Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/file.h>
  62#include <linux/tracehook.h>
  63#include <linux/psi.h>
  64#include <linux/seq_buf.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include "slab.h"
  69
  70#include <linux/uaccess.h>
  71
  72#include <trace/events/vmscan.h>
  73
  74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  75EXPORT_SYMBOL(memory_cgrp_subsys);
  76
  77struct mem_cgroup *root_mem_cgroup __read_mostly;
  78
  79/* Active memory cgroup to use from an interrupt context */
  80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  82
  83/* Socket memory accounting disabled? */
  84static bool cgroup_memory_nosocket __ro_after_init;
  85
  86/* Kernel memory accounting disabled? */
  87bool cgroup_memory_nokmem __ro_after_init;
  88
  89/* Whether the swap controller is active */
  90#ifdef CONFIG_MEMCG_SWAP
  91bool cgroup_memory_noswap __ro_after_init;
  92#else
  93#define cgroup_memory_noswap		1
  94#endif
  95
  96#ifdef CONFIG_CGROUP_WRITEBACK
  97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  98#endif
  99
 100/* Whether legacy memory+swap accounting is active */
 101static bool do_memsw_account(void)
 102{
 103	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 104}
 105
 
 
 
 
 
 
 
 
 106#define THRESHOLDS_EVENTS_TARGET 128
 107#define SOFTLIMIT_EVENTS_TARGET 1024
 
 108
 109/*
 110 * Cgroups above their limits are maintained in a RB-Tree, independent of
 111 * their hierarchy representation
 112 */
 113
 114struct mem_cgroup_tree_per_node {
 115	struct rb_root rb_root;
 116	struct rb_node *rb_rightmost;
 117	spinlock_t lock;
 118};
 119
 120struct mem_cgroup_tree {
 121	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 122};
 123
 124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 125
 126/* for OOM */
 127struct mem_cgroup_eventfd_list {
 128	struct list_head list;
 129	struct eventfd_ctx *eventfd;
 130};
 131
 132/*
 133 * cgroup_event represents events which userspace want to receive.
 134 */
 135struct mem_cgroup_event {
 136	/*
 137	 * memcg which the event belongs to.
 138	 */
 139	struct mem_cgroup *memcg;
 140	/*
 141	 * eventfd to signal userspace about the event.
 142	 */
 143	struct eventfd_ctx *eventfd;
 144	/*
 145	 * Each of these stored in a list by the cgroup.
 146	 */
 147	struct list_head list;
 148	/*
 149	 * register_event() callback will be used to add new userspace
 150	 * waiter for changes related to this event.  Use eventfd_signal()
 151	 * on eventfd to send notification to userspace.
 152	 */
 153	int (*register_event)(struct mem_cgroup *memcg,
 154			      struct eventfd_ctx *eventfd, const char *args);
 155	/*
 156	 * unregister_event() callback will be called when userspace closes
 157	 * the eventfd or on cgroup removing.  This callback must be set,
 158	 * if you want provide notification functionality.
 159	 */
 160	void (*unregister_event)(struct mem_cgroup *memcg,
 161				 struct eventfd_ctx *eventfd);
 162	/*
 163	 * All fields below needed to unregister event when
 164	 * userspace closes eventfd.
 165	 */
 166	poll_table pt;
 167	wait_queue_head_t *wqh;
 168	wait_queue_entry_t wait;
 169	struct work_struct remove;
 170};
 171
 172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 174
 175/* Stuffs for move charges at task migration. */
 176/*
 177 * Types of charges to be moved.
 178 */
 179#define MOVE_ANON	0x1U
 180#define MOVE_FILE	0x2U
 181#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 182
 183/* "mc" and its members are protected by cgroup_mutex */
 184static struct move_charge_struct {
 185	spinlock_t	  lock; /* for from, to */
 186	struct mm_struct  *mm;
 187	struct mem_cgroup *from;
 188	struct mem_cgroup *to;
 189	unsigned long flags;
 190	unsigned long precharge;
 191	unsigned long moved_charge;
 192	unsigned long moved_swap;
 193	struct task_struct *moving_task;	/* a task moving charges */
 194	wait_queue_head_t waitq;		/* a waitq for other context */
 195} mc = {
 196	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 197	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 198};
 199
 200/*
 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 202 * limit reclaim to prevent infinite loops, if they ever occur.
 203 */
 204#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 205#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 206
 
 
 
 
 
 
 
 
 207/* for encoding cft->private value on file */
 208enum res_type {
 209	_MEM,
 210	_MEMSWAP,
 211	_OOM_TYPE,
 212	_KMEM,
 213	_TCP,
 214};
 215
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219/* Used for OOM notifier */
 220#define OOM_CONTROL		(0)
 221
 222/*
 223 * Iteration constructs for visiting all cgroups (under a tree).  If
 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 225 * be used for reference counting.
 226 */
 227#define for_each_mem_cgroup_tree(iter, root)		\
 228	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 229	     iter != NULL;				\
 230	     iter = mem_cgroup_iter(root, iter, NULL))
 231
 232#define for_each_mem_cgroup(iter)			\
 233	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 234	     iter != NULL;				\
 235	     iter = mem_cgroup_iter(NULL, iter, NULL))
 236
 237static inline bool should_force_charge(void)
 238{
 239	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 240		(current->flags & PF_EXITING);
 241}
 242
 243/* Some nice accessors for the vmpressure. */
 244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 245{
 246	if (!memcg)
 247		memcg = root_mem_cgroup;
 248	return &memcg->vmpressure;
 249}
 250
 251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 252{
 253	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 254}
 255
 256#ifdef CONFIG_MEMCG_KMEM
 257extern spinlock_t css_set_lock;
 258
 259bool mem_cgroup_kmem_disabled(void)
 260{
 261	return cgroup_memory_nokmem;
 262}
 263
 264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 265				      unsigned int nr_pages);
 266
 267static void obj_cgroup_release(struct percpu_ref *ref)
 268{
 269	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 270	unsigned int nr_bytes;
 271	unsigned int nr_pages;
 272	unsigned long flags;
 273
 274	/*
 275	 * At this point all allocated objects are freed, and
 276	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 277	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 278	 *
 279	 * The following sequence can lead to it:
 280	 * 1) CPU0: objcg == stock->cached_objcg
 281	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 282	 *          PAGE_SIZE bytes are charged
 283	 * 3) CPU1: a process from another memcg is allocating something,
 284	 *          the stock if flushed,
 285	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 286	 * 5) CPU0: we do release this object,
 287	 *          92 bytes are added to stock->nr_bytes
 288	 * 6) CPU0: stock is flushed,
 289	 *          92 bytes are added to objcg->nr_charged_bytes
 290	 *
 291	 * In the result, nr_charged_bytes == PAGE_SIZE.
 292	 * This page will be uncharged in obj_cgroup_release().
 293	 */
 294	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 295	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 296	nr_pages = nr_bytes >> PAGE_SHIFT;
 297
 298	if (nr_pages)
 299		obj_cgroup_uncharge_pages(objcg, nr_pages);
 300
 301	spin_lock_irqsave(&css_set_lock, flags);
 302	list_del(&objcg->list);
 303	spin_unlock_irqrestore(&css_set_lock, flags);
 304
 305	percpu_ref_exit(ref);
 306	kfree_rcu(objcg, rcu);
 307}
 308
 309static struct obj_cgroup *obj_cgroup_alloc(void)
 310{
 311	struct obj_cgroup *objcg;
 312	int ret;
 313
 314	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 315	if (!objcg)
 316		return NULL;
 317
 318	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 319			      GFP_KERNEL);
 320	if (ret) {
 321		kfree(objcg);
 322		return NULL;
 323	}
 324	INIT_LIST_HEAD(&objcg->list);
 325	return objcg;
 326}
 327
 328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 329				  struct mem_cgroup *parent)
 330{
 331	struct obj_cgroup *objcg, *iter;
 332
 333	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 334
 335	spin_lock_irq(&css_set_lock);
 336
 337	/* 1) Ready to reparent active objcg. */
 338	list_add(&objcg->list, &memcg->objcg_list);
 339	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 340	list_for_each_entry(iter, &memcg->objcg_list, list)
 341		WRITE_ONCE(iter->memcg, parent);
 342	/* 3) Move already reparented objcgs to the parent's list */
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 
 
 400#endif
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402/**
 403 * mem_cgroup_css_from_page - css of the memcg associated with a page
 404 * @page: page of interest
 405 *
 406 * If memcg is bound to the default hierarchy, css of the memcg associated
 407 * with @page is returned.  The returned css remains associated with @page
 408 * until it is released.
 409 *
 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 411 * is returned.
 412 */
 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 414{
 415	struct mem_cgroup *memcg;
 416
 417	memcg = page_memcg(page);
 418
 419	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 420		memcg = root_mem_cgroup;
 421
 422	return &memcg->css;
 423}
 424
 425/**
 426 * page_cgroup_ino - return inode number of the memcg a page is charged to
 427 * @page: the page
 428 *
 429 * Look up the closest online ancestor of the memory cgroup @page is charged to
 430 * and return its inode number or 0 if @page is not charged to any cgroup. It
 431 * is safe to call this function without holding a reference to @page.
 432 *
 433 * Note, this function is inherently racy, because there is nothing to prevent
 434 * the cgroup inode from getting torn down and potentially reallocated a moment
 435 * after page_cgroup_ino() returns, so it only should be used by callers that
 436 * do not care (such as procfs interfaces).
 437 */
 438ino_t page_cgroup_ino(struct page *page)
 439{
 440	struct mem_cgroup *memcg;
 441	unsigned long ino = 0;
 442
 443	rcu_read_lock();
 444	memcg = page_memcg_check(page);
 445
 
 
 446	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 447		memcg = parent_mem_cgroup(memcg);
 448	if (memcg)
 449		ino = cgroup_ino(memcg->css.cgroup);
 450	rcu_read_unlock();
 451	return ino;
 452}
 453
 454static struct mem_cgroup_per_node *
 455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 456{
 457	int nid = page_to_nid(page);
 458
 459	return memcg->nodeinfo[nid];
 460}
 461
 462static struct mem_cgroup_tree_per_node *
 463soft_limit_tree_node(int nid)
 464{
 465	return soft_limit_tree.rb_tree_per_node[nid];
 466}
 467
 468static struct mem_cgroup_tree_per_node *
 469soft_limit_tree_from_page(struct page *page)
 470{
 471	int nid = page_to_nid(page);
 472
 473	return soft_limit_tree.rb_tree_per_node[nid];
 474}
 475
 476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 477					 struct mem_cgroup_tree_per_node *mctz,
 478					 unsigned long new_usage_in_excess)
 479{
 480	struct rb_node **p = &mctz->rb_root.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct mem_cgroup_per_node *mz_node;
 483	bool rightmost = true;
 484
 485	if (mz->on_tree)
 486		return;
 487
 488	mz->usage_in_excess = new_usage_in_excess;
 489	if (!mz->usage_in_excess)
 490		return;
 491	while (*p) {
 492		parent = *p;
 493		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 494					tree_node);
 495		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 496			p = &(*p)->rb_left;
 497			rightmost = false;
 498		} else {
 499			p = &(*p)->rb_right;
 500		}
 
 
 
 
 
 
 
 501	}
 502
 503	if (rightmost)
 504		mctz->rb_rightmost = &mz->tree_node;
 505
 506	rb_link_node(&mz->tree_node, parent, p);
 507	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 508	mz->on_tree = true;
 509}
 510
 511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 512					 struct mem_cgroup_tree_per_node *mctz)
 513{
 514	if (!mz->on_tree)
 515		return;
 516
 517	if (&mz->tree_node == mctz->rb_rightmost)
 518		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 519
 520	rb_erase(&mz->tree_node, &mctz->rb_root);
 521	mz->on_tree = false;
 522}
 523
 524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 525				       struct mem_cgroup_tree_per_node *mctz)
 526{
 527	unsigned long flags;
 528
 529	spin_lock_irqsave(&mctz->lock, flags);
 530	__mem_cgroup_remove_exceeded(mz, mctz);
 531	spin_unlock_irqrestore(&mctz->lock, flags);
 532}
 533
 534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 535{
 536	unsigned long nr_pages = page_counter_read(&memcg->memory);
 537	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 538	unsigned long excess = 0;
 539
 540	if (nr_pages > soft_limit)
 541		excess = nr_pages - soft_limit;
 542
 543	return excess;
 544}
 545
 546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 547{
 548	unsigned long excess;
 549	struct mem_cgroup_per_node *mz;
 550	struct mem_cgroup_tree_per_node *mctz;
 551
 552	mctz = soft_limit_tree_from_page(page);
 553	if (!mctz)
 554		return;
 555	/*
 556	 * Necessary to update all ancestors when hierarchy is used.
 557	 * because their event counter is not touched.
 558	 */
 559	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 560		mz = mem_cgroup_page_nodeinfo(memcg, page);
 561		excess = soft_limit_excess(memcg);
 562		/*
 563		 * We have to update the tree if mz is on RB-tree or
 564		 * mem is over its softlimit.
 565		 */
 566		if (excess || mz->on_tree) {
 567			unsigned long flags;
 568
 569			spin_lock_irqsave(&mctz->lock, flags);
 570			/* if on-tree, remove it */
 571			if (mz->on_tree)
 572				__mem_cgroup_remove_exceeded(mz, mctz);
 573			/*
 574			 * Insert again. mz->usage_in_excess will be updated.
 575			 * If excess is 0, no tree ops.
 576			 */
 577			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 578			spin_unlock_irqrestore(&mctz->lock, flags);
 579		}
 580	}
 581}
 582
 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 584{
 585	struct mem_cgroup_tree_per_node *mctz;
 586	struct mem_cgroup_per_node *mz;
 587	int nid;
 588
 589	for_each_node(nid) {
 590		mz = memcg->nodeinfo[nid];
 591		mctz = soft_limit_tree_node(nid);
 592		if (mctz)
 593			mem_cgroup_remove_exceeded(mz, mctz);
 594	}
 595}
 596
 597static struct mem_cgroup_per_node *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 599{
 600	struct mem_cgroup_per_node *mz;
 601
 602retry:
 603	mz = NULL;
 604	if (!mctz->rb_rightmost)
 605		goto done;		/* Nothing to reclaim from */
 606
 607	mz = rb_entry(mctz->rb_rightmost,
 608		      struct mem_cgroup_per_node, tree_node);
 609	/*
 610	 * Remove the node now but someone else can add it back,
 611	 * we will to add it back at the end of reclaim to its correct
 612	 * position in the tree.
 613	 */
 614	__mem_cgroup_remove_exceeded(mz, mctz);
 615	if (!soft_limit_excess(mz->memcg) ||
 616	    !css_tryget(&mz->memcg->css))
 617		goto retry;
 618done:
 619	return mz;
 620}
 621
 622static struct mem_cgroup_per_node *
 623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 624{
 625	struct mem_cgroup_per_node *mz;
 626
 627	spin_lock_irq(&mctz->lock);
 628	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 629	spin_unlock_irq(&mctz->lock);
 630	return mz;
 631}
 632
 633/**
 634 * __mod_memcg_state - update cgroup memory statistics
 635 * @memcg: the memory cgroup
 636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 637 * @val: delta to add to the counter, can be negative
 638 */
 639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 640{
 
 
 641	if (mem_cgroup_disabled())
 642		return;
 643
 644	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 645	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 646}
 647
 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
 649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 650{
 651	long x = READ_ONCE(memcg->vmstats.state[idx]);
 652#ifdef CONFIG_SMP
 653	if (x < 0)
 654		x = 0;
 655#endif
 656	return x;
 657}
 658
 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
 660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 661{
 662	long x = 0;
 663	int cpu;
 664
 665	for_each_possible_cpu(cpu)
 666		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 667#ifdef CONFIG_SMP
 668	if (x < 0)
 
 
 
 669		x = 0;
 670#endif
 671	return x;
 672}
 673
 674static struct mem_cgroup_per_node *
 675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 676{
 677	struct mem_cgroup *parent;
 678
 679	parent = parent_mem_cgroup(pn->memcg);
 680	if (!parent)
 681		return NULL;
 682	return parent->nodeinfo[nid];
 683}
 684
 685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 686			      int val)
 
 
 
 
 
 
 
 
 
 
 687{
 
 688	struct mem_cgroup_per_node *pn;
 689	struct mem_cgroup *memcg;
 690	long x, threshold = MEMCG_CHARGE_BATCH;
 
 
 
 
 
 
 691
 692	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 693	memcg = pn->memcg;
 694
 695	/* Update memcg */
 696	__mod_memcg_state(memcg, idx, val);
 697
 698	/* Update lruvec */
 699	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 700
 701	if (vmstat_item_in_bytes(idx))
 702		threshold <<= PAGE_SHIFT;
 703
 704	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 705	if (unlikely(abs(x) > threshold)) {
 706		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 707		struct mem_cgroup_per_node *pi;
 708
 709		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 710			atomic_long_add(x, &pi->lruvec_stat[idx]);
 711		x = 0;
 712	}
 713	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 714}
 715
 716/**
 717 * __mod_lruvec_state - update lruvec memory statistics
 718 * @lruvec: the lruvec
 719 * @idx: the stat item
 720 * @val: delta to add to the counter, can be negative
 721 *
 722 * The lruvec is the intersection of the NUMA node and a cgroup. This
 723 * function updates the all three counters that are affected by a
 724 * change of state at this level: per-node, per-cgroup, per-lruvec.
 725 */
 726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 727			int val)
 728{
 729	/* Update node */
 730	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 731
 732	/* Update memcg and lruvec */
 733	if (!mem_cgroup_disabled())
 734		__mod_memcg_lruvec_state(lruvec, idx, val);
 735}
 736
 737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 738			     int val)
 739{
 740	struct page *head = compound_head(page); /* rmap on tail pages */
 741	struct mem_cgroup *memcg;
 742	pg_data_t *pgdat = page_pgdat(page);
 743	struct lruvec *lruvec;
 744
 745	rcu_read_lock();
 746	memcg = page_memcg(head);
 747	/* Untracked pages have no memcg, no lruvec. Update only the node */
 748	if (!memcg) {
 749		rcu_read_unlock();
 750		__mod_node_page_state(pgdat, idx, val);
 751		return;
 752	}
 753
 754	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 755	__mod_lruvec_state(lruvec, idx, val);
 756	rcu_read_unlock();
 757}
 758EXPORT_SYMBOL(__mod_lruvec_page_state);
 759
 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 761{
 762	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 763	struct mem_cgroup *memcg;
 764	struct lruvec *lruvec;
 765
 766	rcu_read_lock();
 767	memcg = mem_cgroup_from_obj(p);
 768
 769	/*
 770	 * Untracked pages have no memcg, no lruvec. Update only the
 771	 * node. If we reparent the slab objects to the root memcg,
 772	 * when we free the slab object, we need to update the per-memcg
 773	 * vmstats to keep it correct for the root memcg.
 774	 */
 775	if (!memcg) {
 776		__mod_node_page_state(pgdat, idx, val);
 777	} else {
 778		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 779		__mod_lruvec_state(lruvec, idx, val);
 780	}
 781	rcu_read_unlock();
 782}
 783
 784/*
 785 * mod_objcg_mlstate() may be called with irq enabled, so
 786 * mod_memcg_lruvec_state() should be used.
 787 */
 788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 789				     struct pglist_data *pgdat,
 790				     enum node_stat_item idx, int nr)
 791{
 792	struct mem_cgroup *memcg;
 793	struct lruvec *lruvec;
 794
 795	rcu_read_lock();
 796	memcg = obj_cgroup_memcg(objcg);
 797	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798	mod_memcg_lruvec_state(lruvec, idx, nr);
 799	rcu_read_unlock();
 800}
 801
 802/**
 803 * __count_memcg_events - account VM events in a cgroup
 804 * @memcg: the memory cgroup
 805 * @idx: the event item
 806 * @count: the number of events that occurred
 807 */
 808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 809			  unsigned long count)
 810{
 
 
 811	if (mem_cgroup_disabled())
 812		return;
 813
 814	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 815	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 816}
 817
 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 819{
 820	return READ_ONCE(memcg->vmstats.events[event]);
 821}
 822
 823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 824{
 825	long x = 0;
 826	int cpu;
 827
 828	for_each_possible_cpu(cpu)
 829		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 830	return x;
 831}
 832
 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 834					 struct page *page,
 835					 int nr_pages)
 836{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837	/* pagein of a big page is an event. So, ignore page size */
 838	if (nr_pages > 0)
 839		__count_memcg_events(memcg, PGPGIN, 1);
 840	else {
 841		__count_memcg_events(memcg, PGPGOUT, 1);
 842		nr_pages = -nr_pages; /* for event */
 843	}
 844
 845	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 846}
 847
 848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 849				       enum mem_cgroup_events_target target)
 850{
 851	unsigned long val, next;
 852
 853	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 854	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 855	/* from time_after() in jiffies.h */
 856	if ((long)(next - val) < 0) {
 857		switch (target) {
 858		case MEM_CGROUP_TARGET_THRESH:
 859			next = val + THRESHOLDS_EVENTS_TARGET;
 860			break;
 861		case MEM_CGROUP_TARGET_SOFTLIMIT:
 862			next = val + SOFTLIMIT_EVENTS_TARGET;
 863			break;
 
 
 
 864		default:
 865			break;
 866		}
 867		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 868		return true;
 869	}
 870	return false;
 871}
 872
 873/*
 874 * Check events in order.
 875 *
 876 */
 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 878{
 879	/* threshold event is triggered in finer grain than soft limit */
 880	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 881						MEM_CGROUP_TARGET_THRESH))) {
 882		bool do_softlimit;
 
 883
 884		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 885						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 
 
 886		mem_cgroup_threshold(memcg);
 887		if (unlikely(do_softlimit))
 888			mem_cgroup_update_tree(memcg, page);
 
 
 
 
 889	}
 890}
 891
 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 893{
 894	/*
 895	 * mm_update_next_owner() may clear mm->owner to NULL
 896	 * if it races with swapoff, page migration, etc.
 897	 * So this can be called with p == NULL.
 898	 */
 899	if (unlikely(!p))
 900		return NULL;
 901
 902	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 903}
 904EXPORT_SYMBOL(mem_cgroup_from_task);
 905
 906static __always_inline struct mem_cgroup *active_memcg(void)
 907{
 908	if (in_interrupt())
 909		return this_cpu_read(int_active_memcg);
 910	else
 911		return current->active_memcg;
 912}
 913
 914/**
 915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 916 * @mm: mm from which memcg should be extracted. It can be NULL.
 917 *
 918 * Obtain a reference on mm->memcg and returns it if successful. If mm
 919 * is NULL, then the memcg is chosen as follows:
 920 * 1) The active memcg, if set.
 921 * 2) current->mm->memcg, if available
 922 * 3) root memcg
 923 * If mem_cgroup is disabled, NULL is returned.
 924 */
 925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 926{
 927	struct mem_cgroup *memcg;
 928
 929	if (mem_cgroup_disabled())
 930		return NULL;
 931
 932	/*
 933	 * Page cache insertions can happen without an
 934	 * actual mm context, e.g. during disk probing
 935	 * on boot, loopback IO, acct() writes etc.
 936	 *
 937	 * No need to css_get on root memcg as the reference
 938	 * counting is disabled on the root level in the
 939	 * cgroup core. See CSS_NO_REF.
 940	 */
 941	if (unlikely(!mm)) {
 942		memcg = active_memcg();
 943		if (unlikely(memcg)) {
 944			/* remote memcg must hold a ref */
 945			css_get(&memcg->css);
 946			return memcg;
 947		}
 948		mm = current->mm;
 949		if (unlikely(!mm))
 950			return root_mem_cgroup;
 951	}
 952
 953	rcu_read_lock();
 954	do {
 955		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 956		if (unlikely(!memcg))
 
 
 
 
 957			memcg = root_mem_cgroup;
 
 
 
 
 
 958	} while (!css_tryget(&memcg->css));
 959	rcu_read_unlock();
 960	return memcg;
 961}
 962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 963
 964static __always_inline bool memcg_kmem_bypass(void)
 
 
 
 
 
 
 
 965{
 966	/* Allow remote memcg charging from any context. */
 967	if (unlikely(active_memcg()))
 968		return false;
 969
 970	/* Memcg to charge can't be determined. */
 971	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 972		return true;
 973
 974	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975}
 976
 977/**
 978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 979 * @root: hierarchy root
 980 * @prev: previously returned memcg, NULL on first invocation
 981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 982 *
 983 * Returns references to children of the hierarchy below @root, or
 984 * @root itself, or %NULL after a full round-trip.
 985 *
 986 * Caller must pass the return value in @prev on subsequent
 987 * invocations for reference counting, or use mem_cgroup_iter_break()
 988 * to cancel a hierarchy walk before the round-trip is complete.
 989 *
 990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 991 * in the hierarchy among all concurrent reclaimers operating on the
 992 * same node.
 993 */
 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 995				   struct mem_cgroup *prev,
 996				   struct mem_cgroup_reclaim_cookie *reclaim)
 997{
 998	struct mem_cgroup_reclaim_iter *iter;
 999	struct cgroup_subsys_state *css = NULL;
1000	struct mem_cgroup *memcg = NULL;
1001	struct mem_cgroup *pos = NULL;
1002
1003	if (mem_cgroup_disabled())
1004		return NULL;
1005
1006	if (!root)
1007		root = root_mem_cgroup;
1008
1009	if (prev && !reclaim)
1010		pos = prev;
1011
 
 
 
 
 
 
1012	rcu_read_lock();
1013
1014	if (reclaim) {
1015		struct mem_cgroup_per_node *mz;
1016
1017		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018		iter = &mz->iter;
1019
1020		if (prev && reclaim->generation != iter->generation)
1021			goto out_unlock;
1022
1023		while (1) {
1024			pos = READ_ONCE(iter->position);
1025			if (!pos || css_tryget(&pos->css))
1026				break;
1027			/*
1028			 * css reference reached zero, so iter->position will
1029			 * be cleared by ->css_released. However, we should not
1030			 * rely on this happening soon, because ->css_released
1031			 * is called from a work queue, and by busy-waiting we
1032			 * might block it. So we clear iter->position right
1033			 * away.
1034			 */
1035			(void)cmpxchg(&iter->position, pos, NULL);
1036		}
1037	}
1038
1039	if (pos)
1040		css = &pos->css;
1041
1042	for (;;) {
1043		css = css_next_descendant_pre(css, &root->css);
1044		if (!css) {
1045			/*
1046			 * Reclaimers share the hierarchy walk, and a
1047			 * new one might jump in right at the end of
1048			 * the hierarchy - make sure they see at least
1049			 * one group and restart from the beginning.
1050			 */
1051			if (!prev)
1052				continue;
1053			break;
1054		}
1055
1056		/*
1057		 * Verify the css and acquire a reference.  The root
1058		 * is provided by the caller, so we know it's alive
1059		 * and kicking, and don't take an extra reference.
1060		 */
1061		memcg = mem_cgroup_from_css(css);
1062
1063		if (css == &root->css)
1064			break;
1065
1066		if (css_tryget(css))
1067			break;
1068
1069		memcg = NULL;
1070	}
1071
1072	if (reclaim) {
1073		/*
1074		 * The position could have already been updated by a competing
1075		 * thread, so check that the value hasn't changed since we read
1076		 * it to avoid reclaiming from the same cgroup twice.
1077		 */
1078		(void)cmpxchg(&iter->position, pos, memcg);
1079
1080		if (pos)
1081			css_put(&pos->css);
1082
1083		if (!memcg)
1084			iter->generation++;
1085		else if (!prev)
1086			reclaim->generation = iter->generation;
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
 
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
 
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
 
 
 
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgruop1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (last != root_mem_cgroup)
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			  int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164
1165	BUG_ON(memcg == root_mem_cgroup);
1166
1167	for_each_mem_cgroup_tree(iter, memcg) {
1168		struct css_task_iter it;
1169		struct task_struct *task;
1170
1171		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172		while (!ret && (task = css_task_iter_next(&it)))
1173			ret = fn(task, arg);
1174		css_task_iter_end(&it);
1175		if (ret) {
1176			mem_cgroup_iter_break(memcg, iter);
1177			break;
1178		}
1179	}
1180	return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186	struct mem_cgroup *memcg;
1187
1188	if (mem_cgroup_disabled())
1189		return;
1190
1191	memcg = page_memcg(page);
1192
1193	if (!memcg)
1194		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195	else
1196		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
 
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212	struct lruvec *lruvec;
1213
1214	lruvec = mem_cgroup_page_lruvec(page);
1215	spin_lock(&lruvec->lru_lock);
1216
1217	lruvec_memcg_debug(lruvec, page);
1218
1219	return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224	struct lruvec *lruvec;
1225
1226	lruvec = mem_cgroup_page_lruvec(page);
1227	spin_lock_irq(&lruvec->lru_lock);
1228
1229	lruvec_memcg_debug(lruvec, page);
1230
1231	return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
 
 
1236	struct lruvec *lruvec;
1237
1238	lruvec = mem_cgroup_page_lruvec(page);
1239	spin_lock_irqsave(&lruvec->lru_lock, *flags);
 
 
1240
1241	lruvec_memcg_debug(lruvec, page);
 
 
 
 
 
 
1242
 
 
 
 
 
 
 
 
 
 
1243	return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258				int zid, int nr_pages)
1259{
1260	struct mem_cgroup_per_node *mz;
1261	unsigned long *lru_size;
1262	long size;
1263
1264	if (mem_cgroup_disabled())
1265		return;
1266
1267	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268	lru_size = &mz->lru_zone_size[zid][lru];
1269
1270	if (nr_pages < 0)
1271		*lru_size += nr_pages;
1272
1273	size = *lru_size;
1274	if (WARN_ONCE(size < 0,
1275		"%s(%p, %d, %d): lru_size %ld\n",
1276		__func__, lruvec, lru, nr_pages, size)) {
1277		VM_BUG_ON(1);
1278		*lru_size = 0;
1279	}
1280
1281	if (nr_pages > 0)
1282		*lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294	unsigned long margin = 0;
1295	unsigned long count;
1296	unsigned long limit;
1297
1298	count = page_counter_read(&memcg->memory);
1299	limit = READ_ONCE(memcg->memory.max);
1300	if (count < limit)
1301		margin = limit - count;
1302
1303	if (do_memsw_account()) {
1304		count = page_counter_read(&memcg->memsw);
1305		limit = READ_ONCE(memcg->memsw.max);
1306		if (count < limit)
1307			margin = min(margin, limit - count);
1308		else
1309			margin = 0;
1310	}
1311
1312	return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324	struct mem_cgroup *from;
1325	struct mem_cgroup *to;
1326	bool ret = false;
1327	/*
1328	 * Unlike task_move routines, we access mc.to, mc.from not under
1329	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330	 */
1331	spin_lock(&mc.lock);
1332	from = mc.from;
1333	to = mc.to;
1334	if (!from)
1335		goto unlock;
1336
1337	ret = mem_cgroup_is_descendant(from, memcg) ||
1338		mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340	spin_unlock(&mc.lock);
1341	return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346	if (mc.moving_task && current != mc.moving_task) {
1347		if (mem_cgroup_under_move(memcg)) {
1348			DEFINE_WAIT(wait);
1349			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350			/* moving charge context might have finished. */
1351			if (mc.moving_task)
1352				schedule();
1353			finish_wait(&mc.waitq, &wait);
1354			return true;
1355		}
1356	}
1357	return false;
1358}
1359
1360struct memory_stat {
1361	const char *name;
1362	unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366	{ "anon",			NR_ANON_MAPPED			},
1367	{ "file",			NR_FILE_PAGES			},
1368	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369	{ "pagetables",			NR_PAGETABLE			},
1370	{ "percpu",			MEMCG_PERCPU_B			},
1371	{ "sock",			MEMCG_SOCK			},
1372	{ "shmem",			NR_SHMEM			},
1373	{ "file_mapped",		NR_FILE_MAPPED			},
1374	{ "file_dirty",			NR_FILE_DIRTY			},
1375	{ "file_writeback",		NR_WRITEBACK			},
1376#ifdef CONFIG_SWAP
1377	{ "swapcached",			NR_SWAPCACHE			},
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380	{ "anon_thp",			NR_ANON_THPS			},
1381	{ "file_thp",			NR_FILE_THPS			},
1382	{ "shmem_thp",			NR_SHMEM_THPS			},
1383#endif
1384	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385	{ "active_anon",		NR_ACTIVE_ANON			},
1386	{ "inactive_file",		NR_INACTIVE_FILE		},
1387	{ "active_file",		NR_ACTIVE_FILE			},
1388	{ "unevictable",		NR_UNEVICTABLE			},
1389	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391
1392	/* The memory events */
1393	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405	switch (item) {
1406	case MEMCG_PERCPU_B:
1407	case NR_SLAB_RECLAIMABLE_B:
1408	case NR_SLAB_UNRECLAIMABLE_B:
1409	case WORKINGSET_REFAULT_ANON:
1410	case WORKINGSET_REFAULT_FILE:
1411	case WORKINGSET_ACTIVATE_ANON:
1412	case WORKINGSET_ACTIVATE_FILE:
1413	case WORKINGSET_RESTORE_ANON:
1414	case WORKINGSET_RESTORE_FILE:
1415	case WORKINGSET_NODERECLAIM:
1416		return 1;
1417	case NR_KERNEL_STACK_KB:
1418		return SZ_1K;
1419	default:
1420		return PAGE_SIZE;
1421	}
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425						    int item)
1426{
1427	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432	struct seq_buf s;
1433	int i;
1434
1435	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436	if (!s.buffer)
1437		return NULL;
1438
1439	/*
1440	 * Provide statistics on the state of the memory subsystem as
1441	 * well as cumulative event counters that show past behavior.
1442	 *
1443	 * This list is ordered following a combination of these gradients:
1444	 * 1) generic big picture -> specifics and details
1445	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446	 *
1447	 * Current memory state:
1448	 */
1449	cgroup_rstat_flush(memcg->css.cgroup);
1450
1451	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452		u64 size;
1453
1454		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456
1457		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458			size += memcg_page_state_output(memcg,
1459							NR_SLAB_RECLAIMABLE_B);
1460			seq_buf_printf(&s, "slab %llu\n", size);
1461		}
1462	}
 
 
 
 
 
1463
1464	/* Accumulated memory events */
1465
1466	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467		       memcg_events(memcg, PGFAULT));
1468	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469		       memcg_events(memcg, PGMAJFAULT));
1470	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471		       memcg_events(memcg, PGREFILL));
 
 
 
 
 
1472	seq_buf_printf(&s, "pgscan %lu\n",
1473		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474		       memcg_events(memcg, PGSCAN_DIRECT));
1475	seq_buf_printf(&s, "pgsteal %lu\n",
1476		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477		       memcg_events(memcg, PGSTEAL_DIRECT));
1478	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479		       memcg_events(memcg, PGACTIVATE));
1480	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481		       memcg_events(memcg, PGDEACTIVATE));
1482	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483		       memcg_events(memcg, PGLAZYFREE));
1484	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485		       memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489		       memcg_events(memcg, THP_FAULT_ALLOC));
1490	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494	/* The above should easily fit into one page */
1495	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497	return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512	rcu_read_lock();
1513
1514	if (memcg) {
1515		pr_cont(",oom_memcg=");
1516		pr_cont_cgroup_path(memcg->css.cgroup);
1517	} else
1518		pr_cont(",global_oom");
1519	if (p) {
1520		pr_cont(",task_memcg=");
1521		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522	}
1523	rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533	char *buf;
1534
1535	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536		K((u64)page_counter_read(&memcg->memory)),
1537		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540			K((u64)page_counter_read(&memcg->swap)),
1541			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542	else {
1543		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544			K((u64)page_counter_read(&memcg->memsw)),
1545			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547			K((u64)page_counter_read(&memcg->kmem)),
1548			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549	}
1550
1551	pr_info("Memory cgroup stats for ");
1552	pr_cont_cgroup_path(memcg->css.cgroup);
1553	pr_cont(":");
1554	buf = memory_stat_format(memcg);
1555	if (!buf)
1556		return;
1557	pr_info("%s", buf);
1558	kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566	unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569		if (mem_cgroup_swappiness(memcg))
1570			max += min(READ_ONCE(memcg->swap.max),
1571				   (unsigned long)total_swap_pages);
1572	} else { /* v1 */
1573		if (mem_cgroup_swappiness(memcg)) {
1574			/* Calculate swap excess capacity from memsw limit */
1575			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577			max += min(swap, (unsigned long)total_swap_pages);
1578		}
 
 
 
 
 
 
 
1579	}
1580	return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585	return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589				     int order)
1590{
1591	struct oom_control oc = {
1592		.zonelist = NULL,
1593		.nodemask = NULL,
1594		.memcg = memcg,
1595		.gfp_mask = gfp_mask,
1596		.order = order,
1597	};
1598	bool ret = true;
1599
1600	if (mutex_lock_killable(&oom_lock))
1601		return true;
1602
1603	if (mem_cgroup_margin(memcg) >= (1 << order))
1604		goto unlock;
1605
1606	/*
1607	 * A few threads which were not waiting at mutex_lock_killable() can
1608	 * fail to bail out. Therefore, check again after holding oom_lock.
1609	 */
1610	ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613	mutex_unlock(&oom_lock);
1614	return ret;
1615}
1616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618				   pg_data_t *pgdat,
1619				   gfp_t gfp_mask,
1620				   unsigned long *total_scanned)
1621{
1622	struct mem_cgroup *victim = NULL;
1623	int total = 0;
1624	int loop = 0;
1625	unsigned long excess;
1626	unsigned long nr_scanned;
1627	struct mem_cgroup_reclaim_cookie reclaim = {
1628		.pgdat = pgdat,
 
1629	};
1630
1631	excess = soft_limit_excess(root_memcg);
1632
1633	while (1) {
1634		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635		if (!victim) {
1636			loop++;
1637			if (loop >= 2) {
1638				/*
1639				 * If we have not been able to reclaim
1640				 * anything, it might because there are
1641				 * no reclaimable pages under this hierarchy
1642				 */
1643				if (!total)
1644					break;
1645				/*
1646				 * We want to do more targeted reclaim.
1647				 * excess >> 2 is not to excessive so as to
1648				 * reclaim too much, nor too less that we keep
1649				 * coming back to reclaim from this cgroup
1650				 */
1651				if (total >= (excess >> 2) ||
1652					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653					break;
1654			}
1655			continue;
1656		}
1657		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658					pgdat, &nr_scanned);
1659		*total_scanned += nr_scanned;
1660		if (!soft_limit_excess(root_memcg))
1661			break;
1662	}
1663	mem_cgroup_iter_break(root_memcg, victim);
1664	return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669	.name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681	struct mem_cgroup *iter, *failed = NULL;
1682
1683	spin_lock(&memcg_oom_lock);
1684
1685	for_each_mem_cgroup_tree(iter, memcg) {
1686		if (iter->oom_lock) {
1687			/*
1688			 * this subtree of our hierarchy is already locked
1689			 * so we cannot give a lock.
1690			 */
1691			failed = iter;
1692			mem_cgroup_iter_break(memcg, iter);
1693			break;
1694		} else
1695			iter->oom_lock = true;
1696	}
1697
1698	if (failed) {
1699		/*
1700		 * OK, we failed to lock the whole subtree so we have
1701		 * to clean up what we set up to the failing subtree
1702		 */
1703		for_each_mem_cgroup_tree(iter, memcg) {
1704			if (iter == failed) {
1705				mem_cgroup_iter_break(memcg, iter);
1706				break;
1707			}
1708			iter->oom_lock = false;
1709		}
1710	} else
1711		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713	spin_unlock(&memcg_oom_lock);
1714
1715	return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720	struct mem_cgroup *iter;
1721
1722	spin_lock(&memcg_oom_lock);
1723	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724	for_each_mem_cgroup_tree(iter, memcg)
1725		iter->oom_lock = false;
1726	spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731	struct mem_cgroup *iter;
1732
1733	spin_lock(&memcg_oom_lock);
1734	for_each_mem_cgroup_tree(iter, memcg)
1735		iter->under_oom++;
1736	spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741	struct mem_cgroup *iter;
1742
1743	/*
1744	 * Be careful about under_oom underflows because a child memcg
1745	 * could have been added after mem_cgroup_mark_under_oom.
1746	 */
1747	spin_lock(&memcg_oom_lock);
1748	for_each_mem_cgroup_tree(iter, memcg)
1749		if (iter->under_oom > 0)
1750			iter->under_oom--;
1751	spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757	struct mem_cgroup *memcg;
1758	wait_queue_entry_t	wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762	unsigned mode, int sync, void *arg)
1763{
1764	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765	struct mem_cgroup *oom_wait_memcg;
1766	struct oom_wait_info *oom_wait_info;
1767
1768	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769	oom_wait_memcg = oom_wait_info->memcg;
1770
1771	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773		return 0;
1774	return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779	/*
1780	 * For the following lockless ->under_oom test, the only required
1781	 * guarantee is that it must see the state asserted by an OOM when
1782	 * this function is called as a result of userland actions
1783	 * triggered by the notification of the OOM.  This is trivially
1784	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785	 * triggering notification.
1786	 */
1787	if (memcg && memcg->under_oom)
1788		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792	OOM_SUCCESS,
1793	OOM_FAILED,
1794	OOM_ASYNC,
1795	OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800	enum oom_status ret;
1801	bool locked;
1802
1803	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804		return OOM_SKIPPED;
1805
1806	memcg_memory_event(memcg, MEMCG_OOM);
1807
1808	/*
1809	 * We are in the middle of the charge context here, so we
1810	 * don't want to block when potentially sitting on a callstack
1811	 * that holds all kinds of filesystem and mm locks.
1812	 *
1813	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814	 * handling until the charge can succeed; remember the context and put
1815	 * the task to sleep at the end of the page fault when all locks are
1816	 * released.
1817	 *
1818	 * On the other hand, in-kernel OOM killer allows for an async victim
1819	 * memory reclaim (oom_reaper) and that means that we are not solely
1820	 * relying on the oom victim to make a forward progress and we can
1821	 * invoke the oom killer here.
1822	 *
1823	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824	 * victim and then we have to bail out from the charge path.
1825	 */
1826	if (memcg->oom_kill_disable) {
1827		if (!current->in_user_fault)
1828			return OOM_SKIPPED;
1829		css_get(&memcg->css);
1830		current->memcg_in_oom = memcg;
1831		current->memcg_oom_gfp_mask = mask;
1832		current->memcg_oom_order = order;
1833
1834		return OOM_ASYNC;
1835	}
1836
1837	mem_cgroup_mark_under_oom(memcg);
1838
1839	locked = mem_cgroup_oom_trylock(memcg);
1840
1841	if (locked)
1842		mem_cgroup_oom_notify(memcg);
1843
1844	mem_cgroup_unmark_under_oom(memcg);
1845	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846		ret = OOM_SUCCESS;
1847	else
1848		ret = OOM_FAILED;
1849
1850	if (locked)
1851		mem_cgroup_oom_unlock(memcg);
1852
1853	return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation.  Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875	struct mem_cgroup *memcg = current->memcg_in_oom;
1876	struct oom_wait_info owait;
1877	bool locked;
1878
1879	/* OOM is global, do not handle */
1880	if (!memcg)
1881		return false;
1882
1883	if (!handle)
1884		goto cleanup;
1885
1886	owait.memcg = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.entry);
1891
1892	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893	mem_cgroup_mark_under_oom(memcg);
1894
1895	locked = mem_cgroup_oom_trylock(memcg);
1896
1897	if (locked)
1898		mem_cgroup_oom_notify(memcg);
1899
1900	if (locked && !memcg->oom_kill_disable) {
1901		mem_cgroup_unmark_under_oom(memcg);
1902		finish_wait(&memcg_oom_waitq, &owait.wait);
1903		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904					 current->memcg_oom_order);
1905	} else {
1906		schedule();
1907		mem_cgroup_unmark_under_oom(memcg);
1908		finish_wait(&memcg_oom_waitq, &owait.wait);
1909	}
1910
1911	if (locked) {
1912		mem_cgroup_oom_unlock(memcg);
1913		/*
1914		 * There is no guarantee that an OOM-lock contender
1915		 * sees the wakeups triggered by the OOM kill
1916		 * uncharges.  Wake any sleepers explicitly.
1917		 */
1918		memcg_oom_recover(memcg);
1919	}
1920cleanup:
1921	current->memcg_in_oom = NULL;
1922	css_put(&memcg->css);
1923	return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937					    struct mem_cgroup *oom_domain)
1938{
1939	struct mem_cgroup *oom_group = NULL;
1940	struct mem_cgroup *memcg;
1941
1942	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943		return NULL;
1944
1945	if (!oom_domain)
1946		oom_domain = root_mem_cgroup;
1947
1948	rcu_read_lock();
1949
1950	memcg = mem_cgroup_from_task(victim);
1951	if (memcg == root_mem_cgroup)
1952		goto out;
1953
1954	/*
1955	 * If the victim task has been asynchronously moved to a different
1956	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957	 * In this case it's better to ignore memory.group.oom.
1958	 */
1959	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960		goto out;
1961
1962	/*
1963	 * Traverse the memory cgroup hierarchy from the victim task's
1964	 * cgroup up to the OOMing cgroup (or root) to find the
1965	 * highest-level memory cgroup with oom.group set.
1966	 */
1967	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968		if (memcg->oom_group)
1969			oom_group = memcg;
1970
1971		if (memcg == oom_domain)
1972			break;
1973	}
1974
1975	if (oom_group)
1976		css_get(&oom_group->css);
1977out:
1978	rcu_read_unlock();
1979
1980	return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985	pr_info("Tasks in ");
1986	pr_cont_cgroup_path(memcg->css.cgroup);
1987	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
 
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002	struct page *head = compound_head(page); /* rmap on tail pages */
2003	struct mem_cgroup *memcg;
2004	unsigned long flags;
2005
2006	/*
2007	 * The RCU lock is held throughout the transaction.  The fast
2008	 * path can get away without acquiring the memcg->move_lock
2009	 * because page moving starts with an RCU grace period.
 
 
 
 
 
 
2010         */
2011	rcu_read_lock();
2012
2013	if (mem_cgroup_disabled())
2014		return;
2015again:
2016	memcg = page_memcg(head);
2017	if (unlikely(!memcg))
2018		return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021	local_irq_save(flags);
2022	might_lock(&memcg->move_lock);
2023	local_irq_restore(flags);
2024#endif
2025
2026	if (atomic_read(&memcg->moving_account) <= 0)
2027		return;
2028
2029	spin_lock_irqsave(&memcg->move_lock, flags);
2030	if (memcg != page_memcg(head)) {
2031		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032		goto again;
2033	}
2034
2035	/*
2036	 * When charge migration first begins, we can have multiple
2037	 * critical sections holding the fast-path RCU lock and one
2038	 * holding the slowpath move_lock. Track the task who has the
2039	 * move_lock for unlock_page_memcg().
2040	 */
2041	memcg->move_lock_task = current;
2042	memcg->move_lock_flags = flags;
 
 
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
 
2047{
2048	if (memcg && memcg->move_lock_task == current) {
2049		unsigned long flags = memcg->move_lock_flags;
2050
2051		memcg->move_lock_task = NULL;
2052		memcg->move_lock_flags = 0;
2053
2054		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055	}
2056
2057	rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066	struct page *head = compound_head(page);
2067
2068	__unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074	struct obj_cgroup *cached_objcg;
2075	struct pglist_data *cached_pgdat;
2076	unsigned int nr_bytes;
2077	int nr_slab_reclaimable_b;
2078	int nr_slab_unreclaimable_b;
2079#else
2080	int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085	struct mem_cgroup *cached; /* this never be root cgroup */
2086	unsigned int nr_pages;
2087	struct obj_stock task_obj;
2088	struct obj_stock irq_obj;
2089
2090	struct work_struct work;
2091	unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE	0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100				     struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107				     struct mem_cgroup *root_memcg)
2108{
2109	return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126	struct memcg_stock_pcp *stock;
2127
2128	if (likely(in_task())) {
2129		*pflags = 0UL;
2130		preempt_disable();
2131		stock = this_cpu_ptr(&memcg_stock);
2132		return &stock->task_obj;
2133	}
2134
2135	local_irq_save(*pflags);
2136	stock = this_cpu_ptr(&memcg_stock);
2137	return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142	if (likely(in_task()))
2143		preempt_enable();
2144	else
2145		local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock.  Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161	struct memcg_stock_pcp *stock;
2162	unsigned long flags;
2163	bool ret = false;
2164
2165	if (nr_pages > MEMCG_CHARGE_BATCH)
2166		return ret;
2167
2168	local_irq_save(flags);
2169
2170	stock = this_cpu_ptr(&memcg_stock);
2171	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172		stock->nr_pages -= nr_pages;
2173		ret = true;
2174	}
2175
2176	local_irq_restore(flags);
2177
2178	return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186	struct mem_cgroup *old = stock->cached;
2187
2188	if (!old)
2189		return;
2190
2191	if (stock->nr_pages) {
2192		page_counter_uncharge(&old->memory, stock->nr_pages);
2193		if (do_memsw_account())
2194			page_counter_uncharge(&old->memsw, stock->nr_pages);
 
2195		stock->nr_pages = 0;
2196	}
2197
2198	css_put(&old->css);
2199	stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204	struct memcg_stock_pcp *stock;
2205	unsigned long flags;
2206
2207	/*
2208	 * The only protection from memory hotplug vs. drain_stock races is
2209	 * that we always operate on local CPU stock here with IRQ disabled
2210	 */
2211	local_irq_save(flags);
2212
2213	stock = this_cpu_ptr(&memcg_stock);
2214	drain_obj_stock(&stock->irq_obj);
2215	if (in_task())
2216		drain_obj_stock(&stock->task_obj);
2217	drain_stock(stock);
2218	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220	local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231
2232	local_irq_save(flags);
2233
2234	stock = this_cpu_ptr(&memcg_stock);
2235	if (stock->cached != memcg) { /* reset if necessary */
2236		drain_stock(stock);
2237		css_get(&memcg->css);
2238		stock->cached = memcg;
2239	}
2240	stock->nr_pages += nr_pages;
2241
2242	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243		drain_stock(stock);
2244
2245	local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254	int cpu, curcpu;
2255
2256	/* If someone's already draining, avoid adding running more workers. */
2257	if (!mutex_trylock(&percpu_charge_mutex))
2258		return;
2259	/*
2260	 * Notify other cpus that system-wide "drain" is running
2261	 * We do not care about races with the cpu hotplug because cpu down
2262	 * as well as workers from this path always operate on the local
2263	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264	 */
2265	curcpu = get_cpu();
2266	for_each_online_cpu(cpu) {
2267		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268		struct mem_cgroup *memcg;
2269		bool flush = false;
2270
2271		rcu_read_lock();
2272		memcg = stock->cached;
2273		if (memcg && stock->nr_pages &&
2274		    mem_cgroup_is_descendant(memcg, root_memcg))
2275			flush = true;
2276		if (obj_stock_flush_required(stock, root_memcg))
2277			flush = true;
2278		rcu_read_unlock();
2279
2280		if (flush &&
2281		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282			if (cpu == curcpu)
2283				drain_local_stock(&stock->work);
2284			else
2285				schedule_work_on(cpu, &stock->work);
2286		}
2287	}
2288	put_cpu();
2289	mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294	int nid;
 
2295
2296	for_each_node(nid) {
2297		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299		struct batched_lruvec_stat *lstatc;
2300		int i;
2301
2302		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304			stat[i] = lstatc->count[i];
2305			lstatc->count[i] = 0;
2306		}
 
 
 
2307
2308		do {
2309			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311		} while ((pn = parent_nodeinfo(pn, nid)));
2312	}
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317	struct memcg_stock_pcp *stock;
2318	struct mem_cgroup *memcg;
2319
2320	stock = &per_cpu(memcg_stock, cpu);
2321	drain_stock(stock);
 
 
 
 
 
 
 
 
 
2322
2323	for_each_mem_cgroup(memcg)
2324		memcg_flush_lruvec_page_state(memcg, cpu);
 
 
 
 
2325
2326	return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330				  unsigned int nr_pages,
2331				  gfp_t gfp_mask)
2332{
2333	unsigned long nr_reclaimed = 0;
2334
2335	do {
2336		unsigned long pflags;
2337
2338		if (page_counter_read(&memcg->memory) <=
2339		    READ_ONCE(memcg->memory.high))
2340			continue;
2341
2342		memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344		psi_memstall_enter(&pflags);
2345		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346							     gfp_mask, true);
2347		psi_memstall_leave(&pflags);
2348	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349		 !mem_cgroup_is_root(memcg));
2350
2351	return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356	struct mem_cgroup *memcg;
2357
2358	memcg = container_of(work, struct mem_cgroup, high_work);
2359	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 *   overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 *   to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 *  +-------+------------------------+
2387 *  | usage | time to allocate in ms |
2388 *  +-------+------------------------+
2389 *  | 100M  |                      0 |
2390 *  | 101M  |                      6 |
2391 *  | 102M  |                     25 |
2392 *  | 103M  |                     57 |
2393 *  | 104M  |                    102 |
2394 *  | 105M  |                    159 |
2395 *  | 106M  |                    230 |
2396 *  | 107M  |                    313 |
2397 *  | 108M  |                    409 |
2398 *  | 109M  |                    518 |
2399 *  | 110M  |                    639 |
2400 *  | 111M  |                    774 |
2401 *  | 112M  |                    921 |
2402 *  | 113M  |                   1081 |
2403 *  | 114M  |                   1254 |
2404 *  | 115M  |                   1439 |
2405 *  | 116M  |                   1638 |
2406 *  | 117M  |                   1849 |
2407 *  | 118M  |                   2000 |
2408 *  | 119M  |                   2000 |
2409 *  | 120M  |                   2000 |
2410 *  +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417	u64 overage;
2418
2419	if (usage <= high)
2420		return 0;
2421
2422	/*
2423	 * Prevent division by 0 in overage calculation by acting as if
2424	 * it was a threshold of 1 page
2425	 */
2426	high = max(high, 1UL);
2427
2428	overage = usage - high;
2429	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430	return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435	u64 overage, max_overage = 0;
2436
2437	do {
2438		overage = calculate_overage(page_counter_read(&memcg->memory),
2439					    READ_ONCE(memcg->memory.high));
2440		max_overage = max(overage, max_overage);
2441	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442		 !mem_cgroup_is_root(memcg));
2443
2444	return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449	u64 overage, max_overage = 0;
2450
2451	do {
2452		overage = calculate_overage(page_counter_read(&memcg->swap),
2453					    READ_ONCE(memcg->swap.high));
2454		if (overage)
2455			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456		max_overage = max(overage, max_overage);
2457	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458		 !mem_cgroup_is_root(memcg));
2459
2460	return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468					  unsigned int nr_pages,
2469					  u64 max_overage)
2470{
2471	unsigned long penalty_jiffies;
2472
2473	if (!max_overage)
2474		return 0;
2475
2476	/*
2477	 * We use overage compared to memory.high to calculate the number of
2478	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479	 * fairly lenient on small overages, and increasingly harsh when the
2480	 * memcg in question makes it clear that it has no intention of stopping
2481	 * its crazy behaviour, so we exponentially increase the delay based on
2482	 * overage amount.
2483	 */
2484	penalty_jiffies = max_overage * max_overage * HZ;
2485	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488	/*
2489	 * Factor in the task's own contribution to the overage, such that four
2490	 * N-sized allocations are throttled approximately the same as one
2491	 * 4N-sized allocation.
2492	 *
2493	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494	 * larger the current charge patch is than that.
2495	 */
2496	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505	unsigned long penalty_jiffies;
2506	unsigned long pflags;
2507	unsigned long nr_reclaimed;
2508	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509	int nr_retries = MAX_RECLAIM_RETRIES;
2510	struct mem_cgroup *memcg;
2511	bool in_retry = false;
2512
2513	if (likely(!nr_pages))
2514		return;
2515
2516	memcg = get_mem_cgroup_from_mm(current->mm);
 
2517	current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520	/*
2521	 * The allocating task should reclaim at least the batch size, but for
2522	 * subsequent retries we only want to do what's necessary to prevent oom
2523	 * or breaching resource isolation.
2524	 *
2525	 * This is distinct from memory.max or page allocator behaviour because
2526	 * memory.high is currently batched, whereas memory.max and the page
2527	 * allocator run every time an allocation is made.
2528	 */
2529	nr_reclaimed = reclaim_high(memcg,
2530				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531				    GFP_KERNEL);
 
 
 
 
 
 
2532
2533	/*
2534	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535	 * allocators proactively to slow down excessive growth.
2536	 */
2537	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538					       mem_find_max_overage(memcg));
 
 
2539
2540	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541						swap_find_max_overage(memcg));
 
 
 
 
 
 
 
 
 
 
2542
2543	/*
2544	 * Clamp the max delay per usermode return so as to still keep the
2545	 * application moving forwards and also permit diagnostics, albeit
2546	 * extremely slowly.
2547	 */
2548	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550	/*
2551	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552	 * that it's not even worth doing, in an attempt to be nice to those who
2553	 * go only a small amount over their memory.high value and maybe haven't
2554	 * been aggressively reclaimed enough yet.
2555	 */
2556	if (penalty_jiffies <= HZ / 100)
2557		goto out;
2558
2559	/*
2560	 * If reclaim is making forward progress but we're still over
2561	 * memory.high, we want to encourage that rather than doing allocator
2562	 * throttling.
2563	 */
2564	if (nr_reclaimed || nr_retries--) {
2565		in_retry = true;
2566		goto retry_reclaim;
2567	}
2568
2569	/*
2570	 * If we exit early, we're guaranteed to die (since
2571	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572	 * need to account for any ill-begotten jiffies to pay them off later.
2573	 */
2574	psi_memstall_enter(&pflags);
2575	schedule_timeout_killable(penalty_jiffies);
2576	psi_memstall_leave(&pflags);
2577
2578out:
2579	css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583			unsigned int nr_pages)
2584{
2585	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586	int nr_retries = MAX_RECLAIM_RETRIES;
2587	struct mem_cgroup *mem_over_limit;
2588	struct page_counter *counter;
2589	enum oom_status oom_status;
2590	unsigned long nr_reclaimed;
2591	bool may_swap = true;
2592	bool drained = false;
2593	unsigned long pflags;
2594
 
 
2595retry:
2596	if (consume_stock(memcg, nr_pages))
2597		return 0;
2598
2599	if (!do_memsw_account() ||
2600	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602			goto done_restock;
2603		if (do_memsw_account())
2604			page_counter_uncharge(&memcg->memsw, batch);
2605		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606	} else {
2607		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608		may_swap = false;
2609	}
2610
2611	if (batch > nr_pages) {
2612		batch = nr_pages;
2613		goto retry;
2614	}
2615
2616	/*
2617	 * Memcg doesn't have a dedicated reserve for atomic
2618	 * allocations. But like the global atomic pool, we need to
2619	 * put the burden of reclaim on regular allocation requests
2620	 * and let these go through as privileged allocations.
2621	 */
2622	if (gfp_mask & __GFP_ATOMIC)
2623		goto force;
2624
2625	/*
2626	 * Unlike in global OOM situations, memcg is not in a physical
2627	 * memory shortage.  Allow dying and OOM-killed tasks to
2628	 * bypass the last charges so that they can exit quickly and
2629	 * free their memory.
2630	 */
2631	if (unlikely(should_force_charge()))
2632		goto force;
2633
2634	/*
2635	 * Prevent unbounded recursion when reclaim operations need to
2636	 * allocate memory. This might exceed the limits temporarily,
2637	 * but we prefer facilitating memory reclaim and getting back
2638	 * under the limit over triggering OOM kills in these cases.
2639	 */
2640	if (unlikely(current->flags & PF_MEMALLOC))
2641		goto force;
2642
2643	if (unlikely(task_in_memcg_oom(current)))
2644		goto nomem;
2645
2646	if (!gfpflags_allow_blocking(gfp_mask))
2647		goto nomem;
2648
2649	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651	psi_memstall_enter(&pflags);
2652	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653						    gfp_mask, may_swap);
2654	psi_memstall_leave(&pflags);
2655
2656	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657		goto retry;
2658
2659	if (!drained) {
2660		drain_all_stock(mem_over_limit);
2661		drained = true;
2662		goto retry;
2663	}
2664
2665	if (gfp_mask & __GFP_NORETRY)
2666		goto nomem;
2667	/*
2668	 * Even though the limit is exceeded at this point, reclaim
2669	 * may have been able to free some pages.  Retry the charge
2670	 * before killing the task.
2671	 *
2672	 * Only for regular pages, though: huge pages are rather
2673	 * unlikely to succeed so close to the limit, and we fall back
2674	 * to regular pages anyway in case of failure.
2675	 */
2676	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677		goto retry;
2678	/*
2679	 * At task move, charge accounts can be doubly counted. So, it's
2680	 * better to wait until the end of task_move if something is going on.
2681	 */
2682	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683		goto retry;
2684
2685	if (nr_retries--)
2686		goto retry;
2687
2688	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689		goto nomem;
2690
 
 
 
2691	if (fatal_signal_pending(current))
2692		goto force;
2693
2694	/*
2695	 * keep retrying as long as the memcg oom killer is able to make
2696	 * a forward progress or bypass the charge if the oom killer
2697	 * couldn't make any progress.
2698	 */
2699	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700		       get_order(nr_pages * PAGE_SIZE));
2701	switch (oom_status) {
2702	case OOM_SUCCESS:
2703		nr_retries = MAX_RECLAIM_RETRIES;
2704		goto retry;
2705	case OOM_FAILED:
2706		goto force;
2707	default:
2708		goto nomem;
2709	}
2710nomem:
2711	if (!(gfp_mask & __GFP_NOFAIL))
2712		return -ENOMEM;
2713force:
2714	/*
2715	 * The allocation either can't fail or will lead to more memory
2716	 * being freed very soon.  Allow memory usage go over the limit
2717	 * temporarily by force charging it.
2718	 */
2719	page_counter_charge(&memcg->memory, nr_pages);
2720	if (do_memsw_account())
2721		page_counter_charge(&memcg->memsw, nr_pages);
 
2722
2723	return 0;
2724
2725done_restock:
 
2726	if (batch > nr_pages)
2727		refill_stock(memcg, batch - nr_pages);
2728
2729	/*
2730	 * If the hierarchy is above the normal consumption range, schedule
2731	 * reclaim on returning to userland.  We can perform reclaim here
2732	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734	 * not recorded as it most likely matches current's and won't
2735	 * change in the meantime.  As high limit is checked again before
2736	 * reclaim, the cost of mismatch is negligible.
2737	 */
2738	do {
2739		bool mem_high, swap_high;
2740
2741		mem_high = page_counter_read(&memcg->memory) >
2742			READ_ONCE(memcg->memory.high);
2743		swap_high = page_counter_read(&memcg->swap) >
2744			READ_ONCE(memcg->swap.high);
2745
2746		/* Don't bother a random interrupted task */
2747		if (in_interrupt()) {
2748			if (mem_high) {
2749				schedule_work(&memcg->high_work);
2750				break;
2751			}
2752			continue;
2753		}
2754
2755		if (mem_high || swap_high) {
2756			/*
2757			 * The allocating tasks in this cgroup will need to do
2758			 * reclaim or be throttled to prevent further growth
2759			 * of the memory or swap footprints.
2760			 *
2761			 * Target some best-effort fairness between the tasks,
2762			 * and distribute reclaim work and delay penalties
2763			 * based on how much each task is actually allocating.
2764			 */
2765			current->memcg_nr_pages_over_high += batch;
2766			set_notify_resume(current);
2767			break;
2768		}
2769	} while ((memcg = parent_mem_cgroup(memcg)));
2770
2771	return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775			     unsigned int nr_pages)
2776{
2777	if (mem_cgroup_is_root(memcg))
2778		return 0;
2779
2780	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786	if (mem_cgroup_is_root(memcg))
2787		return;
2788
2789	page_counter_uncharge(&memcg->memory, nr_pages);
2790	if (do_memsw_account())
2791		page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797	VM_BUG_ON_PAGE(page_memcg(page), page);
2798	/*
2799	 * Any of the following ensures page's memcg stability:
2800	 *
2801	 * - the page lock
2802	 * - LRU isolation
2803	 * - lock_page_memcg()
2804	 * - exclusive reference
2805	 */
2806	page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811	struct mem_cgroup *memcg;
2812
2813	rcu_read_lock();
2814retry:
2815	memcg = obj_cgroup_memcg(objcg);
2816	if (unlikely(!css_tryget(&memcg->css)))
2817		goto retry;
2818	rcu_read_unlock();
2819
2820	return memcg;
 
 
 
 
 
 
 
 
 
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832				 gfp_t gfp, bool new_page)
2833{
2834	unsigned int objects = objs_per_slab_page(s, page);
2835	unsigned long memcg_data;
2836	void *vec;
2837
2838	gfp &= ~OBJCGS_CLEAR_MASK;
2839	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840			   page_to_nid(page));
2841	if (!vec)
2842		return -ENOMEM;
2843
2844	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845	if (new_page) {
2846		/*
2847		 * If the slab page is brand new and nobody can yet access
2848		 * it's memcg_data, no synchronization is required and
2849		 * memcg_data can be simply assigned.
2850		 */
2851		page->memcg_data = memcg_data;
2852	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853		/*
2854		 * If the slab page is already in use, somebody can allocate
2855		 * and assign obj_cgroups in parallel. In this case the existing
2856		 * objcg vector should be reused.
2857		 */
2858		kfree(vec);
2859		return 0;
2860	}
2861
2862	kmemleak_not_leak(vec);
2863	return 0;
 
 
 
 
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880	struct page *page;
2881
2882	if (mem_cgroup_disabled())
2883		return NULL;
2884
2885	page = virt_to_head_page(p);
2886
2887	/*
2888	 * Slab objects are accounted individually, not per-page.
2889	 * Memcg membership data for each individual object is saved in
2890	 * the page->obj_cgroups.
2891	 */
2892	if (page_objcgs_check(page)) {
2893		struct obj_cgroup *objcg;
2894		unsigned int off;
2895
2896		off = obj_to_index(page->slab_cache, page, p);
2897		objcg = page_objcgs(page)[off];
2898		if (objcg)
2899			return obj_cgroup_memcg(objcg);
2900
2901		return NULL;
2902	}
2903
2904	/*
2905	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906	 * check above could fail because the object cgroups vector wasn't set
2907	 * at that moment, but it can be set concurrently.
2908	 * page_memcg_check(page) will guarantee that a proper memory
2909	 * cgroup pointer or NULL will be returned.
 
 
 
 
 
 
 
2910	 */
2911	return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916	struct obj_cgroup *objcg = NULL;
2917	struct mem_cgroup *memcg;
2918
2919	if (memcg_kmem_bypass())
2920		return NULL;
2921
2922	rcu_read_lock();
2923	if (unlikely(active_memcg()))
2924		memcg = active_memcg();
2925	else
2926		memcg = mem_cgroup_from_task(current);
2927
2928	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929		objcg = rcu_dereference(memcg->objcg);
2930		if (objcg && obj_cgroup_tryget(objcg))
2931			break;
2932		objcg = NULL;
2933	}
2934	rcu_read_unlock();
2935
2936	return objcg;
2937}
2938
 
2939static int memcg_alloc_cache_id(void)
2940{
2941	int id, size;
2942	int err;
2943
2944	id = ida_simple_get(&memcg_cache_ida,
2945			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946	if (id < 0)
2947		return id;
2948
2949	if (id < memcg_nr_cache_ids)
2950		return id;
2951
2952	/*
2953	 * There's no space for the new id in memcg_caches arrays,
2954	 * so we have to grow them.
2955	 */
2956	down_write(&memcg_cache_ids_sem);
2957
2958	size = 2 * (id + 1);
2959	if (size < MEMCG_CACHES_MIN_SIZE)
2960		size = MEMCG_CACHES_MIN_SIZE;
2961	else if (size > MEMCG_CACHES_MAX_SIZE)
2962		size = MEMCG_CACHES_MAX_SIZE;
2963
2964	err = memcg_update_all_list_lrus(size);
 
 
2965	if (!err)
2966		memcg_nr_cache_ids = size;
2967
2968	up_write(&memcg_cache_ids_sem);
2969
2970	if (err) {
2971		ida_simple_remove(&memcg_cache_ida, id);
2972		return err;
2973	}
2974	return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979	ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988				      unsigned int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989{
2990	struct mem_cgroup *memcg;
 
 
 
2991
2992	memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995		page_counter_uncharge(&memcg->kmem, nr_pages);
2996	refill_stock(memcg, nr_pages);
2997
2998	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
 
 
 
 
 
 
 
 
 
 
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
 
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010				   unsigned int nr_pages)
3011{
 
3012	struct page_counter *counter;
3013	struct mem_cgroup *memcg;
3014	int ret;
3015
3016	memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019	if (ret)
3020		goto out;
3021
3022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025		/*
3026		 * Enforce __GFP_NOFAIL allocation because callers are not
3027		 * prepared to see failures and likely do not have any failure
3028		 * handling code.
3029		 */
3030		if (gfp & __GFP_NOFAIL) {
3031			page_counter_charge(&memcg->kmem, nr_pages);
3032			goto out;
3033		}
3034		cancel_charge(memcg, nr_pages);
3035		ret = -ENOMEM;
3036	}
3037out:
3038	css_put(&memcg->css);
3039
3040	return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053	struct obj_cgroup *objcg;
3054	int ret = 0;
3055
3056	objcg = get_obj_cgroup_from_current();
3057	if (objcg) {
3058		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
 
 
 
3059		if (!ret) {
3060			page->memcg_data = (unsigned long)objcg |
3061				MEMCG_DATA_KMEM;
3062			return 0;
3063		}
3064		obj_cgroup_put(objcg);
3065	}
 
3066	return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
 
3075{
3076	struct obj_cgroup *objcg;
3077	unsigned int nr_pages = 1 << order;
3078
3079	if (!PageMemcgKmem(page))
3080		return;
3081
3082	objcg = __page_objcg(page);
3083	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084	page->memcg_data = 0;
3085	obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089		     enum node_stat_item idx, int nr)
3090{
3091	unsigned long flags;
3092	struct obj_stock *stock = get_obj_stock(&flags);
3093	int *bytes;
3094
3095	/*
3096	 * Save vmstat data in stock and skip vmstat array update unless
3097	 * accumulating over a page of vmstat data or when pgdat or idx
3098	 * changes.
3099	 */
3100	if (stock->cached_objcg != objcg) {
3101		drain_obj_stock(stock);
3102		obj_cgroup_get(objcg);
3103		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105		stock->cached_objcg = objcg;
3106		stock->cached_pgdat = pgdat;
3107	} else if (stock->cached_pgdat != pgdat) {
3108		/* Flush the existing cached vmstat data */
3109		struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111		if (stock->nr_slab_reclaimable_b) {
3112			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113					  stock->nr_slab_reclaimable_b);
3114			stock->nr_slab_reclaimable_b = 0;
3115		}
3116		if (stock->nr_slab_unreclaimable_b) {
3117			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118					  stock->nr_slab_unreclaimable_b);
3119			stock->nr_slab_unreclaimable_b = 0;
3120		}
3121		stock->cached_pgdat = pgdat;
3122	}
3123
3124	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125					       : &stock->nr_slab_unreclaimable_b;
3126	/*
3127	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128	 * cached locally at least once before pushing it out.
3129	 */
3130	if (!*bytes) {
3131		*bytes = nr;
3132		nr = 0;
3133	} else {
3134		*bytes += nr;
3135		if (abs(*bytes) > PAGE_SIZE) {
3136			nr = *bytes;
3137			*bytes = 0;
3138		} else {
3139			nr = 0;
3140		}
3141	}
3142	if (nr)
3143		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145	put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
3150	unsigned long flags;
3151	struct obj_stock *stock = get_obj_stock(&flags);
3152	bool ret = false;
3153
3154	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155		stock->nr_bytes -= nr_bytes;
3156		ret = true;
3157	}
3158
3159	put_obj_stock(flags);
3160
3161	return ret;
 
 
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
 
 
 
 
3165{
3166	struct obj_cgroup *old = stock->cached_objcg;
 
3167
3168	if (!old)
3169		return;
3170
3171	if (stock->nr_bytes) {
3172		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175		if (nr_pages)
3176			obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178		/*
3179		 * The leftover is flushed to the centralized per-memcg value.
3180		 * On the next attempt to refill obj stock it will be moved
3181		 * to a per-cpu stock (probably, on an other CPU), see
3182		 * refill_obj_stock().
3183		 *
3184		 * How often it's flushed is a trade-off between the memory
3185		 * limit enforcement accuracy and potential CPU contention,
3186		 * so it might be changed in the future.
3187		 */
3188		atomic_add(nr_bytes, &old->nr_charged_bytes);
3189		stock->nr_bytes = 0;
3190	}
3191
3192	/*
3193	 * Flush the vmstat data in current stock
3194	 */
3195	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196		if (stock->nr_slab_reclaimable_b) {
3197			mod_objcg_mlstate(old, stock->cached_pgdat,
3198					  NR_SLAB_RECLAIMABLE_B,
3199					  stock->nr_slab_reclaimable_b);
3200			stock->nr_slab_reclaimable_b = 0;
3201		}
3202		if (stock->nr_slab_unreclaimable_b) {
3203			mod_objcg_mlstate(old, stock->cached_pgdat,
3204					  NR_SLAB_UNRECLAIMABLE_B,
3205					  stock->nr_slab_unreclaimable_b);
3206			stock->nr_slab_unreclaimable_b = 0;
3207		}
3208		stock->cached_pgdat = NULL;
3209	}
3210
3211	obj_cgroup_put(old);
3212	stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216				     struct mem_cgroup *root_memcg)
3217{
3218	struct mem_cgroup *memcg;
3219
3220	if (in_task() && stock->task_obj.cached_objcg) {
3221		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223			return true;
3224	}
3225	if (stock->irq_obj.cached_objcg) {
3226		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228			return true;
3229	}
3230
3231	return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235			     bool allow_uncharge)
3236{
3237	unsigned long flags;
3238	struct obj_stock *stock = get_obj_stock(&flags);
3239	unsigned int nr_pages = 0;
3240
3241	if (stock->cached_objcg != objcg) { /* reset if necessary */
3242		drain_obj_stock(stock);
3243		obj_cgroup_get(objcg);
3244		stock->cached_objcg = objcg;
3245		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3248	}
3249	stock->nr_bytes += nr_bytes;
3250
3251	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253		stock->nr_bytes &= (PAGE_SIZE - 1);
3254	}
3255
3256	put_obj_stock(flags);
3257
3258	if (nr_pages)
3259		obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264	unsigned int nr_pages, nr_bytes;
3265	int ret;
3266
3267	if (consume_obj_stock(objcg, size))
3268		return 0;
3269
3270	/*
3271	 * In theory, objcg->nr_charged_bytes can have enough
3272	 * pre-charged bytes to satisfy the allocation. However,
3273	 * flushing objcg->nr_charged_bytes requires two atomic
3274	 * operations, and objcg->nr_charged_bytes can't be big.
3275	 * The shared objcg->nr_charged_bytes can also become a
3276	 * performance bottleneck if all tasks of the same memcg are
3277	 * trying to update it. So it's better to ignore it and try
3278	 * grab some new pages. The stock's nr_bytes will be flushed to
3279	 * objcg->nr_charged_bytes later on when objcg changes.
3280	 *
3281	 * The stock's nr_bytes may contain enough pre-charged bytes
3282	 * to allow one less page from being charged, but we can't rely
3283	 * on the pre-charged bytes not being changed outside of
3284	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285	 * pre-charged bytes as well when charging pages. To avoid a
3286	 * page uncharge right after a page charge, we set the
3287	 * allow_uncharge flag to false when calling refill_obj_stock()
3288	 * to temporarily allow the pre-charged bytes to exceed the page
3289	 * size limit. The maximum reachable value of the pre-charged
3290	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291	 * race.
3292	 */
3293	nr_pages = size >> PAGE_SHIFT;
3294	nr_bytes = size & (PAGE_SIZE - 1);
3295
3296	if (nr_bytes)
3297		nr_pages += 1;
3298
3299	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300	if (!ret && nr_bytes)
3301		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303	return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308	refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
 
 
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
 
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318	struct mem_cgroup *memcg = page_memcg(head);
3319	int i;
3320
3321	if (mem_cgroup_disabled() || !memcg)
3322		return;
3323
3324	for (i = 1; i < nr; i++)
3325		head[i].memcg_data = head->memcg_data;
3326
3327	if (PageMemcgKmem(head))
3328		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329	else
3330		css_get_many(&memcg->css, nr - 1);
3331}
 
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from:  mem_cgroup which the entry is moved from
3338 * @to:  mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349				struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351	unsigned short old_id, new_id;
3352
3353	old_id = mem_cgroup_id(from);
3354	new_id = mem_cgroup_id(to);
3355
3356	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357		mod_memcg_state(from, MEMCG_SWAP, -1);
3358		mod_memcg_state(to, MEMCG_SWAP, 1);
3359		return 0;
3360	}
3361	return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365				struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367	return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374				 unsigned long max, bool memsw)
3375{
3376	bool enlarge = false;
3377	bool drained = false;
3378	int ret;
3379	bool limits_invariant;
3380	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382	do {
3383		if (signal_pending(current)) {
3384			ret = -EINTR;
3385			break;
3386		}
3387
3388		mutex_lock(&memcg_max_mutex);
3389		/*
3390		 * Make sure that the new limit (memsw or memory limit) doesn't
3391		 * break our basic invariant rule memory.max <= memsw.max.
3392		 */
3393		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394					   max <= memcg->memsw.max;
3395		if (!limits_invariant) {
3396			mutex_unlock(&memcg_max_mutex);
3397			ret = -EINVAL;
3398			break;
3399		}
3400		if (max > counter->max)
3401			enlarge = true;
3402		ret = page_counter_set_max(counter, max);
3403		mutex_unlock(&memcg_max_mutex);
3404
3405		if (!ret)
3406			break;
3407
3408		if (!drained) {
3409			drain_all_stock(memcg);
3410			drained = true;
3411			continue;
3412		}
3413
3414		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415					GFP_KERNEL, !memsw)) {
3416			ret = -EBUSY;
3417			break;
3418		}
3419	} while (true);
3420
3421	if (!ret && enlarge)
3422		memcg_oom_recover(memcg);
3423
3424	return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428					    gfp_t gfp_mask,
3429					    unsigned long *total_scanned)
3430{
3431	unsigned long nr_reclaimed = 0;
3432	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433	unsigned long reclaimed;
3434	int loop = 0;
3435	struct mem_cgroup_tree_per_node *mctz;
3436	unsigned long excess;
3437	unsigned long nr_scanned;
3438
3439	if (order > 0)
3440		return 0;
3441
3442	mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444	/*
3445	 * Do not even bother to check the largest node if the root
3446	 * is empty. Do it lockless to prevent lock bouncing. Races
3447	 * are acceptable as soft limit is best effort anyway.
3448	 */
3449	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450		return 0;
3451
3452	/*
3453	 * This loop can run a while, specially if mem_cgroup's continuously
3454	 * keep exceeding their soft limit and putting the system under
3455	 * pressure
3456	 */
3457	do {
3458		if (next_mz)
3459			mz = next_mz;
3460		else
3461			mz = mem_cgroup_largest_soft_limit_node(mctz);
3462		if (!mz)
3463			break;
3464
3465		nr_scanned = 0;
3466		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467						    gfp_mask, &nr_scanned);
3468		nr_reclaimed += reclaimed;
3469		*total_scanned += nr_scanned;
3470		spin_lock_irq(&mctz->lock);
3471		__mem_cgroup_remove_exceeded(mz, mctz);
3472
3473		/*
3474		 * If we failed to reclaim anything from this memory cgroup
3475		 * it is time to move on to the next cgroup
3476		 */
3477		next_mz = NULL;
3478		if (!reclaimed)
3479			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481		excess = soft_limit_excess(mz->memcg);
3482		/*
3483		 * One school of thought says that we should not add
3484		 * back the node to the tree if reclaim returns 0.
3485		 * But our reclaim could return 0, simply because due
3486		 * to priority we are exposing a smaller subset of
3487		 * memory to reclaim from. Consider this as a longer
3488		 * term TODO.
3489		 */
3490		/* If excess == 0, no tree ops */
3491		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3492		spin_unlock_irq(&mctz->lock);
3493		css_put(&mz->memcg->css);
3494		loop++;
3495		/*
3496		 * Could not reclaim anything and there are no more
3497		 * mem cgroups to try or we seem to be looping without
3498		 * reclaiming anything.
3499		 */
3500		if (!nr_reclaimed &&
3501			(next_mz == NULL ||
3502			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503			break;
3504	} while (!nr_reclaimed);
3505	if (next_mz)
3506		css_put(&next_mz->memcg->css);
3507	return nr_reclaimed;
3508}
3509
3510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517	int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519	/* we call try-to-free pages for make this cgroup empty */
3520	lru_add_drain_all();
3521
3522	drain_all_stock(memcg);
3523
3524	/* try to free all pages in this cgroup */
3525	while (nr_retries && page_counter_read(&memcg->memory)) {
3526		int progress;
3527
3528		if (signal_pending(current))
3529			return -EINTR;
3530
3531		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532							GFP_KERNEL, true);
3533		if (!progress) {
3534			nr_retries--;
3535			/* maybe some writeback is necessary */
3536			congestion_wait(BLK_RW_ASYNC, HZ/10);
3537		}
3538
3539	}
3540
3541	return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545					    char *buf, size_t nbytes,
3546					    loff_t off)
3547{
3548	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550	if (mem_cgroup_is_root(memcg))
3551		return -EINVAL;
3552	return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556				     struct cftype *cft)
3557{
3558	return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562				      struct cftype *cft, u64 val)
3563{
3564	if (val == 1)
 
 
 
 
3565		return 0;
3566
3567	pr_warn_once("Non-hierarchical mode is deprecated. "
3568		     "Please report your usecase to linux-mm@kvack.org if you "
3569		     "depend on this functionality.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
3570
3571	return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576	unsigned long val;
3577
3578	if (mem_cgroup_is_root(memcg)) {
3579		/* mem_cgroup_threshold() calls here from irqsafe context */
3580		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582			memcg_page_state(memcg, NR_ANON_MAPPED);
3583		if (swap)
3584			val += memcg_page_state(memcg, MEMCG_SWAP);
3585	} else {
3586		if (!swap)
3587			val = page_counter_read(&memcg->memory);
3588		else
3589			val = page_counter_read(&memcg->memsw);
3590	}
3591	return val;
3592}
3593
3594enum {
3595	RES_USAGE,
3596	RES_LIMIT,
3597	RES_MAX_USAGE,
3598	RES_FAILCNT,
3599	RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603			       struct cftype *cft)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606	struct page_counter *counter;
3607
3608	switch (MEMFILE_TYPE(cft->private)) {
3609	case _MEM:
3610		counter = &memcg->memory;
3611		break;
3612	case _MEMSWAP:
3613		counter = &memcg->memsw;
3614		break;
3615	case _KMEM:
3616		counter = &memcg->kmem;
3617		break;
3618	case _TCP:
3619		counter = &memcg->tcpmem;
3620		break;
3621	default:
3622		BUG();
3623	}
3624
3625	switch (MEMFILE_ATTR(cft->private)) {
3626	case RES_USAGE:
3627		if (counter == &memcg->memory)
3628			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629		if (counter == &memcg->memsw)
3630			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631		return (u64)page_counter_read(counter) * PAGE_SIZE;
3632	case RES_LIMIT:
3633		return (u64)counter->max * PAGE_SIZE;
3634	case RES_MAX_USAGE:
3635		return (u64)counter->watermark * PAGE_SIZE;
3636	case RES_FAILCNT:
3637		return counter->failcnt;
3638	case RES_SOFT_LIMIT:
3639		return (u64)memcg->soft_limit * PAGE_SIZE;
3640	default:
3641		BUG();
3642	}
3643}
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648	struct obj_cgroup *objcg;
3649	int memcg_id;
3650
3651	if (cgroup_memory_nokmem)
3652		return 0;
3653
3654	BUG_ON(memcg->kmemcg_id >= 0);
3655	BUG_ON(memcg->kmem_state);
3656
3657	memcg_id = memcg_alloc_cache_id();
3658	if (memcg_id < 0)
3659		return memcg_id;
3660
3661	objcg = obj_cgroup_alloc();
3662	if (!objcg) {
3663		memcg_free_cache_id(memcg_id);
3664		return -ENOMEM;
3665	}
3666	objcg->memcg = memcg;
3667	rcu_assign_pointer(memcg->objcg, objcg);
3668
3669	static_branch_enable(&memcg_kmem_enabled_key);
3670
3671	memcg->kmemcg_id = memcg_id;
3672	memcg->kmem_state = KMEM_ONLINE;
 
3673
3674	return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679	struct cgroup_subsys_state *css;
3680	struct mem_cgroup *parent, *child;
3681	int kmemcg_id;
3682
3683	if (memcg->kmem_state != KMEM_ONLINE)
3684		return;
3685
 
 
 
 
 
3686	memcg->kmem_state = KMEM_ALLOCATED;
3687
3688	parent = parent_mem_cgroup(memcg);
3689	if (!parent)
3690		parent = root_mem_cgroup;
3691
3692	memcg_reparent_objcgs(memcg, parent);
 
 
 
 
 
 
 
3693
3694	kmemcg_id = memcg->kmemcg_id;
3695	BUG_ON(kmemcg_id < 0);
3696
3697	/*
3698	 * Change kmemcg_id of this cgroup and all its descendants to the
3699	 * parent's id, and then move all entries from this cgroup's list_lrus
3700	 * to ones of the parent. After we have finished, all list_lrus
3701	 * corresponding to this cgroup are guaranteed to remain empty. The
3702	 * ordering is imposed by list_lru_node->lock taken by
3703	 * memcg_drain_all_list_lrus().
3704	 */
3705	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706	css_for_each_descendant_pre(css, &memcg->css) {
3707		child = mem_cgroup_from_css(css);
3708		BUG_ON(child->kmemcg_id != kmemcg_id);
3709		child->kmemcg_id = parent->kmemcg_id;
 
 
3710	}
3711	rcu_read_unlock();
3712
3713	memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715	memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720	/* css_alloc() failed, offlining didn't happen */
3721	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722		memcg_offline_kmem(memcg);
 
 
 
 
 
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738				 unsigned long max)
3739{
3740	int ret;
3741
3742	mutex_lock(&memcg_max_mutex);
3743	ret = page_counter_set_max(&memcg->kmem, max);
3744	mutex_unlock(&memcg_max_mutex);
3745	return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750	int ret;
3751
3752	mutex_lock(&memcg_max_mutex);
3753
3754	ret = page_counter_set_max(&memcg->tcpmem, max);
3755	if (ret)
3756		goto out;
3757
3758	if (!memcg->tcpmem_active) {
3759		/*
3760		 * The active flag needs to be written after the static_key
3761		 * update. This is what guarantees that the socket activation
3762		 * function is the last one to run. See mem_cgroup_sk_alloc()
3763		 * for details, and note that we don't mark any socket as
3764		 * belonging to this memcg until that flag is up.
3765		 *
3766		 * We need to do this, because static_keys will span multiple
3767		 * sites, but we can't control their order. If we mark a socket
3768		 * as accounted, but the accounting functions are not patched in
3769		 * yet, we'll lose accounting.
3770		 *
3771		 * We never race with the readers in mem_cgroup_sk_alloc(),
3772		 * because when this value change, the code to process it is not
3773		 * patched in yet.
3774		 */
3775		static_branch_inc(&memcg_sockets_enabled_key);
3776		memcg->tcpmem_active = true;
3777	}
3778out:
3779	mutex_unlock(&memcg_max_mutex);
3780	return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788				char *buf, size_t nbytes, loff_t off)
3789{
3790	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791	unsigned long nr_pages;
3792	int ret;
3793
3794	buf = strstrip(buf);
3795	ret = page_counter_memparse(buf, "-1", &nr_pages);
3796	if (ret)
3797		return ret;
3798
3799	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800	case RES_LIMIT:
3801		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802			ret = -EINVAL;
3803			break;
3804		}
3805		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806		case _MEM:
3807			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808			break;
3809		case _MEMSWAP:
3810			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811			break;
3812		case _KMEM:
3813			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814				     "Please report your usecase to linux-mm@kvack.org if you "
3815				     "depend on this functionality.\n");
3816			ret = memcg_update_kmem_max(memcg, nr_pages);
3817			break;
3818		case _TCP:
3819			ret = memcg_update_tcp_max(memcg, nr_pages);
3820			break;
3821		}
3822		break;
3823	case RES_SOFT_LIMIT:
3824		memcg->soft_limit = nr_pages;
3825		ret = 0;
3826		break;
3827	}
3828	return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832				size_t nbytes, loff_t off)
3833{
3834	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835	struct page_counter *counter;
3836
3837	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838	case _MEM:
3839		counter = &memcg->memory;
3840		break;
3841	case _MEMSWAP:
3842		counter = &memcg->memsw;
3843		break;
3844	case _KMEM:
3845		counter = &memcg->kmem;
3846		break;
3847	case _TCP:
3848		counter = &memcg->tcpmem;
3849		break;
3850	default:
3851		BUG();
3852	}
3853
3854	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855	case RES_MAX_USAGE:
3856		page_counter_reset_watermark(counter);
3857		break;
3858	case RES_FAILCNT:
3859		counter->failcnt = 0;
3860		break;
3861	default:
3862		BUG();
3863	}
3864
3865	return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869					struct cftype *cft)
3870{
3871	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876					struct cftype *cft, u64 val)
3877{
3878	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880	if (val & ~MOVE_MASK)
3881		return -EINVAL;
3882
3883	/*
3884	 * No kind of locking is needed in here, because ->can_attach() will
3885	 * check this value once in the beginning of the process, and then carry
3886	 * on with stale data. This means that changes to this value will only
3887	 * affect task migrations starting after the change.
3888	 */
3889	memcg->move_charge_at_immigrate = val;
3890	return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894					struct cftype *cft, u64 val)
3895{
3896	return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907				int nid, unsigned int lru_mask, bool tree)
3908{
3909	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910	unsigned long nr = 0;
3911	enum lru_list lru;
3912
3913	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915	for_each_lru(lru) {
3916		if (!(BIT(lru) & lru_mask))
3917			continue;
3918		if (tree)
3919			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920		else
3921			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922	}
3923	return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927					     unsigned int lru_mask,
3928					     bool tree)
3929{
3930	unsigned long nr = 0;
3931	enum lru_list lru;
3932
3933	for_each_lru(lru) {
3934		if (!(BIT(lru) & lru_mask))
3935			continue;
3936		if (tree)
3937			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938		else
3939			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940	}
3941	return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946	struct numa_stat {
3947		const char *name;
3948		unsigned int lru_mask;
3949	};
3950
3951	static const struct numa_stat stats[] = {
3952		{ "total", LRU_ALL },
3953		{ "file", LRU_ALL_FILE },
3954		{ "anon", LRU_ALL_ANON },
3955		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3956	};
3957	const struct numa_stat *stat;
3958	int nid;
 
3959	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961	cgroup_rstat_flush(memcg->css.cgroup);
3962
3963	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964		seq_printf(m, "%s=%lu", stat->name,
3965			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966						   false));
3967		for_each_node_state(nid, N_MEMORY)
3968			seq_printf(m, " N%d=%lu", nid,
3969				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3970							stat->lru_mask, false));
3971		seq_putc(m, '\n');
3972	}
3973
3974	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 
3975
3976		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978						   true));
3979		for_each_node_state(nid, N_MEMORY)
3980			seq_printf(m, " N%d=%lu", nid,
3981				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3982							stat->lru_mask, true));
 
 
 
 
3983		seq_putc(m, '\n');
3984	}
3985
3986	return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991	NR_FILE_PAGES,
3992	NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994	NR_ANON_THPS,
3995#endif
3996	NR_SHMEM,
3997	NR_FILE_MAPPED,
3998	NR_FILE_DIRTY,
3999	NR_WRITEBACK,
4000	MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004	"cache",
4005	"rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007	"rss_huge",
4008#endif
4009	"shmem",
4010	"mapped_file",
4011	"dirty",
4012	"writeback",
4013	"swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018	PGPGIN,
4019	PGPGOUT,
4020	PGFAULT,
4021	PGMAJFAULT,
4022};
4023
 
 
 
 
 
 
 
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027	unsigned long memory, memsw;
4028	struct mem_cgroup *mi;
4029	unsigned int i;
4030
4031	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033	cgroup_rstat_flush(memcg->css.cgroup);
4034
4035	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036		unsigned long nr;
4037
4038		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039			continue;
4040		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
 
4042	}
4043
4044	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046			   memcg_events_local(memcg, memcg1_events[i]));
4047
4048	for (i = 0; i < NR_LRU_LISTS; i++)
4049		seq_printf(m, "%s %lu\n", lru_list_name(i),
4050			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051			   PAGE_SIZE);
4052
4053	/* Hierarchical information */
4054	memory = memsw = PAGE_COUNTER_MAX;
4055	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056		memory = min(memory, READ_ONCE(mi->memory.max));
4057		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058	}
4059	seq_printf(m, "hierarchical_memory_limit %llu\n",
4060		   (u64)memory * PAGE_SIZE);
4061	if (do_memsw_account())
4062		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063			   (u64)memsw * PAGE_SIZE);
4064
4065	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066		unsigned long nr;
4067
4068		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069			continue;
4070		nr = memcg_page_state(memcg, memcg1_stats[i]);
4071		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072						(u64)nr * PAGE_SIZE);
 
4073	}
4074
4075	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076		seq_printf(m, "total_%s %llu\n",
4077			   vm_event_name(memcg1_events[i]),
4078			   (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080	for (i = 0; i < NR_LRU_LISTS; i++)
4081		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083			   PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086	{
4087		pg_data_t *pgdat;
4088		struct mem_cgroup_per_node *mz;
4089		unsigned long anon_cost = 0;
4090		unsigned long file_cost = 0;
 
4091
4092		for_each_online_pgdat(pgdat) {
4093			mz = memcg->nodeinfo[pgdat->node_id];
 
4094
4095			anon_cost += mz->lruvec.anon_cost;
4096			file_cost += mz->lruvec.file_cost;
4097		}
4098		seq_printf(m, "anon_cost %lu\n", anon_cost);
4099		seq_printf(m, "file_cost %lu\n", file_cost);
 
 
 
 
4100	}
4101#endif
4102
4103	return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107				      struct cftype *cft)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115				       struct cftype *cft, u64 val)
4116{
4117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119	if (val > 100)
4120		return -EINVAL;
4121
4122	if (!mem_cgroup_is_root(memcg))
4123		memcg->swappiness = val;
4124	else
4125		vm_swappiness = val;
4126
4127	return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132	struct mem_cgroup_threshold_ary *t;
4133	unsigned long usage;
4134	int i;
4135
4136	rcu_read_lock();
4137	if (!swap)
4138		t = rcu_dereference(memcg->thresholds.primary);
4139	else
4140		t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142	if (!t)
4143		goto unlock;
4144
4145	usage = mem_cgroup_usage(memcg, swap);
4146
4147	/*
4148	 * current_threshold points to threshold just below or equal to usage.
4149	 * If it's not true, a threshold was crossed after last
4150	 * call of __mem_cgroup_threshold().
4151	 */
4152	i = t->current_threshold;
4153
4154	/*
4155	 * Iterate backward over array of thresholds starting from
4156	 * current_threshold and check if a threshold is crossed.
4157	 * If none of thresholds below usage is crossed, we read
4158	 * only one element of the array here.
4159	 */
4160	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161		eventfd_signal(t->entries[i].eventfd, 1);
4162
4163	/* i = current_threshold + 1 */
4164	i++;
4165
4166	/*
4167	 * Iterate forward over array of thresholds starting from
4168	 * current_threshold+1 and check if a threshold is crossed.
4169	 * If none of thresholds above usage is crossed, we read
4170	 * only one element of the array here.
4171	 */
4172	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173		eventfd_signal(t->entries[i].eventfd, 1);
4174
4175	/* Update current_threshold */
4176	t->current_threshold = i - 1;
4177unlock:
4178	rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183	while (memcg) {
4184		__mem_cgroup_threshold(memcg, false);
4185		if (do_memsw_account())
4186			__mem_cgroup_threshold(memcg, true);
4187
4188		memcg = parent_mem_cgroup(memcg);
4189	}
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194	const struct mem_cgroup_threshold *_a = a;
4195	const struct mem_cgroup_threshold *_b = b;
4196
4197	if (_a->threshold > _b->threshold)
4198		return 1;
4199
4200	if (_a->threshold < _b->threshold)
4201		return -1;
4202
4203	return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208	struct mem_cgroup_eventfd_list *ev;
4209
4210	spin_lock(&memcg_oom_lock);
4211
4212	list_for_each_entry(ev, &memcg->oom_notify, list)
4213		eventfd_signal(ev->eventfd, 1);
4214
4215	spin_unlock(&memcg_oom_lock);
4216	return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, memcg)
4224		mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230	struct mem_cgroup_thresholds *thresholds;
4231	struct mem_cgroup_threshold_ary *new;
4232	unsigned long threshold;
4233	unsigned long usage;
4234	int i, size, ret;
4235
4236	ret = page_counter_memparse(args, "-1", &threshold);
4237	if (ret)
4238		return ret;
4239
4240	mutex_lock(&memcg->thresholds_lock);
4241
4242	if (type == _MEM) {
4243		thresholds = &memcg->thresholds;
4244		usage = mem_cgroup_usage(memcg, false);
4245	} else if (type == _MEMSWAP) {
4246		thresholds = &memcg->memsw_thresholds;
4247		usage = mem_cgroup_usage(memcg, true);
4248	} else
4249		BUG();
4250
4251	/* Check if a threshold crossed before adding a new one */
4252	if (thresholds->primary)
4253		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257	/* Allocate memory for new array of thresholds */
4258	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259	if (!new) {
4260		ret = -ENOMEM;
4261		goto unlock;
4262	}
4263	new->size = size;
4264
4265	/* Copy thresholds (if any) to new array */
4266	if (thresholds->primary)
4267		memcpy(new->entries, thresholds->primary->entries,
4268		       flex_array_size(new, entries, size - 1));
 
4269
4270	/* Add new threshold */
4271	new->entries[size - 1].eventfd = eventfd;
4272	new->entries[size - 1].threshold = threshold;
4273
4274	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275	sort(new->entries, size, sizeof(*new->entries),
4276			compare_thresholds, NULL);
4277
4278	/* Find current threshold */
4279	new->current_threshold = -1;
4280	for (i = 0; i < size; i++) {
4281		if (new->entries[i].threshold <= usage) {
4282			/*
4283			 * new->current_threshold will not be used until
4284			 * rcu_assign_pointer(), so it's safe to increment
4285			 * it here.
4286			 */
4287			++new->current_threshold;
4288		} else
4289			break;
4290	}
4291
4292	/* Free old spare buffer and save old primary buffer as spare */
4293	kfree(thresholds->spare);
4294	thresholds->spare = thresholds->primary;
4295
4296	rcu_assign_pointer(thresholds->primary, new);
4297
4298	/* To be sure that nobody uses thresholds */
4299	synchronize_rcu();
4300
4301unlock:
4302	mutex_unlock(&memcg->thresholds_lock);
4303
4304	return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308	struct eventfd_ctx *eventfd, const char *args)
4309{
4310	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314	struct eventfd_ctx *eventfd, const char *args)
4315{
4316	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320	struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322	struct mem_cgroup_thresholds *thresholds;
4323	struct mem_cgroup_threshold_ary *new;
4324	unsigned long usage;
4325	int i, j, size, entries;
4326
4327	mutex_lock(&memcg->thresholds_lock);
4328
4329	if (type == _MEM) {
4330		thresholds = &memcg->thresholds;
4331		usage = mem_cgroup_usage(memcg, false);
4332	} else if (type == _MEMSWAP) {
4333		thresholds = &memcg->memsw_thresholds;
4334		usage = mem_cgroup_usage(memcg, true);
4335	} else
4336		BUG();
4337
4338	if (!thresholds->primary)
4339		goto unlock;
4340
4341	/* Check if a threshold crossed before removing */
4342	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344	/* Calculate new number of threshold */
4345	size = entries = 0;
4346	for (i = 0; i < thresholds->primary->size; i++) {
4347		if (thresholds->primary->entries[i].eventfd != eventfd)
4348			size++;
4349		else
4350			entries++;
4351	}
4352
4353	new = thresholds->spare;
4354
4355	/* If no items related to eventfd have been cleared, nothing to do */
4356	if (!entries)
4357		goto unlock;
4358
4359	/* Set thresholds array to NULL if we don't have thresholds */
4360	if (!size) {
4361		kfree(new);
4362		new = NULL;
4363		goto swap_buffers;
4364	}
4365
4366	new->size = size;
4367
4368	/* Copy thresholds and find current threshold */
4369	new->current_threshold = -1;
4370	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371		if (thresholds->primary->entries[i].eventfd == eventfd)
4372			continue;
4373
4374		new->entries[j] = thresholds->primary->entries[i];
4375		if (new->entries[j].threshold <= usage) {
4376			/*
4377			 * new->current_threshold will not be used
4378			 * until rcu_assign_pointer(), so it's safe to increment
4379			 * it here.
4380			 */
4381			++new->current_threshold;
4382		}
4383		j++;
4384	}
4385
4386swap_buffers:
4387	/* Swap primary and spare array */
4388	thresholds->spare = thresholds->primary;
4389
4390	rcu_assign_pointer(thresholds->primary, new);
4391
4392	/* To be sure that nobody uses thresholds */
4393	synchronize_rcu();
4394
4395	/* If all events are unregistered, free the spare array */
4396	if (!new) {
4397		kfree(thresholds->spare);
4398		thresholds->spare = NULL;
4399	}
4400unlock:
4401	mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405	struct eventfd_ctx *eventfd)
4406{
4407	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411	struct eventfd_ctx *eventfd)
4412{
4413	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417	struct eventfd_ctx *eventfd, const char *args)
4418{
4419	struct mem_cgroup_eventfd_list *event;
4420
4421	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4422	if (!event)
4423		return -ENOMEM;
4424
4425	spin_lock(&memcg_oom_lock);
4426
4427	event->eventfd = eventfd;
4428	list_add(&event->list, &memcg->oom_notify);
4429
4430	/* already in OOM ? */
4431	if (memcg->under_oom)
4432		eventfd_signal(eventfd, 1);
4433	spin_unlock(&memcg_oom_lock);
4434
4435	return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439	struct eventfd_ctx *eventfd)
4440{
4441	struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443	spin_lock(&memcg_oom_lock);
4444
4445	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446		if (ev->eventfd == eventfd) {
4447			list_del(&ev->list);
4448			kfree(ev);
4449		}
4450	}
4451
4452	spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461	seq_printf(sf, "oom_kill %lu\n",
4462		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463	return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467	struct cftype *cft, u64 val)
4468{
4469	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471	/* cannot set to root cgroup and only 0 and 1 are allowed */
4472	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473		return -EINVAL;
4474
4475	memcg->oom_kill_disable = val;
4476	if (!val)
4477		memcg_oom_recover(memcg);
4478
4479	return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488	return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493	wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498	wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505	if (!memcg->css.parent)
4506		return NULL;
4507
4508	return &memcg->cgwb_domain;
4509}
4510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors.  Note that this doesn't consider the actual amount of
4526 * available memory in the system.  The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530			 unsigned long *pheadroom, unsigned long *pdirty,
4531			 unsigned long *pwriteback)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534	struct mem_cgroup *parent;
4535
4536	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541			memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
 
 
 
 
4543	*pheadroom = PAGE_COUNTER_MAX;
 
4544	while ((parent = parent_mem_cgroup(memcg))) {
4545		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546					    READ_ONCE(memcg->memory.high));
4547		unsigned long used = page_counter_read(&memcg->memory);
4548
4549		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550		memcg = parent;
4551	}
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback.  The former
4558 * tracks ownership per-page while the latter per-inode.  This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases.  For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode.  B owns the inode and
4568 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback.  A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction.  However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism.  When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599					     struct bdi_writeback *wb)
4600{
4601	struct mem_cgroup *memcg = page_memcg(page);
4602	struct memcg_cgwb_frn *frn;
4603	u64 now = get_jiffies_64();
4604	u64 oldest_at = now;
4605	int oldest = -1;
4606	int i;
4607
4608	trace_track_foreign_dirty(page, wb);
4609
4610	/*
4611	 * Pick the slot to use.  If there is already a slot for @wb, keep
4612	 * using it.  If not replace the oldest one which isn't being
4613	 * written out.
4614	 */
4615	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616		frn = &memcg->cgwb_frn[i];
4617		if (frn->bdi_id == wb->bdi->id &&
4618		    frn->memcg_id == wb->memcg_css->id)
4619			break;
4620		if (time_before64(frn->at, oldest_at) &&
4621		    atomic_read(&frn->done.cnt) == 1) {
4622			oldest = i;
4623			oldest_at = frn->at;
4624		}
4625	}
4626
4627	if (i < MEMCG_CGWB_FRN_CNT) {
4628		/*
4629		 * Re-using an existing one.  Update timestamp lazily to
4630		 * avoid making the cacheline hot.  We want them to be
4631		 * reasonably up-to-date and significantly shorter than
4632		 * dirty_expire_interval as that's what expires the record.
4633		 * Use the shorter of 1s and dirty_expire_interval / 8.
4634		 */
4635		unsigned long update_intv =
4636			min_t(unsigned long, HZ,
4637			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639		if (time_before64(frn->at, now - update_intv))
4640			frn->at = now;
4641	} else if (oldest >= 0) {
4642		/* replace the oldest free one */
4643		frn = &memcg->cgwb_frn[oldest];
4644		frn->bdi_id = wb->bdi->id;
4645		frn->memcg_id = wb->memcg_css->id;
4646		frn->at = now;
4647	}
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655	u64 now = jiffies_64;
4656	int i;
4657
4658	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661		/*
4662		 * If the record is older than dirty_expire_interval,
4663		 * writeback on it has already started.  No need to kick it
4664		 * off again.  Also, don't start a new one if there's
4665		 * already one in flight.
4666		 */
4667		if (time_after64(frn->at, now - intv) &&
4668		    atomic_read(&frn->done.cnt) == 1) {
4669			frn->at = 0;
4670			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672					       WB_REASON_FOREIGN_FLUSH,
4673					       &frn->done);
4674		}
4675	}
4676}
4677
4678#else	/* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682	return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif	/* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered.  It tries to support fully configurable
4701 * events for each user.  Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715	struct mem_cgroup_event *event =
4716		container_of(work, struct mem_cgroup_event, remove);
4717	struct mem_cgroup *memcg = event->memcg;
4718
4719	remove_wait_queue(event->wqh, &event->wait);
4720
4721	event->unregister_event(memcg, event->eventfd);
4722
4723	/* Notify userspace the event is going away. */
4724	eventfd_signal(event->eventfd, 1);
4725
4726	eventfd_ctx_put(event->eventfd);
4727	kfree(event);
4728	css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737			    int sync, void *key)
4738{
4739	struct mem_cgroup_event *event =
4740		container_of(wait, struct mem_cgroup_event, wait);
4741	struct mem_cgroup *memcg = event->memcg;
4742	__poll_t flags = key_to_poll(key);
4743
4744	if (flags & EPOLLHUP) {
4745		/*
4746		 * If the event has been detached at cgroup removal, we
4747		 * can simply return knowing the other side will cleanup
4748		 * for us.
4749		 *
4750		 * We can't race against event freeing since the other
4751		 * side will require wqh->lock via remove_wait_queue(),
4752		 * which we hold.
4753		 */
4754		spin_lock(&memcg->event_list_lock);
4755		if (!list_empty(&event->list)) {
4756			list_del_init(&event->list);
4757			/*
4758			 * We are in atomic context, but cgroup_event_remove()
4759			 * may sleep, so we have to call it in workqueue.
4760			 */
4761			schedule_work(&event->remove);
4762		}
4763		spin_unlock(&memcg->event_list_lock);
4764	}
4765
4766	return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770		wait_queue_head_t *wqh, poll_table *pt)
4771{
4772	struct mem_cgroup_event *event =
4773		container_of(pt, struct mem_cgroup_event, pt);
4774
4775	event->wqh = wqh;
4776	add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788					 char *buf, size_t nbytes, loff_t off)
4789{
4790	struct cgroup_subsys_state *css = of_css(of);
4791	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792	struct mem_cgroup_event *event;
4793	struct cgroup_subsys_state *cfile_css;
4794	unsigned int efd, cfd;
4795	struct fd efile;
4796	struct fd cfile;
4797	const char *name;
4798	char *endp;
4799	int ret;
4800
4801	buf = strstrip(buf);
4802
4803	efd = simple_strtoul(buf, &endp, 10);
4804	if (*endp != ' ')
4805		return -EINVAL;
4806	buf = endp + 1;
4807
4808	cfd = simple_strtoul(buf, &endp, 10);
4809	if ((*endp != ' ') && (*endp != '\0'))
4810		return -EINVAL;
4811	buf = endp + 1;
4812
4813	event = kzalloc(sizeof(*event), GFP_KERNEL);
4814	if (!event)
4815		return -ENOMEM;
4816
4817	event->memcg = memcg;
4818	INIT_LIST_HEAD(&event->list);
4819	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821	INIT_WORK(&event->remove, memcg_event_remove);
4822
4823	efile = fdget(efd);
4824	if (!efile.file) {
4825		ret = -EBADF;
4826		goto out_kfree;
4827	}
4828
4829	event->eventfd = eventfd_ctx_fileget(efile.file);
4830	if (IS_ERR(event->eventfd)) {
4831		ret = PTR_ERR(event->eventfd);
4832		goto out_put_efile;
4833	}
4834
4835	cfile = fdget(cfd);
4836	if (!cfile.file) {
4837		ret = -EBADF;
4838		goto out_put_eventfd;
4839	}
4840
4841	/* the process need read permission on control file */
4842	/* AV: shouldn't we check that it's been opened for read instead? */
4843	ret = file_permission(cfile.file, MAY_READ);
4844	if (ret < 0)
4845		goto out_put_cfile;
4846
4847	/*
4848	 * Determine the event callbacks and set them in @event.  This used
4849	 * to be done via struct cftype but cgroup core no longer knows
4850	 * about these events.  The following is crude but the whole thing
4851	 * is for compatibility anyway.
4852	 *
4853	 * DO NOT ADD NEW FILES.
4854	 */
4855	name = cfile.file->f_path.dentry->d_name.name;
4856
4857	if (!strcmp(name, "memory.usage_in_bytes")) {
4858		event->register_event = mem_cgroup_usage_register_event;
4859		event->unregister_event = mem_cgroup_usage_unregister_event;
4860	} else if (!strcmp(name, "memory.oom_control")) {
4861		event->register_event = mem_cgroup_oom_register_event;
4862		event->unregister_event = mem_cgroup_oom_unregister_event;
4863	} else if (!strcmp(name, "memory.pressure_level")) {
4864		event->register_event = vmpressure_register_event;
4865		event->unregister_event = vmpressure_unregister_event;
4866	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867		event->register_event = memsw_cgroup_usage_register_event;
4868		event->unregister_event = memsw_cgroup_usage_unregister_event;
4869	} else {
4870		ret = -EINVAL;
4871		goto out_put_cfile;
4872	}
4873
4874	/*
4875	 * Verify @cfile should belong to @css.  Also, remaining events are
4876	 * automatically removed on cgroup destruction but the removal is
4877	 * asynchronous, so take an extra ref on @css.
4878	 */
4879	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880					       &memory_cgrp_subsys);
4881	ret = -EINVAL;
4882	if (IS_ERR(cfile_css))
4883		goto out_put_cfile;
4884	if (cfile_css != css) {
4885		css_put(cfile_css);
4886		goto out_put_cfile;
4887	}
4888
4889	ret = event->register_event(memcg, event->eventfd, buf);
4890	if (ret)
4891		goto out_put_css;
4892
4893	vfs_poll(efile.file, &event->pt);
4894
4895	spin_lock(&memcg->event_list_lock);
4896	list_add(&event->list, &memcg->event_list);
4897	spin_unlock(&memcg->event_list_lock);
4898
4899	fdput(cfile);
4900	fdput(efile);
4901
4902	return nbytes;
4903
4904out_put_css:
4905	css_put(css);
4906out_put_cfile:
4907	fdput(cfile);
4908out_put_eventfd:
4909	eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911	fdput(efile);
4912out_kfree:
4913	kfree(event);
4914
4915	return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919	{
4920		.name = "usage_in_bytes",
4921		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922		.read_u64 = mem_cgroup_read_u64,
4923	},
4924	{
4925		.name = "max_usage_in_bytes",
4926		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927		.write = mem_cgroup_reset,
4928		.read_u64 = mem_cgroup_read_u64,
4929	},
4930	{
4931		.name = "limit_in_bytes",
4932		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933		.write = mem_cgroup_write,
4934		.read_u64 = mem_cgroup_read_u64,
4935	},
4936	{
4937		.name = "soft_limit_in_bytes",
4938		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939		.write = mem_cgroup_write,
4940		.read_u64 = mem_cgroup_read_u64,
4941	},
4942	{
4943		.name = "failcnt",
4944		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945		.write = mem_cgroup_reset,
4946		.read_u64 = mem_cgroup_read_u64,
4947	},
4948	{
4949		.name = "stat",
4950		.seq_show = memcg_stat_show,
4951	},
4952	{
4953		.name = "force_empty",
4954		.write = mem_cgroup_force_empty_write,
4955	},
4956	{
4957		.name = "use_hierarchy",
4958		.write_u64 = mem_cgroup_hierarchy_write,
4959		.read_u64 = mem_cgroup_hierarchy_read,
4960	},
4961	{
4962		.name = "cgroup.event_control",		/* XXX: for compat */
4963		.write = memcg_write_event_control,
4964		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965	},
4966	{
4967		.name = "swappiness",
4968		.read_u64 = mem_cgroup_swappiness_read,
4969		.write_u64 = mem_cgroup_swappiness_write,
4970	},
4971	{
4972		.name = "move_charge_at_immigrate",
4973		.read_u64 = mem_cgroup_move_charge_read,
4974		.write_u64 = mem_cgroup_move_charge_write,
4975	},
4976	{
4977		.name = "oom_control",
4978		.seq_show = mem_cgroup_oom_control_read,
4979		.write_u64 = mem_cgroup_oom_control_write,
4980		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981	},
4982	{
4983		.name = "pressure_level",
4984	},
4985#ifdef CONFIG_NUMA
4986	{
4987		.name = "numa_stat",
4988		.seq_show = memcg_numa_stat_show,
4989	},
4990#endif
4991	{
4992		.name = "kmem.limit_in_bytes",
4993		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994		.write = mem_cgroup_write,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "kmem.usage_in_bytes",
4999		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000		.read_u64 = mem_cgroup_read_u64,
5001	},
5002	{
5003		.name = "kmem.failcnt",
5004		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005		.write = mem_cgroup_reset,
5006		.read_u64 = mem_cgroup_read_u64,
5007	},
5008	{
5009		.name = "kmem.max_usage_in_bytes",
5010		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011		.write = mem_cgroup_reset,
5012		.read_u64 = mem_cgroup_read_u64,
5013	},
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016	{
5017		.name = "kmem.slabinfo",
 
 
 
5018		.seq_show = memcg_slab_show,
5019	},
5020#endif
5021	{
5022		.name = "kmem.tcp.limit_in_bytes",
5023		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024		.write = mem_cgroup_write,
5025		.read_u64 = mem_cgroup_read_u64,
5026	},
5027	{
5028		.name = "kmem.tcp.usage_in_bytes",
5029		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030		.read_u64 = mem_cgroup_read_u64,
5031	},
5032	{
5033		.name = "kmem.tcp.failcnt",
5034		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035		.write = mem_cgroup_reset,
5036		.read_u64 = mem_cgroup_read_u64,
5037	},
5038	{
5039		.name = "kmem.tcp.max_usage_in_bytes",
5040		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041		.write = mem_cgroup_reset,
5042		.read_u64 = mem_cgroup_read_u64,
5043	},
5044	{ },	/* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075	if (memcg->id.id > 0) {
5076		idr_remove(&mem_cgroup_idr, memcg->id.id);
5077		memcg->id.id = 0;
5078	}
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082						  unsigned int n)
5083{
5084	refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090		mem_cgroup_id_remove(memcg);
5091
5092		/* Memcg ID pins CSS */
5093		css_put(&memcg->css);
5094	}
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099	mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110	WARN_ON_ONCE(!rcu_read_lock_held());
5111	return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116	struct mem_cgroup_per_node *pn;
5117	int tmp = node;
5118	/*
5119	 * This routine is called against possible nodes.
5120	 * But it's BUG to call kmalloc() against offline node.
5121	 *
5122	 * TODO: this routine can waste much memory for nodes which will
5123	 *       never be onlined. It's better to use memory hotplug callback
5124	 *       function.
5125	 */
5126	if (!node_state(node, N_NORMAL_MEMORY))
5127		tmp = -1;
5128	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129	if (!pn)
5130		return 1;
5131
5132	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133						 GFP_KERNEL_ACCOUNT);
5134	if (!pn->lruvec_stat_local) {
5135		kfree(pn);
5136		return 1;
5137	}
5138
5139	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140					       GFP_KERNEL_ACCOUNT);
5141	if (!pn->lruvec_stat_cpu) {
5142		free_percpu(pn->lruvec_stat_local);
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	lruvec_init(&pn->lruvec);
5148	pn->usage_in_excess = 0;
5149	pn->on_tree = false;
5150	pn->memcg = memcg;
5151
5152	memcg->nodeinfo[node] = pn;
5153	return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160	if (!pn)
5161		return;
5162
5163	free_percpu(pn->lruvec_stat_cpu);
5164	free_percpu(pn->lruvec_stat_local);
5165	kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170	int node;
5171
5172	for_each_node(node)
5173		free_mem_cgroup_per_node_info(memcg, node);
5174	free_percpu(memcg->vmstats_percpu);
 
5175	kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180	int cpu;
5181
5182	memcg_wb_domain_exit(memcg);
5183	/*
5184	 * Flush percpu lruvec stats to guarantee the value
5185	 * correctness on parent's and all ancestor levels.
5186	 */
5187	for_each_online_cpu(cpu)
5188		memcg_flush_lruvec_page_state(memcg, cpu);
5189	__mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194	struct mem_cgroup *memcg;
5195	unsigned int size;
5196	int node;
5197	int __maybe_unused i;
5198	long error = -ENOMEM;
5199
5200	size = sizeof(struct mem_cgroup);
5201	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203	memcg = kzalloc(size, GFP_KERNEL);
5204	if (!memcg)
5205		return ERR_PTR(error);
5206
5207	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208				 1, MEM_CGROUP_ID_MAX,
5209				 GFP_KERNEL);
5210	if (memcg->id.id < 0) {
5211		error = memcg->id.id;
 
 
 
5212		goto fail;
5213	}
5214
5215	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216						 GFP_KERNEL_ACCOUNT);
5217	if (!memcg->vmstats_percpu)
5218		goto fail;
5219
5220	for_each_node(node)
5221		if (alloc_mem_cgroup_per_node_info(memcg, node))
5222			goto fail;
5223
5224	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225		goto fail;
5226
5227	INIT_WORK(&memcg->high_work, high_work_func);
 
5228	INIT_LIST_HEAD(&memcg->oom_notify);
5229	mutex_init(&memcg->thresholds_lock);
5230	spin_lock_init(&memcg->move_lock);
5231	vmpressure_init(&memcg->vmpressure);
5232	INIT_LIST_HEAD(&memcg->event_list);
5233	spin_lock_init(&memcg->event_list_lock);
5234	memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236	memcg->kmemcg_id = -1;
5237	INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240	INIT_LIST_HEAD(&memcg->cgwb_list);
5241	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242		memcg->cgwb_frn[i].done =
5243			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248	memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251	return memcg;
5252fail:
5253	mem_cgroup_id_remove(memcg);
5254	__mem_cgroup_free(memcg);
5255	return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262	struct mem_cgroup *memcg, *old_memcg;
5263	long error = -ENOMEM;
5264
5265	old_memcg = set_active_memcg(parent);
5266	memcg = mem_cgroup_alloc();
5267	set_active_memcg(old_memcg);
5268	if (IS_ERR(memcg))
5269		return ERR_CAST(memcg);
5270
5271	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272	memcg->soft_limit = PAGE_COUNTER_MAX;
5273	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274	if (parent) {
5275		memcg->swappiness = mem_cgroup_swappiness(parent);
5276		memcg->oom_kill_disable = parent->oom_kill_disable;
5277
 
 
5278		page_counter_init(&memcg->memory, &parent->memory);
5279		page_counter_init(&memcg->swap, &parent->swap);
 
5280		page_counter_init(&memcg->kmem, &parent->kmem);
5281		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282	} else {
5283		page_counter_init(&memcg->memory, NULL);
5284		page_counter_init(&memcg->swap, NULL);
 
5285		page_counter_init(&memcg->kmem, NULL);
5286		page_counter_init(&memcg->tcpmem, NULL);
 
 
 
 
 
 
 
 
5287
 
 
 
 
 
5288		root_mem_cgroup = memcg;
5289		return &memcg->css;
5290	}
5291
5292	/* The following stuff does not apply to the root */
5293	error = memcg_online_kmem(memcg);
5294	if (error)
5295		goto fail;
5296
5297	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298		static_branch_inc(&memcg_sockets_enabled_key);
5299
5300	return &memcg->css;
5301fail:
5302	mem_cgroup_id_remove(memcg);
5303	mem_cgroup_free(memcg);
5304	return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311	/*
5312	 * A memcg must be visible for expand_shrinker_info()
5313	 * by the time the maps are allocated. So, we allocate maps
5314	 * here, when for_each_mem_cgroup() can't skip it.
5315	 */
5316	if (alloc_shrinker_info(memcg)) {
5317		mem_cgroup_id_remove(memcg);
5318		return -ENOMEM;
5319	}
5320
5321	/* Online state pins memcg ID, memcg ID pins CSS */
5322	refcount_set(&memcg->id.ref, 1);
5323	css_get(css);
5324	return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330	struct mem_cgroup_event *event, *tmp;
5331
5332	/*
5333	 * Unregister events and notify userspace.
5334	 * Notify userspace about cgroup removing only after rmdir of cgroup
5335	 * directory to avoid race between userspace and kernelspace.
5336	 */
5337	spin_lock(&memcg->event_list_lock);
5338	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339		list_del_init(&event->list);
5340		schedule_work(&event->remove);
5341	}
5342	spin_unlock(&memcg->event_list_lock);
5343
5344	page_counter_set_min(&memcg->memory, 0);
5345	page_counter_set_low(&memcg->memory, 0);
5346
5347	memcg_offline_kmem(memcg);
5348	reparent_shrinker_deferred(memcg);
5349	wb_memcg_offline(memcg);
5350
5351	drain_all_stock(memcg);
5352
5353	mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360	invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366	int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373		static_branch_dec(&memcg_sockets_enabled_key);
5374
5375	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376		static_branch_dec(&memcg_sockets_enabled_key);
5377
5378	vmpressure_cleanup(&memcg->vmpressure);
5379	cancel_work_sync(&memcg->high_work);
5380	mem_cgroup_remove_from_trees(memcg);
5381	free_shrinker_info(memcg);
5382	memcg_free_kmem(memcg);
5383	mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css.  This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency.  The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
 
5405	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407	page_counter_set_min(&memcg->memory, 0);
5408	page_counter_set_low(&memcg->memory, 0);
5409	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410	memcg->soft_limit = PAGE_COUNTER_MAX;
5411	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412	memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419	struct memcg_vmstats_percpu *statc;
5420	long delta, v;
5421	int i;
5422
5423	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425	for (i = 0; i < MEMCG_NR_STAT; i++) {
5426		/*
5427		 * Collect the aggregated propagation counts of groups
5428		 * below us. We're in a per-cpu loop here and this is
5429		 * a global counter, so the first cycle will get them.
5430		 */
5431		delta = memcg->vmstats.state_pending[i];
5432		if (delta)
5433			memcg->vmstats.state_pending[i] = 0;
5434
5435		/* Add CPU changes on this level since the last flush */
5436		v = READ_ONCE(statc->state[i]);
5437		if (v != statc->state_prev[i]) {
5438			delta += v - statc->state_prev[i];
5439			statc->state_prev[i] = v;
5440		}
5441
5442		if (!delta)
5443			continue;
5444
5445		/* Aggregate counts on this level and propagate upwards */
5446		memcg->vmstats.state[i] += delta;
5447		if (parent)
5448			parent->vmstats.state_pending[i] += delta;
5449	}
5450
5451	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452		delta = memcg->vmstats.events_pending[i];
5453		if (delta)
5454			memcg->vmstats.events_pending[i] = 0;
5455
5456		v = READ_ONCE(statc->events[i]);
5457		if (v != statc->events_prev[i]) {
5458			delta += v - statc->events_prev[i];
5459			statc->events_prev[i] = v;
5460		}
5461
5462		if (!delta)
5463			continue;
5464
5465		memcg->vmstats.events[i] += delta;
5466		if (parent)
5467			parent->vmstats.events_pending[i] += delta;
5468	}
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475	int ret;
5476
5477	/* Try a single bulk charge without reclaim first, kswapd may wake */
5478	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479	if (!ret) {
5480		mc.precharge += count;
5481		return ret;
5482	}
5483
5484	/* Try charges one by one with reclaim, but do not retry */
5485	while (count--) {
5486		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487		if (ret)
5488			return ret;
5489		mc.precharge++;
5490		cond_resched();
5491	}
5492	return 0;
5493}
5494
5495union mc_target {
5496	struct page	*page;
5497	swp_entry_t	ent;
5498};
5499
5500enum mc_target_type {
5501	MC_TARGET_NONE = 0,
5502	MC_TARGET_PAGE,
5503	MC_TARGET_SWAP,
5504	MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508						unsigned long addr, pte_t ptent)
5509{
5510	struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512	if (!page || !page_mapped(page))
5513		return NULL;
5514	if (PageAnon(page)) {
5515		if (!(mc.flags & MOVE_ANON))
5516			return NULL;
5517	} else {
5518		if (!(mc.flags & MOVE_FILE))
5519			return NULL;
5520	}
5521	if (!get_page_unless_zero(page))
5522		return NULL;
5523
5524	return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529			pte_t ptent, swp_entry_t *entry)
5530{
5531	struct page *page = NULL;
5532	swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534	if (!(mc.flags & MOVE_ANON))
5535		return NULL;
5536
5537	/*
5538	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539	 * a device and because they are not accessible by CPU they are store
5540	 * as special swap entry in the CPU page table.
5541	 */
5542	if (is_device_private_entry(ent)) {
5543		page = pfn_swap_entry_to_page(ent);
5544		/*
5545		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546		 * a refcount of 1 when free (unlike normal page)
5547		 */
5548		if (!page_ref_add_unless(page, 1, 1))
5549			return NULL;
5550		return page;
5551	}
5552
5553	if (non_swap_entry(ent))
5554		return NULL;
5555
5556	/*
5557	 * Because lookup_swap_cache() updates some statistics counter,
5558	 * we call find_get_page() with swapper_space directly.
5559	 */
5560	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561	entry->val = ent.val;
 
5562
5563	return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567			pte_t ptent, swp_entry_t *entry)
5568{
5569	return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
 
 
 
 
5576	if (!vma->vm_file) /* anonymous vma */
5577		return NULL;
5578	if (!(mc.flags & MOVE_FILE))
5579		return NULL;
5580
 
 
 
5581	/* page is moved even if it's not RSS of this task(page-faulted). */
 
5582	/* shmem/tmpfs may report page out on swap: account for that too. */
5583	return find_get_incore_page(vma->vm_file->f_mapping,
5584			linear_page_index(vma, addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to:	mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600				   bool compound,
5601				   struct mem_cgroup *from,
5602				   struct mem_cgroup *to)
5603{
5604	struct lruvec *from_vec, *to_vec;
5605	struct pglist_data *pgdat;
5606	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
 
5607	int ret;
 
5608
5609	VM_BUG_ON(from == to);
5610	VM_BUG_ON_PAGE(PageLRU(page), page);
5611	VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613	/*
5614	 * Prevent mem_cgroup_migrate() from looking at
5615	 * page's memory cgroup of its source page while we change it.
5616	 */
5617	ret = -EBUSY;
5618	if (!trylock_page(page))
5619		goto out;
5620
5621	ret = -EINVAL;
5622	if (page_memcg(page) != from)
5623		goto out_unlock;
5624
5625	pgdat = page_pgdat(page);
5626	from_vec = mem_cgroup_lruvec(from, pgdat);
5627	to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629	lock_page_memcg(page);
5630
5631	if (PageAnon(page)) {
5632		if (page_mapped(page)) {
5633			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635			if (PageTransHuge(page)) {
5636				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5637						   -nr_pages);
5638				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5639						   nr_pages);
5640			}
5641		}
5642	} else {
5643		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646		if (PageSwapBacked(page)) {
5647			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649		}
5650
5651		if (page_mapped(page)) {
5652			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654		}
5655
5656		if (PageDirty(page)) {
5657			struct address_space *mapping = page_mapping(page);
 
 
 
 
 
5658
5659			if (mapping_can_writeback(mapping)) {
5660				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661						   -nr_pages);
5662				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663						   nr_pages);
5664			}
5665		}
5666	}
5667
5668	if (PageWriteback(page)) {
5669		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671	}
5672
 
 
 
 
 
 
 
 
5673	/*
5674	 * All state has been migrated, let's switch to the new memcg.
5675	 *
5676	 * It is safe to change page's memcg here because the page
5677	 * is referenced, charged, isolated, and locked: we can't race
5678	 * with (un)charging, migration, LRU putback, or anything else
5679	 * that would rely on a stable page's memory cgroup.
5680	 *
5681	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682	 * to save space. As soon as we switch page's memory cgroup to a
5683	 * new memcg that isn't locked, the above state can change
5684	 * concurrently again. Make sure we're truly done with it.
5685	 */
5686	smp_mb();
5687
5688	css_get(&to->css);
5689	css_put(&from->css);
5690
5691	page->memcg_data = (unsigned long)to;
 
 
 
 
 
 
 
 
5692
5693	__unlock_page_memcg(from);
5694
5695	ret = 0;
5696
5697	local_irq_disable();
5698	mem_cgroup_charge_statistics(to, page, nr_pages);
5699	memcg_check_events(to, page);
5700	mem_cgroup_charge_statistics(from, page, -nr_pages);
5701	memcg_check_events(from, page);
5702	local_irq_enable();
5703out_unlock:
5704	unlock_page(page);
5705out:
5706	return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 *     move charge. if @target is not NULL, the page is stored in target->page
5720 *     with extra refcnt got(Callers should handle it).
5721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 *     target for charge migration. if @target is not NULL, the entry is stored
5723 *     in target->ent.
5724 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5725 *     (so ZONE_DEVICE page and thus not on the lru).
5726 *     For now we such page is charge like a regular page would be as for all
5727 *     intent and purposes it is just special memory taking the place of a
5728 *     regular page.
5729 *
5730 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736		unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738	struct page *page = NULL;
5739	enum mc_target_type ret = MC_TARGET_NONE;
5740	swp_entry_t ent = { .val = 0 };
5741
5742	if (pte_present(ptent))
5743		page = mc_handle_present_pte(vma, addr, ptent);
5744	else if (is_swap_pte(ptent))
5745		page = mc_handle_swap_pte(vma, ptent, &ent);
5746	else if (pte_none(ptent))
5747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749	if (!page && !ent.val)
5750		return ret;
5751	if (page) {
5752		/*
5753		 * Do only loose check w/o serialization.
5754		 * mem_cgroup_move_account() checks the page is valid or
5755		 * not under LRU exclusion.
5756		 */
5757		if (page_memcg(page) == mc.from) {
5758			ret = MC_TARGET_PAGE;
5759			if (is_device_private_page(page))
5760				ret = MC_TARGET_DEVICE;
5761			if (target)
5762				target->page = page;
5763		}
5764		if (!ret || !target)
5765			put_page(page);
5766	}
5767	/*
5768	 * There is a swap entry and a page doesn't exist or isn't charged.
5769	 * But we cannot move a tail-page in a THP.
5770	 */
5771	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773		ret = MC_TARGET_SWAP;
5774		if (target)
5775			target->ent = ent;
5776	}
5777	return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787		unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789	struct page *page = NULL;
5790	enum mc_target_type ret = MC_TARGET_NONE;
5791
5792	if (unlikely(is_swap_pmd(pmd))) {
5793		VM_BUG_ON(thp_migration_supported() &&
5794				  !is_pmd_migration_entry(pmd));
5795		return ret;
5796	}
5797	page = pmd_page(pmd);
5798	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799	if (!(mc.flags & MOVE_ANON))
5800		return ret;
5801	if (page_memcg(page) == mc.from) {
5802		ret = MC_TARGET_PAGE;
5803		if (target) {
5804			get_page(page);
5805			target->page = page;
5806		}
5807	}
5808	return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812		unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814	return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819					unsigned long addr, unsigned long end,
5820					struct mm_walk *walk)
5821{
5822	struct vm_area_struct *vma = walk->vma;
5823	pte_t *pte;
5824	spinlock_t *ptl;
5825
5826	ptl = pmd_trans_huge_lock(pmd, vma);
5827	if (ptl) {
5828		/*
5829		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831		 * this might change.
5832		 */
5833		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834			mc.precharge += HPAGE_PMD_NR;
5835		spin_unlock(ptl);
5836		return 0;
5837	}
5838
5839	if (pmd_trans_unstable(pmd))
5840		return 0;
5841	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842	for (; addr != end; pte++, addr += PAGE_SIZE)
5843		if (get_mctgt_type(vma, addr, *pte, NULL))
5844			mc.precharge++;	/* increment precharge temporarily */
5845	pte_unmap_unlock(pte - 1, ptl);
5846	cond_resched();
5847
5848	return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857	unsigned long precharge;
5858
5859	mmap_read_lock(mm);
5860	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861	mmap_read_unlock(mm);
5862
5863	precharge = mc.precharge;
5864	mc.precharge = 0;
5865
5866	return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871	unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873	VM_BUG_ON(mc.moving_task);
5874	mc.moving_task = current;
5875	return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881	struct mem_cgroup *from = mc.from;
5882	struct mem_cgroup *to = mc.to;
5883
5884	/* we must uncharge all the leftover precharges from mc.to */
5885	if (mc.precharge) {
5886		cancel_charge(mc.to, mc.precharge);
5887		mc.precharge = 0;
5888	}
5889	/*
5890	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891	 * we must uncharge here.
5892	 */
5893	if (mc.moved_charge) {
5894		cancel_charge(mc.from, mc.moved_charge);
5895		mc.moved_charge = 0;
5896	}
5897	/* we must fixup refcnts and charges */
5898	if (mc.moved_swap) {
5899		/* uncharge swap account from the old cgroup */
5900		if (!mem_cgroup_is_root(mc.from))
5901			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905		/*
5906		 * we charged both to->memory and to->memsw, so we
5907		 * should uncharge to->memory.
5908		 */
5909		if (!mem_cgroup_is_root(mc.to))
5910			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
 
 
 
5912		mc.moved_swap = 0;
5913	}
5914	memcg_oom_recover(from);
5915	memcg_oom_recover(to);
5916	wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921	struct mm_struct *mm = mc.mm;
5922
5923	/*
5924	 * we must clear moving_task before waking up waiters at the end of
5925	 * task migration.
5926	 */
5927	mc.moving_task = NULL;
5928	__mem_cgroup_clear_mc();
5929	spin_lock(&mc.lock);
5930	mc.from = NULL;
5931	mc.to = NULL;
5932	mc.mm = NULL;
5933	spin_unlock(&mc.lock);
5934
5935	mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940	struct cgroup_subsys_state *css;
5941	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942	struct mem_cgroup *from;
5943	struct task_struct *leader, *p;
5944	struct mm_struct *mm;
5945	unsigned long move_flags;
5946	int ret = 0;
5947
5948	/* charge immigration isn't supported on the default hierarchy */
5949	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950		return 0;
5951
5952	/*
5953	 * Multi-process migrations only happen on the default hierarchy
5954	 * where charge immigration is not used.  Perform charge
5955	 * immigration if @tset contains a leader and whine if there are
5956	 * multiple.
5957	 */
5958	p = NULL;
5959	cgroup_taskset_for_each_leader(leader, css, tset) {
5960		WARN_ON_ONCE(p);
5961		p = leader;
5962		memcg = mem_cgroup_from_css(css);
5963	}
5964	if (!p)
5965		return 0;
5966
5967	/*
5968	 * We are now committed to this value whatever it is. Changes in this
5969	 * tunable will only affect upcoming migrations, not the current one.
5970	 * So we need to save it, and keep it going.
5971	 */
5972	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973	if (!move_flags)
5974		return 0;
5975
5976	from = mem_cgroup_from_task(p);
5977
5978	VM_BUG_ON(from == memcg);
5979
5980	mm = get_task_mm(p);
5981	if (!mm)
5982		return 0;
5983	/* We move charges only when we move a owner of the mm */
5984	if (mm->owner == p) {
5985		VM_BUG_ON(mc.from);
5986		VM_BUG_ON(mc.to);
5987		VM_BUG_ON(mc.precharge);
5988		VM_BUG_ON(mc.moved_charge);
5989		VM_BUG_ON(mc.moved_swap);
5990
5991		spin_lock(&mc.lock);
5992		mc.mm = mm;
5993		mc.from = from;
5994		mc.to = memcg;
5995		mc.flags = move_flags;
5996		spin_unlock(&mc.lock);
5997		/* We set mc.moving_task later */
5998
5999		ret = mem_cgroup_precharge_mc(mm);
6000		if (ret)
6001			mem_cgroup_clear_mc();
6002	} else {
6003		mmput(mm);
6004	}
6005	return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010	if (mc.to)
6011		mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015				unsigned long addr, unsigned long end,
6016				struct mm_walk *walk)
6017{
6018	int ret = 0;
6019	struct vm_area_struct *vma = walk->vma;
6020	pte_t *pte;
6021	spinlock_t *ptl;
6022	enum mc_target_type target_type;
6023	union mc_target target;
6024	struct page *page;
6025
6026	ptl = pmd_trans_huge_lock(pmd, vma);
6027	if (ptl) {
6028		if (mc.precharge < HPAGE_PMD_NR) {
6029			spin_unlock(ptl);
6030			return 0;
6031		}
6032		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033		if (target_type == MC_TARGET_PAGE) {
6034			page = target.page;
6035			if (!isolate_lru_page(page)) {
6036				if (!mem_cgroup_move_account(page, true,
6037							     mc.from, mc.to)) {
6038					mc.precharge -= HPAGE_PMD_NR;
6039					mc.moved_charge += HPAGE_PMD_NR;
6040				}
6041				putback_lru_page(page);
6042			}
6043			put_page(page);
6044		} else if (target_type == MC_TARGET_DEVICE) {
6045			page = target.page;
6046			if (!mem_cgroup_move_account(page, true,
6047						     mc.from, mc.to)) {
6048				mc.precharge -= HPAGE_PMD_NR;
6049				mc.moved_charge += HPAGE_PMD_NR;
6050			}
6051			put_page(page);
6052		}
6053		spin_unlock(ptl);
6054		return 0;
6055	}
6056
6057	if (pmd_trans_unstable(pmd))
6058		return 0;
6059retry:
6060	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061	for (; addr != end; addr += PAGE_SIZE) {
6062		pte_t ptent = *(pte++);
6063		bool device = false;
6064		swp_entry_t ent;
6065
6066		if (!mc.precharge)
6067			break;
6068
6069		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070		case MC_TARGET_DEVICE:
6071			device = true;
6072			fallthrough;
6073		case MC_TARGET_PAGE:
6074			page = target.page;
6075			/*
6076			 * We can have a part of the split pmd here. Moving it
6077			 * can be done but it would be too convoluted so simply
6078			 * ignore such a partial THP and keep it in original
6079			 * memcg. There should be somebody mapping the head.
6080			 */
6081			if (PageTransCompound(page))
6082				goto put;
6083			if (!device && isolate_lru_page(page))
6084				goto put;
6085			if (!mem_cgroup_move_account(page, false,
6086						mc.from, mc.to)) {
6087				mc.precharge--;
6088				/* we uncharge from mc.from later. */
6089				mc.moved_charge++;
6090			}
6091			if (!device)
6092				putback_lru_page(page);
6093put:			/* get_mctgt_type() gets the page */
6094			put_page(page);
6095			break;
6096		case MC_TARGET_SWAP:
6097			ent = target.ent;
6098			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099				mc.precharge--;
6100				mem_cgroup_id_get_many(mc.to, 1);
6101				/* we fixup other refcnts and charges later. */
6102				mc.moved_swap++;
6103			}
6104			break;
6105		default:
6106			break;
6107		}
6108	}
6109	pte_unmap_unlock(pte - 1, ptl);
6110	cond_resched();
6111
6112	if (addr != end) {
6113		/*
6114		 * We have consumed all precharges we got in can_attach().
6115		 * We try charge one by one, but don't do any additional
6116		 * charges to mc.to if we have failed in charge once in attach()
6117		 * phase.
6118		 */
6119		ret = mem_cgroup_do_precharge(1);
6120		if (!ret)
6121			goto retry;
6122	}
6123
6124	return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133	lru_add_drain_all();
6134	/*
6135	 * Signal lock_page_memcg() to take the memcg's move_lock
6136	 * while we're moving its pages to another memcg. Then wait
6137	 * for already started RCU-only updates to finish.
6138	 */
6139	atomic_inc(&mc.from->moving_account);
6140	synchronize_rcu();
6141retry:
6142	if (unlikely(!mmap_read_trylock(mc.mm))) {
6143		/*
6144		 * Someone who are holding the mmap_lock might be waiting in
6145		 * waitq. So we cancel all extra charges, wake up all waiters,
6146		 * and retry. Because we cancel precharges, we might not be able
6147		 * to move enough charges, but moving charge is a best-effort
6148		 * feature anyway, so it wouldn't be a big problem.
6149		 */
6150		__mem_cgroup_clear_mc();
6151		cond_resched();
6152		goto retry;
6153	}
6154	/*
6155	 * When we have consumed all precharges and failed in doing
6156	 * additional charge, the page walk just aborts.
6157	 */
6158	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159			NULL);
6160
6161	mmap_read_unlock(mc.mm);
6162	atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167	if (mc.to) {
6168		mem_cgroup_move_charge();
6169		mem_cgroup_clear_mc();
6170	}
6171}
6172#else	/* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175	return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187	if (value == PAGE_COUNTER_MAX)
6188		seq_puts(m, "max\n");
6189	else
6190		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192	return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196			       struct cftype *cft)
6197{
6198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205	return seq_puts_memcg_tunable(m,
6206		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210				char *buf, size_t nbytes, loff_t off)
6211{
6212	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213	unsigned long min;
6214	int err;
6215
6216	buf = strstrip(buf);
6217	err = page_counter_memparse(buf, "max", &min);
6218	if (err)
6219		return err;
6220
6221	page_counter_set_min(&memcg->memory, min);
6222
6223	return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228	return seq_puts_memcg_tunable(m,
6229		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233				char *buf, size_t nbytes, loff_t off)
6234{
6235	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236	unsigned long low;
6237	int err;
6238
6239	buf = strstrip(buf);
6240	err = page_counter_memparse(buf, "max", &low);
6241	if (err)
6242		return err;
6243
6244	page_counter_set_low(&memcg->memory, low);
6245
6246	return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251	return seq_puts_memcg_tunable(m,
6252		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256				 char *buf, size_t nbytes, loff_t off)
6257{
6258	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260	bool drained = false;
6261	unsigned long high;
6262	int err;
6263
6264	buf = strstrip(buf);
6265	err = page_counter_memparse(buf, "max", &high);
6266	if (err)
6267		return err;
6268
6269	page_counter_set_high(&memcg->memory, high);
6270
6271	for (;;) {
6272		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273		unsigned long reclaimed;
6274
6275		if (nr_pages <= high)
6276			break;
6277
6278		if (signal_pending(current))
6279			break;
6280
6281		if (!drained) {
6282			drain_all_stock(memcg);
6283			drained = true;
6284			continue;
6285		}
6286
6287		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288							 GFP_KERNEL, true);
6289
6290		if (!reclaimed && !nr_retries--)
6291			break;
6292	}
6293
6294	memcg_wb_domain_size_changed(memcg);
6295	return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300	return seq_puts_memcg_tunable(m,
6301		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305				char *buf, size_t nbytes, loff_t off)
6306{
6307	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309	bool drained = false;
6310	unsigned long max;
6311	int err;
6312
6313	buf = strstrip(buf);
6314	err = page_counter_memparse(buf, "max", &max);
6315	if (err)
6316		return err;
6317
6318	xchg(&memcg->memory.max, max);
6319
6320	for (;;) {
6321		unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323		if (nr_pages <= max)
6324			break;
6325
6326		if (signal_pending(current))
 
6327			break;
 
6328
6329		if (!drained) {
6330			drain_all_stock(memcg);
6331			drained = true;
6332			continue;
6333		}
6334
6335		if (nr_reclaims) {
6336			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337							  GFP_KERNEL, true))
6338				nr_reclaims--;
6339			continue;
6340		}
6341
6342		memcg_memory_event(memcg, MEMCG_OOM);
6343		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344			break;
6345	}
6346
6347	memcg_wb_domain_size_changed(memcg);
6348	return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357	seq_printf(m, "oom_kill %lu\n",
6358		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365	__memory_events_show(m, memcg->memory_events);
6366	return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373	__memory_events_show(m, memcg->memory_events_local);
6374	return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380	char *buf;
6381
6382	buf = memory_stat_format(memcg);
6383	if (!buf)
6384		return -ENOMEM;
6385	seq_puts(m, buf);
6386	kfree(buf);
6387	return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392						     int item)
6393{
6394	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399	int i;
6400	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403		int nid;
6404
6405		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406			continue;
6407
6408		seq_printf(m, "%s", memory_stats[i].name);
6409		for_each_node_state(nid, N_MEMORY) {
6410			u64 size;
6411			struct lruvec *lruvec;
6412
6413			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414			size = lruvec_page_state_output(lruvec,
6415							memory_stats[i].idx);
6416			seq_printf(m, " N%d=%llu", nid, size);
6417		}
6418		seq_putc(m, '\n');
6419	}
6420
6421	return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429	seq_printf(m, "%d\n", memcg->oom_group);
6430
6431	return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435				      char *buf, size_t nbytes, loff_t off)
6436{
6437	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438	int ret, oom_group;
6439
6440	buf = strstrip(buf);
6441	if (!buf)
6442		return -EINVAL;
6443
6444	ret = kstrtoint(buf, 0, &oom_group);
6445	if (ret)
6446		return ret;
6447
6448	if (oom_group != 0 && oom_group != 1)
6449		return -EINVAL;
6450
6451	memcg->oom_group = oom_group;
6452
6453	return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457	{
6458		.name = "current",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.read_u64 = memory_current_read,
6461	},
6462	{
6463		.name = "min",
6464		.flags = CFTYPE_NOT_ON_ROOT,
6465		.seq_show = memory_min_show,
6466		.write = memory_min_write,
6467	},
6468	{
6469		.name = "low",
6470		.flags = CFTYPE_NOT_ON_ROOT,
6471		.seq_show = memory_low_show,
6472		.write = memory_low_write,
6473	},
6474	{
6475		.name = "high",
6476		.flags = CFTYPE_NOT_ON_ROOT,
6477		.seq_show = memory_high_show,
6478		.write = memory_high_write,
6479	},
6480	{
6481		.name = "max",
6482		.flags = CFTYPE_NOT_ON_ROOT,
6483		.seq_show = memory_max_show,
6484		.write = memory_max_write,
6485	},
6486	{
6487		.name = "events",
6488		.flags = CFTYPE_NOT_ON_ROOT,
6489		.file_offset = offsetof(struct mem_cgroup, events_file),
6490		.seq_show = memory_events_show,
6491	},
6492	{
6493		.name = "events.local",
6494		.flags = CFTYPE_NOT_ON_ROOT,
6495		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6496		.seq_show = memory_events_local_show,
6497	},
6498	{
6499		.name = "stat",
 
6500		.seq_show = memory_stat_show,
6501	},
6502#ifdef CONFIG_NUMA
6503	{
6504		.name = "numa_stat",
6505		.seq_show = memory_numa_stat_show,
6506	},
6507#endif
6508	{
6509		.name = "oom.group",
6510		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511		.seq_show = memory_oom_group_show,
6512		.write = memory_oom_group_write,
6513	},
6514	{ }	/* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518	.css_alloc = mem_cgroup_css_alloc,
6519	.css_online = mem_cgroup_css_online,
6520	.css_offline = mem_cgroup_css_offline,
6521	.css_released = mem_cgroup_css_released,
6522	.css_free = mem_cgroup_css_free,
6523	.css_reset = mem_cgroup_css_reset,
6524	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6525	.can_attach = mem_cgroup_can_attach,
6526	.cancel_attach = mem_cgroup_cancel_attach,
6527	.post_attach = mem_cgroup_move_task,
 
6528	.dfl_cftypes = memory_files,
6529	.legacy_cftypes = mem_cgroup_legacy_files,
6530	.early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 *    the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 *    subsequent levels the effective protection is capped to the
6546 *    parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 *    user is allowed to overcommit the declared protection at a given
6550 *    level. If that is the case, the parent's effective protection is
6551 *    distributed to the children in proportion to how much protection
6552 *    they have declared and how much of it they are utilizing.
6553 *
6554 *    This makes distribution proportional, but also work-conserving:
6555 *    if one cgroup claims much more protection than it uses memory,
6556 *    the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 *    given level, the distribution of the larger parental protection
6560 *    budget is NOT proportional. A cgroup's protection from a sibling
6561 *    is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 *    without having to declare each individual cgroup's fixed share
6565 *    of the ancestor's claim to protection, any unutilized -
6566 *    "floating" - protection from up the tree is distributed in
6567 *    proportion to each cgroup's *usage*. This makes the protection
6568 *    neutral wrt sibling cgroups and lets them compete freely over
6569 *    the shared parental protection budget, but it protects the
6570 *    subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577					  unsigned long parent_usage,
6578					  unsigned long setting,
6579					  unsigned long parent_effective,
6580					  unsigned long siblings_protected)
6581{
6582	unsigned long protected;
6583	unsigned long ep;
6584
6585	protected = min(usage, setting);
6586	/*
6587	 * If all cgroups at this level combined claim and use more
6588	 * protection then what the parent affords them, distribute
6589	 * shares in proportion to utilization.
6590	 *
6591	 * We are using actual utilization rather than the statically
6592	 * claimed protection in order to be work-conserving: claimed
6593	 * but unused protection is available to siblings that would
6594	 * otherwise get a smaller chunk than what they claimed.
6595	 */
6596	if (siblings_protected > parent_effective)
6597		return protected * parent_effective / siblings_protected;
6598
6599	/*
6600	 * Ok, utilized protection of all children is within what the
6601	 * parent affords them, so we know whatever this child claims
6602	 * and utilizes is effectively protected.
6603	 *
6604	 * If there is unprotected usage beyond this value, reclaim
6605	 * will apply pressure in proportion to that amount.
6606	 *
6607	 * If there is unutilized protection, the cgroup will be fully
6608	 * shielded from reclaim, but we do return a smaller value for
6609	 * protection than what the group could enjoy in theory. This
6610	 * is okay. With the overcommit distribution above, effective
6611	 * protection is always dependent on how memory is actually
6612	 * consumed among the siblings anyway.
6613	 */
6614	ep = protected;
6615
6616	/*
6617	 * If the children aren't claiming (all of) the protection
6618	 * afforded to them by the parent, distribute the remainder in
6619	 * proportion to the (unprotected) memory of each cgroup. That
6620	 * way, cgroups that aren't explicitly prioritized wrt each
6621	 * other compete freely over the allowance, but they are
6622	 * collectively protected from neighboring trees.
6623	 *
6624	 * We're using unprotected memory for the weight so that if
6625	 * some cgroups DO claim explicit protection, we don't protect
6626	 * the same bytes twice.
6627	 *
6628	 * Check both usage and parent_usage against the respective
6629	 * protected values. One should imply the other, but they
6630	 * aren't read atomically - make sure the division is sane.
6631	 */
6632	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633		return ep;
6634	if (parent_effective > siblings_protected &&
6635	    parent_usage > siblings_protected &&
6636	    usage > protected) {
6637		unsigned long unclaimed;
6638
6639		unclaimed = parent_effective - siblings_protected;
6640		unclaimed *= usage - protected;
6641		unclaimed /= parent_usage - siblings_protected;
6642
6643		ep += unclaimed;
6644	}
6645
6646	return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 *          of a top-down tree iteration, not for isolated queries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658				     struct mem_cgroup *memcg)
6659{
6660	unsigned long usage, parent_usage;
6661	struct mem_cgroup *parent;
 
 
 
6662
6663	if (mem_cgroup_disabled())
6664		return;
6665
6666	if (!root)
6667		root = root_mem_cgroup;
6668
6669	/*
6670	 * Effective values of the reclaim targets are ignored so they
6671	 * can be stale. Have a look at mem_cgroup_protection for more
6672	 * details.
6673	 * TODO: calculation should be more robust so that we do not need
6674	 * that special casing.
6675	 */
6676	if (memcg == root)
6677		return;
6678
6679	usage = page_counter_read(&memcg->memory);
6680	if (!usage)
6681		return;
 
 
 
6682
6683	parent = parent_mem_cgroup(memcg);
6684	/* No parent means a non-hierarchical mode on v1 memcg */
6685	if (!parent)
6686		return;
6687
6688	if (parent == root) {
6689		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691		return;
6692	}
6693
6694	parent_usage = page_counter_read(&parent->memory);
 
 
 
6695
6696	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697			READ_ONCE(memcg->memory.min),
6698			READ_ONCE(parent->memory.emin),
6699			atomic_long_read(&parent->memory.children_min_usage)));
6700
6701	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702			READ_ONCE(memcg->memory.low),
6703			READ_ONCE(parent->memory.elow),
6704			atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708			       gfp_t gfp)
6709{
6710	unsigned int nr_pages = thp_nr_pages(page);
6711	int ret;
6712
6713	ret = try_charge(memcg, gfp, nr_pages);
6714	if (ret)
6715		goto out;
6716
6717	css_get(&memcg->css);
6718	commit_charge(page, memcg);
 
 
6719
6720	local_irq_disable();
6721	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722	memcg_check_events(memcg, page);
6723	local_irq_enable();
6724out:
6725	return ret;
 
 
 
 
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
 
 
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
 
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
 
 
 
 
6743{
6744	struct mem_cgroup *memcg;
6745	int ret;
 
6746
6747	if (mem_cgroup_disabled())
6748		return 0;
6749
6750	memcg = get_mem_cgroup_from_mm(mm);
6751	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6753
 
 
 
 
 
6754	return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770				  gfp_t gfp, swp_entry_t entry)
6771{
6772	struct mem_cgroup *memcg;
6773	unsigned short id;
6774	int ret;
6775
6776	if (mem_cgroup_disabled())
6777		return 0;
6778
6779	id = lookup_swap_cgroup_id(entry);
6780	rcu_read_lock();
6781	memcg = mem_cgroup_from_id(id);
6782	if (!memcg || !css_tryget_online(&memcg->css))
6783		memcg = get_mem_cgroup_from_mm(mm);
6784	rcu_read_unlock();
6785
6786	ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788	css_put(&memcg->css);
6789	return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
 
 
 
 
 
 
 
 
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
 
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
 
6802{
 
 
 
 
 
 
 
6803	/*
6804	 * Cgroup1's unified memory+swap counter has been charged with the
6805	 * new swapcache page, finish the transfer by uncharging the swap
6806	 * slot. The swap slot would also get uncharged when it dies, but
6807	 * it can stick around indefinitely and we'd count the page twice
6808	 * the entire time.
6809	 *
6810	 * Cgroup2 has separate resource counters for memory and swap,
6811	 * so this is a non-issue here. Memory and swap charge lifetimes
6812	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813	 * page to memory here, and uncharge swap when the slot is freed.
6814	 */
6815	if (!mem_cgroup_disabled() && do_memsw_account()) {
 
 
 
 
 
 
 
 
 
 
 
6816		/*
6817		 * The swap entry might not get freed for a long time,
6818		 * let's not wait for it.  The page already received a
6819		 * memory+swap charge, drop the swap entry duplicate.
6820		 */
6821		mem_cgroup_uncharge_swap(entry, 1);
6822	}
6823}
6824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6825struct uncharge_gather {
6826	struct mem_cgroup *memcg;
6827	unsigned long nr_memory;
6828	unsigned long pgpgout;
 
 
6829	unsigned long nr_kmem;
 
 
6830	struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835	memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
 
6840	unsigned long flags;
6841
6842	if (ug->nr_memory) {
6843		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844		if (do_memsw_account())
6845			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848		memcg_oom_recover(ug->memcg);
6849	}
6850
6851	local_irq_save(flags);
 
 
 
 
6852	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854	memcg_check_events(ug->memcg, ug->dummy_page);
6855	local_irq_restore(flags);
6856
6857	/* drop reference from uncharge_page */
6858	css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863	unsigned long nr_pages;
6864	struct mem_cgroup *memcg;
6865	struct obj_cgroup *objcg;
6866	bool use_objcg = PageMemcgKmem(page);
6867
6868	VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 
 
 
6869
6870	/*
6871	 * Nobody should be changing or seriously looking at
6872	 * page memcg or objcg at this point, we have fully
6873	 * exclusive access to the page.
6874	 */
6875	if (use_objcg) {
6876		objcg = __page_objcg(page);
6877		/*
6878		 * This get matches the put at the end of the function and
6879		 * kmem pages do not hold memcg references anymore.
6880		 */
6881		memcg = get_mem_cgroup_from_objcg(objcg);
6882	} else {
6883		memcg = __page_memcg(page);
6884	}
6885
6886	if (!memcg)
6887		return;
6888
6889	if (ug->memcg != memcg) {
6890		if (ug->memcg) {
6891			uncharge_batch(ug);
6892			uncharge_gather_clear(ug);
6893		}
6894		ug->memcg = memcg;
6895		ug->dummy_page = page;
6896
6897		/* pairs with css_put in uncharge_batch */
6898		css_get(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6899	}
6900
6901	nr_pages = compound_nr(page);
 
 
6902
6903	if (use_objcg) {
6904		ug->nr_memory += nr_pages;
6905		ug->nr_kmem += nr_pages;
 
6906
6907		page->memcg_data = 0;
6908		obj_cgroup_put(objcg);
6909	} else {
6910		/* LRU pages aren't accounted at the root level */
6911		if (!mem_cgroup_is_root(memcg))
6912			ug->nr_memory += nr_pages;
6913		ug->pgpgout++;
6914
6915		page->memcg_data = 0;
6916	}
 
 
 
 
 
6917
6918	css_put(&memcg->css);
 
 
 
 
 
 
 
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
 
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929	struct uncharge_gather ug;
6930
6931	if (mem_cgroup_disabled())
6932		return;
6933
6934	/* Don't touch page->lru of any random page, pre-check: */
6935	if (!page_memcg(page))
6936		return;
6937
6938	uncharge_gather_clear(&ug);
6939	uncharge_page(page, &ug);
6940	uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952	struct uncharge_gather ug;
6953	struct page *page;
6954
6955	if (mem_cgroup_disabled())
6956		return;
6957
6958	uncharge_gather_clear(&ug);
6959	list_for_each_entry(page, page_list, lru)
6960		uncharge_page(page, &ug);
6961	if (ug.memcg)
6962		uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977	struct mem_cgroup *memcg;
6978	unsigned int nr_pages;
 
6979	unsigned long flags;
6980
6981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985		       newpage);
6986
6987	if (mem_cgroup_disabled())
6988		return;
6989
6990	/* Page cache replacement: new page already charged? */
6991	if (page_memcg(newpage))
6992		return;
6993
6994	memcg = page_memcg(oldpage);
6995	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996	if (!memcg)
6997		return;
6998
6999	/* Force-charge the new page. The old one will be freed soon */
7000	nr_pages = thp_nr_pages(newpage);
 
7001
7002	if (!mem_cgroup_is_root(memcg)) {
7003		page_counter_charge(&memcg->memory, nr_pages);
7004		if (do_memsw_account())
7005			page_counter_charge(&memcg->memsw, nr_pages);
7006	}
7007
7008	css_get(&memcg->css);
7009	commit_charge(newpage, memcg);
7010
7011	local_irq_save(flags);
7012	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013	memcg_check_events(memcg, newpage);
7014	local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022	struct mem_cgroup *memcg;
7023
7024	if (!mem_cgroup_sockets_enabled)
7025		return;
7026
7027	/* Do not associate the sock with unrelated interrupted task's memcg. */
7028	if (in_interrupt())
 
 
 
 
 
 
 
 
 
7029		return;
 
7030
7031	rcu_read_lock();
7032	memcg = mem_cgroup_from_task(current);
7033	if (memcg == root_mem_cgroup)
7034		goto out;
7035	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036		goto out;
7037	if (css_tryget(&memcg->css))
7038		sk->sk_memcg = memcg;
7039out:
7040	rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045	if (sk->sk_memcg)
7046		css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059	gfp_t gfp_mask = GFP_KERNEL;
7060
7061	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062		struct page_counter *fail;
7063
7064		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065			memcg->tcpmem_pressure = 0;
7066			return true;
7067		}
7068		page_counter_charge(&memcg->tcpmem, nr_pages);
7069		memcg->tcpmem_pressure = 1;
7070		return false;
7071	}
7072
7073	/* Don't block in the packet receive path */
7074	if (in_softirq())
7075		gfp_mask = GFP_NOWAIT;
7076
7077	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080		return true;
7081
7082	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083	return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095		return;
7096	}
7097
7098	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100	refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105	char *token;
7106
7107	while ((token = strsep(&s, ",")) != NULL) {
7108		if (!*token)
7109			continue;
7110		if (!strcmp(token, "nosocket"))
7111			cgroup_memory_nosocket = true;
7112		if (!strcmp(token, "nokmem"))
7113			cgroup_memory_nokmem = true;
7114	}
7115	return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129	int cpu, node;
7130
 
7131	/*
7132	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134	 * to work fine, we should make sure that the overfill threshold can't
7135	 * exceed S32_MAX / PAGE_SIZE.
7136	 */
7137	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
 
 
7138
7139	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140				  memcg_hotplug_cpu_dead);
7141
7142	for_each_possible_cpu(cpu)
7143		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144			  drain_local_stock);
7145
7146	for_each_node(node) {
7147		struct mem_cgroup_tree_per_node *rtpn;
7148
7149		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150				    node_online(node) ? node : NUMA_NO_NODE);
7151
7152		rtpn->rb_root = RB_ROOT;
7153		rtpn->rb_rightmost = NULL;
7154		spin_lock_init(&rtpn->lock);
7155		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156	}
7157
7158	return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166		/*
7167		 * The root cgroup cannot be destroyed, so it's refcount must
7168		 * always be >= 1.
7169		 */
7170		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171			VM_BUG_ON(1);
7172			break;
7173		}
7174		memcg = parent_mem_cgroup(memcg);
7175		if (!memcg)
7176			memcg = root_mem_cgroup;
7177	}
7178	return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190	struct mem_cgroup *memcg, *swap_memcg;
7191	unsigned int nr_entries;
7192	unsigned short oldid;
7193
7194	VM_BUG_ON_PAGE(PageLRU(page), page);
7195	VM_BUG_ON_PAGE(page_count(page), page);
7196
7197	if (mem_cgroup_disabled())
7198		return;
7199
7200	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201		return;
7202
7203	memcg = page_memcg(page);
7204
7205	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206	if (!memcg)
7207		return;
7208
7209	/*
7210	 * In case the memcg owning these pages has been offlined and doesn't
7211	 * have an ID allocated to it anymore, charge the closest online
7212	 * ancestor for the swap instead and transfer the memory+swap charge.
7213	 */
7214	swap_memcg = mem_cgroup_id_get_online(memcg);
7215	nr_entries = thp_nr_pages(page);
7216	/* Get references for the tail pages, too */
7217	if (nr_entries > 1)
7218		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220				   nr_entries);
7221	VM_BUG_ON_PAGE(oldid, page);
7222	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224	page->memcg_data = 0;
7225
7226	if (!mem_cgroup_is_root(memcg))
7227		page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230		if (!mem_cgroup_is_root(swap_memcg))
7231			page_counter_charge(&swap_memcg->memsw, nr_entries);
7232		page_counter_uncharge(&memcg->memsw, nr_entries);
7233	}
7234
7235	/*
7236	 * Interrupts should be disabled here because the caller holds the
7237	 * i_pages lock which is taken with interrupts-off. It is
7238	 * important here to have the interrupts disabled because it is the
7239	 * only synchronisation we have for updating the per-CPU variables.
7240	 */
7241	VM_BUG_ON(!irqs_disabled());
7242	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
 
7243	memcg_check_events(memcg, page);
7244
7245	css_put(&memcg->css);
 
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259	unsigned int nr_pages = thp_nr_pages(page);
7260	struct page_counter *counter;
7261	struct mem_cgroup *memcg;
7262	unsigned short oldid;
7263
7264	if (mem_cgroup_disabled())
7265		return 0;
7266
7267	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268		return 0;
7269
7270	memcg = page_memcg(page);
7271
7272	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273	if (!memcg)
7274		return 0;
7275
7276	if (!entry.val) {
7277		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278		return 0;
7279	}
7280
7281	memcg = mem_cgroup_id_get_online(memcg);
7282
7283	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287		mem_cgroup_id_put(memcg);
7288		return -ENOMEM;
7289	}
7290
7291	/* Get references for the tail pages, too */
7292	if (nr_pages > 1)
7293		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295	VM_BUG_ON_PAGE(oldid, page);
7296	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298	return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308	struct mem_cgroup *memcg;
7309	unsigned short id;
7310
 
 
 
7311	id = swap_cgroup_record(entry, 0, nr_pages);
7312	rcu_read_lock();
7313	memcg = mem_cgroup_from_id(id);
7314	if (memcg) {
7315		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317				page_counter_uncharge(&memcg->swap, nr_pages);
7318			else
7319				page_counter_uncharge(&memcg->memsw, nr_pages);
7320		}
7321		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322		mem_cgroup_id_put_many(memcg, nr_pages);
7323	}
7324	rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329	long nr_swap_pages = get_nr_swap_pages();
7330
7331	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332		return nr_swap_pages;
7333	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334		nr_swap_pages = min_t(long, nr_swap_pages,
7335				      READ_ONCE(memcg->swap.max) -
7336				      page_counter_read(&memcg->swap));
7337	return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342	struct mem_cgroup *memcg;
7343
7344	VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346	if (vm_swap_full())
7347		return true;
7348	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349		return false;
7350
7351	memcg = page_memcg(page);
7352	if (!memcg)
7353		return false;
7354
7355	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356		unsigned long usage = page_counter_read(&memcg->swap);
7357
7358		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359		    usage * 2 >= READ_ONCE(memcg->swap.max))
7360			return true;
7361	}
7362
7363	return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
 
 
 
 
 
 
 
7367{
7368	if (!strcmp(s, "1"))
7369		cgroup_memory_noswap = false;
7370	else if (!strcmp(s, "0"))
7371		cgroup_memory_noswap = true;
7372	return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377			     struct cftype *cft)
7378{
7379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386	return seq_puts_memcg_tunable(m,
7387		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391			       char *buf, size_t nbytes, loff_t off)
7392{
7393	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394	unsigned long high;
7395	int err;
7396
7397	buf = strstrip(buf);
7398	err = page_counter_memparse(buf, "max", &high);
7399	if (err)
7400		return err;
7401
7402	page_counter_set_high(&memcg->swap, high);
7403
7404	return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409	return seq_puts_memcg_tunable(m,
7410		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414			      char *buf, size_t nbytes, loff_t off)
7415{
7416	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417	unsigned long max;
7418	int err;
7419
7420	buf = strstrip(buf);
7421	err = page_counter_memparse(buf, "max", &max);
7422	if (err)
7423		return err;
7424
7425	xchg(&memcg->swap.max, max);
7426
7427	return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434	seq_printf(m, "high %lu\n",
7435		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436	seq_printf(m, "max %lu\n",
7437		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438	seq_printf(m, "fail %lu\n",
7439		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441	return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445	{
7446		.name = "swap.current",
7447		.flags = CFTYPE_NOT_ON_ROOT,
7448		.read_u64 = swap_current_read,
7449	},
7450	{
7451		.name = "swap.high",
7452		.flags = CFTYPE_NOT_ON_ROOT,
7453		.seq_show = swap_high_show,
7454		.write = swap_high_write,
7455	},
7456	{
7457		.name = "swap.max",
7458		.flags = CFTYPE_NOT_ON_ROOT,
7459		.seq_show = swap_max_show,
7460		.write = swap_max_write,
7461	},
7462	{
7463		.name = "swap.events",
7464		.flags = CFTYPE_NOT_ON_ROOT,
7465		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466		.seq_show = swap_events_show,
7467	},
7468	{ }	/* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472	{
7473		.name = "memsw.usage_in_bytes",
7474		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475		.read_u64 = mem_cgroup_read_u64,
7476	},
7477	{
7478		.name = "memsw.max_usage_in_bytes",
7479		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480		.write = mem_cgroup_reset,
7481		.read_u64 = mem_cgroup_read_u64,
7482	},
7483	{
7484		.name = "memsw.limit_in_bytes",
7485		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486		.write = mem_cgroup_write,
7487		.read_u64 = mem_cgroup_read_u64,
7488	},
7489	{
7490		.name = "memsw.failcnt",
7491		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492		.write = mem_cgroup_reset,
7493		.read_u64 = mem_cgroup_read_u64,
7494	},
7495	{ },	/* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507	/* No memory control -> no swap control */
7508	if (mem_cgroup_disabled())
7509		cgroup_memory_noswap = true;
7510
7511	if (cgroup_memory_noswap)
7512		return 0;
7513
7514	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517	return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 
 
 
  23 */
  24
  25#include <linux/page_counter.h>
  26#include <linux/memcontrol.h>
  27#include <linux/cgroup.h>
  28#include <linux/pagewalk.h>
  29#include <linux/sched/mm.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vm_event_item.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include <linux/tracehook.h>
  60#include <linux/psi.h>
  61#include <linux/seq_buf.h>
  62#include "internal.h"
  63#include <net/sock.h>
  64#include <net/ip.h>
  65#include "slab.h"
  66
  67#include <linux/uaccess.h>
  68
  69#include <trace/events/vmscan.h>
  70
  71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72EXPORT_SYMBOL(memory_cgrp_subsys);
  73
  74struct mem_cgroup *root_mem_cgroup __read_mostly;
  75
  76#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  77
  78/* Socket memory accounting disabled? */
  79static bool cgroup_memory_nosocket;
  80
  81/* Kernel memory accounting disabled? */
  82static bool cgroup_memory_nokmem;
  83
  84/* Whether the swap controller is active */
  85#ifdef CONFIG_MEMCG_SWAP
  86int do_swap_account __read_mostly;
  87#else
  88#define do_swap_account		0
  89#endif
  90
  91#ifdef CONFIG_CGROUP_WRITEBACK
  92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  99}
 100
 101static const char *const mem_cgroup_lru_names[] = {
 102	"inactive_anon",
 103	"active_anon",
 104	"inactive_file",
 105	"active_file",
 106	"unevictable",
 107};
 108
 109#define THRESHOLDS_EVENTS_TARGET 128
 110#define SOFTLIMIT_EVENTS_TARGET 1024
 111#define NUMAINFO_EVENTS_TARGET	1024
 112
 113/*
 114 * Cgroups above their limits are maintained in a RB-Tree, independent of
 115 * their hierarchy representation
 116 */
 117
 118struct mem_cgroup_tree_per_node {
 119	struct rb_root rb_root;
 120	struct rb_node *rb_rightmost;
 121	spinlock_t lock;
 122};
 123
 124struct mem_cgroup_tree {
 125	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 126};
 127
 128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 129
 130/* for OOM */
 131struct mem_cgroup_eventfd_list {
 132	struct list_head list;
 133	struct eventfd_ctx *eventfd;
 134};
 135
 136/*
 137 * cgroup_event represents events which userspace want to receive.
 138 */
 139struct mem_cgroup_event {
 140	/*
 141	 * memcg which the event belongs to.
 142	 */
 143	struct mem_cgroup *memcg;
 144	/*
 145	 * eventfd to signal userspace about the event.
 146	 */
 147	struct eventfd_ctx *eventfd;
 148	/*
 149	 * Each of these stored in a list by the cgroup.
 150	 */
 151	struct list_head list;
 152	/*
 153	 * register_event() callback will be used to add new userspace
 154	 * waiter for changes related to this event.  Use eventfd_signal()
 155	 * on eventfd to send notification to userspace.
 156	 */
 157	int (*register_event)(struct mem_cgroup *memcg,
 158			      struct eventfd_ctx *eventfd, const char *args);
 159	/*
 160	 * unregister_event() callback will be called when userspace closes
 161	 * the eventfd or on cgroup removing.  This callback must be set,
 162	 * if you want provide notification functionality.
 163	 */
 164	void (*unregister_event)(struct mem_cgroup *memcg,
 165				 struct eventfd_ctx *eventfd);
 166	/*
 167	 * All fields below needed to unregister event when
 168	 * userspace closes eventfd.
 169	 */
 170	poll_table pt;
 171	wait_queue_head_t *wqh;
 172	wait_queue_entry_t wait;
 173	struct work_struct remove;
 174};
 175
 176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 178
 179/* Stuffs for move charges at task migration. */
 180/*
 181 * Types of charges to be moved.
 182 */
 183#define MOVE_ANON	0x1U
 184#define MOVE_FILE	0x2U
 185#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 186
 187/* "mc" and its members are protected by cgroup_mutex */
 188static struct move_charge_struct {
 189	spinlock_t	  lock; /* for from, to */
 190	struct mm_struct  *mm;
 191	struct mem_cgroup *from;
 192	struct mem_cgroup *to;
 193	unsigned long flags;
 194	unsigned long precharge;
 195	unsigned long moved_charge;
 196	unsigned long moved_swap;
 197	struct task_struct *moving_task;	/* a task moving charges */
 198	wait_queue_head_t waitq;		/* a waitq for other context */
 199} mc = {
 200	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 201	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 202};
 203
 204/*
 205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 206 * limit reclaim to prevent infinite loops, if they ever occur.
 207 */
 208#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 209#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 210
 211enum charge_type {
 212	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 213	MEM_CGROUP_CHARGE_TYPE_ANON,
 214	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 215	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 216	NR_CHARGE_TYPE,
 217};
 218
 219/* for encoding cft->private value on file */
 220enum res_type {
 221	_MEM,
 222	_MEMSWAP,
 223	_OOM_TYPE,
 224	_KMEM,
 225	_TCP,
 226};
 227
 228#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 229#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 230#define MEMFILE_ATTR(val)	((val) & 0xffff)
 231/* Used for OOM nofiier */
 232#define OOM_CONTROL		(0)
 233
 234/*
 235 * Iteration constructs for visiting all cgroups (under a tree).  If
 236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 237 * be used for reference counting.
 238 */
 239#define for_each_mem_cgroup_tree(iter, root)		\
 240	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 241	     iter != NULL;				\
 242	     iter = mem_cgroup_iter(root, iter, NULL))
 243
 244#define for_each_mem_cgroup(iter)			\
 245	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 246	     iter != NULL;				\
 247	     iter = mem_cgroup_iter(NULL, iter, NULL))
 248
 249static inline bool should_force_charge(void)
 250{
 251	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 252		(current->flags & PF_EXITING);
 253}
 254
 255/* Some nice accessors for the vmpressure. */
 256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 257{
 258	if (!memcg)
 259		memcg = root_mem_cgroup;
 260	return &memcg->vmpressure;
 261}
 262
 263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 264{
 265	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 266}
 267
 268#ifdef CONFIG_MEMCG_KMEM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/*
 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 271 * The main reason for not using cgroup id for this:
 272 *  this works better in sparse environments, where we have a lot of memcgs,
 273 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 274 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 275 *  200 entry array for that.
 276 *
 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 278 * will double each time we have to increase it.
 279 */
 280static DEFINE_IDA(memcg_cache_ida);
 281int memcg_nr_cache_ids;
 282
 283/* Protects memcg_nr_cache_ids */
 284static DECLARE_RWSEM(memcg_cache_ids_sem);
 285
 286void memcg_get_cache_ids(void)
 287{
 288	down_read(&memcg_cache_ids_sem);
 289}
 290
 291void memcg_put_cache_ids(void)
 292{
 293	up_read(&memcg_cache_ids_sem);
 294}
 295
 296/*
 297 * MIN_SIZE is different than 1, because we would like to avoid going through
 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 299 * cgroups is a reasonable guess. In the future, it could be a parameter or
 300 * tunable, but that is strictly not necessary.
 301 *
 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 303 * this constant directly from cgroup, but it is understandable that this is
 304 * better kept as an internal representation in cgroup.c. In any case, the
 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 306 * increase ours as well if it increases.
 307 */
 308#define MEMCG_CACHES_MIN_SIZE 4
 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 310
 311/*
 312 * A lot of the calls to the cache allocation functions are expected to be
 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 314 * conditional to this static branch, we'll have to allow modules that does
 315 * kmem_cache_alloc and the such to see this symbol as well
 316 */
 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
 319
 320struct workqueue_struct *memcg_kmem_cache_wq;
 321#endif
 322
 323static int memcg_shrinker_map_size;
 324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 325
 326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 327{
 328	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 329}
 330
 331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 332					 int size, int old_size)
 333{
 334	struct memcg_shrinker_map *new, *old;
 335	int nid;
 336
 337	lockdep_assert_held(&memcg_shrinker_map_mutex);
 338
 339	for_each_node(nid) {
 340		old = rcu_dereference_protected(
 341			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 342		/* Not yet online memcg */
 343		if (!old)
 344			return 0;
 345
 346		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
 347		if (!new)
 348			return -ENOMEM;
 349
 350		/* Set all old bits, clear all new bits */
 351		memset(new->map, (int)0xff, old_size);
 352		memset((void *)new->map + old_size, 0, size - old_size);
 353
 354		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 355		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 356	}
 357
 358	return 0;
 359}
 360
 361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 362{
 363	struct mem_cgroup_per_node *pn;
 364	struct memcg_shrinker_map *map;
 365	int nid;
 366
 367	if (mem_cgroup_is_root(memcg))
 368		return;
 369
 370	for_each_node(nid) {
 371		pn = mem_cgroup_nodeinfo(memcg, nid);
 372		map = rcu_dereference_protected(pn->shrinker_map, true);
 373		if (map)
 374			kvfree(map);
 375		rcu_assign_pointer(pn->shrinker_map, NULL);
 376	}
 377}
 378
 379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 380{
 381	struct memcg_shrinker_map *map;
 382	int nid, size, ret = 0;
 383
 384	if (mem_cgroup_is_root(memcg))
 385		return 0;
 386
 387	mutex_lock(&memcg_shrinker_map_mutex);
 388	size = memcg_shrinker_map_size;
 389	for_each_node(nid) {
 390		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
 391		if (!map) {
 392			memcg_free_shrinker_maps(memcg);
 393			ret = -ENOMEM;
 394			break;
 395		}
 396		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 397	}
 398	mutex_unlock(&memcg_shrinker_map_mutex);
 399
 400	return ret;
 401}
 402
 403int memcg_expand_shrinker_maps(int new_id)
 404{
 405	int size, old_size, ret = 0;
 406	struct mem_cgroup *memcg;
 407
 408	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 409	old_size = memcg_shrinker_map_size;
 410	if (size <= old_size)
 411		return 0;
 412
 413	mutex_lock(&memcg_shrinker_map_mutex);
 414	if (!root_mem_cgroup)
 415		goto unlock;
 416
 417	for_each_mem_cgroup(memcg) {
 418		if (mem_cgroup_is_root(memcg))
 419			continue;
 420		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 421		if (ret)
 422			goto unlock;
 423	}
 424unlock:
 425	if (!ret)
 426		memcg_shrinker_map_size = size;
 427	mutex_unlock(&memcg_shrinker_map_mutex);
 428	return ret;
 429}
 430
 431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 432{
 433	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 434		struct memcg_shrinker_map *map;
 435
 436		rcu_read_lock();
 437		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 438		/* Pairs with smp mb in shrink_slab() */
 439		smp_mb__before_atomic();
 440		set_bit(shrinker_id, map->map);
 441		rcu_read_unlock();
 442	}
 443}
 444
 445/**
 446 * mem_cgroup_css_from_page - css of the memcg associated with a page
 447 * @page: page of interest
 448 *
 449 * If memcg is bound to the default hierarchy, css of the memcg associated
 450 * with @page is returned.  The returned css remains associated with @page
 451 * until it is released.
 452 *
 453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 454 * is returned.
 455 */
 456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 457{
 458	struct mem_cgroup *memcg;
 459
 460	memcg = page->mem_cgroup;
 461
 462	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 463		memcg = root_mem_cgroup;
 464
 465	return &memcg->css;
 466}
 467
 468/**
 469 * page_cgroup_ino - return inode number of the memcg a page is charged to
 470 * @page: the page
 471 *
 472 * Look up the closest online ancestor of the memory cgroup @page is charged to
 473 * and return its inode number or 0 if @page is not charged to any cgroup. It
 474 * is safe to call this function without holding a reference to @page.
 475 *
 476 * Note, this function is inherently racy, because there is nothing to prevent
 477 * the cgroup inode from getting torn down and potentially reallocated a moment
 478 * after page_cgroup_ino() returns, so it only should be used by callers that
 479 * do not care (such as procfs interfaces).
 480 */
 481ino_t page_cgroup_ino(struct page *page)
 482{
 483	struct mem_cgroup *memcg;
 484	unsigned long ino = 0;
 485
 486	rcu_read_lock();
 487	if (PageSlab(page) && !PageTail(page))
 488		memcg = memcg_from_slab_page(page);
 489	else
 490		memcg = READ_ONCE(page->mem_cgroup);
 491	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 492		memcg = parent_mem_cgroup(memcg);
 493	if (memcg)
 494		ino = cgroup_ino(memcg->css.cgroup);
 495	rcu_read_unlock();
 496	return ino;
 497}
 498
 499static struct mem_cgroup_per_node *
 500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 501{
 502	int nid = page_to_nid(page);
 503
 504	return memcg->nodeinfo[nid];
 505}
 506
 507static struct mem_cgroup_tree_per_node *
 508soft_limit_tree_node(int nid)
 509{
 510	return soft_limit_tree.rb_tree_per_node[nid];
 511}
 512
 513static struct mem_cgroup_tree_per_node *
 514soft_limit_tree_from_page(struct page *page)
 515{
 516	int nid = page_to_nid(page);
 517
 518	return soft_limit_tree.rb_tree_per_node[nid];
 519}
 520
 521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 522					 struct mem_cgroup_tree_per_node *mctz,
 523					 unsigned long new_usage_in_excess)
 524{
 525	struct rb_node **p = &mctz->rb_root.rb_node;
 526	struct rb_node *parent = NULL;
 527	struct mem_cgroup_per_node *mz_node;
 528	bool rightmost = true;
 529
 530	if (mz->on_tree)
 531		return;
 532
 533	mz->usage_in_excess = new_usage_in_excess;
 534	if (!mz->usage_in_excess)
 535		return;
 536	while (*p) {
 537		parent = *p;
 538		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 539					tree_node);
 540		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 541			p = &(*p)->rb_left;
 542			rightmost = false;
 
 
 543		}
 544
 545		/*
 546		 * We can't avoid mem cgroups that are over their soft
 547		 * limit by the same amount
 548		 */
 549		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 550			p = &(*p)->rb_right;
 551	}
 552
 553	if (rightmost)
 554		mctz->rb_rightmost = &mz->tree_node;
 555
 556	rb_link_node(&mz->tree_node, parent, p);
 557	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 558	mz->on_tree = true;
 559}
 560
 561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 562					 struct mem_cgroup_tree_per_node *mctz)
 563{
 564	if (!mz->on_tree)
 565		return;
 566
 567	if (&mz->tree_node == mctz->rb_rightmost)
 568		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 569
 570	rb_erase(&mz->tree_node, &mctz->rb_root);
 571	mz->on_tree = false;
 572}
 573
 574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 575				       struct mem_cgroup_tree_per_node *mctz)
 576{
 577	unsigned long flags;
 578
 579	spin_lock_irqsave(&mctz->lock, flags);
 580	__mem_cgroup_remove_exceeded(mz, mctz);
 581	spin_unlock_irqrestore(&mctz->lock, flags);
 582}
 583
 584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 585{
 586	unsigned long nr_pages = page_counter_read(&memcg->memory);
 587	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 588	unsigned long excess = 0;
 589
 590	if (nr_pages > soft_limit)
 591		excess = nr_pages - soft_limit;
 592
 593	return excess;
 594}
 595
 596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 597{
 598	unsigned long excess;
 599	struct mem_cgroup_per_node *mz;
 600	struct mem_cgroup_tree_per_node *mctz;
 601
 602	mctz = soft_limit_tree_from_page(page);
 603	if (!mctz)
 604		return;
 605	/*
 606	 * Necessary to update all ancestors when hierarchy is used.
 607	 * because their event counter is not touched.
 608	 */
 609	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 610		mz = mem_cgroup_page_nodeinfo(memcg, page);
 611		excess = soft_limit_excess(memcg);
 612		/*
 613		 * We have to update the tree if mz is on RB-tree or
 614		 * mem is over its softlimit.
 615		 */
 616		if (excess || mz->on_tree) {
 617			unsigned long flags;
 618
 619			spin_lock_irqsave(&mctz->lock, flags);
 620			/* if on-tree, remove it */
 621			if (mz->on_tree)
 622				__mem_cgroup_remove_exceeded(mz, mctz);
 623			/*
 624			 * Insert again. mz->usage_in_excess will be updated.
 625			 * If excess is 0, no tree ops.
 626			 */
 627			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 628			spin_unlock_irqrestore(&mctz->lock, flags);
 629		}
 630	}
 631}
 632
 633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 634{
 635	struct mem_cgroup_tree_per_node *mctz;
 636	struct mem_cgroup_per_node *mz;
 637	int nid;
 638
 639	for_each_node(nid) {
 640		mz = mem_cgroup_nodeinfo(memcg, nid);
 641		mctz = soft_limit_tree_node(nid);
 642		if (mctz)
 643			mem_cgroup_remove_exceeded(mz, mctz);
 644	}
 645}
 646
 647static struct mem_cgroup_per_node *
 648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 649{
 650	struct mem_cgroup_per_node *mz;
 651
 652retry:
 653	mz = NULL;
 654	if (!mctz->rb_rightmost)
 655		goto done;		/* Nothing to reclaim from */
 656
 657	mz = rb_entry(mctz->rb_rightmost,
 658		      struct mem_cgroup_per_node, tree_node);
 659	/*
 660	 * Remove the node now but someone else can add it back,
 661	 * we will to add it back at the end of reclaim to its correct
 662	 * position in the tree.
 663	 */
 664	__mem_cgroup_remove_exceeded(mz, mctz);
 665	if (!soft_limit_excess(mz->memcg) ||
 666	    !css_tryget_online(&mz->memcg->css))
 667		goto retry;
 668done:
 669	return mz;
 670}
 671
 672static struct mem_cgroup_per_node *
 673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 674{
 675	struct mem_cgroup_per_node *mz;
 676
 677	spin_lock_irq(&mctz->lock);
 678	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 679	spin_unlock_irq(&mctz->lock);
 680	return mz;
 681}
 682
 683/**
 684 * __mod_memcg_state - update cgroup memory statistics
 685 * @memcg: the memory cgroup
 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 687 * @val: delta to add to the counter, can be negative
 688 */
 689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 690{
 691	long x;
 692
 693	if (mem_cgroup_disabled())
 694		return;
 695
 696	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 697	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 698		struct mem_cgroup *mi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699
 700		/*
 701		 * Batch local counters to keep them in sync with
 702		 * the hierarchical ones.
 703		 */
 704		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
 705		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 706			atomic_long_add(x, &mi->vmstats[idx]);
 707		x = 0;
 708	}
 709	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 710}
 711
 712static struct mem_cgroup_per_node *
 713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 714{
 715	struct mem_cgroup *parent;
 716
 717	parent = parent_mem_cgroup(pn->memcg);
 718	if (!parent)
 719		return NULL;
 720	return mem_cgroup_nodeinfo(parent, nid);
 721}
 722
 723/**
 724 * __mod_lruvec_state - update lruvec memory statistics
 725 * @lruvec: the lruvec
 726 * @idx: the stat item
 727 * @val: delta to add to the counter, can be negative
 728 *
 729 * The lruvec is the intersection of the NUMA node and a cgroup. This
 730 * function updates the all three counters that are affected by a
 731 * change of state at this level: per-node, per-cgroup, per-lruvec.
 732 */
 733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 734			int val)
 735{
 736	pg_data_t *pgdat = lruvec_pgdat(lruvec);
 737	struct mem_cgroup_per_node *pn;
 738	struct mem_cgroup *memcg;
 739	long x;
 740
 741	/* Update node */
 742	__mod_node_page_state(pgdat, idx, val);
 743
 744	if (mem_cgroup_disabled())
 745		return;
 746
 747	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 748	memcg = pn->memcg;
 749
 750	/* Update memcg */
 751	__mod_memcg_state(memcg, idx, val);
 752
 753	/* Update lruvec */
 754	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 755
 
 
 
 756	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 757	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 
 758		struct mem_cgroup_per_node *pi;
 759
 760		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 761			atomic_long_add(x, &pi->lruvec_stat[idx]);
 762		x = 0;
 763	}
 764	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 765}
 766
 767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768{
 769	struct page *page = virt_to_head_page(p);
 
 770	pg_data_t *pgdat = page_pgdat(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	struct mem_cgroup *memcg;
 772	struct lruvec *lruvec;
 773
 774	rcu_read_lock();
 775	memcg = memcg_from_slab_page(page);
 776
 777	/* Untracked pages have no memcg, no lruvec. Update only the node */
 778	if (!memcg || memcg == root_mem_cgroup) {
 
 
 
 
 
 779		__mod_node_page_state(pgdat, idx, val);
 780	} else {
 781		lruvec = mem_cgroup_lruvec(pgdat, memcg);
 782		__mod_lruvec_state(lruvec, idx, val);
 783	}
 784	rcu_read_unlock();
 785}
 786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787/**
 788 * __count_memcg_events - account VM events in a cgroup
 789 * @memcg: the memory cgroup
 790 * @idx: the event item
 791 * @count: the number of events that occured
 792 */
 793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 794			  unsigned long count)
 795{
 796	unsigned long x;
 797
 798	if (mem_cgroup_disabled())
 799		return;
 800
 801	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 802	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 803		struct mem_cgroup *mi;
 804
 805		/*
 806		 * Batch local counters to keep them in sync with
 807		 * the hierarchical ones.
 808		 */
 809		__this_cpu_add(memcg->vmstats_local->events[idx], x);
 810		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 811			atomic_long_add(x, &mi->vmevents[idx]);
 812		x = 0;
 813	}
 814	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 815}
 816
 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 818{
 819	return atomic_long_read(&memcg->vmevents[event]);
 820}
 821
 822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 823{
 824	long x = 0;
 825	int cpu;
 826
 827	for_each_possible_cpu(cpu)
 828		x += per_cpu(memcg->vmstats_local->events[event], cpu);
 829	return x;
 830}
 831
 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 833					 struct page *page,
 834					 bool compound, int nr_pages)
 835{
 836	/*
 837	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 838	 * counted as CACHE even if it's on ANON LRU.
 839	 */
 840	if (PageAnon(page))
 841		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 842	else {
 843		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 844		if (PageSwapBacked(page))
 845			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 846	}
 847
 848	if (compound) {
 849		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 850		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 851	}
 852
 853	/* pagein of a big page is an event. So, ignore page size */
 854	if (nr_pages > 0)
 855		__count_memcg_events(memcg, PGPGIN, 1);
 856	else {
 857		__count_memcg_events(memcg, PGPGOUT, 1);
 858		nr_pages = -nr_pages; /* for event */
 859	}
 860
 861	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 862}
 863
 864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 865				       enum mem_cgroup_events_target target)
 866{
 867	unsigned long val, next;
 868
 869	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 870	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 871	/* from time_after() in jiffies.h */
 872	if ((long)(next - val) < 0) {
 873		switch (target) {
 874		case MEM_CGROUP_TARGET_THRESH:
 875			next = val + THRESHOLDS_EVENTS_TARGET;
 876			break;
 877		case MEM_CGROUP_TARGET_SOFTLIMIT:
 878			next = val + SOFTLIMIT_EVENTS_TARGET;
 879			break;
 880		case MEM_CGROUP_TARGET_NUMAINFO:
 881			next = val + NUMAINFO_EVENTS_TARGET;
 882			break;
 883		default:
 884			break;
 885		}
 886		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 887		return true;
 888	}
 889	return false;
 890}
 891
 892/*
 893 * Check events in order.
 894 *
 895 */
 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 897{
 898	/* threshold event is triggered in finer grain than soft limit */
 899	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 900						MEM_CGROUP_TARGET_THRESH))) {
 901		bool do_softlimit;
 902		bool do_numainfo __maybe_unused;
 903
 904		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 905						MEM_CGROUP_TARGET_SOFTLIMIT);
 906#if MAX_NUMNODES > 1
 907		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 908						MEM_CGROUP_TARGET_NUMAINFO);
 909#endif
 910		mem_cgroup_threshold(memcg);
 911		if (unlikely(do_softlimit))
 912			mem_cgroup_update_tree(memcg, page);
 913#if MAX_NUMNODES > 1
 914		if (unlikely(do_numainfo))
 915			atomic_inc(&memcg->numainfo_events);
 916#endif
 917	}
 918}
 919
 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 921{
 922	/*
 923	 * mm_update_next_owner() may clear mm->owner to NULL
 924	 * if it races with swapoff, page migration, etc.
 925	 * So this can be called with p == NULL.
 926	 */
 927	if (unlikely(!p))
 928		return NULL;
 929
 930	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 931}
 932EXPORT_SYMBOL(mem_cgroup_from_task);
 933
 
 
 
 
 
 
 
 
 934/**
 935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 936 * @mm: mm from which memcg should be extracted. It can be NULL.
 937 *
 938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 940 * returned.
 
 
 
 941 */
 942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 943{
 944	struct mem_cgroup *memcg;
 945
 946	if (mem_cgroup_disabled())
 947		return NULL;
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949	rcu_read_lock();
 950	do {
 951		/*
 952		 * Page cache insertions can happen withou an
 953		 * actual mm context, e.g. during disk probing
 954		 * on boot, loopback IO, acct() writes etc.
 955		 */
 956		if (unlikely(!mm))
 957			memcg = root_mem_cgroup;
 958		else {
 959			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 960			if (unlikely(!memcg))
 961				memcg = root_mem_cgroup;
 962		}
 963	} while (!css_tryget(&memcg->css));
 964	rcu_read_unlock();
 965	return memcg;
 966}
 967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 968
 969/**
 970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 971 * @page: page from which memcg should be extracted.
 972 *
 973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 974 * root_mem_cgroup is returned.
 975 */
 976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
 977{
 978	struct mem_cgroup *memcg = page->mem_cgroup;
 
 
 979
 980	if (mem_cgroup_disabled())
 981		return NULL;
 
 982
 983	rcu_read_lock();
 984	if (!memcg || !css_tryget_online(&memcg->css))
 985		memcg = root_mem_cgroup;
 986	rcu_read_unlock();
 987	return memcg;
 988}
 989EXPORT_SYMBOL(get_mem_cgroup_from_page);
 990
 991/**
 992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 993 */
 994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
 995{
 996	if (unlikely(current->active_memcg)) {
 997		struct mem_cgroup *memcg = root_mem_cgroup;
 998
 999		rcu_read_lock();
1000		if (css_tryget_online(&current->active_memcg->css))
1001			memcg = current->active_memcg;
1002		rcu_read_unlock();
1003		return memcg;
1004	}
1005	return get_mem_cgroup_from_mm(current->mm);
1006}
1007
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
1021 * Reclaimers can specify a node and a priority level in @reclaim to
1022 * divide up the memcgs in the hierarchy among all concurrent
1023 * reclaimers operating on the same node and priority.
1024 */
1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026				   struct mem_cgroup *prev,
1027				   struct mem_cgroup_reclaim_cookie *reclaim)
1028{
1029	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030	struct cgroup_subsys_state *css = NULL;
1031	struct mem_cgroup *memcg = NULL;
1032	struct mem_cgroup *pos = NULL;
1033
1034	if (mem_cgroup_disabled())
1035		return NULL;
1036
1037	if (!root)
1038		root = root_mem_cgroup;
1039
1040	if (prev && !reclaim)
1041		pos = prev;
1042
1043	if (!root->use_hierarchy && root != root_mem_cgroup) {
1044		if (prev)
1045			goto out;
1046		return root;
1047	}
1048
1049	rcu_read_lock();
1050
1051	if (reclaim) {
1052		struct mem_cgroup_per_node *mz;
1053
1054		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055		iter = &mz->iter[reclaim->priority];
1056
1057		if (prev && reclaim->generation != iter->generation)
1058			goto out_unlock;
1059
1060		while (1) {
1061			pos = READ_ONCE(iter->position);
1062			if (!pos || css_tryget(&pos->css))
1063				break;
1064			/*
1065			 * css reference reached zero, so iter->position will
1066			 * be cleared by ->css_released. However, we should not
1067			 * rely on this happening soon, because ->css_released
1068			 * is called from a work queue, and by busy-waiting we
1069			 * might block it. So we clear iter->position right
1070			 * away.
1071			 */
1072			(void)cmpxchg(&iter->position, pos, NULL);
1073		}
1074	}
1075
1076	if (pos)
1077		css = &pos->css;
1078
1079	for (;;) {
1080		css = css_next_descendant_pre(css, &root->css);
1081		if (!css) {
1082			/*
1083			 * Reclaimers share the hierarchy walk, and a
1084			 * new one might jump in right at the end of
1085			 * the hierarchy - make sure they see at least
1086			 * one group and restart from the beginning.
1087			 */
1088			if (!prev)
1089				continue;
1090			break;
1091		}
1092
1093		/*
1094		 * Verify the css and acquire a reference.  The root
1095		 * is provided by the caller, so we know it's alive
1096		 * and kicking, and don't take an extra reference.
1097		 */
1098		memcg = mem_cgroup_from_css(css);
1099
1100		if (css == &root->css)
1101			break;
1102
1103		if (css_tryget(css))
1104			break;
1105
1106		memcg = NULL;
1107	}
1108
1109	if (reclaim) {
1110		/*
1111		 * The position could have already been updated by a competing
1112		 * thread, so check that the value hasn't changed since we read
1113		 * it to avoid reclaiming from the same cgroup twice.
1114		 */
1115		(void)cmpxchg(&iter->position, pos, memcg);
1116
1117		if (pos)
1118			css_put(&pos->css);
1119
1120		if (!memcg)
1121			iter->generation++;
1122		else if (!prev)
1123			reclaim->generation = iter->generation;
1124	}
1125
1126out_unlock:
1127	rcu_read_unlock();
1128out:
1129	if (prev && prev != root)
1130		css_put(&prev->css);
1131
1132	return memcg;
1133}
1134
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141			   struct mem_cgroup *prev)
1142{
1143	if (!root)
1144		root = root_mem_cgroup;
1145	if (prev && prev != root)
1146		css_put(&prev->css);
1147}
1148
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150					struct mem_cgroup *dead_memcg)
1151{
1152	struct mem_cgroup_reclaim_iter *iter;
1153	struct mem_cgroup_per_node *mz;
1154	int nid;
1155	int i;
1156
1157	for_each_node(nid) {
1158		mz = mem_cgroup_nodeinfo(from, nid);
1159		for (i = 0; i <= DEF_PRIORITY; i++) {
1160			iter = &mz->iter[i];
1161			cmpxchg(&iter->position,
1162				dead_memcg, NULL);
1163		}
1164	}
1165}
1166
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168{
1169	struct mem_cgroup *memcg = dead_memcg;
1170	struct mem_cgroup *last;
1171
1172	do {
1173		__invalidate_reclaim_iterators(memcg, dead_memcg);
1174		last = memcg;
1175	} while ((memcg = parent_mem_cgroup(memcg)));
1176
1177	/*
1178	 * When cgruop1 non-hierarchy mode is used,
1179	 * parent_mem_cgroup() does not walk all the way up to the
1180	 * cgroup root (root_mem_cgroup). So we have to handle
1181	 * dead_memcg from cgroup root separately.
1182	 */
1183	if (last != root_mem_cgroup)
1184		__invalidate_reclaim_iterators(root_mem_cgroup,
1185						dead_memcg);
1186}
1187
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202			  int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204	struct mem_cgroup *iter;
1205	int ret = 0;
1206
1207	BUG_ON(memcg == root_mem_cgroup);
1208
1209	for_each_mem_cgroup_tree(iter, memcg) {
1210		struct css_task_iter it;
1211		struct task_struct *task;
1212
1213		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214		while (!ret && (task = css_task_iter_next(&it)))
1215			ret = fn(task, arg);
1216		css_task_iter_end(&it);
1217		if (ret) {
1218			mem_cgroup_iter_break(memcg, iter);
1219			break;
1220		}
1221	}
1222	return ret;
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225/**
1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227 * @page: the page
1228 * @pgdat: pgdat of the page
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
 
 
1233 */
1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	struct mem_cgroup_per_node *mz;
1237	struct mem_cgroup *memcg;
1238	struct lruvec *lruvec;
1239
1240	if (mem_cgroup_disabled()) {
1241		lruvec = &pgdat->lruvec;
1242		goto out;
1243	}
1244
1245	memcg = page->mem_cgroup;
1246	/*
1247	 * Swapcache readahead pages are added to the LRU - and
1248	 * possibly migrated - before they are charged.
1249	 */
1250	if (!memcg)
1251		memcg = root_mem_cgroup;
1252
1253	mz = mem_cgroup_page_nodeinfo(memcg, page);
1254	lruvec = &mz->lruvec;
1255out:
1256	/*
1257	 * Since a node can be onlined after the mem_cgroup was created,
1258	 * we have to be prepared to initialize lruvec->zone here;
1259	 * and if offlined then reonlined, we need to reinitialize it.
1260	 */
1261	if (unlikely(lruvec->pgdat != pgdat))
1262		lruvec->pgdat = pgdat;
1263	return lruvec;
1264}
1265
1266/**
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
1270 * @zid: zone id of the accounted pages
1271 * @nr_pages: positive when adding or negative when removing
1272 *
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276 */
1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278				int zid, int nr_pages)
1279{
1280	struct mem_cgroup_per_node *mz;
1281	unsigned long *lru_size;
1282	long size;
1283
1284	if (mem_cgroup_disabled())
1285		return;
1286
1287	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288	lru_size = &mz->lru_zone_size[zid][lru];
1289
1290	if (nr_pages < 0)
1291		*lru_size += nr_pages;
1292
1293	size = *lru_size;
1294	if (WARN_ONCE(size < 0,
1295		"%s(%p, %d, %d): lru_size %ld\n",
1296		__func__, lruvec, lru, nr_pages, size)) {
1297		VM_BUG_ON(1);
1298		*lru_size = 0;
1299	}
1300
1301	if (nr_pages > 0)
1302		*lru_size += nr_pages;
1303}
1304
1305/**
1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307 * @memcg: the memory cgroup
1308 *
1309 * Returns the maximum amount of memory @mem can be charged with, in
1310 * pages.
1311 */
1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313{
1314	unsigned long margin = 0;
1315	unsigned long count;
1316	unsigned long limit;
1317
1318	count = page_counter_read(&memcg->memory);
1319	limit = READ_ONCE(memcg->memory.max);
1320	if (count < limit)
1321		margin = limit - count;
1322
1323	if (do_memsw_account()) {
1324		count = page_counter_read(&memcg->memsw);
1325		limit = READ_ONCE(memcg->memsw.max);
1326		if (count <= limit)
1327			margin = min(margin, limit - count);
1328		else
1329			margin = 0;
1330	}
1331
1332	return margin;
1333}
1334
1335/*
1336 * A routine for checking "mem" is under move_account() or not.
1337 *
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
1341 */
1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343{
1344	struct mem_cgroup *from;
1345	struct mem_cgroup *to;
1346	bool ret = false;
1347	/*
1348	 * Unlike task_move routines, we access mc.to, mc.from not under
1349	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350	 */
1351	spin_lock(&mc.lock);
1352	from = mc.from;
1353	to = mc.to;
1354	if (!from)
1355		goto unlock;
1356
1357	ret = mem_cgroup_is_descendant(from, memcg) ||
1358		mem_cgroup_is_descendant(to, memcg);
1359unlock:
1360	spin_unlock(&mc.lock);
1361	return ret;
1362}
1363
1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365{
1366	if (mc.moving_task && current != mc.moving_task) {
1367		if (mem_cgroup_under_move(memcg)) {
1368			DEFINE_WAIT(wait);
1369			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370			/* moving charge context might have finished. */
1371			if (mc.moving_task)
1372				schedule();
1373			finish_wait(&mc.waitq, &wait);
1374			return true;
1375		}
1376	}
1377	return false;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382	struct seq_buf s;
1383	int i;
1384
1385	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386	if (!s.buffer)
1387		return NULL;
1388
1389	/*
1390	 * Provide statistics on the state of the memory subsystem as
1391	 * well as cumulative event counters that show past behavior.
1392	 *
1393	 * This list is ordered following a combination of these gradients:
1394	 * 1) generic big picture -> specifics and details
1395	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396	 *
1397	 * Current memory state:
1398	 */
 
 
 
 
1399
1400	seq_buf_printf(&s, "anon %llu\n",
1401		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402		       PAGE_SIZE);
1403	seq_buf_printf(&s, "file %llu\n",
1404		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405		       PAGE_SIZE);
1406	seq_buf_printf(&s, "kernel_stack %llu\n",
1407		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408		       1024);
1409	seq_buf_printf(&s, "slab %llu\n",
1410		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412		       PAGE_SIZE);
1413	seq_buf_printf(&s, "sock %llu\n",
1414		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415		       PAGE_SIZE);
1416
1417	seq_buf_printf(&s, "shmem %llu\n",
1418		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1419		       PAGE_SIZE);
1420	seq_buf_printf(&s, "file_mapped %llu\n",
1421		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422		       PAGE_SIZE);
1423	seq_buf_printf(&s, "file_dirty %llu\n",
1424		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425		       PAGE_SIZE);
1426	seq_buf_printf(&s, "file_writeback %llu\n",
1427		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428		       PAGE_SIZE);
1429
1430	/*
1431	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433	 * arse because it requires migrating the work out of rmap to a place
1434	 * where the page->mem_cgroup is set up and stable.
1435	 */
1436	seq_buf_printf(&s, "anon_thp %llu\n",
1437		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438		       PAGE_SIZE);
1439
1440	for (i = 0; i < NR_LRU_LISTS; i++)
1441		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443			       PAGE_SIZE);
1444
1445	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447		       PAGE_SIZE);
1448	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450		       PAGE_SIZE);
1451
1452	/* Accumulated memory events */
1453
1454	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457	seq_buf_printf(&s, "workingset_refault %lu\n",
1458		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1459	seq_buf_printf(&s, "workingset_activate %lu\n",
1460		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465	seq_buf_printf(&s, "pgscan %lu\n",
1466		       memcg_events(memcg, PGSCAN_KSWAPD) +
1467		       memcg_events(memcg, PGSCAN_DIRECT));
1468	seq_buf_printf(&s, "pgsteal %lu\n",
1469		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1470		       memcg_events(memcg, PGSTEAL_DIRECT));
1471	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
 
 
 
 
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478		       memcg_events(memcg, THP_FAULT_ALLOC));
1479	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483	/* The above should easily fit into one page */
1484	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486	return s.buffer;
1487}
1488
1489#define K(x) ((x) << (PAGE_SHIFT-10))
1490/**
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500{
1501	rcu_read_lock();
1502
1503	if (memcg) {
1504		pr_cont(",oom_memcg=");
1505		pr_cont_cgroup_path(memcg->css.cgroup);
1506	} else
1507		pr_cont(",global_oom");
1508	if (p) {
1509		pr_cont(",task_memcg=");
1510		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511	}
1512	rcu_read_unlock();
1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
1522	char *buf;
1523
1524	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525		K((u64)page_counter_read(&memcg->memory)),
1526		K((u64)memcg->memory.max), memcg->memory.failcnt);
1527	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529			K((u64)page_counter_read(&memcg->swap)),
1530			K((u64)memcg->swap.max), memcg->swap.failcnt);
1531	else {
1532		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533			K((u64)page_counter_read(&memcg->memsw)),
1534			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536			K((u64)page_counter_read(&memcg->kmem)),
1537			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538	}
1539
1540	pr_info("Memory cgroup stats for ");
1541	pr_cont_cgroup_path(memcg->css.cgroup);
1542	pr_cont(":");
1543	buf = memory_stat_format(memcg);
1544	if (!buf)
1545		return;
1546	pr_info("%s", buf);
1547	kfree(buf);
1548}
1549
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554{
1555	unsigned long max;
 
 
 
 
 
 
 
 
 
1556
1557	max = memcg->memory.max;
1558	if (mem_cgroup_swappiness(memcg)) {
1559		unsigned long memsw_max;
1560		unsigned long swap_max;
1561
1562		memsw_max = memcg->memsw.max;
1563		swap_max = memcg->swap.max;
1564		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565		max = min(max + swap_max, memsw_max);
1566	}
1567	return max;
1568}
1569
1570unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571{
1572	return page_counter_read(&memcg->memory);
1573}
1574
1575static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576				     int order)
1577{
1578	struct oom_control oc = {
1579		.zonelist = NULL,
1580		.nodemask = NULL,
1581		.memcg = memcg,
1582		.gfp_mask = gfp_mask,
1583		.order = order,
1584	};
1585	bool ret;
1586
1587	if (mutex_lock_killable(&oom_lock))
1588		return true;
 
 
 
 
1589	/*
1590	 * A few threads which were not waiting at mutex_lock_killable() can
1591	 * fail to bail out. Therefore, check again after holding oom_lock.
1592	 */
1593	ret = should_force_charge() || out_of_memory(&oc);
 
 
1594	mutex_unlock(&oom_lock);
1595	return ret;
1596}
1597
1598#if MAX_NUMNODES > 1
1599
1600/**
1601 * test_mem_cgroup_node_reclaimable
1602 * @memcg: the target memcg
1603 * @nid: the node ID to be checked.
1604 * @noswap : specify true here if the user wants flle only information.
1605 *
1606 * This function returns whether the specified memcg contains any
1607 * reclaimable pages on a node. Returns true if there are any reclaimable
1608 * pages in the node.
1609 */
1610static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1611		int nid, bool noswap)
1612{
1613	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1614
1615	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1616	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1617		return true;
1618	if (noswap || !total_swap_pages)
1619		return false;
1620	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1621	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1622		return true;
1623	return false;
1624
1625}
1626
1627/*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
1633static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634{
1635	int nid;
1636	/*
1637	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638	 * pagein/pageout changes since the last update.
1639	 */
1640	if (!atomic_read(&memcg->numainfo_events))
1641		return;
1642	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643		return;
1644
1645	/* make a nodemask where this memcg uses memory from */
1646	memcg->scan_nodes = node_states[N_MEMORY];
1647
1648	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649
1650		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651			node_clear(nid, memcg->scan_nodes);
1652	}
1653
1654	atomic_set(&memcg->numainfo_events, 0);
1655	atomic_set(&memcg->numainfo_updating, 0);
1656}
1657
1658/*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671{
1672	int node;
1673
1674	mem_cgroup_may_update_nodemask(memcg);
1675	node = memcg->last_scanned_node;
1676
1677	node = next_node_in(node, memcg->scan_nodes);
1678	/*
1679	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1680	 * last time it really checked all the LRUs due to rate limiting.
1681	 * Fallback to the current node in that case for simplicity.
1682	 */
1683	if (unlikely(node == MAX_NUMNODES))
1684		node = numa_node_id();
1685
1686	memcg->last_scanned_node = node;
1687	return node;
1688}
1689#else
1690int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691{
1692	return 0;
1693}
1694#endif
1695
1696static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1697				   pg_data_t *pgdat,
1698				   gfp_t gfp_mask,
1699				   unsigned long *total_scanned)
1700{
1701	struct mem_cgroup *victim = NULL;
1702	int total = 0;
1703	int loop = 0;
1704	unsigned long excess;
1705	unsigned long nr_scanned;
1706	struct mem_cgroup_reclaim_cookie reclaim = {
1707		.pgdat = pgdat,
1708		.priority = 0,
1709	};
1710
1711	excess = soft_limit_excess(root_memcg);
1712
1713	while (1) {
1714		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715		if (!victim) {
1716			loop++;
1717			if (loop >= 2) {
1718				/*
1719				 * If we have not been able to reclaim
1720				 * anything, it might because there are
1721				 * no reclaimable pages under this hierarchy
1722				 */
1723				if (!total)
1724					break;
1725				/*
1726				 * We want to do more targeted reclaim.
1727				 * excess >> 2 is not to excessive so as to
1728				 * reclaim too much, nor too less that we keep
1729				 * coming back to reclaim from this cgroup
1730				 */
1731				if (total >= (excess >> 2) ||
1732					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1733					break;
1734			}
1735			continue;
1736		}
1737		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1738					pgdat, &nr_scanned);
1739		*total_scanned += nr_scanned;
1740		if (!soft_limit_excess(root_memcg))
1741			break;
1742	}
1743	mem_cgroup_iter_break(root_memcg, victim);
1744	return total;
1745}
1746
1747#ifdef CONFIG_LOCKDEP
1748static struct lockdep_map memcg_oom_lock_dep_map = {
1749	.name = "memcg_oom_lock",
1750};
1751#endif
1752
1753static DEFINE_SPINLOCK(memcg_oom_lock);
1754
1755/*
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
1758 */
1759static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1760{
1761	struct mem_cgroup *iter, *failed = NULL;
1762
1763	spin_lock(&memcg_oom_lock);
1764
1765	for_each_mem_cgroup_tree(iter, memcg) {
1766		if (iter->oom_lock) {
1767			/*
1768			 * this subtree of our hierarchy is already locked
1769			 * so we cannot give a lock.
1770			 */
1771			failed = iter;
1772			mem_cgroup_iter_break(memcg, iter);
1773			break;
1774		} else
1775			iter->oom_lock = true;
1776	}
1777
1778	if (failed) {
1779		/*
1780		 * OK, we failed to lock the whole subtree so we have
1781		 * to clean up what we set up to the failing subtree
1782		 */
1783		for_each_mem_cgroup_tree(iter, memcg) {
1784			if (iter == failed) {
1785				mem_cgroup_iter_break(memcg, iter);
1786				break;
1787			}
1788			iter->oom_lock = false;
1789		}
1790	} else
1791		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792
1793	spin_unlock(&memcg_oom_lock);
1794
1795	return !failed;
1796}
1797
1798static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1799{
1800	struct mem_cgroup *iter;
1801
1802	spin_lock(&memcg_oom_lock);
1803	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804	for_each_mem_cgroup_tree(iter, memcg)
1805		iter->oom_lock = false;
1806	spin_unlock(&memcg_oom_lock);
1807}
1808
1809static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810{
1811	struct mem_cgroup *iter;
1812
1813	spin_lock(&memcg_oom_lock);
1814	for_each_mem_cgroup_tree(iter, memcg)
1815		iter->under_oom++;
1816	spin_unlock(&memcg_oom_lock);
1817}
1818
1819static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1820{
1821	struct mem_cgroup *iter;
1822
1823	/*
1824	 * When a new child is created while the hierarchy is under oom,
1825	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1826	 */
1827	spin_lock(&memcg_oom_lock);
1828	for_each_mem_cgroup_tree(iter, memcg)
1829		if (iter->under_oom > 0)
1830			iter->under_oom--;
1831	spin_unlock(&memcg_oom_lock);
1832}
1833
1834static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835
1836struct oom_wait_info {
1837	struct mem_cgroup *memcg;
1838	wait_queue_entry_t	wait;
1839};
1840
1841static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1842	unsigned mode, int sync, void *arg)
1843{
1844	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845	struct mem_cgroup *oom_wait_memcg;
1846	struct oom_wait_info *oom_wait_info;
1847
1848	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849	oom_wait_memcg = oom_wait_info->memcg;
1850
1851	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1852	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1853		return 0;
1854	return autoremove_wake_function(wait, mode, sync, arg);
1855}
1856
1857static void memcg_oom_recover(struct mem_cgroup *memcg)
1858{
1859	/*
1860	 * For the following lockless ->under_oom test, the only required
1861	 * guarantee is that it must see the state asserted by an OOM when
1862	 * this function is called as a result of userland actions
1863	 * triggered by the notification of the OOM.  This is trivially
1864	 * achieved by invoking mem_cgroup_mark_under_oom() before
1865	 * triggering notification.
1866	 */
1867	if (memcg && memcg->under_oom)
1868		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1869}
1870
1871enum oom_status {
1872	OOM_SUCCESS,
1873	OOM_FAILED,
1874	OOM_ASYNC,
1875	OOM_SKIPPED
1876};
1877
1878static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1879{
1880	enum oom_status ret;
1881	bool locked;
1882
1883	if (order > PAGE_ALLOC_COSTLY_ORDER)
1884		return OOM_SKIPPED;
1885
1886	memcg_memory_event(memcg, MEMCG_OOM);
1887
1888	/*
1889	 * We are in the middle of the charge context here, so we
1890	 * don't want to block when potentially sitting on a callstack
1891	 * that holds all kinds of filesystem and mm locks.
1892	 *
1893	 * cgroup1 allows disabling the OOM killer and waiting for outside
1894	 * handling until the charge can succeed; remember the context and put
1895	 * the task to sleep at the end of the page fault when all locks are
1896	 * released.
1897	 *
1898	 * On the other hand, in-kernel OOM killer allows for an async victim
1899	 * memory reclaim (oom_reaper) and that means that we are not solely
1900	 * relying on the oom victim to make a forward progress and we can
1901	 * invoke the oom killer here.
1902	 *
1903	 * Please note that mem_cgroup_out_of_memory might fail to find a
1904	 * victim and then we have to bail out from the charge path.
1905	 */
1906	if (memcg->oom_kill_disable) {
1907		if (!current->in_user_fault)
1908			return OOM_SKIPPED;
1909		css_get(&memcg->css);
1910		current->memcg_in_oom = memcg;
1911		current->memcg_oom_gfp_mask = mask;
1912		current->memcg_oom_order = order;
1913
1914		return OOM_ASYNC;
1915	}
1916
1917	mem_cgroup_mark_under_oom(memcg);
1918
1919	locked = mem_cgroup_oom_trylock(memcg);
1920
1921	if (locked)
1922		mem_cgroup_oom_notify(memcg);
1923
1924	mem_cgroup_unmark_under_oom(memcg);
1925	if (mem_cgroup_out_of_memory(memcg, mask, order))
1926		ret = OOM_SUCCESS;
1927	else
1928		ret = OOM_FAILED;
1929
1930	if (locked)
1931		mem_cgroup_oom_unlock(memcg);
1932
1933	return ret;
1934}
1935
1936/**
1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1938 * @handle: actually kill/wait or just clean up the OOM state
1939 *
1940 * This has to be called at the end of a page fault if the memcg OOM
1941 * handler was enabled.
1942 *
1943 * Memcg supports userspace OOM handling where failed allocations must
1944 * sleep on a waitqueue until the userspace task resolves the
1945 * situation.  Sleeping directly in the charge context with all kinds
1946 * of locks held is not a good idea, instead we remember an OOM state
1947 * in the task and mem_cgroup_oom_synchronize() has to be called at
1948 * the end of the page fault to complete the OOM handling.
1949 *
1950 * Returns %true if an ongoing memcg OOM situation was detected and
1951 * completed, %false otherwise.
1952 */
1953bool mem_cgroup_oom_synchronize(bool handle)
1954{
1955	struct mem_cgroup *memcg = current->memcg_in_oom;
1956	struct oom_wait_info owait;
1957	bool locked;
1958
1959	/* OOM is global, do not handle */
1960	if (!memcg)
1961		return false;
1962
1963	if (!handle)
1964		goto cleanup;
1965
1966	owait.memcg = memcg;
1967	owait.wait.flags = 0;
1968	owait.wait.func = memcg_oom_wake_function;
1969	owait.wait.private = current;
1970	INIT_LIST_HEAD(&owait.wait.entry);
1971
1972	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1973	mem_cgroup_mark_under_oom(memcg);
1974
1975	locked = mem_cgroup_oom_trylock(memcg);
1976
1977	if (locked)
1978		mem_cgroup_oom_notify(memcg);
1979
1980	if (locked && !memcg->oom_kill_disable) {
1981		mem_cgroup_unmark_under_oom(memcg);
1982		finish_wait(&memcg_oom_waitq, &owait.wait);
1983		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1984					 current->memcg_oom_order);
1985	} else {
1986		schedule();
1987		mem_cgroup_unmark_under_oom(memcg);
1988		finish_wait(&memcg_oom_waitq, &owait.wait);
1989	}
1990
1991	if (locked) {
1992		mem_cgroup_oom_unlock(memcg);
1993		/*
1994		 * There is no guarantee that an OOM-lock contender
1995		 * sees the wakeups triggered by the OOM kill
1996		 * uncharges.  Wake any sleepers explicitely.
1997		 */
1998		memcg_oom_recover(memcg);
1999	}
2000cleanup:
2001	current->memcg_in_oom = NULL;
2002	css_put(&memcg->css);
2003	return true;
2004}
2005
2006/**
2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2008 * @victim: task to be killed by the OOM killer
2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2010 *
2011 * Returns a pointer to a memory cgroup, which has to be cleaned up
2012 * by killing all belonging OOM-killable tasks.
2013 *
2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2015 */
2016struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2017					    struct mem_cgroup *oom_domain)
2018{
2019	struct mem_cgroup *oom_group = NULL;
2020	struct mem_cgroup *memcg;
2021
2022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2023		return NULL;
2024
2025	if (!oom_domain)
2026		oom_domain = root_mem_cgroup;
2027
2028	rcu_read_lock();
2029
2030	memcg = mem_cgroup_from_task(victim);
2031	if (memcg == root_mem_cgroup)
2032		goto out;
2033
2034	/*
 
 
 
 
 
 
 
 
2035	 * Traverse the memory cgroup hierarchy from the victim task's
2036	 * cgroup up to the OOMing cgroup (or root) to find the
2037	 * highest-level memory cgroup with oom.group set.
2038	 */
2039	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2040		if (memcg->oom_group)
2041			oom_group = memcg;
2042
2043		if (memcg == oom_domain)
2044			break;
2045	}
2046
2047	if (oom_group)
2048		css_get(&oom_group->css);
2049out:
2050	rcu_read_unlock();
2051
2052	return oom_group;
2053}
2054
2055void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2056{
2057	pr_info("Tasks in ");
2058	pr_cont_cgroup_path(memcg->css.cgroup);
2059	pr_cont(" are going to be killed due to memory.oom.group set\n");
2060}
2061
2062/**
2063 * lock_page_memcg - lock a page->mem_cgroup binding
2064 * @page: the page
2065 *
2066 * This function protects unlocked LRU pages from being moved to
2067 * another cgroup.
2068 *
2069 * It ensures lifetime of the returned memcg. Caller is responsible
2070 * for the lifetime of the page; __unlock_page_memcg() is available
2071 * when @page might get freed inside the locked section.
2072 */
2073struct mem_cgroup *lock_page_memcg(struct page *page)
2074{
 
2075	struct mem_cgroup *memcg;
2076	unsigned long flags;
2077
2078	/*
2079	 * The RCU lock is held throughout the transaction.  The fast
2080	 * path can get away without acquiring the memcg->move_lock
2081	 * because page moving starts with an RCU grace period.
2082	 *
2083	 * The RCU lock also protects the memcg from being freed when
2084	 * the page state that is going to change is the only thing
2085	 * preventing the page itself from being freed. E.g. writeback
2086	 * doesn't hold a page reference and relies on PG_writeback to
2087	 * keep off truncation, migration and so forth.
2088         */
2089	rcu_read_lock();
2090
2091	if (mem_cgroup_disabled())
2092		return NULL;
2093again:
2094	memcg = page->mem_cgroup;
2095	if (unlikely(!memcg))
2096		return NULL;
 
 
 
 
 
 
2097
2098	if (atomic_read(&memcg->moving_account) <= 0)
2099		return memcg;
2100
2101	spin_lock_irqsave(&memcg->move_lock, flags);
2102	if (memcg != page->mem_cgroup) {
2103		spin_unlock_irqrestore(&memcg->move_lock, flags);
2104		goto again;
2105	}
2106
2107	/*
2108	 * When charge migration first begins, we can have locked and
2109	 * unlocked page stat updates happening concurrently.  Track
2110	 * the task who has the lock for unlock_page_memcg().
 
2111	 */
2112	memcg->move_lock_task = current;
2113	memcg->move_lock_flags = flags;
2114
2115	return memcg;
2116}
2117EXPORT_SYMBOL(lock_page_memcg);
2118
2119/**
2120 * __unlock_page_memcg - unlock and unpin a memcg
2121 * @memcg: the memcg
2122 *
2123 * Unlock and unpin a memcg returned by lock_page_memcg().
2124 */
2125void __unlock_page_memcg(struct mem_cgroup *memcg)
2126{
2127	if (memcg && memcg->move_lock_task == current) {
2128		unsigned long flags = memcg->move_lock_flags;
2129
2130		memcg->move_lock_task = NULL;
2131		memcg->move_lock_flags = 0;
2132
2133		spin_unlock_irqrestore(&memcg->move_lock, flags);
2134	}
2135
2136	rcu_read_unlock();
2137}
2138
2139/**
2140 * unlock_page_memcg - unlock a page->mem_cgroup binding
2141 * @page: the page
2142 */
2143void unlock_page_memcg(struct page *page)
2144{
2145	__unlock_page_memcg(page->mem_cgroup);
 
 
2146}
2147EXPORT_SYMBOL(unlock_page_memcg);
2148
 
 
 
 
 
 
 
 
 
 
 
 
2149struct memcg_stock_pcp {
2150	struct mem_cgroup *cached; /* this never be root cgroup */
2151	unsigned int nr_pages;
 
 
 
2152	struct work_struct work;
2153	unsigned long flags;
2154#define FLUSHING_CACHED_CHARGE	0
2155};
2156static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2157static DEFINE_MUTEX(percpu_charge_mutex);
2158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159/**
2160 * consume_stock: Try to consume stocked charge on this cpu.
2161 * @memcg: memcg to consume from.
2162 * @nr_pages: how many pages to charge.
2163 *
2164 * The charges will only happen if @memcg matches the current cpu's memcg
2165 * stock, and at least @nr_pages are available in that stock.  Failure to
2166 * service an allocation will refill the stock.
2167 *
2168 * returns true if successful, false otherwise.
2169 */
2170static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2171{
2172	struct memcg_stock_pcp *stock;
2173	unsigned long flags;
2174	bool ret = false;
2175
2176	if (nr_pages > MEMCG_CHARGE_BATCH)
2177		return ret;
2178
2179	local_irq_save(flags);
2180
2181	stock = this_cpu_ptr(&memcg_stock);
2182	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2183		stock->nr_pages -= nr_pages;
2184		ret = true;
2185	}
2186
2187	local_irq_restore(flags);
2188
2189	return ret;
2190}
2191
2192/*
2193 * Returns stocks cached in percpu and reset cached information.
2194 */
2195static void drain_stock(struct memcg_stock_pcp *stock)
2196{
2197	struct mem_cgroup *old = stock->cached;
2198
 
 
 
2199	if (stock->nr_pages) {
2200		page_counter_uncharge(&old->memory, stock->nr_pages);
2201		if (do_memsw_account())
2202			page_counter_uncharge(&old->memsw, stock->nr_pages);
2203		css_put_many(&old->css, stock->nr_pages);
2204		stock->nr_pages = 0;
2205	}
 
 
2206	stock->cached = NULL;
2207}
2208
2209static void drain_local_stock(struct work_struct *dummy)
2210{
2211	struct memcg_stock_pcp *stock;
2212	unsigned long flags;
2213
2214	/*
2215	 * The only protection from memory hotplug vs. drain_stock races is
2216	 * that we always operate on local CPU stock here with IRQ disabled
2217	 */
2218	local_irq_save(flags);
2219
2220	stock = this_cpu_ptr(&memcg_stock);
 
 
 
2221	drain_stock(stock);
2222	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2223
2224	local_irq_restore(flags);
2225}
2226
2227/*
2228 * Cache charges(val) to local per_cpu area.
2229 * This will be consumed by consume_stock() function, later.
2230 */
2231static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2232{
2233	struct memcg_stock_pcp *stock;
2234	unsigned long flags;
2235
2236	local_irq_save(flags);
2237
2238	stock = this_cpu_ptr(&memcg_stock);
2239	if (stock->cached != memcg) { /* reset if necessary */
2240		drain_stock(stock);
 
2241		stock->cached = memcg;
2242	}
2243	stock->nr_pages += nr_pages;
2244
2245	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2246		drain_stock(stock);
2247
2248	local_irq_restore(flags);
2249}
2250
2251/*
2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2253 * of the hierarchy under it.
2254 */
2255static void drain_all_stock(struct mem_cgroup *root_memcg)
2256{
2257	int cpu, curcpu;
2258
2259	/* If someone's already draining, avoid adding running more workers. */
2260	if (!mutex_trylock(&percpu_charge_mutex))
2261		return;
2262	/*
2263	 * Notify other cpus that system-wide "drain" is running
2264	 * We do not care about races with the cpu hotplug because cpu down
2265	 * as well as workers from this path always operate on the local
2266	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2267	 */
2268	curcpu = get_cpu();
2269	for_each_online_cpu(cpu) {
2270		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2271		struct mem_cgroup *memcg;
2272		bool flush = false;
2273
2274		rcu_read_lock();
2275		memcg = stock->cached;
2276		if (memcg && stock->nr_pages &&
2277		    mem_cgroup_is_descendant(memcg, root_memcg))
2278			flush = true;
 
 
2279		rcu_read_unlock();
2280
2281		if (flush &&
2282		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2283			if (cpu == curcpu)
2284				drain_local_stock(&stock->work);
2285			else
2286				schedule_work_on(cpu, &stock->work);
2287		}
2288	}
2289	put_cpu();
2290	mutex_unlock(&percpu_charge_mutex);
2291}
2292
2293static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294{
2295	struct memcg_stock_pcp *stock;
2296	struct mem_cgroup *memcg, *mi;
2297
2298	stock = &per_cpu(memcg_stock, cpu);
2299	drain_stock(stock);
2300
2301	for_each_mem_cgroup(memcg) {
2302		int i;
2303
2304		for (i = 0; i < MEMCG_NR_STAT; i++) {
2305			int nid;
2306			long x;
2307
2308			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309			if (x)
2310				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311					atomic_long_add(x, &memcg->vmstats[i]);
2312
2313			if (i >= NR_VM_NODE_STAT_ITEMS)
2314				continue;
 
 
 
 
2315
2316			for_each_node(nid) {
2317				struct mem_cgroup_per_node *pn;
 
 
2318
2319				pn = mem_cgroup_nodeinfo(memcg, nid);
2320				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321				if (x)
2322					do {
2323						atomic_long_add(x, &pn->lruvec_stat[i]);
2324					} while ((pn = parent_nodeinfo(pn, nid)));
2325			}
2326		}
2327
2328		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329			long x;
2330
2331			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332			if (x)
2333				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334					atomic_long_add(x, &memcg->vmevents[i]);
2335		}
2336	}
2337
2338	return 0;
2339}
2340
2341static void reclaim_high(struct mem_cgroup *memcg,
2342			 unsigned int nr_pages,
2343			 gfp_t gfp_mask)
2344{
 
 
2345	do {
2346		if (page_counter_read(&memcg->memory) <= memcg->high)
 
 
 
2347			continue;
 
2348		memcg_memory_event(memcg, MEMCG_HIGH);
2349		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
 
2351}
2352
2353static void high_work_func(struct work_struct *work)
2354{
2355	struct mem_cgroup *memcg;
2356
2357	memcg = container_of(work, struct mem_cgroup, high_work);
2358	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359}
2360
2361/*
2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2363 * enough to still cause a significant slowdown in most cases, while still
2364 * allowing diagnostics and tracing to proceed without becoming stuck.
2365 */
2366#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2367
2368/*
2369 * When calculating the delay, we use these either side of the exponentiation to
2370 * maintain precision and scale to a reasonable number of jiffies (see the table
2371 * below.
2372 *
2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2374 *   overage ratio to a delay.
2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2376 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2377 *   to produce a reasonable delay curve.
2378 *
2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2380 * reasonable delay curve compared to precision-adjusted overage, not
2381 * penalising heavily at first, but still making sure that growth beyond the
2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2383 * example, with a high of 100 megabytes:
2384 *
2385 *  +-------+------------------------+
2386 *  | usage | time to allocate in ms |
2387 *  +-------+------------------------+
2388 *  | 100M  |                      0 |
2389 *  | 101M  |                      6 |
2390 *  | 102M  |                     25 |
2391 *  | 103M  |                     57 |
2392 *  | 104M  |                    102 |
2393 *  | 105M  |                    159 |
2394 *  | 106M  |                    230 |
2395 *  | 107M  |                    313 |
2396 *  | 108M  |                    409 |
2397 *  | 109M  |                    518 |
2398 *  | 110M  |                    639 |
2399 *  | 111M  |                    774 |
2400 *  | 112M  |                    921 |
2401 *  | 113M  |                   1081 |
2402 *  | 114M  |                   1254 |
2403 *  | 115M  |                   1439 |
2404 *  | 116M  |                   1638 |
2405 *  | 117M  |                   1849 |
2406 *  | 118M  |                   2000 |
2407 *  | 119M  |                   2000 |
2408 *  | 120M  |                   2000 |
2409 *  +-------+------------------------+
2410 */
2411 #define MEMCG_DELAY_PRECISION_SHIFT 20
2412 #define MEMCG_DELAY_SCALING_SHIFT 14
2413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414/*
2415 * Scheduled by try_charge() to be executed from the userland return path
2416 * and reclaims memory over the high limit.
2417 */
2418void mem_cgroup_handle_over_high(void)
2419{
2420	unsigned long usage, high, clamped_high;
2421	unsigned long pflags;
2422	unsigned long penalty_jiffies, overage;
2423	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 
2424	struct mem_cgroup *memcg;
 
2425
2426	if (likely(!nr_pages))
2427		return;
2428
2429	memcg = get_mem_cgroup_from_mm(current->mm);
2430	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2431	current->memcg_nr_pages_over_high = 0;
2432
 
2433	/*
2434	 * memory.high is breached and reclaim is unable to keep up. Throttle
2435	 * allocators proactively to slow down excessive growth.
 
2436	 *
2437	 * We use overage compared to memory.high to calculate the number of
2438	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2439	 * fairly lenient on small overages, and increasingly harsh when the
2440	 * memcg in question makes it clear that it has no intention of stopping
2441	 * its crazy behaviour, so we exponentially increase the delay based on
2442	 * overage amount.
2443	 */
2444
2445	usage = page_counter_read(&memcg->memory);
2446	high = READ_ONCE(memcg->high);
2447
2448	if (usage <= high)
2449		goto out;
2450
2451	/*
2452	 * Prevent division by 0 in overage calculation by acting as if it was a
2453	 * threshold of 1 page
2454	 */
2455	clamped_high = max(high, 1UL);
2456
2457	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2458			  clamped_high);
2459
2460	penalty_jiffies = ((u64)overage * overage * HZ)
2461		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2462
2463	/*
2464	 * Factor in the task's own contribution to the overage, such that four
2465	 * N-sized allocations are throttled approximately the same as one
2466	 * 4N-sized allocation.
2467	 *
2468	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469	 * larger the current charge patch is than that.
2470	 */
2471	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472
2473	/*
2474	 * Clamp the max delay per usermode return so as to still keep the
2475	 * application moving forwards and also permit diagnostics, albeit
2476	 * extremely slowly.
2477	 */
2478	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2479
2480	/*
2481	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2482	 * that it's not even worth doing, in an attempt to be nice to those who
2483	 * go only a small amount over their memory.high value and maybe haven't
2484	 * been aggressively reclaimed enough yet.
2485	 */
2486	if (penalty_jiffies <= HZ / 100)
2487		goto out;
2488
2489	/*
 
 
 
 
 
 
 
 
 
 
2490	 * If we exit early, we're guaranteed to die (since
2491	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2492	 * need to account for any ill-begotten jiffies to pay them off later.
2493	 */
2494	psi_memstall_enter(&pflags);
2495	schedule_timeout_killable(penalty_jiffies);
2496	psi_memstall_leave(&pflags);
2497
2498out:
2499	css_put(&memcg->css);
2500}
2501
2502static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503		      unsigned int nr_pages)
2504{
2505	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2506	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2507	struct mem_cgroup *mem_over_limit;
2508	struct page_counter *counter;
 
2509	unsigned long nr_reclaimed;
2510	bool may_swap = true;
2511	bool drained = false;
2512	enum oom_status oom_status;
2513
2514	if (mem_cgroup_is_root(memcg))
2515		return 0;
2516retry:
2517	if (consume_stock(memcg, nr_pages))
2518		return 0;
2519
2520	if (!do_memsw_account() ||
2521	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2523			goto done_restock;
2524		if (do_memsw_account())
2525			page_counter_uncharge(&memcg->memsw, batch);
2526		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2527	} else {
2528		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2529		may_swap = false;
2530	}
2531
2532	if (batch > nr_pages) {
2533		batch = nr_pages;
2534		goto retry;
2535	}
2536
2537	/*
2538	 * Memcg doesn't have a dedicated reserve for atomic
2539	 * allocations. But like the global atomic pool, we need to
2540	 * put the burden of reclaim on regular allocation requests
2541	 * and let these go through as privileged allocations.
2542	 */
2543	if (gfp_mask & __GFP_ATOMIC)
2544		goto force;
2545
2546	/*
2547	 * Unlike in global OOM situations, memcg is not in a physical
2548	 * memory shortage.  Allow dying and OOM-killed tasks to
2549	 * bypass the last charges so that they can exit quickly and
2550	 * free their memory.
2551	 */
2552	if (unlikely(should_force_charge()))
2553		goto force;
2554
2555	/*
2556	 * Prevent unbounded recursion when reclaim operations need to
2557	 * allocate memory. This might exceed the limits temporarily,
2558	 * but we prefer facilitating memory reclaim and getting back
2559	 * under the limit over triggering OOM kills in these cases.
2560	 */
2561	if (unlikely(current->flags & PF_MEMALLOC))
2562		goto force;
2563
2564	if (unlikely(task_in_memcg_oom(current)))
2565		goto nomem;
2566
2567	if (!gfpflags_allow_blocking(gfp_mask))
2568		goto nomem;
2569
2570	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2571
 
2572	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2573						    gfp_mask, may_swap);
 
2574
2575	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2576		goto retry;
2577
2578	if (!drained) {
2579		drain_all_stock(mem_over_limit);
2580		drained = true;
2581		goto retry;
2582	}
2583
2584	if (gfp_mask & __GFP_NORETRY)
2585		goto nomem;
2586	/*
2587	 * Even though the limit is exceeded at this point, reclaim
2588	 * may have been able to free some pages.  Retry the charge
2589	 * before killing the task.
2590	 *
2591	 * Only for regular pages, though: huge pages are rather
2592	 * unlikely to succeed so close to the limit, and we fall back
2593	 * to regular pages anyway in case of failure.
2594	 */
2595	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2596		goto retry;
2597	/*
2598	 * At task move, charge accounts can be doubly counted. So, it's
2599	 * better to wait until the end of task_move if something is going on.
2600	 */
2601	if (mem_cgroup_wait_acct_move(mem_over_limit))
2602		goto retry;
2603
2604	if (nr_retries--)
2605		goto retry;
2606
2607	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2608		goto nomem;
2609
2610	if (gfp_mask & __GFP_NOFAIL)
2611		goto force;
2612
2613	if (fatal_signal_pending(current))
2614		goto force;
2615
2616	/*
2617	 * keep retrying as long as the memcg oom killer is able to make
2618	 * a forward progress or bypass the charge if the oom killer
2619	 * couldn't make any progress.
2620	 */
2621	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2622		       get_order(nr_pages * PAGE_SIZE));
2623	switch (oom_status) {
2624	case OOM_SUCCESS:
2625		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626		goto retry;
2627	case OOM_FAILED:
2628		goto force;
2629	default:
2630		goto nomem;
2631	}
2632nomem:
2633	if (!(gfp_mask & __GFP_NOFAIL))
2634		return -ENOMEM;
2635force:
2636	/*
2637	 * The allocation either can't fail or will lead to more memory
2638	 * being freed very soon.  Allow memory usage go over the limit
2639	 * temporarily by force charging it.
2640	 */
2641	page_counter_charge(&memcg->memory, nr_pages);
2642	if (do_memsw_account())
2643		page_counter_charge(&memcg->memsw, nr_pages);
2644	css_get_many(&memcg->css, nr_pages);
2645
2646	return 0;
2647
2648done_restock:
2649	css_get_many(&memcg->css, batch);
2650	if (batch > nr_pages)
2651		refill_stock(memcg, batch - nr_pages);
2652
2653	/*
2654	 * If the hierarchy is above the normal consumption range, schedule
2655	 * reclaim on returning to userland.  We can perform reclaim here
2656	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2657	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2658	 * not recorded as it most likely matches current's and won't
2659	 * change in the meantime.  As high limit is checked again before
2660	 * reclaim, the cost of mismatch is negligible.
2661	 */
2662	do {
2663		if (page_counter_read(&memcg->memory) > memcg->high) {
2664			/* Don't bother a random interrupted task */
2665			if (in_interrupt()) {
 
 
 
 
 
 
 
2666				schedule_work(&memcg->high_work);
2667				break;
2668			}
 
 
 
 
 
 
 
 
 
 
 
 
 
2669			current->memcg_nr_pages_over_high += batch;
2670			set_notify_resume(current);
2671			break;
2672		}
2673	} while ((memcg = parent_mem_cgroup(memcg)));
2674
2675	return 0;
2676}
2677
 
 
 
 
 
 
 
 
 
 
2678static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2679{
2680	if (mem_cgroup_is_root(memcg))
2681		return;
2682
2683	page_counter_uncharge(&memcg->memory, nr_pages);
2684	if (do_memsw_account())
2685		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
2686
2687	css_put_many(&memcg->css, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
2688}
2689
2690static void lock_page_lru(struct page *page, int *isolated)
2691{
2692	pg_data_t *pgdat = page_pgdat(page);
 
 
 
 
 
 
 
2693
2694	spin_lock_irq(&pgdat->lru_lock);
2695	if (PageLRU(page)) {
2696		struct lruvec *lruvec;
2697
2698		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2699		ClearPageLRU(page);
2700		del_page_from_lru_list(page, lruvec, page_lru(page));
2701		*isolated = 1;
2702	} else
2703		*isolated = 0;
2704}
2705
2706static void unlock_page_lru(struct page *page, int isolated)
2707{
2708	pg_data_t *pgdat = page_pgdat(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710	if (isolated) {
2711		struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712
2713		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2714		VM_BUG_ON_PAGE(PageLRU(page), page);
2715		SetPageLRU(page);
2716		add_page_to_lru_list(page, lruvec, page_lru(page));
2717	}
2718	spin_unlock_irq(&pgdat->lru_lock);
2719}
2720
2721static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2722			  bool lrucare)
 
 
 
 
 
 
 
 
 
 
 
2723{
2724	int isolated;
 
 
 
2725
2726	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2727
2728	/*
2729	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2730	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 
2731	 */
2732	if (lrucare)
2733		lock_page_lru(page, &isolated);
 
 
 
 
 
 
 
 
 
2734
2735	/*
2736	 * Nobody should be changing or seriously looking at
2737	 * page->mem_cgroup at this point:
2738	 *
2739	 * - the page is uncharged
2740	 *
2741	 * - the page is off-LRU
2742	 *
2743	 * - an anonymous fault has exclusive page access, except for
2744	 *   a locked page table
2745	 *
2746	 * - a page cache insertion, a swapin fault, or a migration
2747	 *   have the page locked
2748	 */
2749	page->mem_cgroup = memcg;
 
 
 
 
 
 
 
 
 
2750
2751	if (lrucare)
2752		unlock_page_lru(page, isolated);
 
 
 
 
 
 
 
 
 
 
 
 
 
2753}
2754
2755#ifdef CONFIG_MEMCG_KMEM
2756static int memcg_alloc_cache_id(void)
2757{
2758	int id, size;
2759	int err;
2760
2761	id = ida_simple_get(&memcg_cache_ida,
2762			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2763	if (id < 0)
2764		return id;
2765
2766	if (id < memcg_nr_cache_ids)
2767		return id;
2768
2769	/*
2770	 * There's no space for the new id in memcg_caches arrays,
2771	 * so we have to grow them.
2772	 */
2773	down_write(&memcg_cache_ids_sem);
2774
2775	size = 2 * (id + 1);
2776	if (size < MEMCG_CACHES_MIN_SIZE)
2777		size = MEMCG_CACHES_MIN_SIZE;
2778	else if (size > MEMCG_CACHES_MAX_SIZE)
2779		size = MEMCG_CACHES_MAX_SIZE;
2780
2781	err = memcg_update_all_caches(size);
2782	if (!err)
2783		err = memcg_update_all_list_lrus(size);
2784	if (!err)
2785		memcg_nr_cache_ids = size;
2786
2787	up_write(&memcg_cache_ids_sem);
2788
2789	if (err) {
2790		ida_simple_remove(&memcg_cache_ida, id);
2791		return err;
2792	}
2793	return id;
2794}
2795
2796static void memcg_free_cache_id(int id)
2797{
2798	ida_simple_remove(&memcg_cache_ida, id);
2799}
2800
2801struct memcg_kmem_cache_create_work {
2802	struct mem_cgroup *memcg;
2803	struct kmem_cache *cachep;
2804	struct work_struct work;
2805};
2806
2807static void memcg_kmem_cache_create_func(struct work_struct *w)
2808{
2809	struct memcg_kmem_cache_create_work *cw =
2810		container_of(w, struct memcg_kmem_cache_create_work, work);
2811	struct mem_cgroup *memcg = cw->memcg;
2812	struct kmem_cache *cachep = cw->cachep;
2813
2814	memcg_create_kmem_cache(memcg, cachep);
2815
2816	css_put(&memcg->css);
2817	kfree(cw);
2818}
2819
2820/*
2821 * Enqueue the creation of a per-memcg kmem_cache.
 
 
2822 */
2823static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2824					       struct kmem_cache *cachep)
2825{
2826	struct memcg_kmem_cache_create_work *cw;
2827
2828	if (!css_tryget_online(&memcg->css))
2829		return;
2830
2831	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2832	if (!cw)
2833		return;
2834
2835	cw->memcg = memcg;
2836	cw->cachep = cachep;
2837	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2838
2839	queue_work(memcg_kmem_cache_wq, &cw->work);
2840}
2841
2842static inline bool memcg_kmem_bypass(void)
2843{
2844	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2845		return true;
2846	return false;
2847}
2848
2849/**
2850 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2851 * @cachep: the original global kmem cache
2852 *
2853 * Return the kmem_cache we're supposed to use for a slab allocation.
2854 * We try to use the current memcg's version of the cache.
2855 *
2856 * If the cache does not exist yet, if we are the first user of it, we
2857 * create it asynchronously in a workqueue and let the current allocation
2858 * go through with the original cache.
2859 *
2860 * This function takes a reference to the cache it returns to assure it
2861 * won't get destroyed while we are working with it. Once the caller is
2862 * done with it, memcg_kmem_put_cache() must be called to release the
2863 * reference.
2864 */
2865struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2866{
2867	struct mem_cgroup *memcg;
2868	struct kmem_cache *memcg_cachep;
2869	struct memcg_cache_array *arr;
2870	int kmemcg_id;
2871
2872	VM_BUG_ON(!is_root_cache(cachep));
2873
2874	if (memcg_kmem_bypass())
2875		return cachep;
 
2876
2877	rcu_read_lock();
2878
2879	if (unlikely(current->active_memcg))
2880		memcg = current->active_memcg;
2881	else
2882		memcg = mem_cgroup_from_task(current);
2883
2884	if (!memcg || memcg == root_mem_cgroup)
2885		goto out_unlock;
2886
2887	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2888	if (kmemcg_id < 0)
2889		goto out_unlock;
2890
2891	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2892
2893	/*
2894	 * Make sure we will access the up-to-date value. The code updating
2895	 * memcg_caches issues a write barrier to match the data dependency
2896	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2897	 */
2898	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2899
2900	/*
2901	 * If we are in a safe context (can wait, and not in interrupt
2902	 * context), we could be be predictable and return right away.
2903	 * This would guarantee that the allocation being performed
2904	 * already belongs in the new cache.
2905	 *
2906	 * However, there are some clashes that can arrive from locking.
2907	 * For instance, because we acquire the slab_mutex while doing
2908	 * memcg_create_kmem_cache, this means no further allocation
2909	 * could happen with the slab_mutex held. So it's better to
2910	 * defer everything.
2911	 *
2912	 * If the memcg is dying or memcg_cache is about to be released,
2913	 * don't bother creating new kmem_caches. Because memcg_cachep
2914	 * is ZEROed as the fist step of kmem offlining, we don't need
2915	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2916	 * memcg_schedule_kmem_cache_create() will prevent us from
2917	 * creation of a new kmem_cache.
2918	 */
2919	if (unlikely(!memcg_cachep))
2920		memcg_schedule_kmem_cache_create(memcg, cachep);
2921	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2922		cachep = memcg_cachep;
2923out_unlock:
2924	rcu_read_unlock();
2925	return cachep;
2926}
2927
2928/**
2929 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2930 * @cachep: the cache returned by memcg_kmem_get_cache
2931 */
2932void memcg_kmem_put_cache(struct kmem_cache *cachep)
2933{
2934	if (!is_root_cache(cachep))
2935		percpu_ref_put(&cachep->memcg_params.refcnt);
2936}
2937
2938/**
2939 * __memcg_kmem_charge_memcg: charge a kmem page
2940 * @page: page to charge
2941 * @gfp: reclaim mode
2942 * @order: allocation order
2943 * @memcg: memory cgroup to charge
2944 *
2945 * Returns 0 on success, an error code on failure.
2946 */
2947int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2948			    struct mem_cgroup *memcg)
2949{
2950	unsigned int nr_pages = 1 << order;
2951	struct page_counter *counter;
 
2952	int ret;
2953
2954	ret = try_charge(memcg, gfp, nr_pages);
 
 
2955	if (ret)
2956		return ret;
2957
2958	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2959	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2960
2961		/*
2962		 * Enforce __GFP_NOFAIL allocation because callers are not
2963		 * prepared to see failures and likely do not have any failure
2964		 * handling code.
2965		 */
2966		if (gfp & __GFP_NOFAIL) {
2967			page_counter_charge(&memcg->kmem, nr_pages);
2968			return 0;
2969		}
2970		cancel_charge(memcg, nr_pages);
2971		return -ENOMEM;
2972	}
2973	return 0;
 
 
 
2974}
2975
2976/**
2977 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2978 * @page: page to charge
2979 * @gfp: reclaim mode
2980 * @order: allocation order
2981 *
2982 * Returns 0 on success, an error code on failure.
2983 */
2984int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2985{
2986	struct mem_cgroup *memcg;
2987	int ret = 0;
2988
2989	if (memcg_kmem_bypass())
2990		return 0;
2991
2992	memcg = get_mem_cgroup_from_current();
2993	if (!mem_cgroup_is_root(memcg)) {
2994		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2995		if (!ret) {
2996			page->mem_cgroup = memcg;
2997			__SetPageKmemcg(page);
 
2998		}
 
2999	}
3000	css_put(&memcg->css);
3001	return ret;
3002}
3003
3004/**
3005 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3006 * @memcg: memcg to uncharge
3007 * @nr_pages: number of pages to uncharge
3008 */
3009void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3010				 unsigned int nr_pages)
3011{
3012	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3013		page_counter_uncharge(&memcg->kmem, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014
3015	page_counter_uncharge(&memcg->memory, nr_pages);
3016	if (do_memsw_account())
3017		page_counter_uncharge(&memcg->memsw, nr_pages);
3018}
3019/**
3020 * __memcg_kmem_uncharge: uncharge a kmem page
3021 * @page: page to uncharge
3022 * @order: allocation order
3023 */
3024void __memcg_kmem_uncharge(struct page *page, int order)
3025{
3026	struct mem_cgroup *memcg = page->mem_cgroup;
3027	unsigned int nr_pages = 1 << order;
3028
3029	if (!memcg)
3030		return;
3031
3032	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3033	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3034	page->mem_cgroup = NULL;
3035
3036	/* slab pages do not have PageKmemcg flag set */
3037	if (PageKmemcg(page))
3038		__ClearPageKmemcg(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039
3040	css_put_many(&memcg->css, nr_pages);
 
3041}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042#endif /* CONFIG_MEMCG_KMEM */
3043
3044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3045
3046/*
3047 * Because tail pages are not marked as "used", set it. We're under
3048 * pgdat->lru_lock and migration entries setup in all page mappings.
3049 */
3050void mem_cgroup_split_huge_fixup(struct page *head)
3051{
 
3052	int i;
3053
3054	if (mem_cgroup_disabled())
3055		return;
3056
3057	for (i = 1; i < HPAGE_PMD_NR; i++)
3058		head[i].mem_cgroup = head->mem_cgroup;
3059
3060	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 
 
 
3061}
3062#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3063
3064#ifdef CONFIG_MEMCG_SWAP
3065/**
3066 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3067 * @entry: swap entry to be moved
3068 * @from:  mem_cgroup which the entry is moved from
3069 * @to:  mem_cgroup which the entry is moved to
3070 *
3071 * It succeeds only when the swap_cgroup's record for this entry is the same
3072 * as the mem_cgroup's id of @from.
3073 *
3074 * Returns 0 on success, -EINVAL on failure.
3075 *
3076 * The caller must have charged to @to, IOW, called page_counter_charge() about
3077 * both res and memsw, and called css_get().
3078 */
3079static int mem_cgroup_move_swap_account(swp_entry_t entry,
3080				struct mem_cgroup *from, struct mem_cgroup *to)
3081{
3082	unsigned short old_id, new_id;
3083
3084	old_id = mem_cgroup_id(from);
3085	new_id = mem_cgroup_id(to);
3086
3087	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3088		mod_memcg_state(from, MEMCG_SWAP, -1);
3089		mod_memcg_state(to, MEMCG_SWAP, 1);
3090		return 0;
3091	}
3092	return -EINVAL;
3093}
3094#else
3095static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3096				struct mem_cgroup *from, struct mem_cgroup *to)
3097{
3098	return -EINVAL;
3099}
3100#endif
3101
3102static DEFINE_MUTEX(memcg_max_mutex);
3103
3104static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3105				 unsigned long max, bool memsw)
3106{
3107	bool enlarge = false;
3108	bool drained = false;
3109	int ret;
3110	bool limits_invariant;
3111	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3112
3113	do {
3114		if (signal_pending(current)) {
3115			ret = -EINTR;
3116			break;
3117		}
3118
3119		mutex_lock(&memcg_max_mutex);
3120		/*
3121		 * Make sure that the new limit (memsw or memory limit) doesn't
3122		 * break our basic invariant rule memory.max <= memsw.max.
3123		 */
3124		limits_invariant = memsw ? max >= memcg->memory.max :
3125					   max <= memcg->memsw.max;
3126		if (!limits_invariant) {
3127			mutex_unlock(&memcg_max_mutex);
3128			ret = -EINVAL;
3129			break;
3130		}
3131		if (max > counter->max)
3132			enlarge = true;
3133		ret = page_counter_set_max(counter, max);
3134		mutex_unlock(&memcg_max_mutex);
3135
3136		if (!ret)
3137			break;
3138
3139		if (!drained) {
3140			drain_all_stock(memcg);
3141			drained = true;
3142			continue;
3143		}
3144
3145		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3146					GFP_KERNEL, !memsw)) {
3147			ret = -EBUSY;
3148			break;
3149		}
3150	} while (true);
3151
3152	if (!ret && enlarge)
3153		memcg_oom_recover(memcg);
3154
3155	return ret;
3156}
3157
3158unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3159					    gfp_t gfp_mask,
3160					    unsigned long *total_scanned)
3161{
3162	unsigned long nr_reclaimed = 0;
3163	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3164	unsigned long reclaimed;
3165	int loop = 0;
3166	struct mem_cgroup_tree_per_node *mctz;
3167	unsigned long excess;
3168	unsigned long nr_scanned;
3169
3170	if (order > 0)
3171		return 0;
3172
3173	mctz = soft_limit_tree_node(pgdat->node_id);
3174
3175	/*
3176	 * Do not even bother to check the largest node if the root
3177	 * is empty. Do it lockless to prevent lock bouncing. Races
3178	 * are acceptable as soft limit is best effort anyway.
3179	 */
3180	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3181		return 0;
3182
3183	/*
3184	 * This loop can run a while, specially if mem_cgroup's continuously
3185	 * keep exceeding their soft limit and putting the system under
3186	 * pressure
3187	 */
3188	do {
3189		if (next_mz)
3190			mz = next_mz;
3191		else
3192			mz = mem_cgroup_largest_soft_limit_node(mctz);
3193		if (!mz)
3194			break;
3195
3196		nr_scanned = 0;
3197		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3198						    gfp_mask, &nr_scanned);
3199		nr_reclaimed += reclaimed;
3200		*total_scanned += nr_scanned;
3201		spin_lock_irq(&mctz->lock);
3202		__mem_cgroup_remove_exceeded(mz, mctz);
3203
3204		/*
3205		 * If we failed to reclaim anything from this memory cgroup
3206		 * it is time to move on to the next cgroup
3207		 */
3208		next_mz = NULL;
3209		if (!reclaimed)
3210			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3211
3212		excess = soft_limit_excess(mz->memcg);
3213		/*
3214		 * One school of thought says that we should not add
3215		 * back the node to the tree if reclaim returns 0.
3216		 * But our reclaim could return 0, simply because due
3217		 * to priority we are exposing a smaller subset of
3218		 * memory to reclaim from. Consider this as a longer
3219		 * term TODO.
3220		 */
3221		/* If excess == 0, no tree ops */
3222		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3223		spin_unlock_irq(&mctz->lock);
3224		css_put(&mz->memcg->css);
3225		loop++;
3226		/*
3227		 * Could not reclaim anything and there are no more
3228		 * mem cgroups to try or we seem to be looping without
3229		 * reclaiming anything.
3230		 */
3231		if (!nr_reclaimed &&
3232			(next_mz == NULL ||
3233			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3234			break;
3235	} while (!nr_reclaimed);
3236	if (next_mz)
3237		css_put(&next_mz->memcg->css);
3238	return nr_reclaimed;
3239}
3240
3241/*
3242 * Test whether @memcg has children, dead or alive.  Note that this
3243 * function doesn't care whether @memcg has use_hierarchy enabled and
3244 * returns %true if there are child csses according to the cgroup
3245 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3246 */
3247static inline bool memcg_has_children(struct mem_cgroup *memcg)
3248{
3249	bool ret;
3250
3251	rcu_read_lock();
3252	ret = css_next_child(NULL, &memcg->css);
3253	rcu_read_unlock();
3254	return ret;
3255}
3256
3257/*
3258 * Reclaims as many pages from the given memcg as possible.
3259 *
3260 * Caller is responsible for holding css reference for memcg.
3261 */
3262static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3263{
3264	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3265
3266	/* we call try-to-free pages for make this cgroup empty */
3267	lru_add_drain_all();
3268
3269	drain_all_stock(memcg);
3270
3271	/* try to free all pages in this cgroup */
3272	while (nr_retries && page_counter_read(&memcg->memory)) {
3273		int progress;
3274
3275		if (signal_pending(current))
3276			return -EINTR;
3277
3278		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3279							GFP_KERNEL, true);
3280		if (!progress) {
3281			nr_retries--;
3282			/* maybe some writeback is necessary */
3283			congestion_wait(BLK_RW_ASYNC, HZ/10);
3284		}
3285
3286	}
3287
3288	return 0;
3289}
3290
3291static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3292					    char *buf, size_t nbytes,
3293					    loff_t off)
3294{
3295	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3296
3297	if (mem_cgroup_is_root(memcg))
3298		return -EINVAL;
3299	return mem_cgroup_force_empty(memcg) ?: nbytes;
3300}
3301
3302static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3303				     struct cftype *cft)
3304{
3305	return mem_cgroup_from_css(css)->use_hierarchy;
3306}
3307
3308static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3309				      struct cftype *cft, u64 val)
3310{
3311	int retval = 0;
3312	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3313	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3314
3315	if (memcg->use_hierarchy == val)
3316		return 0;
3317
3318	/*
3319	 * If parent's use_hierarchy is set, we can't make any modifications
3320	 * in the child subtrees. If it is unset, then the change can
3321	 * occur, provided the current cgroup has no children.
3322	 *
3323	 * For the root cgroup, parent_mem is NULL, we allow value to be
3324	 * set if there are no children.
3325	 */
3326	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3327				(val == 1 || val == 0)) {
3328		if (!memcg_has_children(memcg))
3329			memcg->use_hierarchy = val;
3330		else
3331			retval = -EBUSY;
3332	} else
3333		retval = -EINVAL;
3334
3335	return retval;
3336}
3337
3338static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3339{
3340	unsigned long val;
3341
3342	if (mem_cgroup_is_root(memcg)) {
3343		val = memcg_page_state(memcg, MEMCG_CACHE) +
3344			memcg_page_state(memcg, MEMCG_RSS);
 
 
3345		if (swap)
3346			val += memcg_page_state(memcg, MEMCG_SWAP);
3347	} else {
3348		if (!swap)
3349			val = page_counter_read(&memcg->memory);
3350		else
3351			val = page_counter_read(&memcg->memsw);
3352	}
3353	return val;
3354}
3355
3356enum {
3357	RES_USAGE,
3358	RES_LIMIT,
3359	RES_MAX_USAGE,
3360	RES_FAILCNT,
3361	RES_SOFT_LIMIT,
3362};
3363
3364static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3365			       struct cftype *cft)
3366{
3367	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3368	struct page_counter *counter;
3369
3370	switch (MEMFILE_TYPE(cft->private)) {
3371	case _MEM:
3372		counter = &memcg->memory;
3373		break;
3374	case _MEMSWAP:
3375		counter = &memcg->memsw;
3376		break;
3377	case _KMEM:
3378		counter = &memcg->kmem;
3379		break;
3380	case _TCP:
3381		counter = &memcg->tcpmem;
3382		break;
3383	default:
3384		BUG();
3385	}
3386
3387	switch (MEMFILE_ATTR(cft->private)) {
3388	case RES_USAGE:
3389		if (counter == &memcg->memory)
3390			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3391		if (counter == &memcg->memsw)
3392			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3393		return (u64)page_counter_read(counter) * PAGE_SIZE;
3394	case RES_LIMIT:
3395		return (u64)counter->max * PAGE_SIZE;
3396	case RES_MAX_USAGE:
3397		return (u64)counter->watermark * PAGE_SIZE;
3398	case RES_FAILCNT:
3399		return counter->failcnt;
3400	case RES_SOFT_LIMIT:
3401		return (u64)memcg->soft_limit * PAGE_SIZE;
3402	default:
3403		BUG();
3404	}
3405}
3406
3407static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3408{
3409	unsigned long stat[MEMCG_NR_STAT];
3410	struct mem_cgroup *mi;
3411	int node, cpu, i;
3412	int min_idx, max_idx;
3413
3414	if (slab_only) {
3415		min_idx = NR_SLAB_RECLAIMABLE;
3416		max_idx = NR_SLAB_UNRECLAIMABLE;
3417	} else {
3418		min_idx = 0;
3419		max_idx = MEMCG_NR_STAT;
3420	}
3421
3422	for (i = min_idx; i < max_idx; i++)
3423		stat[i] = 0;
3424
3425	for_each_online_cpu(cpu)
3426		for (i = min_idx; i < max_idx; i++)
3427			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3428
3429	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3430		for (i = min_idx; i < max_idx; i++)
3431			atomic_long_add(stat[i], &mi->vmstats[i]);
3432
3433	if (!slab_only)
3434		max_idx = NR_VM_NODE_STAT_ITEMS;
3435
3436	for_each_node(node) {
3437		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3438		struct mem_cgroup_per_node *pi;
3439
3440		for (i = min_idx; i < max_idx; i++)
3441			stat[i] = 0;
3442
3443		for_each_online_cpu(cpu)
3444			for (i = min_idx; i < max_idx; i++)
3445				stat[i] += per_cpu(
3446					pn->lruvec_stat_cpu->count[i], cpu);
3447
3448		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3449			for (i = min_idx; i < max_idx; i++)
3450				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3451	}
3452}
3453
3454static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3455{
3456	unsigned long events[NR_VM_EVENT_ITEMS];
3457	struct mem_cgroup *mi;
3458	int cpu, i;
3459
3460	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3461		events[i] = 0;
3462
3463	for_each_online_cpu(cpu)
3464		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3465			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3466					     cpu);
3467
3468	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3469		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3470			atomic_long_add(events[i], &mi->vmevents[i]);
3471}
3472
3473#ifdef CONFIG_MEMCG_KMEM
3474static int memcg_online_kmem(struct mem_cgroup *memcg)
3475{
 
3476	int memcg_id;
3477
3478	if (cgroup_memory_nokmem)
3479		return 0;
3480
3481	BUG_ON(memcg->kmemcg_id >= 0);
3482	BUG_ON(memcg->kmem_state);
3483
3484	memcg_id = memcg_alloc_cache_id();
3485	if (memcg_id < 0)
3486		return memcg_id;
3487
3488	static_branch_inc(&memcg_kmem_enabled_key);
3489	/*
3490	 * A memory cgroup is considered kmem-online as soon as it gets
3491	 * kmemcg_id. Setting the id after enabling static branching will
3492	 * guarantee no one starts accounting before all call sites are
3493	 * patched.
3494	 */
 
 
 
3495	memcg->kmemcg_id = memcg_id;
3496	memcg->kmem_state = KMEM_ONLINE;
3497	INIT_LIST_HEAD(&memcg->kmem_caches);
3498
3499	return 0;
3500}
3501
3502static void memcg_offline_kmem(struct mem_cgroup *memcg)
3503{
3504	struct cgroup_subsys_state *css;
3505	struct mem_cgroup *parent, *child;
3506	int kmemcg_id;
3507
3508	if (memcg->kmem_state != KMEM_ONLINE)
3509		return;
3510	/*
3511	 * Clear the online state before clearing memcg_caches array
3512	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3513	 * guarantees that no cache will be created for this cgroup
3514	 * after we are done (see memcg_create_kmem_cache()).
3515	 */
3516	memcg->kmem_state = KMEM_ALLOCATED;
3517
3518	parent = parent_mem_cgroup(memcg);
3519	if (!parent)
3520		parent = root_mem_cgroup;
3521
3522	/*
3523	 * Deactivate and reparent kmem_caches. Then flush percpu
3524	 * slab statistics to have precise values at the parent and
3525	 * all ancestor levels. It's required to keep slab stats
3526	 * accurate after the reparenting of kmem_caches.
3527	 */
3528	memcg_deactivate_kmem_caches(memcg, parent);
3529	memcg_flush_percpu_vmstats(memcg, true);
3530
3531	kmemcg_id = memcg->kmemcg_id;
3532	BUG_ON(kmemcg_id < 0);
3533
3534	/*
3535	 * Change kmemcg_id of this cgroup and all its descendants to the
3536	 * parent's id, and then move all entries from this cgroup's list_lrus
3537	 * to ones of the parent. After we have finished, all list_lrus
3538	 * corresponding to this cgroup are guaranteed to remain empty. The
3539	 * ordering is imposed by list_lru_node->lock taken by
3540	 * memcg_drain_all_list_lrus().
3541	 */
3542	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3543	css_for_each_descendant_pre(css, &memcg->css) {
3544		child = mem_cgroup_from_css(css);
3545		BUG_ON(child->kmemcg_id != kmemcg_id);
3546		child->kmemcg_id = parent->kmemcg_id;
3547		if (!memcg->use_hierarchy)
3548			break;
3549	}
3550	rcu_read_unlock();
3551
3552	memcg_drain_all_list_lrus(kmemcg_id, parent);
3553
3554	memcg_free_cache_id(kmemcg_id);
3555}
3556
3557static void memcg_free_kmem(struct mem_cgroup *memcg)
3558{
3559	/* css_alloc() failed, offlining didn't happen */
3560	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3561		memcg_offline_kmem(memcg);
3562
3563	if (memcg->kmem_state == KMEM_ALLOCATED) {
3564		WARN_ON(!list_empty(&memcg->kmem_caches));
3565		static_branch_dec(&memcg_kmem_enabled_key);
3566	}
3567}
3568#else
3569static int memcg_online_kmem(struct mem_cgroup *memcg)
3570{
3571	return 0;
3572}
3573static void memcg_offline_kmem(struct mem_cgroup *memcg)
3574{
3575}
3576static void memcg_free_kmem(struct mem_cgroup *memcg)
3577{
3578}
3579#endif /* CONFIG_MEMCG_KMEM */
3580
3581static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3582				 unsigned long max)
3583{
3584	int ret;
3585
3586	mutex_lock(&memcg_max_mutex);
3587	ret = page_counter_set_max(&memcg->kmem, max);
3588	mutex_unlock(&memcg_max_mutex);
3589	return ret;
3590}
3591
3592static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3593{
3594	int ret;
3595
3596	mutex_lock(&memcg_max_mutex);
3597
3598	ret = page_counter_set_max(&memcg->tcpmem, max);
3599	if (ret)
3600		goto out;
3601
3602	if (!memcg->tcpmem_active) {
3603		/*
3604		 * The active flag needs to be written after the static_key
3605		 * update. This is what guarantees that the socket activation
3606		 * function is the last one to run. See mem_cgroup_sk_alloc()
3607		 * for details, and note that we don't mark any socket as
3608		 * belonging to this memcg until that flag is up.
3609		 *
3610		 * We need to do this, because static_keys will span multiple
3611		 * sites, but we can't control their order. If we mark a socket
3612		 * as accounted, but the accounting functions are not patched in
3613		 * yet, we'll lose accounting.
3614		 *
3615		 * We never race with the readers in mem_cgroup_sk_alloc(),
3616		 * because when this value change, the code to process it is not
3617		 * patched in yet.
3618		 */
3619		static_branch_inc(&memcg_sockets_enabled_key);
3620		memcg->tcpmem_active = true;
3621	}
3622out:
3623	mutex_unlock(&memcg_max_mutex);
3624	return ret;
3625}
3626
3627/*
3628 * The user of this function is...
3629 * RES_LIMIT.
3630 */
3631static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3632				char *buf, size_t nbytes, loff_t off)
3633{
3634	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3635	unsigned long nr_pages;
3636	int ret;
3637
3638	buf = strstrip(buf);
3639	ret = page_counter_memparse(buf, "-1", &nr_pages);
3640	if (ret)
3641		return ret;
3642
3643	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3644	case RES_LIMIT:
3645		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3646			ret = -EINVAL;
3647			break;
3648		}
3649		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3650		case _MEM:
3651			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3652			break;
3653		case _MEMSWAP:
3654			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3655			break;
3656		case _KMEM:
3657			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3658				     "Please report your usecase to linux-mm@kvack.org if you "
3659				     "depend on this functionality.\n");
3660			ret = memcg_update_kmem_max(memcg, nr_pages);
3661			break;
3662		case _TCP:
3663			ret = memcg_update_tcp_max(memcg, nr_pages);
3664			break;
3665		}
3666		break;
3667	case RES_SOFT_LIMIT:
3668		memcg->soft_limit = nr_pages;
3669		ret = 0;
3670		break;
3671	}
3672	return ret ?: nbytes;
3673}
3674
3675static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3676				size_t nbytes, loff_t off)
3677{
3678	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3679	struct page_counter *counter;
3680
3681	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3682	case _MEM:
3683		counter = &memcg->memory;
3684		break;
3685	case _MEMSWAP:
3686		counter = &memcg->memsw;
3687		break;
3688	case _KMEM:
3689		counter = &memcg->kmem;
3690		break;
3691	case _TCP:
3692		counter = &memcg->tcpmem;
3693		break;
3694	default:
3695		BUG();
3696	}
3697
3698	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3699	case RES_MAX_USAGE:
3700		page_counter_reset_watermark(counter);
3701		break;
3702	case RES_FAILCNT:
3703		counter->failcnt = 0;
3704		break;
3705	default:
3706		BUG();
3707	}
3708
3709	return nbytes;
3710}
3711
3712static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3713					struct cftype *cft)
3714{
3715	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3716}
3717
3718#ifdef CONFIG_MMU
3719static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3720					struct cftype *cft, u64 val)
3721{
3722	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3723
3724	if (val & ~MOVE_MASK)
3725		return -EINVAL;
3726
3727	/*
3728	 * No kind of locking is needed in here, because ->can_attach() will
3729	 * check this value once in the beginning of the process, and then carry
3730	 * on with stale data. This means that changes to this value will only
3731	 * affect task migrations starting after the change.
3732	 */
3733	memcg->move_charge_at_immigrate = val;
3734	return 0;
3735}
3736#else
3737static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3738					struct cftype *cft, u64 val)
3739{
3740	return -ENOSYS;
3741}
3742#endif
3743
3744#ifdef CONFIG_NUMA
3745
3746#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3747#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3748#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3749
3750static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3751					   int nid, unsigned int lru_mask)
3752{
3753	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3754	unsigned long nr = 0;
3755	enum lru_list lru;
3756
3757	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3758
3759	for_each_lru(lru) {
3760		if (!(BIT(lru) & lru_mask))
3761			continue;
3762		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
 
 
 
3763	}
3764	return nr;
3765}
3766
3767static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3768					     unsigned int lru_mask)
 
3769{
3770	unsigned long nr = 0;
3771	enum lru_list lru;
3772
3773	for_each_lru(lru) {
3774		if (!(BIT(lru) & lru_mask))
3775			continue;
3776		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
 
 
 
3777	}
3778	return nr;
3779}
3780
3781static int memcg_numa_stat_show(struct seq_file *m, void *v)
3782{
3783	struct numa_stat {
3784		const char *name;
3785		unsigned int lru_mask;
3786	};
3787
3788	static const struct numa_stat stats[] = {
3789		{ "total", LRU_ALL },
3790		{ "file", LRU_ALL_FILE },
3791		{ "anon", LRU_ALL_ANON },
3792		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3793	};
3794	const struct numa_stat *stat;
3795	int nid;
3796	unsigned long nr;
3797	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3798
 
 
3799	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3800		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3801		seq_printf(m, "%s=%lu", stat->name, nr);
3802		for_each_node_state(nid, N_MEMORY) {
3803			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3804							  stat->lru_mask);
3805			seq_printf(m, " N%d=%lu", nid, nr);
3806		}
3807		seq_putc(m, '\n');
3808	}
3809
3810	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3811		struct mem_cgroup *iter;
3812
3813		nr = 0;
3814		for_each_mem_cgroup_tree(iter, memcg)
3815			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3816		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3817		for_each_node_state(nid, N_MEMORY) {
3818			nr = 0;
3819			for_each_mem_cgroup_tree(iter, memcg)
3820				nr += mem_cgroup_node_nr_lru_pages(
3821					iter, nid, stat->lru_mask);
3822			seq_printf(m, " N%d=%lu", nid, nr);
3823		}
3824		seq_putc(m, '\n');
3825	}
3826
3827	return 0;
3828}
3829#endif /* CONFIG_NUMA */
3830
3831static const unsigned int memcg1_stats[] = {
3832	MEMCG_CACHE,
3833	MEMCG_RSS,
3834	MEMCG_RSS_HUGE,
 
 
3835	NR_SHMEM,
3836	NR_FILE_MAPPED,
3837	NR_FILE_DIRTY,
3838	NR_WRITEBACK,
3839	MEMCG_SWAP,
3840};
3841
3842static const char *const memcg1_stat_names[] = {
3843	"cache",
3844	"rss",
 
3845	"rss_huge",
 
3846	"shmem",
3847	"mapped_file",
3848	"dirty",
3849	"writeback",
3850	"swap",
3851};
3852
3853/* Universal VM events cgroup1 shows, original sort order */
3854static const unsigned int memcg1_events[] = {
3855	PGPGIN,
3856	PGPGOUT,
3857	PGFAULT,
3858	PGMAJFAULT,
3859};
3860
3861static const char *const memcg1_event_names[] = {
3862	"pgpgin",
3863	"pgpgout",
3864	"pgfault",
3865	"pgmajfault",
3866};
3867
3868static int memcg_stat_show(struct seq_file *m, void *v)
3869{
3870	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3871	unsigned long memory, memsw;
3872	struct mem_cgroup *mi;
3873	unsigned int i;
3874
3875	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3876	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 
3877
3878	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 
 
3879		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3880			continue;
3881		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3882			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3883			   PAGE_SIZE);
3884	}
3885
3886	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3887		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3888			   memcg_events_local(memcg, memcg1_events[i]));
3889
3890	for (i = 0; i < NR_LRU_LISTS; i++)
3891		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3892			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3893			   PAGE_SIZE);
3894
3895	/* Hierarchical information */
3896	memory = memsw = PAGE_COUNTER_MAX;
3897	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3898		memory = min(memory, mi->memory.max);
3899		memsw = min(memsw, mi->memsw.max);
3900	}
3901	seq_printf(m, "hierarchical_memory_limit %llu\n",
3902		   (u64)memory * PAGE_SIZE);
3903	if (do_memsw_account())
3904		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3905			   (u64)memsw * PAGE_SIZE);
3906
3907	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 
 
3908		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3909			continue;
 
3910		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3911			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3912			   PAGE_SIZE);
3913	}
3914
3915	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3916		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
 
3917			   (u64)memcg_events(memcg, memcg1_events[i]));
3918
3919	for (i = 0; i < NR_LRU_LISTS; i++)
3920		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3921			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3922			   PAGE_SIZE);
3923
3924#ifdef CONFIG_DEBUG_VM
3925	{
3926		pg_data_t *pgdat;
3927		struct mem_cgroup_per_node *mz;
3928		struct zone_reclaim_stat *rstat;
3929		unsigned long recent_rotated[2] = {0, 0};
3930		unsigned long recent_scanned[2] = {0, 0};
3931
3932		for_each_online_pgdat(pgdat) {
3933			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3934			rstat = &mz->lruvec.reclaim_stat;
3935
3936			recent_rotated[0] += rstat->recent_rotated[0];
3937			recent_rotated[1] += rstat->recent_rotated[1];
3938			recent_scanned[0] += rstat->recent_scanned[0];
3939			recent_scanned[1] += rstat->recent_scanned[1];
3940		}
3941		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3942		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3943		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3944		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3945	}
3946#endif
3947
3948	return 0;
3949}
3950
3951static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3952				      struct cftype *cft)
3953{
3954	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3955
3956	return mem_cgroup_swappiness(memcg);
3957}
3958
3959static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3960				       struct cftype *cft, u64 val)
3961{
3962	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3963
3964	if (val > 100)
3965		return -EINVAL;
3966
3967	if (css->parent)
3968		memcg->swappiness = val;
3969	else
3970		vm_swappiness = val;
3971
3972	return 0;
3973}
3974
3975static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3976{
3977	struct mem_cgroup_threshold_ary *t;
3978	unsigned long usage;
3979	int i;
3980
3981	rcu_read_lock();
3982	if (!swap)
3983		t = rcu_dereference(memcg->thresholds.primary);
3984	else
3985		t = rcu_dereference(memcg->memsw_thresholds.primary);
3986
3987	if (!t)
3988		goto unlock;
3989
3990	usage = mem_cgroup_usage(memcg, swap);
3991
3992	/*
3993	 * current_threshold points to threshold just below or equal to usage.
3994	 * If it's not true, a threshold was crossed after last
3995	 * call of __mem_cgroup_threshold().
3996	 */
3997	i = t->current_threshold;
3998
3999	/*
4000	 * Iterate backward over array of thresholds starting from
4001	 * current_threshold and check if a threshold is crossed.
4002	 * If none of thresholds below usage is crossed, we read
4003	 * only one element of the array here.
4004	 */
4005	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4006		eventfd_signal(t->entries[i].eventfd, 1);
4007
4008	/* i = current_threshold + 1 */
4009	i++;
4010
4011	/*
4012	 * Iterate forward over array of thresholds starting from
4013	 * current_threshold+1 and check if a threshold is crossed.
4014	 * If none of thresholds above usage is crossed, we read
4015	 * only one element of the array here.
4016	 */
4017	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4018		eventfd_signal(t->entries[i].eventfd, 1);
4019
4020	/* Update current_threshold */
4021	t->current_threshold = i - 1;
4022unlock:
4023	rcu_read_unlock();
4024}
4025
4026static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4027{
4028	while (memcg) {
4029		__mem_cgroup_threshold(memcg, false);
4030		if (do_memsw_account())
4031			__mem_cgroup_threshold(memcg, true);
4032
4033		memcg = parent_mem_cgroup(memcg);
4034	}
4035}
4036
4037static int compare_thresholds(const void *a, const void *b)
4038{
4039	const struct mem_cgroup_threshold *_a = a;
4040	const struct mem_cgroup_threshold *_b = b;
4041
4042	if (_a->threshold > _b->threshold)
4043		return 1;
4044
4045	if (_a->threshold < _b->threshold)
4046		return -1;
4047
4048	return 0;
4049}
4050
4051static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4052{
4053	struct mem_cgroup_eventfd_list *ev;
4054
4055	spin_lock(&memcg_oom_lock);
4056
4057	list_for_each_entry(ev, &memcg->oom_notify, list)
4058		eventfd_signal(ev->eventfd, 1);
4059
4060	spin_unlock(&memcg_oom_lock);
4061	return 0;
4062}
4063
4064static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4065{
4066	struct mem_cgroup *iter;
4067
4068	for_each_mem_cgroup_tree(iter, memcg)
4069		mem_cgroup_oom_notify_cb(iter);
4070}
4071
4072static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4073	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4074{
4075	struct mem_cgroup_thresholds *thresholds;
4076	struct mem_cgroup_threshold_ary *new;
4077	unsigned long threshold;
4078	unsigned long usage;
4079	int i, size, ret;
4080
4081	ret = page_counter_memparse(args, "-1", &threshold);
4082	if (ret)
4083		return ret;
4084
4085	mutex_lock(&memcg->thresholds_lock);
4086
4087	if (type == _MEM) {
4088		thresholds = &memcg->thresholds;
4089		usage = mem_cgroup_usage(memcg, false);
4090	} else if (type == _MEMSWAP) {
4091		thresholds = &memcg->memsw_thresholds;
4092		usage = mem_cgroup_usage(memcg, true);
4093	} else
4094		BUG();
4095
4096	/* Check if a threshold crossed before adding a new one */
4097	if (thresholds->primary)
4098		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4099
4100	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4101
4102	/* Allocate memory for new array of thresholds */
4103	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4104	if (!new) {
4105		ret = -ENOMEM;
4106		goto unlock;
4107	}
4108	new->size = size;
4109
4110	/* Copy thresholds (if any) to new array */
4111	if (thresholds->primary) {
4112		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4113				sizeof(struct mem_cgroup_threshold));
4114	}
4115
4116	/* Add new threshold */
4117	new->entries[size - 1].eventfd = eventfd;
4118	new->entries[size - 1].threshold = threshold;
4119
4120	/* Sort thresholds. Registering of new threshold isn't time-critical */
4121	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4122			compare_thresholds, NULL);
4123
4124	/* Find current threshold */
4125	new->current_threshold = -1;
4126	for (i = 0; i < size; i++) {
4127		if (new->entries[i].threshold <= usage) {
4128			/*
4129			 * new->current_threshold will not be used until
4130			 * rcu_assign_pointer(), so it's safe to increment
4131			 * it here.
4132			 */
4133			++new->current_threshold;
4134		} else
4135			break;
4136	}
4137
4138	/* Free old spare buffer and save old primary buffer as spare */
4139	kfree(thresholds->spare);
4140	thresholds->spare = thresholds->primary;
4141
4142	rcu_assign_pointer(thresholds->primary, new);
4143
4144	/* To be sure that nobody uses thresholds */
4145	synchronize_rcu();
4146
4147unlock:
4148	mutex_unlock(&memcg->thresholds_lock);
4149
4150	return ret;
4151}
4152
4153static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4154	struct eventfd_ctx *eventfd, const char *args)
4155{
4156	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4157}
4158
4159static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4160	struct eventfd_ctx *eventfd, const char *args)
4161{
4162	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4163}
4164
4165static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4166	struct eventfd_ctx *eventfd, enum res_type type)
4167{
4168	struct mem_cgroup_thresholds *thresholds;
4169	struct mem_cgroup_threshold_ary *new;
4170	unsigned long usage;
4171	int i, j, size;
4172
4173	mutex_lock(&memcg->thresholds_lock);
4174
4175	if (type == _MEM) {
4176		thresholds = &memcg->thresholds;
4177		usage = mem_cgroup_usage(memcg, false);
4178	} else if (type == _MEMSWAP) {
4179		thresholds = &memcg->memsw_thresholds;
4180		usage = mem_cgroup_usage(memcg, true);
4181	} else
4182		BUG();
4183
4184	if (!thresholds->primary)
4185		goto unlock;
4186
4187	/* Check if a threshold crossed before removing */
4188	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4189
4190	/* Calculate new number of threshold */
4191	size = 0;
4192	for (i = 0; i < thresholds->primary->size; i++) {
4193		if (thresholds->primary->entries[i].eventfd != eventfd)
4194			size++;
 
 
4195	}
4196
4197	new = thresholds->spare;
4198
 
 
 
 
4199	/* Set thresholds array to NULL if we don't have thresholds */
4200	if (!size) {
4201		kfree(new);
4202		new = NULL;
4203		goto swap_buffers;
4204	}
4205
4206	new->size = size;
4207
4208	/* Copy thresholds and find current threshold */
4209	new->current_threshold = -1;
4210	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4211		if (thresholds->primary->entries[i].eventfd == eventfd)
4212			continue;
4213
4214		new->entries[j] = thresholds->primary->entries[i];
4215		if (new->entries[j].threshold <= usage) {
4216			/*
4217			 * new->current_threshold will not be used
4218			 * until rcu_assign_pointer(), so it's safe to increment
4219			 * it here.
4220			 */
4221			++new->current_threshold;
4222		}
4223		j++;
4224	}
4225
4226swap_buffers:
4227	/* Swap primary and spare array */
4228	thresholds->spare = thresholds->primary;
4229
4230	rcu_assign_pointer(thresholds->primary, new);
4231
4232	/* To be sure that nobody uses thresholds */
4233	synchronize_rcu();
4234
4235	/* If all events are unregistered, free the spare array */
4236	if (!new) {
4237		kfree(thresholds->spare);
4238		thresholds->spare = NULL;
4239	}
4240unlock:
4241	mutex_unlock(&memcg->thresholds_lock);
4242}
4243
4244static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4245	struct eventfd_ctx *eventfd)
4246{
4247	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4248}
4249
4250static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4251	struct eventfd_ctx *eventfd)
4252{
4253	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4254}
4255
4256static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4257	struct eventfd_ctx *eventfd, const char *args)
4258{
4259	struct mem_cgroup_eventfd_list *event;
4260
4261	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4262	if (!event)
4263		return -ENOMEM;
4264
4265	spin_lock(&memcg_oom_lock);
4266
4267	event->eventfd = eventfd;
4268	list_add(&event->list, &memcg->oom_notify);
4269
4270	/* already in OOM ? */
4271	if (memcg->under_oom)
4272		eventfd_signal(eventfd, 1);
4273	spin_unlock(&memcg_oom_lock);
4274
4275	return 0;
4276}
4277
4278static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4279	struct eventfd_ctx *eventfd)
4280{
4281	struct mem_cgroup_eventfd_list *ev, *tmp;
4282
4283	spin_lock(&memcg_oom_lock);
4284
4285	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4286		if (ev->eventfd == eventfd) {
4287			list_del(&ev->list);
4288			kfree(ev);
4289		}
4290	}
4291
4292	spin_unlock(&memcg_oom_lock);
4293}
4294
4295static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4296{
4297	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4298
4299	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4300	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4301	seq_printf(sf, "oom_kill %lu\n",
4302		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4303	return 0;
4304}
4305
4306static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4307	struct cftype *cft, u64 val)
4308{
4309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311	/* cannot set to root cgroup and only 0 and 1 are allowed */
4312	if (!css->parent || !((val == 0) || (val == 1)))
4313		return -EINVAL;
4314
4315	memcg->oom_kill_disable = val;
4316	if (!val)
4317		memcg_oom_recover(memcg);
4318
4319	return 0;
4320}
4321
4322#ifdef CONFIG_CGROUP_WRITEBACK
4323
4324#include <trace/events/writeback.h>
4325
4326static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4327{
4328	return wb_domain_init(&memcg->cgwb_domain, gfp);
4329}
4330
4331static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4332{
4333	wb_domain_exit(&memcg->cgwb_domain);
4334}
4335
4336static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4337{
4338	wb_domain_size_changed(&memcg->cgwb_domain);
4339}
4340
4341struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4342{
4343	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4344
4345	if (!memcg->css.parent)
4346		return NULL;
4347
4348	return &memcg->cgwb_domain;
4349}
4350
4351/*
4352 * idx can be of type enum memcg_stat_item or node_stat_item.
4353 * Keep in sync with memcg_exact_page().
4354 */
4355static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4356{
4357	long x = atomic_long_read(&memcg->vmstats[idx]);
4358	int cpu;
4359
4360	for_each_online_cpu(cpu)
4361		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4362	if (x < 0)
4363		x = 0;
4364	return x;
4365}
4366
4367/**
4368 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4369 * @wb: bdi_writeback in question
4370 * @pfilepages: out parameter for number of file pages
4371 * @pheadroom: out parameter for number of allocatable pages according to memcg
4372 * @pdirty: out parameter for number of dirty pages
4373 * @pwriteback: out parameter for number of pages under writeback
4374 *
4375 * Determine the numbers of file, headroom, dirty, and writeback pages in
4376 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4377 * is a bit more involved.
4378 *
4379 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4380 * headroom is calculated as the lowest headroom of itself and the
4381 * ancestors.  Note that this doesn't consider the actual amount of
4382 * available memory in the system.  The caller should further cap
4383 * *@pheadroom accordingly.
4384 */
4385void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4386			 unsigned long *pheadroom, unsigned long *pdirty,
4387			 unsigned long *pwriteback)
4388{
4389	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4390	struct mem_cgroup *parent;
4391
4392	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
 
 
 
 
 
4393
4394	/* this should eventually include NR_UNSTABLE_NFS */
4395	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4396	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4397			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4398	*pheadroom = PAGE_COUNTER_MAX;
4399
4400	while ((parent = parent_mem_cgroup(memcg))) {
4401		unsigned long ceiling = min(memcg->memory.max, memcg->high);
 
4402		unsigned long used = page_counter_read(&memcg->memory);
4403
4404		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4405		memcg = parent;
4406	}
4407}
4408
4409/*
4410 * Foreign dirty flushing
4411 *
4412 * There's an inherent mismatch between memcg and writeback.  The former
4413 * trackes ownership per-page while the latter per-inode.  This was a
4414 * deliberate design decision because honoring per-page ownership in the
4415 * writeback path is complicated, may lead to higher CPU and IO overheads
4416 * and deemed unnecessary given that write-sharing an inode across
4417 * different cgroups isn't a common use-case.
4418 *
4419 * Combined with inode majority-writer ownership switching, this works well
4420 * enough in most cases but there are some pathological cases.  For
4421 * example, let's say there are two cgroups A and B which keep writing to
4422 * different but confined parts of the same inode.  B owns the inode and
4423 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4424 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4425 * triggering background writeback.  A will be slowed down without a way to
4426 * make writeback of the dirty pages happen.
4427 *
4428 * Conditions like the above can lead to a cgroup getting repatedly and
4429 * severely throttled after making some progress after each
4430 * dirty_expire_interval while the underyling IO device is almost
4431 * completely idle.
4432 *
4433 * Solving this problem completely requires matching the ownership tracking
4434 * granularities between memcg and writeback in either direction.  However,
4435 * the more egregious behaviors can be avoided by simply remembering the
4436 * most recent foreign dirtying events and initiating remote flushes on
4437 * them when local writeback isn't enough to keep the memory clean enough.
4438 *
4439 * The following two functions implement such mechanism.  When a foreign
4440 * page - a page whose memcg and writeback ownerships don't match - is
4441 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4442 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4443 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4444 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4445 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4446 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4447 * limited to MEMCG_CGWB_FRN_CNT.
4448 *
4449 * The mechanism only remembers IDs and doesn't hold any object references.
4450 * As being wrong occasionally doesn't matter, updates and accesses to the
4451 * records are lockless and racy.
4452 */
4453void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4454					     struct bdi_writeback *wb)
4455{
4456	struct mem_cgroup *memcg = page->mem_cgroup;
4457	struct memcg_cgwb_frn *frn;
4458	u64 now = get_jiffies_64();
4459	u64 oldest_at = now;
4460	int oldest = -1;
4461	int i;
4462
4463	trace_track_foreign_dirty(page, wb);
4464
4465	/*
4466	 * Pick the slot to use.  If there is already a slot for @wb, keep
4467	 * using it.  If not replace the oldest one which isn't being
4468	 * written out.
4469	 */
4470	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4471		frn = &memcg->cgwb_frn[i];
4472		if (frn->bdi_id == wb->bdi->id &&
4473		    frn->memcg_id == wb->memcg_css->id)
4474			break;
4475		if (time_before64(frn->at, oldest_at) &&
4476		    atomic_read(&frn->done.cnt) == 1) {
4477			oldest = i;
4478			oldest_at = frn->at;
4479		}
4480	}
4481
4482	if (i < MEMCG_CGWB_FRN_CNT) {
4483		/*
4484		 * Re-using an existing one.  Update timestamp lazily to
4485		 * avoid making the cacheline hot.  We want them to be
4486		 * reasonably up-to-date and significantly shorter than
4487		 * dirty_expire_interval as that's what expires the record.
4488		 * Use the shorter of 1s and dirty_expire_interval / 8.
4489		 */
4490		unsigned long update_intv =
4491			min_t(unsigned long, HZ,
4492			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4493
4494		if (time_before64(frn->at, now - update_intv))
4495			frn->at = now;
4496	} else if (oldest >= 0) {
4497		/* replace the oldest free one */
4498		frn = &memcg->cgwb_frn[oldest];
4499		frn->bdi_id = wb->bdi->id;
4500		frn->memcg_id = wb->memcg_css->id;
4501		frn->at = now;
4502	}
4503}
4504
4505/* issue foreign writeback flushes for recorded foreign dirtying events */
4506void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4507{
4508	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4509	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4510	u64 now = jiffies_64;
4511	int i;
4512
4513	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4514		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4515
4516		/*
4517		 * If the record is older than dirty_expire_interval,
4518		 * writeback on it has already started.  No need to kick it
4519		 * off again.  Also, don't start a new one if there's
4520		 * already one in flight.
4521		 */
4522		if (time_after64(frn->at, now - intv) &&
4523		    atomic_read(&frn->done.cnt) == 1) {
4524			frn->at = 0;
4525			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4526			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4527					       WB_REASON_FOREIGN_FLUSH,
4528					       &frn->done);
4529		}
4530	}
4531}
4532
4533#else	/* CONFIG_CGROUP_WRITEBACK */
4534
4535static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4536{
4537	return 0;
4538}
4539
4540static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4541{
4542}
4543
4544static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545{
4546}
4547
4548#endif	/* CONFIG_CGROUP_WRITEBACK */
4549
4550/*
4551 * DO NOT USE IN NEW FILES.
4552 *
4553 * "cgroup.event_control" implementation.
4554 *
4555 * This is way over-engineered.  It tries to support fully configurable
4556 * events for each user.  Such level of flexibility is completely
4557 * unnecessary especially in the light of the planned unified hierarchy.
4558 *
4559 * Please deprecate this and replace with something simpler if at all
4560 * possible.
4561 */
4562
4563/*
4564 * Unregister event and free resources.
4565 *
4566 * Gets called from workqueue.
4567 */
4568static void memcg_event_remove(struct work_struct *work)
4569{
4570	struct mem_cgroup_event *event =
4571		container_of(work, struct mem_cgroup_event, remove);
4572	struct mem_cgroup *memcg = event->memcg;
4573
4574	remove_wait_queue(event->wqh, &event->wait);
4575
4576	event->unregister_event(memcg, event->eventfd);
4577
4578	/* Notify userspace the event is going away. */
4579	eventfd_signal(event->eventfd, 1);
4580
4581	eventfd_ctx_put(event->eventfd);
4582	kfree(event);
4583	css_put(&memcg->css);
4584}
4585
4586/*
4587 * Gets called on EPOLLHUP on eventfd when user closes it.
4588 *
4589 * Called with wqh->lock held and interrupts disabled.
4590 */
4591static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4592			    int sync, void *key)
4593{
4594	struct mem_cgroup_event *event =
4595		container_of(wait, struct mem_cgroup_event, wait);
4596	struct mem_cgroup *memcg = event->memcg;
4597	__poll_t flags = key_to_poll(key);
4598
4599	if (flags & EPOLLHUP) {
4600		/*
4601		 * If the event has been detached at cgroup removal, we
4602		 * can simply return knowing the other side will cleanup
4603		 * for us.
4604		 *
4605		 * We can't race against event freeing since the other
4606		 * side will require wqh->lock via remove_wait_queue(),
4607		 * which we hold.
4608		 */
4609		spin_lock(&memcg->event_list_lock);
4610		if (!list_empty(&event->list)) {
4611			list_del_init(&event->list);
4612			/*
4613			 * We are in atomic context, but cgroup_event_remove()
4614			 * may sleep, so we have to call it in workqueue.
4615			 */
4616			schedule_work(&event->remove);
4617		}
4618		spin_unlock(&memcg->event_list_lock);
4619	}
4620
4621	return 0;
4622}
4623
4624static void memcg_event_ptable_queue_proc(struct file *file,
4625		wait_queue_head_t *wqh, poll_table *pt)
4626{
4627	struct mem_cgroup_event *event =
4628		container_of(pt, struct mem_cgroup_event, pt);
4629
4630	event->wqh = wqh;
4631	add_wait_queue(wqh, &event->wait);
4632}
4633
4634/*
4635 * DO NOT USE IN NEW FILES.
4636 *
4637 * Parse input and register new cgroup event handler.
4638 *
4639 * Input must be in format '<event_fd> <control_fd> <args>'.
4640 * Interpretation of args is defined by control file implementation.
4641 */
4642static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4643					 char *buf, size_t nbytes, loff_t off)
4644{
4645	struct cgroup_subsys_state *css = of_css(of);
4646	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4647	struct mem_cgroup_event *event;
4648	struct cgroup_subsys_state *cfile_css;
4649	unsigned int efd, cfd;
4650	struct fd efile;
4651	struct fd cfile;
4652	const char *name;
4653	char *endp;
4654	int ret;
4655
4656	buf = strstrip(buf);
4657
4658	efd = simple_strtoul(buf, &endp, 10);
4659	if (*endp != ' ')
4660		return -EINVAL;
4661	buf = endp + 1;
4662
4663	cfd = simple_strtoul(buf, &endp, 10);
4664	if ((*endp != ' ') && (*endp != '\0'))
4665		return -EINVAL;
4666	buf = endp + 1;
4667
4668	event = kzalloc(sizeof(*event), GFP_KERNEL);
4669	if (!event)
4670		return -ENOMEM;
4671
4672	event->memcg = memcg;
4673	INIT_LIST_HEAD(&event->list);
4674	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4675	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4676	INIT_WORK(&event->remove, memcg_event_remove);
4677
4678	efile = fdget(efd);
4679	if (!efile.file) {
4680		ret = -EBADF;
4681		goto out_kfree;
4682	}
4683
4684	event->eventfd = eventfd_ctx_fileget(efile.file);
4685	if (IS_ERR(event->eventfd)) {
4686		ret = PTR_ERR(event->eventfd);
4687		goto out_put_efile;
4688	}
4689
4690	cfile = fdget(cfd);
4691	if (!cfile.file) {
4692		ret = -EBADF;
4693		goto out_put_eventfd;
4694	}
4695
4696	/* the process need read permission on control file */
4697	/* AV: shouldn't we check that it's been opened for read instead? */
4698	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4699	if (ret < 0)
4700		goto out_put_cfile;
4701
4702	/*
4703	 * Determine the event callbacks and set them in @event.  This used
4704	 * to be done via struct cftype but cgroup core no longer knows
4705	 * about these events.  The following is crude but the whole thing
4706	 * is for compatibility anyway.
4707	 *
4708	 * DO NOT ADD NEW FILES.
4709	 */
4710	name = cfile.file->f_path.dentry->d_name.name;
4711
4712	if (!strcmp(name, "memory.usage_in_bytes")) {
4713		event->register_event = mem_cgroup_usage_register_event;
4714		event->unregister_event = mem_cgroup_usage_unregister_event;
4715	} else if (!strcmp(name, "memory.oom_control")) {
4716		event->register_event = mem_cgroup_oom_register_event;
4717		event->unregister_event = mem_cgroup_oom_unregister_event;
4718	} else if (!strcmp(name, "memory.pressure_level")) {
4719		event->register_event = vmpressure_register_event;
4720		event->unregister_event = vmpressure_unregister_event;
4721	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4722		event->register_event = memsw_cgroup_usage_register_event;
4723		event->unregister_event = memsw_cgroup_usage_unregister_event;
4724	} else {
4725		ret = -EINVAL;
4726		goto out_put_cfile;
4727	}
4728
4729	/*
4730	 * Verify @cfile should belong to @css.  Also, remaining events are
4731	 * automatically removed on cgroup destruction but the removal is
4732	 * asynchronous, so take an extra ref on @css.
4733	 */
4734	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4735					       &memory_cgrp_subsys);
4736	ret = -EINVAL;
4737	if (IS_ERR(cfile_css))
4738		goto out_put_cfile;
4739	if (cfile_css != css) {
4740		css_put(cfile_css);
4741		goto out_put_cfile;
4742	}
4743
4744	ret = event->register_event(memcg, event->eventfd, buf);
4745	if (ret)
4746		goto out_put_css;
4747
4748	vfs_poll(efile.file, &event->pt);
4749
4750	spin_lock(&memcg->event_list_lock);
4751	list_add(&event->list, &memcg->event_list);
4752	spin_unlock(&memcg->event_list_lock);
4753
4754	fdput(cfile);
4755	fdput(efile);
4756
4757	return nbytes;
4758
4759out_put_css:
4760	css_put(css);
4761out_put_cfile:
4762	fdput(cfile);
4763out_put_eventfd:
4764	eventfd_ctx_put(event->eventfd);
4765out_put_efile:
4766	fdput(efile);
4767out_kfree:
4768	kfree(event);
4769
4770	return ret;
4771}
4772
4773static struct cftype mem_cgroup_legacy_files[] = {
4774	{
4775		.name = "usage_in_bytes",
4776		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4777		.read_u64 = mem_cgroup_read_u64,
4778	},
4779	{
4780		.name = "max_usage_in_bytes",
4781		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4782		.write = mem_cgroup_reset,
4783		.read_u64 = mem_cgroup_read_u64,
4784	},
4785	{
4786		.name = "limit_in_bytes",
4787		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4788		.write = mem_cgroup_write,
4789		.read_u64 = mem_cgroup_read_u64,
4790	},
4791	{
4792		.name = "soft_limit_in_bytes",
4793		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4794		.write = mem_cgroup_write,
4795		.read_u64 = mem_cgroup_read_u64,
4796	},
4797	{
4798		.name = "failcnt",
4799		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4800		.write = mem_cgroup_reset,
4801		.read_u64 = mem_cgroup_read_u64,
4802	},
4803	{
4804		.name = "stat",
4805		.seq_show = memcg_stat_show,
4806	},
4807	{
4808		.name = "force_empty",
4809		.write = mem_cgroup_force_empty_write,
4810	},
4811	{
4812		.name = "use_hierarchy",
4813		.write_u64 = mem_cgroup_hierarchy_write,
4814		.read_u64 = mem_cgroup_hierarchy_read,
4815	},
4816	{
4817		.name = "cgroup.event_control",		/* XXX: for compat */
4818		.write = memcg_write_event_control,
4819		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4820	},
4821	{
4822		.name = "swappiness",
4823		.read_u64 = mem_cgroup_swappiness_read,
4824		.write_u64 = mem_cgroup_swappiness_write,
4825	},
4826	{
4827		.name = "move_charge_at_immigrate",
4828		.read_u64 = mem_cgroup_move_charge_read,
4829		.write_u64 = mem_cgroup_move_charge_write,
4830	},
4831	{
4832		.name = "oom_control",
4833		.seq_show = mem_cgroup_oom_control_read,
4834		.write_u64 = mem_cgroup_oom_control_write,
4835		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4836	},
4837	{
4838		.name = "pressure_level",
4839	},
4840#ifdef CONFIG_NUMA
4841	{
4842		.name = "numa_stat",
4843		.seq_show = memcg_numa_stat_show,
4844	},
4845#endif
4846	{
4847		.name = "kmem.limit_in_bytes",
4848		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4849		.write = mem_cgroup_write,
4850		.read_u64 = mem_cgroup_read_u64,
4851	},
4852	{
4853		.name = "kmem.usage_in_bytes",
4854		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4855		.read_u64 = mem_cgroup_read_u64,
4856	},
4857	{
4858		.name = "kmem.failcnt",
4859		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4860		.write = mem_cgroup_reset,
4861		.read_u64 = mem_cgroup_read_u64,
4862	},
4863	{
4864		.name = "kmem.max_usage_in_bytes",
4865		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4866		.write = mem_cgroup_reset,
4867		.read_u64 = mem_cgroup_read_u64,
4868	},
4869#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 
4870	{
4871		.name = "kmem.slabinfo",
4872		.seq_start = memcg_slab_start,
4873		.seq_next = memcg_slab_next,
4874		.seq_stop = memcg_slab_stop,
4875		.seq_show = memcg_slab_show,
4876	},
4877#endif
4878	{
4879		.name = "kmem.tcp.limit_in_bytes",
4880		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4881		.write = mem_cgroup_write,
4882		.read_u64 = mem_cgroup_read_u64,
4883	},
4884	{
4885		.name = "kmem.tcp.usage_in_bytes",
4886		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4887		.read_u64 = mem_cgroup_read_u64,
4888	},
4889	{
4890		.name = "kmem.tcp.failcnt",
4891		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4892		.write = mem_cgroup_reset,
4893		.read_u64 = mem_cgroup_read_u64,
4894	},
4895	{
4896		.name = "kmem.tcp.max_usage_in_bytes",
4897		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4898		.write = mem_cgroup_reset,
4899		.read_u64 = mem_cgroup_read_u64,
4900	},
4901	{ },	/* terminate */
4902};
4903
4904/*
4905 * Private memory cgroup IDR
4906 *
4907 * Swap-out records and page cache shadow entries need to store memcg
4908 * references in constrained space, so we maintain an ID space that is
4909 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4910 * memory-controlled cgroups to 64k.
4911 *
4912 * However, there usually are many references to the oflline CSS after
4913 * the cgroup has been destroyed, such as page cache or reclaimable
4914 * slab objects, that don't need to hang on to the ID. We want to keep
4915 * those dead CSS from occupying IDs, or we might quickly exhaust the
4916 * relatively small ID space and prevent the creation of new cgroups
4917 * even when there are much fewer than 64k cgroups - possibly none.
4918 *
4919 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4920 * be freed and recycled when it's no longer needed, which is usually
4921 * when the CSS is offlined.
4922 *
4923 * The only exception to that are records of swapped out tmpfs/shmem
4924 * pages that need to be attributed to live ancestors on swapin. But
4925 * those references are manageable from userspace.
4926 */
4927
4928static DEFINE_IDR(mem_cgroup_idr);
4929
4930static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4931{
4932	if (memcg->id.id > 0) {
4933		idr_remove(&mem_cgroup_idr, memcg->id.id);
4934		memcg->id.id = 0;
4935	}
4936}
4937
4938static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
 
4939{
4940	refcount_add(n, &memcg->id.ref);
4941}
4942
4943static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4944{
4945	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4946		mem_cgroup_id_remove(memcg);
4947
4948		/* Memcg ID pins CSS */
4949		css_put(&memcg->css);
4950	}
4951}
4952
4953static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4954{
4955	mem_cgroup_id_put_many(memcg, 1);
4956}
4957
4958/**
4959 * mem_cgroup_from_id - look up a memcg from a memcg id
4960 * @id: the memcg id to look up
4961 *
4962 * Caller must hold rcu_read_lock().
4963 */
4964struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4965{
4966	WARN_ON_ONCE(!rcu_read_lock_held());
4967	return idr_find(&mem_cgroup_idr, id);
4968}
4969
4970static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4971{
4972	struct mem_cgroup_per_node *pn;
4973	int tmp = node;
4974	/*
4975	 * This routine is called against possible nodes.
4976	 * But it's BUG to call kmalloc() against offline node.
4977	 *
4978	 * TODO: this routine can waste much memory for nodes which will
4979	 *       never be onlined. It's better to use memory hotplug callback
4980	 *       function.
4981	 */
4982	if (!node_state(node, N_NORMAL_MEMORY))
4983		tmp = -1;
4984	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4985	if (!pn)
4986		return 1;
4987
4988	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
 
4989	if (!pn->lruvec_stat_local) {
4990		kfree(pn);
4991		return 1;
4992	}
4993
4994	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
 
4995	if (!pn->lruvec_stat_cpu) {
4996		free_percpu(pn->lruvec_stat_local);
4997		kfree(pn);
4998		return 1;
4999	}
5000
5001	lruvec_init(&pn->lruvec);
5002	pn->usage_in_excess = 0;
5003	pn->on_tree = false;
5004	pn->memcg = memcg;
5005
5006	memcg->nodeinfo[node] = pn;
5007	return 0;
5008}
5009
5010static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5011{
5012	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5013
5014	if (!pn)
5015		return;
5016
5017	free_percpu(pn->lruvec_stat_cpu);
5018	free_percpu(pn->lruvec_stat_local);
5019	kfree(pn);
5020}
5021
5022static void __mem_cgroup_free(struct mem_cgroup *memcg)
5023{
5024	int node;
5025
5026	for_each_node(node)
5027		free_mem_cgroup_per_node_info(memcg, node);
5028	free_percpu(memcg->vmstats_percpu);
5029	free_percpu(memcg->vmstats_local);
5030	kfree(memcg);
5031}
5032
5033static void mem_cgroup_free(struct mem_cgroup *memcg)
5034{
 
 
5035	memcg_wb_domain_exit(memcg);
5036	/*
5037	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5038	 * on parent's and all ancestor levels.
5039	 */
5040	memcg_flush_percpu_vmstats(memcg, false);
5041	memcg_flush_percpu_vmevents(memcg);
5042	__mem_cgroup_free(memcg);
5043}
5044
5045static struct mem_cgroup *mem_cgroup_alloc(void)
5046{
5047	struct mem_cgroup *memcg;
5048	unsigned int size;
5049	int node;
5050	int __maybe_unused i;
 
5051
5052	size = sizeof(struct mem_cgroup);
5053	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5054
5055	memcg = kzalloc(size, GFP_KERNEL);
5056	if (!memcg)
5057		return NULL;
5058
5059	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5060				 1, MEM_CGROUP_ID_MAX,
5061				 GFP_KERNEL);
5062	if (memcg->id.id < 0)
5063		goto fail;
5064
5065	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5066	if (!memcg->vmstats_local)
5067		goto fail;
 
5068
5069	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
 
5070	if (!memcg->vmstats_percpu)
5071		goto fail;
5072
5073	for_each_node(node)
5074		if (alloc_mem_cgroup_per_node_info(memcg, node))
5075			goto fail;
5076
5077	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5078		goto fail;
5079
5080	INIT_WORK(&memcg->high_work, high_work_func);
5081	memcg->last_scanned_node = MAX_NUMNODES;
5082	INIT_LIST_HEAD(&memcg->oom_notify);
5083	mutex_init(&memcg->thresholds_lock);
5084	spin_lock_init(&memcg->move_lock);
5085	vmpressure_init(&memcg->vmpressure);
5086	INIT_LIST_HEAD(&memcg->event_list);
5087	spin_lock_init(&memcg->event_list_lock);
5088	memcg->socket_pressure = jiffies;
5089#ifdef CONFIG_MEMCG_KMEM
5090	memcg->kmemcg_id = -1;
 
5091#endif
5092#ifdef CONFIG_CGROUP_WRITEBACK
5093	INIT_LIST_HEAD(&memcg->cgwb_list);
5094	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5095		memcg->cgwb_frn[i].done =
5096			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5097#endif
5098#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5099	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5100	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5101	memcg->deferred_split_queue.split_queue_len = 0;
5102#endif
5103	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5104	return memcg;
5105fail:
5106	mem_cgroup_id_remove(memcg);
5107	__mem_cgroup_free(memcg);
5108	return NULL;
5109}
5110
5111static struct cgroup_subsys_state * __ref
5112mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5113{
5114	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5115	struct mem_cgroup *memcg;
5116	long error = -ENOMEM;
5117
 
5118	memcg = mem_cgroup_alloc();
5119	if (!memcg)
5120		return ERR_PTR(error);
 
5121
5122	memcg->high = PAGE_COUNTER_MAX;
5123	memcg->soft_limit = PAGE_COUNTER_MAX;
 
5124	if (parent) {
5125		memcg->swappiness = mem_cgroup_swappiness(parent);
5126		memcg->oom_kill_disable = parent->oom_kill_disable;
5127	}
5128	if (parent && parent->use_hierarchy) {
5129		memcg->use_hierarchy = true;
5130		page_counter_init(&memcg->memory, &parent->memory);
5131		page_counter_init(&memcg->swap, &parent->swap);
5132		page_counter_init(&memcg->memsw, &parent->memsw);
5133		page_counter_init(&memcg->kmem, &parent->kmem);
5134		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5135	} else {
5136		page_counter_init(&memcg->memory, NULL);
5137		page_counter_init(&memcg->swap, NULL);
5138		page_counter_init(&memcg->memsw, NULL);
5139		page_counter_init(&memcg->kmem, NULL);
5140		page_counter_init(&memcg->tcpmem, NULL);
5141		/*
5142		 * Deeper hierachy with use_hierarchy == false doesn't make
5143		 * much sense so let cgroup subsystem know about this
5144		 * unfortunate state in our controller.
5145		 */
5146		if (parent != root_mem_cgroup)
5147			memory_cgrp_subsys.broken_hierarchy = true;
5148	}
5149
5150	/* The following stuff does not apply to the root */
5151	if (!parent) {
5152#ifdef CONFIG_MEMCG_KMEM
5153		INIT_LIST_HEAD(&memcg->kmem_caches);
5154#endif
5155		root_mem_cgroup = memcg;
5156		return &memcg->css;
5157	}
5158
 
5159	error = memcg_online_kmem(memcg);
5160	if (error)
5161		goto fail;
5162
5163	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164		static_branch_inc(&memcg_sockets_enabled_key);
5165
5166	return &memcg->css;
5167fail:
5168	mem_cgroup_id_remove(memcg);
5169	mem_cgroup_free(memcg);
5170	return ERR_PTR(-ENOMEM);
5171}
5172
5173static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5174{
5175	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5176
5177	/*
5178	 * A memcg must be visible for memcg_expand_shrinker_maps()
5179	 * by the time the maps are allocated. So, we allocate maps
5180	 * here, when for_each_mem_cgroup() can't skip it.
5181	 */
5182	if (memcg_alloc_shrinker_maps(memcg)) {
5183		mem_cgroup_id_remove(memcg);
5184		return -ENOMEM;
5185	}
5186
5187	/* Online state pins memcg ID, memcg ID pins CSS */
5188	refcount_set(&memcg->id.ref, 1);
5189	css_get(css);
5190	return 0;
5191}
5192
5193static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196	struct mem_cgroup_event *event, *tmp;
5197
5198	/*
5199	 * Unregister events and notify userspace.
5200	 * Notify userspace about cgroup removing only after rmdir of cgroup
5201	 * directory to avoid race between userspace and kernelspace.
5202	 */
5203	spin_lock(&memcg->event_list_lock);
5204	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5205		list_del_init(&event->list);
5206		schedule_work(&event->remove);
5207	}
5208	spin_unlock(&memcg->event_list_lock);
5209
5210	page_counter_set_min(&memcg->memory, 0);
5211	page_counter_set_low(&memcg->memory, 0);
5212
5213	memcg_offline_kmem(memcg);
 
5214	wb_memcg_offline(memcg);
5215
5216	drain_all_stock(memcg);
5217
5218	mem_cgroup_id_put(memcg);
5219}
5220
5221static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5222{
5223	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5224
5225	invalidate_reclaim_iterators(memcg);
5226}
5227
5228static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5229{
5230	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231	int __maybe_unused i;
5232
5233#ifdef CONFIG_CGROUP_WRITEBACK
5234	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5235		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5236#endif
5237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5238		static_branch_dec(&memcg_sockets_enabled_key);
5239
5240	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5241		static_branch_dec(&memcg_sockets_enabled_key);
5242
5243	vmpressure_cleanup(&memcg->vmpressure);
5244	cancel_work_sync(&memcg->high_work);
5245	mem_cgroup_remove_from_trees(memcg);
5246	memcg_free_shrinker_maps(memcg);
5247	memcg_free_kmem(memcg);
5248	mem_cgroup_free(memcg);
5249}
5250
5251/**
5252 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5253 * @css: the target css
5254 *
5255 * Reset the states of the mem_cgroup associated with @css.  This is
5256 * invoked when the userland requests disabling on the default hierarchy
5257 * but the memcg is pinned through dependency.  The memcg should stop
5258 * applying policies and should revert to the vanilla state as it may be
5259 * made visible again.
5260 *
5261 * The current implementation only resets the essential configurations.
5262 * This needs to be expanded to cover all the visible parts.
5263 */
5264static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5265{
5266	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267
5268	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5269	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5270	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5271	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5272	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5273	page_counter_set_min(&memcg->memory, 0);
5274	page_counter_set_low(&memcg->memory, 0);
5275	memcg->high = PAGE_COUNTER_MAX;
5276	memcg->soft_limit = PAGE_COUNTER_MAX;
 
5277	memcg_wb_domain_size_changed(memcg);
5278}
5279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5280#ifdef CONFIG_MMU
5281/* Handlers for move charge at task migration. */
5282static int mem_cgroup_do_precharge(unsigned long count)
5283{
5284	int ret;
5285
5286	/* Try a single bulk charge without reclaim first, kswapd may wake */
5287	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288	if (!ret) {
5289		mc.precharge += count;
5290		return ret;
5291	}
5292
5293	/* Try charges one by one with reclaim, but do not retry */
5294	while (count--) {
5295		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296		if (ret)
5297			return ret;
5298		mc.precharge++;
5299		cond_resched();
5300	}
5301	return 0;
5302}
5303
5304union mc_target {
5305	struct page	*page;
5306	swp_entry_t	ent;
5307};
5308
5309enum mc_target_type {
5310	MC_TARGET_NONE = 0,
5311	MC_TARGET_PAGE,
5312	MC_TARGET_SWAP,
5313	MC_TARGET_DEVICE,
5314};
5315
5316static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317						unsigned long addr, pte_t ptent)
5318{
5319	struct page *page = vm_normal_page(vma, addr, ptent);
5320
5321	if (!page || !page_mapped(page))
5322		return NULL;
5323	if (PageAnon(page)) {
5324		if (!(mc.flags & MOVE_ANON))
5325			return NULL;
5326	} else {
5327		if (!(mc.flags & MOVE_FILE))
5328			return NULL;
5329	}
5330	if (!get_page_unless_zero(page))
5331		return NULL;
5332
5333	return page;
5334}
5335
5336#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338			pte_t ptent, swp_entry_t *entry)
5339{
5340	struct page *page = NULL;
5341	swp_entry_t ent = pte_to_swp_entry(ptent);
5342
5343	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5344		return NULL;
5345
5346	/*
5347	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348	 * a device and because they are not accessible by CPU they are store
5349	 * as special swap entry in the CPU page table.
5350	 */
5351	if (is_device_private_entry(ent)) {
5352		page = device_private_entry_to_page(ent);
5353		/*
5354		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355		 * a refcount of 1 when free (unlike normal page)
5356		 */
5357		if (!page_ref_add_unless(page, 1, 1))
5358			return NULL;
5359		return page;
5360	}
5361
 
 
 
5362	/*
5363	 * Because lookup_swap_cache() updates some statistics counter,
5364	 * we call find_get_page() with swapper_space directly.
5365	 */
5366	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5367	if (do_memsw_account())
5368		entry->val = ent.val;
5369
5370	return page;
5371}
5372#else
5373static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5374			pte_t ptent, swp_entry_t *entry)
5375{
5376	return NULL;
5377}
5378#endif
5379
5380static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5381			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5382{
5383	struct page *page = NULL;
5384	struct address_space *mapping;
5385	pgoff_t pgoff;
5386
5387	if (!vma->vm_file) /* anonymous vma */
5388		return NULL;
5389	if (!(mc.flags & MOVE_FILE))
5390		return NULL;
5391
5392	mapping = vma->vm_file->f_mapping;
5393	pgoff = linear_page_index(vma, addr);
5394
5395	/* page is moved even if it's not RSS of this task(page-faulted). */
5396#ifdef CONFIG_SWAP
5397	/* shmem/tmpfs may report page out on swap: account for that too. */
5398	if (shmem_mapping(mapping)) {
5399		page = find_get_entry(mapping, pgoff);
5400		if (xa_is_value(page)) {
5401			swp_entry_t swp = radix_to_swp_entry(page);
5402			if (do_memsw_account())
5403				*entry = swp;
5404			page = find_get_page(swap_address_space(swp),
5405					     swp_offset(swp));
5406		}
5407	} else
5408		page = find_get_page(mapping, pgoff);
5409#else
5410	page = find_get_page(mapping, pgoff);
5411#endif
5412	return page;
5413}
5414
5415/**
5416 * mem_cgroup_move_account - move account of the page
5417 * @page: the page
5418 * @compound: charge the page as compound or small page
5419 * @from: mem_cgroup which the page is moved from.
5420 * @to:	mem_cgroup which the page is moved to. @from != @to.
5421 *
5422 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5423 *
5424 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5425 * from old cgroup.
5426 */
5427static int mem_cgroup_move_account(struct page *page,
5428				   bool compound,
5429				   struct mem_cgroup *from,
5430				   struct mem_cgroup *to)
5431{
5432	struct lruvec *from_vec, *to_vec;
5433	struct pglist_data *pgdat;
5434	unsigned long flags;
5435	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436	int ret;
5437	bool anon;
5438
5439	VM_BUG_ON(from == to);
5440	VM_BUG_ON_PAGE(PageLRU(page), page);
5441	VM_BUG_ON(compound && !PageTransHuge(page));
5442
5443	/*
5444	 * Prevent mem_cgroup_migrate() from looking at
5445	 * page->mem_cgroup of its source page while we change it.
5446	 */
5447	ret = -EBUSY;
5448	if (!trylock_page(page))
5449		goto out;
5450
5451	ret = -EINVAL;
5452	if (page->mem_cgroup != from)
5453		goto out_unlock;
5454
5455	anon = PageAnon(page);
 
 
 
 
5456
5457	pgdat = page_pgdat(page);
5458	from_vec = mem_cgroup_lruvec(pgdat, from);
5459	to_vec = mem_cgroup_lruvec(pgdat, to);
 
 
 
 
 
 
 
 
 
 
 
5460
5461	spin_lock_irqsave(&from->move_lock, flags);
 
 
 
5462
5463	if (!anon && page_mapped(page)) {
5464		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5465		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5466	}
5467
5468	/*
5469	 * move_lock grabbed above and caller set from->moving_account, so
5470	 * mod_memcg_page_state will serialize updates to PageDirty.
5471	 * So mapping should be stable for dirty pages.
5472	 */
5473	if (!anon && PageDirty(page)) {
5474		struct address_space *mapping = page_mapping(page);
5475
5476		if (mapping_cap_account_dirty(mapping)) {
5477			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5478			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
 
 
 
5479		}
5480	}
5481
5482	if (PageWriteback(page)) {
5483		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5484		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5485	}
5486
5487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5488	if (compound && !list_empty(page_deferred_list(page))) {
5489		spin_lock(&from->deferred_split_queue.split_queue_lock);
5490		list_del_init(page_deferred_list(page));
5491		from->deferred_split_queue.split_queue_len--;
5492		spin_unlock(&from->deferred_split_queue.split_queue_lock);
5493	}
5494#endif
5495	/*
5496	 * It is safe to change page->mem_cgroup here because the page
5497	 * is referenced, charged, and isolated - we can't race with
5498	 * uncharging, charging, migration, or LRU putback.
 
 
 
 
 
 
 
 
5499	 */
 
5500
5501	/* caller should have done css_get */
5502	page->mem_cgroup = to;
5503
5504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5505	if (compound && list_empty(page_deferred_list(page))) {
5506		spin_lock(&to->deferred_split_queue.split_queue_lock);
5507		list_add_tail(page_deferred_list(page),
5508			      &to->deferred_split_queue.split_queue);
5509		to->deferred_split_queue.split_queue_len++;
5510		spin_unlock(&to->deferred_split_queue.split_queue_lock);
5511	}
5512#endif
5513
5514	spin_unlock_irqrestore(&from->move_lock, flags);
5515
5516	ret = 0;
5517
5518	local_irq_disable();
5519	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5520	memcg_check_events(to, page);
5521	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5522	memcg_check_events(from, page);
5523	local_irq_enable();
5524out_unlock:
5525	unlock_page(page);
5526out:
5527	return ret;
5528}
5529
5530/**
5531 * get_mctgt_type - get target type of moving charge
5532 * @vma: the vma the pte to be checked belongs
5533 * @addr: the address corresponding to the pte to be checked
5534 * @ptent: the pte to be checked
5535 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5536 *
5537 * Returns
5538 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5539 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5540 *     move charge. if @target is not NULL, the page is stored in target->page
5541 *     with extra refcnt got(Callers should handle it).
5542 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5543 *     target for charge migration. if @target is not NULL, the entry is stored
5544 *     in target->ent.
5545 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5546 *     (so ZONE_DEVICE page and thus not on the lru).
5547 *     For now we such page is charge like a regular page would be as for all
5548 *     intent and purposes it is just special memory taking the place of a
5549 *     regular page.
5550 *
5551 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5552 *
5553 * Called with pte lock held.
5554 */
5555
5556static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5557		unsigned long addr, pte_t ptent, union mc_target *target)
5558{
5559	struct page *page = NULL;
5560	enum mc_target_type ret = MC_TARGET_NONE;
5561	swp_entry_t ent = { .val = 0 };
5562
5563	if (pte_present(ptent))
5564		page = mc_handle_present_pte(vma, addr, ptent);
5565	else if (is_swap_pte(ptent))
5566		page = mc_handle_swap_pte(vma, ptent, &ent);
5567	else if (pte_none(ptent))
5568		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5569
5570	if (!page && !ent.val)
5571		return ret;
5572	if (page) {
5573		/*
5574		 * Do only loose check w/o serialization.
5575		 * mem_cgroup_move_account() checks the page is valid or
5576		 * not under LRU exclusion.
5577		 */
5578		if (page->mem_cgroup == mc.from) {
5579			ret = MC_TARGET_PAGE;
5580			if (is_device_private_page(page))
5581				ret = MC_TARGET_DEVICE;
5582			if (target)
5583				target->page = page;
5584		}
5585		if (!ret || !target)
5586			put_page(page);
5587	}
5588	/*
5589	 * There is a swap entry and a page doesn't exist or isn't charged.
5590	 * But we cannot move a tail-page in a THP.
5591	 */
5592	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5593	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5594		ret = MC_TARGET_SWAP;
5595		if (target)
5596			target->ent = ent;
5597	}
5598	return ret;
5599}
5600
5601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5602/*
5603 * We don't consider PMD mapped swapping or file mapped pages because THP does
5604 * not support them for now.
5605 * Caller should make sure that pmd_trans_huge(pmd) is true.
5606 */
5607static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5608		unsigned long addr, pmd_t pmd, union mc_target *target)
5609{
5610	struct page *page = NULL;
5611	enum mc_target_type ret = MC_TARGET_NONE;
5612
5613	if (unlikely(is_swap_pmd(pmd))) {
5614		VM_BUG_ON(thp_migration_supported() &&
5615				  !is_pmd_migration_entry(pmd));
5616		return ret;
5617	}
5618	page = pmd_page(pmd);
5619	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5620	if (!(mc.flags & MOVE_ANON))
5621		return ret;
5622	if (page->mem_cgroup == mc.from) {
5623		ret = MC_TARGET_PAGE;
5624		if (target) {
5625			get_page(page);
5626			target->page = page;
5627		}
5628	}
5629	return ret;
5630}
5631#else
5632static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5633		unsigned long addr, pmd_t pmd, union mc_target *target)
5634{
5635	return MC_TARGET_NONE;
5636}
5637#endif
5638
5639static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5640					unsigned long addr, unsigned long end,
5641					struct mm_walk *walk)
5642{
5643	struct vm_area_struct *vma = walk->vma;
5644	pte_t *pte;
5645	spinlock_t *ptl;
5646
5647	ptl = pmd_trans_huge_lock(pmd, vma);
5648	if (ptl) {
5649		/*
5650		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5651		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5652		 * this might change.
5653		 */
5654		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5655			mc.precharge += HPAGE_PMD_NR;
5656		spin_unlock(ptl);
5657		return 0;
5658	}
5659
5660	if (pmd_trans_unstable(pmd))
5661		return 0;
5662	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5663	for (; addr != end; pte++, addr += PAGE_SIZE)
5664		if (get_mctgt_type(vma, addr, *pte, NULL))
5665			mc.precharge++;	/* increment precharge temporarily */
5666	pte_unmap_unlock(pte - 1, ptl);
5667	cond_resched();
5668
5669	return 0;
5670}
5671
5672static const struct mm_walk_ops precharge_walk_ops = {
5673	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5674};
5675
5676static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5677{
5678	unsigned long precharge;
5679
5680	down_read(&mm->mmap_sem);
5681	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5682	up_read(&mm->mmap_sem);
5683
5684	precharge = mc.precharge;
5685	mc.precharge = 0;
5686
5687	return precharge;
5688}
5689
5690static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5691{
5692	unsigned long precharge = mem_cgroup_count_precharge(mm);
5693
5694	VM_BUG_ON(mc.moving_task);
5695	mc.moving_task = current;
5696	return mem_cgroup_do_precharge(precharge);
5697}
5698
5699/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5700static void __mem_cgroup_clear_mc(void)
5701{
5702	struct mem_cgroup *from = mc.from;
5703	struct mem_cgroup *to = mc.to;
5704
5705	/* we must uncharge all the leftover precharges from mc.to */
5706	if (mc.precharge) {
5707		cancel_charge(mc.to, mc.precharge);
5708		mc.precharge = 0;
5709	}
5710	/*
5711	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5712	 * we must uncharge here.
5713	 */
5714	if (mc.moved_charge) {
5715		cancel_charge(mc.from, mc.moved_charge);
5716		mc.moved_charge = 0;
5717	}
5718	/* we must fixup refcnts and charges */
5719	if (mc.moved_swap) {
5720		/* uncharge swap account from the old cgroup */
5721		if (!mem_cgroup_is_root(mc.from))
5722			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5723
5724		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5725
5726		/*
5727		 * we charged both to->memory and to->memsw, so we
5728		 * should uncharge to->memory.
5729		 */
5730		if (!mem_cgroup_is_root(mc.to))
5731			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5732
5733		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5734		css_put_many(&mc.to->css, mc.moved_swap);
5735
5736		mc.moved_swap = 0;
5737	}
5738	memcg_oom_recover(from);
5739	memcg_oom_recover(to);
5740	wake_up_all(&mc.waitq);
5741}
5742
5743static void mem_cgroup_clear_mc(void)
5744{
5745	struct mm_struct *mm = mc.mm;
5746
5747	/*
5748	 * we must clear moving_task before waking up waiters at the end of
5749	 * task migration.
5750	 */
5751	mc.moving_task = NULL;
5752	__mem_cgroup_clear_mc();
5753	spin_lock(&mc.lock);
5754	mc.from = NULL;
5755	mc.to = NULL;
5756	mc.mm = NULL;
5757	spin_unlock(&mc.lock);
5758
5759	mmput(mm);
5760}
5761
5762static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5763{
5764	struct cgroup_subsys_state *css;
5765	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5766	struct mem_cgroup *from;
5767	struct task_struct *leader, *p;
5768	struct mm_struct *mm;
5769	unsigned long move_flags;
5770	int ret = 0;
5771
5772	/* charge immigration isn't supported on the default hierarchy */
5773	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5774		return 0;
5775
5776	/*
5777	 * Multi-process migrations only happen on the default hierarchy
5778	 * where charge immigration is not used.  Perform charge
5779	 * immigration if @tset contains a leader and whine if there are
5780	 * multiple.
5781	 */
5782	p = NULL;
5783	cgroup_taskset_for_each_leader(leader, css, tset) {
5784		WARN_ON_ONCE(p);
5785		p = leader;
5786		memcg = mem_cgroup_from_css(css);
5787	}
5788	if (!p)
5789		return 0;
5790
5791	/*
5792	 * We are now commited to this value whatever it is. Changes in this
5793	 * tunable will only affect upcoming migrations, not the current one.
5794	 * So we need to save it, and keep it going.
5795	 */
5796	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5797	if (!move_flags)
5798		return 0;
5799
5800	from = mem_cgroup_from_task(p);
5801
5802	VM_BUG_ON(from == memcg);
5803
5804	mm = get_task_mm(p);
5805	if (!mm)
5806		return 0;
5807	/* We move charges only when we move a owner of the mm */
5808	if (mm->owner == p) {
5809		VM_BUG_ON(mc.from);
5810		VM_BUG_ON(mc.to);
5811		VM_BUG_ON(mc.precharge);
5812		VM_BUG_ON(mc.moved_charge);
5813		VM_BUG_ON(mc.moved_swap);
5814
5815		spin_lock(&mc.lock);
5816		mc.mm = mm;
5817		mc.from = from;
5818		mc.to = memcg;
5819		mc.flags = move_flags;
5820		spin_unlock(&mc.lock);
5821		/* We set mc.moving_task later */
5822
5823		ret = mem_cgroup_precharge_mc(mm);
5824		if (ret)
5825			mem_cgroup_clear_mc();
5826	} else {
5827		mmput(mm);
5828	}
5829	return ret;
5830}
5831
5832static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5833{
5834	if (mc.to)
5835		mem_cgroup_clear_mc();
5836}
5837
5838static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5839				unsigned long addr, unsigned long end,
5840				struct mm_walk *walk)
5841{
5842	int ret = 0;
5843	struct vm_area_struct *vma = walk->vma;
5844	pte_t *pte;
5845	spinlock_t *ptl;
5846	enum mc_target_type target_type;
5847	union mc_target target;
5848	struct page *page;
5849
5850	ptl = pmd_trans_huge_lock(pmd, vma);
5851	if (ptl) {
5852		if (mc.precharge < HPAGE_PMD_NR) {
5853			spin_unlock(ptl);
5854			return 0;
5855		}
5856		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5857		if (target_type == MC_TARGET_PAGE) {
5858			page = target.page;
5859			if (!isolate_lru_page(page)) {
5860				if (!mem_cgroup_move_account(page, true,
5861							     mc.from, mc.to)) {
5862					mc.precharge -= HPAGE_PMD_NR;
5863					mc.moved_charge += HPAGE_PMD_NR;
5864				}
5865				putback_lru_page(page);
5866			}
5867			put_page(page);
5868		} else if (target_type == MC_TARGET_DEVICE) {
5869			page = target.page;
5870			if (!mem_cgroup_move_account(page, true,
5871						     mc.from, mc.to)) {
5872				mc.precharge -= HPAGE_PMD_NR;
5873				mc.moved_charge += HPAGE_PMD_NR;
5874			}
5875			put_page(page);
5876		}
5877		spin_unlock(ptl);
5878		return 0;
5879	}
5880
5881	if (pmd_trans_unstable(pmd))
5882		return 0;
5883retry:
5884	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5885	for (; addr != end; addr += PAGE_SIZE) {
5886		pte_t ptent = *(pte++);
5887		bool device = false;
5888		swp_entry_t ent;
5889
5890		if (!mc.precharge)
5891			break;
5892
5893		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5894		case MC_TARGET_DEVICE:
5895			device = true;
5896			/* fall through */
5897		case MC_TARGET_PAGE:
5898			page = target.page;
5899			/*
5900			 * We can have a part of the split pmd here. Moving it
5901			 * can be done but it would be too convoluted so simply
5902			 * ignore such a partial THP and keep it in original
5903			 * memcg. There should be somebody mapping the head.
5904			 */
5905			if (PageTransCompound(page))
5906				goto put;
5907			if (!device && isolate_lru_page(page))
5908				goto put;
5909			if (!mem_cgroup_move_account(page, false,
5910						mc.from, mc.to)) {
5911				mc.precharge--;
5912				/* we uncharge from mc.from later. */
5913				mc.moved_charge++;
5914			}
5915			if (!device)
5916				putback_lru_page(page);
5917put:			/* get_mctgt_type() gets the page */
5918			put_page(page);
5919			break;
5920		case MC_TARGET_SWAP:
5921			ent = target.ent;
5922			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5923				mc.precharge--;
5924				/* we fixup refcnts and charges later. */
 
5925				mc.moved_swap++;
5926			}
5927			break;
5928		default:
5929			break;
5930		}
5931	}
5932	pte_unmap_unlock(pte - 1, ptl);
5933	cond_resched();
5934
5935	if (addr != end) {
5936		/*
5937		 * We have consumed all precharges we got in can_attach().
5938		 * We try charge one by one, but don't do any additional
5939		 * charges to mc.to if we have failed in charge once in attach()
5940		 * phase.
5941		 */
5942		ret = mem_cgroup_do_precharge(1);
5943		if (!ret)
5944			goto retry;
5945	}
5946
5947	return ret;
5948}
5949
5950static const struct mm_walk_ops charge_walk_ops = {
5951	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5952};
5953
5954static void mem_cgroup_move_charge(void)
5955{
5956	lru_add_drain_all();
5957	/*
5958	 * Signal lock_page_memcg() to take the memcg's move_lock
5959	 * while we're moving its pages to another memcg. Then wait
5960	 * for already started RCU-only updates to finish.
5961	 */
5962	atomic_inc(&mc.from->moving_account);
5963	synchronize_rcu();
5964retry:
5965	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5966		/*
5967		 * Someone who are holding the mmap_sem might be waiting in
5968		 * waitq. So we cancel all extra charges, wake up all waiters,
5969		 * and retry. Because we cancel precharges, we might not be able
5970		 * to move enough charges, but moving charge is a best-effort
5971		 * feature anyway, so it wouldn't be a big problem.
5972		 */
5973		__mem_cgroup_clear_mc();
5974		cond_resched();
5975		goto retry;
5976	}
5977	/*
5978	 * When we have consumed all precharges and failed in doing
5979	 * additional charge, the page walk just aborts.
5980	 */
5981	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5982			NULL);
5983
5984	up_read(&mc.mm->mmap_sem);
5985	atomic_dec(&mc.from->moving_account);
5986}
5987
5988static void mem_cgroup_move_task(void)
5989{
5990	if (mc.to) {
5991		mem_cgroup_move_charge();
5992		mem_cgroup_clear_mc();
5993	}
5994}
5995#else	/* !CONFIG_MMU */
5996static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5997{
5998	return 0;
5999}
6000static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6001{
6002}
6003static void mem_cgroup_move_task(void)
6004{
6005}
6006#endif
6007
6008/*
6009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6010 * to verify whether we're attached to the default hierarchy on each mount
6011 * attempt.
6012 */
6013static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6014{
6015	/*
6016	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6017	 * guarantees that @root doesn't have any children, so turning it
6018	 * on for the root memcg is enough.
6019	 */
6020	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6021		root_mem_cgroup->use_hierarchy = true;
6022	else
6023		root_mem_cgroup->use_hierarchy = false;
6024}
6025
6026static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6027{
6028	if (value == PAGE_COUNTER_MAX)
6029		seq_puts(m, "max\n");
6030	else
6031		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6032
6033	return 0;
6034}
6035
6036static u64 memory_current_read(struct cgroup_subsys_state *css,
6037			       struct cftype *cft)
6038{
6039	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6040
6041	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6042}
6043
6044static int memory_min_show(struct seq_file *m, void *v)
6045{
6046	return seq_puts_memcg_tunable(m,
6047		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6048}
6049
6050static ssize_t memory_min_write(struct kernfs_open_file *of,
6051				char *buf, size_t nbytes, loff_t off)
6052{
6053	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054	unsigned long min;
6055	int err;
6056
6057	buf = strstrip(buf);
6058	err = page_counter_memparse(buf, "max", &min);
6059	if (err)
6060		return err;
6061
6062	page_counter_set_min(&memcg->memory, min);
6063
6064	return nbytes;
6065}
6066
6067static int memory_low_show(struct seq_file *m, void *v)
6068{
6069	return seq_puts_memcg_tunable(m,
6070		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6071}
6072
6073static ssize_t memory_low_write(struct kernfs_open_file *of,
6074				char *buf, size_t nbytes, loff_t off)
6075{
6076	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6077	unsigned long low;
6078	int err;
6079
6080	buf = strstrip(buf);
6081	err = page_counter_memparse(buf, "max", &low);
6082	if (err)
6083		return err;
6084
6085	page_counter_set_low(&memcg->memory, low);
6086
6087	return nbytes;
6088}
6089
6090static int memory_high_show(struct seq_file *m, void *v)
6091{
6092	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
 
6093}
6094
6095static ssize_t memory_high_write(struct kernfs_open_file *of,
6096				 char *buf, size_t nbytes, loff_t off)
6097{
6098	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6099	unsigned long nr_pages;
 
6100	unsigned long high;
6101	int err;
6102
6103	buf = strstrip(buf);
6104	err = page_counter_memparse(buf, "max", &high);
6105	if (err)
6106		return err;
6107
6108	memcg->high = high;
6109
6110	nr_pages = page_counter_read(&memcg->memory);
6111	if (nr_pages > high)
6112		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6113					     GFP_KERNEL, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6114
6115	memcg_wb_domain_size_changed(memcg);
6116	return nbytes;
6117}
6118
6119static int memory_max_show(struct seq_file *m, void *v)
6120{
6121	return seq_puts_memcg_tunable(m,
6122		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6123}
6124
6125static ssize_t memory_max_write(struct kernfs_open_file *of,
6126				char *buf, size_t nbytes, loff_t off)
6127{
6128	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6129	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6130	bool drained = false;
6131	unsigned long max;
6132	int err;
6133
6134	buf = strstrip(buf);
6135	err = page_counter_memparse(buf, "max", &max);
6136	if (err)
6137		return err;
6138
6139	xchg(&memcg->memory.max, max);
6140
6141	for (;;) {
6142		unsigned long nr_pages = page_counter_read(&memcg->memory);
6143
6144		if (nr_pages <= max)
6145			break;
6146
6147		if (signal_pending(current)) {
6148			err = -EINTR;
6149			break;
6150		}
6151
6152		if (!drained) {
6153			drain_all_stock(memcg);
6154			drained = true;
6155			continue;
6156		}
6157
6158		if (nr_reclaims) {
6159			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6160							  GFP_KERNEL, true))
6161				nr_reclaims--;
6162			continue;
6163		}
6164
6165		memcg_memory_event(memcg, MEMCG_OOM);
6166		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6167			break;
6168	}
6169
6170	memcg_wb_domain_size_changed(memcg);
6171	return nbytes;
6172}
6173
6174static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6175{
6176	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6177	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6178	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6179	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6180	seq_printf(m, "oom_kill %lu\n",
6181		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6182}
6183
6184static int memory_events_show(struct seq_file *m, void *v)
6185{
6186	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6187
6188	__memory_events_show(m, memcg->memory_events);
6189	return 0;
6190}
6191
6192static int memory_events_local_show(struct seq_file *m, void *v)
6193{
6194	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6195
6196	__memory_events_show(m, memcg->memory_events_local);
6197	return 0;
6198}
6199
6200static int memory_stat_show(struct seq_file *m, void *v)
6201{
6202	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6203	char *buf;
6204
6205	buf = memory_stat_format(memcg);
6206	if (!buf)
6207		return -ENOMEM;
6208	seq_puts(m, buf);
6209	kfree(buf);
6210	return 0;
6211}
6212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6213static int memory_oom_group_show(struct seq_file *m, void *v)
6214{
6215	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6216
6217	seq_printf(m, "%d\n", memcg->oom_group);
6218
6219	return 0;
6220}
6221
6222static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6223				      char *buf, size_t nbytes, loff_t off)
6224{
6225	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226	int ret, oom_group;
6227
6228	buf = strstrip(buf);
6229	if (!buf)
6230		return -EINVAL;
6231
6232	ret = kstrtoint(buf, 0, &oom_group);
6233	if (ret)
6234		return ret;
6235
6236	if (oom_group != 0 && oom_group != 1)
6237		return -EINVAL;
6238
6239	memcg->oom_group = oom_group;
6240
6241	return nbytes;
6242}
6243
6244static struct cftype memory_files[] = {
6245	{
6246		.name = "current",
6247		.flags = CFTYPE_NOT_ON_ROOT,
6248		.read_u64 = memory_current_read,
6249	},
6250	{
6251		.name = "min",
6252		.flags = CFTYPE_NOT_ON_ROOT,
6253		.seq_show = memory_min_show,
6254		.write = memory_min_write,
6255	},
6256	{
6257		.name = "low",
6258		.flags = CFTYPE_NOT_ON_ROOT,
6259		.seq_show = memory_low_show,
6260		.write = memory_low_write,
6261	},
6262	{
6263		.name = "high",
6264		.flags = CFTYPE_NOT_ON_ROOT,
6265		.seq_show = memory_high_show,
6266		.write = memory_high_write,
6267	},
6268	{
6269		.name = "max",
6270		.flags = CFTYPE_NOT_ON_ROOT,
6271		.seq_show = memory_max_show,
6272		.write = memory_max_write,
6273	},
6274	{
6275		.name = "events",
6276		.flags = CFTYPE_NOT_ON_ROOT,
6277		.file_offset = offsetof(struct mem_cgroup, events_file),
6278		.seq_show = memory_events_show,
6279	},
6280	{
6281		.name = "events.local",
6282		.flags = CFTYPE_NOT_ON_ROOT,
6283		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6284		.seq_show = memory_events_local_show,
6285	},
6286	{
6287		.name = "stat",
6288		.flags = CFTYPE_NOT_ON_ROOT,
6289		.seq_show = memory_stat_show,
6290	},
 
 
 
 
 
 
6291	{
6292		.name = "oom.group",
6293		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6294		.seq_show = memory_oom_group_show,
6295		.write = memory_oom_group_write,
6296	},
6297	{ }	/* terminate */
6298};
6299
6300struct cgroup_subsys memory_cgrp_subsys = {
6301	.css_alloc = mem_cgroup_css_alloc,
6302	.css_online = mem_cgroup_css_online,
6303	.css_offline = mem_cgroup_css_offline,
6304	.css_released = mem_cgroup_css_released,
6305	.css_free = mem_cgroup_css_free,
6306	.css_reset = mem_cgroup_css_reset,
 
6307	.can_attach = mem_cgroup_can_attach,
6308	.cancel_attach = mem_cgroup_cancel_attach,
6309	.post_attach = mem_cgroup_move_task,
6310	.bind = mem_cgroup_bind,
6311	.dfl_cftypes = memory_files,
6312	.legacy_cftypes = mem_cgroup_legacy_files,
6313	.early_init = 0,
6314};
6315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6316/**
6317 * mem_cgroup_protected - check if memory consumption is in the normal range
6318 * @root: the top ancestor of the sub-tree being checked
6319 * @memcg: the memory cgroup to check
6320 *
6321 * WARNING: This function is not stateless! It can only be used as part
6322 *          of a top-down tree iteration, not for isolated queries.
6323 *
6324 * Returns one of the following:
6325 *   MEMCG_PROT_NONE: cgroup memory is not protected
6326 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6327 *     an unprotected supply of reclaimable memory from other cgroups.
6328 *   MEMCG_PROT_MIN: cgroup memory is protected
6329 *
6330 * @root is exclusive; it is never protected when looked at directly
6331 *
6332 * To provide a proper hierarchical behavior, effective memory.min/low values
6333 * are used. Below is the description of how effective memory.low is calculated.
6334 * Effective memory.min values is calculated in the same way.
6335 *
6336 * Effective memory.low is always equal or less than the original memory.low.
6337 * If there is no memory.low overcommittment (which is always true for
6338 * top-level memory cgroups), these two values are equal.
6339 * Otherwise, it's a part of parent's effective memory.low,
6340 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6341 * memory.low usages, where memory.low usage is the size of actually
6342 * protected memory.
6343 *
6344 *                                             low_usage
6345 * elow = min( memory.low, parent->elow * ------------------ ),
6346 *                                        siblings_low_usage
6347 *
6348 *             | memory.current, if memory.current < memory.low
6349 * low_usage = |
6350 *	       | 0, otherwise.
6351 *
6352 *
6353 * Such definition of the effective memory.low provides the expected
6354 * hierarchical behavior: parent's memory.low value is limiting
6355 * children, unprotected memory is reclaimed first and cgroups,
6356 * which are not using their guarantee do not affect actual memory
6357 * distribution.
6358 *
6359 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6360 *
6361 *     A      A/memory.low = 2G, A/memory.current = 6G
6362 *    //\\
6363 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6364 *            C/memory.low = 1G  C/memory.current = 2G
6365 *            D/memory.low = 0   D/memory.current = 2G
6366 *            E/memory.low = 10G E/memory.current = 0
6367 *
6368 * and the memory pressure is applied, the following memory distribution
6369 * is expected (approximately):
6370 *
6371 *     A/memory.current = 2G
6372 *
6373 *     B/memory.current = 1.3G
6374 *     C/memory.current = 0.6G
6375 *     D/memory.current = 0
6376 *     E/memory.current = 0
6377 *
6378 * These calculations require constant tracking of the actual low usages
6379 * (see propagate_protected_usage()), as well as recursive calculation of
6380 * effective memory.low values. But as we do call mem_cgroup_protected()
6381 * path for each memory cgroup top-down from the reclaim,
6382 * it's possible to optimize this part, and save calculated elow
6383 * for next usage. This part is intentionally racy, but it's ok,
6384 * as memory.low is a best-effort mechanism.
6385 */
6386enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6387						struct mem_cgroup *memcg)
6388{
 
6389	struct mem_cgroup *parent;
6390	unsigned long emin, parent_emin;
6391	unsigned long elow, parent_elow;
6392	unsigned long usage;
6393
6394	if (mem_cgroup_disabled())
6395		return MEMCG_PROT_NONE;
6396
6397	if (!root)
6398		root = root_mem_cgroup;
 
 
 
 
 
 
 
 
6399	if (memcg == root)
6400		return MEMCG_PROT_NONE;
6401
6402	usage = page_counter_read(&memcg->memory);
6403	if (!usage)
6404		return MEMCG_PROT_NONE;
6405
6406	emin = memcg->memory.min;
6407	elow = memcg->memory.low;
6408
6409	parent = parent_mem_cgroup(memcg);
6410	/* No parent means a non-hierarchical mode on v1 memcg */
6411	if (!parent)
6412		return MEMCG_PROT_NONE;
6413
6414	if (parent == root)
6415		goto exit;
 
 
 
6416
6417	parent_emin = READ_ONCE(parent->memory.emin);
6418	emin = min(emin, parent_emin);
6419	if (emin && parent_emin) {
6420		unsigned long min_usage, siblings_min_usage;
6421
6422		min_usage = min(usage, memcg->memory.min);
6423		siblings_min_usage = atomic_long_read(
6424			&parent->memory.children_min_usage);
 
6425
6426		if (min_usage && siblings_min_usage)
6427			emin = min(emin, parent_emin * min_usage /
6428				   siblings_min_usage);
6429	}
 
6430
6431	parent_elow = READ_ONCE(parent->memory.elow);
6432	elow = min(elow, parent_elow);
6433	if (elow && parent_elow) {
6434		unsigned long low_usage, siblings_low_usage;
 
6435
6436		low_usage = min(usage, memcg->memory.low);
6437		siblings_low_usage = atomic_long_read(
6438			&parent->memory.children_low_usage);
6439
6440		if (low_usage && siblings_low_usage)
6441			elow = min(elow, parent_elow * low_usage /
6442				   siblings_low_usage);
6443	}
6444
6445exit:
6446	memcg->memory.emin = emin;
6447	memcg->memory.elow = elow;
6448
6449	if (usage <= emin)
6450		return MEMCG_PROT_MIN;
6451	else if (usage <= elow)
6452		return MEMCG_PROT_LOW;
6453	else
6454		return MEMCG_PROT_NONE;
6455}
6456
6457/**
6458 * mem_cgroup_try_charge - try charging a page
6459 * @page: page to charge
6460 * @mm: mm context of the victim
6461 * @gfp_mask: reclaim mode
6462 * @memcgp: charged memcg return
6463 * @compound: charge the page as compound or small page
6464 *
6465 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6466 * pages according to @gfp_mask if necessary.
 
6467 *
6468 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6469 * Otherwise, an error code is returned.
6470 *
6471 * After page->mapping has been set up, the caller must finalize the
6472 * charge with mem_cgroup_commit_charge().  Or abort the transaction
6473 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6474 */
6475int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6476			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6477			  bool compound)
6478{
6479	struct mem_cgroup *memcg = NULL;
6480	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6481	int ret = 0;
6482
6483	if (mem_cgroup_disabled())
6484		goto out;
6485
6486	if (PageSwapCache(page)) {
6487		/*
6488		 * Every swap fault against a single page tries to charge the
6489		 * page, bail as early as possible.  shmem_unuse() encounters
6490		 * already charged pages, too.  The USED bit is protected by
6491		 * the page lock, which serializes swap cache removal, which
6492		 * in turn serializes uncharging.
6493		 */
6494		VM_BUG_ON_PAGE(!PageLocked(page), page);
6495		if (compound_head(page)->mem_cgroup)
6496			goto out;
6497
6498		if (do_swap_account) {
6499			swp_entry_t ent = { .val = page_private(page), };
6500			unsigned short id = lookup_swap_cgroup_id(ent);
6501
6502			rcu_read_lock();
6503			memcg = mem_cgroup_from_id(id);
6504			if (memcg && !css_tryget_online(&memcg->css))
6505				memcg = NULL;
6506			rcu_read_unlock();
6507		}
6508	}
6509
6510	if (!memcg)
6511		memcg = get_mem_cgroup_from_mm(mm);
6512
6513	ret = try_charge(memcg, gfp_mask, nr_pages);
6514
6515	css_put(&memcg->css);
6516out:
6517	*memcgp = memcg;
6518	return ret;
6519}
6520
6521int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6522			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6523			  bool compound)
 
 
 
 
 
 
 
 
 
 
 
6524{
6525	struct mem_cgroup *memcg;
 
6526	int ret;
6527
6528	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6529	memcg = *memcgp;
6530	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
 
 
 
 
 
 
 
 
 
 
6531	return ret;
6532}
6533
6534/**
6535 * mem_cgroup_commit_charge - commit a page charge
6536 * @page: page to charge
6537 * @memcg: memcg to charge the page to
6538 * @lrucare: page might be on LRU already
6539 * @compound: charge the page as compound or small page
6540 *
6541 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6542 * after page->mapping has been set up.  This must happen atomically
6543 * as part of the page instantiation, i.e. under the page table lock
6544 * for anonymous pages, under the page lock for page and swap cache.
6545 *
6546 * In addition, the page must not be on the LRU during the commit, to
6547 * prevent racing with task migration.  If it might be, use @lrucare.
6548 *
6549 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 
6550 */
6551void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6552			      bool lrucare, bool compound)
6553{
6554	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6555
6556	VM_BUG_ON_PAGE(!page->mapping, page);
6557	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6558
6559	if (mem_cgroup_disabled())
6560		return;
6561	/*
6562	 * Swap faults will attempt to charge the same page multiple
6563	 * times.  But reuse_swap_page() might have removed the page
6564	 * from swapcache already, so we can't check PageSwapCache().
 
 
 
 
 
 
 
6565	 */
6566	if (!memcg)
6567		return;
6568
6569	commit_charge(page, memcg, lrucare);
6570
6571	local_irq_disable();
6572	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6573	memcg_check_events(memcg, page);
6574	local_irq_enable();
6575
6576	if (do_memsw_account() && PageSwapCache(page)) {
6577		swp_entry_t entry = { .val = page_private(page) };
6578		/*
6579		 * The swap entry might not get freed for a long time,
6580		 * let's not wait for it.  The page already received a
6581		 * memory+swap charge, drop the swap entry duplicate.
6582		 */
6583		mem_cgroup_uncharge_swap(entry, nr_pages);
6584	}
6585}
6586
6587/**
6588 * mem_cgroup_cancel_charge - cancel a page charge
6589 * @page: page to charge
6590 * @memcg: memcg to charge the page to
6591 * @compound: charge the page as compound or small page
6592 *
6593 * Cancel a charge transaction started by mem_cgroup_try_charge().
6594 */
6595void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6596		bool compound)
6597{
6598	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6599
6600	if (mem_cgroup_disabled())
6601		return;
6602	/*
6603	 * Swap faults will attempt to charge the same page multiple
6604	 * times.  But reuse_swap_page() might have removed the page
6605	 * from swapcache already, so we can't check PageSwapCache().
6606	 */
6607	if (!memcg)
6608		return;
6609
6610	cancel_charge(memcg, nr_pages);
6611}
6612
6613struct uncharge_gather {
6614	struct mem_cgroup *memcg;
 
6615	unsigned long pgpgout;
6616	unsigned long nr_anon;
6617	unsigned long nr_file;
6618	unsigned long nr_kmem;
6619	unsigned long nr_huge;
6620	unsigned long nr_shmem;
6621	struct page *dummy_page;
6622};
6623
6624static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6625{
6626	memset(ug, 0, sizeof(*ug));
6627}
6628
6629static void uncharge_batch(const struct uncharge_gather *ug)
6630{
6631	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6632	unsigned long flags;
6633
6634	if (!mem_cgroup_is_root(ug->memcg)) {
6635		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6636		if (do_memsw_account())
6637			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6638		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6639			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6640		memcg_oom_recover(ug->memcg);
6641	}
6642
6643	local_irq_save(flags);
6644	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6645	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6646	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6647	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6648	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6649	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6650	memcg_check_events(ug->memcg, ug->dummy_page);
6651	local_irq_restore(flags);
6652
6653	if (!mem_cgroup_is_root(ug->memcg))
6654		css_put_many(&ug->memcg->css, nr_pages);
6655}
6656
6657static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6658{
 
 
 
 
 
6659	VM_BUG_ON_PAGE(PageLRU(page), page);
6660	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6661			!PageHWPoison(page) , page);
6662
6663	if (!page->mem_cgroup)
6664		return;
6665
6666	/*
6667	 * Nobody should be changing or seriously looking at
6668	 * page->mem_cgroup at this point, we have fully
6669	 * exclusive access to the page.
6670	 */
 
 
 
 
 
 
 
 
 
 
6671
6672	if (ug->memcg != page->mem_cgroup) {
 
 
 
6673		if (ug->memcg) {
6674			uncharge_batch(ug);
6675			uncharge_gather_clear(ug);
6676		}
6677		ug->memcg = page->mem_cgroup;
6678	}
6679
6680	if (!PageKmemcg(page)) {
6681		unsigned int nr_pages = 1;
6682
6683		if (PageTransHuge(page)) {
6684			nr_pages = compound_nr(page);
6685			ug->nr_huge += nr_pages;
6686		}
6687		if (PageAnon(page))
6688			ug->nr_anon += nr_pages;
6689		else {
6690			ug->nr_file += nr_pages;
6691			if (PageSwapBacked(page))
6692				ug->nr_shmem += nr_pages;
6693		}
6694		ug->pgpgout++;
6695	} else {
6696		ug->nr_kmem += compound_nr(page);
6697		__ClearPageKmemcg(page);
6698	}
6699
6700	ug->dummy_page = page;
6701	page->mem_cgroup = NULL;
6702}
6703
6704static void uncharge_list(struct list_head *page_list)
6705{
6706	struct uncharge_gather ug;
6707	struct list_head *next;
6708
6709	uncharge_gather_clear(&ug);
 
 
 
 
 
 
6710
6711	/*
6712	 * Note that the list can be a single page->lru; hence the
6713	 * do-while loop instead of a simple list_for_each_entry().
6714	 */
6715	next = page_list->next;
6716	do {
6717		struct page *page;
6718
6719		page = list_entry(next, struct page, lru);
6720		next = page->lru.next;
6721
6722		uncharge_page(page, &ug);
6723	} while (next != page_list);
6724
6725	if (ug.memcg)
6726		uncharge_batch(&ug);
6727}
6728
6729/**
6730 * mem_cgroup_uncharge - uncharge a page
6731 * @page: page to uncharge
6732 *
6733 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6734 * mem_cgroup_commit_charge().
6735 */
6736void mem_cgroup_uncharge(struct page *page)
6737{
6738	struct uncharge_gather ug;
6739
6740	if (mem_cgroup_disabled())
6741		return;
6742
6743	/* Don't touch page->lru of any random page, pre-check: */
6744	if (!page->mem_cgroup)
6745		return;
6746
6747	uncharge_gather_clear(&ug);
6748	uncharge_page(page, &ug);
6749	uncharge_batch(&ug);
6750}
6751
6752/**
6753 * mem_cgroup_uncharge_list - uncharge a list of page
6754 * @page_list: list of pages to uncharge
6755 *
6756 * Uncharge a list of pages previously charged with
6757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6758 */
6759void mem_cgroup_uncharge_list(struct list_head *page_list)
6760{
 
 
 
6761	if (mem_cgroup_disabled())
6762		return;
6763
6764	if (!list_empty(page_list))
6765		uncharge_list(page_list);
 
 
 
6766}
6767
6768/**
6769 * mem_cgroup_migrate - charge a page's replacement
6770 * @oldpage: currently circulating page
6771 * @newpage: replacement page
6772 *
6773 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6774 * be uncharged upon free.
6775 *
6776 * Both pages must be locked, @newpage->mapping must be set up.
6777 */
6778void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6779{
6780	struct mem_cgroup *memcg;
6781	unsigned int nr_pages;
6782	bool compound;
6783	unsigned long flags;
6784
6785	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6786	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6787	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6788	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6789		       newpage);
6790
6791	if (mem_cgroup_disabled())
6792		return;
6793
6794	/* Page cache replacement: new page already charged? */
6795	if (newpage->mem_cgroup)
6796		return;
6797
6798	/* Swapcache readahead pages can get replaced before being charged */
6799	memcg = oldpage->mem_cgroup;
6800	if (!memcg)
6801		return;
6802
6803	/* Force-charge the new page. The old one will be freed soon */
6804	compound = PageTransHuge(newpage);
6805	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6806
6807	page_counter_charge(&memcg->memory, nr_pages);
6808	if (do_memsw_account())
6809		page_counter_charge(&memcg->memsw, nr_pages);
6810	css_get_many(&memcg->css, nr_pages);
 
6811
6812	commit_charge(newpage, memcg, false);
 
6813
6814	local_irq_save(flags);
6815	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6816	memcg_check_events(memcg, newpage);
6817	local_irq_restore(flags);
6818}
6819
6820DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6821EXPORT_SYMBOL(memcg_sockets_enabled_key);
6822
6823void mem_cgroup_sk_alloc(struct sock *sk)
6824{
6825	struct mem_cgroup *memcg;
6826
6827	if (!mem_cgroup_sockets_enabled)
6828		return;
6829
6830	/*
6831	 * Socket cloning can throw us here with sk_memcg already
6832	 * filled. It won't however, necessarily happen from
6833	 * process context. So the test for root memcg given
6834	 * the current task's memcg won't help us in this case.
6835	 *
6836	 * Respecting the original socket's memcg is a better
6837	 * decision in this case.
6838	 */
6839	if (sk->sk_memcg) {
6840		css_get(&sk->sk_memcg->css);
6841		return;
6842	}
6843
6844	rcu_read_lock();
6845	memcg = mem_cgroup_from_task(current);
6846	if (memcg == root_mem_cgroup)
6847		goto out;
6848	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6849		goto out;
6850	if (css_tryget_online(&memcg->css))
6851		sk->sk_memcg = memcg;
6852out:
6853	rcu_read_unlock();
6854}
6855
6856void mem_cgroup_sk_free(struct sock *sk)
6857{
6858	if (sk->sk_memcg)
6859		css_put(&sk->sk_memcg->css);
6860}
6861
6862/**
6863 * mem_cgroup_charge_skmem - charge socket memory
6864 * @memcg: memcg to charge
6865 * @nr_pages: number of pages to charge
6866 *
6867 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6868 * @memcg's configured limit, %false if the charge had to be forced.
6869 */
6870bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6871{
6872	gfp_t gfp_mask = GFP_KERNEL;
6873
6874	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6875		struct page_counter *fail;
6876
6877		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6878			memcg->tcpmem_pressure = 0;
6879			return true;
6880		}
6881		page_counter_charge(&memcg->tcpmem, nr_pages);
6882		memcg->tcpmem_pressure = 1;
6883		return false;
6884	}
6885
6886	/* Don't block in the packet receive path */
6887	if (in_softirq())
6888		gfp_mask = GFP_NOWAIT;
6889
6890	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6891
6892	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6893		return true;
6894
6895	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6896	return false;
6897}
6898
6899/**
6900 * mem_cgroup_uncharge_skmem - uncharge socket memory
6901 * @memcg: memcg to uncharge
6902 * @nr_pages: number of pages to uncharge
6903 */
6904void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6905{
6906	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6907		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6908		return;
6909	}
6910
6911	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6912
6913	refill_stock(memcg, nr_pages);
6914}
6915
6916static int __init cgroup_memory(char *s)
6917{
6918	char *token;
6919
6920	while ((token = strsep(&s, ",")) != NULL) {
6921		if (!*token)
6922			continue;
6923		if (!strcmp(token, "nosocket"))
6924			cgroup_memory_nosocket = true;
6925		if (!strcmp(token, "nokmem"))
6926			cgroup_memory_nokmem = true;
6927	}
6928	return 0;
6929}
6930__setup("cgroup.memory=", cgroup_memory);
6931
6932/*
6933 * subsys_initcall() for memory controller.
6934 *
6935 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6936 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6937 * basically everything that doesn't depend on a specific mem_cgroup structure
6938 * should be initialized from here.
6939 */
6940static int __init mem_cgroup_init(void)
6941{
6942	int cpu, node;
6943
6944#ifdef CONFIG_MEMCG_KMEM
6945	/*
6946	 * Kmem cache creation is mostly done with the slab_mutex held,
6947	 * so use a workqueue with limited concurrency to avoid stalling
6948	 * all worker threads in case lots of cgroups are created and
6949	 * destroyed simultaneously.
6950	 */
6951	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6952	BUG_ON(!memcg_kmem_cache_wq);
6953#endif
6954
6955	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6956				  memcg_hotplug_cpu_dead);
6957
6958	for_each_possible_cpu(cpu)
6959		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6960			  drain_local_stock);
6961
6962	for_each_node(node) {
6963		struct mem_cgroup_tree_per_node *rtpn;
6964
6965		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6966				    node_online(node) ? node : NUMA_NO_NODE);
6967
6968		rtpn->rb_root = RB_ROOT;
6969		rtpn->rb_rightmost = NULL;
6970		spin_lock_init(&rtpn->lock);
6971		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6972	}
6973
6974	return 0;
6975}
6976subsys_initcall(mem_cgroup_init);
6977
6978#ifdef CONFIG_MEMCG_SWAP
6979static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6980{
6981	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6982		/*
6983		 * The root cgroup cannot be destroyed, so it's refcount must
6984		 * always be >= 1.
6985		 */
6986		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6987			VM_BUG_ON(1);
6988			break;
6989		}
6990		memcg = parent_mem_cgroup(memcg);
6991		if (!memcg)
6992			memcg = root_mem_cgroup;
6993	}
6994	return memcg;
6995}
6996
6997/**
6998 * mem_cgroup_swapout - transfer a memsw charge to swap
6999 * @page: page whose memsw charge to transfer
7000 * @entry: swap entry to move the charge to
7001 *
7002 * Transfer the memsw charge of @page to @entry.
7003 */
7004void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7005{
7006	struct mem_cgroup *memcg, *swap_memcg;
7007	unsigned int nr_entries;
7008	unsigned short oldid;
7009
7010	VM_BUG_ON_PAGE(PageLRU(page), page);
7011	VM_BUG_ON_PAGE(page_count(page), page);
7012
7013	if (!do_memsw_account())
 
 
 
7014		return;
7015
7016	memcg = page->mem_cgroup;
7017
7018	/* Readahead page, never charged */
7019	if (!memcg)
7020		return;
7021
7022	/*
7023	 * In case the memcg owning these pages has been offlined and doesn't
7024	 * have an ID allocated to it anymore, charge the closest online
7025	 * ancestor for the swap instead and transfer the memory+swap charge.
7026	 */
7027	swap_memcg = mem_cgroup_id_get_online(memcg);
7028	nr_entries = hpage_nr_pages(page);
7029	/* Get references for the tail pages, too */
7030	if (nr_entries > 1)
7031		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7032	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7033				   nr_entries);
7034	VM_BUG_ON_PAGE(oldid, page);
7035	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7036
7037	page->mem_cgroup = NULL;
7038
7039	if (!mem_cgroup_is_root(memcg))
7040		page_counter_uncharge(&memcg->memory, nr_entries);
7041
7042	if (memcg != swap_memcg) {
7043		if (!mem_cgroup_is_root(swap_memcg))
7044			page_counter_charge(&swap_memcg->memsw, nr_entries);
7045		page_counter_uncharge(&memcg->memsw, nr_entries);
7046	}
7047
7048	/*
7049	 * Interrupts should be disabled here because the caller holds the
7050	 * i_pages lock which is taken with interrupts-off. It is
7051	 * important here to have the interrupts disabled because it is the
7052	 * only synchronisation we have for updating the per-CPU variables.
7053	 */
7054	VM_BUG_ON(!irqs_disabled());
7055	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7056				     -nr_entries);
7057	memcg_check_events(memcg, page);
7058
7059	if (!mem_cgroup_is_root(memcg))
7060		css_put_many(&memcg->css, nr_entries);
7061}
7062
7063/**
7064 * mem_cgroup_try_charge_swap - try charging swap space for a page
7065 * @page: page being added to swap
7066 * @entry: swap entry to charge
7067 *
7068 * Try to charge @page's memcg for the swap space at @entry.
7069 *
7070 * Returns 0 on success, -ENOMEM on failure.
7071 */
7072int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7073{
7074	unsigned int nr_pages = hpage_nr_pages(page);
7075	struct page_counter *counter;
7076	struct mem_cgroup *memcg;
7077	unsigned short oldid;
7078
7079	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
 
 
 
7080		return 0;
7081
7082	memcg = page->mem_cgroup;
7083
7084	/* Readahead page, never charged */
7085	if (!memcg)
7086		return 0;
7087
7088	if (!entry.val) {
7089		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7090		return 0;
7091	}
7092
7093	memcg = mem_cgroup_id_get_online(memcg);
7094
7095	if (!mem_cgroup_is_root(memcg) &&
7096	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7097		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7098		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7099		mem_cgroup_id_put(memcg);
7100		return -ENOMEM;
7101	}
7102
7103	/* Get references for the tail pages, too */
7104	if (nr_pages > 1)
7105		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7106	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7107	VM_BUG_ON_PAGE(oldid, page);
7108	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7109
7110	return 0;
7111}
7112
7113/**
7114 * mem_cgroup_uncharge_swap - uncharge swap space
7115 * @entry: swap entry to uncharge
7116 * @nr_pages: the amount of swap space to uncharge
7117 */
7118void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7119{
7120	struct mem_cgroup *memcg;
7121	unsigned short id;
7122
7123	if (!do_swap_account)
7124		return;
7125
7126	id = swap_cgroup_record(entry, 0, nr_pages);
7127	rcu_read_lock();
7128	memcg = mem_cgroup_from_id(id);
7129	if (memcg) {
7130		if (!mem_cgroup_is_root(memcg)) {
7131			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7132				page_counter_uncharge(&memcg->swap, nr_pages);
7133			else
7134				page_counter_uncharge(&memcg->memsw, nr_pages);
7135		}
7136		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7137		mem_cgroup_id_put_many(memcg, nr_pages);
7138	}
7139	rcu_read_unlock();
7140}
7141
7142long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7143{
7144	long nr_swap_pages = get_nr_swap_pages();
7145
7146	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7147		return nr_swap_pages;
7148	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7149		nr_swap_pages = min_t(long, nr_swap_pages,
7150				      READ_ONCE(memcg->swap.max) -
7151				      page_counter_read(&memcg->swap));
7152	return nr_swap_pages;
7153}
7154
7155bool mem_cgroup_swap_full(struct page *page)
7156{
7157	struct mem_cgroup *memcg;
7158
7159	VM_BUG_ON_PAGE(!PageLocked(page), page);
7160
7161	if (vm_swap_full())
7162		return true;
7163	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7164		return false;
7165
7166	memcg = page->mem_cgroup;
7167	if (!memcg)
7168		return false;
7169
7170	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7171		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
 
 
 
7172			return true;
 
7173
7174	return false;
7175}
7176
7177/* for remember boot option*/
7178#ifdef CONFIG_MEMCG_SWAP_ENABLED
7179static int really_do_swap_account __initdata = 1;
7180#else
7181static int really_do_swap_account __initdata;
7182#endif
7183
7184static int __init enable_swap_account(char *s)
7185{
7186	if (!strcmp(s, "1"))
7187		really_do_swap_account = 1;
7188	else if (!strcmp(s, "0"))
7189		really_do_swap_account = 0;
7190	return 1;
7191}
7192__setup("swapaccount=", enable_swap_account);
7193
7194static u64 swap_current_read(struct cgroup_subsys_state *css,
7195			     struct cftype *cft)
7196{
7197	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7198
7199	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7200}
7201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7202static int swap_max_show(struct seq_file *m, void *v)
7203{
7204	return seq_puts_memcg_tunable(m,
7205		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7206}
7207
7208static ssize_t swap_max_write(struct kernfs_open_file *of,
7209			      char *buf, size_t nbytes, loff_t off)
7210{
7211	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7212	unsigned long max;
7213	int err;
7214
7215	buf = strstrip(buf);
7216	err = page_counter_memparse(buf, "max", &max);
7217	if (err)
7218		return err;
7219
7220	xchg(&memcg->swap.max, max);
7221
7222	return nbytes;
7223}
7224
7225static int swap_events_show(struct seq_file *m, void *v)
7226{
7227	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7228
 
 
7229	seq_printf(m, "max %lu\n",
7230		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7231	seq_printf(m, "fail %lu\n",
7232		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7233
7234	return 0;
7235}
7236
7237static struct cftype swap_files[] = {
7238	{
7239		.name = "swap.current",
7240		.flags = CFTYPE_NOT_ON_ROOT,
7241		.read_u64 = swap_current_read,
7242	},
7243	{
 
 
 
 
 
 
7244		.name = "swap.max",
7245		.flags = CFTYPE_NOT_ON_ROOT,
7246		.seq_show = swap_max_show,
7247		.write = swap_max_write,
7248	},
7249	{
7250		.name = "swap.events",
7251		.flags = CFTYPE_NOT_ON_ROOT,
7252		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7253		.seq_show = swap_events_show,
7254	},
7255	{ }	/* terminate */
7256};
7257
7258static struct cftype memsw_cgroup_files[] = {
7259	{
7260		.name = "memsw.usage_in_bytes",
7261		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7262		.read_u64 = mem_cgroup_read_u64,
7263	},
7264	{
7265		.name = "memsw.max_usage_in_bytes",
7266		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7267		.write = mem_cgroup_reset,
7268		.read_u64 = mem_cgroup_read_u64,
7269	},
7270	{
7271		.name = "memsw.limit_in_bytes",
7272		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7273		.write = mem_cgroup_write,
7274		.read_u64 = mem_cgroup_read_u64,
7275	},
7276	{
7277		.name = "memsw.failcnt",
7278		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7279		.write = mem_cgroup_reset,
7280		.read_u64 = mem_cgroup_read_u64,
7281	},
7282	{ },	/* terminate */
7283};
7284
 
 
 
 
 
 
 
7285static int __init mem_cgroup_swap_init(void)
7286{
7287	if (!mem_cgroup_disabled() && really_do_swap_account) {
7288		do_swap_account = 1;
7289		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7290					       swap_files));
7291		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7292						  memsw_cgroup_files));
7293	}
 
 
 
7294	return 0;
7295}
7296subsys_initcall(mem_cgroup_swap_init);
7297
7298#endif /* CONFIG_MEMCG_SWAP */