyway.
4852 *
4853 * DO NOT ADD NEW FILES.
4854 */
4855 name = cfile.file->f_path.dentry->d_name.name;
4856
4857 if (!strcmp(name, "memory.usage_in_bytes")) {
4858 event->register_event = mem_cgroup_usage_register_event;
4859 event->unregister_event = mem_cgroup_usage_unregister_event;
4860 } else if (!strcmp(name, "memory.oom_control")) {
4861 event->register_event = mem_cgroup_oom_register_event;
4862 event->unregister_event = mem_cgroup_oom_unregister_event;
4863 } else if (!strcmp(name, "memory.pressure_level")) {
4864 event->register_event = vmpressure_register_event;
4865 event->unregister_event = vmpressure_unregister_event;
4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867 event->register_event = memsw_cgroup_usage_register_event;
4868 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869 } else {
4870 ret = -EINVAL;
4871 goto out_put_cfile;
4872 }
4873
4874 /*
4875 * Verify @cfile should belong to @css. Also, remaining events are
4876 * automatically removed on cgroup destruction but the removal is
4877 * asynchronous, so take an extra ref on @css.
4878 */
4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880 &memory_cgrp_subsys);
4881 ret = -EINVAL;
4882 if (IS_ERR(cfile_css))
4883 goto out_put_cfile;
4884 if (cfile_css != css) {
4885 css_put(cfile_css);
4886 goto out_put_cfile;
4887 }
4888
4889 ret = event->register_event(memcg, event->eventfd, buf);
4890 if (ret)
4891 goto out_put_css;
4892
4893 vfs_poll(efile.file, &event->pt);
4894
4895 spin_lock(&memcg->event_list_lock);
4896 list_add(&event->list, &memcg->event_list);
4897 spin_unlock(&memcg->event_list_lock);
4898
4899 fdput(cfile);
4900 fdput(efile);
4901
4902 return nbytes;
4903
4904out_put_css:
4905 css_put(css);
4906out_put_cfile:
4907 fdput(cfile);
4908out_put_eventfd:
4909 eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911 fdput(efile);
4912out_kfree:
4913 kfree(event);
4914
4915 return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919 {
4920 .name = "usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930 {
4931 .name = "limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "soft_limit_in_bytes",
4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939 .write = mem_cgroup_write,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "failcnt",
4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "stat",
4950 .seq_show = memcg_stat_show,
4951 },
4952 {
4953 .name = "force_empty",
4954 .write = mem_cgroup_force_empty_write,
4955 },
4956 {
4957 .name = "use_hierarchy",
4958 .write_u64 = mem_cgroup_hierarchy_write,
4959 .read_u64 = mem_cgroup_hierarchy_read,
4960 },
4961 {
4962 .name = "cgroup.event_control", /* XXX: for compat */
4963 .write = memcg_write_event_control,
4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965 },
4966 {
4967 .name = "swappiness",
4968 .read_u64 = mem_cgroup_swappiness_read,
4969 .write_u64 = mem_cgroup_swappiness_write,
4970 },
4971 {
4972 .name = "move_charge_at_immigrate",
4973 .read_u64 = mem_cgroup_move_charge_read,
4974 .write_u64 = mem_cgroup_move_charge_write,
4975 },
4976 {
4977 .name = "oom_control",
4978 .seq_show = mem_cgroup_oom_control_read,
4979 .write_u64 = mem_cgroup_oom_control_write,
4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981 },
4982 {
4983 .name = "pressure_level",
4984 },
4985#ifdef CONFIG_NUMA
4986 {
4987 .name = "numa_stat",
4988 .seq_show = memcg_numa_stat_show,
4989 },
4990#endif
4991 {
4992 .name = "kmem.limit_in_bytes",
4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994 .write = mem_cgroup_write,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.usage_in_bytes",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "kmem.failcnt",
5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005 .write = mem_cgroup_reset,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "kmem.max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016 {
5017 .name = "kmem.slabinfo",
5018 .seq_show = memcg_slab_show,
5019 },
5020#endif
5021 {
5022 .name = "kmem.tcp.limit_in_bytes",
5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024 .write = mem_cgroup_write,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "kmem.tcp.failcnt",
5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "kmem.tcp.max_usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 { }, /* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075 if (memcg->id.id > 0) {
5076 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077 memcg->id.id = 0;
5078 }
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082 unsigned int n)
5083{
5084 refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090 mem_cgroup_id_remove(memcg);
5091
5092 /* Memcg ID pins CSS */
5093 css_put(&memcg->css);
5094 }
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099 mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110 WARN_ON_ONCE(!rcu_read_lock_held());
5111 return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116 struct mem_cgroup_per_node *pn;
5117 int tmp = node;
5118 /*
5119 * This routine is called against possible nodes.
5120 * But it's BUG to call kmalloc() against offline node.
5121 *
5122 * TODO: this routine can waste much memory for nodes which will
5123 * never be onlined. It's better to use memory hotplug callback
5124 * function.
5125 */
5126 if (!node_state(node, N_NORMAL_MEMORY))
5127 tmp = -1;
5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129 if (!pn)
5130 return 1;
5131
5132 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133 GFP_KERNEL_ACCOUNT);
5134 if (!pn->lruvec_stat_local) {
5135 kfree(pn);
5136 return 1;
5137 }
5138
5139 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140 GFP_KERNEL_ACCOUNT);
5141 if (!pn->lruvec_stat_cpu) {
5142 free_percpu(pn->lruvec_stat_local);
5143 kfree(pn);
5144 return 1;
5145 }
5146
5147 lruvec_init(&pn->lruvec);
5148 pn->usage_in_excess = 0;
5149 pn->on_tree = false;
5150 pn->memcg = memcg;
5151
5152 memcg->nodeinfo[node] = pn;
5153 return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160 if (!pn)
5161 return;
5162
5163 free_percpu(pn->lruvec_stat_cpu);
5164 free_percpu(pn->lruvec_stat_local);
5165 kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170 int node;
5171
5172 for_each_node(node)
5173 free_mem_cgroup_per_node_info(memcg, node);
5174 free_percpu(memcg->vmstats_percpu);
5175 kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180 int cpu;
5181
5182 memcg_wb_domain_exit(memcg);
5183 /*
5184 * Flush percpu lruvec stats to guarantee the value
5185 * correctness on parent's and all ancestor levels.
5186 */
5187 for_each_online_cpu(cpu)
5188 memcg_flush_lruvec_page_state(memcg, cpu);
5189 __mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194 struct mem_cgroup *memcg;
5195 unsigned int size;
5196 int node;
5197 int __maybe_unused i;
5198 long error = -ENOMEM;
5199
5200 size = sizeof(struct mem_cgroup);
5201 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203 memcg = kzalloc(size, GFP_KERNEL);
5204 if (!memcg)
5205 return ERR_PTR(error);
5206
5207 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208 1, MEM_CGROUP_ID_MAX,
5209 GFP_KERNEL);
5210 if (memcg->id.id < 0) {
5211 error = memcg->id.id;
5212 goto fail;
5213 }
5214
5215 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216 GFP_KERNEL_ACCOUNT);
5217 if (!memcg->vmstats_percpu)
5218 goto fail;
5219
5220 for_each_node(node)
5221 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222 goto fail;
5223
5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225 goto fail;
5226
5227 INIT_WORK(&memcg->high_work, high_work_func);
5228 INIT_LIST_HEAD(&memcg->oom_notify);
5229 mutex_init(&memcg->thresholds_lock);
5230 spin_lock_init(&memcg->move_lock);
5231 vmpressure_init(&memcg->vmpressure);
5232 INIT_LIST_HEAD(&memcg->event_list);
5233 spin_lock_init(&memcg->event_list_lock);
5234 memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236 memcg->kmemcg_id = -1;
5237 INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240 INIT_LIST_HEAD(&memcg->cgwb_list);
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 memcg->cgwb_frn[i].done =
5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248 memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251 return memcg;
5252fail:
5253 mem_cgroup_id_remove(memcg);
5254 __mem_cgroup_free(memcg);
5255 return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262 struct mem_cgroup *memcg, *old_memcg;
5263 long error = -ENOMEM;
5264
5265 old_memcg = set_active_memcg(parent);
5266 memcg = mem_cgroup_alloc();
5267 set_active_memcg(old_memcg);
5268 if (IS_ERR(memcg))
5269 return ERR_CAST(memcg);
5270
5271 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272 memcg->soft_limit = PAGE_COUNTER_MAX;
5273 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274 if (parent) {
5275 memcg->swappiness = mem_cgroup_swappiness(parent);
5276 memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278 page_counter_init(&memcg->memory, &parent->memory);
5279 page_counter_init(&memcg->swap, &parent->swap);
5280 page_counter_init(&memcg->kmem, &parent->kmem);
5281 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282 } else {
5283 page_counter_init(&memcg->memory, NULL);
5284 page_counter_init(&memcg->swap, NULL);
5285 page_counter_init(&memcg->kmem, NULL);
5286 page_counter_init(&memcg->tcpmem, NULL);
5287
5288 root_mem_cgroup = memcg;
5289 return &memcg->css;
5290 }
5291
5292 /* The following stuff does not apply to the root */
5293 error = memcg_online_kmem(memcg);
5294 if (error)
5295 goto fail;
5296
5297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298 static_branch_inc(&memcg_sockets_enabled_key);
5299
5300 return &memcg->css;
5301fail:
5302 mem_cgroup_id_remove(memcg);
5303 mem_cgroup_free(memcg);
5304 return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311 /*
5312 * A memcg must be visible for expand_shrinker_info()
5313 * by the time the maps are allocated. So, we allocate maps
5314 * here, when for_each_mem_cgroup() can't skip it.
5315 */
5316 if (alloc_shrinker_info(memcg)) {
5317 mem_cgroup_id_remove(memcg);
5318 return -ENOMEM;
5319 }
5320
5321 /* Online state pins memcg ID, memcg ID pins CSS */
5322 refcount_set(&memcg->id.ref, 1);
5323 css_get(css);
5324 return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 struct mem_cgroup_event *event, *tmp;
5331
5332 /*
5333 * Unregister events and notify userspace.
5334 * Notify userspace about cgroup removing only after rmdir of cgroup
5335 * directory to avoid race between userspace and kernelspace.
5336 */
5337 spin_lock(&memcg->event_list_lock);
5338 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339 list_del_init(&event->list);
5340 schedule_work(&event->remove);
5341 }
5342 spin_unlock(&memcg->event_list_lock);
5343
5344 page_counter_set_min(&memcg->memory, 0);
5345 page_counter_set_low(&memcg->memory, 0);
5346
5347 memcg_offline_kmem(memcg);
5348 reparent_shrinker_deferred(memcg);
5349 wb_memcg_offline(memcg);
5350
5351 drain_all_stock(memcg);
5352
5353 mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360 invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373 static_branch_dec(&memcg_sockets_enabled_key);
5374
5375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376 static_branch_dec(&memcg_sockets_enabled_key);
5377
5378 vmpressure_cleanup(&memcg->vmpressure);
5379 cancel_work_sync(&memcg->high_work);
5380 mem_cgroup_remove_from_trees(memcg);
5381 free_shrinker_info(memcg);
5382 memcg_free_kmem(memcg);
5383 mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css. This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency. The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5409 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410 memcg->soft_limit = PAGE_COUNTER_MAX;
5411 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412 memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419 struct memcg_vmstats_percpu *statc;
5420 long delta, v;
5421 int i;
5422
5423 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425 for (i = 0; i < MEMCG_NR_STAT; i++) {
5426 /*
5427 * Collect the aggregated propagation counts of groups
5428 * below us. We're in a per-cpu loop here and this is
5429 * a global counter, so the first cycle will get them.
5430 */
5431 delta = memcg->vmstats.state_pending[i];
5432 if (delta)
5433 memcg->vmstats.state_pending[i] = 0;
5434
5435 /* Add CPU changes on this level since the last flush */
5436 v = READ_ONCE(statc->state[i]);
5437 if (v != statc->state_prev[i]) {
5438 delta += v - statc->state_prev[i];
5439 statc->state_prev[i] = v;
5440 }
5441
5442 if (!delta)
5443 continue;
5444
5445 /* Aggregate counts on this level and propagate upwards */
5446 memcg->vmstats.state[i] += delta;
5447 if (parent)
5448 parent->vmstats.state_pending[i] += delta;
5449 }
5450
5451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452 delta = memcg->vmstats.events_pending[i];
5453 if (delta)
5454 memcg->vmstats.events_pending[i] = 0;
5455
5456 v = READ_ONCE(statc->events[i]);
5457 if (v != statc->events_prev[i]) {
5458 delta += v - statc->events_prev[i];
5459 statc->events_prev[i] = v;
5460 }
5461
5462 if (!delta)
5463 continue;
5464
5465 memcg->vmstats.events[i] += delta;
5466 if (parent)
5467 parent->vmstats.events_pending[i] += delta;
5468 }
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475 int ret;
5476
5477 /* Try a single bulk charge without reclaim first, kswapd may wake */
5478 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479 if (!ret) {
5480 mc.precharge += count;
5481 return ret;
5482 }
5483
5484 /* Try charges one by one with reclaim, but do not retry */
5485 while (count--) {
5486 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487 if (ret)
5488 return ret;
5489 mc.precharge++;
5490 cond_resched();
5491 }
5492 return 0;
5493}
5494
5495union mc_target {
5496 struct page *page;
5497 swp_entry_t ent;
5498};
5499
5500enum mc_target_type {
5501 MC_TARGET_NONE = 0,
5502 MC_TARGET_PAGE,
5503 MC_TARGET_SWAP,
5504 MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508 unsigned long addr, pte_t ptent)
5509{
5510 struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512 if (!page || !page_mapped(page))
5513 return NULL;
5514 if (PageAnon(page)) {
5515 if (!(mc.flags & MOVE_ANON))
5516 return NULL;
5517 } else {
5518 if (!(mc.flags & MOVE_FILE))
5519 return NULL;
5520 }
5521 if (!get_page_unless_zero(page))
5522 return NULL;
5523
5524 return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529 pte_t ptent, swp_entry_t *entry)
5530{
5531 struct page *page = NULL;
5532 swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534 if (!(mc.flags & MOVE_ANON))
5535 return NULL;
5536
5537 /*
5538 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539 * a device and because they are not accessible by CPU they are store
5540 * as special swap entry in the CPU page table.
5541 */
5542 if (is_device_private_entry(ent)) {
5543 page = pfn_swap_entry_to_page(ent);
5544 /*
5545 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546 * a refcount of 1 when free (unlike normal page)
5547 */
5548 if (!page_ref_add_unless(page, 1, 1))
5549 return NULL;
5550 return page;
5551 }
5552
5553 if (non_swap_entry(ent))
5554 return NULL;
5555
5556 /*
5557 * Because lookup_swap_cache() updates some statistics counter,
5558 * we call find_get_page() with swapper_space directly.
5559 */
5560 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561 entry->val = ent.val;
5562
5563 return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567 pte_t ptent, swp_entry_t *entry)
5568{
5569 return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
5576 if (!vma->vm_file) /* anonymous vma */
5577 return NULL;
5578 if (!(mc.flags & MOVE_FILE))
5579 return NULL;
5580
5581 /* page is moved even if it's not RSS of this task(page-faulted). */
5582 /* shmem/tmpfs may report page out on swap: account for that too. */
5583 return find_get_incore_page(vma->vm_file->f_mapping,
5584 linear_page_index(vma, addr));
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to: mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600 bool compound,
5601 struct mem_cgroup *from,
5602 struct mem_cgroup *to)
5603{
5604 struct lruvec *from_vec, *to_vec;
5605 struct pglist_data *pgdat;
5606 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607 int ret;
5608
5609 VM_BUG_ON(from == to);
5610 VM_BUG_ON_PAGE(PageLRU(page), page);
5611 VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613 /*
5614 * Prevent mem_cgroup_migrate() from looking at
5615 * page's memory cgroup of its source page while we change it.
5616 */
5617 ret = -EBUSY;
5618 if (!trylock_page(page))
5619 goto out;
5620
5621 ret = -EINVAL;
5622 if (page_memcg(page) != from)
5623 goto out_unlock;
5624
5625 pgdat = page_pgdat(page);
5626 from_vec = mem_cgroup_lruvec(from, pgdat);
5627 to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629 lock_page_memcg(page);
5630
5631 if (PageAnon(page)) {
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635 if (PageTransHuge(page)) {
5636 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5637 -nr_pages);
5638 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5639 nr_pages);
5640 }
5641 }
5642 } else {
5643 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646 if (PageSwapBacked(page)) {
5647 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649 }
5650
5651 if (page_mapped(page)) {
5652 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654 }
5655
5656 if (PageDirty(page)) {
5657 struct address_space *mapping = page_mapping(page);
5658
5659 if (mapping_can_writeback(mapping)) {
5660 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661 -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663 nr_pages);
5664 }
5665 }
5666 }
5667
5668 if (PageWriteback(page)) {
5669 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671 }
5672
5673 /*
5674 * All state has been migrated, let's switch to the new memcg.
5675 *
5676 * It is safe to change page's memcg here because the page
5677 * is referenced, charged, isolated, and locked: we can't race
5678 * with (un)charging, migration, LRU putback, or anything else
5679 * that would rely on a stable page's memory cgroup.
5680 *
5681 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682 * to save space. As soon as we switch page's memory cgroup to a
5683 * new memcg that isn't locked, the above state can change
5684 * concurrently again. Make sure we're truly done with it.
5685 */
5686 smp_mb();
5687
5688 css_get(&to->css);
5689 css_put(&from->css);
5690
5691 page->memcg_data = (unsigned long)to;
5692
5693 __unlock_page_memcg(from);
5694
5695 ret = 0;
5696
5697 local_irq_disable();
5698 mem_cgroup_charge_statistics(to, page, nr_pages);
5699 memcg_check_events(to, page);
5700 mem_cgroup_charge_statistics(from, page, -nr_pages);
5701 memcg_check_events(from, page);
5702 local_irq_enable();
5703out_unlock:
5704 unlock_page(page);
5705out:
5706 return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 * move charge. if @target is not NULL, the page is stored in target->page
5720 * with extra refcnt got(Callers should handle it).
5721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 * target for charge migration. if @target is not NULL, the entry is stored
5723 * in target->ent.
5724 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5725 * (so ZONE_DEVICE page and thus not on the lru).
5726 * For now we such page is charge like a regular page would be as for all
5727 * intent and purposes it is just special memory taking the place of a
5728 * regular page.
5729 *
5730 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736 unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738 struct page *page = NULL;
5739 enum mc_target_type ret = MC_TARGET_NONE;
5740 swp_entry_t ent = { .val = 0 };
5741
5742 if (pte_present(ptent))
5743 page = mc_handle_present_pte(vma, addr, ptent);
5744 else if (is_swap_pte(ptent))
5745 page = mc_handle_swap_pte(vma, ptent, &ent);
5746 else if (pte_none(ptent))
5747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749 if (!page && !ent.val)
5750 return ret;
5751 if (page) {
5752 /*
5753 * Do only loose check w/o serialization.
5754 * mem_cgroup_move_account() checks the page is valid or
5755 * not under LRU exclusion.
5756 */
5757 if (page_memcg(page) == mc.from) {
5758 ret = MC_TARGET_PAGE;
5759 if (is_device_private_page(page))
5760 ret = MC_TARGET_DEVICE;
5761 if (target)
5762 target->page = page;
5763 }
5764 if (!ret || !target)
5765 put_page(page);
5766 }
5767 /*
5768 * There is a swap entry and a page doesn't exist or isn't charged.
5769 * But we cannot move a tail-page in a THP.
5770 */
5771 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773 ret = MC_TARGET_SWAP;
5774 if (target)
5775 target->ent = ent;
5776 }
5777 return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787 unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789 struct page *page = NULL;
5790 enum mc_target_type ret = MC_TARGET_NONE;
5791
5792 if (unlikely(is_swap_pmd(pmd))) {
5793 VM_BUG_ON(thp_migration_supported() &&
5794 !is_pmd_migration_entry(pmd));
5795 return ret;
5796 }
5797 page = pmd_page(pmd);
5798 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799 if (!(mc.flags & MOVE_ANON))
5800 return ret;
5801 if (page_memcg(page) == mc.from) {
5802 ret = MC_TARGET_PAGE;
5803 if (target) {
5804 get_page(page);
5805 target->page = page;
5806 }
5807 }
5808 return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812 unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814 return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819 unsigned long addr, unsigned long end,
5820 struct mm_walk *walk)
5821{
5822 struct vm_area_struct *vma = walk->vma;
5823 pte_t *pte;
5824 spinlock_t *ptl;
5825
5826 ptl = pmd_trans_huge_lock(pmd, vma);
5827 if (ptl) {
5828 /*
5829 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831 * this might change.
5832 */
5833 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834 mc.precharge += HPAGE_PMD_NR;
5835 spin_unlock(ptl);
5836 return 0;
5837 }
5838
5839 if (pmd_trans_unstable(pmd))
5840 return 0;
5841 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842 for (; addr != end; pte++, addr += PAGE_SIZE)
5843 if (get_mctgt_type(vma, addr, *pte, NULL))
5844 mc.precharge++; /* increment precharge temporarily */
5845 pte_unmap_unlock(pte - 1, ptl);
5846 cond_resched();
5847
5848 return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857 unsigned long precharge;
5858
5859 mmap_read_lock(mm);
5860 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861 mmap_read_unlock(mm);
5862
5863 precharge = mc.precharge;
5864 mc.precharge = 0;
5865
5866 return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871 unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873 VM_BUG_ON(mc.moving_task);
5874 mc.moving_task = current;
5875 return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881 struct mem_cgroup *from = mc.from;
5882 struct mem_cgroup *to = mc.to;
5883
5884 /* we must uncharge all the leftover precharges from mc.to */
5885 if (mc.precharge) {
5886 cancel_charge(mc.to, mc.precharge);
5887 mc.precharge = 0;
5888 }
5889 /*
5890 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891 * we must uncharge here.
5892 */
5893 if (mc.moved_charge) {
5894 cancel_charge(mc.from, mc.moved_charge);
5895 mc.moved_charge = 0;
5896 }
5897 /* we must fixup refcnts and charges */
5898 if (mc.moved_swap) {
5899 /* uncharge swap account from the old cgroup */
5900 if (!mem_cgroup_is_root(mc.from))
5901 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905 /*
5906 * we charged both to->memory and to->memsw, so we
5907 * should uncharge to->memory.
5908 */
5909 if (!mem_cgroup_is_root(mc.to))
5910 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912 mc.moved_swap = 0;
5913 }
5914 memcg_oom_recover(from);
5915 memcg_oom_recover(to);
5916 wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921 struct mm_struct *mm = mc.mm;
5922
5923 /*
5924 * we must clear moving_task before waking up waiters at the end of
5925 * task migration.
5926 */
5927 mc.moving_task = NULL;
5928 __mem_cgroup_clear_mc();
5929 spin_lock(&mc.lock);
5930 mc.from = NULL;
5931 mc.to = NULL;
5932 mc.mm = NULL;
5933 spin_unlock(&mc.lock);
5934
5935 mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940 struct cgroup_subsys_state *css;
5941 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942 struct mem_cgroup *from;
5943 struct task_struct *leader, *p;
5944 struct mm_struct *mm;
5945 unsigned long move_flags;
5946 int ret = 0;
5947
5948 /* charge immigration isn't supported on the default hierarchy */
5949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950 return 0;
5951
5952 /*
5953 * Multi-process migrations only happen on the default hierarchy
5954 * where charge immigration is not used. Perform charge
5955 * immigration if @tset contains a leader and whine if there are
5956 * multiple.
5957 */
5958 p = NULL;
5959 cgroup_taskset_for_each_leader(leader, css, tset) {
5960 WARN_ON_ONCE(p);
5961 p = leader;
5962 memcg = mem_cgroup_from_css(css);
5963 }
5964 if (!p)
5965 return 0;
5966
5967 /*
5968 * We are now committed to this value whatever it is. Changes in this
5969 * tunable will only affect upcoming migrations, not the current one.
5970 * So we need to save it, and keep it going.
5971 */
5972 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973 if (!move_flags)
5974 return 0;
5975
5976 from = mem_cgroup_from_task(p);
5977
5978 VM_BUG_ON(from == memcg);
5979
5980 mm = get_task_mm(p);
5981 if (!mm)
5982 return 0;
5983 /* We move charges only when we move a owner of the mm */
5984 if (mm->owner == p) {
5985 VM_BUG_ON(mc.from);
5986 VM_BUG_ON(mc.to);
5987 VM_BUG_ON(mc.precharge);
5988 VM_BUG_ON(mc.moved_charge);
5989 VM_BUG_ON(mc.moved_swap);
5990
5991 spin_lock(&mc.lock);
5992 mc.mm = mm;
5993 mc.from = from;
5994 mc.to = memcg;
5995 mc.flags = move_flags;
5996 spin_unlock(&mc.lock);
5997 /* We set mc.moving_task later */
5998
5999 ret = mem_cgroup_precharge_mc(mm);
6000 if (ret)
6001 mem_cgroup_clear_mc();
6002 } else {
6003 mmput(mm);
6004 }
6005 return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010 if (mc.to)
6011 mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015 unsigned long addr, unsigned long end,
6016 struct mm_walk *walk)
6017{
6018 int ret = 0;
6019 struct vm_area_struct *vma = walk->vma;
6020 pte_t *pte;
6021 spinlock_t *ptl;
6022 enum mc_target_type target_type;
6023 union mc_target target;
6024 struct page *page;
6025
6026 ptl = pmd_trans_huge_lock(pmd, vma);
6027 if (ptl) {
6028 if (mc.precharge < HPAGE_PMD_NR) {
6029 spin_unlock(ptl);
6030 return 0;
6031 }
6032 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033 if (target_type == MC_TARGET_PAGE) {
6034 page = target.page;
6035 if (!isolate_lru_page(page)) {
6036 if (!mem_cgroup_move_account(page, true,
6037 mc.from, mc.to)) {
6038 mc.precharge -= HPAGE_PMD_NR;
6039 mc.moved_charge += HPAGE_PMD_NR;
6040 }
6041 putback_lru_page(page);
6042 }
6043 put_page(page);
6044 } else if (target_type == MC_TARGET_DEVICE) {
6045 page = target.page;
6046 if (!mem_cgroup_move_account(page, true,
6047 mc.from, mc.to)) {
6048 mc.precharge -= HPAGE_PMD_NR;
6049 mc.moved_charge += HPAGE_PMD_NR;
6050 }
6051 put_page(page);
6052 }
6053 spin_unlock(ptl);
6054 return 0;
6055 }
6056
6057 if (pmd_trans_unstable(pmd))
6058 return 0;
6059retry:
6060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061 for (; addr != end; addr += PAGE_SIZE) {
6062 pte_t ptent = *(pte++);
6063 bool device = false;
6064 swp_entry_t ent;
6065
6066 if (!mc.precharge)
6067 break;
6068
6069 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070 case MC_TARGET_DEVICE:
6071 device = true;
6072 fallthrough;
6073 case MC_TARGET_PAGE:
6074 page = target.page;
6075 /*
6076 * We can have a part of the split pmd here. Moving it
6077 * can be done but it would be too convoluted so simply
6078 * ignore such a partial THP and keep it in original
6079 * memcg. There should be somebody mapping the head.
6080 */
6081 if (PageTransCompound(page))
6082 goto put;
6083 if (!device && isolate_lru_page(page))
6084 goto put;
6085 if (!mem_cgroup_move_account(page, false,
6086 mc.from, mc.to)) {
6087 mc.precharge--;
6088 /* we uncharge from mc.from later. */
6089 mc.moved_charge++;
6090 }
6091 if (!device)
6092 putback_lru_page(page);
6093put: /* get_mctgt_type() gets the page */
6094 put_page(page);
6095 break;
6096 case MC_TARGET_SWAP:
6097 ent = target.ent;
6098 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099 mc.precharge--;
6100 mem_cgroup_id_get_many(mc.to, 1);
6101 /* we fixup other refcnts and charges later. */
6102 mc.moved_swap++;
6103 }
6104 break;
6105 default:
6106 break;
6107 }
6108 }
6109 pte_unmap_unlock(pte - 1, ptl);
6110 cond_resched();
6111
6112 if (addr != end) {
6113 /*
6114 * We have consumed all precharges we got in can_attach().
6115 * We try charge one by one, but don't do any additional
6116 * charges to mc.to if we have failed in charge once in attach()
6117 * phase.
6118 */
6119 ret = mem_cgroup_do_precharge(1);
6120 if (!ret)
6121 goto retry;
6122 }
6123
6124 return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128 .pmd_entry = mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133 lru_add_drain_all();
6134 /*
6135 * Signal lock_page_memcg() to take the memcg's move_lock
6136 * while we're moving its pages to another memcg. Then wait
6137 * for already started RCU-only updates to finish.
6138 */
6139 atomic_inc(&mc.from->moving_account);
6140 synchronize_rcu();
6141retry:
6142 if (unlikely(!mmap_read_trylock(mc.mm))) {
6143 /*
6144 * Someone who are holding the mmap_lock might be waiting in
6145 * waitq. So we cancel all extra charges, wake up all waiters,
6146 * and retry. Because we cancel precharges, we might not be able
6147 * to move enough charges, but moving charge is a best-effort
6148 * feature anyway, so it wouldn't be a big problem.
6149 */
6150 __mem_cgroup_clear_mc();
6151 cond_resched();
6152 goto retry;
6153 }
6154 /*
6155 * When we have consumed all precharges and failed in doing
6156 * additional charge, the page walk just aborts.
6157 */
6158 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159 NULL);
6160
6161 mmap_read_unlock(mc.mm);
6162 atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167 if (mc.to) {
6168 mem_cgroup_move_charge();
6169 mem_cgroup_clear_mc();
6170 }
6171}
6172#else /* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175 return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187 if (value == PAGE_COUNTER_MAX)
6188 seq_puts(m, "max\n");
6189 else
6190 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192 return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196 struct cftype *cft)
6197{
6198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205 return seq_puts_memcg_tunable(m,
6206 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210 char *buf, size_t nbytes, loff_t off)
6211{
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213 unsigned long min;
6214 int err;
6215
6216 buf = strstrip(buf);
6217 err = page_counter_memparse(buf, "max", &min);
6218 if (err)
6219 return err;
6220
6221 page_counter_set_min(&memcg->memory, min);
6222
6223 return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228 return seq_puts_memcg_tunable(m,
6229 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233 char *buf, size_t nbytes, loff_t off)
6234{
6235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236 unsigned long low;
6237 int err;
6238
6239 buf = strstrip(buf);
6240 err = page_counter_memparse(buf, "max", &low);
6241 if (err)
6242 return err;
6243
6244 page_counter_set_low(&memcg->memory, low);
6245
6246 return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260 bool drained = false;
6261 unsigned long high;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &high);
6266 if (err)
6267 return err;
6268
6269 page_counter_set_high(&memcg->memory, high);
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273 unsigned long reclaimed;
6274
6275 if (nr_pages <= high)
6276 break;
6277
6278 if (signal_pending(current))
6279 break;
6280
6281 if (!drained) {
6282 drain_all_stock(memcg);
6283 drained = true;
6284 continue;
6285 }
6286
6287 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288 GFP_KERNEL, true);
6289
6290 if (!reclaimed && !nr_retries--)
6291 break;
6292 }
6293
6294 memcg_wb_domain_size_changed(memcg);
6295 return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300 return seq_puts_memcg_tunable(m,
6301 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305 char *buf, size_t nbytes, loff_t off)
6306{
6307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309 bool drained = false;
6310 unsigned long max;
6311 int err;
6312
6313 buf = strstrip(buf);
6314 err = page_counter_memparse(buf, "max", &max);
6315 if (err)
6316 return err;
6317
6318 xchg(&memcg->memory.max, max);
6319
6320 for (;;) {
6321 unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323 if (nr_pages <= max)
6324 break;
6325
6326 if (signal_pending(current))
6327 break;
6328
6329 if (!drained) {
6330 drain_all_stock(memcg);
6331 drained = true;
6332 continue;
6333 }
6334
6335 if (nr_reclaims) {
6336 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337 GFP_KERNEL, true))
6338 nr_reclaims--;
6339 continue;
6340 }
6341
6342 memcg_memory_event(memcg, MEMCG_OOM);
6343 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344 break;
6345 }
6346
6347 memcg_wb_domain_size_changed(memcg);
6348 return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357 seq_printf(m, "oom_kill %lu\n",
6358 atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365 __memory_events_show(m, memcg->memory_events);
6366 return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373 __memory_events_show(m, memcg->memory_events_local);
6374 return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 char *buf;
6381
6382 buf = memory_stat_format(memcg);
6383 if (!buf)
6384 return -ENOMEM;
6385 seq_puts(m, buf);
6386 kfree(buf);
6387 return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392 int item)
6393{
6394 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399 int i;
6400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403 int nid;
6404
6405 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406 continue;
6407
6408 seq_printf(m, "%s", memory_stats[i].name);
6409 for_each_node_state(nid, N_MEMORY) {
6410 u64 size;
6411 struct lruvec *lruvec;
6412
6413 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414 size = lruvec_page_state_output(lruvec,
6415 memory_stats[i].idx);
6416 seq_printf(m, " N%d=%llu", nid, size);
6417 }
6418 seq_putc(m, '\n');
6419 }
6420
6421 return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429 seq_printf(m, "%d\n", memcg->oom_group);
6430
6431 return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435 char *buf, size_t nbytes, loff_t off)
6436{
6437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438 int ret, oom_group;
6439
6440 buf = strstrip(buf);
6441 if (!buf)
6442 return -EINVAL;
6443
6444 ret = kstrtoint(buf, 0, &oom_group);
6445 if (ret)
6446 return ret;
6447
6448 if (oom_group != 0 && oom_group != 1)
6449 return -EINVAL;
6450
6451 memcg->oom_group = oom_group;
6452
6453 return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457 {
6458 .name = "current",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .read_u64 = memory_current_read,
6461 },
6462 {
6463 .name = "min",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .seq_show = memory_min_show,
6466 .write = memory_min_write,
6467 },
6468 {
6469 .name = "low",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_low_show,
6472 .write = memory_low_write,
6473 },
6474 {
6475 .name = "high",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_high_show,
6478 .write = memory_high_write,
6479 },
6480 {
6481 .name = "max",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_max_show,
6484 .write = memory_max_write,
6485 },
6486 {
6487 .name = "events",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .file_offset = offsetof(struct mem_cgroup, events_file),
6490 .seq_show = memory_events_show,
6491 },
6492 {
6493 .name = "events.local",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6496 .seq_show = memory_events_local_show,
6497 },
6498 {
6499 .name = "stat",
6500 .seq_show = memory_stat_show,
6501 },
6502#ifdef CONFIG_NUMA
6503 {
6504 .name = "numa_stat",
6505 .seq_show = memory_numa_stat_show,
6506 },
6507#endif
6508 {
6509 .name = "oom.group",
6510 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511 .seq_show = memory_oom_group_show,
6512 .write = memory_oom_group_write,
6513 },
6514 { } /* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518 .css_alloc = mem_cgroup_css_alloc,
6519 .css_online = mem_cgroup_css_online,
6520 .css_offline = mem_cgroup_css_offline,
6521 .css_released = mem_cgroup_css_released,
6522 .css_free = mem_cgroup_css_free,
6523 .css_reset = mem_cgroup_css_reset,
6524 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6525 .can_attach = mem_cgroup_can_attach,
6526 .cancel_attach = mem_cgroup_cancel_attach,
6527 .post_attach = mem_cgroup_move_task,
6528 .dfl_cftypes = memory_files,
6529 .legacy_cftypes = mem_cgroup_legacy_files,
6530 .early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 * the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 * subsequent levels the effective protection is capped to the
6546 * parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 * user is allowed to overcommit the declared protection at a given
6550 * level. If that is the case, the parent's effective protection is
6551 * distributed to the children in proportion to how much protection
6552 * they have declared and how much of it they are utilizing.
6553 *
6554 * This makes distribution proportional, but also work-conserving:
6555 * if one cgroup claims much more protection than it uses memory,
6556 * the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 * given level, the distribution of the larger parental protection
6560 * budget is NOT proportional. A cgroup's protection from a sibling
6561 * is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 * without having to declare each individual cgroup's fixed share
6565 * of the ancestor's claim to protection, any unutilized -
6566 * "floating" - protection from up the tree is distributed in
6567 * proportion to each cgroup's *usage*. This makes the protection
6568 * neutral wrt sibling cgroups and lets them compete freely over
6569 * the shared parental protection budget, but it protects the
6570 * subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577 unsigned long parent_usage,
6578 unsigned long setting,
6579 unsigned long parent_effective,
6580 unsigned long siblings_protected)
6581{
6582 unsigned long protected;
6583 unsigned long ep;
6584
6585 protected = min(usage, setting);
6586 /*
6587 * If all cgroups at this level combined claim and use more
6588 * protection then what the parent affords them, distribute
6589 * shares in proportion to utilization.
6590 *
6591 * We are using actual utilization rather than the statically
6592 * claimed protection in order to be work-conserving: claimed
6593 * but unused protection is available to siblings that would
6594 * otherwise get a smaller chunk than what they claimed.
6595 */
6596 if (siblings_protected > parent_effective)
6597 return protected * parent_effective / siblings_protected;
6598
6599 /*
6600 * Ok, utilized protection of all children is within what the
6601 * parent affords them, so we know whatever this child claims
6602 * and utilizes is effectively protected.
6603 *
6604 * If there is unprotected usage beyond this value, reclaim
6605 * will apply pressure in proportion to that amount.
6606 *
6607 * If there is unutilized protection, the cgroup will be fully
6608 * shielded from reclaim, but we do return a smaller value for
6609 * protection than what the group could enjoy in theory. This
6610 * is okay. With the overcommit distribution above, effective
6611 * protection is always dependent on how memory is actually
6612 * consumed among the siblings anyway.
6613 */
6614 ep = protected;
6615
6616 /*
6617 * If the children aren't claiming (all of) the protection
6618 * afforded to them by the parent, distribute the remainder in
6619 * proportion to the (unprotected) memory of each cgroup. That
6620 * way, cgroups that aren't explicitly prioritized wrt each
6621 * other compete freely over the allowance, but they are
6622 * collectively protected from neighboring trees.
6623 *
6624 * We're using unprotected memory for the weight so that if
6625 * some cgroups DO claim explicit protection, we don't protect
6626 * the same bytes twice.
6627 *
6628 * Check both usage and parent_usage against the respective
6629 * protected values. One should imply the other, but they
6630 * aren't read atomically - make sure the division is sane.
6631 */
6632 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633 return ep;
6634 if (parent_effective > siblings_protected &&
6635 parent_usage > siblings_protected &&
6636 usage > protected) {
6637 unsigned long unclaimed;
6638
6639 unclaimed = parent_effective - siblings_protected;
6640 unclaimed *= usage - protected;
6641 unclaimed /= parent_usage - siblings_protected;
6642
6643 ep += unclaimed;
6644 }
6645
6646 return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 * of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658 struct mem_cgroup *memcg)
6659{
6660 unsigned long usage, parent_usage;
6661 struct mem_cgroup *parent;
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 if (!root)
6667 root = root_mem_cgroup;
6668
6669 /*
6670 * Effective values of the reclaim targets are ignored so they
6671 * can be stale. Have a look at mem_cgroup_protection for more
6672 * details.
6673 * TODO: calculation should be more robust so that we do not need
6674 * that special casing.
6675 */
6676 if (memcg == root)
6677 return;
6678
6679 usage = page_counter_read(&memcg->memory);
6680 if (!usage)
6681 return;
6682
6683 parent = parent_mem_cgroup(memcg);
6684 /* No parent means a non-hierarchical mode on v1 memcg */
6685 if (!parent)
6686 return;
6687
6688 if (parent == root) {
6689 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691 return;
6692 }
6693
6694 parent_usage = page_counter_read(&parent->memory);
6695
6696 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697 READ_ONCE(memcg->memory.min),
6698 READ_ONCE(parent->memory.emin),
6699 atomic_long_read(&parent->memory.children_min_usage)));
6700
6701 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.low),
6703 READ_ONCE(parent->memory.elow),
6704 atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708 gfp_t gfp)
6709{
6710 unsigned int nr_pages = thp_nr_pages(page);
6711 int ret;
6712
6713 ret = try_charge(memcg, gfp, nr_pages);
6714 if (ret)
6715 goto out;
6716
6717 css_get(&memcg->css);
6718 commit_charge(page, memcg);
6719
6720 local_irq_disable();
6721 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722 memcg_check_events(memcg, page);
6723 local_irq_enable();
6724out:
6725 return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744 struct mem_cgroup *memcg;
6745 int ret;
6746
6747 if (mem_cgroup_disabled())
6748 return 0;
6749
6750 memcg = get_mem_cgroup_from_mm(mm);
6751 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752 css_put(&memcg->css);
6753
6754 return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770 gfp_t gfp, swp_entry_t entry)
6771{
6772 struct mem_cgroup *memcg;
6773 unsigned short id;
6774 int ret;
6775
6776 if (mem_cgroup_disabled())
6777 return 0;
6778
6779 id = lookup_swap_cgroup_id(entry);
6780 rcu_read_lock();
6781 memcg = mem_cgroup_from_id(id);
6782 if (!memcg || !css_tryget_online(&memcg->css))
6783 memcg = get_mem_cgroup_from_mm(mm);
6784 rcu_read_unlock();
6785
6786 ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788 css_put(&memcg->css);
6789 return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803 /*
6804 * Cgroup1's unified memory+swap counter has been charged with the
6805 * new swapcache page, finish the transfer by uncharging the swap
6806 * slot. The swap slot would also get uncharged when it dies, but
6807 * it can stick around indefinitely and we'd count the page twice
6808 * the entire time.
6809 *
6810 * Cgroup2 has separate resource counters for memory and swap,
6811 * so this is a non-issue here. Memory and swap charge lifetimes
6812 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813 * page to memory here, and uncharge swap when the slot is freed.
6814 */
6815 if (!mem_cgroup_disabled() && do_memsw_account()) {
6816 /*
6817 * The swap entry might not get freed for a long time,
6818 * let's not wait for it. The page already received a
6819 * memory+swap charge, drop the swap entry duplicate.
6820 */
6821 mem_cgroup_uncharge_swap(entry, 1);
6822 }
6823}
6824
6825struct uncharge_gather {
6826 struct mem_cgroup *memcg;
6827 unsigned long nr_memory;
6828 unsigned long pgpgout;
6829 unsigned long nr_kmem;
6830 struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835 memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840 unsigned long flags;
6841
6842 if (ug->nr_memory) {
6843 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844 if (do_memsw_account())
6845 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848 memcg_oom_recover(ug->memcg);
6849 }
6850
6851 local_irq_save(flags);
6852 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854 memcg_check_events(ug->memcg, ug->dummy_page);
6855 local_irq_restore(flags);
6856
6857 /* drop reference from uncharge_page */
6858 css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863 unsigned long nr_pages;
6864 struct mem_cgroup *memcg;
6865 struct obj_cgroup *objcg;
6866 bool use_objcg = PageMemcgKmem(page);
6867
6868 VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870 /*
6871 * Nobody should be changing or seriously looking at
6872 * page memcg or objcg at this point, we have fully
6873 * exclusive access to the page.
6874 */
6875 if (use_objcg) {
6876 objcg = __page_objcg(page);
6877 /*
6878 * This get matches the put at the end of the function and
6879 * kmem pages do not hold memcg references anymore.
6880 */
6881 memcg = get_mem_cgroup_from_objcg(objcg);
6882 } else {
6883 memcg = __page_memcg(page);
6884 }
6885
6886 if (!memcg)
6887 return;
6888
6889 if (ug->memcg != memcg) {
6890 if (ug->memcg) {
6891 uncharge_batch(ug);
6892 uncharge_gather_clear(ug);
6893 }
6894 ug->memcg = memcg;
6895 ug->dummy_page = page;
6896
6897 /* pairs with css_put in uncharge_batch */
6898 css_get(&memcg->css);
6899 }
6900
6901 nr_pages = compound_nr(page);
6902
6903 if (use_objcg) {
6904 ug->nr_memory += nr_pages;
6905 ug->nr_kmem += nr_pages;
6906
6907 page->memcg_data = 0;
6908 obj_cgroup_put(objcg);
6909 } else {
6910 /* LRU pages aren't accounted at the root level */
6911 if (!mem_cgroup_is_root(memcg))
6912 ug->nr_memory += nr_pages;
6913 ug->pgpgout++;
6914
6915 page->memcg_data = 0;
6916 }
6917
6918 css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929 struct uncharge_gather ug;
6930
6931 if (mem_cgroup_disabled())
6932 return;
6933
6934 /* Don't touch page->lru of any random page, pre-check: */
6935 if (!page_memcg(page))
6936 return;
6937
6938 uncharge_gather_clear(&ug);
6939 uncharge_page(page, &ug);
6940 uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952 struct uncharge_gather ug;
6953 struct page *page;
6954
6955 if (mem_cgroup_disabled())
6956 return;
6957
6958 uncharge_gather_clear(&ug);
6959 list_for_each_entry(page, page_list, lru)
6960 uncharge_page(page, &ug);
6961 if (ug.memcg)
6962 uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977 struct mem_cgroup *memcg;
6978 unsigned int nr_pages;
6979 unsigned long flags;
6980
6981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985 newpage);
6986
6987 if (mem_cgroup_disabled())
6988 return;
6989
6990 /* Page cache replacement: new page already charged? */
6991 if (page_memcg(newpage))
6992 return;
6993
6994 memcg = page_memcg(oldpage);
6995 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996 if (!memcg)
6997 return;
6998
6999 /* Force-charge the new page. The old one will be freed soon */
7000 nr_pages = thp_nr_pages(newpage);
7001
7002 if (!mem_cgroup_is_root(memcg)) {
7003 page_counter_charge(&memcg->memory, nr_pages);
7004 if (do_memsw_account())
7005 page_counter_charge(&memcg->memsw, nr_pages);
7006 }
7007
7008 css_get(&memcg->css);
7009 commit_charge(newpage, memcg);
7010
7011 local_irq_save(flags);
7012 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013 memcg_check_events(memcg, newpage);
7014 local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022 struct mem_cgroup *memcg;
7023
7024 if (!mem_cgroup_sockets_enabled)
7025 return;
7026
7027 /* Do not associate the sock with unrelated interrupted task's memcg. */
7028 if (in_interrupt())
7029 return;
7030
7031 rcu_read_lock();
7032 memcg = mem_cgroup_from_task(current);
7033 if (memcg == root_mem_cgroup)
7034 goto out;
7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036 goto out;
7037 if (css_tryget(&memcg->css))
7038 sk->sk_memcg = memcg;
7039out:
7040 rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045 if (sk->sk_memcg)
7046 css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059 gfp_t gfp_mask = GFP_KERNEL;
7060
7061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062 struct page_counter *fail;
7063
7064 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065 memcg->tcpmem_pressure = 0;
7066 return true;
7067 }
7068 page_counter_charge(&memcg->tcpmem, nr_pages);
7069 memcg->tcpmem_pressure = 1;
7070 return false;
7071 }
7072
7073 /* Don't block in the packet receive path */
7074 if (in_softirq())
7075 gfp_mask = GFP_NOWAIT;
7076
7077 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080 return true;
7081
7082 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083 return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095 return;
7096 }
7097
7098 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100 refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105 char *token;
7106
7107 while ((token = strsep(&s, ",")) != NULL) {
7108 if (!*token)
7109 continue;
7110 if (!strcmp(token, "nosocket"))
7111 cgroup_memory_nosocket = true;
7112 if (!strcmp(token, "nokmem"))
7113 cgroup_memory_nokmem = true;
7114 }
7115 return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129 int cpu, node;
7130
7131 /*
7132 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134 * to work fine, we should make sure that the overfill threshold can't
7135 * exceed S32_MAX / PAGE_SIZE.
7136 */
7137 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140 memcg_hotplug_cpu_dead);
7141
7142 for_each_possible_cpu(cpu)
7143 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144 drain_local_stock);
7145
7146 for_each_node(node) {
7147 struct mem_cgroup_tree_per_node *rtpn;
7148
7149 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150 node_online(node) ? node : NUMA_NO_NODE);
7151
7152 rtpn->rb_root = RB_ROOT;
7153 rtpn->rb_rightmost = NULL;
7154 spin_lock_init(&rtpn->lock);
7155 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156 }
7157
7158 return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166 /*
7167 * The root cgroup cannot be destroyed, so it's refcount must
7168 * always be >= 1.
7169 */
7170 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171 VM_BUG_ON(1);
7172 break;
7173 }
7174 memcg = parent_mem_cgroup(memcg);
7175 if (!memcg)
7176 memcg = root_mem_cgroup;
7177 }
7178 return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190 struct mem_cgroup *memcg, *swap_memcg;
7191 unsigned int nr_entries;
7192 unsigned short oldid;
7193
7194 VM_BUG_ON_PAGE(PageLRU(page), page);
7195 VM_BUG_ON_PAGE(page_count(page), page);
7196
7197 if (mem_cgroup_disabled())
7198 return;
7199
7200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 return;
7202
7203 memcg = page_memcg(page);
7204
7205 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 if (!memcg)
7207 return;
7208
7209 /*
7210 * In case the memcg owning these pages has been offlined and doesn't
7211 * have an ID allocated to it anymore, charge the closest online
7212 * ancestor for the swap instead and transfer the memory+swap charge.
7213 */
7214 swap_memcg = mem_cgroup_id_get_online(memcg);
7215 nr_entries = thp_nr_pages(page);
7216 /* Get references for the tail pages, too */
7217 if (nr_entries > 1)
7218 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220 nr_entries);
7221 VM_BUG_ON_PAGE(oldid, page);
7222 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224 page->memcg_data = 0;
7225
7226 if (!mem_cgroup_is_root(memcg))
7227 page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230 if (!mem_cgroup_is_root(swap_memcg))
7231 page_counter_charge(&swap_memcg->memsw, nr_entries);
7232 page_counter_uncharge(&memcg->memsw, nr_entries);
7233 }
7234
7235 /*
7236 * Interrupts should be disabled here because the caller holds the
7237 * i_pages lock which is taken with interrupts-off. It is
7238 * important here to have the interrupts disabled because it is the
7239 * only synchronisation we have for updating the per-CPU variables.
7240 */
7241 VM_BUG_ON(!irqs_disabled());
7242 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243 memcg_check_events(memcg, page);
7244
7245 css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259 unsigned int nr_pages = thp_nr_pages(page);
7260 struct page_counter *counter;
7261 struct mem_cgroup *memcg;
7262 unsigned short oldid;
7263
7264 if (mem_cgroup_disabled())
7265 return 0;
7266
7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268 return 0;
7269
7270 memcg = page_memcg(page);
7271
7272 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273 if (!memcg)
7274 return 0;
7275
7276 if (!entry.val) {
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 return 0;
7279 }
7280
7281 memcg = mem_cgroup_id_get_online(memcg);
7282
7283 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287 mem_cgroup_id_put(memcg);
7288 return -ENOMEM;
7289 }
7290
7291 /* Get references for the tail pages, too */
7292 if (nr_pages > 1)
7293 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295 VM_BUG_ON_PAGE(oldid, page);
7296 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298 return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308 struct mem_cgroup *memcg;
7309 unsigned short id;
7310
7311 id = swap_cgroup_record(entry, 0, nr_pages);
7312 rcu_read_lock();
7313 memcg = mem_cgroup_from_id(id);
7314 if (memcg) {
7315 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 page_counter_uncharge(&memcg->swap, nr_pages);
7318 else
7319 page_counter_uncharge(&memcg->memsw, nr_pages);
7320 }
7321 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322 mem_cgroup_id_put_many(memcg, nr_pages);
7323 }
7324 rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329 long nr_swap_pages = get_nr_swap_pages();
7330
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return nr_swap_pages;
7333 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334 nr_swap_pages = min_t(long, nr_swap_pages,
7335 READ_ONCE(memcg->swap.max) -
7336 page_counter_read(&memcg->swap));
7337 return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342 struct mem_cgroup *memcg;
7343
7344 VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346 if (vm_swap_full())
7347 return true;
7348 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349 return false;
7350
7351 memcg = page_memcg(page);
7352 if (!memcg)
7353 return false;
7354
7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356 unsigned long usage = page_counter_read(&memcg->swap);
7357
7358 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359 usage * 2 >= READ_ONCE(memcg->swap.max))
7360 return true;
7361 }
7362
7363 return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368 if (!strcmp(s, "1"))
7369 cgroup_memory_noswap = false;
7370 else if (!strcmp(s, "0"))
7371 cgroup_memory_noswap = true;
7372 return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
7378{
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386 return seq_puts_memcg_tunable(m,
7387 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes, loff_t off)
7392{
7393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394 unsigned long high;
7395 int err;
7396
7397 buf = strstrip(buf);
7398 err = page_counter_memparse(buf, "max", &high);
7399 if (err)
7400 return err;
7401
7402 page_counter_set_high(&memcg->swap, high);
7403
7404 return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409 return seq_puts_memcg_tunable(m,
7410 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414 char *buf, size_t nbytes, loff_t off)
7415{
7416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417 unsigned long max;
7418 int err;
7419
7420 buf = strstrip(buf);
7421 err = page_counter_memparse(buf, "max", &max);
7422 if (err)
7423 return err;
7424
7425 xchg(&memcg->swap.max, max);
7426
7427 return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434 seq_printf(m, "high %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436 seq_printf(m, "max %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438 seq_printf(m, "fail %lu\n",
7439 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441 return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445 {
7446 .name = "swap.current",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .read_u64 = swap_current_read,
7449 },
7450 {
7451 .name = "swap.high",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .seq_show = swap_high_show,
7454 .write = swap_high_write,
7455 },
7456 {
7457 .name = "swap.max",
7458 .flags = CFTYPE_NOT_ON_ROOT,
7459 .seq_show = swap_max_show,
7460 .write = swap_max_write,
7461 },
7462 {
7463 .name = "swap.events",
7464 .flags = CFTYPE_NOT_ON_ROOT,
7465 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466 .seq_show = swap_events_show,
7467 },
7468 { } /* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472 {
7473 .name = "memsw.usage_in_bytes",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.max_usage_in_bytes",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 {
7484 .name = "memsw.limit_in_bytes",
7485 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486 .write = mem_cgroup_write,
7487 .read_u64 = mem_cgroup_read_u64,
7488 },
7489 {
7490 .name = "memsw.failcnt",
7491 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492 .write = mem_cgroup_reset,
7493 .read_u64 = mem_cgroup_read_u64,
7494 },
7495 { }, /* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507 /* No memory control -> no swap control */
7508 if (mem_cgroup_disabled())
7509 cgroup_memory_noswap = true;
7510
7511 if (cgroup_memory_noswap)
7512 return 0;
7513
7514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517 return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES 5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account (0)
74#endif
75
76
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
91};
92
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
100};
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_TARGET_NUMAINFO,
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
115#define NUMAINFO_EVENTS_TARGET (1024)
116
117struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 unsigned long targets[MEM_CGROUP_NTARGETS];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_zone {
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
132
133 struct zone_reclaim_stat reclaim_stat;
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
177/* For threshold */
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
180 int current_threshold;
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
203
204static void mem_cgroup_threshold(struct mem_cgroup *mem);
205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206
207/*
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
212 *
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
217 */
218struct mem_cgroup {
219 struct cgroup_subsys_state css;
220 /*
221 * the counter to account for memory usage
222 */
223 struct res_counter res;
224 /*
225 * the counter to account for mem+swap usage.
226 */
227 struct res_counter memsw;
228 /*
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
231 */
232 struct mem_cgroup_lru_info info;
233 /*
234 * While reclaiming in a hierarchy, we cache the last child we
235 * reclaimed from.
236 */
237 int last_scanned_child;
238 int last_scanned_node;
239#if MAX_NUMNODES > 1
240 nodemask_t scan_nodes;
241 atomic_t numainfo_events;
242 atomic_t numainfo_updating;
243#endif
244 /*
245 * Should the accounting and control be hierarchical, per subtree?
246 */
247 bool use_hierarchy;
248
249 bool oom_lock;
250 atomic_t under_oom;
251
252 atomic_t refcnt;
253
254 int swappiness;
255 /* OOM-Killer disable */
256 int oom_kill_disable;
257
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum;
260
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock;
263
264 /* thresholds for memory usage. RCU-protected */
265 struct mem_cgroup_thresholds thresholds;
266
267 /* thresholds for mem+swap usage. RCU-protected */
268 struct mem_cgroup_thresholds memsw_thresholds;
269
270 /* For oom notifier event fd */
271 struct list_head oom_notify;
272
273 /*
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
276 */
277 unsigned long move_charge_at_immigrate;
278 /*
279 * percpu counter.
280 */
281 struct mem_cgroup_stat_cpu *stat;
282 /*
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
285 */
286 struct mem_cgroup_stat_cpu nocpu_base;
287 spinlock_t pcp_counter_lock;
288};
289
290/* Stuffs for move charges at task migration. */
291/*
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
294 */
295enum move_type {
296 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
297 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
298 NR_MOVE_TYPE,
299};
300
301/* "mc" and its members are protected by cgroup_mutex */
302static struct move_charge_struct {
303 spinlock_t lock; /* for from, to */
304 struct mem_cgroup *from;
305 struct mem_cgroup *to;
306 unsigned long precharge;
307 unsigned long moved_charge;
308 unsigned long moved_swap;
309 struct task_struct *moving_task; /* a task moving charges */
310 wait_queue_head_t waitq; /* a waitq for other context */
311} mc = {
312 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314};
315
316static bool move_anon(void)
317{
318 return test_bit(MOVE_CHARGE_TYPE_ANON,
319 &mc.to->move_charge_at_immigrate);
320}
321
322static bool move_file(void)
323{
324 return test_bit(MOVE_CHARGE_TYPE_FILE,
325 &mc.to->move_charge_at_immigrate);
326}
327
328/*
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
331 */
332#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
335enum charge_type {
336 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED,
338 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
339 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
342 NR_CHARGE_TYPE,
343};
344
345/* for encoding cft->private value on file */
346#define _MEM (0)
347#define _MEMSWAP (1)
348#define _OOM_TYPE (2)
349#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351#define MEMFILE_ATTR(val) ((val) & 0xffff)
352/* Used for OOM nofiier */
353#define OOM_CONTROL (0)
354
355/*
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
357 */
358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364
365static void mem_cgroup_get(struct mem_cgroup *mem);
366static void mem_cgroup_put(struct mem_cgroup *mem);
367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368static void drain_all_stock_async(struct mem_cgroup *mem);
369
370static struct mem_cgroup_per_zone *
371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
372{
373 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374}
375
376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
377{
378 return &mem->css;
379}
380
381static struct mem_cgroup_per_zone *
382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383{
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
386
387 return mem_cgroup_zoneinfo(mem, nid, zid);
388}
389
390static struct mem_cgroup_tree_per_zone *
391soft_limit_tree_node_zone(int nid, int zid)
392{
393 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394}
395
396static struct mem_cgroup_tree_per_zone *
397soft_limit_tree_from_page(struct page *page)
398{
399 int nid = page_to_nid(page);
400 int zid = page_zonenum(page);
401
402 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403}
404
405static void
406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407 struct mem_cgroup_per_zone *mz,
408 struct mem_cgroup_tree_per_zone *mctz,
409 unsigned long long new_usage_in_excess)
410{
411 struct rb_node **p = &mctz->rb_root.rb_node;
412 struct rb_node *parent = NULL;
413 struct mem_cgroup_per_zone *mz_node;
414
415 if (mz->on_tree)
416 return;
417
418 mz->usage_in_excess = new_usage_in_excess;
419 if (!mz->usage_in_excess)
420 return;
421 while (*p) {
422 parent = *p;
423 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424 tree_node);
425 if (mz->usage_in_excess < mz_node->usage_in_excess)
426 p = &(*p)->rb_left;
427 /*
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
430 */
431 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432 p = &(*p)->rb_right;
433 }
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
439static void
440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
450static void
451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz)
454{
455 spin_lock(&mctz->lock);
456 __mem_cgroup_remove_exceeded(mem, mz, mctz);
457 spin_unlock(&mctz->lock);
458}
459
460
461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
462{
463 unsigned long long excess;
464 struct mem_cgroup_per_zone *mz;
465 struct mem_cgroup_tree_per_zone *mctz;
466 int nid = page_to_nid(page);
467 int zid = page_zonenum(page);
468 mctz = soft_limit_tree_from_page(page);
469
470 /*
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
473 */
474 for (; mem; mem = parent_mem_cgroup(mem)) {
475 mz = mem_cgroup_zoneinfo(mem, nid, zid);
476 excess = res_counter_soft_limit_excess(&mem->res);
477 /*
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
480 */
481 if (excess || mz->on_tree) {
482 spin_lock(&mctz->lock);
483 /* if on-tree, remove it */
484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mem, mz, mctz);
486 /*
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
489 */
490 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 spin_unlock(&mctz->lock);
492 }
493 }
494}
495
496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
497{
498 int node, zone;
499 struct mem_cgroup_per_zone *mz;
500 struct mem_cgroup_tree_per_zone *mctz;
501
502 for_each_node_state(node, N_POSSIBLE) {
503 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 mz = mem_cgroup_zoneinfo(mem, node, zone);
505 mctz = soft_limit_tree_node_zone(node, zone);
506 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 }
508 }
509}
510
511static struct mem_cgroup_per_zone *
512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513{
514 struct rb_node *rightmost = NULL;
515 struct mem_cgroup_per_zone *mz;
516
517retry:
518 mz = NULL;
519 rightmost = rb_last(&mctz->rb_root);
520 if (!rightmost)
521 goto done; /* Nothing to reclaim from */
522
523 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524 /*
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
528 */
529 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531 !css_tryget(&mz->mem->css))
532 goto retry;
533done:
534 return mz;
535}
536
537static struct mem_cgroup_per_zone *
538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539{
540 struct mem_cgroup_per_zone *mz;
541
542 spin_lock(&mctz->lock);
543 mz = __mem_cgroup_largest_soft_limit_node(mctz);
544 spin_unlock(&mctz->lock);
545 return mz;
546}
547
548/*
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
565 * implemented.
566 */
567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568 enum mem_cgroup_stat_index idx)
569{
570 long val = 0;
571 int cpu;
572
573 get_online_cpus();
574 for_each_online_cpu(cpu)
575 val += per_cpu(mem->stat->count[idx], cpu);
576#ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem->pcp_counter_lock);
578 val += mem->nocpu_base.count[idx];
579 spin_unlock(&mem->pcp_counter_lock);
580#endif
581 put_online_cpus();
582 return val;
583}
584
585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586 bool charge)
587{
588 int val = (charge) ? 1 : -1;
589 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590}
591
592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
593{
594 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595}
596
597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
598{
599 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600}
601
602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603 enum mem_cgroup_events_index idx)
604{
605 unsigned long val = 0;
606 int cpu;
607
608 for_each_online_cpu(cpu)
609 val += per_cpu(mem->stat->events[idx], cpu);
610#ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem->pcp_counter_lock);
612 val += mem->nocpu_base.events[idx];
613 spin_unlock(&mem->pcp_counter_lock);
614#endif
615 return val;
616}
617
618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619 bool file, int nr_pages)
620{
621 preempt_disable();
622
623 if (file)
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625 else
626 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627
628 /* pagein of a big page is an event. So, ignore page size */
629 if (nr_pages > 0)
630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631 else {
632 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 nr_pages = -nr_pages; /* for event */
634 }
635
636 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637
638 preempt_enable();
639}
640
641unsigned long
642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643 unsigned int lru_mask)
644{
645 struct mem_cgroup_per_zone *mz;
646 enum lru_list l;
647 unsigned long ret = 0;
648
649 mz = mem_cgroup_zoneinfo(mem, nid, zid);
650
651 for_each_lru(l) {
652 if (BIT(l) & lru_mask)
653 ret += MEM_CGROUP_ZSTAT(mz, l);
654 }
655 return ret;
656}
657
658static unsigned long
659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660 int nid, unsigned int lru_mask)
661{
662 u64 total = 0;
663 int zid;
664
665 for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
667
668 return total;
669}
670
671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672 unsigned int lru_mask)
673{
674 int nid;
675 u64 total = 0;
676
677 for_each_node_state(nid, N_HIGH_MEMORY)
678 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679 return total;
680}
681
682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
683{
684 unsigned long val, next;
685
686 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 next = this_cpu_read(mem->stat->targets[target]);
688 /* from time_after() in jiffies.h */
689 return ((long)next - (long)val < 0);
690}
691
692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693{
694 unsigned long val, next;
695
696 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697
698 switch (target) {
699 case MEM_CGROUP_TARGET_THRESH:
700 next = val + THRESHOLDS_EVENTS_TARGET;
701 break;
702 case MEM_CGROUP_TARGET_SOFTLIMIT:
703 next = val + SOFTLIMIT_EVENTS_TARGET;
704 break;
705 case MEM_CGROUP_TARGET_NUMAINFO:
706 next = val + NUMAINFO_EVENTS_TARGET;
707 break;
708 default:
709 return;
710 }
711
712 this_cpu_write(mem->stat->targets[target], next);
713}
714
715/*
716 * Check events in order.
717 *
718 */
719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
720{
721 /* threshold event is triggered in finer grain than soft limit */
722 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723 mem_cgroup_threshold(mem);
724 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725 if (unlikely(__memcg_event_check(mem,
726 MEM_CGROUP_TARGET_SOFTLIMIT))) {
727 mem_cgroup_update_tree(mem, page);
728 __mem_cgroup_target_update(mem,
729 MEM_CGROUP_TARGET_SOFTLIMIT);
730 }
731#if MAX_NUMNODES > 1
732 if (unlikely(__memcg_event_check(mem,
733 MEM_CGROUP_TARGET_NUMAINFO))) {
734 atomic_inc(&mem->numainfo_events);
735 __mem_cgroup_target_update(mem,
736 MEM_CGROUP_TARGET_NUMAINFO);
737 }
738#endif
739 }
740}
741
742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
743{
744 return container_of(cgroup_subsys_state(cont,
745 mem_cgroup_subsys_id), struct mem_cgroup,
746 css);
747}
748
749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750{
751 /*
752 * mm_update_next_owner() may clear mm->owner to NULL
753 * if it races with swapoff, page migration, etc.
754 * So this can be called with p == NULL.
755 */
756 if (unlikely(!p))
757 return NULL;
758
759 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760 struct mem_cgroup, css);
761}
762
763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764{
765 struct mem_cgroup *mem = NULL;
766
767 if (!mm)
768 return NULL;
769 /*
770 * Because we have no locks, mm->owner's may be being moved to other
771 * cgroup. We use css_tryget() here even if this looks
772 * pessimistic (rather than adding locks here).
773 */
774 rcu_read_lock();
775 do {
776 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 if (unlikely(!mem))
778 break;
779 } while (!css_tryget(&mem->css));
780 rcu_read_unlock();
781 return mem;
782}
783
784/* The caller has to guarantee "mem" exists before calling this */
785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
786{
787 struct cgroup_subsys_state *css;
788 int found;
789
790 if (!mem) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup; /*css_put/get against root is ignored*/
792 if (!mem->use_hierarchy) {
793 if (css_tryget(&mem->css))
794 return mem;
795 return NULL;
796 }
797 rcu_read_lock();
798 /*
799 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1)
801 */
802 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803 if (css && css_tryget(css))
804 mem = container_of(css, struct mem_cgroup, css);
805 else
806 mem = NULL;
807 rcu_read_unlock();
808 return mem;
809}
810
811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812 struct mem_cgroup *root,
813 bool cond)
814{
815 int nextid = css_id(&iter->css) + 1;
816 int found;
817 int hierarchy_used;
818 struct cgroup_subsys_state *css;
819
820 hierarchy_used = iter->use_hierarchy;
821
822 css_put(&iter->css);
823 /* If no ROOT, walk all, ignore hierarchy */
824 if (!cond || (root && !hierarchy_used))
825 return NULL;
826
827 if (!root)
828 root = root_mem_cgroup;
829
830 do {
831 iter = NULL;
832 rcu_read_lock();
833
834 css = css_get_next(&mem_cgroup_subsys, nextid,
835 &root->css, &found);
836 if (css && css_tryget(css))
837 iter = container_of(css, struct mem_cgroup, css);
838 rcu_read_unlock();
839 /* If css is NULL, no more cgroups will be found */
840 nextid = found + 1;
841 } while (css && !iter);
842
843 return iter;
844}
845/*
846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847 * be careful that "break" loop is not allowed. We have reference count.
848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
849 */
850#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851 for (iter = mem_cgroup_start_loop(root);\
852 iter != NULL;\
853 iter = mem_cgroup_get_next(iter, root, cond))
854
855#define for_each_mem_cgroup_tree(iter, root) \
856 for_each_mem_cgroup_tree_cond(iter, root, true)
857
858#define for_each_mem_cgroup_all(iter) \
859 for_each_mem_cgroup_tree_cond(iter, NULL, true)
860
861
862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
863{
864 return (mem == root_mem_cgroup);
865}
866
867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868{
869 struct mem_cgroup *mem;
870
871 if (!mm)
872 return;
873
874 rcu_read_lock();
875 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 if (unlikely(!mem))
877 goto out;
878
879 switch (idx) {
880 case PGMAJFAULT:
881 mem_cgroup_pgmajfault(mem, 1);
882 break;
883 case PGFAULT:
884 mem_cgroup_pgfault(mem, 1);
885 break;
886 default:
887 BUG();
888 }
889out:
890 rcu_read_unlock();
891}
892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
893
894/*
895 * Following LRU functions are allowed to be used without PCG_LOCK.
896 * Operations are called by routine of global LRU independently from memcg.
897 * What we have to take care of here is validness of pc->mem_cgroup.
898 *
899 * Changes to pc->mem_cgroup happens when
900 * 1. charge
901 * 2. moving account
902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903 * It is added to LRU before charge.
904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905 * When moving account, the page is not on LRU. It's isolated.
906 */
907
908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
909{
910 struct page_cgroup *pc;
911 struct mem_cgroup_per_zone *mz;
912
913 if (mem_cgroup_disabled())
914 return;
915 pc = lookup_page_cgroup(page);
916 /* can happen while we handle swapcache. */
917 if (!TestClearPageCgroupAcctLRU(pc))
918 return;
919 VM_BUG_ON(!pc->mem_cgroup);
920 /*
921 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 * removed from global LRU.
923 */
924 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 /* huge page split is done under lru_lock. so, we have no races. */
926 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 if (mem_cgroup_is_root(pc->mem_cgroup))
928 return;
929 VM_BUG_ON(list_empty(&pc->lru));
930 list_del_init(&pc->lru);
931}
932
933void mem_cgroup_del_lru(struct page *page)
934{
935 mem_cgroup_del_lru_list(page, page_lru(page));
936}
937
938/*
939 * Writeback is about to end against a page which has been marked for immediate
940 * reclaim. If it still appears to be reclaimable, move it to the tail of the
941 * inactive list.
942 */
943void mem_cgroup_rotate_reclaimable_page(struct page *page)
944{
945 struct mem_cgroup_per_zone *mz;
946 struct page_cgroup *pc;
947 enum lru_list lru = page_lru(page);
948
949 if (mem_cgroup_disabled())
950 return;
951
952 pc = lookup_page_cgroup(page);
953 /* unused or root page is not rotated. */
954 if (!PageCgroupUsed(pc))
955 return;
956 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957 smp_rmb();
958 if (mem_cgroup_is_root(pc->mem_cgroup))
959 return;
960 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 list_move_tail(&pc->lru, &mz->lists[lru]);
962}
963
964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
965{
966 struct mem_cgroup_per_zone *mz;
967 struct page_cgroup *pc;
968
969 if (mem_cgroup_disabled())
970 return;
971
972 pc = lookup_page_cgroup(page);
973 /* unused or root page is not rotated. */
974 if (!PageCgroupUsed(pc))
975 return;
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 smp_rmb();
978 if (mem_cgroup_is_root(pc->mem_cgroup))
979 return;
980 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981 list_move(&pc->lru, &mz->lists[lru]);
982}
983
984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985{
986 struct page_cgroup *pc;
987 struct mem_cgroup_per_zone *mz;
988
989 if (mem_cgroup_disabled())
990 return;
991 pc = lookup_page_cgroup(page);
992 VM_BUG_ON(PageCgroupAcctLRU(pc));
993 if (!PageCgroupUsed(pc))
994 return;
995 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996 smp_rmb();
997 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 /* huge page split is done under lru_lock. so, we have no races. */
999 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 SetPageCgroupAcctLRU(pc);
1001 if (mem_cgroup_is_root(pc->mem_cgroup))
1002 return;
1003 list_add(&pc->lru, &mz->lists[lru]);
1004}
1005
1006/*
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1011 */
1012static void mem_cgroup_lru_del_before_commit(struct page *page)
1013{
1014 unsigned long flags;
1015 struct zone *zone = page_zone(page);
1016 struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018 /*
1019 * Doing this check without taking ->lru_lock seems wrong but this
1020 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 * set, the commit after this will fail, anyway.
1023 * This all charge/uncharge is done under some mutual execustion.
1024 * So, we don't need to taking care of changes in USED bit.
1025 */
1026 if (likely(!PageLRU(page)))
1027 return;
1028
1029 spin_lock_irqsave(&zone->lru_lock, flags);
1030 /*
1031 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 * is guarded by lock_page() because the page is SwapCache.
1033 */
1034 if (!PageCgroupUsed(pc))
1035 mem_cgroup_del_lru_list(page, page_lru(page));
1036 spin_unlock_irqrestore(&zone->lru_lock, flags);
1037}
1038
1039static void mem_cgroup_lru_add_after_commit(struct page *page)
1040{
1041 unsigned long flags;
1042 struct zone *zone = page_zone(page);
1043 struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045 /* taking care of that the page is added to LRU while we commit it */
1046 if (likely(!PageLRU(page)))
1047 return;
1048 spin_lock_irqsave(&zone->lru_lock, flags);
1049 /* link when the page is linked to LRU but page_cgroup isn't */
1050 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 mem_cgroup_add_lru_list(page, page_lru(page));
1052 spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
1056void mem_cgroup_move_lists(struct page *page,
1057 enum lru_list from, enum lru_list to)
1058{
1059 if (mem_cgroup_disabled())
1060 return;
1061 mem_cgroup_del_lru_list(page, from);
1062 mem_cgroup_add_lru_list(page, to);
1063}
1064
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070 struct mem_cgroup *mem)
1071{
1072 if (root_mem != mem) {
1073 return (root_mem->use_hierarchy &&
1074 css_is_ancestor(&mem->css, &root_mem->css));
1075 }
1076
1077 return true;
1078}
1079
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082 int ret;
1083 struct mem_cgroup *curr = NULL;
1084 struct task_struct *p;
1085
1086 p = find_lock_task_mm(task);
1087 if (!p)
1088 return 0;
1089 curr = try_get_mem_cgroup_from_mm(p->mm);
1090 task_unlock(p);
1091 if (!curr)
1092 return 0;
1093 /*
1094 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem").
1098 */
1099 ret = mem_cgroup_same_or_subtree(mem, curr);
1100 css_put(&curr->css);
1101 return ret;
1102}
1103
1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105{
1106 unsigned long active;
1107 unsigned long inactive;
1108 unsigned long gb;
1109 unsigned long inactive_ratio;
1110
1111 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115 if (gb)
1116 inactive_ratio = int_sqrt(10 * gb);
1117 else
1118 inactive_ratio = 1;
1119
1120 if (present_pages) {
1121 present_pages[0] = inactive;
1122 present_pages[1] = active;
1123 }
1124
1125 return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130 unsigned long active;
1131 unsigned long inactive;
1132 unsigned long present_pages[2];
1133 unsigned long inactive_ratio;
1134
1135 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137 inactive = present_pages[0];
1138 active = present_pages[1];
1139
1140 if (inactive * inactive_ratio < active)
1141 return 1;
1142
1143 return 0;
1144}
1145
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148 unsigned long active;
1149 unsigned long inactive;
1150
1151 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154 return (active > inactive);
1155}
1156
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158 struct zone *zone)
1159{
1160 int nid = zone_to_nid(zone);
1161 int zid = zone_idx(zone);
1162 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164 return &mz->reclaim_stat;
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169{
1170 struct page_cgroup *pc;
1171 struct mem_cgroup_per_zone *mz;
1172
1173 if (mem_cgroup_disabled())
1174 return NULL;
1175
1176 pc = lookup_page_cgroup(page);
1177 if (!PageCgroupUsed(pc))
1178 return NULL;
1179 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180 smp_rmb();
1181 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182 return &mz->reclaim_stat;
1183}
1184
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186 struct list_head *dst,
1187 unsigned long *scanned, int order,
1188 int mode, struct zone *z,
1189 struct mem_cgroup *mem_cont,
1190 int active, int file)
1191{
1192 unsigned long nr_taken = 0;
1193 struct page *page;
1194 unsigned long scan;
1195 LIST_HEAD(pc_list);
1196 struct list_head *src;
1197 struct page_cgroup *pc, *tmp;
1198 int nid = zone_to_nid(z);
1199 int zid = zone_idx(z);
1200 struct mem_cgroup_per_zone *mz;
1201 int lru = LRU_FILE * file + active;
1202 int ret;
1203
1204 BUG_ON(!mem_cont);
1205 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206 src = &mz->lists[lru];
1207
1208 scan = 0;
1209 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210 if (scan >= nr_to_scan)
1211 break;
1212
1213 if (unlikely(!PageCgroupUsed(pc)))
1214 continue;
1215
1216 page = lookup_cgroup_page(pc);
1217
1218 if (unlikely(!PageLRU(page)))
1219 continue;
1220
1221 scan++;
1222 ret = __isolate_lru_page(page, mode, file);
1223 switch (ret) {
1224 case 0:
1225 list_move(&page->lru, dst);
1226 mem_cgroup_del_lru(page);
1227 nr_taken += hpage_nr_pages(page);
1228 break;
1229 case -EBUSY:
1230 /* we don't affect global LRU but rotate in our LRU */
1231 mem_cgroup_rotate_lru_list(page, page_lru(page));
1232 break;
1233 default:
1234 break;
1235 }
1236 }
1237
1238 *scanned = scan;
1239
1240 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241 0, 0, 0, mode);
1242
1243 return nr_taken;
1244}
1245
1246#define mem_cgroup_from_res_counter(counter, member) \
1247 container_of(counter, struct mem_cgroup, member)
1248
1249/**
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1252 *
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1255 */
1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257{
1258 unsigned long long margin;
1259
1260 margin = res_counter_margin(&mem->res);
1261 if (do_swap_account)
1262 margin = min(margin, res_counter_margin(&mem->memsw));
1263 return margin >> PAGE_SHIFT;
1264}
1265
1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267{
1268 struct cgroup *cgrp = memcg->css.cgroup;
1269
1270 /* root ? */
1271 if (cgrp->parent == NULL)
1272 return vm_swappiness;
1273
1274 return memcg->swappiness;
1275}
1276
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279 int cpu;
1280
1281 get_online_cpus();
1282 spin_lock(&mem->pcp_counter_lock);
1283 for_each_online_cpu(cpu)
1284 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286 spin_unlock(&mem->pcp_counter_lock);
1287 put_online_cpus();
1288
1289 synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294 int cpu;
1295
1296 if (!mem)
1297 return;
1298 get_online_cpus();
1299 spin_lock(&mem->pcp_counter_lock);
1300 for_each_online_cpu(cpu)
1301 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303 spin_unlock(&mem->pcp_counter_lock);
1304 put_online_cpus();
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 * for avoiding race in accounting. If true,
1311 * pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 * under hierarchy of moving cgroups. This is for
1315 * waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320 VM_BUG_ON(!rcu_read_lock_held());
1321 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
1326 struct mem_cgroup *from;
1327 struct mem_cgroup *to;
1328 bool ret = false;
1329 /*
1330 * Unlike task_move routines, we access mc.to, mc.from not under
1331 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332 */
1333 spin_lock(&mc.lock);
1334 from = mc.from;
1335 to = mc.to;
1336 if (!from)
1337 goto unlock;
1338
1339 ret = mem_cgroup_same_or_subtree(mem, from)
1340 || mem_cgroup_same_or_subtree(mem, to);
1341unlock:
1342 spin_unlock(&mc.lock);
1343 return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348 if (mc.moving_task && current != mc.moving_task) {
1349 if (mem_cgroup_under_move(mem)) {
1350 DEFINE_WAIT(wait);
1351 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352 /* moving charge context might have finished. */
1353 if (mc.moving_task)
1354 schedule();
1355 finish_wait(&mc.waitq, &wait);
1356 return true;
1357 }
1358 }
1359 return false;
1360}
1361
1362/**
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372 struct cgroup *task_cgrp;
1373 struct cgroup *mem_cgrp;
1374 /*
1375 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 * on the assumption that OOM is serialized for memory controller.
1377 * If this assumption is broken, revisit this code.
1378 */
1379 static char memcg_name[PATH_MAX];
1380 int ret;
1381
1382 if (!memcg || !p)
1383 return;
1384
1385
1386 rcu_read_lock();
1387
1388 mem_cgrp = memcg->css.cgroup;
1389 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392 if (ret < 0) {
1393 /*
1394 * Unfortunately, we are unable to convert to a useful name
1395 * But we'll still print out the usage information
1396 */
1397 rcu_read_unlock();
1398 goto done;
1399 }
1400 rcu_read_unlock();
1401
1402 printk(KERN_INFO "Task in %s killed", memcg_name);
1403
1404 rcu_read_lock();
1405 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406 if (ret < 0) {
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 /*
1413 * Continues from above, so we don't need an KERN_ level
1414 */
1415 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
1417
1418 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423 "failcnt %llu\n",
1424 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
1428
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435 int num = 0;
1436 struct mem_cgroup *iter;
1437
1438 for_each_mem_cgroup_tree(iter, mem)
1439 num++;
1440 return num;
1441}
1442
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448 u64 limit;
1449 u64 memsw;
1450
1451 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452 limit += total_swap_pages << PAGE_SHIFT;
1453
1454 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455 /*
1456 * If memsw is finite and limits the amount of swap space available
1457 * to this memcg, return that limit.
1458 */
1459 return min(limit, memsw);
1460}
1461
1462/*
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470 struct mem_cgroup *ret = NULL;
1471 struct cgroup_subsys_state *css;
1472 int nextid, found;
1473
1474 if (!root_mem->use_hierarchy) {
1475 css_get(&root_mem->css);
1476 ret = root_mem;
1477 }
1478
1479 while (!ret) {
1480 rcu_read_lock();
1481 nextid = root_mem->last_scanned_child + 1;
1482 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483 &found);
1484 if (css && css_tryget(css))
1485 ret = container_of(css, struct mem_cgroup, css);
1486
1487 rcu_read_unlock();
1488 /* Updates scanning parameter */
1489 if (!css) {
1490 /* this means start scan from ID:1 */
1491 root_mem->last_scanned_child = 0;
1492 } else
1493 root_mem->last_scanned_child = found;
1494 }
1495
1496 return ret;
1497}
1498
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510 int nid, bool noswap)
1511{
1512 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513 return true;
1514 if (noswap || !total_swap_pages)
1515 return false;
1516 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517 return true;
1518 return false;
1519
1520}
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531 int nid;
1532 /*
1533 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 * pagein/pageout changes since the last update.
1535 */
1536 if (!atomic_read(&mem->numainfo_events))
1537 return;
1538 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539 return;
1540
1541 /* make a nodemask where this memcg uses memory from */
1542 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545
1546 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547 node_clear(nid, mem->scan_nodes);
1548 }
1549
1550 atomic_set(&mem->numainfo_events, 0);
1551 atomic_set(&mem->numainfo_updating, 0);
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568 int node;
1569
1570 mem_cgroup_may_update_nodemask(mem);
1571 node = mem->last_scanned_node;
1572
1573 node = next_node(node, mem->scan_nodes);
1574 if (node == MAX_NUMNODES)
1575 node = first_node(mem->scan_nodes);
1576 /*
1577 * We call this when we hit limit, not when pages are added to LRU.
1578 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 * memcg is too small and all pages are not on LRU. In that case,
1580 * we use curret node.
1581 */
1582 if (unlikely(node == MAX_NUMNODES))
1583 node = numa_node_id();
1584
1585 mem->last_scanned_node = node;
1586 return node;
1587}
1588
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597 int nid;
1598
1599 /*
1600 * quick check...making use of scan_node.
1601 * We can skip unused nodes.
1602 */
1603 if (!nodes_empty(mem->scan_nodes)) {
1604 for (nid = first_node(mem->scan_nodes);
1605 nid < MAX_NUMNODES;
1606 nid = next_node(nid, mem->scan_nodes)) {
1607
1608 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 return true;
1610 }
1611 }
1612 /*
1613 * Check rest of nodes.
1614 */
1615 for_each_node_state(nid, N_HIGH_MEMORY) {
1616 if (node_isset(nid, mem->scan_nodes))
1617 continue;
1618 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619 return true;
1620 }
1621 return false;
1622}
1623
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627 return 0;
1628}
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
1634#endif
1635
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 struct zone *zone,
1650 gfp_t gfp_mask,
1651 unsigned long reclaim_options,
1652 unsigned long *total_scanned)
1653{
1654 struct mem_cgroup *victim;
1655 int ret, total = 0;
1656 int loop = 0;
1657 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 unsigned long excess;
1661 unsigned long nr_scanned;
1662
1663 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667 noswap = true;
1668
1669 while (1) {
1670 victim = mem_cgroup_select_victim(root_mem);
1671 if (victim == root_mem) {
1672 loop++;
1673 /*
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1678 */
1679 if (!check_soft && loop >= 1)
1680 drain_all_stock_async(root_mem);
1681 if (loop >= 2) {
1682 /*
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1686 */
1687 if (!check_soft || !total) {
1688 css_put(&victim->css);
1689 break;
1690 }
1691 /*
1692 * We want to do more targeted reclaim.
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1696 */
1697 if (total >= (excess >> 2) ||
1698 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 css_put(&victim->css);
1700 break;
1701 }
1702 }
1703 }
1704 if (!mem_cgroup_reclaimable(victim, noswap)) {
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim->css);
1707 continue;
1708 }
1709 /* we use swappiness of local cgroup */
1710 if (check_soft) {
1711 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 noswap, zone, &nr_scanned);
1713 *total_scanned += nr_scanned;
1714 } else
1715 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716 noswap);
1717 css_put(&victim->css);
1718 /*
1719 * At shrinking usage, we can't check we should stop here or
1720 * reclaim more. It's depends on callers. last_scanned_child
1721 * will work enough for keeping fairness under tree.
1722 */
1723 if (shrink)
1724 return ret;
1725 total += ret;
1726 if (check_soft) {
1727 if (!res_counter_soft_limit_excess(&root_mem->res))
1728 return total;
1729 } else if (mem_cgroup_margin(root_mem))
1730 return total;
1731 }
1732 return total;
1733}
1734
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
1742 struct mem_cgroup *iter, *failed = NULL;
1743 bool cond = true;
1744
1745 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1746 if (iter->oom_lock) {
1747 /*
1748 * this subtree of our hierarchy is already locked
1749 * so we cannot give a lock.
1750 */
1751 failed = iter;
1752 cond = false;
1753 } else
1754 iter->oom_lock = true;
1755 }
1756
1757 if (!failed)
1758 return true;
1759
1760 /*
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1763 */
1764 cond = true;
1765 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766 if (iter == failed) {
1767 cond = false;
1768 continue;
1769 }
1770 iter->oom_lock = false;
1771 }
1772 return false;
1773}
1774
1775/*
1776 * Has to be called with memcg_oom_lock
1777 */
1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779{
1780 struct mem_cgroup *iter;
1781
1782 for_each_mem_cgroup_tree(iter, mem)
1783 iter->oom_lock = false;
1784 return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789 struct mem_cgroup *iter;
1790
1791 for_each_mem_cgroup_tree(iter, mem)
1792 atomic_inc(&iter->under_oom);
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797 struct mem_cgroup *iter;
1798
1799 /*
1800 * When a new child is created while the hierarchy is under oom,
1801 * mem_cgroup_oom_lock() may not be called. We have to use
1802 * atomic_add_unless() here.
1803 */
1804 for_each_mem_cgroup_tree(iter, mem)
1805 atomic_add_unless(&iter->under_oom, -1, 0);
1806}
1807
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
1811struct oom_wait_info {
1812 struct mem_cgroup *mem;
1813 wait_queue_t wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817 unsigned mode, int sync, void *arg)
1818{
1819 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820 *oom_wait_mem;
1821 struct oom_wait_info *oom_wait_info;
1822
1823 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824 oom_wait_mem = oom_wait_info->mem;
1825
1826 /*
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1829 */
1830 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832 return 0;
1833 return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838 /* for filtering, pass "mem" as argument. */
1839 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1840}
1841
1842static void memcg_oom_recover(struct mem_cgroup *mem)
1843{
1844 if (mem && atomic_read(&mem->under_oom))
1845 memcg_wakeup_oom(mem);
1846}
1847
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852{
1853 struct oom_wait_info owait;
1854 bool locked, need_to_kill;
1855
1856 owait.mem = mem;
1857 owait.wait.flags = 0;
1858 owait.wait.func = memcg_oom_wake_function;
1859 owait.wait.private = current;
1860 INIT_LIST_HEAD(&owait.wait.task_list);
1861 need_to_kill = true;
1862 mem_cgroup_mark_under_oom(mem);
1863
1864 /* At first, try to OOM lock hierarchy under mem.*/
1865 spin_lock(&memcg_oom_lock);
1866 locked = mem_cgroup_oom_lock(mem);
1867 /*
1868 * Even if signal_pending(), we can't quit charge() loop without
1869 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 * under OOM is always welcomed, use TASK_KILLABLE here.
1871 */
1872 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873 if (!locked || mem->oom_kill_disable)
1874 need_to_kill = false;
1875 if (locked)
1876 mem_cgroup_oom_notify(mem);
1877 spin_unlock(&memcg_oom_lock);
1878
1879 if (need_to_kill) {
1880 finish_wait(&memcg_oom_waitq, &owait.wait);
1881 mem_cgroup_out_of_memory(mem, mask);
1882 } else {
1883 schedule();
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1885 }
1886 spin_lock(&memcg_oom_lock);
1887 if (locked)
1888 mem_cgroup_oom_unlock(mem);
1889 memcg_wakeup_oom(mem);
1890 spin_unlock(&memcg_oom_lock);
1891
1892 mem_cgroup_unmark_under_oom(mem);
1893
1894 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895 return false;
1896 /* Give chance to dying process */
1897 schedule_timeout(1);
1898 return true;
1899}
1900
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1923 */
1924
1925void mem_cgroup_update_page_stat(struct page *page,
1926 enum mem_cgroup_page_stat_item idx, int val)
1927{
1928 struct mem_cgroup *mem;
1929 struct page_cgroup *pc = lookup_page_cgroup(page);
1930 bool need_unlock = false;
1931 unsigned long uninitialized_var(flags);
1932
1933 if (unlikely(!pc))
1934 return;
1935
1936 rcu_read_lock();
1937 mem = pc->mem_cgroup;
1938 if (unlikely(!mem || !PageCgroupUsed(pc)))
1939 goto out;
1940 /* pc->mem_cgroup is unstable ? */
1941 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942 /* take a lock against to access pc->mem_cgroup */
1943 move_lock_page_cgroup(pc, &flags);
1944 need_unlock = true;
1945 mem = pc->mem_cgroup;
1946 if (!mem || !PageCgroupUsed(pc))
1947 goto out;
1948 }
1949
1950 switch (idx) {
1951 case MEMCG_NR_FILE_MAPPED:
1952 if (val > 0)
1953 SetPageCgroupFileMapped(pc);
1954 else if (!page_mapped(page))
1955 ClearPageCgroupFileMapped(pc);
1956 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957 break;
1958 default:
1959 BUG();
1960 }
1961
1962 this_cpu_add(mem->stat->count[idx], val);
1963
1964out:
1965 if (unlikely(need_unlock))
1966 move_unlock_page_cgroup(pc, &flags);
1967 rcu_read_unlock();
1968 return;
1969}
1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
1976#define CHARGE_BATCH 32U
1977struct memcg_stock_pcp {
1978 struct mem_cgroup *cached; /* this never be root cgroup */
1979 unsigned int nr_pages;
1980 struct work_struct work;
1981 unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE (0)
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985static DEFINE_MUTEX(percpu_charge_mutex);
1986
1987/*
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995 struct memcg_stock_pcp *stock;
1996 bool ret = true;
1997
1998 stock = &get_cpu_var(memcg_stock);
1999 if (mem == stock->cached && stock->nr_pages)
2000 stock->nr_pages--;
2001 else /* need to call res_counter_charge */
2002 ret = false;
2003 put_cpu_var(memcg_stock);
2004 return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012 struct mem_cgroup *old = stock->cached;
2013
2014 if (stock->nr_pages) {
2015 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017 res_counter_uncharge(&old->res, bytes);
2018 if (do_swap_account)
2019 res_counter_uncharge(&old->memsw, bytes);
2020 stock->nr_pages = 0;
2021 }
2022 stock->cached = NULL;
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032 drain_stock(stock);
2033 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2039 */
2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041{
2042 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2043
2044 if (stock->cached != mem) { /* reset if necessary */
2045 drain_stock(stock);
2046 stock->cached = mem;
2047 }
2048 stock->nr_pages += nr_pages;
2049 put_cpu_var(memcg_stock);
2050}
2051
2052/*
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2056 */
2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058{
2059 int cpu, curcpu;
2060
2061 /* Notify other cpus that system-wide "drain" is running */
2062 get_online_cpus();
2063 curcpu = get_cpu();
2064 for_each_online_cpu(cpu) {
2065 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066 struct mem_cgroup *mem;
2067
2068 mem = stock->cached;
2069 if (!mem || !stock->nr_pages)
2070 continue;
2071 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072 continue;
2073 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074 if (cpu == curcpu)
2075 drain_local_stock(&stock->work);
2076 else
2077 schedule_work_on(cpu, &stock->work);
2078 }
2079 }
2080 put_cpu();
2081
2082 if (!sync)
2083 goto out;
2084
2085 for_each_online_cpu(cpu) {
2086 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088 flush_work(&stock->work);
2089 }
2090out:
2091 put_online_cpus();
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101{
2102 /*
2103 * If someone calls draining, avoid adding more kworker runs.
2104 */
2105 if (!mutex_trylock(&percpu_charge_mutex))
2106 return;
2107 drain_all_stock(root_mem, false);
2108 mutex_unlock(&percpu_charge_mutex);
2109}
2110
2111/* This is a synchronous drain interface. */
2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113{
2114 /* called when force_empty is called */
2115 mutex_lock(&percpu_charge_mutex);
2116 drain_all_stock(root_mem, true);
2117 mutex_unlock(&percpu_charge_mutex);
2118}
2119
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125{
2126 int i;
2127
2128 spin_lock(&mem->pcp_counter_lock);
2129 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130 long x = per_cpu(mem->stat->count[i], cpu);
2131
2132 per_cpu(mem->stat->count[i], cpu) = 0;
2133 mem->nocpu_base.count[i] += x;
2134 }
2135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137
2138 per_cpu(mem->stat->events[i], cpu) = 0;
2139 mem->nocpu_base.events[i] += x;
2140 }
2141 /* need to clear ON_MOVE value, works as a kind of lock. */
2142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143 spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2147{
2148 int idx = MEM_CGROUP_ON_MOVE;
2149
2150 spin_lock(&mem->pcp_counter_lock);
2151 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152 spin_unlock(&mem->pcp_counter_lock);
2153}
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156 unsigned long action,
2157 void *hcpu)
2158{
2159 int cpu = (unsigned long)hcpu;
2160 struct memcg_stock_pcp *stock;
2161 struct mem_cgroup *iter;
2162
2163 if ((action == CPU_ONLINE)) {
2164 for_each_mem_cgroup_all(iter)
2165 synchronize_mem_cgroup_on_move(iter, cpu);
2166 return NOTIFY_OK;
2167 }
2168
2169 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170 return NOTIFY_OK;
2171
2172 for_each_mem_cgroup_all(iter)
2173 mem_cgroup_drain_pcp_counter(iter, cpu);
2174
2175 stock = &per_cpu(memcg_stock, cpu);
2176 drain_stock(stock);
2177 return NOTIFY_OK;
2178}
2179
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183 CHARGE_OK, /* success */
2184 CHARGE_RETRY, /* need to retry but retry is not bad */
2185 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2186 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2187 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2188};
2189
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191 unsigned int nr_pages, bool oom_check)
2192{
2193 unsigned long csize = nr_pages * PAGE_SIZE;
2194 struct mem_cgroup *mem_over_limit;
2195 struct res_counter *fail_res;
2196 unsigned long flags = 0;
2197 int ret;
2198
2199 ret = res_counter_charge(&mem->res, csize, &fail_res);
2200
2201 if (likely(!ret)) {
2202 if (!do_swap_account)
2203 return CHARGE_OK;
2204 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205 if (likely(!ret))
2206 return CHARGE_OK;
2207
2208 res_counter_uncharge(&mem->res, csize);
2209 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211 } else
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213 /*
2214 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216 *
2217 * Never reclaim on behalf of optional batching, retry with a
2218 * single page instead.
2219 */
2220 if (nr_pages == CHARGE_BATCH)
2221 return CHARGE_RETRY;
2222
2223 if (!(gfp_mask & __GFP_WAIT))
2224 return CHARGE_WOULDBLOCK;
2225
2226 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227 gfp_mask, flags, NULL);
2228 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229 return CHARGE_RETRY;
2230 /*
2231 * Even though the limit is exceeded at this point, reclaim
2232 * may have been able to free some pages. Retry the charge
2233 * before killing the task.
2234 *
2235 * Only for regular pages, though: huge pages are rather
2236 * unlikely to succeed so close to the limit, and we fall back
2237 * to regular pages anyway in case of failure.
2238 */
2239 if (nr_pages == 1 && ret)
2240 return CHARGE_RETRY;
2241
2242 /*
2243 * At task move, charge accounts can be doubly counted. So, it's
2244 * better to wait until the end of task_move if something is going on.
2245 */
2246 if (mem_cgroup_wait_acct_move(mem_over_limit))
2247 return CHARGE_RETRY;
2248
2249 /* If we don't need to call oom-killer at el, return immediately */
2250 if (!oom_check)
2251 return CHARGE_NOMEM;
2252 /* check OOM */
2253 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254 return CHARGE_OOM_DIE;
2255
2256 return CHARGE_RETRY;
2257}
2258
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2262 */
2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264 gfp_t gfp_mask,
2265 unsigned int nr_pages,
2266 struct mem_cgroup **memcg,
2267 bool oom)
2268{
2269 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271 struct mem_cgroup *mem = NULL;
2272 int ret;
2273
2274 /*
2275 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 * in system level. So, allow to go ahead dying process in addition to
2277 * MEMDIE process.
2278 */
2279 if (unlikely(test_thread_flag(TIF_MEMDIE)
2280 || fatal_signal_pending(current)))
2281 goto bypass;
2282
2283 /*
2284 * We always charge the cgroup the mm_struct belongs to.
2285 * The mm_struct's mem_cgroup changes on task migration if the
2286 * thread group leader migrates. It's possible that mm is not
2287 * set, if so charge the init_mm (happens for pagecache usage).
2288 */
2289 if (!*memcg && !mm)
2290 goto bypass;
2291again:
2292 if (*memcg) { /* css should be a valid one */
2293 mem = *memcg;
2294 VM_BUG_ON(css_is_removed(&mem->css));
2295 if (mem_cgroup_is_root(mem))
2296 goto done;
2297 if (nr_pages == 1 && consume_stock(mem))
2298 goto done;
2299 css_get(&mem->css);
2300 } else {
2301 struct task_struct *p;
2302
2303 rcu_read_lock();
2304 p = rcu_dereference(mm->owner);
2305 /*
2306 * Because we don't have task_lock(), "p" can exit.
2307 * In that case, "mem" can point to root or p can be NULL with
2308 * race with swapoff. Then, we have small risk of mis-accouning.
2309 * But such kind of mis-account by race always happens because
2310 * we don't have cgroup_mutex(). It's overkill and we allo that
2311 * small race, here.
2312 * (*) swapoff at el will charge against mm-struct not against
2313 * task-struct. So, mm->owner can be NULL.
2314 */
2315 mem = mem_cgroup_from_task(p);
2316 if (!mem || mem_cgroup_is_root(mem)) {
2317 rcu_read_unlock();
2318 goto done;
2319 }
2320 if (nr_pages == 1 && consume_stock(mem)) {
2321 /*
2322 * It seems dagerous to access memcg without css_get().
2323 * But considering how consume_stok works, it's not
2324 * necessary. If consume_stock success, some charges
2325 * from this memcg are cached on this cpu. So, we
2326 * don't need to call css_get()/css_tryget() before
2327 * calling consume_stock().
2328 */
2329 rcu_read_unlock();
2330 goto done;
2331 }
2332 /* after here, we may be blocked. we need to get refcnt */
2333 if (!css_tryget(&mem->css)) {
2334 rcu_read_unlock();
2335 goto again;
2336 }
2337 rcu_read_unlock();
2338 }
2339
2340 do {
2341 bool oom_check;
2342
2343 /* If killed, bypass charge */
2344 if (fatal_signal_pending(current)) {
2345 css_put(&mem->css);
2346 goto bypass;
2347 }
2348
2349 oom_check = false;
2350 if (oom && !nr_oom_retries) {
2351 oom_check = true;
2352 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353 }
2354
2355 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356 switch (ret) {
2357 case CHARGE_OK:
2358 break;
2359 case CHARGE_RETRY: /* not in OOM situation but retry */
2360 batch = nr_pages;
2361 css_put(&mem->css);
2362 mem = NULL;
2363 goto again;
2364 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365 css_put(&mem->css);
2366 goto nomem;
2367 case CHARGE_NOMEM: /* OOM routine works */
2368 if (!oom) {
2369 css_put(&mem->css);
2370 goto nomem;
2371 }
2372 /* If oom, we never return -ENOMEM */
2373 nr_oom_retries--;
2374 break;
2375 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376 css_put(&mem->css);
2377 goto bypass;
2378 }
2379 } while (ret != CHARGE_OK);
2380
2381 if (batch > nr_pages)
2382 refill_stock(mem, batch - nr_pages);
2383 css_put(&mem->css);
2384done:
2385 *memcg = mem;
2386 return 0;
2387nomem:
2388 *memcg = NULL;
2389 return -ENOMEM;
2390bypass:
2391 *memcg = NULL;
2392 return 0;
2393}
2394
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401 unsigned int nr_pages)
2402{
2403 if (!mem_cgroup_is_root(mem)) {
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406 res_counter_uncharge(&mem->res, bytes);
2407 if (do_swap_account)
2408 res_counter_uncharge(&mem->memsw, bytes);
2409 }
2410}
2411
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420 struct cgroup_subsys_state *css;
2421
2422 /* ID 0 is unused ID */
2423 if (!id)
2424 return NULL;
2425 css = css_lookup(&mem_cgroup_subsys, id);
2426 if (!css)
2427 return NULL;
2428 return container_of(css, struct mem_cgroup, css);
2429}
2430
2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432{
2433 struct mem_cgroup *mem = NULL;
2434 struct page_cgroup *pc;
2435 unsigned short id;
2436 swp_entry_t ent;
2437
2438 VM_BUG_ON(!PageLocked(page));
2439
2440 pc = lookup_page_cgroup(page);
2441 lock_page_cgroup(pc);
2442 if (PageCgroupUsed(pc)) {
2443 mem = pc->mem_cgroup;
2444 if (mem && !css_tryget(&mem->css))
2445 mem = NULL;
2446 } else if (PageSwapCache(page)) {
2447 ent.val = page_private(page);
2448 id = lookup_swap_cgroup(ent);
2449 rcu_read_lock();
2450 mem = mem_cgroup_lookup(id);
2451 if (mem && !css_tryget(&mem->css))
2452 mem = NULL;
2453 rcu_read_unlock();
2454 }
2455 unlock_page_cgroup(pc);
2456 return mem;
2457}
2458
2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460 struct page *page,
2461 unsigned int nr_pages,
2462 struct page_cgroup *pc,
2463 enum charge_type ctype)
2464{
2465 lock_page_cgroup(pc);
2466 if (unlikely(PageCgroupUsed(pc))) {
2467 unlock_page_cgroup(pc);
2468 __mem_cgroup_cancel_charge(mem, nr_pages);
2469 return;
2470 }
2471 /*
2472 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 * accessed by any other context at this point.
2474 */
2475 pc->mem_cgroup = mem;
2476 /*
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2482 */
2483 smp_wmb();
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2496 }
2497
2498 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499 unlock_page_cgroup(pc);
2500 /*
2501 * "charge_statistics" updated event counter. Then, check it.
2502 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 * if they exceeds softlimit.
2504 */
2505 memcg_check_events(mem, page);
2506}
2507
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520 unsigned long flags;
2521
2522 if (mem_cgroup_disabled())
2523 return;
2524 /*
2525 * We have no races with charge/uncharge but will have races with
2526 * page state accounting.
2527 */
2528 move_lock_page_cgroup(head_pc, &flags);
2529
2530 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531 smp_wmb(); /* see __commit_charge() */
2532 if (PageCgroupAcctLRU(head_pc)) {
2533 enum lru_list lru;
2534 struct mem_cgroup_per_zone *mz;
2535
2536 /*
2537 * LRU flags cannot be copied because we need to add tail
2538 *.page to LRU by generic call and our hook will be called.
2539 * We hold lru_lock, then, reduce counter directly.
2540 */
2541 lru = page_lru(head);
2542 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544 }
2545 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546 move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
2550/**
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc: page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to: mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2558 *
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2562 *
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2567 */
2568static int mem_cgroup_move_account(struct page *page,
2569 unsigned int nr_pages,
2570 struct page_cgroup *pc,
2571 struct mem_cgroup *from,
2572 struct mem_cgroup *to,
2573 bool uncharge)
2574{
2575 unsigned long flags;
2576 int ret;
2577
2578 VM_BUG_ON(from == to);
2579 VM_BUG_ON(PageLRU(page));
2580 /*
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2584 * hold it.
2585 */
2586 ret = -EBUSY;
2587 if (nr_pages > 1 && !PageTransHuge(page))
2588 goto out;
2589
2590 lock_page_cgroup(pc);
2591
2592 ret = -EINVAL;
2593 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 goto unlock;
2595
2596 move_lock_page_cgroup(pc, &flags);
2597
2598 if (PageCgroupFileMapped(pc)) {
2599 /* Update mapped_file data for mem_cgroup */
2600 preempt_disable();
2601 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 preempt_enable();
2604 }
2605 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606 if (uncharge)
2607 /* This is not "cancel", but cancel_charge does all we need. */
2608 __mem_cgroup_cancel_charge(from, nr_pages);
2609
2610 /* caller should have done css_get */
2611 pc->mem_cgroup = to;
2612 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613 /*
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
2616 * this function is just force_empty() and move charge, so it's
2617 * guaranteed that "to" is never removed. So, we don't check rmdir
2618 * status here.
2619 */
2620 move_unlock_page_cgroup(pc, &flags);
2621 ret = 0;
2622unlock:
2623 unlock_page_cgroup(pc);
2624 /*
2625 * check events
2626 */
2627 memcg_check_events(to, page);
2628 memcg_check_events(from, page);
2629out:
2630 return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
2637static int mem_cgroup_move_parent(struct page *page,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *child,
2640 gfp_t gfp_mask)
2641{
2642 struct cgroup *cg = child->css.cgroup;
2643 struct cgroup *pcg = cg->parent;
2644 struct mem_cgroup *parent;
2645 unsigned int nr_pages;
2646 unsigned long uninitialized_var(flags);
2647 int ret;
2648
2649 /* Is ROOT ? */
2650 if (!pcg)
2651 return -EINVAL;
2652
2653 ret = -EBUSY;
2654 if (!get_page_unless_zero(page))
2655 goto out;
2656 if (isolate_lru_page(page))
2657 goto put;
2658
2659 nr_pages = hpage_nr_pages(page);
2660
2661 parent = mem_cgroup_from_cont(pcg);
2662 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663 if (ret || !parent)
2664 goto put_back;
2665
2666 if (nr_pages > 1)
2667 flags = compound_lock_irqsave(page);
2668
2669 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670 if (ret)
2671 __mem_cgroup_cancel_charge(parent, nr_pages);
2672
2673 if (nr_pages > 1)
2674 compound_unlock_irqrestore(page, flags);
2675put_back:
2676 putback_lru_page(page);
2677put:
2678 put_page(page);
2679out:
2680 return ret;
2681}
2682
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690 gfp_t gfp_mask, enum charge_type ctype)
2691{
2692 struct mem_cgroup *mem = NULL;
2693 unsigned int nr_pages = 1;
2694 struct page_cgroup *pc;
2695 bool oom = true;
2696 int ret;
2697
2698 if (PageTransHuge(page)) {
2699 nr_pages <<= compound_order(page);
2700 VM_BUG_ON(!PageTransHuge(page));
2701 /*
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2704 */
2705 oom = false;
2706 }
2707
2708 pc = lookup_page_cgroup(page);
2709 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710
2711 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712 if (ret || !mem)
2713 return ret;
2714
2715 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716 return 0;
2717}
2718
2719int mem_cgroup_newpage_charge(struct page *page,
2720 struct mm_struct *mm, gfp_t gfp_mask)
2721{
2722 if (mem_cgroup_disabled())
2723 return 0;
2724 /*
2725 * If already mapped, we don't have to account.
2726 * If page cache, page->mapping has address_space.
2727 * But page->mapping may have out-of-use anon_vma pointer,
2728 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729 * is NULL.
2730 */
2731 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732 return 0;
2733 if (unlikely(!mm))
2734 mm = &init_mm;
2735 return mem_cgroup_charge_common(page, mm, gfp_mask,
2736 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737}
2738
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741 enum charge_type ctype);
2742
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745 enum charge_type ctype)
2746{
2747 struct page_cgroup *pc = lookup_page_cgroup(page);
2748 /*
2749 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 * is already on LRU. It means the page may on some other page_cgroup's
2751 * LRU. Take care of it.
2752 */
2753 mem_cgroup_lru_del_before_commit(page);
2754 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755 mem_cgroup_lru_add_after_commit(page);
2756 return;
2757}
2758
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
2761{
2762 struct mem_cgroup *mem = NULL;
2763 int ret;
2764
2765 if (mem_cgroup_disabled())
2766 return 0;
2767 if (PageCompound(page))
2768 return 0;
2769
2770 if (unlikely(!mm))
2771 mm = &init_mm;
2772
2773 if (page_is_file_cache(page)) {
2774 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775 if (ret || !mem)
2776 return ret;
2777
2778 /*
2779 * FUSE reuses pages without going through the final
2780 * put that would remove them from the LRU list, make
2781 * sure that they get relinked properly.
2782 */
2783 __mem_cgroup_commit_charge_lrucare(page, mem,
2784 MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 return ret;
2786 }
2787 /* shmem */
2788 if (PageSwapCache(page)) {
2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790 if (!ret)
2791 __mem_cgroup_commit_charge_swapin(page, mem,
2792 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793 } else
2794 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796
2797 return ret;
2798}
2799
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810 struct mem_cgroup *mem;
2811 int ret;
2812
2813 *ptr = NULL;
2814
2815 if (mem_cgroup_disabled())
2816 return 0;
2817
2818 if (!do_swap_account)
2819 goto charge_cur_mm;
2820 /*
2821 * A racing thread's fault, or swapoff, may have already updated
2822 * the pte, and even removed page from swap cache: in those cases
2823 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 * KSM case which does need to charge the page.
2825 */
2826 if (!PageSwapCache(page))
2827 goto charge_cur_mm;
2828 mem = try_get_mem_cgroup_from_page(page);
2829 if (!mem)
2830 goto charge_cur_mm;
2831 *ptr = mem;
2832 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833 css_put(&mem->css);
2834 return ret;
2835charge_cur_mm:
2836 if (unlikely(!mm))
2837 mm = &init_mm;
2838 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839}
2840
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype)
2844{
2845 if (mem_cgroup_disabled())
2846 return;
2847 if (!ptr)
2848 return;
2849 cgroup_exclude_rmdir(&ptr->css);
2850
2851 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852 /*
2853 * Now swap is on-memory. This means this page may be
2854 * counted both as mem and swap....double count.
2855 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 * may call delete_from_swap_cache() before reach here.
2858 */
2859 if (do_swap_account && PageSwapCache(page)) {
2860 swp_entry_t ent = {.val = page_private(page)};
2861 unsigned short id;
2862 struct mem_cgroup *memcg;
2863
2864 id = swap_cgroup_record(ent, 0);
2865 rcu_read_lock();
2866 memcg = mem_cgroup_lookup(id);
2867 if (memcg) {
2868 /*
2869 * This recorded memcg can be obsolete one. So, avoid
2870 * calling css_tryget
2871 */
2872 if (!mem_cgroup_is_root(memcg))
2873 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874 mem_cgroup_swap_statistics(memcg, false);
2875 mem_cgroup_put(memcg);
2876 }
2877 rcu_read_unlock();
2878 }
2879 /*
2880 * At swapin, we may charge account against cgroup which has no tasks.
2881 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 * In that case, we need to call pre_destroy() again. check it here.
2883 */
2884 cgroup_release_and_wakeup_rmdir(&ptr->css);
2885}
2886
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888{
2889 __mem_cgroup_commit_charge_swapin(page, ptr,
2890 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
2895 if (mem_cgroup_disabled())
2896 return;
2897 if (!mem)
2898 return;
2899 __mem_cgroup_cancel_charge(mem, 1);
2900}
2901
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903 unsigned int nr_pages,
2904 const enum charge_type ctype)
2905{
2906 struct memcg_batch_info *batch = NULL;
2907 bool uncharge_memsw = true;
2908
2909 /* If swapout, usage of swap doesn't decrease */
2910 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911 uncharge_memsw = false;
2912
2913 batch = ¤t->memcg_batch;
2914 /*
2915 * In usual, we do css_get() when we remember memcg pointer.
2916 * But in this case, we keep res->usage until end of a series of
2917 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918 */
2919 if (!batch->memcg)
2920 batch->memcg = mem;
2921 /*
2922 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923 * In those cases, all pages freed continuously can be expected to be in
2924 * the same cgroup and we have chance to coalesce uncharges.
2925 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 * because we want to do uncharge as soon as possible.
2927 */
2928
2929 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930 goto direct_uncharge;
2931
2932 if (nr_pages > 1)
2933 goto direct_uncharge;
2934
2935 /*
2936 * In typical case, batch->memcg == mem. This means we can
2937 * merge a series of uncharges to an uncharge of res_counter.
2938 * If not, we uncharge res_counter ony by one.
2939 */
2940 if (batch->memcg != mem)
2941 goto direct_uncharge;
2942 /* remember freed charge and uncharge it later */
2943 batch->nr_pages++;
2944 if (uncharge_memsw)
2945 batch->memsw_nr_pages++;
2946 return;
2947direct_uncharge:
2948 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949 if (uncharge_memsw)
2950 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951 if (unlikely(batch->memcg != mem))
2952 memcg_oom_recover(mem);
2953 return;
2954}
2955
2956/*
2957 * uncharge if !page_mapped(page)
2958 */
2959static struct mem_cgroup *
2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961{
2962 struct mem_cgroup *mem = NULL;
2963 unsigned int nr_pages = 1;
2964 struct page_cgroup *pc;
2965
2966 if (mem_cgroup_disabled())
2967 return NULL;
2968
2969 if (PageSwapCache(page))
2970 return NULL;
2971
2972 if (PageTransHuge(page)) {
2973 nr_pages <<= compound_order(page);
2974 VM_BUG_ON(!PageTransHuge(page));
2975 }
2976 /*
2977 * Check if our page_cgroup is valid
2978 */
2979 pc = lookup_page_cgroup(page);
2980 if (unlikely(!pc || !PageCgroupUsed(pc)))
2981 return NULL;
2982
2983 lock_page_cgroup(pc);
2984
2985 mem = pc->mem_cgroup;
2986
2987 if (!PageCgroupUsed(pc))
2988 goto unlock_out;
2989
2990 switch (ctype) {
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 case MEM_CGROUP_CHARGE_TYPE_DROP:
2993 /* See mem_cgroup_prepare_migration() */
2994 if (page_mapped(page) || PageCgroupMigration(pc))
2995 goto unlock_out;
2996 break;
2997 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998 if (!PageAnon(page)) { /* Shared memory */
2999 if (page->mapping && !page_is_file_cache(page))
3000 goto unlock_out;
3001 } else if (page_mapped(page)) /* Anon */
3002 goto unlock_out;
3003 break;
3004 default:
3005 break;
3006 }
3007
3008 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3009
3010 ClearPageCgroupUsed(pc);
3011 /*
3012 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 * freed from LRU. This is safe because uncharged page is expected not
3014 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 * special functions.
3016 */
3017
3018 unlock_page_cgroup(pc);
3019 /*
3020 * even after unlock, we have mem->res.usage here and this memcg
3021 * will never be freed.
3022 */
3023 memcg_check_events(mem, page);
3024 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025 mem_cgroup_swap_statistics(mem, true);
3026 mem_cgroup_get(mem);
3027 }
3028 if (!mem_cgroup_is_root(mem))
3029 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030
3031 return mem;
3032
3033unlock_out:
3034 unlock_page_cgroup(pc);
3035 return NULL;
3036}
3037
3038void mem_cgroup_uncharge_page(struct page *page)
3039{
3040 /* early check. */
3041 if (page_mapped(page))
3042 return;
3043 if (page->mapping && !PageAnon(page))
3044 return;
3045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
3049{
3050 VM_BUG_ON(page_mapped(page));
3051 VM_BUG_ON(page->mapping);
3052 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065 current->memcg_batch.do_batch++;
3066 /* We can do nest. */
3067 if (current->memcg_batch.do_batch == 1) {
3068 current->memcg_batch.memcg = NULL;
3069 current->memcg_batch.nr_pages = 0;
3070 current->memcg_batch.memsw_nr_pages = 0;
3071 }
3072}
3073
3074void mem_cgroup_uncharge_end(void)
3075{
3076 struct memcg_batch_info *batch = ¤t->memcg_batch;
3077
3078 if (!batch->do_batch)
3079 return;
3080
3081 batch->do_batch--;
3082 if (batch->do_batch) /* If stacked, do nothing. */
3083 return;
3084
3085 if (!batch->memcg)
3086 return;
3087 /*
3088 * This "batch->memcg" is valid without any css_get/put etc...
3089 * bacause we hide charges behind us.
3090 */
3091 if (batch->nr_pages)
3092 res_counter_uncharge(&batch->memcg->res,
3093 batch->nr_pages * PAGE_SIZE);
3094 if (batch->memsw_nr_pages)
3095 res_counter_uncharge(&batch->memcg->memsw,
3096 batch->memsw_nr_pages * PAGE_SIZE);
3097 memcg_oom_recover(batch->memcg);
3098 /* forget this pointer (for sanity check) */
3099 batch->memcg = NULL;
3100}
3101
3102#ifdef CONFIG_SWAP
3103/*
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3106 */
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109{
3110 struct mem_cgroup *memcg;
3111 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113 if (!swapout) /* this was a swap cache but the swap is unused ! */
3114 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116 memcg = __mem_cgroup_uncharge_common(page, ctype);
3117
3118 /*
3119 * record memcg information, if swapout && memcg != NULL,
3120 * mem_cgroup_get() was called in uncharge().
3121 */
3122 if (do_swap_account && swapout && memcg)
3123 swap_cgroup_record(ent, css_id(&memcg->css));
3124}
3125#endif
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133{
3134 struct mem_cgroup *memcg;
3135 unsigned short id;
3136
3137 if (!do_swap_account)
3138 return;
3139
3140 id = swap_cgroup_record(ent, 0);
3141 rcu_read_lock();
3142 memcg = mem_cgroup_lookup(id);
3143 if (memcg) {
3144 /*
3145 * We uncharge this because swap is freed.
3146 * This memcg can be obsolete one. We avoid calling css_tryget
3147 */
3148 if (!mem_cgroup_is_root(memcg))
3149 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150 mem_cgroup_swap_statistics(memcg, false);
3151 mem_cgroup_put(memcg);
3152 }
3153 rcu_read_unlock();
3154}
3155
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from: mem_cgroup which the entry is moved from
3160 * @to: mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173{
3174 unsigned short old_id, new_id;
3175
3176 old_id = css_id(&from->css);
3177 new_id = css_id(&to->css);
3178
3179 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180 mem_cgroup_swap_statistics(from, false);
3181 mem_cgroup_swap_statistics(to, true);
3182 /*
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
3189 */
3190 mem_cgroup_get(to);
3191 if (need_fixup) {
3192 if (!mem_cgroup_is_root(from))
3193 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194 mem_cgroup_put(from);
3195 /*
3196 * we charged both to->res and to->memsw, so we should
3197 * uncharge to->res.
3198 */
3199 if (!mem_cgroup_is_root(to))
3200 res_counter_uncharge(&to->res, PAGE_SIZE);
3201 }
3202 return 0;
3203 }
3204 return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209{
3210 return -EINVAL;
3211}
3212#endif
3213
3214/*
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3217 */
3218int mem_cgroup_prepare_migration(struct page *page,
3219 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220{
3221 struct mem_cgroup *mem = NULL;
3222 struct page_cgroup *pc;
3223 enum charge_type ctype;
3224 int ret = 0;
3225
3226 *ptr = NULL;
3227
3228 VM_BUG_ON(PageTransHuge(page));
3229 if (mem_cgroup_disabled())
3230 return 0;
3231
3232 pc = lookup_page_cgroup(page);
3233 lock_page_cgroup(pc);
3234 if (PageCgroupUsed(pc)) {
3235 mem = pc->mem_cgroup;
3236 css_get(&mem->css);
3237 /*
3238 * At migrating an anonymous page, its mapcount goes down
3239 * to 0 and uncharge() will be called. But, even if it's fully
3240 * unmapped, migration may fail and this page has to be
3241 * charged again. We set MIGRATION flag here and delay uncharge
3242 * until end_migration() is called
3243 *
3244 * Corner Case Thinking
3245 * A)
3246 * When the old page was mapped as Anon and it's unmap-and-freed
3247 * while migration was ongoing.
3248 * If unmap finds the old page, uncharge() of it will be delayed
3249 * until end_migration(). If unmap finds a new page, it's
3250 * uncharged when it make mapcount to be 1->0. If unmap code
3251 * finds swap_migration_entry, the new page will not be mapped
3252 * and end_migration() will find it(mapcount==0).
3253 *
3254 * B)
3255 * When the old page was mapped but migraion fails, the kernel
3256 * remaps it. A charge for it is kept by MIGRATION flag even
3257 * if mapcount goes down to 0. We can do remap successfully
3258 * without charging it again.
3259 *
3260 * C)
3261 * The "old" page is under lock_page() until the end of
3262 * migration, so, the old page itself will not be swapped-out.
3263 * If the new page is swapped out before end_migraton, our
3264 * hook to usual swap-out path will catch the event.
3265 */
3266 if (PageAnon(page))
3267 SetPageCgroupMigration(pc);
3268 }
3269 unlock_page_cgroup(pc);
3270 /*
3271 * If the page is not charged at this point,
3272 * we return here.
3273 */
3274 if (!mem)
3275 return 0;
3276
3277 *ptr = mem;
3278 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279 css_put(&mem->css);/* drop extra refcnt */
3280 if (ret || *ptr == NULL) {
3281 if (PageAnon(page)) {
3282 lock_page_cgroup(pc);
3283 ClearPageCgroupMigration(pc);
3284 unlock_page_cgroup(pc);
3285 /*
3286 * The old page may be fully unmapped while we kept it.
3287 */
3288 mem_cgroup_uncharge_page(page);
3289 }
3290 return -ENOMEM;
3291 }
3292 /*
3293 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 * is called before end_migration, we can catch all events on this new
3295 * page. In the case new page is migrated but not remapped, new page's
3296 * mapcount will be finally 0 and we call uncharge in end_migration().
3297 */
3298 pc = lookup_page_cgroup(newpage);
3299 if (PageAnon(page))
3300 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301 else if (page_is_file_cache(page))
3302 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303 else
3304 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306 return ret;
3307}
3308
3309/* remove redundant charge if migration failed*/
3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311 struct page *oldpage, struct page *newpage, bool migration_ok)
3312{
3313 struct page *used, *unused;
3314 struct page_cgroup *pc;
3315
3316 if (!mem)
3317 return;
3318 /* blocks rmdir() */
3319 cgroup_exclude_rmdir(&mem->css);
3320 if (!migration_ok) {
3321 used = oldpage;
3322 unused = newpage;
3323 } else {
3324 used = newpage;
3325 unused = oldpage;
3326 }
3327 /*
3328 * We disallowed uncharge of pages under migration because mapcount
3329 * of the page goes down to zero, temporarly.
3330 * Clear the flag and check the page should be charged.
3331 */
3332 pc = lookup_page_cgroup(oldpage);
3333 lock_page_cgroup(pc);
3334 ClearPageCgroupMigration(pc);
3335 unlock_page_cgroup(pc);
3336
3337 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
3339 /*
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
3346 */
3347 if (PageAnon(used))
3348 mem_cgroup_uncharge_page(used);
3349 /*
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3354 */
3355 cgroup_release_and_wakeup_rmdir(&mem->css);
3356}
3357
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361 struct page_cgroup *pc;
3362
3363 pc = lookup_page_cgroup(page);
3364 if (likely(pc) && PageCgroupUsed(pc))
3365 return pc;
3366 return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371 if (mem_cgroup_disabled())
3372 return false;
3373
3374 return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup_used(page);
3382 if (pc) {
3383 int ret = -1;
3384 char *path;
3385
3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc, pc->flags, pc->mem_cgroup);
3388
3389 path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 if (path) {
3391 rcu_read_lock();
3392 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 path, PATH_MAX);
3394 rcu_read_unlock();
3395 }
3396
3397 printk(KERN_CONT "(%s)\n",
3398 (ret < 0) ? "cannot get the path" : path);
3399 kfree(path);
3400 }
3401}
3402#endif
3403
3404static DEFINE_MUTEX(set_limit_mutex);
3405
3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 unsigned long long val)
3408{
3409 int retry_count;
3410 u64 memswlimit, memlimit;
3411 int ret = 0;
3412 int children = mem_cgroup_count_children(memcg);
3413 u64 curusage, oldusage;
3414 int enlarge;
3415
3416 /*
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3420 */
3421 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425 enlarge = 0;
3426 while (retry_count) {
3427 if (signal_pending(current)) {
3428 ret = -EINTR;
3429 break;
3430 }
3431 /*
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435 */
3436 mutex_lock(&set_limit_mutex);
3437 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 if (memswlimit < val) {
3439 ret = -EINVAL;
3440 mutex_unlock(&set_limit_mutex);
3441 break;
3442 }
3443
3444 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 if (memlimit < val)
3446 enlarge = 1;
3447
3448 ret = res_counter_set_limit(&memcg->res, val);
3449 if (!ret) {
3450 if (memswlimit == val)
3451 memcg->memsw_is_minimum = true;
3452 else
3453 memcg->memsw_is_minimum = false;
3454 }
3455 mutex_unlock(&set_limit_mutex);
3456
3457 if (!ret)
3458 break;
3459
3460 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 MEM_CGROUP_RECLAIM_SHRINK,
3462 NULL);
3463 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 /* Usage is reduced ? */
3465 if (curusage >= oldusage)
3466 retry_count--;
3467 else
3468 oldusage = curusage;
3469 }
3470 if (!ret && enlarge)
3471 memcg_oom_recover(memcg);
3472
3473 return ret;
3474}
3475
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 unsigned long long val)
3478{
3479 int retry_count;
3480 u64 memlimit, memswlimit, oldusage, curusage;
3481 int children = mem_cgroup_count_children(memcg);
3482 int ret = -EBUSY;
3483 int enlarge = 0;
3484
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 while (retry_count) {
3489 if (signal_pending(current)) {
3490 ret = -EINTR;
3491 break;
3492 }
3493 /*
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497 */
3498 mutex_lock(&set_limit_mutex);
3499 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 if (memlimit > val) {
3501 ret = -EINVAL;
3502 mutex_unlock(&set_limit_mutex);
3503 break;
3504 }
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val)
3507 enlarge = 1;
3508 ret = res_counter_set_limit(&memcg->memsw, val);
3509 if (!ret) {
3510 if (memlimit == val)
3511 memcg->memsw_is_minimum = true;
3512 else
3513 memcg->memsw_is_minimum = false;
3514 }
3515 mutex_unlock(&set_limit_mutex);
3516
3517 if (!ret)
3518 break;
3519
3520 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521 MEM_CGROUP_RECLAIM_NOSWAP |
3522 MEM_CGROUP_RECLAIM_SHRINK,
3523 NULL);
3524 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525 /* Usage is reduced ? */
3526 if (curusage >= oldusage)
3527 retry_count--;
3528 else
3529 oldusage = curusage;
3530 }
3531 if (!ret && enlarge)
3532 memcg_oom_recover(memcg);
3533 return ret;
3534}
3535
3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 gfp_t gfp_mask,
3538 unsigned long *total_scanned)
3539{
3540 unsigned long nr_reclaimed = 0;
3541 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 unsigned long reclaimed;
3543 int loop = 0;
3544 struct mem_cgroup_tree_per_zone *mctz;
3545 unsigned long long excess;
3546 unsigned long nr_scanned;
3547
3548 if (order > 0)
3549 return 0;
3550
3551 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552 /*
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3556 */
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3564
3565 nr_scanned = 0;
3566 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 gfp_mask,
3568 MEM_CGROUP_RECLAIM_SOFT,
3569 &nr_scanned);
3570 nr_reclaimed += reclaimed;
3571 *total_scanned += nr_scanned;
3572 spin_lock(&mctz->lock);
3573
3574 /*
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3577 */
3578 next_mz = NULL;
3579 if (!reclaimed) {
3580 do {
3581 /*
3582 * Loop until we find yet another one.
3583 *
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3590 * the tree
3591 */
3592 next_mz =
3593 __mem_cgroup_largest_soft_limit_node(mctz);
3594 if (next_mz == mz)
3595 css_put(&next_mz->mem->css);
3596 else /* next_mz == NULL or other memcg */
3597 break;
3598 } while (1);
3599 }
3600 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601 excess = res_counter_soft_limit_excess(&mz->mem->res);
3602 /*
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3608 * term TODO.
3609 */
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 spin_unlock(&mctz->lock);
3613 css_put(&mz->mem->css);
3614 loop++;
3615 /*
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3619 */
3620 if (!nr_reclaimed &&
3621 (next_mz == NULL ||
3622 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 break;
3624 } while (!nr_reclaimed);
3625 if (next_mz)
3626 css_put(&next_mz->mem->css);
3627 return nr_reclaimed;
3628}
3629
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3633 */
3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635 int node, int zid, enum lru_list lru)
3636{
3637 struct zone *zone;
3638 struct mem_cgroup_per_zone *mz;
3639 struct page_cgroup *pc, *busy;
3640 unsigned long flags, loop;
3641 struct list_head *list;
3642 int ret = 0;
3643
3644 zone = &NODE_DATA(node)->node_zones[zid];
3645 mz = mem_cgroup_zoneinfo(mem, node, zid);
3646 list = &mz->lists[lru];
3647
3648 loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 /* give some margin against EBUSY etc...*/
3650 loop += 256;
3651 busy = NULL;
3652 while (loop--) {
3653 struct page *page;
3654
3655 ret = 0;
3656 spin_lock_irqsave(&zone->lru_lock, flags);
3657 if (list_empty(list)) {
3658 spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 break;
3660 }
3661 pc = list_entry(list->prev, struct page_cgroup, lru);
3662 if (busy == pc) {
3663 list_move(&pc->lru, list);
3664 busy = NULL;
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 continue;
3667 }
3668 spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670 page = lookup_cgroup_page(pc);
3671
3672 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673 if (ret == -ENOMEM)
3674 break;
3675
3676 if (ret == -EBUSY || ret == -EINVAL) {
3677 /* found lock contention or "pc" is obsolete. */
3678 busy = pc;
3679 cond_resched();
3680 } else
3681 busy = NULL;
3682 }
3683
3684 if (!ret && !list_empty(list))
3685 return -EBUSY;
3686 return ret;
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3692 */
3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694{
3695 int ret;
3696 int node, zid, shrink;
3697 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 struct cgroup *cgrp = mem->css.cgroup;
3699
3700 css_get(&mem->css);
3701
3702 shrink = 0;
3703 /* should free all ? */
3704 if (free_all)
3705 goto try_to_free;
3706move_account:
3707 do {
3708 ret = -EBUSY;
3709 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 goto out;
3711 ret = -EINTR;
3712 if (signal_pending(current))
3713 goto out;
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync(mem);
3717 ret = 0;
3718 mem_cgroup_start_move(mem);
3719 for_each_node_state(node, N_HIGH_MEMORY) {
3720 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 enum lru_list l;
3722 for_each_lru(l) {
3723 ret = mem_cgroup_force_empty_list(mem,
3724 node, zid, l);
3725 if (ret)
3726 break;
3727 }
3728 }
3729 if (ret)
3730 break;
3731 }
3732 mem_cgroup_end_move(mem);
3733 memcg_oom_recover(mem);
3734 /* it seems parent cgroup doesn't have enough mem */
3735 if (ret == -ENOMEM)
3736 goto try_to_free;
3737 cond_resched();
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem->res.usage > 0 || ret);
3740out:
3741 css_put(&mem->css);
3742 return ret;
3743
3744try_to_free:
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 ret = -EBUSY;
3748 goto out;
3749 }
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3753 shrink = 1;
3754 while (nr_retries && mem->res.usage > 0) {
3755 int progress;
3756
3757 if (signal_pending(current)) {
3758 ret = -EINTR;
3759 goto out;
3760 }
3761 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762 false);
3763 if (!progress) {
3764 nr_retries--;
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC, HZ/10);
3767 }
3768
3769 }
3770 lru_add_drain();
3771 /* try move_account...there may be some *locked* pages. */
3772 goto move_account;
3773}
3774
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776{
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
3780
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782{
3783 return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 u64 val)
3788{
3789 int retval = 0;
3790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 struct cgroup *parent = cont->parent;
3792 struct mem_cgroup *parent_mem = NULL;
3793
3794 if (parent)
3795 parent_mem = mem_cgroup_from_cont(parent);
3796
3797 cgroup_lock();
3798 /*
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3802 *
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3805 */
3806 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 (val == 1 || val == 0)) {
3808 if (list_empty(&cont->children))
3809 mem->use_hierarchy = val;
3810 else
3811 retval = -EBUSY;
3812 } else
3813 retval = -EINVAL;
3814 cgroup_unlock();
3815
3816 return retval;
3817}
3818
3819
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 enum mem_cgroup_stat_index idx)
3822{
3823 struct mem_cgroup *iter;
3824 long val = 0;
3825
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter, mem)
3828 val += mem_cgroup_read_stat(iter, idx);
3829
3830 if (val < 0) /* race ? */
3831 val = 0;
3832 return val;
3833}
3834
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
3837 u64 val;
3838
3839 if (!mem_cgroup_is_root(mem)) {
3840 if (!swap)
3841 return res_counter_read_u64(&mem->res, RES_USAGE);
3842 else
3843 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844 }
3845
3846 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848
3849 if (swap)
3850 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851
3852 return val << PAGE_SHIFT;
3853}
3854
3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3856{
3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 u64 val;
3859 int type, name;
3860
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (type) {
3864 case _MEM:
3865 if (name == RES_USAGE)
3866 val = mem_cgroup_usage(mem, false);
3867 else
3868 val = res_counter_read_u64(&mem->res, name);
3869 break;
3870 case _MEMSWAP:
3871 if (name == RES_USAGE)
3872 val = mem_cgroup_usage(mem, true);
3873 else
3874 val = res_counter_read_u64(&mem->memsw, name);
3875 break;
3876 default:
3877 BUG();
3878 break;
3879 }
3880 return val;
3881}
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 const char *buffer)
3888{
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890 int type, name;
3891 unsigned long long val;
3892 int ret;
3893
3894 type = MEMFILE_TYPE(cft->private);
3895 name = MEMFILE_ATTR(cft->private);
3896 switch (name) {
3897 case RES_LIMIT:
3898 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 ret = -EINVAL;
3900 break;
3901 }
3902 /* This function does all necessary parse...reuse it */
3903 ret = res_counter_memparse_write_strategy(buffer, &val);
3904 if (ret)
3905 break;
3906 if (type == _MEM)
3907 ret = mem_cgroup_resize_limit(memcg, val);
3908 else
3909 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910 break;
3911 case RES_SOFT_LIMIT:
3912 ret = res_counter_memparse_write_strategy(buffer, &val);
3913 if (ret)
3914 break;
3915 /*
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3919 */
3920 if (type == _MEM)
3921 ret = res_counter_set_soft_limit(&memcg->res, val);
3922 else
3923 ret = -EINVAL;
3924 break;
3925 default:
3926 ret = -EINVAL; /* should be BUG() ? */
3927 break;
3928 }
3929 return ret;
3930}
3931
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935 struct cgroup *cgroup;
3936 unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 cgroup = memcg->css.cgroup;
3941 if (!memcg->use_hierarchy)
3942 goto out;
3943
3944 while (cgroup->parent) {
3945 cgroup = cgroup->parent;
3946 memcg = mem_cgroup_from_cont(cgroup);
3947 if (!memcg->use_hierarchy)
3948 break;
3949 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 min_limit = min(min_limit, tmp);
3951 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 min_memsw_limit = min(min_memsw_limit, tmp);
3953 }
3954out:
3955 *mem_limit = min_limit;
3956 *memsw_limit = min_memsw_limit;
3957 return;
3958}
3959
3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961{
3962 struct mem_cgroup *mem;
3963 int type, name;
3964
3965 mem = mem_cgroup_from_cont(cont);
3966 type = MEMFILE_TYPE(event);
3967 name = MEMFILE_ATTR(event);
3968 switch (name) {
3969 case RES_MAX_USAGE:
3970 if (type == _MEM)
3971 res_counter_reset_max(&mem->res);
3972 else
3973 res_counter_reset_max(&mem->memsw);
3974 break;
3975 case RES_FAILCNT:
3976 if (type == _MEM)
3977 res_counter_reset_failcnt(&mem->res);
3978 else
3979 res_counter_reset_failcnt(&mem->memsw);
3980 break;
3981 }
3982
3983 return 0;
3984}
3985
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 struct cftype *cft)
3988{
3989 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
3992#ifdef CONFIG_MMU
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 struct cftype *cft, u64 val)
3995{
3996 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998 if (val >= (1 << NR_MOVE_TYPE))
3999 return -EINVAL;
4000 /*
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4003 * inconsistent.
4004 */
4005 cgroup_lock();
4006 mem->move_charge_at_immigrate = val;
4007 cgroup_unlock();
4008
4009 return 0;
4010}
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4014{
4015 return -ENOSYS;
4016}
4017#endif
4018
4019
4020/* For read statistics */
4021enum {
4022 MCS_CACHE,
4023 MCS_RSS,
4024 MCS_FILE_MAPPED,
4025 MCS_PGPGIN,
4026 MCS_PGPGOUT,
4027 MCS_SWAP,
4028 MCS_PGFAULT,
4029 MCS_PGMAJFAULT,
4030 MCS_INACTIVE_ANON,
4031 MCS_ACTIVE_ANON,
4032 MCS_INACTIVE_FILE,
4033 MCS_ACTIVE_FILE,
4034 MCS_UNEVICTABLE,
4035 NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039 s64 stat[NR_MCS_STAT];
4040};
4041
4042struct {
4043 char *local_name;
4044 char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
4048 {"mapped_file", "total_mapped_file"},
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
4051 {"swap", "total_swap"},
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4059};
4060
4061
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064{
4065 s64 val;
4066
4067 /* per cpu stat */
4068 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071 s->stat[MCS_RSS] += val * PAGE_SIZE;
4072 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075 s->stat[MCS_PGPGIN] += val;
4076 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077 s->stat[MCS_PGPGOUT] += val;
4078 if (do_swap_account) {
4079 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081 }
4082 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 s->stat[MCS_PGFAULT] += val;
4084 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 s->stat[MCS_PGMAJFAULT] += val;
4086
4087 /* per zone stat */
4088 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102{
4103 struct mem_cgroup *iter;
4104
4105 for_each_mem_cgroup_tree(iter, mem)
4106 mem_cgroup_get_local_stat(iter, s);
4107}
4108
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
4112 int nid;
4113 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 unsigned long node_nr;
4115 struct cgroup *cont = m->private;
4116 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
4118 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119 seq_printf(m, "total=%lu", total_nr);
4120 for_each_node_state(nid, N_HIGH_MEMORY) {
4121 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122 seq_printf(m, " N%d=%lu", nid, node_nr);
4123 }
4124 seq_putc(m, '\n');
4125
4126 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127 seq_printf(m, "file=%lu", file_nr);
4128 for_each_node_state(nid, N_HIGH_MEMORY) {
4129 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130 LRU_ALL_FILE);
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4132 }
4133 seq_putc(m, '\n');
4134
4135 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136 seq_printf(m, "anon=%lu", anon_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139 LRU_ALL_ANON);
4140 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 }
4142 seq_putc(m, '\n');
4143
4144 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145 seq_printf(m, "unevictable=%lu", unevictable_nr);
4146 for_each_node_state(nid, N_HIGH_MEMORY) {
4147 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148 BIT(LRU_UNEVICTABLE));
4149 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 }
4151 seq_putc(m, '\n');
4152 return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157 struct cgroup_map_cb *cb)
4158{
4159 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160 struct mcs_total_stat mystat;
4161 int i;
4162
4163 memset(&mystat, 0, sizeof(mystat));
4164 mem_cgroup_get_local_stat(mem_cont, &mystat);
4165
4166
4167 for (i = 0; i < NR_MCS_STAT; i++) {
4168 if (i == MCS_SWAP && !do_swap_account)
4169 continue;
4170 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4171 }
4172
4173 /* Hierarchical information */
4174 {
4175 unsigned long long limit, memsw_limit;
4176 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177 cb->fill(cb, "hierarchical_memory_limit", limit);
4178 if (do_swap_account)
4179 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180 }
4181
4182 memset(&mystat, 0, sizeof(mystat));
4183 mem_cgroup_get_total_stat(mem_cont, &mystat);
4184 for (i = 0; i < NR_MCS_STAT; i++) {
4185 if (i == MCS_SWAP && !do_swap_account)
4186 continue;
4187 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4188 }
4189
4190#ifdef CONFIG_DEBUG_VM
4191 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4192
4193 {
4194 int nid, zid;
4195 struct mem_cgroup_per_zone *mz;
4196 unsigned long recent_rotated[2] = {0, 0};
4197 unsigned long recent_scanned[2] = {0, 0};
4198
4199 for_each_online_node(nid)
4200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202
4203 recent_rotated[0] +=
4204 mz->reclaim_stat.recent_rotated[0];
4205 recent_rotated[1] +=
4206 mz->reclaim_stat.recent_rotated[1];
4207 recent_scanned[0] +=
4208 mz->reclaim_stat.recent_scanned[0];
4209 recent_scanned[1] +=
4210 mz->reclaim_stat.recent_scanned[1];
4211 }
4212 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216 }
4217#endif
4218
4219 return 0;
4220}
4221
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
4226 return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230 u64 val)
4231{
4232 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233 struct mem_cgroup *parent;
4234
4235 if (val > 100)
4236 return -EINVAL;
4237
4238 if (cgrp->parent == NULL)
4239 return -EINVAL;
4240
4241 parent = mem_cgroup_from_cont(cgrp->parent);
4242
4243 cgroup_lock();
4244
4245 /* If under hierarchy, only empty-root can set this value */
4246 if ((parent->use_hierarchy) ||
4247 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248 cgroup_unlock();
4249 return -EINVAL;
4250 }
4251
4252 memcg->swappiness = val;
4253
4254 cgroup_unlock();
4255
4256 return 0;
4257}
4258
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261 struct mem_cgroup_threshold_ary *t;
4262 u64 usage;
4263 int i;
4264
4265 rcu_read_lock();
4266 if (!swap)
4267 t = rcu_dereference(memcg->thresholds.primary);
4268 else
4269 t = rcu_dereference(memcg->memsw_thresholds.primary);
4270
4271 if (!t)
4272 goto unlock;
4273
4274 usage = mem_cgroup_usage(memcg, swap);
4275
4276 /*
4277 * current_threshold points to threshold just below usage.
4278 * If it's not true, a threshold was crossed after last
4279 * call of __mem_cgroup_threshold().
4280 */
4281 i = t->current_threshold;
4282
4283 /*
4284 * Iterate backward over array of thresholds starting from
4285 * current_threshold and check if a threshold is crossed.
4286 * If none of thresholds below usage is crossed, we read
4287 * only one element of the array here.
4288 */
4289 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290 eventfd_signal(t->entries[i].eventfd, 1);
4291
4292 /* i = current_threshold + 1 */
4293 i++;
4294
4295 /*
4296 * Iterate forward over array of thresholds starting from
4297 * current_threshold+1 and check if a threshold is crossed.
4298 * If none of thresholds above usage is crossed, we read
4299 * only one element of the array here.
4300 */
4301 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302 eventfd_signal(t->entries[i].eventfd, 1);
4303
4304 /* Update current_threshold */
4305 t->current_threshold = i - 1;
4306unlock:
4307 rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
4312 while (memcg) {
4313 __mem_cgroup_threshold(memcg, false);
4314 if (do_swap_account)
4315 __mem_cgroup_threshold(memcg, true);
4316
4317 memcg = parent_mem_cgroup(memcg);
4318 }
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323 const struct mem_cgroup_threshold *_a = a;
4324 const struct mem_cgroup_threshold *_b = b;
4325
4326 return _a->threshold - _b->threshold;
4327}
4328
4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330{
4331 struct mem_cgroup_eventfd_list *ev;
4332
4333 list_for_each_entry(ev, &mem->oom_notify, list)
4334 eventfd_signal(ev->eventfd, 1);
4335 return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
4340 struct mem_cgroup *iter;
4341
4342 for_each_mem_cgroup_tree(iter, mem)
4343 mem_cgroup_oom_notify_cb(iter);
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348{
4349 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350 struct mem_cgroup_thresholds *thresholds;
4351 struct mem_cgroup_threshold_ary *new;
4352 int type = MEMFILE_TYPE(cft->private);
4353 u64 threshold, usage;
4354 int i, size, ret;
4355
4356 ret = res_counter_memparse_write_strategy(args, &threshold);
4357 if (ret)
4358 return ret;
4359
4360 mutex_lock(&memcg->thresholds_lock);
4361
4362 if (type == _MEM)
4363 thresholds = &memcg->thresholds;
4364 else if (type == _MEMSWAP)
4365 thresholds = &memcg->memsw_thresholds;
4366 else
4367 BUG();
4368
4369 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371 /* Check if a threshold crossed before adding a new one */
4372 if (thresholds->primary)
4373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
4375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376
4377 /* Allocate memory for new array of thresholds */
4378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379 GFP_KERNEL);
4380 if (!new) {
4381 ret = -ENOMEM;
4382 goto unlock;
4383 }
4384 new->size = size;
4385
4386 /* Copy thresholds (if any) to new array */
4387 if (thresholds->primary) {
4388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389 sizeof(struct mem_cgroup_threshold));
4390 }
4391
4392 /* Add new threshold */
4393 new->entries[size - 1].eventfd = eventfd;
4394 new->entries[size - 1].threshold = threshold;
4395
4396 /* Sort thresholds. Registering of new threshold isn't time-critical */
4397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398 compare_thresholds, NULL);
4399
4400 /* Find current threshold */
4401 new->current_threshold = -1;
4402 for (i = 0; i < size; i++) {
4403 if (new->entries[i].threshold < usage) {
4404 /*
4405 * new->current_threshold will not be used until
4406 * rcu_assign_pointer(), so it's safe to increment
4407 * it here.
4408 */
4409 ++new->current_threshold;
4410 }
4411 }
4412
4413 /* Free old spare buffer and save old primary buffer as spare */
4414 kfree(thresholds->spare);
4415 thresholds->spare = thresholds->primary;
4416
4417 rcu_assign_pointer(thresholds->primary, new);
4418
4419 /* To be sure that nobody uses thresholds */
4420 synchronize_rcu();
4421
4422unlock:
4423 mutex_unlock(&memcg->thresholds_lock);
4424
4425 return ret;
4426}
4427
4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429 struct cftype *cft, struct eventfd_ctx *eventfd)
4430{
4431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432 struct mem_cgroup_thresholds *thresholds;
4433 struct mem_cgroup_threshold_ary *new;
4434 int type = MEMFILE_TYPE(cft->private);
4435 u64 usage;
4436 int i, j, size;
4437
4438 mutex_lock(&memcg->thresholds_lock);
4439 if (type == _MEM)
4440 thresholds = &memcg->thresholds;
4441 else if (type == _MEMSWAP)
4442 thresholds = &memcg->memsw_thresholds;
4443 else
4444 BUG();
4445
4446 /*
4447 * Something went wrong if we trying to unregister a threshold
4448 * if we don't have thresholds
4449 */
4450 BUG_ON(!thresholds);
4451
4452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457 /* Calculate new number of threshold */
4458 size = 0;
4459 for (i = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd != eventfd)
4461 size++;
4462 }
4463
4464 new = thresholds->spare;
4465
4466 /* Set thresholds array to NULL if we don't have thresholds */
4467 if (!size) {
4468 kfree(new);
4469 new = NULL;
4470 goto swap_buffers;
4471 }
4472
4473 new->size = size;
4474
4475 /* Copy thresholds and find current threshold */
4476 new->current_threshold = -1;
4477 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 if (thresholds->primary->entries[i].eventfd == eventfd)
4479 continue;
4480
4481 new->entries[j] = thresholds->primary->entries[i];
4482 if (new->entries[j].threshold < usage) {
4483 /*
4484 * new->current_threshold will not be used
4485 * until rcu_assign_pointer(), so it's safe to increment
4486 * it here.
4487 */
4488 ++new->current_threshold;
4489 }
4490 j++;
4491 }
4492
4493swap_buffers:
4494 /* Swap primary and spare array */
4495 thresholds->spare = thresholds->primary;
4496 rcu_assign_pointer(thresholds->primary, new);
4497
4498 /* To be sure that nobody uses thresholds */
4499 synchronize_rcu();
4500
4501 mutex_unlock(&memcg->thresholds_lock);
4502}
4503
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4506{
4507 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 struct mem_cgroup_eventfd_list *event;
4509 int type = MEMFILE_TYPE(cft->private);
4510
4511 BUG_ON(type != _OOM_TYPE);
4512 event = kmalloc(sizeof(*event), GFP_KERNEL);
4513 if (!event)
4514 return -ENOMEM;
4515
4516 spin_lock(&memcg_oom_lock);
4517
4518 event->eventfd = eventfd;
4519 list_add(&event->list, &memcg->oom_notify);
4520
4521 /* already in OOM ? */
4522 if (atomic_read(&memcg->under_oom))
4523 eventfd_signal(eventfd, 1);
4524 spin_unlock(&memcg_oom_lock);
4525
4526 return 0;
4527}
4528
4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530 struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533 struct mem_cgroup_eventfd_list *ev, *tmp;
4534 int type = MEMFILE_TYPE(cft->private);
4535
4536 BUG_ON(type != _OOM_TYPE);
4537
4538 spin_lock(&memcg_oom_lock);
4539
4540 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541 if (ev->eventfd == eventfd) {
4542 list_del(&ev->list);
4543 kfree(ev);
4544 }
4545 }
4546
4547 spin_unlock(&memcg_oom_lock);
4548}
4549
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551 struct cftype *cft, struct cgroup_map_cb *cb)
4552{
4553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
4557 if (atomic_read(&mem->under_oom))
4558 cb->fill(cb, "under_oom", 1);
4559 else
4560 cb->fill(cb, "under_oom", 0);
4561 return 0;
4562}
4563
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565 struct cftype *cft, u64 val)
4566{
4567 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568 struct mem_cgroup *parent;
4569
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!cgrp->parent || !((val == 0) || (val == 1)))
4572 return -EINVAL;
4573
4574 parent = mem_cgroup_from_cont(cgrp->parent);
4575
4576 cgroup_lock();
4577 /* oom-kill-disable is a flag for subhierarchy. */
4578 if ((parent->use_hierarchy) ||
4579 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580 cgroup_unlock();
4581 return -EINVAL;
4582 }
4583 mem->oom_kill_disable = val;
4584 if (!val)
4585 memcg_oom_recover(mem);
4586 cgroup_unlock();
4587 return 0;
4588}
4589
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592 .read = seq_read,
4593 .llseek = seq_lseek,
4594 .release = single_release,
4595};
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598{
4599 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4600
4601 file->f_op = &mem_control_numa_stat_file_operations;
4602 return single_open(file, mem_control_numa_stat_show, cont);
4603}
4604#endif /* CONFIG_NUMA */
4605
4606static struct cftype mem_cgroup_files[] = {
4607 {
4608 .name = "usage_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610 .read_u64 = mem_cgroup_read,
4611 .register_event = mem_cgroup_usage_register_event,
4612 .unregister_event = mem_cgroup_usage_unregister_event,
4613 },
4614 {
4615 .name = "max_usage_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617 .trigger = mem_cgroup_reset,
4618 .read_u64 = mem_cgroup_read,
4619 },
4620 {
4621 .name = "limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623 .write_string = mem_cgroup_write,
4624 .read_u64 = mem_cgroup_read,
4625 },
4626 {
4627 .name = "soft_limit_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629 .write_string = mem_cgroup_write,
4630 .read_u64 = mem_cgroup_read,
4631 },
4632 {
4633 .name = "failcnt",
4634 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635 .trigger = mem_cgroup_reset,
4636 .read_u64 = mem_cgroup_read,
4637 },
4638 {
4639 .name = "stat",
4640 .read_map = mem_control_stat_show,
4641 },
4642 {
4643 .name = "force_empty",
4644 .trigger = mem_cgroup_force_empty_write,
4645 },
4646 {
4647 .name = "use_hierarchy",
4648 .write_u64 = mem_cgroup_hierarchy_write,
4649 .read_u64 = mem_cgroup_hierarchy_read,
4650 },
4651 {
4652 .name = "swappiness",
4653 .read_u64 = mem_cgroup_swappiness_read,
4654 .write_u64 = mem_cgroup_swappiness_write,
4655 },
4656 {
4657 .name = "move_charge_at_immigrate",
4658 .read_u64 = mem_cgroup_move_charge_read,
4659 .write_u64 = mem_cgroup_move_charge_write,
4660 },
4661 {
4662 .name = "oom_control",
4663 .read_map = mem_cgroup_oom_control_read,
4664 .write_u64 = mem_cgroup_oom_control_write,
4665 .register_event = mem_cgroup_oom_register_event,
4666 .unregister_event = mem_cgroup_oom_unregister_event,
4667 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668 },
4669#ifdef CONFIG_NUMA
4670 {
4671 .name = "numa_stat",
4672 .open = mem_control_numa_stat_open,
4673 .mode = S_IRUGO,
4674 },
4675#endif
4676};
4677
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680 {
4681 .name = "memsw.usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683 .read_u64 = mem_cgroup_read,
4684 .register_event = mem_cgroup_usage_register_event,
4685 .unregister_event = mem_cgroup_usage_unregister_event,
4686 },
4687 {
4688 .name = "memsw.max_usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690 .trigger = mem_cgroup_reset,
4691 .read_u64 = mem_cgroup_read,
4692 },
4693 {
4694 .name = "memsw.limit_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696 .write_string = mem_cgroup_write,
4697 .read_u64 = mem_cgroup_read,
4698 },
4699 {
4700 .name = "memsw.failcnt",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702 .trigger = mem_cgroup_reset,
4703 .read_u64 = mem_cgroup_read,
4704 },
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708{
4709 if (!do_swap_account)
4710 return 0;
4711 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712 ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717 return 0;
4718}
4719#endif
4720
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722{
4723 struct mem_cgroup_per_node *pn;
4724 struct mem_cgroup_per_zone *mz;
4725 enum lru_list l;
4726 int zone, tmp = node;
4727 /*
4728 * This routine is called against possible nodes.
4729 * But it's BUG to call kmalloc() against offline node.
4730 *
4731 * TODO: this routine can waste much memory for nodes which will
4732 * never be onlined. It's better to use memory hotplug callback
4733 * function.
4734 */
4735 if (!node_state(node, N_NORMAL_MEMORY))
4736 tmp = -1;
4737 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 if (!pn)
4739 return 1;
4740
4741 mem->info.nodeinfo[node] = pn;
4742 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743 mz = &pn->zoneinfo[zone];
4744 for_each_lru(l)
4745 INIT_LIST_HEAD(&mz->lists[l]);
4746 mz->usage_in_excess = 0;
4747 mz->on_tree = false;
4748 mz->mem = mem;
4749 }
4750 return 0;
4751}
4752
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755 kfree(mem->info.nodeinfo[node]);
4756}
4757
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760 struct mem_cgroup *mem;
4761 int size = sizeof(struct mem_cgroup);
4762
4763 /* Can be very big if MAX_NUMNODES is very big */
4764 if (size < PAGE_SIZE)
4765 mem = kzalloc(size, GFP_KERNEL);
4766 else
4767 mem = vzalloc(size);
4768
4769 if (!mem)
4770 return NULL;
4771
4772 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 if (!mem->stat)
4774 goto out_free;
4775 spin_lock_init(&mem->pcp_counter_lock);
4776 return mem;
4777
4778out_free:
4779 if (size < PAGE_SIZE)
4780 kfree(mem);
4781 else
4782 vfree(mem);
4783 return NULL;
4784}
4785
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
4797static void __mem_cgroup_free(struct mem_cgroup *mem)
4798{
4799 int node;
4800
4801 mem_cgroup_remove_from_trees(mem);
4802 free_css_id(&mem_cgroup_subsys, &mem->css);
4803
4804 for_each_node_state(node, N_POSSIBLE)
4805 free_mem_cgroup_per_zone_info(mem, node);
4806
4807 free_percpu(mem->stat);
4808 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809 kfree(mem);
4810 else
4811 vfree(mem);
4812}
4813
4814static void mem_cgroup_get(struct mem_cgroup *mem)
4815{
4816 atomic_inc(&mem->refcnt);
4817}
4818
4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820{
4821 if (atomic_sub_and_test(count, &mem->refcnt)) {
4822 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823 __mem_cgroup_free(mem);
4824 if (parent)
4825 mem_cgroup_put(parent);
4826 }
4827}
4828
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831 __mem_cgroup_put(mem, 1);
4832}
4833
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839 if (!mem->res.parent)
4840 return NULL;
4841 return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
4843
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
4847 if (!mem_cgroup_disabled() && really_do_swap_account)
4848 do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
4854#endif
4855
4856static int mem_cgroup_soft_limit_tree_init(void)
4857{
4858 struct mem_cgroup_tree_per_node *rtpn;
4859 struct mem_cgroup_tree_per_zone *rtpz;
4860 int tmp, node, zone;
4861
4862 for_each_node_state(node, N_POSSIBLE) {
4863 tmp = node;
4864 if (!node_state(node, N_NORMAL_MEMORY))
4865 tmp = -1;
4866 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 if (!rtpn)
4868 return 1;
4869
4870 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873 rtpz = &rtpn->rb_tree_per_zone[zone];
4874 rtpz->rb_root = RB_ROOT;
4875 spin_lock_init(&rtpz->lock);
4876 }
4877 }
4878 return 0;
4879}
4880
4881static struct cgroup_subsys_state * __ref
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
4884 struct mem_cgroup *mem, *parent;
4885 long error = -ENOMEM;
4886 int node;
4887
4888 mem = mem_cgroup_alloc();
4889 if (!mem)
4890 return ERR_PTR(error);
4891
4892 for_each_node_state(node, N_POSSIBLE)
4893 if (alloc_mem_cgroup_per_zone_info(mem, node))
4894 goto free_out;
4895
4896 /* root ? */
4897 if (cont->parent == NULL) {
4898 int cpu;
4899 enable_swap_cgroup();
4900 parent = NULL;
4901 root_mem_cgroup = mem;
4902 if (mem_cgroup_soft_limit_tree_init())
4903 goto free_out;
4904 for_each_possible_cpu(cpu) {
4905 struct memcg_stock_pcp *stock =
4906 &per_cpu(memcg_stock, cpu);
4907 INIT_WORK(&stock->work, drain_local_stock);
4908 }
4909 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910 } else {
4911 parent = mem_cgroup_from_cont(cont->parent);
4912 mem->use_hierarchy = parent->use_hierarchy;
4913 mem->oom_kill_disable = parent->oom_kill_disable;
4914 }
4915
4916 if (parent && parent->use_hierarchy) {
4917 res_counter_init(&mem->res, &parent->res);
4918 res_counter_init(&mem->memsw, &parent->memsw);
4919 /*
4920 * We increment refcnt of the parent to ensure that we can
4921 * safely access it on res_counter_charge/uncharge.
4922 * This refcnt will be decremented when freeing this
4923 * mem_cgroup(see mem_cgroup_put).
4924 */
4925 mem_cgroup_get(parent);
4926 } else {
4927 res_counter_init(&mem->res, NULL);
4928 res_counter_init(&mem->memsw, NULL);
4929 }
4930 mem->last_scanned_child = 0;
4931 mem->last_scanned_node = MAX_NUMNODES;
4932 INIT_LIST_HEAD(&mem->oom_notify);
4933
4934 if (parent)
4935 mem->swappiness = mem_cgroup_swappiness(parent);
4936 atomic_set(&mem->refcnt, 1);
4937 mem->move_charge_at_immigrate = 0;
4938 mutex_init(&mem->thresholds_lock);
4939 return &mem->css;
4940free_out:
4941 __mem_cgroup_free(mem);
4942 root_mem_cgroup = NULL;
4943 return ERR_PTR(error);
4944}
4945
4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947 struct cgroup *cont)
4948{
4949 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950
4951 return mem_cgroup_force_empty(mem, false);
4952}
4953
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955 struct cgroup *cont)
4956{
4957 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4958
4959 mem_cgroup_put(mem);
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963 struct cgroup *cont)
4964{
4965 int ret;
4966
4967 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968 ARRAY_SIZE(mem_cgroup_files));
4969
4970 if (!ret)
4971 ret = register_memsw_files(cont, ss);
4972 return ret;
4973}
4974
4975#ifdef CONFIG_MMU
4976/* Handlers for move charge at task migration. */
4977#define PRECHARGE_COUNT_AT_ONCE 256
4978static int mem_cgroup_do_precharge(unsigned long count)
4979{
4980 int ret = 0;
4981 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 struct mem_cgroup *mem = mc.to;
4983
4984 if (mem_cgroup_is_root(mem)) {
4985 mc.precharge += count;
4986 /* we don't need css_get for root */
4987 return ret;
4988 }
4989 /* try to charge at once */
4990 if (count > 1) {
4991 struct res_counter *dummy;
4992 /*
4993 * "mem" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4996 * css_get().
4997 */
4998 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999 goto one_by_one;
5000 if (do_swap_account && res_counter_charge(&mem->memsw,
5001 PAGE_SIZE * count, &dummy)) {
5002 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003 goto one_by_one;
5004 }
5005 mc.precharge += count;
5006 return ret;
5007 }
5008one_by_one:
5009 /* fall back to one by one charge */
5010 while (count--) {
5011 if (signal_pending(current)) {
5012 ret = -EINTR;
5013 break;
5014 }
5015 if (!batch_count--) {
5016 batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 cond_resched();
5018 }
5019 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020 if (ret || !mem)
5021 /* mem_cgroup_clear_mc() will do uncharge later */
5022 return -ENOMEM;
5023 mc.precharge++;
5024 }
5025 return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 *
5035 * Returns
5036 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 * move charge. if @target is not NULL, the page is stored in target->page
5039 * with extra refcnt got(Callers should handle it).
5040 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 * target for charge migration. if @target is not NULL, the entry is stored
5042 * in target->ent.
5043 *
5044 * Called with pte lock held.
5045 */
5046union mc_target {
5047 struct page *page;
5048 swp_entry_t ent;
5049};
5050
5051enum mc_target_type {
5052 MC_TARGET_NONE, /* not used */
5053 MC_TARGET_PAGE,
5054 MC_TARGET_SWAP,
5055};
5056
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058 unsigned long addr, pte_t ptent)
5059{
5060 struct page *page = vm_normal_page(vma, addr, ptent);
5061
5062 if (!page || !page_mapped(page))
5063 return NULL;
5064 if (PageAnon(page)) {
5065 /* we don't move shared anon */
5066 if (!move_anon() || page_mapcount(page) > 2)
5067 return NULL;
5068 } else if (!move_file())
5069 /* we ignore mapcount for file pages */
5070 return NULL;
5071 if (!get_page_unless_zero(page))
5072 return NULL;
5073
5074 return page;
5075}
5076
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080 int usage_count;
5081 struct page *page = NULL;
5082 swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084 if (!move_anon() || non_swap_entry(ent))
5085 return NULL;
5086 usage_count = mem_cgroup_count_swap_user(ent, &page);
5087 if (usage_count > 1) { /* we don't move shared anon */
5088 if (page)
5089 put_page(page);
5090 return NULL;
5091 }
5092 if (do_swap_account)
5093 entry->val = ent.val;
5094
5095 return page;
5096}
5097
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101 struct page *page = NULL;
5102 struct inode *inode;
5103 struct address_space *mapping;
5104 pgoff_t pgoff;
5105
5106 if (!vma->vm_file) /* anonymous vma */
5107 return NULL;
5108 if (!move_file())
5109 return NULL;
5110
5111 inode = vma->vm_file->f_path.dentry->d_inode;
5112 mapping = vma->vm_file->f_mapping;
5113 if (pte_none(ptent))
5114 pgoff = linear_page_index(vma, addr);
5115 else /* pte_file(ptent) is true */
5116 pgoff = pte_to_pgoff(ptent);
5117
5118 /* page is moved even if it's not RSS of this task(page-faulted). */
5119 page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122 /* shmem/tmpfs may report page out on swap: account for that too. */
5123 if (radix_tree_exceptional_entry(page)) {
5124 swp_entry_t swap = radix_to_swp_entry(page);
5125 if (do_swap_account)
5126 *entry = swap;
5127 page = find_get_page(&swapper_space, swap.val);
5128 }
5129#endif
5130 return page;
5131}
5132
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136 struct page *page = NULL;
5137 struct page_cgroup *pc;
5138 int ret = 0;
5139 swp_entry_t ent = { .val = 0 };
5140
5141 if (pte_present(ptent))
5142 page = mc_handle_present_pte(vma, addr, ptent);
5143 else if (is_swap_pte(ptent))
5144 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145 else if (pte_none(ptent) || pte_file(ptent))
5146 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147
5148 if (!page && !ent.val)
5149 return 0;
5150 if (page) {
5151 pc = lookup_page_cgroup(page);
5152 /*
5153 * Do only loose check w/o page_cgroup lock.
5154 * mem_cgroup_move_account() checks the pc is valid or not under
5155 * the lock.
5156 */
5157 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158 ret = MC_TARGET_PAGE;
5159 if (target)
5160 target->page = page;
5161 }
5162 if (!ret || !target)
5163 put_page(page);
5164 }
5165 /* There is a swap entry and a page doesn't exist or isn't charged */
5166 if (ent.val && !ret &&
5167 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168 ret = MC_TARGET_SWAP;
5169 if (target)
5170 target->ent = ent;
5171 }
5172 return ret;
5173}
5174
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176 unsigned long addr, unsigned long end,
5177 struct mm_walk *walk)
5178{
5179 struct vm_area_struct *vma = walk->private;
5180 pte_t *pte;
5181 spinlock_t *ptl;
5182
5183 split_huge_page_pmd(walk->mm, pmd);
5184
5185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186 for (; addr != end; pte++, addr += PAGE_SIZE)
5187 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188 mc.precharge++; /* increment precharge temporarily */
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5191
5192 return 0;
5193}
5194
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197 unsigned long precharge;
5198 struct vm_area_struct *vma;
5199
5200 down_read(&mm->mmap_sem);
5201 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202 struct mm_walk mem_cgroup_count_precharge_walk = {
5203 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5204 .mm = mm,
5205 .private = vma,
5206 };
5207 if (is_vm_hugetlb_page(vma))
5208 continue;
5209 walk_page_range(vma->vm_start, vma->vm_end,
5210 &mem_cgroup_count_precharge_walk);
5211 }
5212 up_read(&mm->mmap_sem);
5213
5214 precharge = mc.precharge;
5215 mc.precharge = 0;
5216
5217 return precharge;
5218}
5219
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
5222 unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224 VM_BUG_ON(mc.moving_task);
5225 mc.moving_task = current;
5226 return mem_cgroup_do_precharge(precharge);
5227}
5228
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
5231{
5232 struct mem_cgroup *from = mc.from;
5233 struct mem_cgroup *to = mc.to;
5234
5235 /* we must uncharge all the leftover precharges from mc.to */
5236 if (mc.precharge) {
5237 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238 mc.precharge = 0;
5239 }
5240 /*
5241 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 * we must uncharge here.
5243 */
5244 if (mc.moved_charge) {
5245 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246 mc.moved_charge = 0;
5247 }
5248 /* we must fixup refcnts and charges */
5249 if (mc.moved_swap) {
5250 /* uncharge swap account from the old cgroup */
5251 if (!mem_cgroup_is_root(mc.from))
5252 res_counter_uncharge(&mc.from->memsw,
5253 PAGE_SIZE * mc.moved_swap);
5254 __mem_cgroup_put(mc.from, mc.moved_swap);
5255
5256 if (!mem_cgroup_is_root(mc.to)) {
5257 /*
5258 * we charged both to->res and to->memsw, so we should
5259 * uncharge to->res.
5260 */
5261 res_counter_uncharge(&mc.to->res,
5262 PAGE_SIZE * mc.moved_swap);
5263 }
5264 /* we've already done mem_cgroup_get(mc.to) */
5265 mc.moved_swap = 0;
5266 }
5267 memcg_oom_recover(from);
5268 memcg_oom_recover(to);
5269 wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274 struct mem_cgroup *from = mc.from;
5275
5276 /*
5277 * we must clear moving_task before waking up waiters at the end of
5278 * task migration.
5279 */
5280 mc.moving_task = NULL;
5281 __mem_cgroup_clear_mc();
5282 spin_lock(&mc.lock);
5283 mc.from = NULL;
5284 mc.to = NULL;
5285 spin_unlock(&mc.lock);
5286 mem_cgroup_end_move(from);
5287}
5288
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290 struct cgroup *cgroup,
5291 struct task_struct *p)
5292{
5293 int ret = 0;
5294 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296 if (mem->move_charge_at_immigrate) {
5297 struct mm_struct *mm;
5298 struct mem_cgroup *from = mem_cgroup_from_task(p);
5299
5300 VM_BUG_ON(from == mem);
5301
5302 mm = get_task_mm(p);
5303 if (!mm)
5304 return 0;
5305 /* We move charges only when we move a owner of the mm */
5306 if (mm->owner == p) {
5307 VM_BUG_ON(mc.from);
5308 VM_BUG_ON(mc.to);
5309 VM_BUG_ON(mc.precharge);
5310 VM_BUG_ON(mc.moved_charge);
5311 VM_BUG_ON(mc.moved_swap);
5312 mem_cgroup_start_move(from);
5313 spin_lock(&mc.lock);
5314 mc.from = from;
5315 mc.to = mem;
5316 spin_unlock(&mc.lock);
5317 /* We set mc.moving_task later */
5318
5319 ret = mem_cgroup_precharge_mc(mm);
5320 if (ret)
5321 mem_cgroup_clear_mc();
5322 }
5323 mmput(mm);
5324 }
5325 return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329 struct cgroup *cgroup,
5330 struct task_struct *p)
5331{
5332 mem_cgroup_clear_mc();
5333}
5334
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
5338{
5339 int ret = 0;
5340 struct vm_area_struct *vma = walk->private;
5341 pte_t *pte;
5342 spinlock_t *ptl;
5343
5344 split_huge_page_pmd(walk->mm, pmd);
5345retry:
5346 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347 for (; addr != end; addr += PAGE_SIZE) {
5348 pte_t ptent = *(pte++);
5349 union mc_target target;
5350 int type;
5351 struct page *page;
5352 struct page_cgroup *pc;
5353 swp_entry_t ent;
5354
5355 if (!mc.precharge)
5356 break;
5357
5358 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359 switch (type) {
5360 case MC_TARGET_PAGE:
5361 page = target.page;
5362 if (isolate_lru_page(page))
5363 goto put;
5364 pc = lookup_page_cgroup(page);
5365 if (!mem_cgroup_move_account(page, 1, pc,
5366 mc.from, mc.to, false)) {
5367 mc.precharge--;
5368 /* we uncharge from mc.from later. */
5369 mc.moved_charge++;
5370 }
5371 putback_lru_page(page);
5372put: /* is_target_pte_for_mc() gets the page */
5373 put_page(page);
5374 break;
5375 case MC_TARGET_SWAP:
5376 ent = target.ent;
5377 if (!mem_cgroup_move_swap_account(ent,
5378 mc.from, mc.to, false)) {
5379 mc.precharge--;
5380 /* we fixup refcnts and charges later. */
5381 mc.moved_swap++;
5382 }
5383 break;
5384 default:
5385 break;
5386 }
5387 }
5388 pte_unmap_unlock(pte - 1, ptl);
5389 cond_resched();
5390
5391 if (addr != end) {
5392 /*
5393 * We have consumed all precharges we got in can_attach().
5394 * We try charge one by one, but don't do any additional
5395 * charges to mc.to if we have failed in charge once in attach()
5396 * phase.
5397 */
5398 ret = mem_cgroup_do_precharge(1);
5399 if (!ret)
5400 goto retry;
5401 }
5402
5403 return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408 struct vm_area_struct *vma;
5409
5410 lru_add_drain_all();
5411retry:
5412 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413 /*
5414 * Someone who are holding the mmap_sem might be waiting in
5415 * waitq. So we cancel all extra charges, wake up all waiters,
5416 * and retry. Because we cancel precharges, we might not be able
5417 * to move enough charges, but moving charge is a best-effort
5418 * feature anyway, so it wouldn't be a big problem.
5419 */
5420 __mem_cgroup_clear_mc();
5421 cond_resched();
5422 goto retry;
5423 }
5424 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425 int ret;
5426 struct mm_walk mem_cgroup_move_charge_walk = {
5427 .pmd_entry = mem_cgroup_move_charge_pte_range,
5428 .mm = mm,
5429 .private = vma,
5430 };
5431 if (is_vm_hugetlb_page(vma))
5432 continue;
5433 ret = walk_page_range(vma->vm_start, vma->vm_end,
5434 &mem_cgroup_move_charge_walk);
5435 if (ret)
5436 /*
5437 * means we have consumed all precharges and failed in
5438 * doing additional charge. Just abandon here.
5439 */
5440 break;
5441 }
5442 up_read(&mm->mmap_sem);
5443}
5444
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446 struct cgroup *cont,
5447 struct cgroup *old_cont,
5448 struct task_struct *p)
5449{
5450 struct mm_struct *mm = get_task_mm(p);
5451
5452 if (mm) {
5453 if (mc.to)
5454 mem_cgroup_move_charge(mm);
5455 put_swap_token(mm);
5456 mmput(mm);
5457 }
5458 if (mc.to)
5459 mem_cgroup_clear_mc();
5460}
5461#else /* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463 struct cgroup *cgroup,
5464 struct task_struct *p)
5465{
5466 return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469 struct cgroup *cgroup,
5470 struct task_struct *p)
5471{
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474 struct cgroup *cont,
5475 struct cgroup *old_cont,
5476 struct task_struct *p)
5477{
5478}
5479#endif
5480
5481struct cgroup_subsys mem_cgroup_subsys = {
5482 .name = "memory",
5483 .subsys_id = mem_cgroup_subsys_id,
5484 .create = mem_cgroup_create,
5485 .pre_destroy = mem_cgroup_pre_destroy,
5486 .destroy = mem_cgroup_destroy,
5487 .populate = mem_cgroup_populate,
5488 .can_attach = mem_cgroup_can_attach,
5489 .cancel_attach = mem_cgroup_cancel_attach,
5490 .attach = mem_cgroup_move_task,
5491 .early_init = 0,
5492 .use_id = 1,
5493};
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496static int __init enable_swap_account(char *s)
5497{
5498 /* consider enabled if no parameter or 1 is given */
5499 if (!strcmp(s, "1"))
5500 really_do_swap_account = 1;
5501 else if (!strcmp(s, "0"))
5502 really_do_swap_account = 0;
5503 return 1;
5504}
5505__setup("swapaccount=", enable_swap_account);
5506
5507#endif