Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257extern spinlock_t css_set_lock;
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456{
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460}
461
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
464{
465 return soft_limit_tree.rb_tree_per_node[nid];
466}
467
468static struct mem_cgroup_tree_per_node *
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474}
475
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513{
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526{
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532}
533
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595}
596
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599{
600 struct mem_cgroup_per_node *mz;
601
602retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618done:
619 return mz;
620}
621
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624{
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631}
632
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
641 if (mem_cgroup_disabled())
642 return;
643
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646}
647
648/* idx can be of type enum memcg_stat_item or node_stat_item. */
649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650{
651 long x = READ_ONCE(memcg->vmstats.state[idx]);
652#ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655#endif
656 return x;
657}
658
659/* idx can be of type enum memcg_stat_item or node_stat_item. */
660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661{
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667#ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670#endif
671 return x;
672}
673
674static struct mem_cgroup_per_node *
675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676{
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
682 return parent->nodeinfo[nid];
683}
684
685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
687{
688 struct mem_cgroup_per_node *pn;
689 struct mem_cgroup *memcg;
690 long x, threshold = MEMCG_CHARGE_BATCH;
691
692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 memcg = pn->memcg;
694
695 /* Update memcg */
696 __mod_memcg_state(memcg, idx, val);
697
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 if (unlikely(abs(x) > threshold)) {
706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 struct mem_cgroup_per_node *pi;
708
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714}
715
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735}
736
737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739{
740 struct page *head = compound_head(page); /* rmap on tail pages */
741 struct mem_cgroup *memcg;
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
745 rcu_read_lock();
746 memcg = page_memcg(head);
747 /* Untracked pages have no memcg, no lruvec. Update only the node */
748 if (!memcg) {
749 rcu_read_unlock();
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 __mod_lruvec_state(lruvec, idx, val);
756 rcu_read_unlock();
757}
758EXPORT_SYMBOL(__mod_lruvec_page_state);
759
760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761{
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782}
783
784/*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
791{
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 mod_memcg_lruvec_state(lruvec, idx, nr);
799 rcu_read_unlock();
800}
801
802/**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
806 * @count: the number of events that occurred
807 */
808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810{
811 if (mem_cgroup_disabled())
812 return;
813
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816}
817
818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819{
820 return READ_ONCE(memcg->vmstats.events[event]);
821}
822
823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824{
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 return x;
831}
832
833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 struct page *page,
835 int nr_pages)
836{
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846}
847
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850{
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 default:
865 break;
866 }
867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 return true;
869 }
870 return false;
871}
872
873/*
874 * Check events in order.
875 *
876 */
877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878{
879 /* threshold event is triggered in finer grain than soft limit */
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
882 bool do_softlimit;
883
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 }
890}
891
892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893{
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903}
904EXPORT_SYMBOL(mem_cgroup_from_task);
905
906static __always_inline struct mem_cgroup *active_memcg(void)
907{
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912}
913
914/**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
924 */
925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926{
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
952
953 rcu_read_lock();
954 do {
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
957 memcg = root_mem_cgroup;
958 } while (!css_tryget(&memcg->css));
959 rcu_read_unlock();
960 return memcg;
961}
962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
964static __always_inline bool memcg_kmem_bypass(void)
965{
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975}
976
977/**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
993 */
994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 struct mem_cgroup *prev,
996 struct mem_cgroup_reclaim_cookie *reclaim)
997{
998 struct mem_cgroup_reclaim_iter *iter;
999 struct cgroup_subsys_state *css = NULL;
1000 struct mem_cgroup *memcg = NULL;
1001 struct mem_cgroup *pos = NULL;
1002
1003 if (mem_cgroup_disabled())
1004 return NULL;
1005
1006 if (!root)
1007 root = root_mem_cgroup;
1008
1009 if (prev && !reclaim)
1010 pos = prev;
1011
1012 rcu_read_lock();
1013
1014 if (reclaim) {
1015 struct mem_cgroup_per_node *mz;
1016
1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 iter = &mz->iter;
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
1023 while (1) {
1024 pos = READ_ONCE(iter->position);
1025 if (!pos || css_tryget(&pos->css))
1026 break;
1027 /*
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
1034 */
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
1054 }
1055
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
1062
1063 if (css == &root->css)
1064 break;
1065
1066 if (css_tryget(css))
1067 break;
1068
1069 memcg = NULL;
1070 }
1071
1072 if (reclaim) {
1073 /*
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
1077 */
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212 struct lruvec *lruvec;
1213
1214 lruvec = mem_cgroup_page_lruvec(page);
1215 spin_lock(&lruvec->lru_lock);
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224 struct lruvec *lruvec;
1225
1226 lruvec = mem_cgroup_page_lruvec(page);
1227 spin_lock_irq(&lruvec->lru_lock);
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236 struct lruvec *lruvec;
1237
1238 lruvec = mem_cgroup_page_lruvec(page);
1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259{
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
1360struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383#endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 cgroup_rstat_flush(memcg->css.cgroup);
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590{
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763{
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002 struct page *head = compound_head(page); /* rmap on tail pages */
2003 struct mem_cgroup *memcg;
2004 unsigned long flags;
2005
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
2010 */
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return;
2015again:
2016 memcg = page_memcg(head);
2017 if (unlikely(!memcg))
2018 return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024#endif
2025
2026 if (atomic_read(&memcg->moving_account) <= 0)
2027 return;
2028
2029 spin_lock_irqsave(&memcg->move_lock, flags);
2030 if (memcg != page_memcg(head)) {
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 goto again;
2033 }
2034
2035 /*
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047{
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
2056
2057 rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066 struct page *head = compound_head(page);
2067
2068 __unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
2075 struct pglist_data *cached_pgdat;
2076 unsigned int nr_bytes;
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
2079#else
2080 int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
2089
2090 struct work_struct work;
2091 unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE 0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108{
2109 return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_irq_restore(flags);
2177
2178 return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (stock->cached != memcg) { /* reset if necessary */
2236 drain_stock(stock);
2237 css_get(&memcg->css);
2238 stock->cached = memcg;
2239 }
2240 stock->nr_pages += nr_pages;
2241
2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 drain_stock(stock);
2244
2245 local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254 int cpu, curcpu;
2255
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
2265 curcpu = get_cpu();
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 struct mem_cgroup *memcg;
2269 bool flush = false;
2270
2271 rcu_read_lock();
2272 memcg = stock->cached;
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 }
2288 put_cpu();
2289 mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294 int nid;
2295
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
2300 int i;
2301
2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
2307
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326 return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
2332{
2333 unsigned long nr_reclaimed = 0;
2334
2335 do {
2336 unsigned long pflags;
2337
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
2340 continue;
2341
2342 memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344 psi_memstall_enter(&pflags);
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
2347 psi_memstall_leave(&pflags);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417 u64 overage;
2418
2419 if (usage <= high)
2420 return 0;
2421
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
2427
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435 u64 overage, max_overage = 0;
2436
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
2439 READ_ONCE(memcg->memory.high));
2440 max_overage = max(overage, max_overage);
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
2444 return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470{
2471 unsigned long penalty_jiffies;
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
2507 unsigned long nr_reclaimed;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 int nr_retries = MAX_RECLAIM_RETRIES;
2510 struct mem_cgroup *memcg;
2511 bool in_retry = false;
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
2517 current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
2539
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
2584{
2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 int nr_retries = MAX_RECLAIM_RETRIES;
2587 struct mem_cgroup *mem_over_limit;
2588 struct page_counter *counter;
2589 enum oom_status oom_status;
2590 unsigned long nr_reclaimed;
2591 bool may_swap = true;
2592 bool drained = false;
2593 unsigned long pflags;
2594
2595retry:
2596 if (consume_stock(memcg, nr_pages))
2597 return 0;
2598
2599 if (!do_memsw_account() ||
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 goto done_restock;
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 } else {
2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 may_swap = false;
2609 }
2610
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
2615
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
2631 if (unlikely(should_force_charge()))
2632 goto force;
2633
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
2646 if (!gfpflags_allow_blocking(gfp_mask))
2647 goto nomem;
2648
2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651 psi_memstall_enter(&pflags);
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
2654 psi_memstall_leave(&pflags);
2655
2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 goto retry;
2658
2659 if (!drained) {
2660 drain_all_stock(mem_over_limit);
2661 drained = true;
2662 goto retry;
2663 }
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
2685 if (nr_retries--)
2686 goto retry;
2687
2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 goto nomem;
2690
2691 if (fatal_signal_pending(current))
2692 goto force;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
2710nomem:
2711 if (!(gfp_mask & __GFP_NOFAIL))
2712 return -ENOMEM;
2713force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
2720 if (do_memsw_account())
2721 page_counter_charge(&memcg->memsw, nr_pages);
2722
2723 return 0;
2724
2725done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
2728
2729 /*
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
2737 */
2738 do {
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
2765 current->memcg_nr_pages_over_high += batch;
2766 set_notify_resume(current);
2767 break;
2768 }
2769 } while ((memcg = parent_mem_cgroup(memcg)));
2770
2771 return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776{
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
2789 page_counter_uncharge(&memcg->memory, nr_pages);
2790 if (do_memsw_account())
2791 page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797 VM_BUG_ON_PAGE(page_memcg(page), page);
2798 /*
2799 * Any of the following ensures page's memcg stability:
2800 *
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
2805 */
2806 page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 gfp_t gfp, bool new_page)
2833{
2834 unsigned int objects = objs_per_slab_page(s, page);
2835 unsigned long memcg_data;
2836 void *vec;
2837
2838 gfp &= ~OBJCGS_CLEAR_MASK;
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
2858 kfree(vec);
2859 return 0;
2860 }
2861
2862 kmemleak_not_leak(vec);
2863 return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
2891 */
2892 if (page_objcgs_check(page)) {
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
2897 objcg = page_objcgs(page)[off];
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979 ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011{
3012 struct page_counter *counter;
3013 struct mem_cgroup *memcg;
3014 int ret;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 if (ret)
3020 goto out;
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
3032 goto out;
3033 }
3034 cancel_charge(memcg, nr_pages);
3035 ret = -ENOMEM;
3036 }
3037out:
3038 css_put(&memcg->css);
3039
3040 return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053 struct obj_cgroup *objcg;
3054 int ret = 0;
3055
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 if (!ret) {
3060 page->memcg_data = (unsigned long)objcg |
3061 MEMCG_DATA_KMEM;
3062 return 0;
3063 }
3064 obj_cgroup_put(objcg);
3065 }
3066 return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076 struct obj_cgroup *objcg;
3077 unsigned int nr_pages = 1 << order;
3078
3079 if (!PageMemcgKmem(page))
3080 return;
3081
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 page->memcg_data = 0;
3085 obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090{
3091 unsigned long flags;
3092 struct obj_stock *stock = get_obj_stock(&flags);
3093 int *bytes;
3094
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111 if (stock->nr_slab_reclaimable_b) {
3112 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113 stock->nr_slab_reclaimable_b);
3114 stock->nr_slab_reclaimable_b = 0;
3115 }
3116 if (stock->nr_slab_unreclaimable_b) {
3117 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118 stock->nr_slab_unreclaimable_b);
3119 stock->nr_slab_unreclaimable_b = 0;
3120 }
3121 stock->cached_pgdat = pgdat;
3122 }
3123
3124 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125 : &stock->nr_slab_unreclaimable_b;
3126 /*
3127 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128 * cached locally at least once before pushing it out.
3129 */
3130 if (!*bytes) {
3131 *bytes = nr;
3132 nr = 0;
3133 } else {
3134 *bytes += nr;
3135 if (abs(*bytes) > PAGE_SIZE) {
3136 nr = *bytes;
3137 *bytes = 0;
3138 } else {
3139 nr = 0;
3140 }
3141 }
3142 if (nr)
3143 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145 put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
3150 unsigned long flags;
3151 struct obj_stock *stock = get_obj_stock(&flags);
3152 bool ret = false;
3153
3154 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155 stock->nr_bytes -= nr_bytes;
3156 ret = true;
3157 }
3158
3159 put_obj_stock(flags);
3160
3161 return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166 struct obj_cgroup *old = stock->cached_objcg;
3167
3168 if (!old)
3169 return;
3170
3171 if (stock->nr_bytes) {
3172 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175 if (nr_pages)
3176 obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178 /*
3179 * The leftover is flushed to the centralized per-memcg value.
3180 * On the next attempt to refill obj stock it will be moved
3181 * to a per-cpu stock (probably, on an other CPU), see
3182 * refill_obj_stock().
3183 *
3184 * How often it's flushed is a trade-off between the memory
3185 * limit enforcement accuracy and potential CPU contention,
3186 * so it might be changed in the future.
3187 */
3188 atomic_add(nr_bytes, &old->nr_charged_bytes);
3189 stock->nr_bytes = 0;
3190 }
3191
3192 /*
3193 * Flush the vmstat data in current stock
3194 */
3195 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196 if (stock->nr_slab_reclaimable_b) {
3197 mod_objcg_mlstate(old, stock->cached_pgdat,
3198 NR_SLAB_RECLAIMABLE_B,
3199 stock->nr_slab_reclaimable_b);
3200 stock->nr_slab_reclaimable_b = 0;
3201 }
3202 if (stock->nr_slab_unreclaimable_b) {
3203 mod_objcg_mlstate(old, stock->cached_pgdat,
3204 NR_SLAB_UNRECLAIMABLE_B,
3205 stock->nr_slab_unreclaimable_b);
3206 stock->nr_slab_unreclaimable_b = 0;
3207 }
3208 stock->cached_pgdat = NULL;
3209 }
3210
3211 obj_cgroup_put(old);
3212 stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216 struct mem_cgroup *root_memcg)
3217{
3218 struct mem_cgroup *memcg;
3219
3220 if (in_task() && stock->task_obj.cached_objcg) {
3221 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223 return true;
3224 }
3225 if (stock->irq_obj.cached_objcg) {
3226 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228 return true;
3229 }
3230
3231 return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235 bool allow_uncharge)
3236{
3237 unsigned long flags;
3238 struct obj_stock *stock = get_obj_stock(&flags);
3239 unsigned int nr_pages = 0;
3240
3241 if (stock->cached_objcg != objcg) { /* reset if necessary */
3242 drain_obj_stock(stock);
3243 obj_cgroup_get(objcg);
3244 stock->cached_objcg = objcg;
3245 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247 allow_uncharge = true; /* Allow uncharge when objcg changes */
3248 }
3249 stock->nr_bytes += nr_bytes;
3250
3251 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253 stock->nr_bytes &= (PAGE_SIZE - 1);
3254 }
3255
3256 put_obj_stock(flags);
3257
3258 if (nr_pages)
3259 obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264 unsigned int nr_pages, nr_bytes;
3265 int ret;
3266
3267 if (consume_obj_stock(objcg, size))
3268 return 0;
3269
3270 /*
3271 * In theory, objcg->nr_charged_bytes can have enough
3272 * pre-charged bytes to satisfy the allocation. However,
3273 * flushing objcg->nr_charged_bytes requires two atomic
3274 * operations, and objcg->nr_charged_bytes can't be big.
3275 * The shared objcg->nr_charged_bytes can also become a
3276 * performance bottleneck if all tasks of the same memcg are
3277 * trying to update it. So it's better to ignore it and try
3278 * grab some new pages. The stock's nr_bytes will be flushed to
3279 * objcg->nr_charged_bytes later on when objcg changes.
3280 *
3281 * The stock's nr_bytes may contain enough pre-charged bytes
3282 * to allow one less page from being charged, but we can't rely
3283 * on the pre-charged bytes not being changed outside of
3284 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285 * pre-charged bytes as well when charging pages. To avoid a
3286 * page uncharge right after a page charge, we set the
3287 * allow_uncharge flag to false when calling refill_obj_stock()
3288 * to temporarily allow the pre-charged bytes to exceed the page
3289 * size limit. The maximum reachable value of the pre-charged
3290 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291 * race.
3292 */
3293 nr_pages = size >> PAGE_SHIFT;
3294 nr_bytes = size & (PAGE_SIZE - 1);
3295
3296 if (nr_bytes)
3297 nr_pages += 1;
3298
3299 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300 if (!ret && nr_bytes)
3301 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303 return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308 refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318 struct mem_cgroup *memcg = page_memcg(head);
3319 int i;
3320
3321 if (mem_cgroup_disabled() || !memcg)
3322 return;
3323
3324 for (i = 1; i < nr; i++)
3325 head[i].memcg_data = head->memcg_data;
3326
3327 if (PageMemcgKmem(head))
3328 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329 else
3330 css_get_many(&memcg->css, nr - 1);
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from: mem_cgroup which the entry is moved from
3338 * @to: mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349 struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351 unsigned short old_id, new_id;
3352
3353 old_id = mem_cgroup_id(from);
3354 new_id = mem_cgroup_id(to);
3355
3356 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357 mod_memcg_state(from, MEMCG_SWAP, -1);
3358 mod_memcg_state(to, MEMCG_SWAP, 1);
3359 return 0;
3360 }
3361 return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365 struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367 return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374 unsigned long max, bool memsw)
3375{
3376 bool enlarge = false;
3377 bool drained = false;
3378 int ret;
3379 bool limits_invariant;
3380 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382 do {
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 break;
3386 }
3387
3388 mutex_lock(&memcg_max_mutex);
3389 /*
3390 * Make sure that the new limit (memsw or memory limit) doesn't
3391 * break our basic invariant rule memory.max <= memsw.max.
3392 */
3393 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394 max <= memcg->memsw.max;
3395 if (!limits_invariant) {
3396 mutex_unlock(&memcg_max_mutex);
3397 ret = -EINVAL;
3398 break;
3399 }
3400 if (max > counter->max)
3401 enlarge = true;
3402 ret = page_counter_set_max(counter, max);
3403 mutex_unlock(&memcg_max_mutex);
3404
3405 if (!ret)
3406 break;
3407
3408 if (!drained) {
3409 drain_all_stock(memcg);
3410 drained = true;
3411 continue;
3412 }
3413
3414 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415 GFP_KERNEL, !memsw)) {
3416 ret = -EBUSY;
3417 break;
3418 }
3419 } while (true);
3420
3421 if (!ret && enlarge)
3422 memcg_oom_recover(memcg);
3423
3424 return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 gfp_t gfp_mask,
3429 unsigned long *total_scanned)
3430{
3431 unsigned long nr_reclaimed = 0;
3432 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433 unsigned long reclaimed;
3434 int loop = 0;
3435 struct mem_cgroup_tree_per_node *mctz;
3436 unsigned long excess;
3437 unsigned long nr_scanned;
3438
3439 if (order > 0)
3440 return 0;
3441
3442 mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444 /*
3445 * Do not even bother to check the largest node if the root
3446 * is empty. Do it lockless to prevent lock bouncing. Races
3447 * are acceptable as soft limit is best effort anyway.
3448 */
3449 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450 return 0;
3451
3452 /*
3453 * This loop can run a while, specially if mem_cgroup's continuously
3454 * keep exceeding their soft limit and putting the system under
3455 * pressure
3456 */
3457 do {
3458 if (next_mz)
3459 mz = next_mz;
3460 else
3461 mz = mem_cgroup_largest_soft_limit_node(mctz);
3462 if (!mz)
3463 break;
3464
3465 nr_scanned = 0;
3466 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467 gfp_mask, &nr_scanned);
3468 nr_reclaimed += reclaimed;
3469 *total_scanned += nr_scanned;
3470 spin_lock_irq(&mctz->lock);
3471 __mem_cgroup_remove_exceeded(mz, mctz);
3472
3473 /*
3474 * If we failed to reclaim anything from this memory cgroup
3475 * it is time to move on to the next cgroup
3476 */
3477 next_mz = NULL;
3478 if (!reclaimed)
3479 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481 excess = soft_limit_excess(mz->memcg);
3482 /*
3483 * One school of thought says that we should not add
3484 * back the node to the tree if reclaim returns 0.
3485 * But our reclaim could return 0, simply because due
3486 * to priority we are exposing a smaller subset of
3487 * memory to reclaim from. Consider this as a longer
3488 * term TODO.
3489 */
3490 /* If excess == 0, no tree ops */
3491 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3492 spin_unlock_irq(&mctz->lock);
3493 css_put(&mz->memcg->css);
3494 loop++;
3495 /*
3496 * Could not reclaim anything and there are no more
3497 * mem cgroups to try or we seem to be looping without
3498 * reclaiming anything.
3499 */
3500 if (!nr_reclaimed &&
3501 (next_mz == NULL ||
3502 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 break;
3504 } while (!nr_reclaimed);
3505 if (next_mz)
3506 css_put(&next_mz->memcg->css);
3507 return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517 int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519 /* we call try-to-free pages for make this cgroup empty */
3520 lru_add_drain_all();
3521
3522 drain_all_stock(memcg);
3523
3524 /* try to free all pages in this cgroup */
3525 while (nr_retries && page_counter_read(&memcg->memory)) {
3526 int progress;
3527
3528 if (signal_pending(current))
3529 return -EINTR;
3530
3531 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532 GFP_KERNEL, true);
3533 if (!progress) {
3534 nr_retries--;
3535 /* maybe some writeback is necessary */
3536 congestion_wait(BLK_RW_ASYNC, HZ/10);
3537 }
3538
3539 }
3540
3541 return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545 char *buf, size_t nbytes,
3546 loff_t off)
3547{
3548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550 if (mem_cgroup_is_root(memcg))
3551 return -EINVAL;
3552 return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556 struct cftype *cft)
3557{
3558 return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562 struct cftype *cft, u64 val)
3563{
3564 if (val == 1)
3565 return 0;
3566
3567 pr_warn_once("Non-hierarchical mode is deprecated. "
3568 "Please report your usecase to linux-mm@kvack.org if you "
3569 "depend on this functionality.\n");
3570
3571 return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576 unsigned long val;
3577
3578 if (mem_cgroup_is_root(memcg)) {
3579 /* mem_cgroup_threshold() calls here from irqsafe context */
3580 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582 memcg_page_state(memcg, NR_ANON_MAPPED);
3583 if (swap)
3584 val += memcg_page_state(memcg, MEMCG_SWAP);
3585 } else {
3586 if (!swap)
3587 val = page_counter_read(&memcg->memory);
3588 else
3589 val = page_counter_read(&memcg->memsw);
3590 }
3591 return val;
3592}
3593
3594enum {
3595 RES_USAGE,
3596 RES_LIMIT,
3597 RES_MAX_USAGE,
3598 RES_FAILCNT,
3599 RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603 struct cftype *cft)
3604{
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(cft->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(cft->private)) {
3626 case RES_USAGE:
3627 if (counter == &memcg->memory)
3628 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629 if (counter == &memcg->memsw)
3630 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631 return (u64)page_counter_read(counter) * PAGE_SIZE;
3632 case RES_LIMIT:
3633 return (u64)counter->max * PAGE_SIZE;
3634 case RES_MAX_USAGE:
3635 return (u64)counter->watermark * PAGE_SIZE;
3636 case RES_FAILCNT:
3637 return counter->failcnt;
3638 case RES_SOFT_LIMIT:
3639 return (u64)memcg->soft_limit * PAGE_SIZE;
3640 default:
3641 BUG();
3642 }
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648 struct obj_cgroup *objcg;
3649 int memcg_id;
3650
3651 if (cgroup_memory_nokmem)
3652 return 0;
3653
3654 BUG_ON(memcg->kmemcg_id >= 0);
3655 BUG_ON(memcg->kmem_state);
3656
3657 memcg_id = memcg_alloc_cache_id();
3658 if (memcg_id < 0)
3659 return memcg_id;
3660
3661 objcg = obj_cgroup_alloc();
3662 if (!objcg) {
3663 memcg_free_cache_id(memcg_id);
3664 return -ENOMEM;
3665 }
3666 objcg->memcg = memcg;
3667 rcu_assign_pointer(memcg->objcg, objcg);
3668
3669 static_branch_enable(&memcg_kmem_enabled_key);
3670
3671 memcg->kmemcg_id = memcg_id;
3672 memcg->kmem_state = KMEM_ONLINE;
3673
3674 return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679 struct cgroup_subsys_state *css;
3680 struct mem_cgroup *parent, *child;
3681 int kmemcg_id;
3682
3683 if (memcg->kmem_state != KMEM_ONLINE)
3684 return;
3685
3686 memcg->kmem_state = KMEM_ALLOCATED;
3687
3688 parent = parent_mem_cgroup(memcg);
3689 if (!parent)
3690 parent = root_mem_cgroup;
3691
3692 memcg_reparent_objcgs(memcg, parent);
3693
3694 kmemcg_id = memcg->kmemcg_id;
3695 BUG_ON(kmemcg_id < 0);
3696
3697 /*
3698 * Change kmemcg_id of this cgroup and all its descendants to the
3699 * parent's id, and then move all entries from this cgroup's list_lrus
3700 * to ones of the parent. After we have finished, all list_lrus
3701 * corresponding to this cgroup are guaranteed to remain empty. The
3702 * ordering is imposed by list_lru_node->lock taken by
3703 * memcg_drain_all_list_lrus().
3704 */
3705 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706 css_for_each_descendant_pre(css, &memcg->css) {
3707 child = mem_cgroup_from_css(css);
3708 BUG_ON(child->kmemcg_id != kmemcg_id);
3709 child->kmemcg_id = parent->kmemcg_id;
3710 }
3711 rcu_read_unlock();
3712
3713 memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715 memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720 /* css_alloc() failed, offlining didn't happen */
3721 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722 memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738 unsigned long max)
3739{
3740 int ret;
3741
3742 mutex_lock(&memcg_max_mutex);
3743 ret = page_counter_set_max(&memcg->kmem, max);
3744 mutex_unlock(&memcg_max_mutex);
3745 return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750 int ret;
3751
3752 mutex_lock(&memcg_max_mutex);
3753
3754 ret = page_counter_set_max(&memcg->tcpmem, max);
3755 if (ret)
3756 goto out;
3757
3758 if (!memcg->tcpmem_active) {
3759 /*
3760 * The active flag needs to be written after the static_key
3761 * update. This is what guarantees that the socket activation
3762 * function is the last one to run. See mem_cgroup_sk_alloc()
3763 * for details, and note that we don't mark any socket as
3764 * belonging to this memcg until that flag is up.
3765 *
3766 * We need to do this, because static_keys will span multiple
3767 * sites, but we can't control their order. If we mark a socket
3768 * as accounted, but the accounting functions are not patched in
3769 * yet, we'll lose accounting.
3770 *
3771 * We never race with the readers in mem_cgroup_sk_alloc(),
3772 * because when this value change, the code to process it is not
3773 * patched in yet.
3774 */
3775 static_branch_inc(&memcg_sockets_enabled_key);
3776 memcg->tcpmem_active = true;
3777 }
3778out:
3779 mutex_unlock(&memcg_max_mutex);
3780 return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788 char *buf, size_t nbytes, loff_t off)
3789{
3790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791 unsigned long nr_pages;
3792 int ret;
3793
3794 buf = strstrip(buf);
3795 ret = page_counter_memparse(buf, "-1", &nr_pages);
3796 if (ret)
3797 return ret;
3798
3799 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800 case RES_LIMIT:
3801 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802 ret = -EINVAL;
3803 break;
3804 }
3805 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806 case _MEM:
3807 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808 break;
3809 case _MEMSWAP:
3810 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811 break;
3812 case _KMEM:
3813 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814 "Please report your usecase to linux-mm@kvack.org if you "
3815 "depend on this functionality.\n");
3816 ret = memcg_update_kmem_max(memcg, nr_pages);
3817 break;
3818 case _TCP:
3819 ret = memcg_update_tcp_max(memcg, nr_pages);
3820 break;
3821 }
3822 break;
3823 case RES_SOFT_LIMIT:
3824 memcg->soft_limit = nr_pages;
3825 ret = 0;
3826 break;
3827 }
3828 return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832 size_t nbytes, loff_t off)
3833{
3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835 struct page_counter *counter;
3836
3837 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838 case _MEM:
3839 counter = &memcg->memory;
3840 break;
3841 case _MEMSWAP:
3842 counter = &memcg->memsw;
3843 break;
3844 case _KMEM:
3845 counter = &memcg->kmem;
3846 break;
3847 case _TCP:
3848 counter = &memcg->tcpmem;
3849 break;
3850 default:
3851 BUG();
3852 }
3853
3854 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855 case RES_MAX_USAGE:
3856 page_counter_reset_watermark(counter);
3857 break;
3858 case RES_FAILCNT:
3859 counter->failcnt = 0;
3860 break;
3861 default:
3862 BUG();
3863 }
3864
3865 return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869 struct cftype *cft)
3870{
3871 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876 struct cftype *cft, u64 val)
3877{
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (val & ~MOVE_MASK)
3881 return -EINVAL;
3882
3883 /*
3884 * No kind of locking is needed in here, because ->can_attach() will
3885 * check this value once in the beginning of the process, and then carry
3886 * on with stale data. This means that changes to this value will only
3887 * affect task migrations starting after the change.
3888 */
3889 memcg->move_charge_at_immigrate = val;
3890 return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895{
3896 return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907 int nid, unsigned int lru_mask, bool tree)
3908{
3909 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910 unsigned long nr = 0;
3911 enum lru_list lru;
3912
3913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915 for_each_lru(lru) {
3916 if (!(BIT(lru) & lru_mask))
3917 continue;
3918 if (tree)
3919 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920 else
3921 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922 }
3923 return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927 unsigned int lru_mask,
3928 bool tree)
3929{
3930 unsigned long nr = 0;
3931 enum lru_list lru;
3932
3933 for_each_lru(lru) {
3934 if (!(BIT(lru) & lru_mask))
3935 continue;
3936 if (tree)
3937 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938 else
3939 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940 }
3941 return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946 struct numa_stat {
3947 const char *name;
3948 unsigned int lru_mask;
3949 };
3950
3951 static const struct numa_stat stats[] = {
3952 { "total", LRU_ALL },
3953 { "file", LRU_ALL_FILE },
3954 { "anon", LRU_ALL_ANON },
3955 { "unevictable", BIT(LRU_UNEVICTABLE) },
3956 };
3957 const struct numa_stat *stat;
3958 int nid;
3959 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961 cgroup_rstat_flush(memcg->css.cgroup);
3962
3963 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964 seq_printf(m, "%s=%lu", stat->name,
3965 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966 false));
3967 for_each_node_state(nid, N_MEMORY)
3968 seq_printf(m, " N%d=%lu", nid,
3969 mem_cgroup_node_nr_lru_pages(memcg, nid,
3970 stat->lru_mask, false));
3971 seq_putc(m, '\n');
3972 }
3973
3974 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 true));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, true));
3983 seq_putc(m, '\n');
3984 }
3985
3986 return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991 NR_FILE_PAGES,
3992 NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994 NR_ANON_THPS,
3995#endif
3996 NR_SHMEM,
3997 NR_FILE_MAPPED,
3998 NR_FILE_DIRTY,
3999 NR_WRITEBACK,
4000 MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004 "cache",
4005 "rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007 "rss_huge",
4008#endif
4009 "shmem",
4010 "mapped_file",
4011 "dirty",
4012 "writeback",
4013 "swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018 PGPGIN,
4019 PGPGOUT,
4020 PGFAULT,
4021 PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027 unsigned long memory, memsw;
4028 struct mem_cgroup *mi;
4029 unsigned int i;
4030
4031 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033 cgroup_rstat_flush(memcg->css.cgroup);
4034
4035 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036 unsigned long nr;
4037
4038 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039 continue;
4040 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042 }
4043
4044 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046 memcg_events_local(memcg, memcg1_events[i]));
4047
4048 for (i = 0; i < NR_LRU_LISTS; i++)
4049 seq_printf(m, "%s %lu\n", lru_list_name(i),
4050 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051 PAGE_SIZE);
4052
4053 /* Hierarchical information */
4054 memory = memsw = PAGE_COUNTER_MAX;
4055 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056 memory = min(memory, READ_ONCE(mi->memory.max));
4057 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058 }
4059 seq_printf(m, "hierarchical_memory_limit %llu\n",
4060 (u64)memory * PAGE_SIZE);
4061 if (do_memsw_account())
4062 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063 (u64)memsw * PAGE_SIZE);
4064
4065 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066 unsigned long nr;
4067
4068 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069 continue;
4070 nr = memcg_page_state(memcg, memcg1_stats[i]);
4071 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072 (u64)nr * PAGE_SIZE);
4073 }
4074
4075 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076 seq_printf(m, "total_%s %llu\n",
4077 vm_event_name(memcg1_events[i]),
4078 (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083 PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086 {
4087 pg_data_t *pgdat;
4088 struct mem_cgroup_per_node *mz;
4089 unsigned long anon_cost = 0;
4090 unsigned long file_cost = 0;
4091
4092 for_each_online_pgdat(pgdat) {
4093 mz = memcg->nodeinfo[pgdat->node_id];
4094
4095 anon_cost += mz->lruvec.anon_cost;
4096 file_cost += mz->lruvec.file_cost;
4097 }
4098 seq_printf(m, "anon_cost %lu\n", anon_cost);
4099 seq_printf(m, "file_cost %lu\n", file_cost);
4100 }
4101#endif
4102
4103 return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
4116{
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119 if (val > 100)
4120 return -EINVAL;
4121
4122 if (!mem_cgroup_is_root(memcg))
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
4126
4127 return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132 struct mem_cgroup_threshold_ary *t;
4133 unsigned long usage;
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
4138 t = rcu_dereference(memcg->thresholds.primary);
4139 else
4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142 if (!t)
4143 goto unlock;
4144
4145 usage = mem_cgroup_usage(memcg, swap);
4146
4147 /*
4148 * current_threshold points to threshold just below or equal to usage.
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
4152 i = t->current_threshold;
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
4176 t->current_threshold = i - 1;
4177unlock:
4178 rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_memsw_account())
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208 struct mem_cgroup_eventfd_list *ev;
4209
4210 spin_lock(&memcg_oom_lock);
4211
4212 list_for_each_entry(ev, &memcg->oom_notify, list)
4213 eventfd_signal(ev->eventfd, 1);
4214
4215 spin_unlock(&memcg_oom_lock);
4216 return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, memcg)
4224 mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
4232 unsigned long threshold;
4233 unsigned long usage;
4234 int i, size, ret;
4235
4236 ret = page_counter_memparse(args, "-1", &threshold);
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
4241
4242 if (type == _MEM) {
4243 thresholds = &memcg->thresholds;
4244 usage = mem_cgroup_usage(memcg, false);
4245 } else if (type == _MEMSWAP) {
4246 thresholds = &memcg->memsw_thresholds;
4247 usage = mem_cgroup_usage(memcg, true);
4248 } else
4249 BUG();
4250
4251 /* Check if a threshold crossed before adding a new one */
4252 if (thresholds->primary)
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257 /* Allocate memory for new array of thresholds */
4258 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259 if (!new) {
4260 ret = -ENOMEM;
4261 goto unlock;
4262 }
4263 new->size = size;
4264
4265 /* Copy thresholds (if any) to new array */
4266 if (thresholds->primary)
4267 memcpy(new->entries, thresholds->primary->entries,
4268 flex_array_size(new, entries, size - 1));
4269
4270 /* Add new threshold */
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
4275 sort(new->entries, size, sizeof(*new->entries),
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0; i < size; i++) {
4281 if (new->entries[i].threshold <= usage) {
4282 /*
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
4285 * it here.
4286 */
4287 ++new->current_threshold;
4288 } else
4289 break;
4290 }
4291
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
4297
4298 /* To be sure that nobody uses thresholds */
4299 synchronize_rcu();
4300
4301unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308 struct eventfd_ctx *eventfd, const char *args)
4309{
4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314 struct eventfd_ctx *eventfd, const char *args)
4315{
4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320 struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
4324 unsigned long usage;
4325 int i, j, size, entries;
4326
4327 mutex_lock(&memcg->thresholds_lock);
4328
4329 if (type == _MEM) {
4330 thresholds = &memcg->thresholds;
4331 usage = mem_cgroup_usage(memcg, false);
4332 } else if (type == _MEMSWAP) {
4333 thresholds = &memcg->memsw_thresholds;
4334 usage = mem_cgroup_usage(memcg, true);
4335 } else
4336 BUG();
4337
4338 if (!thresholds->primary)
4339 goto unlock;
4340
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
4345 size = entries = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
4348 size++;
4349 else
4350 entries++;
4351 }
4352
4353 new = thresholds->spare;
4354
4355 /* If no items related to eventfd have been cleared, nothing to do */
4356 if (!entries)
4357 goto unlock;
4358
4359 /* Set thresholds array to NULL if we don't have thresholds */
4360 if (!size) {
4361 kfree(new);
4362 new = NULL;
4363 goto swap_buffers;
4364 }
4365
4366 new->size = size;
4367
4368 /* Copy thresholds and find current threshold */
4369 new->current_threshold = -1;
4370 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371 if (thresholds->primary->entries[i].eventfd == eventfd)
4372 continue;
4373
4374 new->entries[j] = thresholds->primary->entries[i];
4375 if (new->entries[j].threshold <= usage) {
4376 /*
4377 * new->current_threshold will not be used
4378 * until rcu_assign_pointer(), so it's safe to increment
4379 * it here.
4380 */
4381 ++new->current_threshold;
4382 }
4383 j++;
4384 }
4385
4386swap_buffers:
4387 /* Swap primary and spare array */
4388 thresholds->spare = thresholds->primary;
4389
4390 rcu_assign_pointer(thresholds->primary, new);
4391
4392 /* To be sure that nobody uses thresholds */
4393 synchronize_rcu();
4394
4395 /* If all events are unregistered, free the spare array */
4396 if (!new) {
4397 kfree(thresholds->spare);
4398 thresholds->spare = NULL;
4399 }
4400unlock:
4401 mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405 struct eventfd_ctx *eventfd)
4406{
4407 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411 struct eventfd_ctx *eventfd)
4412{
4413 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd, const char *args)
4418{
4419 struct mem_cgroup_eventfd_list *event;
4420
4421 event = kmalloc(sizeof(*event), GFP_KERNEL);
4422 if (!event)
4423 return -ENOMEM;
4424
4425 spin_lock(&memcg_oom_lock);
4426
4427 event->eventfd = eventfd;
4428 list_add(&event->list, &memcg->oom_notify);
4429
4430 /* already in OOM ? */
4431 if (memcg->under_oom)
4432 eventfd_signal(eventfd, 1);
4433 spin_unlock(&memcg_oom_lock);
4434
4435 return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439 struct eventfd_ctx *eventfd)
4440{
4441 struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443 spin_lock(&memcg_oom_lock);
4444
4445 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446 if (ev->eventfd == eventfd) {
4447 list_del(&ev->list);
4448 kfree(ev);
4449 }
4450 }
4451
4452 spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461 seq_printf(sf, "oom_kill %lu\n",
4462 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463 return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467 struct cftype *cft, u64 val)
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471 /* cannot set to root cgroup and only 0 and 1 are allowed */
4472 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473 return -EINVAL;
4474
4475 memcg->oom_kill_disable = val;
4476 if (!val)
4477 memcg_oom_recover(memcg);
4478
4479 return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488 return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493 wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498 wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505 if (!memcg->css.parent)
4506 return NULL;
4507
4508 return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors. Note that this doesn't consider the actual amount of
4526 * available memory in the system. The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530 unsigned long *pheadroom, unsigned long *pdirty,
4531 unsigned long *pwriteback)
4532{
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534 struct mem_cgroup *parent;
4535
4536 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541 memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543 *pheadroom = PAGE_COUNTER_MAX;
4544 while ((parent = parent_mem_cgroup(memcg))) {
4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546 READ_ONCE(memcg->memory.high));
4547 unsigned long used = page_counter_read(&memcg->memory);
4548
4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550 memcg = parent;
4551 }
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback. The former
4558 * tracks ownership per-page while the latter per-inode. This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases. For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode. B owns the inode and
4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback. A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction. However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism. When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired. Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599 struct bdi_writeback *wb)
4600{
4601 struct mem_cgroup *memcg = page_memcg(page);
4602 struct memcg_cgwb_frn *frn;
4603 u64 now = get_jiffies_64();
4604 u64 oldest_at = now;
4605 int oldest = -1;
4606 int i;
4607
4608 trace_track_foreign_dirty(page, wb);
4609
4610 /*
4611 * Pick the slot to use. If there is already a slot for @wb, keep
4612 * using it. If not replace the oldest one which isn't being
4613 * written out.
4614 */
4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616 frn = &memcg->cgwb_frn[i];
4617 if (frn->bdi_id == wb->bdi->id &&
4618 frn->memcg_id == wb->memcg_css->id)
4619 break;
4620 if (time_before64(frn->at, oldest_at) &&
4621 atomic_read(&frn->done.cnt) == 1) {
4622 oldest = i;
4623 oldest_at = frn->at;
4624 }
4625 }
4626
4627 if (i < MEMCG_CGWB_FRN_CNT) {
4628 /*
4629 * Re-using an existing one. Update timestamp lazily to
4630 * avoid making the cacheline hot. We want them to be
4631 * reasonably up-to-date and significantly shorter than
4632 * dirty_expire_interval as that's what expires the record.
4633 * Use the shorter of 1s and dirty_expire_interval / 8.
4634 */
4635 unsigned long update_intv =
4636 min_t(unsigned long, HZ,
4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639 if (time_before64(frn->at, now - update_intv))
4640 frn->at = now;
4641 } else if (oldest >= 0) {
4642 /* replace the oldest free one */
4643 frn = &memcg->cgwb_frn[oldest];
4644 frn->bdi_id = wb->bdi->id;
4645 frn->memcg_id = wb->memcg_css->id;
4646 frn->at = now;
4647 }
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655 u64 now = jiffies_64;
4656 int i;
4657
4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661 /*
4662 * If the record is older than dirty_expire_interval,
4663 * writeback on it has already started. No need to kick it
4664 * off again. Also, don't start a new one if there's
4665 * already one in flight.
4666 */
4667 if (time_after64(frn->at, now - intv) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 frn->at = 0;
4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672 WB_REASON_FOREIGN_FLUSH,
4673 &frn->done);
4674 }
4675 }
4676}
4677
4678#else /* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682 return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif /* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered. It tries to support fully configurable
4701 * events for each user. Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715 struct mem_cgroup_event *event =
4716 container_of(work, struct mem_cgroup_event, remove);
4717 struct mem_cgroup *memcg = event->memcg;
4718
4719 remove_wait_queue(event->wqh, &event->wait);
4720
4721 event->unregister_event(memcg, event->eventfd);
4722
4723 /* Notify userspace the event is going away. */
4724 eventfd_signal(event->eventfd, 1);
4725
4726 eventfd_ctx_put(event->eventfd);
4727 kfree(event);
4728 css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737 int sync, void *key)
4738{
4739 struct mem_cgroup_event *event =
4740 container_of(wait, struct mem_cgroup_event, wait);
4741 struct mem_cgroup *memcg = event->memcg;
4742 __poll_t flags = key_to_poll(key);
4743
4744 if (flags & EPOLLHUP) {
4745 /*
4746 * If the event has been detached at cgroup removal, we
4747 * can simply return knowing the other side will cleanup
4748 * for us.
4749 *
4750 * We can't race against event freeing since the other
4751 * side will require wqh->lock via remove_wait_queue(),
4752 * which we hold.
4753 */
4754 spin_lock(&memcg->event_list_lock);
4755 if (!list_empty(&event->list)) {
4756 list_del_init(&event->list);
4757 /*
4758 * We are in atomic context, but cgroup_event_remove()
4759 * may sleep, so we have to call it in workqueue.
4760 */
4761 schedule_work(&event->remove);
4762 }
4763 spin_unlock(&memcg->event_list_lock);
4764 }
4765
4766 return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770 wait_queue_head_t *wqh, poll_table *pt)
4771{
4772 struct mem_cgroup_event *event =
4773 container_of(pt, struct mem_cgroup_event, pt);
4774
4775 event->wqh = wqh;
4776 add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788 char *buf, size_t nbytes, loff_t off)
4789{
4790 struct cgroup_subsys_state *css = of_css(of);
4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792 struct mem_cgroup_event *event;
4793 struct cgroup_subsys_state *cfile_css;
4794 unsigned int efd, cfd;
4795 struct fd efile;
4796 struct fd cfile;
4797 const char *name;
4798 char *endp;
4799 int ret;
4800
4801 buf = strstrip(buf);
4802
4803 efd = simple_strtoul(buf, &endp, 10);
4804 if (*endp != ' ')
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 cfd = simple_strtoul(buf, &endp, 10);
4809 if ((*endp != ' ') && (*endp != '\0'))
4810 return -EINVAL;
4811 buf = endp + 1;
4812
4813 event = kzalloc(sizeof(*event), GFP_KERNEL);
4814 if (!event)
4815 return -ENOMEM;
4816
4817 event->memcg = memcg;
4818 INIT_LIST_HEAD(&event->list);
4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821 INIT_WORK(&event->remove, memcg_event_remove);
4822
4823 efile = fdget(efd);
4824 if (!efile.file) {
4825 ret = -EBADF;
4826 goto out_kfree;
4827 }
4828
4829 event->eventfd = eventfd_ctx_fileget(efile.file);
4830 if (IS_ERR(event->eventfd)) {
4831 ret = PTR_ERR(event->eventfd);
4832 goto out_put_efile;
4833 }
4834
4835 cfile = fdget(cfd);
4836 if (!cfile.file) {
4837 ret = -EBADF;
4838 goto out_put_eventfd;
4839 }
4840
4841 /* the process need read permission on control file */
4842 /* AV: shouldn't we check that it's been opened for read instead? */
4843 ret = file_permission(cfile.file, MAY_READ);
4844 if (ret < 0)
4845 goto out_put_cfile;
4846
4847 /*
4848 * Determine the event callbacks and set them in @event. This used
4849 * to be done via struct cftype but cgroup core no longer knows
4850 * about these events. The following is crude but the whole thing
4851 * is for compatibility anyway.
4852 *
4853 * DO NOT ADD NEW FILES.
4854 */
4855 name = cfile.file->f_path.dentry->d_name.name;
4856
4857 if (!strcmp(name, "memory.usage_in_bytes")) {
4858 event->register_event = mem_cgroup_usage_register_event;
4859 event->unregister_event = mem_cgroup_usage_unregister_event;
4860 } else if (!strcmp(name, "memory.oom_control")) {
4861 event->register_event = mem_cgroup_oom_register_event;
4862 event->unregister_event = mem_cgroup_oom_unregister_event;
4863 } else if (!strcmp(name, "memory.pressure_level")) {
4864 event->register_event = vmpressure_register_event;
4865 event->unregister_event = vmpressure_unregister_event;
4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867 event->register_event = memsw_cgroup_usage_register_event;
4868 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869 } else {
4870 ret = -EINVAL;
4871 goto out_put_cfile;
4872 }
4873
4874 /*
4875 * Verify @cfile should belong to @css. Also, remaining events are
4876 * automatically removed on cgroup destruction but the removal is
4877 * asynchronous, so take an extra ref on @css.
4878 */
4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880 &memory_cgrp_subsys);
4881 ret = -EINVAL;
4882 if (IS_ERR(cfile_css))
4883 goto out_put_cfile;
4884 if (cfile_css != css) {
4885 css_put(cfile_css);
4886 goto out_put_cfile;
4887 }
4888
4889 ret = event->register_event(memcg, event->eventfd, buf);
4890 if (ret)
4891 goto out_put_css;
4892
4893 vfs_poll(efile.file, &event->pt);
4894
4895 spin_lock(&memcg->event_list_lock);
4896 list_add(&event->list, &memcg->event_list);
4897 spin_unlock(&memcg->event_list_lock);
4898
4899 fdput(cfile);
4900 fdput(efile);
4901
4902 return nbytes;
4903
4904out_put_css:
4905 css_put(css);
4906out_put_cfile:
4907 fdput(cfile);
4908out_put_eventfd:
4909 eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911 fdput(efile);
4912out_kfree:
4913 kfree(event);
4914
4915 return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919 {
4920 .name = "usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930 {
4931 .name = "limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "soft_limit_in_bytes",
4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939 .write = mem_cgroup_write,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "failcnt",
4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "stat",
4950 .seq_show = memcg_stat_show,
4951 },
4952 {
4953 .name = "force_empty",
4954 .write = mem_cgroup_force_empty_write,
4955 },
4956 {
4957 .name = "use_hierarchy",
4958 .write_u64 = mem_cgroup_hierarchy_write,
4959 .read_u64 = mem_cgroup_hierarchy_read,
4960 },
4961 {
4962 .name = "cgroup.event_control", /* XXX: for compat */
4963 .write = memcg_write_event_control,
4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965 },
4966 {
4967 .name = "swappiness",
4968 .read_u64 = mem_cgroup_swappiness_read,
4969 .write_u64 = mem_cgroup_swappiness_write,
4970 },
4971 {
4972 .name = "move_charge_at_immigrate",
4973 .read_u64 = mem_cgroup_move_charge_read,
4974 .write_u64 = mem_cgroup_move_charge_write,
4975 },
4976 {
4977 .name = "oom_control",
4978 .seq_show = mem_cgroup_oom_control_read,
4979 .write_u64 = mem_cgroup_oom_control_write,
4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981 },
4982 {
4983 .name = "pressure_level",
4984 },
4985#ifdef CONFIG_NUMA
4986 {
4987 .name = "numa_stat",
4988 .seq_show = memcg_numa_stat_show,
4989 },
4990#endif
4991 {
4992 .name = "kmem.limit_in_bytes",
4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994 .write = mem_cgroup_write,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.usage_in_bytes",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "kmem.failcnt",
5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005 .write = mem_cgroup_reset,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "kmem.max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016 {
5017 .name = "kmem.slabinfo",
5018 .seq_show = memcg_slab_show,
5019 },
5020#endif
5021 {
5022 .name = "kmem.tcp.limit_in_bytes",
5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024 .write = mem_cgroup_write,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "kmem.tcp.failcnt",
5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "kmem.tcp.max_usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 { }, /* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075 if (memcg->id.id > 0) {
5076 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077 memcg->id.id = 0;
5078 }
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082 unsigned int n)
5083{
5084 refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090 mem_cgroup_id_remove(memcg);
5091
5092 /* Memcg ID pins CSS */
5093 css_put(&memcg->css);
5094 }
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099 mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110 WARN_ON_ONCE(!rcu_read_lock_held());
5111 return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116 struct mem_cgroup_per_node *pn;
5117 int tmp = node;
5118 /*
5119 * This routine is called against possible nodes.
5120 * But it's BUG to call kmalloc() against offline node.
5121 *
5122 * TODO: this routine can waste much memory for nodes which will
5123 * never be onlined. It's better to use memory hotplug callback
5124 * function.
5125 */
5126 if (!node_state(node, N_NORMAL_MEMORY))
5127 tmp = -1;
5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129 if (!pn)
5130 return 1;
5131
5132 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133 GFP_KERNEL_ACCOUNT);
5134 if (!pn->lruvec_stat_local) {
5135 kfree(pn);
5136 return 1;
5137 }
5138
5139 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140 GFP_KERNEL_ACCOUNT);
5141 if (!pn->lruvec_stat_cpu) {
5142 free_percpu(pn->lruvec_stat_local);
5143 kfree(pn);
5144 return 1;
5145 }
5146
5147 lruvec_init(&pn->lruvec);
5148 pn->usage_in_excess = 0;
5149 pn->on_tree = false;
5150 pn->memcg = memcg;
5151
5152 memcg->nodeinfo[node] = pn;
5153 return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160 if (!pn)
5161 return;
5162
5163 free_percpu(pn->lruvec_stat_cpu);
5164 free_percpu(pn->lruvec_stat_local);
5165 kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170 int node;
5171
5172 for_each_node(node)
5173 free_mem_cgroup_per_node_info(memcg, node);
5174 free_percpu(memcg->vmstats_percpu);
5175 kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180 int cpu;
5181
5182 memcg_wb_domain_exit(memcg);
5183 /*
5184 * Flush percpu lruvec stats to guarantee the value
5185 * correctness on parent's and all ancestor levels.
5186 */
5187 for_each_online_cpu(cpu)
5188 memcg_flush_lruvec_page_state(memcg, cpu);
5189 __mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194 struct mem_cgroup *memcg;
5195 unsigned int size;
5196 int node;
5197 int __maybe_unused i;
5198 long error = -ENOMEM;
5199
5200 size = sizeof(struct mem_cgroup);
5201 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203 memcg = kzalloc(size, GFP_KERNEL);
5204 if (!memcg)
5205 return ERR_PTR(error);
5206
5207 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208 1, MEM_CGROUP_ID_MAX,
5209 GFP_KERNEL);
5210 if (memcg->id.id < 0) {
5211 error = memcg->id.id;
5212 goto fail;
5213 }
5214
5215 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216 GFP_KERNEL_ACCOUNT);
5217 if (!memcg->vmstats_percpu)
5218 goto fail;
5219
5220 for_each_node(node)
5221 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222 goto fail;
5223
5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225 goto fail;
5226
5227 INIT_WORK(&memcg->high_work, high_work_func);
5228 INIT_LIST_HEAD(&memcg->oom_notify);
5229 mutex_init(&memcg->thresholds_lock);
5230 spin_lock_init(&memcg->move_lock);
5231 vmpressure_init(&memcg->vmpressure);
5232 INIT_LIST_HEAD(&memcg->event_list);
5233 spin_lock_init(&memcg->event_list_lock);
5234 memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236 memcg->kmemcg_id = -1;
5237 INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240 INIT_LIST_HEAD(&memcg->cgwb_list);
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 memcg->cgwb_frn[i].done =
5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248 memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251 return memcg;
5252fail:
5253 mem_cgroup_id_remove(memcg);
5254 __mem_cgroup_free(memcg);
5255 return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262 struct mem_cgroup *memcg, *old_memcg;
5263 long error = -ENOMEM;
5264
5265 old_memcg = set_active_memcg(parent);
5266 memcg = mem_cgroup_alloc();
5267 set_active_memcg(old_memcg);
5268 if (IS_ERR(memcg))
5269 return ERR_CAST(memcg);
5270
5271 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272 memcg->soft_limit = PAGE_COUNTER_MAX;
5273 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274 if (parent) {
5275 memcg->swappiness = mem_cgroup_swappiness(parent);
5276 memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278 page_counter_init(&memcg->memory, &parent->memory);
5279 page_counter_init(&memcg->swap, &parent->swap);
5280 page_counter_init(&memcg->kmem, &parent->kmem);
5281 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282 } else {
5283 page_counter_init(&memcg->memory, NULL);
5284 page_counter_init(&memcg->swap, NULL);
5285 page_counter_init(&memcg->kmem, NULL);
5286 page_counter_init(&memcg->tcpmem, NULL);
5287
5288 root_mem_cgroup = memcg;
5289 return &memcg->css;
5290 }
5291
5292 /* The following stuff does not apply to the root */
5293 error = memcg_online_kmem(memcg);
5294 if (error)
5295 goto fail;
5296
5297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298 static_branch_inc(&memcg_sockets_enabled_key);
5299
5300 return &memcg->css;
5301fail:
5302 mem_cgroup_id_remove(memcg);
5303 mem_cgroup_free(memcg);
5304 return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311 /*
5312 * A memcg must be visible for expand_shrinker_info()
5313 * by the time the maps are allocated. So, we allocate maps
5314 * here, when for_each_mem_cgroup() can't skip it.
5315 */
5316 if (alloc_shrinker_info(memcg)) {
5317 mem_cgroup_id_remove(memcg);
5318 return -ENOMEM;
5319 }
5320
5321 /* Online state pins memcg ID, memcg ID pins CSS */
5322 refcount_set(&memcg->id.ref, 1);
5323 css_get(css);
5324 return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 struct mem_cgroup_event *event, *tmp;
5331
5332 /*
5333 * Unregister events and notify userspace.
5334 * Notify userspace about cgroup removing only after rmdir of cgroup
5335 * directory to avoid race between userspace and kernelspace.
5336 */
5337 spin_lock(&memcg->event_list_lock);
5338 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339 list_del_init(&event->list);
5340 schedule_work(&event->remove);
5341 }
5342 spin_unlock(&memcg->event_list_lock);
5343
5344 page_counter_set_min(&memcg->memory, 0);
5345 page_counter_set_low(&memcg->memory, 0);
5346
5347 memcg_offline_kmem(memcg);
5348 reparent_shrinker_deferred(memcg);
5349 wb_memcg_offline(memcg);
5350
5351 drain_all_stock(memcg);
5352
5353 mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360 invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373 static_branch_dec(&memcg_sockets_enabled_key);
5374
5375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376 static_branch_dec(&memcg_sockets_enabled_key);
5377
5378 vmpressure_cleanup(&memcg->vmpressure);
5379 cancel_work_sync(&memcg->high_work);
5380 mem_cgroup_remove_from_trees(memcg);
5381 free_shrinker_info(memcg);
5382 memcg_free_kmem(memcg);
5383 mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css. This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency. The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5409 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410 memcg->soft_limit = PAGE_COUNTER_MAX;
5411 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412 memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419 struct memcg_vmstats_percpu *statc;
5420 long delta, v;
5421 int i;
5422
5423 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425 for (i = 0; i < MEMCG_NR_STAT; i++) {
5426 /*
5427 * Collect the aggregated propagation counts of groups
5428 * below us. We're in a per-cpu loop here and this is
5429 * a global counter, so the first cycle will get them.
5430 */
5431 delta = memcg->vmstats.state_pending[i];
5432 if (delta)
5433 memcg->vmstats.state_pending[i] = 0;
5434
5435 /* Add CPU changes on this level since the last flush */
5436 v = READ_ONCE(statc->state[i]);
5437 if (v != statc->state_prev[i]) {
5438 delta += v - statc->state_prev[i];
5439 statc->state_prev[i] = v;
5440 }
5441
5442 if (!delta)
5443 continue;
5444
5445 /* Aggregate counts on this level and propagate upwards */
5446 memcg->vmstats.state[i] += delta;
5447 if (parent)
5448 parent->vmstats.state_pending[i] += delta;
5449 }
5450
5451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452 delta = memcg->vmstats.events_pending[i];
5453 if (delta)
5454 memcg->vmstats.events_pending[i] = 0;
5455
5456 v = READ_ONCE(statc->events[i]);
5457 if (v != statc->events_prev[i]) {
5458 delta += v - statc->events_prev[i];
5459 statc->events_prev[i] = v;
5460 }
5461
5462 if (!delta)
5463 continue;
5464
5465 memcg->vmstats.events[i] += delta;
5466 if (parent)
5467 parent->vmstats.events_pending[i] += delta;
5468 }
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475 int ret;
5476
5477 /* Try a single bulk charge without reclaim first, kswapd may wake */
5478 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479 if (!ret) {
5480 mc.precharge += count;
5481 return ret;
5482 }
5483
5484 /* Try charges one by one with reclaim, but do not retry */
5485 while (count--) {
5486 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487 if (ret)
5488 return ret;
5489 mc.precharge++;
5490 cond_resched();
5491 }
5492 return 0;
5493}
5494
5495union mc_target {
5496 struct page *page;
5497 swp_entry_t ent;
5498};
5499
5500enum mc_target_type {
5501 MC_TARGET_NONE = 0,
5502 MC_TARGET_PAGE,
5503 MC_TARGET_SWAP,
5504 MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508 unsigned long addr, pte_t ptent)
5509{
5510 struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512 if (!page || !page_mapped(page))
5513 return NULL;
5514 if (PageAnon(page)) {
5515 if (!(mc.flags & MOVE_ANON))
5516 return NULL;
5517 } else {
5518 if (!(mc.flags & MOVE_FILE))
5519 return NULL;
5520 }
5521 if (!get_page_unless_zero(page))
5522 return NULL;
5523
5524 return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529 pte_t ptent, swp_entry_t *entry)
5530{
5531 struct page *page = NULL;
5532 swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534 if (!(mc.flags & MOVE_ANON))
5535 return NULL;
5536
5537 /*
5538 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539 * a device and because they are not accessible by CPU they are store
5540 * as special swap entry in the CPU page table.
5541 */
5542 if (is_device_private_entry(ent)) {
5543 page = pfn_swap_entry_to_page(ent);
5544 /*
5545 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546 * a refcount of 1 when free (unlike normal page)
5547 */
5548 if (!page_ref_add_unless(page, 1, 1))
5549 return NULL;
5550 return page;
5551 }
5552
5553 if (non_swap_entry(ent))
5554 return NULL;
5555
5556 /*
5557 * Because lookup_swap_cache() updates some statistics counter,
5558 * we call find_get_page() with swapper_space directly.
5559 */
5560 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561 entry->val = ent.val;
5562
5563 return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567 pte_t ptent, swp_entry_t *entry)
5568{
5569 return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
5576 if (!vma->vm_file) /* anonymous vma */
5577 return NULL;
5578 if (!(mc.flags & MOVE_FILE))
5579 return NULL;
5580
5581 /* page is moved even if it's not RSS of this task(page-faulted). */
5582 /* shmem/tmpfs may report page out on swap: account for that too. */
5583 return find_get_incore_page(vma->vm_file->f_mapping,
5584 linear_page_index(vma, addr));
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to: mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600 bool compound,
5601 struct mem_cgroup *from,
5602 struct mem_cgroup *to)
5603{
5604 struct lruvec *from_vec, *to_vec;
5605 struct pglist_data *pgdat;
5606 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607 int ret;
5608
5609 VM_BUG_ON(from == to);
5610 VM_BUG_ON_PAGE(PageLRU(page), page);
5611 VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613 /*
5614 * Prevent mem_cgroup_migrate() from looking at
5615 * page's memory cgroup of its source page while we change it.
5616 */
5617 ret = -EBUSY;
5618 if (!trylock_page(page))
5619 goto out;
5620
5621 ret = -EINVAL;
5622 if (page_memcg(page) != from)
5623 goto out_unlock;
5624
5625 pgdat = page_pgdat(page);
5626 from_vec = mem_cgroup_lruvec(from, pgdat);
5627 to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629 lock_page_memcg(page);
5630
5631 if (PageAnon(page)) {
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635 if (PageTransHuge(page)) {
5636 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5637 -nr_pages);
5638 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5639 nr_pages);
5640 }
5641 }
5642 } else {
5643 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646 if (PageSwapBacked(page)) {
5647 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649 }
5650
5651 if (page_mapped(page)) {
5652 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654 }
5655
5656 if (PageDirty(page)) {
5657 struct address_space *mapping = page_mapping(page);
5658
5659 if (mapping_can_writeback(mapping)) {
5660 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661 -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663 nr_pages);
5664 }
5665 }
5666 }
5667
5668 if (PageWriteback(page)) {
5669 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671 }
5672
5673 /*
5674 * All state has been migrated, let's switch to the new memcg.
5675 *
5676 * It is safe to change page's memcg here because the page
5677 * is referenced, charged, isolated, and locked: we can't race
5678 * with (un)charging, migration, LRU putback, or anything else
5679 * that would rely on a stable page's memory cgroup.
5680 *
5681 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682 * to save space. As soon as we switch page's memory cgroup to a
5683 * new memcg that isn't locked, the above state can change
5684 * concurrently again. Make sure we're truly done with it.
5685 */
5686 smp_mb();
5687
5688 css_get(&to->css);
5689 css_put(&from->css);
5690
5691 page->memcg_data = (unsigned long)to;
5692
5693 __unlock_page_memcg(from);
5694
5695 ret = 0;
5696
5697 local_irq_disable();
5698 mem_cgroup_charge_statistics(to, page, nr_pages);
5699 memcg_check_events(to, page);
5700 mem_cgroup_charge_statistics(from, page, -nr_pages);
5701 memcg_check_events(from, page);
5702 local_irq_enable();
5703out_unlock:
5704 unlock_page(page);
5705out:
5706 return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 * move charge. if @target is not NULL, the page is stored in target->page
5720 * with extra refcnt got(Callers should handle it).
5721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 * target for charge migration. if @target is not NULL, the entry is stored
5723 * in target->ent.
5724 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5725 * (so ZONE_DEVICE page and thus not on the lru).
5726 * For now we such page is charge like a regular page would be as for all
5727 * intent and purposes it is just special memory taking the place of a
5728 * regular page.
5729 *
5730 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736 unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738 struct page *page = NULL;
5739 enum mc_target_type ret = MC_TARGET_NONE;
5740 swp_entry_t ent = { .val = 0 };
5741
5742 if (pte_present(ptent))
5743 page = mc_handle_present_pte(vma, addr, ptent);
5744 else if (is_swap_pte(ptent))
5745 page = mc_handle_swap_pte(vma, ptent, &ent);
5746 else if (pte_none(ptent))
5747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749 if (!page && !ent.val)
5750 return ret;
5751 if (page) {
5752 /*
5753 * Do only loose check w/o serialization.
5754 * mem_cgroup_move_account() checks the page is valid or
5755 * not under LRU exclusion.
5756 */
5757 if (page_memcg(page) == mc.from) {
5758 ret = MC_TARGET_PAGE;
5759 if (is_device_private_page(page))
5760 ret = MC_TARGET_DEVICE;
5761 if (target)
5762 target->page = page;
5763 }
5764 if (!ret || !target)
5765 put_page(page);
5766 }
5767 /*
5768 * There is a swap entry and a page doesn't exist or isn't charged.
5769 * But we cannot move a tail-page in a THP.
5770 */
5771 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773 ret = MC_TARGET_SWAP;
5774 if (target)
5775 target->ent = ent;
5776 }
5777 return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787 unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789 struct page *page = NULL;
5790 enum mc_target_type ret = MC_TARGET_NONE;
5791
5792 if (unlikely(is_swap_pmd(pmd))) {
5793 VM_BUG_ON(thp_migration_supported() &&
5794 !is_pmd_migration_entry(pmd));
5795 return ret;
5796 }
5797 page = pmd_page(pmd);
5798 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799 if (!(mc.flags & MOVE_ANON))
5800 return ret;
5801 if (page_memcg(page) == mc.from) {
5802 ret = MC_TARGET_PAGE;
5803 if (target) {
5804 get_page(page);
5805 target->page = page;
5806 }
5807 }
5808 return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812 unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814 return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819 unsigned long addr, unsigned long end,
5820 struct mm_walk *walk)
5821{
5822 struct vm_area_struct *vma = walk->vma;
5823 pte_t *pte;
5824 spinlock_t *ptl;
5825
5826 ptl = pmd_trans_huge_lock(pmd, vma);
5827 if (ptl) {
5828 /*
5829 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831 * this might change.
5832 */
5833 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834 mc.precharge += HPAGE_PMD_NR;
5835 spin_unlock(ptl);
5836 return 0;
5837 }
5838
5839 if (pmd_trans_unstable(pmd))
5840 return 0;
5841 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842 for (; addr != end; pte++, addr += PAGE_SIZE)
5843 if (get_mctgt_type(vma, addr, *pte, NULL))
5844 mc.precharge++; /* increment precharge temporarily */
5845 pte_unmap_unlock(pte - 1, ptl);
5846 cond_resched();
5847
5848 return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857 unsigned long precharge;
5858
5859 mmap_read_lock(mm);
5860 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861 mmap_read_unlock(mm);
5862
5863 precharge = mc.precharge;
5864 mc.precharge = 0;
5865
5866 return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871 unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873 VM_BUG_ON(mc.moving_task);
5874 mc.moving_task = current;
5875 return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881 struct mem_cgroup *from = mc.from;
5882 struct mem_cgroup *to = mc.to;
5883
5884 /* we must uncharge all the leftover precharges from mc.to */
5885 if (mc.precharge) {
5886 cancel_charge(mc.to, mc.precharge);
5887 mc.precharge = 0;
5888 }
5889 /*
5890 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891 * we must uncharge here.
5892 */
5893 if (mc.moved_charge) {
5894 cancel_charge(mc.from, mc.moved_charge);
5895 mc.moved_charge = 0;
5896 }
5897 /* we must fixup refcnts and charges */
5898 if (mc.moved_swap) {
5899 /* uncharge swap account from the old cgroup */
5900 if (!mem_cgroup_is_root(mc.from))
5901 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905 /*
5906 * we charged both to->memory and to->memsw, so we
5907 * should uncharge to->memory.
5908 */
5909 if (!mem_cgroup_is_root(mc.to))
5910 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912 mc.moved_swap = 0;
5913 }
5914 memcg_oom_recover(from);
5915 memcg_oom_recover(to);
5916 wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921 struct mm_struct *mm = mc.mm;
5922
5923 /*
5924 * we must clear moving_task before waking up waiters at the end of
5925 * task migration.
5926 */
5927 mc.moving_task = NULL;
5928 __mem_cgroup_clear_mc();
5929 spin_lock(&mc.lock);
5930 mc.from = NULL;
5931 mc.to = NULL;
5932 mc.mm = NULL;
5933 spin_unlock(&mc.lock);
5934
5935 mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940 struct cgroup_subsys_state *css;
5941 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942 struct mem_cgroup *from;
5943 struct task_struct *leader, *p;
5944 struct mm_struct *mm;
5945 unsigned long move_flags;
5946 int ret = 0;
5947
5948 /* charge immigration isn't supported on the default hierarchy */
5949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950 return 0;
5951
5952 /*
5953 * Multi-process migrations only happen on the default hierarchy
5954 * where charge immigration is not used. Perform charge
5955 * immigration if @tset contains a leader and whine if there are
5956 * multiple.
5957 */
5958 p = NULL;
5959 cgroup_taskset_for_each_leader(leader, css, tset) {
5960 WARN_ON_ONCE(p);
5961 p = leader;
5962 memcg = mem_cgroup_from_css(css);
5963 }
5964 if (!p)
5965 return 0;
5966
5967 /*
5968 * We are now committed to this value whatever it is. Changes in this
5969 * tunable will only affect upcoming migrations, not the current one.
5970 * So we need to save it, and keep it going.
5971 */
5972 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973 if (!move_flags)
5974 return 0;
5975
5976 from = mem_cgroup_from_task(p);
5977
5978 VM_BUG_ON(from == memcg);
5979
5980 mm = get_task_mm(p);
5981 if (!mm)
5982 return 0;
5983 /* We move charges only when we move a owner of the mm */
5984 if (mm->owner == p) {
5985 VM_BUG_ON(mc.from);
5986 VM_BUG_ON(mc.to);
5987 VM_BUG_ON(mc.precharge);
5988 VM_BUG_ON(mc.moved_charge);
5989 VM_BUG_ON(mc.moved_swap);
5990
5991 spin_lock(&mc.lock);
5992 mc.mm = mm;
5993 mc.from = from;
5994 mc.to = memcg;
5995 mc.flags = move_flags;
5996 spin_unlock(&mc.lock);
5997 /* We set mc.moving_task later */
5998
5999 ret = mem_cgroup_precharge_mc(mm);
6000 if (ret)
6001 mem_cgroup_clear_mc();
6002 } else {
6003 mmput(mm);
6004 }
6005 return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010 if (mc.to)
6011 mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015 unsigned long addr, unsigned long end,
6016 struct mm_walk *walk)
6017{
6018 int ret = 0;
6019 struct vm_area_struct *vma = walk->vma;
6020 pte_t *pte;
6021 spinlock_t *ptl;
6022 enum mc_target_type target_type;
6023 union mc_target target;
6024 struct page *page;
6025
6026 ptl = pmd_trans_huge_lock(pmd, vma);
6027 if (ptl) {
6028 if (mc.precharge < HPAGE_PMD_NR) {
6029 spin_unlock(ptl);
6030 return 0;
6031 }
6032 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033 if (target_type == MC_TARGET_PAGE) {
6034 page = target.page;
6035 if (!isolate_lru_page(page)) {
6036 if (!mem_cgroup_move_account(page, true,
6037 mc.from, mc.to)) {
6038 mc.precharge -= HPAGE_PMD_NR;
6039 mc.moved_charge += HPAGE_PMD_NR;
6040 }
6041 putback_lru_page(page);
6042 }
6043 put_page(page);
6044 } else if (target_type == MC_TARGET_DEVICE) {
6045 page = target.page;
6046 if (!mem_cgroup_move_account(page, true,
6047 mc.from, mc.to)) {
6048 mc.precharge -= HPAGE_PMD_NR;
6049 mc.moved_charge += HPAGE_PMD_NR;
6050 }
6051 put_page(page);
6052 }
6053 spin_unlock(ptl);
6054 return 0;
6055 }
6056
6057 if (pmd_trans_unstable(pmd))
6058 return 0;
6059retry:
6060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061 for (; addr != end; addr += PAGE_SIZE) {
6062 pte_t ptent = *(pte++);
6063 bool device = false;
6064 swp_entry_t ent;
6065
6066 if (!mc.precharge)
6067 break;
6068
6069 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070 case MC_TARGET_DEVICE:
6071 device = true;
6072 fallthrough;
6073 case MC_TARGET_PAGE:
6074 page = target.page;
6075 /*
6076 * We can have a part of the split pmd here. Moving it
6077 * can be done but it would be too convoluted so simply
6078 * ignore such a partial THP and keep it in original
6079 * memcg. There should be somebody mapping the head.
6080 */
6081 if (PageTransCompound(page))
6082 goto put;
6083 if (!device && isolate_lru_page(page))
6084 goto put;
6085 if (!mem_cgroup_move_account(page, false,
6086 mc.from, mc.to)) {
6087 mc.precharge--;
6088 /* we uncharge from mc.from later. */
6089 mc.moved_charge++;
6090 }
6091 if (!device)
6092 putback_lru_page(page);
6093put: /* get_mctgt_type() gets the page */
6094 put_page(page);
6095 break;
6096 case MC_TARGET_SWAP:
6097 ent = target.ent;
6098 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099 mc.precharge--;
6100 mem_cgroup_id_get_many(mc.to, 1);
6101 /* we fixup other refcnts and charges later. */
6102 mc.moved_swap++;
6103 }
6104 break;
6105 default:
6106 break;
6107 }
6108 }
6109 pte_unmap_unlock(pte - 1, ptl);
6110 cond_resched();
6111
6112 if (addr != end) {
6113 /*
6114 * We have consumed all precharges we got in can_attach().
6115 * We try charge one by one, but don't do any additional
6116 * charges to mc.to if we have failed in charge once in attach()
6117 * phase.
6118 */
6119 ret = mem_cgroup_do_precharge(1);
6120 if (!ret)
6121 goto retry;
6122 }
6123
6124 return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128 .pmd_entry = mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133 lru_add_drain_all();
6134 /*
6135 * Signal lock_page_memcg() to take the memcg's move_lock
6136 * while we're moving its pages to another memcg. Then wait
6137 * for already started RCU-only updates to finish.
6138 */
6139 atomic_inc(&mc.from->moving_account);
6140 synchronize_rcu();
6141retry:
6142 if (unlikely(!mmap_read_trylock(mc.mm))) {
6143 /*
6144 * Someone who are holding the mmap_lock might be waiting in
6145 * waitq. So we cancel all extra charges, wake up all waiters,
6146 * and retry. Because we cancel precharges, we might not be able
6147 * to move enough charges, but moving charge is a best-effort
6148 * feature anyway, so it wouldn't be a big problem.
6149 */
6150 __mem_cgroup_clear_mc();
6151 cond_resched();
6152 goto retry;
6153 }
6154 /*
6155 * When we have consumed all precharges and failed in doing
6156 * additional charge, the page walk just aborts.
6157 */
6158 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159 NULL);
6160
6161 mmap_read_unlock(mc.mm);
6162 atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167 if (mc.to) {
6168 mem_cgroup_move_charge();
6169 mem_cgroup_clear_mc();
6170 }
6171}
6172#else /* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175 return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187 if (value == PAGE_COUNTER_MAX)
6188 seq_puts(m, "max\n");
6189 else
6190 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192 return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196 struct cftype *cft)
6197{
6198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205 return seq_puts_memcg_tunable(m,
6206 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210 char *buf, size_t nbytes, loff_t off)
6211{
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213 unsigned long min;
6214 int err;
6215
6216 buf = strstrip(buf);
6217 err = page_counter_memparse(buf, "max", &min);
6218 if (err)
6219 return err;
6220
6221 page_counter_set_min(&memcg->memory, min);
6222
6223 return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228 return seq_puts_memcg_tunable(m,
6229 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233 char *buf, size_t nbytes, loff_t off)
6234{
6235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236 unsigned long low;
6237 int err;
6238
6239 buf = strstrip(buf);
6240 err = page_counter_memparse(buf, "max", &low);
6241 if (err)
6242 return err;
6243
6244 page_counter_set_low(&memcg->memory, low);
6245
6246 return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260 bool drained = false;
6261 unsigned long high;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &high);
6266 if (err)
6267 return err;
6268
6269 page_counter_set_high(&memcg->memory, high);
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273 unsigned long reclaimed;
6274
6275 if (nr_pages <= high)
6276 break;
6277
6278 if (signal_pending(current))
6279 break;
6280
6281 if (!drained) {
6282 drain_all_stock(memcg);
6283 drained = true;
6284 continue;
6285 }
6286
6287 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288 GFP_KERNEL, true);
6289
6290 if (!reclaimed && !nr_retries--)
6291 break;
6292 }
6293
6294 memcg_wb_domain_size_changed(memcg);
6295 return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300 return seq_puts_memcg_tunable(m,
6301 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305 char *buf, size_t nbytes, loff_t off)
6306{
6307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309 bool drained = false;
6310 unsigned long max;
6311 int err;
6312
6313 buf = strstrip(buf);
6314 err = page_counter_memparse(buf, "max", &max);
6315 if (err)
6316 return err;
6317
6318 xchg(&memcg->memory.max, max);
6319
6320 for (;;) {
6321 unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323 if (nr_pages <= max)
6324 break;
6325
6326 if (signal_pending(current))
6327 break;
6328
6329 if (!drained) {
6330 drain_all_stock(memcg);
6331 drained = true;
6332 continue;
6333 }
6334
6335 if (nr_reclaims) {
6336 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337 GFP_KERNEL, true))
6338 nr_reclaims--;
6339 continue;
6340 }
6341
6342 memcg_memory_event(memcg, MEMCG_OOM);
6343 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344 break;
6345 }
6346
6347 memcg_wb_domain_size_changed(memcg);
6348 return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357 seq_printf(m, "oom_kill %lu\n",
6358 atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365 __memory_events_show(m, memcg->memory_events);
6366 return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373 __memory_events_show(m, memcg->memory_events_local);
6374 return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 char *buf;
6381
6382 buf = memory_stat_format(memcg);
6383 if (!buf)
6384 return -ENOMEM;
6385 seq_puts(m, buf);
6386 kfree(buf);
6387 return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392 int item)
6393{
6394 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399 int i;
6400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403 int nid;
6404
6405 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406 continue;
6407
6408 seq_printf(m, "%s", memory_stats[i].name);
6409 for_each_node_state(nid, N_MEMORY) {
6410 u64 size;
6411 struct lruvec *lruvec;
6412
6413 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414 size = lruvec_page_state_output(lruvec,
6415 memory_stats[i].idx);
6416 seq_printf(m, " N%d=%llu", nid, size);
6417 }
6418 seq_putc(m, '\n');
6419 }
6420
6421 return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429 seq_printf(m, "%d\n", memcg->oom_group);
6430
6431 return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435 char *buf, size_t nbytes, loff_t off)
6436{
6437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438 int ret, oom_group;
6439
6440 buf = strstrip(buf);
6441 if (!buf)
6442 return -EINVAL;
6443
6444 ret = kstrtoint(buf, 0, &oom_group);
6445 if (ret)
6446 return ret;
6447
6448 if (oom_group != 0 && oom_group != 1)
6449 return -EINVAL;
6450
6451 memcg->oom_group = oom_group;
6452
6453 return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457 {
6458 .name = "current",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .read_u64 = memory_current_read,
6461 },
6462 {
6463 .name = "min",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .seq_show = memory_min_show,
6466 .write = memory_min_write,
6467 },
6468 {
6469 .name = "low",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_low_show,
6472 .write = memory_low_write,
6473 },
6474 {
6475 .name = "high",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_high_show,
6478 .write = memory_high_write,
6479 },
6480 {
6481 .name = "max",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_max_show,
6484 .write = memory_max_write,
6485 },
6486 {
6487 .name = "events",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .file_offset = offsetof(struct mem_cgroup, events_file),
6490 .seq_show = memory_events_show,
6491 },
6492 {
6493 .name = "events.local",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6496 .seq_show = memory_events_local_show,
6497 },
6498 {
6499 .name = "stat",
6500 .seq_show = memory_stat_show,
6501 },
6502#ifdef CONFIG_NUMA
6503 {
6504 .name = "numa_stat",
6505 .seq_show = memory_numa_stat_show,
6506 },
6507#endif
6508 {
6509 .name = "oom.group",
6510 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511 .seq_show = memory_oom_group_show,
6512 .write = memory_oom_group_write,
6513 },
6514 { } /* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518 .css_alloc = mem_cgroup_css_alloc,
6519 .css_online = mem_cgroup_css_online,
6520 .css_offline = mem_cgroup_css_offline,
6521 .css_released = mem_cgroup_css_released,
6522 .css_free = mem_cgroup_css_free,
6523 .css_reset = mem_cgroup_css_reset,
6524 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6525 .can_attach = mem_cgroup_can_attach,
6526 .cancel_attach = mem_cgroup_cancel_attach,
6527 .post_attach = mem_cgroup_move_task,
6528 .dfl_cftypes = memory_files,
6529 .legacy_cftypes = mem_cgroup_legacy_files,
6530 .early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 * the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 * subsequent levels the effective protection is capped to the
6546 * parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 * user is allowed to overcommit the declared protection at a given
6550 * level. If that is the case, the parent's effective protection is
6551 * distributed to the children in proportion to how much protection
6552 * they have declared and how much of it they are utilizing.
6553 *
6554 * This makes distribution proportional, but also work-conserving:
6555 * if one cgroup claims much more protection than it uses memory,
6556 * the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 * given level, the distribution of the larger parental protection
6560 * budget is NOT proportional. A cgroup's protection from a sibling
6561 * is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 * without having to declare each individual cgroup's fixed share
6565 * of the ancestor's claim to protection, any unutilized -
6566 * "floating" - protection from up the tree is distributed in
6567 * proportion to each cgroup's *usage*. This makes the protection
6568 * neutral wrt sibling cgroups and lets them compete freely over
6569 * the shared parental protection budget, but it protects the
6570 * subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577 unsigned long parent_usage,
6578 unsigned long setting,
6579 unsigned long parent_effective,
6580 unsigned long siblings_protected)
6581{
6582 unsigned long protected;
6583 unsigned long ep;
6584
6585 protected = min(usage, setting);
6586 /*
6587 * If all cgroups at this level combined claim and use more
6588 * protection then what the parent affords them, distribute
6589 * shares in proportion to utilization.
6590 *
6591 * We are using actual utilization rather than the statically
6592 * claimed protection in order to be work-conserving: claimed
6593 * but unused protection is available to siblings that would
6594 * otherwise get a smaller chunk than what they claimed.
6595 */
6596 if (siblings_protected > parent_effective)
6597 return protected * parent_effective / siblings_protected;
6598
6599 /*
6600 * Ok, utilized protection of all children is within what the
6601 * parent affords them, so we know whatever this child claims
6602 * and utilizes is effectively protected.
6603 *
6604 * If there is unprotected usage beyond this value, reclaim
6605 * will apply pressure in proportion to that amount.
6606 *
6607 * If there is unutilized protection, the cgroup will be fully
6608 * shielded from reclaim, but we do return a smaller value for
6609 * protection than what the group could enjoy in theory. This
6610 * is okay. With the overcommit distribution above, effective
6611 * protection is always dependent on how memory is actually
6612 * consumed among the siblings anyway.
6613 */
6614 ep = protected;
6615
6616 /*
6617 * If the children aren't claiming (all of) the protection
6618 * afforded to them by the parent, distribute the remainder in
6619 * proportion to the (unprotected) memory of each cgroup. That
6620 * way, cgroups that aren't explicitly prioritized wrt each
6621 * other compete freely over the allowance, but they are
6622 * collectively protected from neighboring trees.
6623 *
6624 * We're using unprotected memory for the weight so that if
6625 * some cgroups DO claim explicit protection, we don't protect
6626 * the same bytes twice.
6627 *
6628 * Check both usage and parent_usage against the respective
6629 * protected values. One should imply the other, but they
6630 * aren't read atomically - make sure the division is sane.
6631 */
6632 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633 return ep;
6634 if (parent_effective > siblings_protected &&
6635 parent_usage > siblings_protected &&
6636 usage > protected) {
6637 unsigned long unclaimed;
6638
6639 unclaimed = parent_effective - siblings_protected;
6640 unclaimed *= usage - protected;
6641 unclaimed /= parent_usage - siblings_protected;
6642
6643 ep += unclaimed;
6644 }
6645
6646 return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 * of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658 struct mem_cgroup *memcg)
6659{
6660 unsigned long usage, parent_usage;
6661 struct mem_cgroup *parent;
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 if (!root)
6667 root = root_mem_cgroup;
6668
6669 /*
6670 * Effective values of the reclaim targets are ignored so they
6671 * can be stale. Have a look at mem_cgroup_protection for more
6672 * details.
6673 * TODO: calculation should be more robust so that we do not need
6674 * that special casing.
6675 */
6676 if (memcg == root)
6677 return;
6678
6679 usage = page_counter_read(&memcg->memory);
6680 if (!usage)
6681 return;
6682
6683 parent = parent_mem_cgroup(memcg);
6684 /* No parent means a non-hierarchical mode on v1 memcg */
6685 if (!parent)
6686 return;
6687
6688 if (parent == root) {
6689 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691 return;
6692 }
6693
6694 parent_usage = page_counter_read(&parent->memory);
6695
6696 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697 READ_ONCE(memcg->memory.min),
6698 READ_ONCE(parent->memory.emin),
6699 atomic_long_read(&parent->memory.children_min_usage)));
6700
6701 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.low),
6703 READ_ONCE(parent->memory.elow),
6704 atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708 gfp_t gfp)
6709{
6710 unsigned int nr_pages = thp_nr_pages(page);
6711 int ret;
6712
6713 ret = try_charge(memcg, gfp, nr_pages);
6714 if (ret)
6715 goto out;
6716
6717 css_get(&memcg->css);
6718 commit_charge(page, memcg);
6719
6720 local_irq_disable();
6721 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722 memcg_check_events(memcg, page);
6723 local_irq_enable();
6724out:
6725 return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744 struct mem_cgroup *memcg;
6745 int ret;
6746
6747 if (mem_cgroup_disabled())
6748 return 0;
6749
6750 memcg = get_mem_cgroup_from_mm(mm);
6751 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752 css_put(&memcg->css);
6753
6754 return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770 gfp_t gfp, swp_entry_t entry)
6771{
6772 struct mem_cgroup *memcg;
6773 unsigned short id;
6774 int ret;
6775
6776 if (mem_cgroup_disabled())
6777 return 0;
6778
6779 id = lookup_swap_cgroup_id(entry);
6780 rcu_read_lock();
6781 memcg = mem_cgroup_from_id(id);
6782 if (!memcg || !css_tryget_online(&memcg->css))
6783 memcg = get_mem_cgroup_from_mm(mm);
6784 rcu_read_unlock();
6785
6786 ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788 css_put(&memcg->css);
6789 return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803 /*
6804 * Cgroup1's unified memory+swap counter has been charged with the
6805 * new swapcache page, finish the transfer by uncharging the swap
6806 * slot. The swap slot would also get uncharged when it dies, but
6807 * it can stick around indefinitely and we'd count the page twice
6808 * the entire time.
6809 *
6810 * Cgroup2 has separate resource counters for memory and swap,
6811 * so this is a non-issue here. Memory and swap charge lifetimes
6812 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813 * page to memory here, and uncharge swap when the slot is freed.
6814 */
6815 if (!mem_cgroup_disabled() && do_memsw_account()) {
6816 /*
6817 * The swap entry might not get freed for a long time,
6818 * let's not wait for it. The page already received a
6819 * memory+swap charge, drop the swap entry duplicate.
6820 */
6821 mem_cgroup_uncharge_swap(entry, 1);
6822 }
6823}
6824
6825struct uncharge_gather {
6826 struct mem_cgroup *memcg;
6827 unsigned long nr_memory;
6828 unsigned long pgpgout;
6829 unsigned long nr_kmem;
6830 struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835 memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840 unsigned long flags;
6841
6842 if (ug->nr_memory) {
6843 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844 if (do_memsw_account())
6845 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848 memcg_oom_recover(ug->memcg);
6849 }
6850
6851 local_irq_save(flags);
6852 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854 memcg_check_events(ug->memcg, ug->dummy_page);
6855 local_irq_restore(flags);
6856
6857 /* drop reference from uncharge_page */
6858 css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863 unsigned long nr_pages;
6864 struct mem_cgroup *memcg;
6865 struct obj_cgroup *objcg;
6866 bool use_objcg = PageMemcgKmem(page);
6867
6868 VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870 /*
6871 * Nobody should be changing or seriously looking at
6872 * page memcg or objcg at this point, we have fully
6873 * exclusive access to the page.
6874 */
6875 if (use_objcg) {
6876 objcg = __page_objcg(page);
6877 /*
6878 * This get matches the put at the end of the function and
6879 * kmem pages do not hold memcg references anymore.
6880 */
6881 memcg = get_mem_cgroup_from_objcg(objcg);
6882 } else {
6883 memcg = __page_memcg(page);
6884 }
6885
6886 if (!memcg)
6887 return;
6888
6889 if (ug->memcg != memcg) {
6890 if (ug->memcg) {
6891 uncharge_batch(ug);
6892 uncharge_gather_clear(ug);
6893 }
6894 ug->memcg = memcg;
6895 ug->dummy_page = page;
6896
6897 /* pairs with css_put in uncharge_batch */
6898 css_get(&memcg->css);
6899 }
6900
6901 nr_pages = compound_nr(page);
6902
6903 if (use_objcg) {
6904 ug->nr_memory += nr_pages;
6905 ug->nr_kmem += nr_pages;
6906
6907 page->memcg_data = 0;
6908 obj_cgroup_put(objcg);
6909 } else {
6910 /* LRU pages aren't accounted at the root level */
6911 if (!mem_cgroup_is_root(memcg))
6912 ug->nr_memory += nr_pages;
6913 ug->pgpgout++;
6914
6915 page->memcg_data = 0;
6916 }
6917
6918 css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929 struct uncharge_gather ug;
6930
6931 if (mem_cgroup_disabled())
6932 return;
6933
6934 /* Don't touch page->lru of any random page, pre-check: */
6935 if (!page_memcg(page))
6936 return;
6937
6938 uncharge_gather_clear(&ug);
6939 uncharge_page(page, &ug);
6940 uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952 struct uncharge_gather ug;
6953 struct page *page;
6954
6955 if (mem_cgroup_disabled())
6956 return;
6957
6958 uncharge_gather_clear(&ug);
6959 list_for_each_entry(page, page_list, lru)
6960 uncharge_page(page, &ug);
6961 if (ug.memcg)
6962 uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977 struct mem_cgroup *memcg;
6978 unsigned int nr_pages;
6979 unsigned long flags;
6980
6981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985 newpage);
6986
6987 if (mem_cgroup_disabled())
6988 return;
6989
6990 /* Page cache replacement: new page already charged? */
6991 if (page_memcg(newpage))
6992 return;
6993
6994 memcg = page_memcg(oldpage);
6995 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996 if (!memcg)
6997 return;
6998
6999 /* Force-charge the new page. The old one will be freed soon */
7000 nr_pages = thp_nr_pages(newpage);
7001
7002 if (!mem_cgroup_is_root(memcg)) {
7003 page_counter_charge(&memcg->memory, nr_pages);
7004 if (do_memsw_account())
7005 page_counter_charge(&memcg->memsw, nr_pages);
7006 }
7007
7008 css_get(&memcg->css);
7009 commit_charge(newpage, memcg);
7010
7011 local_irq_save(flags);
7012 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013 memcg_check_events(memcg, newpage);
7014 local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022 struct mem_cgroup *memcg;
7023
7024 if (!mem_cgroup_sockets_enabled)
7025 return;
7026
7027 /* Do not associate the sock with unrelated interrupted task's memcg. */
7028 if (in_interrupt())
7029 return;
7030
7031 rcu_read_lock();
7032 memcg = mem_cgroup_from_task(current);
7033 if (memcg == root_mem_cgroup)
7034 goto out;
7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036 goto out;
7037 if (css_tryget(&memcg->css))
7038 sk->sk_memcg = memcg;
7039out:
7040 rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045 if (sk->sk_memcg)
7046 css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059 gfp_t gfp_mask = GFP_KERNEL;
7060
7061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062 struct page_counter *fail;
7063
7064 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065 memcg->tcpmem_pressure = 0;
7066 return true;
7067 }
7068 page_counter_charge(&memcg->tcpmem, nr_pages);
7069 memcg->tcpmem_pressure = 1;
7070 return false;
7071 }
7072
7073 /* Don't block in the packet receive path */
7074 if (in_softirq())
7075 gfp_mask = GFP_NOWAIT;
7076
7077 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080 return true;
7081
7082 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083 return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095 return;
7096 }
7097
7098 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100 refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105 char *token;
7106
7107 while ((token = strsep(&s, ",")) != NULL) {
7108 if (!*token)
7109 continue;
7110 if (!strcmp(token, "nosocket"))
7111 cgroup_memory_nosocket = true;
7112 if (!strcmp(token, "nokmem"))
7113 cgroup_memory_nokmem = true;
7114 }
7115 return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129 int cpu, node;
7130
7131 /*
7132 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134 * to work fine, we should make sure that the overfill threshold can't
7135 * exceed S32_MAX / PAGE_SIZE.
7136 */
7137 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140 memcg_hotplug_cpu_dead);
7141
7142 for_each_possible_cpu(cpu)
7143 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144 drain_local_stock);
7145
7146 for_each_node(node) {
7147 struct mem_cgroup_tree_per_node *rtpn;
7148
7149 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150 node_online(node) ? node : NUMA_NO_NODE);
7151
7152 rtpn->rb_root = RB_ROOT;
7153 rtpn->rb_rightmost = NULL;
7154 spin_lock_init(&rtpn->lock);
7155 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156 }
7157
7158 return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166 /*
7167 * The root cgroup cannot be destroyed, so it's refcount must
7168 * always be >= 1.
7169 */
7170 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171 VM_BUG_ON(1);
7172 break;
7173 }
7174 memcg = parent_mem_cgroup(memcg);
7175 if (!memcg)
7176 memcg = root_mem_cgroup;
7177 }
7178 return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190 struct mem_cgroup *memcg, *swap_memcg;
7191 unsigned int nr_entries;
7192 unsigned short oldid;
7193
7194 VM_BUG_ON_PAGE(PageLRU(page), page);
7195 VM_BUG_ON_PAGE(page_count(page), page);
7196
7197 if (mem_cgroup_disabled())
7198 return;
7199
7200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 return;
7202
7203 memcg = page_memcg(page);
7204
7205 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 if (!memcg)
7207 return;
7208
7209 /*
7210 * In case the memcg owning these pages has been offlined and doesn't
7211 * have an ID allocated to it anymore, charge the closest online
7212 * ancestor for the swap instead and transfer the memory+swap charge.
7213 */
7214 swap_memcg = mem_cgroup_id_get_online(memcg);
7215 nr_entries = thp_nr_pages(page);
7216 /* Get references for the tail pages, too */
7217 if (nr_entries > 1)
7218 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220 nr_entries);
7221 VM_BUG_ON_PAGE(oldid, page);
7222 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224 page->memcg_data = 0;
7225
7226 if (!mem_cgroup_is_root(memcg))
7227 page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230 if (!mem_cgroup_is_root(swap_memcg))
7231 page_counter_charge(&swap_memcg->memsw, nr_entries);
7232 page_counter_uncharge(&memcg->memsw, nr_entries);
7233 }
7234
7235 /*
7236 * Interrupts should be disabled here because the caller holds the
7237 * i_pages lock which is taken with interrupts-off. It is
7238 * important here to have the interrupts disabled because it is the
7239 * only synchronisation we have for updating the per-CPU variables.
7240 */
7241 VM_BUG_ON(!irqs_disabled());
7242 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243 memcg_check_events(memcg, page);
7244
7245 css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259 unsigned int nr_pages = thp_nr_pages(page);
7260 struct page_counter *counter;
7261 struct mem_cgroup *memcg;
7262 unsigned short oldid;
7263
7264 if (mem_cgroup_disabled())
7265 return 0;
7266
7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268 return 0;
7269
7270 memcg = page_memcg(page);
7271
7272 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273 if (!memcg)
7274 return 0;
7275
7276 if (!entry.val) {
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 return 0;
7279 }
7280
7281 memcg = mem_cgroup_id_get_online(memcg);
7282
7283 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287 mem_cgroup_id_put(memcg);
7288 return -ENOMEM;
7289 }
7290
7291 /* Get references for the tail pages, too */
7292 if (nr_pages > 1)
7293 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295 VM_BUG_ON_PAGE(oldid, page);
7296 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298 return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308 struct mem_cgroup *memcg;
7309 unsigned short id;
7310
7311 id = swap_cgroup_record(entry, 0, nr_pages);
7312 rcu_read_lock();
7313 memcg = mem_cgroup_from_id(id);
7314 if (memcg) {
7315 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 page_counter_uncharge(&memcg->swap, nr_pages);
7318 else
7319 page_counter_uncharge(&memcg->memsw, nr_pages);
7320 }
7321 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322 mem_cgroup_id_put_many(memcg, nr_pages);
7323 }
7324 rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329 long nr_swap_pages = get_nr_swap_pages();
7330
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return nr_swap_pages;
7333 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334 nr_swap_pages = min_t(long, nr_swap_pages,
7335 READ_ONCE(memcg->swap.max) -
7336 page_counter_read(&memcg->swap));
7337 return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342 struct mem_cgroup *memcg;
7343
7344 VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346 if (vm_swap_full())
7347 return true;
7348 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349 return false;
7350
7351 memcg = page_memcg(page);
7352 if (!memcg)
7353 return false;
7354
7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356 unsigned long usage = page_counter_read(&memcg->swap);
7357
7358 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359 usage * 2 >= READ_ONCE(memcg->swap.max))
7360 return true;
7361 }
7362
7363 return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368 if (!strcmp(s, "1"))
7369 cgroup_memory_noswap = false;
7370 else if (!strcmp(s, "0"))
7371 cgroup_memory_noswap = true;
7372 return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
7378{
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386 return seq_puts_memcg_tunable(m,
7387 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes, loff_t off)
7392{
7393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394 unsigned long high;
7395 int err;
7396
7397 buf = strstrip(buf);
7398 err = page_counter_memparse(buf, "max", &high);
7399 if (err)
7400 return err;
7401
7402 page_counter_set_high(&memcg->swap, high);
7403
7404 return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409 return seq_puts_memcg_tunable(m,
7410 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414 char *buf, size_t nbytes, loff_t off)
7415{
7416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417 unsigned long max;
7418 int err;
7419
7420 buf = strstrip(buf);
7421 err = page_counter_memparse(buf, "max", &max);
7422 if (err)
7423 return err;
7424
7425 xchg(&memcg->swap.max, max);
7426
7427 return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434 seq_printf(m, "high %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436 seq_printf(m, "max %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438 seq_printf(m, "fail %lu\n",
7439 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441 return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445 {
7446 .name = "swap.current",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .read_u64 = swap_current_read,
7449 },
7450 {
7451 .name = "swap.high",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .seq_show = swap_high_show,
7454 .write = swap_high_write,
7455 },
7456 {
7457 .name = "swap.max",
7458 .flags = CFTYPE_NOT_ON_ROOT,
7459 .seq_show = swap_max_show,
7460 .write = swap_max_write,
7461 },
7462 {
7463 .name = "swap.events",
7464 .flags = CFTYPE_NOT_ON_ROOT,
7465 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466 .seq_show = swap_events_show,
7467 },
7468 { } /* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472 {
7473 .name = "memsw.usage_in_bytes",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.max_usage_in_bytes",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 {
7484 .name = "memsw.limit_in_bytes",
7485 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486 .write = mem_cgroup_write,
7487 .read_u64 = mem_cgroup_read_u64,
7488 },
7489 {
7490 .name = "memsw.failcnt",
7491 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492 .write = mem_cgroup_reset,
7493 .read_u64 = mem_cgroup_read_u64,
7494 },
7495 { }, /* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507 /* No memory control -> no swap control */
7508 if (mem_cgroup_disabled())
7509 cgroup_memory_noswap = true;
7510
7511 if (cgroup_memory_noswap)
7512 return 0;
7513
7514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517 return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/mutex.h>
46#include <linux/rbtree.h>
47#include <linux/slab.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/eventfd.h>
52#include <linux/poll.h>
53#include <linux/sort.h>
54#include <linux/fs.h>
55#include <linux/seq_file.h>
56#include <linux/vmpressure.h>
57#include <linux/memremap.h>
58#include <linux/mm_inline.h>
59#include <linux/swap_cgroup.h>
60#include <linux/cpu.h>
61#include <linux/oom.h>
62#include <linux/lockdep.h>
63#include <linux/file.h>
64#include <linux/resume_user_mode.h>
65#include <linux/psi.h>
66#include <linux/seq_buf.h>
67#include <linux/sched/isolation.h>
68#include <linux/kmemleak.h>
69#include "internal.h"
70#include <net/sock.h>
71#include <net/ip.h>
72#include "slab.h"
73#include "swap.h"
74
75#include <linux/uaccess.h>
76
77#include <trace/events/vmscan.h>
78
79struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80EXPORT_SYMBOL(memory_cgrp_subsys);
81
82struct mem_cgroup *root_mem_cgroup __read_mostly;
83
84/* Active memory cgroup to use from an interrupt context */
85DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87
88/* Socket memory accounting disabled? */
89static bool cgroup_memory_nosocket __ro_after_init;
90
91/* Kernel memory accounting disabled? */
92static bool cgroup_memory_nokmem __ro_after_init;
93
94/* BPF memory accounting disabled? */
95static bool cgroup_memory_nobpf __ro_after_init;
96
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
105}
106
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
109
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
115struct mem_cgroup_tree_per_node {
116 struct rb_root rb_root;
117 struct rb_node *rb_rightmost;
118 spinlock_t lock;
119};
120
121struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
131};
132
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
136struct mem_cgroup_event {
137 /*
138 * memcg which the event belongs to.
139 */
140 struct mem_cgroup *memcg;
141 /*
142 * eventfd to signal userspace about the event.
143 */
144 struct eventfd_ctx *eventfd;
145 /*
146 * Each of these stored in a list by the cgroup.
147 */
148 struct list_head list;
149 /*
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
153 */
154 int (*register_event)(struct mem_cgroup *memcg,
155 struct eventfd_ctx *eventfd, const char *args);
156 /*
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
160 */
161 void (*unregister_event)(struct mem_cgroup *memcg,
162 struct eventfd_ctx *eventfd);
163 /*
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
166 */
167 poll_table pt;
168 wait_queue_head_t *wqh;
169 wait_queue_entry_t wait;
170 struct work_struct remove;
171};
172
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175
176/* Stuffs for move charges at task migration. */
177/*
178 * Types of charges to be moved.
179 */
180#define MOVE_ANON 0x1U
181#define MOVE_FILE 0x2U
182#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
183
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
186 spinlock_t lock; /* for from, to */
187 struct mm_struct *mm;
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
190 unsigned long flags;
191 unsigned long precharge;
192 unsigned long moved_charge;
193 unsigned long moved_swap;
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
196} mc = {
197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
200
201/*
202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
205#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
206#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207
208/* for encoding cft->private value on file */
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219
220/*
221 * Iteration constructs for visiting all cgroups (under a tree). If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
224 */
225#define for_each_mem_cgroup_tree(iter, root) \
226 for (iter = mem_cgroup_iter(root, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(root, iter, NULL))
229
230#define for_each_mem_cgroup(iter) \
231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(NULL, iter, NULL))
234
235static inline bool task_is_dying(void)
236{
237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 (current->flags & PF_EXITING);
239}
240
241/* Some nice accessors for the vmpressure. */
242struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243{
244 if (!memcg)
245 memcg = root_mem_cgroup;
246 return &memcg->vmpressure;
247}
248
249struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250{
251 return container_of(vmpr, struct mem_cgroup, vmpressure);
252}
253
254#define CURRENT_OBJCG_UPDATE_BIT 0
255#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256
257#ifdef CONFIG_MEMCG_KMEM
258static DEFINE_SPINLOCK(objcg_lock);
259
260bool mem_cgroup_kmem_disabled(void)
261{
262 return cgroup_memory_nokmem;
263}
264
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
267
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
273 unsigned long flags;
274
275 /*
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 *
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
291 *
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
294 */
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
298
299 if (nr_pages)
300 obj_cgroup_uncharge_pages(objcg, nr_pages);
301
302 spin_lock_irqsave(&objcg_lock, flags);
303 list_del(&objcg->list);
304 spin_unlock_irqrestore(&objcg_lock, flags);
305
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312 struct obj_cgroup *objcg;
313 int ret;
314
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 if (!objcg)
317 return NULL;
318
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 GFP_KERNEL);
321 if (ret) {
322 kfree(objcg);
323 return NULL;
324 }
325 INIT_LIST_HEAD(&objcg->list);
326 return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
331{
332 struct obj_cgroup *objcg, *iter;
333
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
336 spin_lock_irq(&objcg_lock);
337
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346 spin_unlock_irq(&objcg_lock);
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
357DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358EXPORT_SYMBOL(memcg_kmem_online_key);
359
360DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361EXPORT_SYMBOL(memcg_bpf_enabled_key);
362#endif
363
364/**
365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366 * @folio: folio of interest
367 *
368 * If memcg is bound to the default hierarchy, css of the memcg associated
369 * with @folio is returned. The returned css remains associated with @folio
370 * until it is released.
371 *
372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373 * is returned.
374 */
375struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376{
377 struct mem_cgroup *memcg = folio_memcg(folio);
378
379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380 memcg = root_mem_cgroup;
381
382 return &memcg->css;
383}
384
385/**
386 * page_cgroup_ino - return inode number of the memcg a page is charged to
387 * @page: the page
388 *
389 * Look up the closest online ancestor of the memory cgroup @page is charged to
390 * and return its inode number or 0 if @page is not charged to any cgroup. It
391 * is safe to call this function without holding a reference to @page.
392 *
393 * Note, this function is inherently racy, because there is nothing to prevent
394 * the cgroup inode from getting torn down and potentially reallocated a moment
395 * after page_cgroup_ino() returns, so it only should be used by callers that
396 * do not care (such as procfs interfaces).
397 */
398ino_t page_cgroup_ino(struct page *page)
399{
400 struct mem_cgroup *memcg;
401 unsigned long ino = 0;
402
403 rcu_read_lock();
404 /* page_folio() is racy here, but the entire function is racy anyway */
405 memcg = folio_memcg_check(page_folio(page));
406
407 while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 memcg = parent_mem_cgroup(memcg);
409 if (memcg)
410 ino = cgroup_ino(memcg->css.cgroup);
411 rcu_read_unlock();
412 return ino;
413}
414
415static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 struct mem_cgroup_tree_per_node *mctz,
417 unsigned long new_usage_in_excess)
418{
419 struct rb_node **p = &mctz->rb_root.rb_node;
420 struct rb_node *parent = NULL;
421 struct mem_cgroup_per_node *mz_node;
422 bool rightmost = true;
423
424 if (mz->on_tree)
425 return;
426
427 mz->usage_in_excess = new_usage_in_excess;
428 if (!mz->usage_in_excess)
429 return;
430 while (*p) {
431 parent = *p;
432 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433 tree_node);
434 if (mz->usage_in_excess < mz_node->usage_in_excess) {
435 p = &(*p)->rb_left;
436 rightmost = false;
437 } else {
438 p = &(*p)->rb_right;
439 }
440 }
441
442 if (rightmost)
443 mctz->rb_rightmost = &mz->tree_node;
444
445 rb_link_node(&mz->tree_node, parent, p);
446 rb_insert_color(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = true;
448}
449
450static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 struct mem_cgroup_tree_per_node *mctz)
452{
453 if (!mz->on_tree)
454 return;
455
456 if (&mz->tree_node == mctz->rb_rightmost)
457 mctz->rb_rightmost = rb_prev(&mz->tree_node);
458
459 rb_erase(&mz->tree_node, &mctz->rb_root);
460 mz->on_tree = false;
461}
462
463static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 struct mem_cgroup_tree_per_node *mctz)
465{
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 __mem_cgroup_remove_exceeded(mz, mctz);
470 spin_unlock_irqrestore(&mctz->lock, flags);
471}
472
473static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474{
475 unsigned long nr_pages = page_counter_read(&memcg->memory);
476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477 unsigned long excess = 0;
478
479 if (nr_pages > soft_limit)
480 excess = nr_pages - soft_limit;
481
482 return excess;
483}
484
485static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486{
487 unsigned long excess;
488 struct mem_cgroup_per_node *mz;
489 struct mem_cgroup_tree_per_node *mctz;
490
491 if (lru_gen_enabled()) {
492 if (soft_limit_excess(memcg))
493 lru_gen_soft_reclaim(memcg, nid);
494 return;
495 }
496
497 mctz = soft_limit_tree.rb_tree_per_node[nid];
498 if (!mctz)
499 return;
500 /*
501 * Necessary to update all ancestors when hierarchy is used.
502 * because their event counter is not touched.
503 */
504 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505 mz = memcg->nodeinfo[nid];
506 excess = soft_limit_excess(memcg);
507 /*
508 * We have to update the tree if mz is on RB-tree or
509 * mem is over its softlimit.
510 */
511 if (excess || mz->on_tree) {
512 unsigned long flags;
513
514 spin_lock_irqsave(&mctz->lock, flags);
515 /* if on-tree, remove it */
516 if (mz->on_tree)
517 __mem_cgroup_remove_exceeded(mz, mctz);
518 /*
519 * Insert again. mz->usage_in_excess will be updated.
520 * If excess is 0, no tree ops.
521 */
522 __mem_cgroup_insert_exceeded(mz, mctz, excess);
523 spin_unlock_irqrestore(&mctz->lock, flags);
524 }
525 }
526}
527
528static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529{
530 struct mem_cgroup_tree_per_node *mctz;
531 struct mem_cgroup_per_node *mz;
532 int nid;
533
534 for_each_node(nid) {
535 mz = memcg->nodeinfo[nid];
536 mctz = soft_limit_tree.rb_tree_per_node[nid];
537 if (mctz)
538 mem_cgroup_remove_exceeded(mz, mctz);
539 }
540}
541
542static struct mem_cgroup_per_node *
543__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544{
545 struct mem_cgroup_per_node *mz;
546
547retry:
548 mz = NULL;
549 if (!mctz->rb_rightmost)
550 goto done; /* Nothing to reclaim from */
551
552 mz = rb_entry(mctz->rb_rightmost,
553 struct mem_cgroup_per_node, tree_node);
554 /*
555 * Remove the node now but someone else can add it back,
556 * we will to add it back at the end of reclaim to its correct
557 * position in the tree.
558 */
559 __mem_cgroup_remove_exceeded(mz, mctz);
560 if (!soft_limit_excess(mz->memcg) ||
561 !css_tryget(&mz->memcg->css))
562 goto retry;
563done:
564 return mz;
565}
566
567static struct mem_cgroup_per_node *
568mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569{
570 struct mem_cgroup_per_node *mz;
571
572 spin_lock_irq(&mctz->lock);
573 mz = __mem_cgroup_largest_soft_limit_node(mctz);
574 spin_unlock_irq(&mctz->lock);
575 return mz;
576}
577
578/* Subset of vm_event_item to report for memcg event stats */
579static const unsigned int memcg_vm_event_stat[] = {
580 PGPGIN,
581 PGPGOUT,
582 PGSCAN_KSWAPD,
583 PGSCAN_DIRECT,
584 PGSCAN_KHUGEPAGED,
585 PGSTEAL_KSWAPD,
586 PGSTEAL_DIRECT,
587 PGSTEAL_KHUGEPAGED,
588 PGFAULT,
589 PGMAJFAULT,
590 PGREFILL,
591 PGACTIVATE,
592 PGDEACTIVATE,
593 PGLAZYFREE,
594 PGLAZYFREED,
595#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
596 ZSWPIN,
597 ZSWPOUT,
598 ZSWPWB,
599#endif
600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 THP_FAULT_ALLOC,
602 THP_COLLAPSE_ALLOC,
603 THP_SWPOUT,
604 THP_SWPOUT_FALLBACK,
605#endif
606};
607
608#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
609static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
610
611static void init_memcg_events(void)
612{
613 int i;
614
615 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
616 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
617}
618
619static inline int memcg_events_index(enum vm_event_item idx)
620{
621 return mem_cgroup_events_index[idx] - 1;
622}
623
624struct memcg_vmstats_percpu {
625 /* Stats updates since the last flush */
626 unsigned int stats_updates;
627
628 /* Cached pointers for fast iteration in memcg_rstat_updated() */
629 struct memcg_vmstats_percpu *parent;
630 struct memcg_vmstats *vmstats;
631
632 /* The above should fit a single cacheline for memcg_rstat_updated() */
633
634 /* Local (CPU and cgroup) page state & events */
635 long state[MEMCG_NR_STAT];
636 unsigned long events[NR_MEMCG_EVENTS];
637
638 /* Delta calculation for lockless upward propagation */
639 long state_prev[MEMCG_NR_STAT];
640 unsigned long events_prev[NR_MEMCG_EVENTS];
641
642 /* Cgroup1: threshold notifications & softlimit tree updates */
643 unsigned long nr_page_events;
644 unsigned long targets[MEM_CGROUP_NTARGETS];
645} ____cacheline_aligned;
646
647struct memcg_vmstats {
648 /* Aggregated (CPU and subtree) page state & events */
649 long state[MEMCG_NR_STAT];
650 unsigned long events[NR_MEMCG_EVENTS];
651
652 /* Non-hierarchical (CPU aggregated) page state & events */
653 long state_local[MEMCG_NR_STAT];
654 unsigned long events_local[NR_MEMCG_EVENTS];
655
656 /* Pending child counts during tree propagation */
657 long state_pending[MEMCG_NR_STAT];
658 unsigned long events_pending[NR_MEMCG_EVENTS];
659
660 /* Stats updates since the last flush */
661 atomic64_t stats_updates;
662};
663
664/*
665 * memcg and lruvec stats flushing
666 *
667 * Many codepaths leading to stats update or read are performance sensitive and
668 * adding stats flushing in such codepaths is not desirable. So, to optimize the
669 * flushing the kernel does:
670 *
671 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
672 * rstat update tree grow unbounded.
673 *
674 * 2) Flush the stats synchronously on reader side only when there are more than
675 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
676 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
677 * only for 2 seconds due to (1).
678 */
679static void flush_memcg_stats_dwork(struct work_struct *w);
680static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
681static u64 flush_last_time;
682
683#define FLUSH_TIME (2UL*HZ)
684
685/*
686 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
687 * not rely on this as part of an acquired spinlock_t lock. These functions are
688 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
689 * is sufficient.
690 */
691static void memcg_stats_lock(void)
692{
693 preempt_disable_nested();
694 VM_WARN_ON_IRQS_ENABLED();
695}
696
697static void __memcg_stats_lock(void)
698{
699 preempt_disable_nested();
700}
701
702static void memcg_stats_unlock(void)
703{
704 preempt_enable_nested();
705}
706
707
708static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
709{
710 return atomic64_read(&vmstats->stats_updates) >
711 MEMCG_CHARGE_BATCH * num_online_cpus();
712}
713
714static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
715{
716 struct memcg_vmstats_percpu *statc;
717 int cpu = smp_processor_id();
718
719 if (!val)
720 return;
721
722 cgroup_rstat_updated(memcg->css.cgroup, cpu);
723 statc = this_cpu_ptr(memcg->vmstats_percpu);
724 for (; statc; statc = statc->parent) {
725 statc->stats_updates += abs(val);
726 if (statc->stats_updates < MEMCG_CHARGE_BATCH)
727 continue;
728
729 /*
730 * If @memcg is already flush-able, increasing stats_updates is
731 * redundant. Avoid the overhead of the atomic update.
732 */
733 if (!memcg_vmstats_needs_flush(statc->vmstats))
734 atomic64_add(statc->stats_updates,
735 &statc->vmstats->stats_updates);
736 statc->stats_updates = 0;
737 }
738}
739
740static void do_flush_stats(struct mem_cgroup *memcg)
741{
742 if (mem_cgroup_is_root(memcg))
743 WRITE_ONCE(flush_last_time, jiffies_64);
744
745 cgroup_rstat_flush(memcg->css.cgroup);
746}
747
748/*
749 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
750 * @memcg: root of the subtree to flush
751 *
752 * Flushing is serialized by the underlying global rstat lock. There is also a
753 * minimum amount of work to be done even if there are no stat updates to flush.
754 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
755 * avoids unnecessary work and contention on the underlying lock.
756 */
757void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
758{
759 if (mem_cgroup_disabled())
760 return;
761
762 if (!memcg)
763 memcg = root_mem_cgroup;
764
765 if (memcg_vmstats_needs_flush(memcg->vmstats))
766 do_flush_stats(memcg);
767}
768
769void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
770{
771 /* Only flush if the periodic flusher is one full cycle late */
772 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
773 mem_cgroup_flush_stats(memcg);
774}
775
776static void flush_memcg_stats_dwork(struct work_struct *w)
777{
778 /*
779 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
780 * in latency-sensitive paths is as cheap as possible.
781 */
782 do_flush_stats(root_mem_cgroup);
783 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
784}
785
786unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
787{
788 long x = READ_ONCE(memcg->vmstats->state[idx]);
789#ifdef CONFIG_SMP
790 if (x < 0)
791 x = 0;
792#endif
793 return x;
794}
795
796static int memcg_page_state_unit(int item);
797
798/*
799 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
800 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
801 */
802static int memcg_state_val_in_pages(int idx, int val)
803{
804 int unit = memcg_page_state_unit(idx);
805
806 if (!val || unit == PAGE_SIZE)
807 return val;
808 else
809 return max(val * unit / PAGE_SIZE, 1UL);
810}
811
812/**
813 * __mod_memcg_state - update cgroup memory statistics
814 * @memcg: the memory cgroup
815 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
816 * @val: delta to add to the counter, can be negative
817 */
818void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
819{
820 if (mem_cgroup_disabled())
821 return;
822
823 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
824 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
825}
826
827/* idx can be of type enum memcg_stat_item or node_stat_item. */
828static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
829{
830 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
831
832#ifdef CONFIG_SMP
833 if (x < 0)
834 x = 0;
835#endif
836 return x;
837}
838
839void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841{
842 struct mem_cgroup_per_node *pn;
843 struct mem_cgroup *memcg;
844
845 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
846 memcg = pn->memcg;
847
848 /*
849 * The caller from rmap relies on disabled preemption because they never
850 * update their counter from in-interrupt context. For these two
851 * counters we check that the update is never performed from an
852 * interrupt context while other caller need to have disabled interrupt.
853 */
854 __memcg_stats_lock();
855 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
856 switch (idx) {
857 case NR_ANON_MAPPED:
858 case NR_FILE_MAPPED:
859 case NR_ANON_THPS:
860 case NR_SHMEM_PMDMAPPED:
861 case NR_FILE_PMDMAPPED:
862 WARN_ON_ONCE(!in_task());
863 break;
864 default:
865 VM_WARN_ON_IRQS_ENABLED();
866 }
867 }
868
869 /* Update memcg */
870 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
871
872 /* Update lruvec */
873 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
874
875 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
876 memcg_stats_unlock();
877}
878
879/**
880 * __mod_lruvec_state - update lruvec memory statistics
881 * @lruvec: the lruvec
882 * @idx: the stat item
883 * @val: delta to add to the counter, can be negative
884 *
885 * The lruvec is the intersection of the NUMA node and a cgroup. This
886 * function updates the all three counters that are affected by a
887 * change of state at this level: per-node, per-cgroup, per-lruvec.
888 */
889void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
890 int val)
891{
892 /* Update node */
893 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
894
895 /* Update memcg and lruvec */
896 if (!mem_cgroup_disabled())
897 __mod_memcg_lruvec_state(lruvec, idx, val);
898}
899
900void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
901 int val)
902{
903 struct mem_cgroup *memcg;
904 pg_data_t *pgdat = folio_pgdat(folio);
905 struct lruvec *lruvec;
906
907 rcu_read_lock();
908 memcg = folio_memcg(folio);
909 /* Untracked pages have no memcg, no lruvec. Update only the node */
910 if (!memcg) {
911 rcu_read_unlock();
912 __mod_node_page_state(pgdat, idx, val);
913 return;
914 }
915
916 lruvec = mem_cgroup_lruvec(memcg, pgdat);
917 __mod_lruvec_state(lruvec, idx, val);
918 rcu_read_unlock();
919}
920EXPORT_SYMBOL(__lruvec_stat_mod_folio);
921
922void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
923{
924 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
925 struct mem_cgroup *memcg;
926 struct lruvec *lruvec;
927
928 rcu_read_lock();
929 memcg = mem_cgroup_from_slab_obj(p);
930
931 /*
932 * Untracked pages have no memcg, no lruvec. Update only the
933 * node. If we reparent the slab objects to the root memcg,
934 * when we free the slab object, we need to update the per-memcg
935 * vmstats to keep it correct for the root memcg.
936 */
937 if (!memcg) {
938 __mod_node_page_state(pgdat, idx, val);
939 } else {
940 lruvec = mem_cgroup_lruvec(memcg, pgdat);
941 __mod_lruvec_state(lruvec, idx, val);
942 }
943 rcu_read_unlock();
944}
945
946/**
947 * __count_memcg_events - account VM events in a cgroup
948 * @memcg: the memory cgroup
949 * @idx: the event item
950 * @count: the number of events that occurred
951 */
952void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
953 unsigned long count)
954{
955 int index = memcg_events_index(idx);
956
957 if (mem_cgroup_disabled() || index < 0)
958 return;
959
960 memcg_stats_lock();
961 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
962 memcg_rstat_updated(memcg, count);
963 memcg_stats_unlock();
964}
965
966static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
967{
968 int index = memcg_events_index(event);
969
970 if (index < 0)
971 return 0;
972 return READ_ONCE(memcg->vmstats->events[index]);
973}
974
975static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
976{
977 int index = memcg_events_index(event);
978
979 if (index < 0)
980 return 0;
981
982 return READ_ONCE(memcg->vmstats->events_local[index]);
983}
984
985static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
986 int nr_pages)
987{
988 /* pagein of a big page is an event. So, ignore page size */
989 if (nr_pages > 0)
990 __count_memcg_events(memcg, PGPGIN, 1);
991 else {
992 __count_memcg_events(memcg, PGPGOUT, 1);
993 nr_pages = -nr_pages; /* for event */
994 }
995
996 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
997}
998
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
1001{
1002 unsigned long val, next;
1003
1004 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1005 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1006 /* from time_after() in jiffies.h */
1007 if ((long)(next - val) < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
1015 default:
1016 break;
1017 }
1018 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019 return true;
1020 }
1021 return false;
1022}
1023
1024/*
1025 * Check events in order.
1026 *
1027 */
1028static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1029{
1030 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1031 return;
1032
1033 /* threshold event is triggered in finer grain than soft limit */
1034 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035 MEM_CGROUP_TARGET_THRESH))) {
1036 bool do_softlimit;
1037
1038 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039 MEM_CGROUP_TARGET_SOFTLIMIT);
1040 mem_cgroup_threshold(memcg);
1041 if (unlikely(do_softlimit))
1042 mem_cgroup_update_tree(memcg, nid);
1043 }
1044}
1045
1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047{
1048 /*
1049 * mm_update_next_owner() may clear mm->owner to NULL
1050 * if it races with swapoff, page migration, etc.
1051 * So this can be called with p == NULL.
1052 */
1053 if (unlikely(!p))
1054 return NULL;
1055
1056 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1057}
1058EXPORT_SYMBOL(mem_cgroup_from_task);
1059
1060static __always_inline struct mem_cgroup *active_memcg(void)
1061{
1062 if (!in_task())
1063 return this_cpu_read(int_active_memcg);
1064 else
1065 return current->active_memcg;
1066}
1067
1068/**
1069 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1070 * @mm: mm from which memcg should be extracted. It can be NULL.
1071 *
1072 * Obtain a reference on mm->memcg and returns it if successful. If mm
1073 * is NULL, then the memcg is chosen as follows:
1074 * 1) The active memcg, if set.
1075 * 2) current->mm->memcg, if available
1076 * 3) root memcg
1077 * If mem_cgroup is disabled, NULL is returned.
1078 */
1079struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1080{
1081 struct mem_cgroup *memcg;
1082
1083 if (mem_cgroup_disabled())
1084 return NULL;
1085
1086 /*
1087 * Page cache insertions can happen without an
1088 * actual mm context, e.g. during disk probing
1089 * on boot, loopback IO, acct() writes etc.
1090 *
1091 * No need to css_get on root memcg as the reference
1092 * counting is disabled on the root level in the
1093 * cgroup core. See CSS_NO_REF.
1094 */
1095 if (unlikely(!mm)) {
1096 memcg = active_memcg();
1097 if (unlikely(memcg)) {
1098 /* remote memcg must hold a ref */
1099 css_get(&memcg->css);
1100 return memcg;
1101 }
1102 mm = current->mm;
1103 if (unlikely(!mm))
1104 return root_mem_cgroup;
1105 }
1106
1107 rcu_read_lock();
1108 do {
1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110 if (unlikely(!memcg))
1111 memcg = root_mem_cgroup;
1112 } while (!css_tryget(&memcg->css));
1113 rcu_read_unlock();
1114 return memcg;
1115}
1116EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1117
1118/**
1119 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1120 */
1121struct mem_cgroup *get_mem_cgroup_from_current(void)
1122{
1123 struct mem_cgroup *memcg;
1124
1125 if (mem_cgroup_disabled())
1126 return NULL;
1127
1128again:
1129 rcu_read_lock();
1130 memcg = mem_cgroup_from_task(current);
1131 if (!css_tryget(&memcg->css)) {
1132 rcu_read_unlock();
1133 goto again;
1134 }
1135 rcu_read_unlock();
1136 return memcg;
1137}
1138
1139/**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
1156struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 struct mem_cgroup *prev,
1158 struct mem_cgroup_reclaim_cookie *reclaim)
1159{
1160 struct mem_cgroup_reclaim_iter *iter;
1161 struct cgroup_subsys_state *css = NULL;
1162 struct mem_cgroup *memcg = NULL;
1163 struct mem_cgroup *pos = NULL;
1164
1165 if (mem_cgroup_disabled())
1166 return NULL;
1167
1168 if (!root)
1169 root = root_mem_cgroup;
1170
1171 rcu_read_lock();
1172
1173 if (reclaim) {
1174 struct mem_cgroup_per_node *mz;
1175
1176 mz = root->nodeinfo[reclaim->pgdat->node_id];
1177 iter = &mz->iter;
1178
1179 /*
1180 * On start, join the current reclaim iteration cycle.
1181 * Exit when a concurrent walker completes it.
1182 */
1183 if (!prev)
1184 reclaim->generation = iter->generation;
1185 else if (reclaim->generation != iter->generation)
1186 goto out_unlock;
1187
1188 while (1) {
1189 pos = READ_ONCE(iter->position);
1190 if (!pos || css_tryget(&pos->css))
1191 break;
1192 /*
1193 * css reference reached zero, so iter->position will
1194 * be cleared by ->css_released. However, we should not
1195 * rely on this happening soon, because ->css_released
1196 * is called from a work queue, and by busy-waiting we
1197 * might block it. So we clear iter->position right
1198 * away.
1199 */
1200 (void)cmpxchg(&iter->position, pos, NULL);
1201 }
1202 } else if (prev) {
1203 pos = prev;
1204 }
1205
1206 if (pos)
1207 css = &pos->css;
1208
1209 for (;;) {
1210 css = css_next_descendant_pre(css, &root->css);
1211 if (!css) {
1212 /*
1213 * Reclaimers share the hierarchy walk, and a
1214 * new one might jump in right at the end of
1215 * the hierarchy - make sure they see at least
1216 * one group and restart from the beginning.
1217 */
1218 if (!prev)
1219 continue;
1220 break;
1221 }
1222
1223 /*
1224 * Verify the css and acquire a reference. The root
1225 * is provided by the caller, so we know it's alive
1226 * and kicking, and don't take an extra reference.
1227 */
1228 if (css == &root->css || css_tryget(css)) {
1229 memcg = mem_cgroup_from_css(css);
1230 break;
1231 }
1232 }
1233
1234 if (reclaim) {
1235 /*
1236 * The position could have already been updated by a competing
1237 * thread, so check that the value hasn't changed since we read
1238 * it to avoid reclaiming from the same cgroup twice.
1239 */
1240 (void)cmpxchg(&iter->position, pos, memcg);
1241
1242 if (pos)
1243 css_put(&pos->css);
1244
1245 if (!memcg)
1246 iter->generation++;
1247 }
1248
1249out_unlock:
1250 rcu_read_unlock();
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
1254 return memcg;
1255}
1256
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1264{
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269}
1270
1271static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1272 struct mem_cgroup *dead_memcg)
1273{
1274 struct mem_cgroup_reclaim_iter *iter;
1275 struct mem_cgroup_per_node *mz;
1276 int nid;
1277
1278 for_each_node(nid) {
1279 mz = from->nodeinfo[nid];
1280 iter = &mz->iter;
1281 cmpxchg(&iter->position, dead_memcg, NULL);
1282 }
1283}
1284
1285static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1286{
1287 struct mem_cgroup *memcg = dead_memcg;
1288 struct mem_cgroup *last;
1289
1290 do {
1291 __invalidate_reclaim_iterators(memcg, dead_memcg);
1292 last = memcg;
1293 } while ((memcg = parent_mem_cgroup(memcg)));
1294
1295 /*
1296 * When cgroup1 non-hierarchy mode is used,
1297 * parent_mem_cgroup() does not walk all the way up to the
1298 * cgroup root (root_mem_cgroup). So we have to handle
1299 * dead_memcg from cgroup root separately.
1300 */
1301 if (!mem_cgroup_is_root(last))
1302 __invalidate_reclaim_iterators(root_mem_cgroup,
1303 dead_memcg);
1304}
1305
1306/**
1307 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1308 * @memcg: hierarchy root
1309 * @fn: function to call for each task
1310 * @arg: argument passed to @fn
1311 *
1312 * This function iterates over tasks attached to @memcg or to any of its
1313 * descendants and calls @fn for each task. If @fn returns a non-zero
1314 * value, the function breaks the iteration loop. Otherwise, it will iterate
1315 * over all tasks and return 0.
1316 *
1317 * This function must not be called for the root memory cgroup.
1318 */
1319void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1320 int (*fn)(struct task_struct *, void *), void *arg)
1321{
1322 struct mem_cgroup *iter;
1323 int ret = 0;
1324
1325 BUG_ON(mem_cgroup_is_root(memcg));
1326
1327 for_each_mem_cgroup_tree(iter, memcg) {
1328 struct css_task_iter it;
1329 struct task_struct *task;
1330
1331 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1332 while (!ret && (task = css_task_iter_next(&it)))
1333 ret = fn(task, arg);
1334 css_task_iter_end(&it);
1335 if (ret) {
1336 mem_cgroup_iter_break(memcg, iter);
1337 break;
1338 }
1339 }
1340}
1341
1342#ifdef CONFIG_DEBUG_VM
1343void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1344{
1345 struct mem_cgroup *memcg;
1346
1347 if (mem_cgroup_disabled())
1348 return;
1349
1350 memcg = folio_memcg(folio);
1351
1352 if (!memcg)
1353 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1354 else
1355 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1356}
1357#endif
1358
1359/**
1360 * folio_lruvec_lock - Lock the lruvec for a folio.
1361 * @folio: Pointer to the folio.
1362 *
1363 * These functions are safe to use under any of the following conditions:
1364 * - folio locked
1365 * - folio_test_lru false
1366 * - folio_memcg_lock()
1367 * - folio frozen (refcount of 0)
1368 *
1369 * Return: The lruvec this folio is on with its lock held.
1370 */
1371struct lruvec *folio_lruvec_lock(struct folio *folio)
1372{
1373 struct lruvec *lruvec = folio_lruvec(folio);
1374
1375 spin_lock(&lruvec->lru_lock);
1376 lruvec_memcg_debug(lruvec, folio);
1377
1378 return lruvec;
1379}
1380
1381/**
1382 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1383 * @folio: Pointer to the folio.
1384 *
1385 * These functions are safe to use under any of the following conditions:
1386 * - folio locked
1387 * - folio_test_lru false
1388 * - folio_memcg_lock()
1389 * - folio frozen (refcount of 0)
1390 *
1391 * Return: The lruvec this folio is on with its lock held and interrupts
1392 * disabled.
1393 */
1394struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1395{
1396 struct lruvec *lruvec = folio_lruvec(folio);
1397
1398 spin_lock_irq(&lruvec->lru_lock);
1399 lruvec_memcg_debug(lruvec, folio);
1400
1401 return lruvec;
1402}
1403
1404/**
1405 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1406 * @folio: Pointer to the folio.
1407 * @flags: Pointer to irqsave flags.
1408 *
1409 * These functions are safe to use under any of the following conditions:
1410 * - folio locked
1411 * - folio_test_lru false
1412 * - folio_memcg_lock()
1413 * - folio frozen (refcount of 0)
1414 *
1415 * Return: The lruvec this folio is on with its lock held and interrupts
1416 * disabled.
1417 */
1418struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1419 unsigned long *flags)
1420{
1421 struct lruvec *lruvec = folio_lruvec(folio);
1422
1423 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1424 lruvec_memcg_debug(lruvec, folio);
1425
1426 return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @zid: zone id of the accounted pages
1434 * @nr_pages: positive when adding or negative when removing
1435 *
1436 * This function must be called under lru_lock, just before a page is added
1437 * to or just after a page is removed from an lru list.
1438 */
1439void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440 int zid, int nr_pages)
1441{
1442 struct mem_cgroup_per_node *mz;
1443 unsigned long *lru_size;
1444 long size;
1445
1446 if (mem_cgroup_disabled())
1447 return;
1448
1449 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1450 lru_size = &mz->lru_zone_size[zid][lru];
1451
1452 if (nr_pages < 0)
1453 *lru_size += nr_pages;
1454
1455 size = *lru_size;
1456 if (WARN_ONCE(size < 0,
1457 "%s(%p, %d, %d): lru_size %ld\n",
1458 __func__, lruvec, lru, nr_pages, size)) {
1459 VM_BUG_ON(1);
1460 *lru_size = 0;
1461 }
1462
1463 if (nr_pages > 0)
1464 *lru_size += nr_pages;
1465}
1466
1467/**
1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469 * @memcg: the memory cgroup
1470 *
1471 * Returns the maximum amount of memory @mem can be charged with, in
1472 * pages.
1473 */
1474static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475{
1476 unsigned long margin = 0;
1477 unsigned long count;
1478 unsigned long limit;
1479
1480 count = page_counter_read(&memcg->memory);
1481 limit = READ_ONCE(memcg->memory.max);
1482 if (count < limit)
1483 margin = limit - count;
1484
1485 if (do_memsw_account()) {
1486 count = page_counter_read(&memcg->memsw);
1487 limit = READ_ONCE(memcg->memsw.max);
1488 if (count < limit)
1489 margin = min(margin, limit - count);
1490 else
1491 margin = 0;
1492 }
1493
1494 return margin;
1495}
1496
1497/*
1498 * A routine for checking "mem" is under move_account() or not.
1499 *
1500 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1501 * moving cgroups. This is for waiting at high-memory pressure
1502 * caused by "move".
1503 */
1504static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1505{
1506 struct mem_cgroup *from;
1507 struct mem_cgroup *to;
1508 bool ret = false;
1509 /*
1510 * Unlike task_move routines, we access mc.to, mc.from not under
1511 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1512 */
1513 spin_lock(&mc.lock);
1514 from = mc.from;
1515 to = mc.to;
1516 if (!from)
1517 goto unlock;
1518
1519 ret = mem_cgroup_is_descendant(from, memcg) ||
1520 mem_cgroup_is_descendant(to, memcg);
1521unlock:
1522 spin_unlock(&mc.lock);
1523 return ret;
1524}
1525
1526static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1527{
1528 if (mc.moving_task && current != mc.moving_task) {
1529 if (mem_cgroup_under_move(memcg)) {
1530 DEFINE_WAIT(wait);
1531 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1532 /* moving charge context might have finished. */
1533 if (mc.moving_task)
1534 schedule();
1535 finish_wait(&mc.waitq, &wait);
1536 return true;
1537 }
1538 }
1539 return false;
1540}
1541
1542struct memory_stat {
1543 const char *name;
1544 unsigned int idx;
1545};
1546
1547static const struct memory_stat memory_stats[] = {
1548 { "anon", NR_ANON_MAPPED },
1549 { "file", NR_FILE_PAGES },
1550 { "kernel", MEMCG_KMEM },
1551 { "kernel_stack", NR_KERNEL_STACK_KB },
1552 { "pagetables", NR_PAGETABLE },
1553 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1554 { "percpu", MEMCG_PERCPU_B },
1555 { "sock", MEMCG_SOCK },
1556 { "vmalloc", MEMCG_VMALLOC },
1557 { "shmem", NR_SHMEM },
1558#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1559 { "zswap", MEMCG_ZSWAP_B },
1560 { "zswapped", MEMCG_ZSWAPPED },
1561#endif
1562 { "file_mapped", NR_FILE_MAPPED },
1563 { "file_dirty", NR_FILE_DIRTY },
1564 { "file_writeback", NR_WRITEBACK },
1565#ifdef CONFIG_SWAP
1566 { "swapcached", NR_SWAPCACHE },
1567#endif
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 { "anon_thp", NR_ANON_THPS },
1570 { "file_thp", NR_FILE_THPS },
1571 { "shmem_thp", NR_SHMEM_THPS },
1572#endif
1573 { "inactive_anon", NR_INACTIVE_ANON },
1574 { "active_anon", NR_ACTIVE_ANON },
1575 { "inactive_file", NR_INACTIVE_FILE },
1576 { "active_file", NR_ACTIVE_FILE },
1577 { "unevictable", NR_UNEVICTABLE },
1578 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1579 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1580
1581 /* The memory events */
1582 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1583 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1584 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1585 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1586 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1587 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1588 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1589};
1590
1591/* The actual unit of the state item, not the same as the output unit */
1592static int memcg_page_state_unit(int item)
1593{
1594 switch (item) {
1595 case MEMCG_PERCPU_B:
1596 case MEMCG_ZSWAP_B:
1597 case NR_SLAB_RECLAIMABLE_B:
1598 case NR_SLAB_UNRECLAIMABLE_B:
1599 return 1;
1600 case NR_KERNEL_STACK_KB:
1601 return SZ_1K;
1602 default:
1603 return PAGE_SIZE;
1604 }
1605}
1606
1607/* Translate stat items to the correct unit for memory.stat output */
1608static int memcg_page_state_output_unit(int item)
1609{
1610 /*
1611 * Workingset state is actually in pages, but we export it to userspace
1612 * as a scalar count of events, so special case it here.
1613 */
1614 switch (item) {
1615 case WORKINGSET_REFAULT_ANON:
1616 case WORKINGSET_REFAULT_FILE:
1617 case WORKINGSET_ACTIVATE_ANON:
1618 case WORKINGSET_ACTIVATE_FILE:
1619 case WORKINGSET_RESTORE_ANON:
1620 case WORKINGSET_RESTORE_FILE:
1621 case WORKINGSET_NODERECLAIM:
1622 return 1;
1623 default:
1624 return memcg_page_state_unit(item);
1625 }
1626}
1627
1628static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1629 int item)
1630{
1631 return memcg_page_state(memcg, item) *
1632 memcg_page_state_output_unit(item);
1633}
1634
1635static inline unsigned long memcg_page_state_local_output(
1636 struct mem_cgroup *memcg, int item)
1637{
1638 return memcg_page_state_local(memcg, item) *
1639 memcg_page_state_output_unit(item);
1640}
1641
1642static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1643{
1644 int i;
1645
1646 /*
1647 * Provide statistics on the state of the memory subsystem as
1648 * well as cumulative event counters that show past behavior.
1649 *
1650 * This list is ordered following a combination of these gradients:
1651 * 1) generic big picture -> specifics and details
1652 * 2) reflecting userspace activity -> reflecting kernel heuristics
1653 *
1654 * Current memory state:
1655 */
1656 mem_cgroup_flush_stats(memcg);
1657
1658 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1659 u64 size;
1660
1661 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1662 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1663
1664 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1665 size += memcg_page_state_output(memcg,
1666 NR_SLAB_RECLAIMABLE_B);
1667 seq_buf_printf(s, "slab %llu\n", size);
1668 }
1669 }
1670
1671 /* Accumulated memory events */
1672 seq_buf_printf(s, "pgscan %lu\n",
1673 memcg_events(memcg, PGSCAN_KSWAPD) +
1674 memcg_events(memcg, PGSCAN_DIRECT) +
1675 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1676 seq_buf_printf(s, "pgsteal %lu\n",
1677 memcg_events(memcg, PGSTEAL_KSWAPD) +
1678 memcg_events(memcg, PGSTEAL_DIRECT) +
1679 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1680
1681 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1682 if (memcg_vm_event_stat[i] == PGPGIN ||
1683 memcg_vm_event_stat[i] == PGPGOUT)
1684 continue;
1685
1686 seq_buf_printf(s, "%s %lu\n",
1687 vm_event_name(memcg_vm_event_stat[i]),
1688 memcg_events(memcg, memcg_vm_event_stat[i]));
1689 }
1690
1691 /* The above should easily fit into one page */
1692 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1693}
1694
1695static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1696
1697static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1698{
1699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1700 memcg_stat_format(memcg, s);
1701 else
1702 memcg1_stat_format(memcg, s);
1703 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1704}
1705
1706/**
1707 * mem_cgroup_print_oom_context: Print OOM information relevant to
1708 * memory controller.
1709 * @memcg: The memory cgroup that went over limit
1710 * @p: Task that is going to be killed
1711 *
1712 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1713 * enabled
1714 */
1715void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1716{
1717 rcu_read_lock();
1718
1719 if (memcg) {
1720 pr_cont(",oom_memcg=");
1721 pr_cont_cgroup_path(memcg->css.cgroup);
1722 } else
1723 pr_cont(",global_oom");
1724 if (p) {
1725 pr_cont(",task_memcg=");
1726 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1727 }
1728 rcu_read_unlock();
1729}
1730
1731/**
1732 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1733 * memory controller.
1734 * @memcg: The memory cgroup that went over limit
1735 */
1736void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1737{
1738 /* Use static buffer, for the caller is holding oom_lock. */
1739 static char buf[PAGE_SIZE];
1740 struct seq_buf s;
1741
1742 lockdep_assert_held(&oom_lock);
1743
1744 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1745 K((u64)page_counter_read(&memcg->memory)),
1746 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1747 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1748 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1749 K((u64)page_counter_read(&memcg->swap)),
1750 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1751 else {
1752 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1753 K((u64)page_counter_read(&memcg->memsw)),
1754 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1755 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1756 K((u64)page_counter_read(&memcg->kmem)),
1757 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1758 }
1759
1760 pr_info("Memory cgroup stats for ");
1761 pr_cont_cgroup_path(memcg->css.cgroup);
1762 pr_cont(":");
1763 seq_buf_init(&s, buf, sizeof(buf));
1764 memory_stat_format(memcg, &s);
1765 seq_buf_do_printk(&s, KERN_INFO);
1766}
1767
1768/*
1769 * Return the memory (and swap, if configured) limit for a memcg.
1770 */
1771unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1772{
1773 unsigned long max = READ_ONCE(memcg->memory.max);
1774
1775 if (do_memsw_account()) {
1776 if (mem_cgroup_swappiness(memcg)) {
1777 /* Calculate swap excess capacity from memsw limit */
1778 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1779
1780 max += min(swap, (unsigned long)total_swap_pages);
1781 }
1782 } else {
1783 if (mem_cgroup_swappiness(memcg))
1784 max += min(READ_ONCE(memcg->swap.max),
1785 (unsigned long)total_swap_pages);
1786 }
1787 return max;
1788}
1789
1790unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1791{
1792 return page_counter_read(&memcg->memory);
1793}
1794
1795static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1796 int order)
1797{
1798 struct oom_control oc = {
1799 .zonelist = NULL,
1800 .nodemask = NULL,
1801 .memcg = memcg,
1802 .gfp_mask = gfp_mask,
1803 .order = order,
1804 };
1805 bool ret = true;
1806
1807 if (mutex_lock_killable(&oom_lock))
1808 return true;
1809
1810 if (mem_cgroup_margin(memcg) >= (1 << order))
1811 goto unlock;
1812
1813 /*
1814 * A few threads which were not waiting at mutex_lock_killable() can
1815 * fail to bail out. Therefore, check again after holding oom_lock.
1816 */
1817 ret = task_is_dying() || out_of_memory(&oc);
1818
1819unlock:
1820 mutex_unlock(&oom_lock);
1821 return ret;
1822}
1823
1824static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1825 pg_data_t *pgdat,
1826 gfp_t gfp_mask,
1827 unsigned long *total_scanned)
1828{
1829 struct mem_cgroup *victim = NULL;
1830 int total = 0;
1831 int loop = 0;
1832 unsigned long excess;
1833 unsigned long nr_scanned;
1834 struct mem_cgroup_reclaim_cookie reclaim = {
1835 .pgdat = pgdat,
1836 };
1837
1838 excess = soft_limit_excess(root_memcg);
1839
1840 while (1) {
1841 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1842 if (!victim) {
1843 loop++;
1844 if (loop >= 2) {
1845 /*
1846 * If we have not been able to reclaim
1847 * anything, it might because there are
1848 * no reclaimable pages under this hierarchy
1849 */
1850 if (!total)
1851 break;
1852 /*
1853 * We want to do more targeted reclaim.
1854 * excess >> 2 is not to excessive so as to
1855 * reclaim too much, nor too less that we keep
1856 * coming back to reclaim from this cgroup
1857 */
1858 if (total >= (excess >> 2) ||
1859 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1860 break;
1861 }
1862 continue;
1863 }
1864 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1865 pgdat, &nr_scanned);
1866 *total_scanned += nr_scanned;
1867 if (!soft_limit_excess(root_memcg))
1868 break;
1869 }
1870 mem_cgroup_iter_break(root_memcg, victim);
1871 return total;
1872}
1873
1874#ifdef CONFIG_LOCKDEP
1875static struct lockdep_map memcg_oom_lock_dep_map = {
1876 .name = "memcg_oom_lock",
1877};
1878#endif
1879
1880static DEFINE_SPINLOCK(memcg_oom_lock);
1881
1882/*
1883 * Check OOM-Killer is already running under our hierarchy.
1884 * If someone is running, return false.
1885 */
1886static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1887{
1888 struct mem_cgroup *iter, *failed = NULL;
1889
1890 spin_lock(&memcg_oom_lock);
1891
1892 for_each_mem_cgroup_tree(iter, memcg) {
1893 if (iter->oom_lock) {
1894 /*
1895 * this subtree of our hierarchy is already locked
1896 * so we cannot give a lock.
1897 */
1898 failed = iter;
1899 mem_cgroup_iter_break(memcg, iter);
1900 break;
1901 } else
1902 iter->oom_lock = true;
1903 }
1904
1905 if (failed) {
1906 /*
1907 * OK, we failed to lock the whole subtree so we have
1908 * to clean up what we set up to the failing subtree
1909 */
1910 for_each_mem_cgroup_tree(iter, memcg) {
1911 if (iter == failed) {
1912 mem_cgroup_iter_break(memcg, iter);
1913 break;
1914 }
1915 iter->oom_lock = false;
1916 }
1917 } else
1918 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1919
1920 spin_unlock(&memcg_oom_lock);
1921
1922 return !failed;
1923}
1924
1925static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1926{
1927 struct mem_cgroup *iter;
1928
1929 spin_lock(&memcg_oom_lock);
1930 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1931 for_each_mem_cgroup_tree(iter, memcg)
1932 iter->oom_lock = false;
1933 spin_unlock(&memcg_oom_lock);
1934}
1935
1936static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1937{
1938 struct mem_cgroup *iter;
1939
1940 spin_lock(&memcg_oom_lock);
1941 for_each_mem_cgroup_tree(iter, memcg)
1942 iter->under_oom++;
1943 spin_unlock(&memcg_oom_lock);
1944}
1945
1946static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1947{
1948 struct mem_cgroup *iter;
1949
1950 /*
1951 * Be careful about under_oom underflows because a child memcg
1952 * could have been added after mem_cgroup_mark_under_oom.
1953 */
1954 spin_lock(&memcg_oom_lock);
1955 for_each_mem_cgroup_tree(iter, memcg)
1956 if (iter->under_oom > 0)
1957 iter->under_oom--;
1958 spin_unlock(&memcg_oom_lock);
1959}
1960
1961static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1962
1963struct oom_wait_info {
1964 struct mem_cgroup *memcg;
1965 wait_queue_entry_t wait;
1966};
1967
1968static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1969 unsigned mode, int sync, void *arg)
1970{
1971 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1972 struct mem_cgroup *oom_wait_memcg;
1973 struct oom_wait_info *oom_wait_info;
1974
1975 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976 oom_wait_memcg = oom_wait_info->memcg;
1977
1978 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1979 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1980 return 0;
1981 return autoremove_wake_function(wait, mode, sync, arg);
1982}
1983
1984static void memcg_oom_recover(struct mem_cgroup *memcg)
1985{
1986 /*
1987 * For the following lockless ->under_oom test, the only required
1988 * guarantee is that it must see the state asserted by an OOM when
1989 * this function is called as a result of userland actions
1990 * triggered by the notification of the OOM. This is trivially
1991 * achieved by invoking mem_cgroup_mark_under_oom() before
1992 * triggering notification.
1993 */
1994 if (memcg && memcg->under_oom)
1995 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1996}
1997
1998/*
1999 * Returns true if successfully killed one or more processes. Though in some
2000 * corner cases it can return true even without killing any process.
2001 */
2002static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2003{
2004 bool locked, ret;
2005
2006 if (order > PAGE_ALLOC_COSTLY_ORDER)
2007 return false;
2008
2009 memcg_memory_event(memcg, MEMCG_OOM);
2010
2011 /*
2012 * We are in the middle of the charge context here, so we
2013 * don't want to block when potentially sitting on a callstack
2014 * that holds all kinds of filesystem and mm locks.
2015 *
2016 * cgroup1 allows disabling the OOM killer and waiting for outside
2017 * handling until the charge can succeed; remember the context and put
2018 * the task to sleep at the end of the page fault when all locks are
2019 * released.
2020 *
2021 * On the other hand, in-kernel OOM killer allows for an async victim
2022 * memory reclaim (oom_reaper) and that means that we are not solely
2023 * relying on the oom victim to make a forward progress and we can
2024 * invoke the oom killer here.
2025 *
2026 * Please note that mem_cgroup_out_of_memory might fail to find a
2027 * victim and then we have to bail out from the charge path.
2028 */
2029 if (READ_ONCE(memcg->oom_kill_disable)) {
2030 if (current->in_user_fault) {
2031 css_get(&memcg->css);
2032 current->memcg_in_oom = memcg;
2033 current->memcg_oom_gfp_mask = mask;
2034 current->memcg_oom_order = order;
2035 }
2036 return false;
2037 }
2038
2039 mem_cgroup_mark_under_oom(memcg);
2040
2041 locked = mem_cgroup_oom_trylock(memcg);
2042
2043 if (locked)
2044 mem_cgroup_oom_notify(memcg);
2045
2046 mem_cgroup_unmark_under_oom(memcg);
2047 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2048
2049 if (locked)
2050 mem_cgroup_oom_unlock(memcg);
2051
2052 return ret;
2053}
2054
2055/**
2056 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2057 * @handle: actually kill/wait or just clean up the OOM state
2058 *
2059 * This has to be called at the end of a page fault if the memcg OOM
2060 * handler was enabled.
2061 *
2062 * Memcg supports userspace OOM handling where failed allocations must
2063 * sleep on a waitqueue until the userspace task resolves the
2064 * situation. Sleeping directly in the charge context with all kinds
2065 * of locks held is not a good idea, instead we remember an OOM state
2066 * in the task and mem_cgroup_oom_synchronize() has to be called at
2067 * the end of the page fault to complete the OOM handling.
2068 *
2069 * Returns %true if an ongoing memcg OOM situation was detected and
2070 * completed, %false otherwise.
2071 */
2072bool mem_cgroup_oom_synchronize(bool handle)
2073{
2074 struct mem_cgroup *memcg = current->memcg_in_oom;
2075 struct oom_wait_info owait;
2076 bool locked;
2077
2078 /* OOM is global, do not handle */
2079 if (!memcg)
2080 return false;
2081
2082 if (!handle)
2083 goto cleanup;
2084
2085 owait.memcg = memcg;
2086 owait.wait.flags = 0;
2087 owait.wait.func = memcg_oom_wake_function;
2088 owait.wait.private = current;
2089 INIT_LIST_HEAD(&owait.wait.entry);
2090
2091 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2092 mem_cgroup_mark_under_oom(memcg);
2093
2094 locked = mem_cgroup_oom_trylock(memcg);
2095
2096 if (locked)
2097 mem_cgroup_oom_notify(memcg);
2098
2099 schedule();
2100 mem_cgroup_unmark_under_oom(memcg);
2101 finish_wait(&memcg_oom_waitq, &owait.wait);
2102
2103 if (locked)
2104 mem_cgroup_oom_unlock(memcg);
2105cleanup:
2106 current->memcg_in_oom = NULL;
2107 css_put(&memcg->css);
2108 return true;
2109}
2110
2111/**
2112 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2113 * @victim: task to be killed by the OOM killer
2114 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2115 *
2116 * Returns a pointer to a memory cgroup, which has to be cleaned up
2117 * by killing all belonging OOM-killable tasks.
2118 *
2119 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2120 */
2121struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2122 struct mem_cgroup *oom_domain)
2123{
2124 struct mem_cgroup *oom_group = NULL;
2125 struct mem_cgroup *memcg;
2126
2127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2128 return NULL;
2129
2130 if (!oom_domain)
2131 oom_domain = root_mem_cgroup;
2132
2133 rcu_read_lock();
2134
2135 memcg = mem_cgroup_from_task(victim);
2136 if (mem_cgroup_is_root(memcg))
2137 goto out;
2138
2139 /*
2140 * If the victim task has been asynchronously moved to a different
2141 * memory cgroup, we might end up killing tasks outside oom_domain.
2142 * In this case it's better to ignore memory.group.oom.
2143 */
2144 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2145 goto out;
2146
2147 /*
2148 * Traverse the memory cgroup hierarchy from the victim task's
2149 * cgroup up to the OOMing cgroup (or root) to find the
2150 * highest-level memory cgroup with oom.group set.
2151 */
2152 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2153 if (READ_ONCE(memcg->oom_group))
2154 oom_group = memcg;
2155
2156 if (memcg == oom_domain)
2157 break;
2158 }
2159
2160 if (oom_group)
2161 css_get(&oom_group->css);
2162out:
2163 rcu_read_unlock();
2164
2165 return oom_group;
2166}
2167
2168void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2169{
2170 pr_info("Tasks in ");
2171 pr_cont_cgroup_path(memcg->css.cgroup);
2172 pr_cont(" are going to be killed due to memory.oom.group set\n");
2173}
2174
2175/**
2176 * folio_memcg_lock - Bind a folio to its memcg.
2177 * @folio: The folio.
2178 *
2179 * This function prevents unlocked LRU folios from being moved to
2180 * another cgroup.
2181 *
2182 * It ensures lifetime of the bound memcg. The caller is responsible
2183 * for the lifetime of the folio.
2184 */
2185void folio_memcg_lock(struct folio *folio)
2186{
2187 struct mem_cgroup *memcg;
2188 unsigned long flags;
2189
2190 /*
2191 * The RCU lock is held throughout the transaction. The fast
2192 * path can get away without acquiring the memcg->move_lock
2193 * because page moving starts with an RCU grace period.
2194 */
2195 rcu_read_lock();
2196
2197 if (mem_cgroup_disabled())
2198 return;
2199again:
2200 memcg = folio_memcg(folio);
2201 if (unlikely(!memcg))
2202 return;
2203
2204#ifdef CONFIG_PROVE_LOCKING
2205 local_irq_save(flags);
2206 might_lock(&memcg->move_lock);
2207 local_irq_restore(flags);
2208#endif
2209
2210 if (atomic_read(&memcg->moving_account) <= 0)
2211 return;
2212
2213 spin_lock_irqsave(&memcg->move_lock, flags);
2214 if (memcg != folio_memcg(folio)) {
2215 spin_unlock_irqrestore(&memcg->move_lock, flags);
2216 goto again;
2217 }
2218
2219 /*
2220 * When charge migration first begins, we can have multiple
2221 * critical sections holding the fast-path RCU lock and one
2222 * holding the slowpath move_lock. Track the task who has the
2223 * move_lock for folio_memcg_unlock().
2224 */
2225 memcg->move_lock_task = current;
2226 memcg->move_lock_flags = flags;
2227}
2228
2229static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2230{
2231 if (memcg && memcg->move_lock_task == current) {
2232 unsigned long flags = memcg->move_lock_flags;
2233
2234 memcg->move_lock_task = NULL;
2235 memcg->move_lock_flags = 0;
2236
2237 spin_unlock_irqrestore(&memcg->move_lock, flags);
2238 }
2239
2240 rcu_read_unlock();
2241}
2242
2243/**
2244 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2245 * @folio: The folio.
2246 *
2247 * This releases the binding created by folio_memcg_lock(). This does
2248 * not change the accounting of this folio to its memcg, but it does
2249 * permit others to change it.
2250 */
2251void folio_memcg_unlock(struct folio *folio)
2252{
2253 __folio_memcg_unlock(folio_memcg(folio));
2254}
2255
2256struct memcg_stock_pcp {
2257 local_lock_t stock_lock;
2258 struct mem_cgroup *cached; /* this never be root cgroup */
2259 unsigned int nr_pages;
2260
2261#ifdef CONFIG_MEMCG_KMEM
2262 struct obj_cgroup *cached_objcg;
2263 struct pglist_data *cached_pgdat;
2264 unsigned int nr_bytes;
2265 int nr_slab_reclaimable_b;
2266 int nr_slab_unreclaimable_b;
2267#endif
2268
2269 struct work_struct work;
2270 unsigned long flags;
2271#define FLUSHING_CACHED_CHARGE 0
2272};
2273static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2274 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2275};
2276static DEFINE_MUTEX(percpu_charge_mutex);
2277
2278#ifdef CONFIG_MEMCG_KMEM
2279static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2280static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2281 struct mem_cgroup *root_memcg);
2282static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2283
2284#else
2285static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2286{
2287 return NULL;
2288}
2289static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2290 struct mem_cgroup *root_memcg)
2291{
2292 return false;
2293}
2294static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2295{
2296}
2297#endif
2298
2299/**
2300 * consume_stock: Try to consume stocked charge on this cpu.
2301 * @memcg: memcg to consume from.
2302 * @nr_pages: how many pages to charge.
2303 *
2304 * The charges will only happen if @memcg matches the current cpu's memcg
2305 * stock, and at least @nr_pages are available in that stock. Failure to
2306 * service an allocation will refill the stock.
2307 *
2308 * returns true if successful, false otherwise.
2309 */
2310static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311{
2312 struct memcg_stock_pcp *stock;
2313 unsigned long flags;
2314 bool ret = false;
2315
2316 if (nr_pages > MEMCG_CHARGE_BATCH)
2317 return ret;
2318
2319 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2320
2321 stock = this_cpu_ptr(&memcg_stock);
2322 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2323 stock->nr_pages -= nr_pages;
2324 ret = true;
2325 }
2326
2327 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328
2329 return ret;
2330}
2331
2332/*
2333 * Returns stocks cached in percpu and reset cached information.
2334 */
2335static void drain_stock(struct memcg_stock_pcp *stock)
2336{
2337 struct mem_cgroup *old = READ_ONCE(stock->cached);
2338
2339 if (!old)
2340 return;
2341
2342 if (stock->nr_pages) {
2343 page_counter_uncharge(&old->memory, stock->nr_pages);
2344 if (do_memsw_account())
2345 page_counter_uncharge(&old->memsw, stock->nr_pages);
2346 stock->nr_pages = 0;
2347 }
2348
2349 css_put(&old->css);
2350 WRITE_ONCE(stock->cached, NULL);
2351}
2352
2353static void drain_local_stock(struct work_struct *dummy)
2354{
2355 struct memcg_stock_pcp *stock;
2356 struct obj_cgroup *old = NULL;
2357 unsigned long flags;
2358
2359 /*
2360 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2361 * drain_stock races is that we always operate on local CPU stock
2362 * here with IRQ disabled
2363 */
2364 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2365
2366 stock = this_cpu_ptr(&memcg_stock);
2367 old = drain_obj_stock(stock);
2368 drain_stock(stock);
2369 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2370
2371 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2372 if (old)
2373 obj_cgroup_put(old);
2374}
2375
2376/*
2377 * Cache charges(val) to local per_cpu area.
2378 * This will be consumed by consume_stock() function, later.
2379 */
2380static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2381{
2382 struct memcg_stock_pcp *stock;
2383
2384 stock = this_cpu_ptr(&memcg_stock);
2385 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2386 drain_stock(stock);
2387 css_get(&memcg->css);
2388 WRITE_ONCE(stock->cached, memcg);
2389 }
2390 stock->nr_pages += nr_pages;
2391
2392 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2393 drain_stock(stock);
2394}
2395
2396static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2397{
2398 unsigned long flags;
2399
2400 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2401 __refill_stock(memcg, nr_pages);
2402 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2403}
2404
2405/*
2406 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2407 * of the hierarchy under it.
2408 */
2409static void drain_all_stock(struct mem_cgroup *root_memcg)
2410{
2411 int cpu, curcpu;
2412
2413 /* If someone's already draining, avoid adding running more workers. */
2414 if (!mutex_trylock(&percpu_charge_mutex))
2415 return;
2416 /*
2417 * Notify other cpus that system-wide "drain" is running
2418 * We do not care about races with the cpu hotplug because cpu down
2419 * as well as workers from this path always operate on the local
2420 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2421 */
2422 migrate_disable();
2423 curcpu = smp_processor_id();
2424 for_each_online_cpu(cpu) {
2425 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426 struct mem_cgroup *memcg;
2427 bool flush = false;
2428
2429 rcu_read_lock();
2430 memcg = READ_ONCE(stock->cached);
2431 if (memcg && stock->nr_pages &&
2432 mem_cgroup_is_descendant(memcg, root_memcg))
2433 flush = true;
2434 else if (obj_stock_flush_required(stock, root_memcg))
2435 flush = true;
2436 rcu_read_unlock();
2437
2438 if (flush &&
2439 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2440 if (cpu == curcpu)
2441 drain_local_stock(&stock->work);
2442 else if (!cpu_is_isolated(cpu))
2443 schedule_work_on(cpu, &stock->work);
2444 }
2445 }
2446 migrate_enable();
2447 mutex_unlock(&percpu_charge_mutex);
2448}
2449
2450static int memcg_hotplug_cpu_dead(unsigned int cpu)
2451{
2452 struct memcg_stock_pcp *stock;
2453
2454 stock = &per_cpu(memcg_stock, cpu);
2455 drain_stock(stock);
2456
2457 return 0;
2458}
2459
2460static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 unsigned int nr_pages,
2462 gfp_t gfp_mask)
2463{
2464 unsigned long nr_reclaimed = 0;
2465
2466 do {
2467 unsigned long pflags;
2468
2469 if (page_counter_read(&memcg->memory) <=
2470 READ_ONCE(memcg->memory.high))
2471 continue;
2472
2473 memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475 psi_memstall_enter(&pflags);
2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 gfp_mask,
2478 MEMCG_RECLAIM_MAY_SWAP);
2479 psi_memstall_leave(&pflags);
2480 } while ((memcg = parent_mem_cgroup(memcg)) &&
2481 !mem_cgroup_is_root(memcg));
2482
2483 return nr_reclaimed;
2484}
2485
2486static void high_work_func(struct work_struct *work)
2487{
2488 struct mem_cgroup *memcg;
2489
2490 memcg = container_of(work, struct mem_cgroup, high_work);
2491 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2492}
2493
2494/*
2495 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2496 * enough to still cause a significant slowdown in most cases, while still
2497 * allowing diagnostics and tracing to proceed without becoming stuck.
2498 */
2499#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2500
2501/*
2502 * When calculating the delay, we use these either side of the exponentiation to
2503 * maintain precision and scale to a reasonable number of jiffies (see the table
2504 * below.
2505 *
2506 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2507 * overage ratio to a delay.
2508 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2509 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2510 * to produce a reasonable delay curve.
2511 *
2512 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2513 * reasonable delay curve compared to precision-adjusted overage, not
2514 * penalising heavily at first, but still making sure that growth beyond the
2515 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2516 * example, with a high of 100 megabytes:
2517 *
2518 * +-------+------------------------+
2519 * | usage | time to allocate in ms |
2520 * +-------+------------------------+
2521 * | 100M | 0 |
2522 * | 101M | 6 |
2523 * | 102M | 25 |
2524 * | 103M | 57 |
2525 * | 104M | 102 |
2526 * | 105M | 159 |
2527 * | 106M | 230 |
2528 * | 107M | 313 |
2529 * | 108M | 409 |
2530 * | 109M | 518 |
2531 * | 110M | 639 |
2532 * | 111M | 774 |
2533 * | 112M | 921 |
2534 * | 113M | 1081 |
2535 * | 114M | 1254 |
2536 * | 115M | 1439 |
2537 * | 116M | 1638 |
2538 * | 117M | 1849 |
2539 * | 118M | 2000 |
2540 * | 119M | 2000 |
2541 * | 120M | 2000 |
2542 * +-------+------------------------+
2543 */
2544 #define MEMCG_DELAY_PRECISION_SHIFT 20
2545 #define MEMCG_DELAY_SCALING_SHIFT 14
2546
2547static u64 calculate_overage(unsigned long usage, unsigned long high)
2548{
2549 u64 overage;
2550
2551 if (usage <= high)
2552 return 0;
2553
2554 /*
2555 * Prevent division by 0 in overage calculation by acting as if
2556 * it was a threshold of 1 page
2557 */
2558 high = max(high, 1UL);
2559
2560 overage = usage - high;
2561 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2562 return div64_u64(overage, high);
2563}
2564
2565static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2566{
2567 u64 overage, max_overage = 0;
2568
2569 do {
2570 overage = calculate_overage(page_counter_read(&memcg->memory),
2571 READ_ONCE(memcg->memory.high));
2572 max_overage = max(overage, max_overage);
2573 } while ((memcg = parent_mem_cgroup(memcg)) &&
2574 !mem_cgroup_is_root(memcg));
2575
2576 return max_overage;
2577}
2578
2579static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2580{
2581 u64 overage, max_overage = 0;
2582
2583 do {
2584 overage = calculate_overage(page_counter_read(&memcg->swap),
2585 READ_ONCE(memcg->swap.high));
2586 if (overage)
2587 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2588 max_overage = max(overage, max_overage);
2589 } while ((memcg = parent_mem_cgroup(memcg)) &&
2590 !mem_cgroup_is_root(memcg));
2591
2592 return max_overage;
2593}
2594
2595/*
2596 * Get the number of jiffies that we should penalise a mischievous cgroup which
2597 * is exceeding its memory.high by checking both it and its ancestors.
2598 */
2599static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2600 unsigned int nr_pages,
2601 u64 max_overage)
2602{
2603 unsigned long penalty_jiffies;
2604
2605 if (!max_overage)
2606 return 0;
2607
2608 /*
2609 * We use overage compared to memory.high to calculate the number of
2610 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2611 * fairly lenient on small overages, and increasingly harsh when the
2612 * memcg in question makes it clear that it has no intention of stopping
2613 * its crazy behaviour, so we exponentially increase the delay based on
2614 * overage amount.
2615 */
2616 penalty_jiffies = max_overage * max_overage * HZ;
2617 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2618 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2619
2620 /*
2621 * Factor in the task's own contribution to the overage, such that four
2622 * N-sized allocations are throttled approximately the same as one
2623 * 4N-sized allocation.
2624 *
2625 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2626 * larger the current charge patch is than that.
2627 */
2628 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2629}
2630
2631/*
2632 * Reclaims memory over the high limit. Called directly from
2633 * try_charge() (context permitting), as well as from the userland
2634 * return path where reclaim is always able to block.
2635 */
2636void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2637{
2638 unsigned long penalty_jiffies;
2639 unsigned long pflags;
2640 unsigned long nr_reclaimed;
2641 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2642 int nr_retries = MAX_RECLAIM_RETRIES;
2643 struct mem_cgroup *memcg;
2644 bool in_retry = false;
2645
2646 if (likely(!nr_pages))
2647 return;
2648
2649 memcg = get_mem_cgroup_from_mm(current->mm);
2650 current->memcg_nr_pages_over_high = 0;
2651
2652retry_reclaim:
2653 /*
2654 * Bail if the task is already exiting. Unlike memory.max,
2655 * memory.high enforcement isn't as strict, and there is no
2656 * OOM killer involved, which means the excess could already
2657 * be much bigger (and still growing) than it could for
2658 * memory.max; the dying task could get stuck in fruitless
2659 * reclaim for a long time, which isn't desirable.
2660 */
2661 if (task_is_dying())
2662 goto out;
2663
2664 /*
2665 * The allocating task should reclaim at least the batch size, but for
2666 * subsequent retries we only want to do what's necessary to prevent oom
2667 * or breaching resource isolation.
2668 *
2669 * This is distinct from memory.max or page allocator behaviour because
2670 * memory.high is currently batched, whereas memory.max and the page
2671 * allocator run every time an allocation is made.
2672 */
2673 nr_reclaimed = reclaim_high(memcg,
2674 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2675 gfp_mask);
2676
2677 /*
2678 * memory.high is breached and reclaim is unable to keep up. Throttle
2679 * allocators proactively to slow down excessive growth.
2680 */
2681 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2682 mem_find_max_overage(memcg));
2683
2684 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2685 swap_find_max_overage(memcg));
2686
2687 /*
2688 * Clamp the max delay per usermode return so as to still keep the
2689 * application moving forwards and also permit diagnostics, albeit
2690 * extremely slowly.
2691 */
2692 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2693
2694 /*
2695 * Don't sleep if the amount of jiffies this memcg owes us is so low
2696 * that it's not even worth doing, in an attempt to be nice to those who
2697 * go only a small amount over their memory.high value and maybe haven't
2698 * been aggressively reclaimed enough yet.
2699 */
2700 if (penalty_jiffies <= HZ / 100)
2701 goto out;
2702
2703 /*
2704 * If reclaim is making forward progress but we're still over
2705 * memory.high, we want to encourage that rather than doing allocator
2706 * throttling.
2707 */
2708 if (nr_reclaimed || nr_retries--) {
2709 in_retry = true;
2710 goto retry_reclaim;
2711 }
2712
2713 /*
2714 * Reclaim didn't manage to push usage below the limit, slow
2715 * this allocating task down.
2716 *
2717 * If we exit early, we're guaranteed to die (since
2718 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2719 * need to account for any ill-begotten jiffies to pay them off later.
2720 */
2721 psi_memstall_enter(&pflags);
2722 schedule_timeout_killable(penalty_jiffies);
2723 psi_memstall_leave(&pflags);
2724
2725out:
2726 css_put(&memcg->css);
2727}
2728
2729static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2730 unsigned int nr_pages)
2731{
2732 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2733 int nr_retries = MAX_RECLAIM_RETRIES;
2734 struct mem_cgroup *mem_over_limit;
2735 struct page_counter *counter;
2736 unsigned long nr_reclaimed;
2737 bool passed_oom = false;
2738 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2739 bool drained = false;
2740 bool raised_max_event = false;
2741 unsigned long pflags;
2742
2743retry:
2744 if (consume_stock(memcg, nr_pages))
2745 return 0;
2746
2747 if (!do_memsw_account() ||
2748 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2749 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2750 goto done_restock;
2751 if (do_memsw_account())
2752 page_counter_uncharge(&memcg->memsw, batch);
2753 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2754 } else {
2755 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2756 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2757 }
2758
2759 if (batch > nr_pages) {
2760 batch = nr_pages;
2761 goto retry;
2762 }
2763
2764 /*
2765 * Prevent unbounded recursion when reclaim operations need to
2766 * allocate memory. This might exceed the limits temporarily,
2767 * but we prefer facilitating memory reclaim and getting back
2768 * under the limit over triggering OOM kills in these cases.
2769 */
2770 if (unlikely(current->flags & PF_MEMALLOC))
2771 goto force;
2772
2773 if (unlikely(task_in_memcg_oom(current)))
2774 goto nomem;
2775
2776 if (!gfpflags_allow_blocking(gfp_mask))
2777 goto nomem;
2778
2779 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2780 raised_max_event = true;
2781
2782 psi_memstall_enter(&pflags);
2783 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784 gfp_mask, reclaim_options);
2785 psi_memstall_leave(&pflags);
2786
2787 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788 goto retry;
2789
2790 if (!drained) {
2791 drain_all_stock(mem_over_limit);
2792 drained = true;
2793 goto retry;
2794 }
2795
2796 if (gfp_mask & __GFP_NORETRY)
2797 goto nomem;
2798 /*
2799 * Even though the limit is exceeded at this point, reclaim
2800 * may have been able to free some pages. Retry the charge
2801 * before killing the task.
2802 *
2803 * Only for regular pages, though: huge pages are rather
2804 * unlikely to succeed so close to the limit, and we fall back
2805 * to regular pages anyway in case of failure.
2806 */
2807 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2808 goto retry;
2809 /*
2810 * At task move, charge accounts can be doubly counted. So, it's
2811 * better to wait until the end of task_move if something is going on.
2812 */
2813 if (mem_cgroup_wait_acct_move(mem_over_limit))
2814 goto retry;
2815
2816 if (nr_retries--)
2817 goto retry;
2818
2819 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2820 goto nomem;
2821
2822 /* Avoid endless loop for tasks bypassed by the oom killer */
2823 if (passed_oom && task_is_dying())
2824 goto nomem;
2825
2826 /*
2827 * keep retrying as long as the memcg oom killer is able to make
2828 * a forward progress or bypass the charge if the oom killer
2829 * couldn't make any progress.
2830 */
2831 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2832 get_order(nr_pages * PAGE_SIZE))) {
2833 passed_oom = true;
2834 nr_retries = MAX_RECLAIM_RETRIES;
2835 goto retry;
2836 }
2837nomem:
2838 /*
2839 * Memcg doesn't have a dedicated reserve for atomic
2840 * allocations. But like the global atomic pool, we need to
2841 * put the burden of reclaim on regular allocation requests
2842 * and let these go through as privileged allocations.
2843 */
2844 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2845 return -ENOMEM;
2846force:
2847 /*
2848 * If the allocation has to be enforced, don't forget to raise
2849 * a MEMCG_MAX event.
2850 */
2851 if (!raised_max_event)
2852 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2853
2854 /*
2855 * The allocation either can't fail or will lead to more memory
2856 * being freed very soon. Allow memory usage go over the limit
2857 * temporarily by force charging it.
2858 */
2859 page_counter_charge(&memcg->memory, nr_pages);
2860 if (do_memsw_account())
2861 page_counter_charge(&memcg->memsw, nr_pages);
2862
2863 return 0;
2864
2865done_restock:
2866 if (batch > nr_pages)
2867 refill_stock(memcg, batch - nr_pages);
2868
2869 /*
2870 * If the hierarchy is above the normal consumption range, schedule
2871 * reclaim on returning to userland. We can perform reclaim here
2872 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2873 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2874 * not recorded as it most likely matches current's and won't
2875 * change in the meantime. As high limit is checked again before
2876 * reclaim, the cost of mismatch is negligible.
2877 */
2878 do {
2879 bool mem_high, swap_high;
2880
2881 mem_high = page_counter_read(&memcg->memory) >
2882 READ_ONCE(memcg->memory.high);
2883 swap_high = page_counter_read(&memcg->swap) >
2884 READ_ONCE(memcg->swap.high);
2885
2886 /* Don't bother a random interrupted task */
2887 if (!in_task()) {
2888 if (mem_high) {
2889 schedule_work(&memcg->high_work);
2890 break;
2891 }
2892 continue;
2893 }
2894
2895 if (mem_high || swap_high) {
2896 /*
2897 * The allocating tasks in this cgroup will need to do
2898 * reclaim or be throttled to prevent further growth
2899 * of the memory or swap footprints.
2900 *
2901 * Target some best-effort fairness between the tasks,
2902 * and distribute reclaim work and delay penalties
2903 * based on how much each task is actually allocating.
2904 */
2905 current->memcg_nr_pages_over_high += batch;
2906 set_notify_resume(current);
2907 break;
2908 }
2909 } while ((memcg = parent_mem_cgroup(memcg)));
2910
2911 /*
2912 * Reclaim is set up above to be called from the userland
2913 * return path. But also attempt synchronous reclaim to avoid
2914 * excessive overrun while the task is still inside the
2915 * kernel. If this is successful, the return path will see it
2916 * when it rechecks the overage and simply bail out.
2917 */
2918 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2919 !(current->flags & PF_MEMALLOC) &&
2920 gfpflags_allow_blocking(gfp_mask))
2921 mem_cgroup_handle_over_high(gfp_mask);
2922 return 0;
2923}
2924
2925static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2926 unsigned int nr_pages)
2927{
2928 if (mem_cgroup_is_root(memcg))
2929 return 0;
2930
2931 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2932}
2933
2934/**
2935 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2936 * @memcg: memcg previously charged.
2937 * @nr_pages: number of pages previously charged.
2938 */
2939void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2940{
2941 if (mem_cgroup_is_root(memcg))
2942 return;
2943
2944 page_counter_uncharge(&memcg->memory, nr_pages);
2945 if (do_memsw_account())
2946 page_counter_uncharge(&memcg->memsw, nr_pages);
2947}
2948
2949static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2950{
2951 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2952 /*
2953 * Any of the following ensures page's memcg stability:
2954 *
2955 * - the page lock
2956 * - LRU isolation
2957 * - folio_memcg_lock()
2958 * - exclusive reference
2959 * - mem_cgroup_trylock_pages()
2960 */
2961 folio->memcg_data = (unsigned long)memcg;
2962}
2963
2964/**
2965 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2966 * @folio: folio to commit the charge to.
2967 * @memcg: memcg previously charged.
2968 */
2969void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2970{
2971 css_get(&memcg->css);
2972 commit_charge(folio, memcg);
2973
2974 local_irq_disable();
2975 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2976 memcg_check_events(memcg, folio_nid(folio));
2977 local_irq_enable();
2978}
2979
2980#ifdef CONFIG_MEMCG_KMEM
2981/*
2982 * The allocated objcg pointers array is not accounted directly.
2983 * Moreover, it should not come from DMA buffer and is not readily
2984 * reclaimable. So those GFP bits should be masked off.
2985 */
2986#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2987 __GFP_ACCOUNT | __GFP_NOFAIL)
2988
2989/*
2990 * mod_objcg_mlstate() may be called with irq enabled, so
2991 * mod_memcg_lruvec_state() should be used.
2992 */
2993static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2994 struct pglist_data *pgdat,
2995 enum node_stat_item idx, int nr)
2996{
2997 struct mem_cgroup *memcg;
2998 struct lruvec *lruvec;
2999
3000 rcu_read_lock();
3001 memcg = obj_cgroup_memcg(objcg);
3002 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3003 mod_memcg_lruvec_state(lruvec, idx, nr);
3004 rcu_read_unlock();
3005}
3006
3007int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
3008 gfp_t gfp, bool new_slab)
3009{
3010 unsigned int objects = objs_per_slab(s, slab);
3011 unsigned long memcg_data;
3012 void *vec;
3013
3014 gfp &= ~OBJCGS_CLEAR_MASK;
3015 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
3016 slab_nid(slab));
3017 if (!vec)
3018 return -ENOMEM;
3019
3020 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
3021 if (new_slab) {
3022 /*
3023 * If the slab is brand new and nobody can yet access its
3024 * memcg_data, no synchronization is required and memcg_data can
3025 * be simply assigned.
3026 */
3027 slab->memcg_data = memcg_data;
3028 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3029 /*
3030 * If the slab is already in use, somebody can allocate and
3031 * assign obj_cgroups in parallel. In this case the existing
3032 * objcg vector should be reused.
3033 */
3034 kfree(vec);
3035 return 0;
3036 }
3037
3038 kmemleak_not_leak(vec);
3039 return 0;
3040}
3041
3042static __always_inline
3043struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3044{
3045 /*
3046 * Slab objects are accounted individually, not per-page.
3047 * Memcg membership data for each individual object is saved in
3048 * slab->memcg_data.
3049 */
3050 if (folio_test_slab(folio)) {
3051 struct obj_cgroup **objcgs;
3052 struct slab *slab;
3053 unsigned int off;
3054
3055 slab = folio_slab(folio);
3056 objcgs = slab_objcgs(slab);
3057 if (!objcgs)
3058 return NULL;
3059
3060 off = obj_to_index(slab->slab_cache, slab, p);
3061 if (objcgs[off])
3062 return obj_cgroup_memcg(objcgs[off]);
3063
3064 return NULL;
3065 }
3066
3067 /*
3068 * folio_memcg_check() is used here, because in theory we can encounter
3069 * a folio where the slab flag has been cleared already, but
3070 * slab->memcg_data has not been freed yet
3071 * folio_memcg_check() will guarantee that a proper memory
3072 * cgroup pointer or NULL will be returned.
3073 */
3074 return folio_memcg_check(folio);
3075}
3076
3077/*
3078 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3079 *
3080 * A passed kernel object can be a slab object, vmalloc object or a generic
3081 * kernel page, so different mechanisms for getting the memory cgroup pointer
3082 * should be used.
3083 *
3084 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3085 * can not know for sure how the kernel object is implemented.
3086 * mem_cgroup_from_obj() can be safely used in such cases.
3087 *
3088 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3089 * cgroup_mutex, etc.
3090 */
3091struct mem_cgroup *mem_cgroup_from_obj(void *p)
3092{
3093 struct folio *folio;
3094
3095 if (mem_cgroup_disabled())
3096 return NULL;
3097
3098 if (unlikely(is_vmalloc_addr(p)))
3099 folio = page_folio(vmalloc_to_page(p));
3100 else
3101 folio = virt_to_folio(p);
3102
3103 return mem_cgroup_from_obj_folio(folio, p);
3104}
3105
3106/*
3107 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3108 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3109 * allocated using vmalloc().
3110 *
3111 * A passed kernel object must be a slab object or a generic kernel page.
3112 *
3113 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3114 * cgroup_mutex, etc.
3115 */
3116struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3117{
3118 if (mem_cgroup_disabled())
3119 return NULL;
3120
3121 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3122}
3123
3124static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3125{
3126 struct obj_cgroup *objcg = NULL;
3127
3128 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3129 objcg = rcu_dereference(memcg->objcg);
3130 if (likely(objcg && obj_cgroup_tryget(objcg)))
3131 break;
3132 objcg = NULL;
3133 }
3134 return objcg;
3135}
3136
3137static struct obj_cgroup *current_objcg_update(void)
3138{
3139 struct mem_cgroup *memcg;
3140 struct obj_cgroup *old, *objcg = NULL;
3141
3142 do {
3143 /* Atomically drop the update bit. */
3144 old = xchg(¤t->objcg, NULL);
3145 if (old) {
3146 old = (struct obj_cgroup *)
3147 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3148 if (old)
3149 obj_cgroup_put(old);
3150
3151 old = NULL;
3152 }
3153
3154 /* If new objcg is NULL, no reason for the second atomic update. */
3155 if (!current->mm || (current->flags & PF_KTHREAD))
3156 return NULL;
3157
3158 /*
3159 * Release the objcg pointer from the previous iteration,
3160 * if try_cmpxcg() below fails.
3161 */
3162 if (unlikely(objcg)) {
3163 obj_cgroup_put(objcg);
3164 objcg = NULL;
3165 }
3166
3167 /*
3168 * Obtain the new objcg pointer. The current task can be
3169 * asynchronously moved to another memcg and the previous
3170 * memcg can be offlined. So let's get the memcg pointer
3171 * and try get a reference to objcg under a rcu read lock.
3172 */
3173
3174 rcu_read_lock();
3175 memcg = mem_cgroup_from_task(current);
3176 objcg = __get_obj_cgroup_from_memcg(memcg);
3177 rcu_read_unlock();
3178
3179 /*
3180 * Try set up a new objcg pointer atomically. If it
3181 * fails, it means the update flag was set concurrently, so
3182 * the whole procedure should be repeated.
3183 */
3184 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
3185
3186 return objcg;
3187}
3188
3189__always_inline struct obj_cgroup *current_obj_cgroup(void)
3190{
3191 struct mem_cgroup *memcg;
3192 struct obj_cgroup *objcg;
3193
3194 if (in_task()) {
3195 memcg = current->active_memcg;
3196 if (unlikely(memcg))
3197 goto from_memcg;
3198
3199 objcg = READ_ONCE(current->objcg);
3200 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3201 objcg = current_objcg_update();
3202 /*
3203 * Objcg reference is kept by the task, so it's safe
3204 * to use the objcg by the current task.
3205 */
3206 return objcg;
3207 }
3208
3209 memcg = this_cpu_read(int_active_memcg);
3210 if (unlikely(memcg))
3211 goto from_memcg;
3212
3213 return NULL;
3214
3215from_memcg:
3216 objcg = NULL;
3217 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3218 /*
3219 * Memcg pointer is protected by scope (see set_active_memcg())
3220 * and is pinning the corresponding objcg, so objcg can't go
3221 * away and can be used within the scope without any additional
3222 * protection.
3223 */
3224 objcg = rcu_dereference_check(memcg->objcg, 1);
3225 if (likely(objcg))
3226 break;
3227 }
3228
3229 return objcg;
3230}
3231
3232struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3233{
3234 struct obj_cgroup *objcg;
3235
3236 if (!memcg_kmem_online())
3237 return NULL;
3238
3239 if (folio_memcg_kmem(folio)) {
3240 objcg = __folio_objcg(folio);
3241 obj_cgroup_get(objcg);
3242 } else {
3243 struct mem_cgroup *memcg;
3244
3245 rcu_read_lock();
3246 memcg = __folio_memcg(folio);
3247 if (memcg)
3248 objcg = __get_obj_cgroup_from_memcg(memcg);
3249 else
3250 objcg = NULL;
3251 rcu_read_unlock();
3252 }
3253 return objcg;
3254}
3255
3256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3257{
3258 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3259 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3260 if (nr_pages > 0)
3261 page_counter_charge(&memcg->kmem, nr_pages);
3262 else
3263 page_counter_uncharge(&memcg->kmem, -nr_pages);
3264 }
3265}
3266
3267
3268/*
3269 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3270 * @objcg: object cgroup to uncharge
3271 * @nr_pages: number of pages to uncharge
3272 */
3273static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3274 unsigned int nr_pages)
3275{
3276 struct mem_cgroup *memcg;
3277
3278 memcg = get_mem_cgroup_from_objcg(objcg);
3279
3280 memcg_account_kmem(memcg, -nr_pages);
3281 refill_stock(memcg, nr_pages);
3282
3283 css_put(&memcg->css);
3284}
3285
3286/*
3287 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3288 * @objcg: object cgroup to charge
3289 * @gfp: reclaim mode
3290 * @nr_pages: number of pages to charge
3291 *
3292 * Returns 0 on success, an error code on failure.
3293 */
3294static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3295 unsigned int nr_pages)
3296{
3297 struct mem_cgroup *memcg;
3298 int ret;
3299
3300 memcg = get_mem_cgroup_from_objcg(objcg);
3301
3302 ret = try_charge_memcg(memcg, gfp, nr_pages);
3303 if (ret)
3304 goto out;
3305
3306 memcg_account_kmem(memcg, nr_pages);
3307out:
3308 css_put(&memcg->css);
3309
3310 return ret;
3311}
3312
3313/**
3314 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3315 * @page: page to charge
3316 * @gfp: reclaim mode
3317 * @order: allocation order
3318 *
3319 * Returns 0 on success, an error code on failure.
3320 */
3321int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3322{
3323 struct obj_cgroup *objcg;
3324 int ret = 0;
3325
3326 objcg = current_obj_cgroup();
3327 if (objcg) {
3328 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3329 if (!ret) {
3330 obj_cgroup_get(objcg);
3331 page->memcg_data = (unsigned long)objcg |
3332 MEMCG_DATA_KMEM;
3333 return 0;
3334 }
3335 }
3336 return ret;
3337}
3338
3339/**
3340 * __memcg_kmem_uncharge_page: uncharge a kmem page
3341 * @page: page to uncharge
3342 * @order: allocation order
3343 */
3344void __memcg_kmem_uncharge_page(struct page *page, int order)
3345{
3346 struct folio *folio = page_folio(page);
3347 struct obj_cgroup *objcg;
3348 unsigned int nr_pages = 1 << order;
3349
3350 if (!folio_memcg_kmem(folio))
3351 return;
3352
3353 objcg = __folio_objcg(folio);
3354 obj_cgroup_uncharge_pages(objcg, nr_pages);
3355 folio->memcg_data = 0;
3356 obj_cgroup_put(objcg);
3357}
3358
3359void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3360 enum node_stat_item idx, int nr)
3361{
3362 struct memcg_stock_pcp *stock;
3363 struct obj_cgroup *old = NULL;
3364 unsigned long flags;
3365 int *bytes;
3366
3367 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368 stock = this_cpu_ptr(&memcg_stock);
3369
3370 /*
3371 * Save vmstat data in stock and skip vmstat array update unless
3372 * accumulating over a page of vmstat data or when pgdat or idx
3373 * changes.
3374 */
3375 if (READ_ONCE(stock->cached_objcg) != objcg) {
3376 old = drain_obj_stock(stock);
3377 obj_cgroup_get(objcg);
3378 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3379 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3380 WRITE_ONCE(stock->cached_objcg, objcg);
3381 stock->cached_pgdat = pgdat;
3382 } else if (stock->cached_pgdat != pgdat) {
3383 /* Flush the existing cached vmstat data */
3384 struct pglist_data *oldpg = stock->cached_pgdat;
3385
3386 if (stock->nr_slab_reclaimable_b) {
3387 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3388 stock->nr_slab_reclaimable_b);
3389 stock->nr_slab_reclaimable_b = 0;
3390 }
3391 if (stock->nr_slab_unreclaimable_b) {
3392 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3393 stock->nr_slab_unreclaimable_b);
3394 stock->nr_slab_unreclaimable_b = 0;
3395 }
3396 stock->cached_pgdat = pgdat;
3397 }
3398
3399 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3400 : &stock->nr_slab_unreclaimable_b;
3401 /*
3402 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3403 * cached locally at least once before pushing it out.
3404 */
3405 if (!*bytes) {
3406 *bytes = nr;
3407 nr = 0;
3408 } else {
3409 *bytes += nr;
3410 if (abs(*bytes) > PAGE_SIZE) {
3411 nr = *bytes;
3412 *bytes = 0;
3413 } else {
3414 nr = 0;
3415 }
3416 }
3417 if (nr)
3418 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3419
3420 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3421 if (old)
3422 obj_cgroup_put(old);
3423}
3424
3425static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3426{
3427 struct memcg_stock_pcp *stock;
3428 unsigned long flags;
3429 bool ret = false;
3430
3431 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3432
3433 stock = this_cpu_ptr(&memcg_stock);
3434 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3435 stock->nr_bytes -= nr_bytes;
3436 ret = true;
3437 }
3438
3439 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3440
3441 return ret;
3442}
3443
3444static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3445{
3446 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3447
3448 if (!old)
3449 return NULL;
3450
3451 if (stock->nr_bytes) {
3452 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3453 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3454
3455 if (nr_pages) {
3456 struct mem_cgroup *memcg;
3457
3458 memcg = get_mem_cgroup_from_objcg(old);
3459
3460 memcg_account_kmem(memcg, -nr_pages);
3461 __refill_stock(memcg, nr_pages);
3462
3463 css_put(&memcg->css);
3464 }
3465
3466 /*
3467 * The leftover is flushed to the centralized per-memcg value.
3468 * On the next attempt to refill obj stock it will be moved
3469 * to a per-cpu stock (probably, on an other CPU), see
3470 * refill_obj_stock().
3471 *
3472 * How often it's flushed is a trade-off between the memory
3473 * limit enforcement accuracy and potential CPU contention,
3474 * so it might be changed in the future.
3475 */
3476 atomic_add(nr_bytes, &old->nr_charged_bytes);
3477 stock->nr_bytes = 0;
3478 }
3479
3480 /*
3481 * Flush the vmstat data in current stock
3482 */
3483 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3484 if (stock->nr_slab_reclaimable_b) {
3485 mod_objcg_mlstate(old, stock->cached_pgdat,
3486 NR_SLAB_RECLAIMABLE_B,
3487 stock->nr_slab_reclaimable_b);
3488 stock->nr_slab_reclaimable_b = 0;
3489 }
3490 if (stock->nr_slab_unreclaimable_b) {
3491 mod_objcg_mlstate(old, stock->cached_pgdat,
3492 NR_SLAB_UNRECLAIMABLE_B,
3493 stock->nr_slab_unreclaimable_b);
3494 stock->nr_slab_unreclaimable_b = 0;
3495 }
3496 stock->cached_pgdat = NULL;
3497 }
3498
3499 WRITE_ONCE(stock->cached_objcg, NULL);
3500 /*
3501 * The `old' objects needs to be released by the caller via
3502 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3503 */
3504 return old;
3505}
3506
3507static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3508 struct mem_cgroup *root_memcg)
3509{
3510 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3511 struct mem_cgroup *memcg;
3512
3513 if (objcg) {
3514 memcg = obj_cgroup_memcg(objcg);
3515 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3516 return true;
3517 }
3518
3519 return false;
3520}
3521
3522static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3523 bool allow_uncharge)
3524{
3525 struct memcg_stock_pcp *stock;
3526 struct obj_cgroup *old = NULL;
3527 unsigned long flags;
3528 unsigned int nr_pages = 0;
3529
3530 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3531
3532 stock = this_cpu_ptr(&memcg_stock);
3533 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3534 old = drain_obj_stock(stock);
3535 obj_cgroup_get(objcg);
3536 WRITE_ONCE(stock->cached_objcg, objcg);
3537 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3538 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3539 allow_uncharge = true; /* Allow uncharge when objcg changes */
3540 }
3541 stock->nr_bytes += nr_bytes;
3542
3543 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3544 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3545 stock->nr_bytes &= (PAGE_SIZE - 1);
3546 }
3547
3548 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3549 if (old)
3550 obj_cgroup_put(old);
3551
3552 if (nr_pages)
3553 obj_cgroup_uncharge_pages(objcg, nr_pages);
3554}
3555
3556int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3557{
3558 unsigned int nr_pages, nr_bytes;
3559 int ret;
3560
3561 if (consume_obj_stock(objcg, size))
3562 return 0;
3563
3564 /*
3565 * In theory, objcg->nr_charged_bytes can have enough
3566 * pre-charged bytes to satisfy the allocation. However,
3567 * flushing objcg->nr_charged_bytes requires two atomic
3568 * operations, and objcg->nr_charged_bytes can't be big.
3569 * The shared objcg->nr_charged_bytes can also become a
3570 * performance bottleneck if all tasks of the same memcg are
3571 * trying to update it. So it's better to ignore it and try
3572 * grab some new pages. The stock's nr_bytes will be flushed to
3573 * objcg->nr_charged_bytes later on when objcg changes.
3574 *
3575 * The stock's nr_bytes may contain enough pre-charged bytes
3576 * to allow one less page from being charged, but we can't rely
3577 * on the pre-charged bytes not being changed outside of
3578 * consume_obj_stock() or refill_obj_stock(). So ignore those
3579 * pre-charged bytes as well when charging pages. To avoid a
3580 * page uncharge right after a page charge, we set the
3581 * allow_uncharge flag to false when calling refill_obj_stock()
3582 * to temporarily allow the pre-charged bytes to exceed the page
3583 * size limit. The maximum reachable value of the pre-charged
3584 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3585 * race.
3586 */
3587 nr_pages = size >> PAGE_SHIFT;
3588 nr_bytes = size & (PAGE_SIZE - 1);
3589
3590 if (nr_bytes)
3591 nr_pages += 1;
3592
3593 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3594 if (!ret && nr_bytes)
3595 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3596
3597 return ret;
3598}
3599
3600void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3601{
3602 refill_obj_stock(objcg, size, true);
3603}
3604
3605#endif /* CONFIG_MEMCG_KMEM */
3606
3607/*
3608 * Because page_memcg(head) is not set on tails, set it now.
3609 */
3610void split_page_memcg(struct page *head, int old_order, int new_order)
3611{
3612 struct folio *folio = page_folio(head);
3613 struct mem_cgroup *memcg = folio_memcg(folio);
3614 int i;
3615 unsigned int old_nr = 1 << old_order;
3616 unsigned int new_nr = 1 << new_order;
3617
3618 if (mem_cgroup_disabled() || !memcg)
3619 return;
3620
3621 for (i = new_nr; i < old_nr; i += new_nr)
3622 folio_page(folio, i)->memcg_data = folio->memcg_data;
3623
3624 if (folio_memcg_kmem(folio))
3625 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3626 else
3627 css_get_many(&memcg->css, old_nr / new_nr - 1);
3628}
3629
3630#ifdef CONFIG_SWAP
3631/**
3632 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3633 * @entry: swap entry to be moved
3634 * @from: mem_cgroup which the entry is moved from
3635 * @to: mem_cgroup which the entry is moved to
3636 *
3637 * It succeeds only when the swap_cgroup's record for this entry is the same
3638 * as the mem_cgroup's id of @from.
3639 *
3640 * Returns 0 on success, -EINVAL on failure.
3641 *
3642 * The caller must have charged to @to, IOW, called page_counter_charge() about
3643 * both res and memsw, and called css_get().
3644 */
3645static int mem_cgroup_move_swap_account(swp_entry_t entry,
3646 struct mem_cgroup *from, struct mem_cgroup *to)
3647{
3648 unsigned short old_id, new_id;
3649
3650 old_id = mem_cgroup_id(from);
3651 new_id = mem_cgroup_id(to);
3652
3653 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3654 mod_memcg_state(from, MEMCG_SWAP, -1);
3655 mod_memcg_state(to, MEMCG_SWAP, 1);
3656 return 0;
3657 }
3658 return -EINVAL;
3659}
3660#else
3661static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3662 struct mem_cgroup *from, struct mem_cgroup *to)
3663{
3664 return -EINVAL;
3665}
3666#endif
3667
3668static DEFINE_MUTEX(memcg_max_mutex);
3669
3670static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3671 unsigned long max, bool memsw)
3672{
3673 bool enlarge = false;
3674 bool drained = false;
3675 int ret;
3676 bool limits_invariant;
3677 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3678
3679 do {
3680 if (signal_pending(current)) {
3681 ret = -EINTR;
3682 break;
3683 }
3684
3685 mutex_lock(&memcg_max_mutex);
3686 /*
3687 * Make sure that the new limit (memsw or memory limit) doesn't
3688 * break our basic invariant rule memory.max <= memsw.max.
3689 */
3690 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3691 max <= memcg->memsw.max;
3692 if (!limits_invariant) {
3693 mutex_unlock(&memcg_max_mutex);
3694 ret = -EINVAL;
3695 break;
3696 }
3697 if (max > counter->max)
3698 enlarge = true;
3699 ret = page_counter_set_max(counter, max);
3700 mutex_unlock(&memcg_max_mutex);
3701
3702 if (!ret)
3703 break;
3704
3705 if (!drained) {
3706 drain_all_stock(memcg);
3707 drained = true;
3708 continue;
3709 }
3710
3711 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3712 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3713 ret = -EBUSY;
3714 break;
3715 }
3716 } while (true);
3717
3718 if (!ret && enlarge)
3719 memcg_oom_recover(memcg);
3720
3721 return ret;
3722}
3723
3724unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3725 gfp_t gfp_mask,
3726 unsigned long *total_scanned)
3727{
3728 unsigned long nr_reclaimed = 0;
3729 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3730 unsigned long reclaimed;
3731 int loop = 0;
3732 struct mem_cgroup_tree_per_node *mctz;
3733 unsigned long excess;
3734
3735 if (lru_gen_enabled())
3736 return 0;
3737
3738 if (order > 0)
3739 return 0;
3740
3741 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3742
3743 /*
3744 * Do not even bother to check the largest node if the root
3745 * is empty. Do it lockless to prevent lock bouncing. Races
3746 * are acceptable as soft limit is best effort anyway.
3747 */
3748 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3749 return 0;
3750
3751 /*
3752 * This loop can run a while, specially if mem_cgroup's continuously
3753 * keep exceeding their soft limit and putting the system under
3754 * pressure
3755 */
3756 do {
3757 if (next_mz)
3758 mz = next_mz;
3759 else
3760 mz = mem_cgroup_largest_soft_limit_node(mctz);
3761 if (!mz)
3762 break;
3763
3764 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3765 gfp_mask, total_scanned);
3766 nr_reclaimed += reclaimed;
3767 spin_lock_irq(&mctz->lock);
3768
3769 /*
3770 * If we failed to reclaim anything from this memory cgroup
3771 * it is time to move on to the next cgroup
3772 */
3773 next_mz = NULL;
3774 if (!reclaimed)
3775 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3776
3777 excess = soft_limit_excess(mz->memcg);
3778 /*
3779 * One school of thought says that we should not add
3780 * back the node to the tree if reclaim returns 0.
3781 * But our reclaim could return 0, simply because due
3782 * to priority we are exposing a smaller subset of
3783 * memory to reclaim from. Consider this as a longer
3784 * term TODO.
3785 */
3786 /* If excess == 0, no tree ops */
3787 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3788 spin_unlock_irq(&mctz->lock);
3789 css_put(&mz->memcg->css);
3790 loop++;
3791 /*
3792 * Could not reclaim anything and there are no more
3793 * mem cgroups to try or we seem to be looping without
3794 * reclaiming anything.
3795 */
3796 if (!nr_reclaimed &&
3797 (next_mz == NULL ||
3798 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3799 break;
3800 } while (!nr_reclaimed);
3801 if (next_mz)
3802 css_put(&next_mz->memcg->css);
3803 return nr_reclaimed;
3804}
3805
3806/*
3807 * Reclaims as many pages from the given memcg as possible.
3808 *
3809 * Caller is responsible for holding css reference for memcg.
3810 */
3811static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3812{
3813 int nr_retries = MAX_RECLAIM_RETRIES;
3814
3815 /* we call try-to-free pages for make this cgroup empty */
3816 lru_add_drain_all();
3817
3818 drain_all_stock(memcg);
3819
3820 /* try to free all pages in this cgroup */
3821 while (nr_retries && page_counter_read(&memcg->memory)) {
3822 if (signal_pending(current))
3823 return -EINTR;
3824
3825 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3826 MEMCG_RECLAIM_MAY_SWAP))
3827 nr_retries--;
3828 }
3829
3830 return 0;
3831}
3832
3833static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3834 char *buf, size_t nbytes,
3835 loff_t off)
3836{
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838
3839 if (mem_cgroup_is_root(memcg))
3840 return -EINVAL;
3841 return mem_cgroup_force_empty(memcg) ?: nbytes;
3842}
3843
3844static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3845 struct cftype *cft)
3846{
3847 return 1;
3848}
3849
3850static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3851 struct cftype *cft, u64 val)
3852{
3853 if (val == 1)
3854 return 0;
3855
3856 pr_warn_once("Non-hierarchical mode is deprecated. "
3857 "Please report your usecase to linux-mm@kvack.org if you "
3858 "depend on this functionality.\n");
3859
3860 return -EINVAL;
3861}
3862
3863static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864{
3865 unsigned long val;
3866
3867 if (mem_cgroup_is_root(memcg)) {
3868 /*
3869 * Approximate root's usage from global state. This isn't
3870 * perfect, but the root usage was always an approximation.
3871 */
3872 val = global_node_page_state(NR_FILE_PAGES) +
3873 global_node_page_state(NR_ANON_MAPPED);
3874 if (swap)
3875 val += total_swap_pages - get_nr_swap_pages();
3876 } else {
3877 if (!swap)
3878 val = page_counter_read(&memcg->memory);
3879 else
3880 val = page_counter_read(&memcg->memsw);
3881 }
3882 return val;
3883}
3884
3885enum {
3886 RES_USAGE,
3887 RES_LIMIT,
3888 RES_MAX_USAGE,
3889 RES_FAILCNT,
3890 RES_SOFT_LIMIT,
3891};
3892
3893static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3894 struct cftype *cft)
3895{
3896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 struct page_counter *counter;
3898
3899 switch (MEMFILE_TYPE(cft->private)) {
3900 case _MEM:
3901 counter = &memcg->memory;
3902 break;
3903 case _MEMSWAP:
3904 counter = &memcg->memsw;
3905 break;
3906 case _KMEM:
3907 counter = &memcg->kmem;
3908 break;
3909 case _TCP:
3910 counter = &memcg->tcpmem;
3911 break;
3912 default:
3913 BUG();
3914 }
3915
3916 switch (MEMFILE_ATTR(cft->private)) {
3917 case RES_USAGE:
3918 if (counter == &memcg->memory)
3919 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3920 if (counter == &memcg->memsw)
3921 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3922 return (u64)page_counter_read(counter) * PAGE_SIZE;
3923 case RES_LIMIT:
3924 return (u64)counter->max * PAGE_SIZE;
3925 case RES_MAX_USAGE:
3926 return (u64)counter->watermark * PAGE_SIZE;
3927 case RES_FAILCNT:
3928 return counter->failcnt;
3929 case RES_SOFT_LIMIT:
3930 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3931 default:
3932 BUG();
3933 }
3934}
3935
3936/*
3937 * This function doesn't do anything useful. Its only job is to provide a read
3938 * handler for a file so that cgroup_file_mode() will add read permissions.
3939 */
3940static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3941 __always_unused void *v)
3942{
3943 return -EINVAL;
3944}
3945
3946#ifdef CONFIG_MEMCG_KMEM
3947static int memcg_online_kmem(struct mem_cgroup *memcg)
3948{
3949 struct obj_cgroup *objcg;
3950
3951 if (mem_cgroup_kmem_disabled())
3952 return 0;
3953
3954 if (unlikely(mem_cgroup_is_root(memcg)))
3955 return 0;
3956
3957 objcg = obj_cgroup_alloc();
3958 if (!objcg)
3959 return -ENOMEM;
3960
3961 objcg->memcg = memcg;
3962 rcu_assign_pointer(memcg->objcg, objcg);
3963 obj_cgroup_get(objcg);
3964 memcg->orig_objcg = objcg;
3965
3966 static_branch_enable(&memcg_kmem_online_key);
3967
3968 memcg->kmemcg_id = memcg->id.id;
3969
3970 return 0;
3971}
3972
3973static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974{
3975 struct mem_cgroup *parent;
3976
3977 if (mem_cgroup_kmem_disabled())
3978 return;
3979
3980 if (unlikely(mem_cgroup_is_root(memcg)))
3981 return;
3982
3983 parent = parent_mem_cgroup(memcg);
3984 if (!parent)
3985 parent = root_mem_cgroup;
3986
3987 memcg_reparent_objcgs(memcg, parent);
3988
3989 /*
3990 * After we have finished memcg_reparent_objcgs(), all list_lrus
3991 * corresponding to this cgroup are guaranteed to remain empty.
3992 * The ordering is imposed by list_lru_node->lock taken by
3993 * memcg_reparent_list_lrus().
3994 */
3995 memcg_reparent_list_lrus(memcg, parent);
3996}
3997#else
3998static int memcg_online_kmem(struct mem_cgroup *memcg)
3999{
4000 return 0;
4001}
4002static void memcg_offline_kmem(struct mem_cgroup *memcg)
4003{
4004}
4005#endif /* CONFIG_MEMCG_KMEM */
4006
4007static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4008{
4009 int ret;
4010
4011 mutex_lock(&memcg_max_mutex);
4012
4013 ret = page_counter_set_max(&memcg->tcpmem, max);
4014 if (ret)
4015 goto out;
4016
4017 if (!memcg->tcpmem_active) {
4018 /*
4019 * The active flag needs to be written after the static_key
4020 * update. This is what guarantees that the socket activation
4021 * function is the last one to run. See mem_cgroup_sk_alloc()
4022 * for details, and note that we don't mark any socket as
4023 * belonging to this memcg until that flag is up.
4024 *
4025 * We need to do this, because static_keys will span multiple
4026 * sites, but we can't control their order. If we mark a socket
4027 * as accounted, but the accounting functions are not patched in
4028 * yet, we'll lose accounting.
4029 *
4030 * We never race with the readers in mem_cgroup_sk_alloc(),
4031 * because when this value change, the code to process it is not
4032 * patched in yet.
4033 */
4034 static_branch_inc(&memcg_sockets_enabled_key);
4035 memcg->tcpmem_active = true;
4036 }
4037out:
4038 mutex_unlock(&memcg_max_mutex);
4039 return ret;
4040}
4041
4042/*
4043 * The user of this function is...
4044 * RES_LIMIT.
4045 */
4046static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4047 char *buf, size_t nbytes, loff_t off)
4048{
4049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050 unsigned long nr_pages;
4051 int ret;
4052
4053 buf = strstrip(buf);
4054 ret = page_counter_memparse(buf, "-1", &nr_pages);
4055 if (ret)
4056 return ret;
4057
4058 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4059 case RES_LIMIT:
4060 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4061 ret = -EINVAL;
4062 break;
4063 }
4064 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4065 case _MEM:
4066 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4067 break;
4068 case _MEMSWAP:
4069 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4070 break;
4071 case _KMEM:
4072 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4073 "Writing any value to this file has no effect. "
4074 "Please report your usecase to linux-mm@kvack.org if you "
4075 "depend on this functionality.\n");
4076 ret = 0;
4077 break;
4078 case _TCP:
4079 ret = memcg_update_tcp_max(memcg, nr_pages);
4080 break;
4081 }
4082 break;
4083 case RES_SOFT_LIMIT:
4084 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4085 ret = -EOPNOTSUPP;
4086 } else {
4087 WRITE_ONCE(memcg->soft_limit, nr_pages);
4088 ret = 0;
4089 }
4090 break;
4091 }
4092 return ret ?: nbytes;
4093}
4094
4095static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4096 size_t nbytes, loff_t off)
4097{
4098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4099 struct page_counter *counter;
4100
4101 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4102 case _MEM:
4103 counter = &memcg->memory;
4104 break;
4105 case _MEMSWAP:
4106 counter = &memcg->memsw;
4107 break;
4108 case _KMEM:
4109 counter = &memcg->kmem;
4110 break;
4111 case _TCP:
4112 counter = &memcg->tcpmem;
4113 break;
4114 default:
4115 BUG();
4116 }
4117
4118 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4119 case RES_MAX_USAGE:
4120 page_counter_reset_watermark(counter);
4121 break;
4122 case RES_FAILCNT:
4123 counter->failcnt = 0;
4124 break;
4125 default:
4126 BUG();
4127 }
4128
4129 return nbytes;
4130}
4131
4132static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4133 struct cftype *cft)
4134{
4135 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4136}
4137
4138#ifdef CONFIG_MMU
4139static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4140 struct cftype *cft, u64 val)
4141{
4142 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143
4144 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4145 "Please report your usecase to linux-mm@kvack.org if you "
4146 "depend on this functionality.\n");
4147
4148 if (val & ~MOVE_MASK)
4149 return -EINVAL;
4150
4151 /*
4152 * No kind of locking is needed in here, because ->can_attach() will
4153 * check this value once in the beginning of the process, and then carry
4154 * on with stale data. This means that changes to this value will only
4155 * affect task migrations starting after the change.
4156 */
4157 memcg->move_charge_at_immigrate = val;
4158 return 0;
4159}
4160#else
4161static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
4163{
4164 return -ENOSYS;
4165}
4166#endif
4167
4168#ifdef CONFIG_NUMA
4169
4170#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4171#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4172#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4173
4174static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4175 int nid, unsigned int lru_mask, bool tree)
4176{
4177 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4178 unsigned long nr = 0;
4179 enum lru_list lru;
4180
4181 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4182
4183 for_each_lru(lru) {
4184 if (!(BIT(lru) & lru_mask))
4185 continue;
4186 if (tree)
4187 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4188 else
4189 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4190 }
4191 return nr;
4192}
4193
4194static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4195 unsigned int lru_mask,
4196 bool tree)
4197{
4198 unsigned long nr = 0;
4199 enum lru_list lru;
4200
4201 for_each_lru(lru) {
4202 if (!(BIT(lru) & lru_mask))
4203 continue;
4204 if (tree)
4205 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4206 else
4207 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4208 }
4209 return nr;
4210}
4211
4212static int memcg_numa_stat_show(struct seq_file *m, void *v)
4213{
4214 struct numa_stat {
4215 const char *name;
4216 unsigned int lru_mask;
4217 };
4218
4219 static const struct numa_stat stats[] = {
4220 { "total", LRU_ALL },
4221 { "file", LRU_ALL_FILE },
4222 { "anon", LRU_ALL_ANON },
4223 { "unevictable", BIT(LRU_UNEVICTABLE) },
4224 };
4225 const struct numa_stat *stat;
4226 int nid;
4227 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4228
4229 mem_cgroup_flush_stats(memcg);
4230
4231 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4232 seq_printf(m, "%s=%lu", stat->name,
4233 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4234 false));
4235 for_each_node_state(nid, N_MEMORY)
4236 seq_printf(m, " N%d=%lu", nid,
4237 mem_cgroup_node_nr_lru_pages(memcg, nid,
4238 stat->lru_mask, false));
4239 seq_putc(m, '\n');
4240 }
4241
4242 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4243
4244 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4245 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4246 true));
4247 for_each_node_state(nid, N_MEMORY)
4248 seq_printf(m, " N%d=%lu", nid,
4249 mem_cgroup_node_nr_lru_pages(memcg, nid,
4250 stat->lru_mask, true));
4251 seq_putc(m, '\n');
4252 }
4253
4254 return 0;
4255}
4256#endif /* CONFIG_NUMA */
4257
4258static const unsigned int memcg1_stats[] = {
4259 NR_FILE_PAGES,
4260 NR_ANON_MAPPED,
4261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 NR_ANON_THPS,
4263#endif
4264 NR_SHMEM,
4265 NR_FILE_MAPPED,
4266 NR_FILE_DIRTY,
4267 NR_WRITEBACK,
4268 WORKINGSET_REFAULT_ANON,
4269 WORKINGSET_REFAULT_FILE,
4270#ifdef CONFIG_SWAP
4271 MEMCG_SWAP,
4272 NR_SWAPCACHE,
4273#endif
4274};
4275
4276static const char *const memcg1_stat_names[] = {
4277 "cache",
4278 "rss",
4279#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280 "rss_huge",
4281#endif
4282 "shmem",
4283 "mapped_file",
4284 "dirty",
4285 "writeback",
4286 "workingset_refault_anon",
4287 "workingset_refault_file",
4288#ifdef CONFIG_SWAP
4289 "swap",
4290 "swapcached",
4291#endif
4292};
4293
4294/* Universal VM events cgroup1 shows, original sort order */
4295static const unsigned int memcg1_events[] = {
4296 PGPGIN,
4297 PGPGOUT,
4298 PGFAULT,
4299 PGMAJFAULT,
4300};
4301
4302static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4303{
4304 unsigned long memory, memsw;
4305 struct mem_cgroup *mi;
4306 unsigned int i;
4307
4308 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4309
4310 mem_cgroup_flush_stats(memcg);
4311
4312 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313 unsigned long nr;
4314
4315 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4316 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4317 }
4318
4319 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4320 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4321 memcg_events_local(memcg, memcg1_events[i]));
4322
4323 for (i = 0; i < NR_LRU_LISTS; i++)
4324 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4325 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4326 PAGE_SIZE);
4327
4328 /* Hierarchical information */
4329 memory = memsw = PAGE_COUNTER_MAX;
4330 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4331 memory = min(memory, READ_ONCE(mi->memory.max));
4332 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4333 }
4334 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4335 (u64)memory * PAGE_SIZE);
4336 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4337 (u64)memsw * PAGE_SIZE);
4338
4339 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4340 unsigned long nr;
4341
4342 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4343 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4344 (u64)nr);
4345 }
4346
4347 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4348 seq_buf_printf(s, "total_%s %llu\n",
4349 vm_event_name(memcg1_events[i]),
4350 (u64)memcg_events(memcg, memcg1_events[i]));
4351
4352 for (i = 0; i < NR_LRU_LISTS; i++)
4353 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4354 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4355 PAGE_SIZE);
4356
4357#ifdef CONFIG_DEBUG_VM
4358 {
4359 pg_data_t *pgdat;
4360 struct mem_cgroup_per_node *mz;
4361 unsigned long anon_cost = 0;
4362 unsigned long file_cost = 0;
4363
4364 for_each_online_pgdat(pgdat) {
4365 mz = memcg->nodeinfo[pgdat->node_id];
4366
4367 anon_cost += mz->lruvec.anon_cost;
4368 file_cost += mz->lruvec.file_cost;
4369 }
4370 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4371 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4372 }
4373#endif
4374}
4375
4376static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4377 struct cftype *cft)
4378{
4379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380
4381 return mem_cgroup_swappiness(memcg);
4382}
4383
4384static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4385 struct cftype *cft, u64 val)
4386{
4387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389 if (val > 200)
4390 return -EINVAL;
4391
4392 if (!mem_cgroup_is_root(memcg))
4393 WRITE_ONCE(memcg->swappiness, val);
4394 else
4395 WRITE_ONCE(vm_swappiness, val);
4396
4397 return 0;
4398}
4399
4400static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4401{
4402 struct mem_cgroup_threshold_ary *t;
4403 unsigned long usage;
4404 int i;
4405
4406 rcu_read_lock();
4407 if (!swap)
4408 t = rcu_dereference(memcg->thresholds.primary);
4409 else
4410 t = rcu_dereference(memcg->memsw_thresholds.primary);
4411
4412 if (!t)
4413 goto unlock;
4414
4415 usage = mem_cgroup_usage(memcg, swap);
4416
4417 /*
4418 * current_threshold points to threshold just below or equal to usage.
4419 * If it's not true, a threshold was crossed after last
4420 * call of __mem_cgroup_threshold().
4421 */
4422 i = t->current_threshold;
4423
4424 /*
4425 * Iterate backward over array of thresholds starting from
4426 * current_threshold and check if a threshold is crossed.
4427 * If none of thresholds below usage is crossed, we read
4428 * only one element of the array here.
4429 */
4430 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4431 eventfd_signal(t->entries[i].eventfd);
4432
4433 /* i = current_threshold + 1 */
4434 i++;
4435
4436 /*
4437 * Iterate forward over array of thresholds starting from
4438 * current_threshold+1 and check if a threshold is crossed.
4439 * If none of thresholds above usage is crossed, we read
4440 * only one element of the array here.
4441 */
4442 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4443 eventfd_signal(t->entries[i].eventfd);
4444
4445 /* Update current_threshold */
4446 t->current_threshold = i - 1;
4447unlock:
4448 rcu_read_unlock();
4449}
4450
4451static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4452{
4453 while (memcg) {
4454 __mem_cgroup_threshold(memcg, false);
4455 if (do_memsw_account())
4456 __mem_cgroup_threshold(memcg, true);
4457
4458 memcg = parent_mem_cgroup(memcg);
4459 }
4460}
4461
4462static int compare_thresholds(const void *a, const void *b)
4463{
4464 const struct mem_cgroup_threshold *_a = a;
4465 const struct mem_cgroup_threshold *_b = b;
4466
4467 if (_a->threshold > _b->threshold)
4468 return 1;
4469
4470 if (_a->threshold < _b->threshold)
4471 return -1;
4472
4473 return 0;
4474}
4475
4476static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4477{
4478 struct mem_cgroup_eventfd_list *ev;
4479
4480 spin_lock(&memcg_oom_lock);
4481
4482 list_for_each_entry(ev, &memcg->oom_notify, list)
4483 eventfd_signal(ev->eventfd);
4484
4485 spin_unlock(&memcg_oom_lock);
4486 return 0;
4487}
4488
4489static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4490{
4491 struct mem_cgroup *iter;
4492
4493 for_each_mem_cgroup_tree(iter, memcg)
4494 mem_cgroup_oom_notify_cb(iter);
4495}
4496
4497static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4498 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4499{
4500 struct mem_cgroup_thresholds *thresholds;
4501 struct mem_cgroup_threshold_ary *new;
4502 unsigned long threshold;
4503 unsigned long usage;
4504 int i, size, ret;
4505
4506 ret = page_counter_memparse(args, "-1", &threshold);
4507 if (ret)
4508 return ret;
4509
4510 mutex_lock(&memcg->thresholds_lock);
4511
4512 if (type == _MEM) {
4513 thresholds = &memcg->thresholds;
4514 usage = mem_cgroup_usage(memcg, false);
4515 } else if (type == _MEMSWAP) {
4516 thresholds = &memcg->memsw_thresholds;
4517 usage = mem_cgroup_usage(memcg, true);
4518 } else
4519 BUG();
4520
4521 /* Check if a threshold crossed before adding a new one */
4522 if (thresholds->primary)
4523 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4524
4525 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4526
4527 /* Allocate memory for new array of thresholds */
4528 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4529 if (!new) {
4530 ret = -ENOMEM;
4531 goto unlock;
4532 }
4533 new->size = size;
4534
4535 /* Copy thresholds (if any) to new array */
4536 if (thresholds->primary)
4537 memcpy(new->entries, thresholds->primary->entries,
4538 flex_array_size(new, entries, size - 1));
4539
4540 /* Add new threshold */
4541 new->entries[size - 1].eventfd = eventfd;
4542 new->entries[size - 1].threshold = threshold;
4543
4544 /* Sort thresholds. Registering of new threshold isn't time-critical */
4545 sort(new->entries, size, sizeof(*new->entries),
4546 compare_thresholds, NULL);
4547
4548 /* Find current threshold */
4549 new->current_threshold = -1;
4550 for (i = 0; i < size; i++) {
4551 if (new->entries[i].threshold <= usage) {
4552 /*
4553 * new->current_threshold will not be used until
4554 * rcu_assign_pointer(), so it's safe to increment
4555 * it here.
4556 */
4557 ++new->current_threshold;
4558 } else
4559 break;
4560 }
4561
4562 /* Free old spare buffer and save old primary buffer as spare */
4563 kfree(thresholds->spare);
4564 thresholds->spare = thresholds->primary;
4565
4566 rcu_assign_pointer(thresholds->primary, new);
4567
4568 /* To be sure that nobody uses thresholds */
4569 synchronize_rcu();
4570
4571unlock:
4572 mutex_unlock(&memcg->thresholds_lock);
4573
4574 return ret;
4575}
4576
4577static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4578 struct eventfd_ctx *eventfd, const char *args)
4579{
4580 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4581}
4582
4583static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4584 struct eventfd_ctx *eventfd, const char *args)
4585{
4586 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4587}
4588
4589static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4590 struct eventfd_ctx *eventfd, enum res_type type)
4591{
4592 struct mem_cgroup_thresholds *thresholds;
4593 struct mem_cgroup_threshold_ary *new;
4594 unsigned long usage;
4595 int i, j, size, entries;
4596
4597 mutex_lock(&memcg->thresholds_lock);
4598
4599 if (type == _MEM) {
4600 thresholds = &memcg->thresholds;
4601 usage = mem_cgroup_usage(memcg, false);
4602 } else if (type == _MEMSWAP) {
4603 thresholds = &memcg->memsw_thresholds;
4604 usage = mem_cgroup_usage(memcg, true);
4605 } else
4606 BUG();
4607
4608 if (!thresholds->primary)
4609 goto unlock;
4610
4611 /* Check if a threshold crossed before removing */
4612 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613
4614 /* Calculate new number of threshold */
4615 size = entries = 0;
4616 for (i = 0; i < thresholds->primary->size; i++) {
4617 if (thresholds->primary->entries[i].eventfd != eventfd)
4618 size++;
4619 else
4620 entries++;
4621 }
4622
4623 new = thresholds->spare;
4624
4625 /* If no items related to eventfd have been cleared, nothing to do */
4626 if (!entries)
4627 goto unlock;
4628
4629 /* Set thresholds array to NULL if we don't have thresholds */
4630 if (!size) {
4631 kfree(new);
4632 new = NULL;
4633 goto swap_buffers;
4634 }
4635
4636 new->size = size;
4637
4638 /* Copy thresholds and find current threshold */
4639 new->current_threshold = -1;
4640 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4641 if (thresholds->primary->entries[i].eventfd == eventfd)
4642 continue;
4643
4644 new->entries[j] = thresholds->primary->entries[i];
4645 if (new->entries[j].threshold <= usage) {
4646 /*
4647 * new->current_threshold will not be used
4648 * until rcu_assign_pointer(), so it's safe to increment
4649 * it here.
4650 */
4651 ++new->current_threshold;
4652 }
4653 j++;
4654 }
4655
4656swap_buffers:
4657 /* Swap primary and spare array */
4658 thresholds->spare = thresholds->primary;
4659
4660 rcu_assign_pointer(thresholds->primary, new);
4661
4662 /* To be sure that nobody uses thresholds */
4663 synchronize_rcu();
4664
4665 /* If all events are unregistered, free the spare array */
4666 if (!new) {
4667 kfree(thresholds->spare);
4668 thresholds->spare = NULL;
4669 }
4670unlock:
4671 mutex_unlock(&memcg->thresholds_lock);
4672}
4673
4674static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4675 struct eventfd_ctx *eventfd)
4676{
4677 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4678}
4679
4680static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4681 struct eventfd_ctx *eventfd)
4682{
4683 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4684}
4685
4686static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4687 struct eventfd_ctx *eventfd, const char *args)
4688{
4689 struct mem_cgroup_eventfd_list *event;
4690
4691 event = kmalloc(sizeof(*event), GFP_KERNEL);
4692 if (!event)
4693 return -ENOMEM;
4694
4695 spin_lock(&memcg_oom_lock);
4696
4697 event->eventfd = eventfd;
4698 list_add(&event->list, &memcg->oom_notify);
4699
4700 /* already in OOM ? */
4701 if (memcg->under_oom)
4702 eventfd_signal(eventfd);
4703 spin_unlock(&memcg_oom_lock);
4704
4705 return 0;
4706}
4707
4708static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4709 struct eventfd_ctx *eventfd)
4710{
4711 struct mem_cgroup_eventfd_list *ev, *tmp;
4712
4713 spin_lock(&memcg_oom_lock);
4714
4715 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4716 if (ev->eventfd == eventfd) {
4717 list_del(&ev->list);
4718 kfree(ev);
4719 }
4720 }
4721
4722 spin_unlock(&memcg_oom_lock);
4723}
4724
4725static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4726{
4727 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4728
4729 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4730 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4731 seq_printf(sf, "oom_kill %lu\n",
4732 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4733 return 0;
4734}
4735
4736static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4737 struct cftype *cft, u64 val)
4738{
4739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740
4741 /* cannot set to root cgroup and only 0 and 1 are allowed */
4742 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4743 return -EINVAL;
4744
4745 WRITE_ONCE(memcg->oom_kill_disable, val);
4746 if (!val)
4747 memcg_oom_recover(memcg);
4748
4749 return 0;
4750}
4751
4752#ifdef CONFIG_CGROUP_WRITEBACK
4753
4754#include <trace/events/writeback.h>
4755
4756static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4757{
4758 return wb_domain_init(&memcg->cgwb_domain, gfp);
4759}
4760
4761static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4762{
4763 wb_domain_exit(&memcg->cgwb_domain);
4764}
4765
4766static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4767{
4768 wb_domain_size_changed(&memcg->cgwb_domain);
4769}
4770
4771struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4772{
4773 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774
4775 if (!memcg->css.parent)
4776 return NULL;
4777
4778 return &memcg->cgwb_domain;
4779}
4780
4781/**
4782 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4783 * @wb: bdi_writeback in question
4784 * @pfilepages: out parameter for number of file pages
4785 * @pheadroom: out parameter for number of allocatable pages according to memcg
4786 * @pdirty: out parameter for number of dirty pages
4787 * @pwriteback: out parameter for number of pages under writeback
4788 *
4789 * Determine the numbers of file, headroom, dirty, and writeback pages in
4790 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4791 * is a bit more involved.
4792 *
4793 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4794 * headroom is calculated as the lowest headroom of itself and the
4795 * ancestors. Note that this doesn't consider the actual amount of
4796 * available memory in the system. The caller should further cap
4797 * *@pheadroom accordingly.
4798 */
4799void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4800 unsigned long *pheadroom, unsigned long *pdirty,
4801 unsigned long *pwriteback)
4802{
4803 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4804 struct mem_cgroup *parent;
4805
4806 mem_cgroup_flush_stats_ratelimited(memcg);
4807
4808 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4809 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4810 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4811 memcg_page_state(memcg, NR_ACTIVE_FILE);
4812
4813 *pheadroom = PAGE_COUNTER_MAX;
4814 while ((parent = parent_mem_cgroup(memcg))) {
4815 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4816 READ_ONCE(memcg->memory.high));
4817 unsigned long used = page_counter_read(&memcg->memory);
4818
4819 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4820 memcg = parent;
4821 }
4822}
4823
4824/*
4825 * Foreign dirty flushing
4826 *
4827 * There's an inherent mismatch between memcg and writeback. The former
4828 * tracks ownership per-page while the latter per-inode. This was a
4829 * deliberate design decision because honoring per-page ownership in the
4830 * writeback path is complicated, may lead to higher CPU and IO overheads
4831 * and deemed unnecessary given that write-sharing an inode across
4832 * different cgroups isn't a common use-case.
4833 *
4834 * Combined with inode majority-writer ownership switching, this works well
4835 * enough in most cases but there are some pathological cases. For
4836 * example, let's say there are two cgroups A and B which keep writing to
4837 * different but confined parts of the same inode. B owns the inode and
4838 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4839 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4840 * triggering background writeback. A will be slowed down without a way to
4841 * make writeback of the dirty pages happen.
4842 *
4843 * Conditions like the above can lead to a cgroup getting repeatedly and
4844 * severely throttled after making some progress after each
4845 * dirty_expire_interval while the underlying IO device is almost
4846 * completely idle.
4847 *
4848 * Solving this problem completely requires matching the ownership tracking
4849 * granularities between memcg and writeback in either direction. However,
4850 * the more egregious behaviors can be avoided by simply remembering the
4851 * most recent foreign dirtying events and initiating remote flushes on
4852 * them when local writeback isn't enough to keep the memory clean enough.
4853 *
4854 * The following two functions implement such mechanism. When a foreign
4855 * page - a page whose memcg and writeback ownerships don't match - is
4856 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4857 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4858 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4859 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4860 * foreign bdi_writebacks which haven't expired. Both the numbers of
4861 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4862 * limited to MEMCG_CGWB_FRN_CNT.
4863 *
4864 * The mechanism only remembers IDs and doesn't hold any object references.
4865 * As being wrong occasionally doesn't matter, updates and accesses to the
4866 * records are lockless and racy.
4867 */
4868void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4869 struct bdi_writeback *wb)
4870{
4871 struct mem_cgroup *memcg = folio_memcg(folio);
4872 struct memcg_cgwb_frn *frn;
4873 u64 now = get_jiffies_64();
4874 u64 oldest_at = now;
4875 int oldest = -1;
4876 int i;
4877
4878 trace_track_foreign_dirty(folio, wb);
4879
4880 /*
4881 * Pick the slot to use. If there is already a slot for @wb, keep
4882 * using it. If not replace the oldest one which isn't being
4883 * written out.
4884 */
4885 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4886 frn = &memcg->cgwb_frn[i];
4887 if (frn->bdi_id == wb->bdi->id &&
4888 frn->memcg_id == wb->memcg_css->id)
4889 break;
4890 if (time_before64(frn->at, oldest_at) &&
4891 atomic_read(&frn->done.cnt) == 1) {
4892 oldest = i;
4893 oldest_at = frn->at;
4894 }
4895 }
4896
4897 if (i < MEMCG_CGWB_FRN_CNT) {
4898 /*
4899 * Re-using an existing one. Update timestamp lazily to
4900 * avoid making the cacheline hot. We want them to be
4901 * reasonably up-to-date and significantly shorter than
4902 * dirty_expire_interval as that's what expires the record.
4903 * Use the shorter of 1s and dirty_expire_interval / 8.
4904 */
4905 unsigned long update_intv =
4906 min_t(unsigned long, HZ,
4907 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4908
4909 if (time_before64(frn->at, now - update_intv))
4910 frn->at = now;
4911 } else if (oldest >= 0) {
4912 /* replace the oldest free one */
4913 frn = &memcg->cgwb_frn[oldest];
4914 frn->bdi_id = wb->bdi->id;
4915 frn->memcg_id = wb->memcg_css->id;
4916 frn->at = now;
4917 }
4918}
4919
4920/* issue foreign writeback flushes for recorded foreign dirtying events */
4921void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4922{
4923 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4924 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4925 u64 now = jiffies_64;
4926 int i;
4927
4928 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4929 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4930
4931 /*
4932 * If the record is older than dirty_expire_interval,
4933 * writeback on it has already started. No need to kick it
4934 * off again. Also, don't start a new one if there's
4935 * already one in flight.
4936 */
4937 if (time_after64(frn->at, now - intv) &&
4938 atomic_read(&frn->done.cnt) == 1) {
4939 frn->at = 0;
4940 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4941 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4942 WB_REASON_FOREIGN_FLUSH,
4943 &frn->done);
4944 }
4945 }
4946}
4947
4948#else /* CONFIG_CGROUP_WRITEBACK */
4949
4950static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4951{
4952 return 0;
4953}
4954
4955static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4956{
4957}
4958
4959static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4960{
4961}
4962
4963#endif /* CONFIG_CGROUP_WRITEBACK */
4964
4965/*
4966 * DO NOT USE IN NEW FILES.
4967 *
4968 * "cgroup.event_control" implementation.
4969 *
4970 * This is way over-engineered. It tries to support fully configurable
4971 * events for each user. Such level of flexibility is completely
4972 * unnecessary especially in the light of the planned unified hierarchy.
4973 *
4974 * Please deprecate this and replace with something simpler if at all
4975 * possible.
4976 */
4977
4978/*
4979 * Unregister event and free resources.
4980 *
4981 * Gets called from workqueue.
4982 */
4983static void memcg_event_remove(struct work_struct *work)
4984{
4985 struct mem_cgroup_event *event =
4986 container_of(work, struct mem_cgroup_event, remove);
4987 struct mem_cgroup *memcg = event->memcg;
4988
4989 remove_wait_queue(event->wqh, &event->wait);
4990
4991 event->unregister_event(memcg, event->eventfd);
4992
4993 /* Notify userspace the event is going away. */
4994 eventfd_signal(event->eventfd);
4995
4996 eventfd_ctx_put(event->eventfd);
4997 kfree(event);
4998 css_put(&memcg->css);
4999}
5000
5001/*
5002 * Gets called on EPOLLHUP on eventfd when user closes it.
5003 *
5004 * Called with wqh->lock held and interrupts disabled.
5005 */
5006static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5007 int sync, void *key)
5008{
5009 struct mem_cgroup_event *event =
5010 container_of(wait, struct mem_cgroup_event, wait);
5011 struct mem_cgroup *memcg = event->memcg;
5012 __poll_t flags = key_to_poll(key);
5013
5014 if (flags & EPOLLHUP) {
5015 /*
5016 * If the event has been detached at cgroup removal, we
5017 * can simply return knowing the other side will cleanup
5018 * for us.
5019 *
5020 * We can't race against event freeing since the other
5021 * side will require wqh->lock via remove_wait_queue(),
5022 * which we hold.
5023 */
5024 spin_lock(&memcg->event_list_lock);
5025 if (!list_empty(&event->list)) {
5026 list_del_init(&event->list);
5027 /*
5028 * We are in atomic context, but cgroup_event_remove()
5029 * may sleep, so we have to call it in workqueue.
5030 */
5031 schedule_work(&event->remove);
5032 }
5033 spin_unlock(&memcg->event_list_lock);
5034 }
5035
5036 return 0;
5037}
5038
5039static void memcg_event_ptable_queue_proc(struct file *file,
5040 wait_queue_head_t *wqh, poll_table *pt)
5041{
5042 struct mem_cgroup_event *event =
5043 container_of(pt, struct mem_cgroup_event, pt);
5044
5045 event->wqh = wqh;
5046 add_wait_queue(wqh, &event->wait);
5047}
5048
5049/*
5050 * DO NOT USE IN NEW FILES.
5051 *
5052 * Parse input and register new cgroup event handler.
5053 *
5054 * Input must be in format '<event_fd> <control_fd> <args>'.
5055 * Interpretation of args is defined by control file implementation.
5056 */
5057static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5058 char *buf, size_t nbytes, loff_t off)
5059{
5060 struct cgroup_subsys_state *css = of_css(of);
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5062 struct mem_cgroup_event *event;
5063 struct cgroup_subsys_state *cfile_css;
5064 unsigned int efd, cfd;
5065 struct fd efile;
5066 struct fd cfile;
5067 struct dentry *cdentry;
5068 const char *name;
5069 char *endp;
5070 int ret;
5071
5072 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5073 return -EOPNOTSUPP;
5074
5075 buf = strstrip(buf);
5076
5077 efd = simple_strtoul(buf, &endp, 10);
5078 if (*endp != ' ')
5079 return -EINVAL;
5080 buf = endp + 1;
5081
5082 cfd = simple_strtoul(buf, &endp, 10);
5083 if ((*endp != ' ') && (*endp != '\0'))
5084 return -EINVAL;
5085 buf = endp + 1;
5086
5087 event = kzalloc(sizeof(*event), GFP_KERNEL);
5088 if (!event)
5089 return -ENOMEM;
5090
5091 event->memcg = memcg;
5092 INIT_LIST_HEAD(&event->list);
5093 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5094 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5095 INIT_WORK(&event->remove, memcg_event_remove);
5096
5097 efile = fdget(efd);
5098 if (!efile.file) {
5099 ret = -EBADF;
5100 goto out_kfree;
5101 }
5102
5103 event->eventfd = eventfd_ctx_fileget(efile.file);
5104 if (IS_ERR(event->eventfd)) {
5105 ret = PTR_ERR(event->eventfd);
5106 goto out_put_efile;
5107 }
5108
5109 cfile = fdget(cfd);
5110 if (!cfile.file) {
5111 ret = -EBADF;
5112 goto out_put_eventfd;
5113 }
5114
5115 /* the process need read permission on control file */
5116 /* AV: shouldn't we check that it's been opened for read instead? */
5117 ret = file_permission(cfile.file, MAY_READ);
5118 if (ret < 0)
5119 goto out_put_cfile;
5120
5121 /*
5122 * The control file must be a regular cgroup1 file. As a regular cgroup
5123 * file can't be renamed, it's safe to access its name afterwards.
5124 */
5125 cdentry = cfile.file->f_path.dentry;
5126 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5127 ret = -EINVAL;
5128 goto out_put_cfile;
5129 }
5130
5131 /*
5132 * Determine the event callbacks and set them in @event. This used
5133 * to be done via struct cftype but cgroup core no longer knows
5134 * about these events. The following is crude but the whole thing
5135 * is for compatibility anyway.
5136 *
5137 * DO NOT ADD NEW FILES.
5138 */
5139 name = cdentry->d_name.name;
5140
5141 if (!strcmp(name, "memory.usage_in_bytes")) {
5142 event->register_event = mem_cgroup_usage_register_event;
5143 event->unregister_event = mem_cgroup_usage_unregister_event;
5144 } else if (!strcmp(name, "memory.oom_control")) {
5145 event->register_event = mem_cgroup_oom_register_event;
5146 event->unregister_event = mem_cgroup_oom_unregister_event;
5147 } else if (!strcmp(name, "memory.pressure_level")) {
5148 event->register_event = vmpressure_register_event;
5149 event->unregister_event = vmpressure_unregister_event;
5150 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5151 event->register_event = memsw_cgroup_usage_register_event;
5152 event->unregister_event = memsw_cgroup_usage_unregister_event;
5153 } else {
5154 ret = -EINVAL;
5155 goto out_put_cfile;
5156 }
5157
5158 /*
5159 * Verify @cfile should belong to @css. Also, remaining events are
5160 * automatically removed on cgroup destruction but the removal is
5161 * asynchronous, so take an extra ref on @css.
5162 */
5163 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5164 &memory_cgrp_subsys);
5165 ret = -EINVAL;
5166 if (IS_ERR(cfile_css))
5167 goto out_put_cfile;
5168 if (cfile_css != css) {
5169 css_put(cfile_css);
5170 goto out_put_cfile;
5171 }
5172
5173 ret = event->register_event(memcg, event->eventfd, buf);
5174 if (ret)
5175 goto out_put_css;
5176
5177 vfs_poll(efile.file, &event->pt);
5178
5179 spin_lock_irq(&memcg->event_list_lock);
5180 list_add(&event->list, &memcg->event_list);
5181 spin_unlock_irq(&memcg->event_list_lock);
5182
5183 fdput(cfile);
5184 fdput(efile);
5185
5186 return nbytes;
5187
5188out_put_css:
5189 css_put(css);
5190out_put_cfile:
5191 fdput(cfile);
5192out_put_eventfd:
5193 eventfd_ctx_put(event->eventfd);
5194out_put_efile:
5195 fdput(efile);
5196out_kfree:
5197 kfree(event);
5198
5199 return ret;
5200}
5201
5202#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5203static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5204{
5205 /*
5206 * Deprecated.
5207 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5208 */
5209 return 0;
5210}
5211#endif
5212
5213static int memory_stat_show(struct seq_file *m, void *v);
5214
5215static struct cftype mem_cgroup_legacy_files[] = {
5216 {
5217 .name = "usage_in_bytes",
5218 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5219 .read_u64 = mem_cgroup_read_u64,
5220 },
5221 {
5222 .name = "max_usage_in_bytes",
5223 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5224 .write = mem_cgroup_reset,
5225 .read_u64 = mem_cgroup_read_u64,
5226 },
5227 {
5228 .name = "limit_in_bytes",
5229 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5230 .write = mem_cgroup_write,
5231 .read_u64 = mem_cgroup_read_u64,
5232 },
5233 {
5234 .name = "soft_limit_in_bytes",
5235 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5236 .write = mem_cgroup_write,
5237 .read_u64 = mem_cgroup_read_u64,
5238 },
5239 {
5240 .name = "failcnt",
5241 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5242 .write = mem_cgroup_reset,
5243 .read_u64 = mem_cgroup_read_u64,
5244 },
5245 {
5246 .name = "stat",
5247 .seq_show = memory_stat_show,
5248 },
5249 {
5250 .name = "force_empty",
5251 .write = mem_cgroup_force_empty_write,
5252 },
5253 {
5254 .name = "use_hierarchy",
5255 .write_u64 = mem_cgroup_hierarchy_write,
5256 .read_u64 = mem_cgroup_hierarchy_read,
5257 },
5258 {
5259 .name = "cgroup.event_control", /* XXX: for compat */
5260 .write = memcg_write_event_control,
5261 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5262 },
5263 {
5264 .name = "swappiness",
5265 .read_u64 = mem_cgroup_swappiness_read,
5266 .write_u64 = mem_cgroup_swappiness_write,
5267 },
5268 {
5269 .name = "move_charge_at_immigrate",
5270 .read_u64 = mem_cgroup_move_charge_read,
5271 .write_u64 = mem_cgroup_move_charge_write,
5272 },
5273 {
5274 .name = "oom_control",
5275 .seq_show = mem_cgroup_oom_control_read,
5276 .write_u64 = mem_cgroup_oom_control_write,
5277 },
5278 {
5279 .name = "pressure_level",
5280 .seq_show = mem_cgroup_dummy_seq_show,
5281 },
5282#ifdef CONFIG_NUMA
5283 {
5284 .name = "numa_stat",
5285 .seq_show = memcg_numa_stat_show,
5286 },
5287#endif
5288 {
5289 .name = "kmem.limit_in_bytes",
5290 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5291 .write = mem_cgroup_write,
5292 .read_u64 = mem_cgroup_read_u64,
5293 },
5294 {
5295 .name = "kmem.usage_in_bytes",
5296 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5297 .read_u64 = mem_cgroup_read_u64,
5298 },
5299 {
5300 .name = "kmem.failcnt",
5301 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5302 .write = mem_cgroup_reset,
5303 .read_u64 = mem_cgroup_read_u64,
5304 },
5305 {
5306 .name = "kmem.max_usage_in_bytes",
5307 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5308 .write = mem_cgroup_reset,
5309 .read_u64 = mem_cgroup_read_u64,
5310 },
5311#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5312 {
5313 .name = "kmem.slabinfo",
5314 .seq_show = mem_cgroup_slab_show,
5315 },
5316#endif
5317 {
5318 .name = "kmem.tcp.limit_in_bytes",
5319 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5320 .write = mem_cgroup_write,
5321 .read_u64 = mem_cgroup_read_u64,
5322 },
5323 {
5324 .name = "kmem.tcp.usage_in_bytes",
5325 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5326 .read_u64 = mem_cgroup_read_u64,
5327 },
5328 {
5329 .name = "kmem.tcp.failcnt",
5330 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5331 .write = mem_cgroup_reset,
5332 .read_u64 = mem_cgroup_read_u64,
5333 },
5334 {
5335 .name = "kmem.tcp.max_usage_in_bytes",
5336 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5337 .write = mem_cgroup_reset,
5338 .read_u64 = mem_cgroup_read_u64,
5339 },
5340 { }, /* terminate */
5341};
5342
5343/*
5344 * Private memory cgroup IDR
5345 *
5346 * Swap-out records and page cache shadow entries need to store memcg
5347 * references in constrained space, so we maintain an ID space that is
5348 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5349 * memory-controlled cgroups to 64k.
5350 *
5351 * However, there usually are many references to the offline CSS after
5352 * the cgroup has been destroyed, such as page cache or reclaimable
5353 * slab objects, that don't need to hang on to the ID. We want to keep
5354 * those dead CSS from occupying IDs, or we might quickly exhaust the
5355 * relatively small ID space and prevent the creation of new cgroups
5356 * even when there are much fewer than 64k cgroups - possibly none.
5357 *
5358 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5359 * be freed and recycled when it's no longer needed, which is usually
5360 * when the CSS is offlined.
5361 *
5362 * The only exception to that are records of swapped out tmpfs/shmem
5363 * pages that need to be attributed to live ancestors on swapin. But
5364 * those references are manageable from userspace.
5365 */
5366
5367#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5368static DEFINE_IDR(mem_cgroup_idr);
5369
5370static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5371{
5372 if (memcg->id.id > 0) {
5373 idr_remove(&mem_cgroup_idr, memcg->id.id);
5374 memcg->id.id = 0;
5375 }
5376}
5377
5378static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5379 unsigned int n)
5380{
5381 refcount_add(n, &memcg->id.ref);
5382}
5383
5384static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5385{
5386 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5387 mem_cgroup_id_remove(memcg);
5388
5389 /* Memcg ID pins CSS */
5390 css_put(&memcg->css);
5391 }
5392}
5393
5394static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5395{
5396 mem_cgroup_id_put_many(memcg, 1);
5397}
5398
5399/**
5400 * mem_cgroup_from_id - look up a memcg from a memcg id
5401 * @id: the memcg id to look up
5402 *
5403 * Caller must hold rcu_read_lock().
5404 */
5405struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5406{
5407 WARN_ON_ONCE(!rcu_read_lock_held());
5408 return idr_find(&mem_cgroup_idr, id);
5409}
5410
5411#ifdef CONFIG_SHRINKER_DEBUG
5412struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5413{
5414 struct cgroup *cgrp;
5415 struct cgroup_subsys_state *css;
5416 struct mem_cgroup *memcg;
5417
5418 cgrp = cgroup_get_from_id(ino);
5419 if (IS_ERR(cgrp))
5420 return ERR_CAST(cgrp);
5421
5422 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5423 if (css)
5424 memcg = container_of(css, struct mem_cgroup, css);
5425 else
5426 memcg = ERR_PTR(-ENOENT);
5427
5428 cgroup_put(cgrp);
5429
5430 return memcg;
5431}
5432#endif
5433
5434static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5435{
5436 struct mem_cgroup_per_node *pn;
5437
5438 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5439 if (!pn)
5440 return 1;
5441
5442 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5443 GFP_KERNEL_ACCOUNT);
5444 if (!pn->lruvec_stats_percpu) {
5445 kfree(pn);
5446 return 1;
5447 }
5448
5449 lruvec_init(&pn->lruvec);
5450 pn->memcg = memcg;
5451
5452 memcg->nodeinfo[node] = pn;
5453 return 0;
5454}
5455
5456static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5457{
5458 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5459
5460 if (!pn)
5461 return;
5462
5463 free_percpu(pn->lruvec_stats_percpu);
5464 kfree(pn);
5465}
5466
5467static void __mem_cgroup_free(struct mem_cgroup *memcg)
5468{
5469 int node;
5470
5471 if (memcg->orig_objcg)
5472 obj_cgroup_put(memcg->orig_objcg);
5473
5474 for_each_node(node)
5475 free_mem_cgroup_per_node_info(memcg, node);
5476 kfree(memcg->vmstats);
5477 free_percpu(memcg->vmstats_percpu);
5478 kfree(memcg);
5479}
5480
5481static void mem_cgroup_free(struct mem_cgroup *memcg)
5482{
5483 lru_gen_exit_memcg(memcg);
5484 memcg_wb_domain_exit(memcg);
5485 __mem_cgroup_free(memcg);
5486}
5487
5488static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5489{
5490 struct memcg_vmstats_percpu *statc, *pstatc;
5491 struct mem_cgroup *memcg;
5492 int node, cpu;
5493 int __maybe_unused i;
5494 long error = -ENOMEM;
5495
5496 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5497 if (!memcg)
5498 return ERR_PTR(error);
5499
5500 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5501 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5502 if (memcg->id.id < 0) {
5503 error = memcg->id.id;
5504 goto fail;
5505 }
5506
5507 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5508 if (!memcg->vmstats)
5509 goto fail;
5510
5511 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5512 GFP_KERNEL_ACCOUNT);
5513 if (!memcg->vmstats_percpu)
5514 goto fail;
5515
5516 for_each_possible_cpu(cpu) {
5517 if (parent)
5518 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5519 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5520 statc->parent = parent ? pstatc : NULL;
5521 statc->vmstats = memcg->vmstats;
5522 }
5523
5524 for_each_node(node)
5525 if (alloc_mem_cgroup_per_node_info(memcg, node))
5526 goto fail;
5527
5528 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5529 goto fail;
5530
5531 INIT_WORK(&memcg->high_work, high_work_func);
5532 INIT_LIST_HEAD(&memcg->oom_notify);
5533 mutex_init(&memcg->thresholds_lock);
5534 spin_lock_init(&memcg->move_lock);
5535 vmpressure_init(&memcg->vmpressure);
5536 INIT_LIST_HEAD(&memcg->event_list);
5537 spin_lock_init(&memcg->event_list_lock);
5538 memcg->socket_pressure = jiffies;
5539#ifdef CONFIG_MEMCG_KMEM
5540 memcg->kmemcg_id = -1;
5541 INIT_LIST_HEAD(&memcg->objcg_list);
5542#endif
5543#ifdef CONFIG_CGROUP_WRITEBACK
5544 INIT_LIST_HEAD(&memcg->cgwb_list);
5545 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5546 memcg->cgwb_frn[i].done =
5547 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5548#endif
5549#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5550 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5551 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5552 memcg->deferred_split_queue.split_queue_len = 0;
5553#endif
5554 lru_gen_init_memcg(memcg);
5555 return memcg;
5556fail:
5557 mem_cgroup_id_remove(memcg);
5558 __mem_cgroup_free(memcg);
5559 return ERR_PTR(error);
5560}
5561
5562static struct cgroup_subsys_state * __ref
5563mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5564{
5565 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5566 struct mem_cgroup *memcg, *old_memcg;
5567
5568 old_memcg = set_active_memcg(parent);
5569 memcg = mem_cgroup_alloc(parent);
5570 set_active_memcg(old_memcg);
5571 if (IS_ERR(memcg))
5572 return ERR_CAST(memcg);
5573
5574 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5575 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5576#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5577 memcg->zswap_max = PAGE_COUNTER_MAX;
5578 WRITE_ONCE(memcg->zswap_writeback,
5579 !parent || READ_ONCE(parent->zswap_writeback));
5580#endif
5581 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5582 if (parent) {
5583 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5584 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5585
5586 page_counter_init(&memcg->memory, &parent->memory);
5587 page_counter_init(&memcg->swap, &parent->swap);
5588 page_counter_init(&memcg->kmem, &parent->kmem);
5589 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5590 } else {
5591 init_memcg_events();
5592 page_counter_init(&memcg->memory, NULL);
5593 page_counter_init(&memcg->swap, NULL);
5594 page_counter_init(&memcg->kmem, NULL);
5595 page_counter_init(&memcg->tcpmem, NULL);
5596
5597 root_mem_cgroup = memcg;
5598 return &memcg->css;
5599 }
5600
5601 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5602 static_branch_inc(&memcg_sockets_enabled_key);
5603
5604#if defined(CONFIG_MEMCG_KMEM)
5605 if (!cgroup_memory_nobpf)
5606 static_branch_inc(&memcg_bpf_enabled_key);
5607#endif
5608
5609 return &memcg->css;
5610}
5611
5612static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5613{
5614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615
5616 if (memcg_online_kmem(memcg))
5617 goto remove_id;
5618
5619 /*
5620 * A memcg must be visible for expand_shrinker_info()
5621 * by the time the maps are allocated. So, we allocate maps
5622 * here, when for_each_mem_cgroup() can't skip it.
5623 */
5624 if (alloc_shrinker_info(memcg))
5625 goto offline_kmem;
5626
5627 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5628 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5629 FLUSH_TIME);
5630 lru_gen_online_memcg(memcg);
5631
5632 /* Online state pins memcg ID, memcg ID pins CSS */
5633 refcount_set(&memcg->id.ref, 1);
5634 css_get(css);
5635
5636 /*
5637 * Ensure mem_cgroup_from_id() works once we're fully online.
5638 *
5639 * We could do this earlier and require callers to filter with
5640 * css_tryget_online(). But right now there are no users that
5641 * need earlier access, and the workingset code relies on the
5642 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5643 * publish it here at the end of onlining. This matches the
5644 * regular ID destruction during offlining.
5645 */
5646 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5647
5648 return 0;
5649offline_kmem:
5650 memcg_offline_kmem(memcg);
5651remove_id:
5652 mem_cgroup_id_remove(memcg);
5653 return -ENOMEM;
5654}
5655
5656static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5657{
5658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659 struct mem_cgroup_event *event, *tmp;
5660
5661 /*
5662 * Unregister events and notify userspace.
5663 * Notify userspace about cgroup removing only after rmdir of cgroup
5664 * directory to avoid race between userspace and kernelspace.
5665 */
5666 spin_lock_irq(&memcg->event_list_lock);
5667 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5668 list_del_init(&event->list);
5669 schedule_work(&event->remove);
5670 }
5671 spin_unlock_irq(&memcg->event_list_lock);
5672
5673 page_counter_set_min(&memcg->memory, 0);
5674 page_counter_set_low(&memcg->memory, 0);
5675
5676 zswap_memcg_offline_cleanup(memcg);
5677
5678 memcg_offline_kmem(memcg);
5679 reparent_shrinker_deferred(memcg);
5680 wb_memcg_offline(memcg);
5681 lru_gen_offline_memcg(memcg);
5682
5683 drain_all_stock(memcg);
5684
5685 mem_cgroup_id_put(memcg);
5686}
5687
5688static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5689{
5690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5691
5692 invalidate_reclaim_iterators(memcg);
5693 lru_gen_release_memcg(memcg);
5694}
5695
5696static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5697{
5698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5699 int __maybe_unused i;
5700
5701#ifdef CONFIG_CGROUP_WRITEBACK
5702 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5703 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5704#endif
5705 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5706 static_branch_dec(&memcg_sockets_enabled_key);
5707
5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5709 static_branch_dec(&memcg_sockets_enabled_key);
5710
5711#if defined(CONFIG_MEMCG_KMEM)
5712 if (!cgroup_memory_nobpf)
5713 static_branch_dec(&memcg_bpf_enabled_key);
5714#endif
5715
5716 vmpressure_cleanup(&memcg->vmpressure);
5717 cancel_work_sync(&memcg->high_work);
5718 mem_cgroup_remove_from_trees(memcg);
5719 free_shrinker_info(memcg);
5720 mem_cgroup_free(memcg);
5721}
5722
5723/**
5724 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5725 * @css: the target css
5726 *
5727 * Reset the states of the mem_cgroup associated with @css. This is
5728 * invoked when the userland requests disabling on the default hierarchy
5729 * but the memcg is pinned through dependency. The memcg should stop
5730 * applying policies and should revert to the vanilla state as it may be
5731 * made visible again.
5732 *
5733 * The current implementation only resets the essential configurations.
5734 * This needs to be expanded to cover all the visible parts.
5735 */
5736static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5737{
5738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739
5740 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5741 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5742 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5743 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5744 page_counter_set_min(&memcg->memory, 0);
5745 page_counter_set_low(&memcg->memory, 0);
5746 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5747 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5748 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5749 memcg_wb_domain_size_changed(memcg);
5750}
5751
5752static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5753{
5754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5756 struct memcg_vmstats_percpu *statc;
5757 long delta, delta_cpu, v;
5758 int i, nid;
5759
5760 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5761
5762 for (i = 0; i < MEMCG_NR_STAT; i++) {
5763 /*
5764 * Collect the aggregated propagation counts of groups
5765 * below us. We're in a per-cpu loop here and this is
5766 * a global counter, so the first cycle will get them.
5767 */
5768 delta = memcg->vmstats->state_pending[i];
5769 if (delta)
5770 memcg->vmstats->state_pending[i] = 0;
5771
5772 /* Add CPU changes on this level since the last flush */
5773 delta_cpu = 0;
5774 v = READ_ONCE(statc->state[i]);
5775 if (v != statc->state_prev[i]) {
5776 delta_cpu = v - statc->state_prev[i];
5777 delta += delta_cpu;
5778 statc->state_prev[i] = v;
5779 }
5780
5781 /* Aggregate counts on this level and propagate upwards */
5782 if (delta_cpu)
5783 memcg->vmstats->state_local[i] += delta_cpu;
5784
5785 if (delta) {
5786 memcg->vmstats->state[i] += delta;
5787 if (parent)
5788 parent->vmstats->state_pending[i] += delta;
5789 }
5790 }
5791
5792 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5793 delta = memcg->vmstats->events_pending[i];
5794 if (delta)
5795 memcg->vmstats->events_pending[i] = 0;
5796
5797 delta_cpu = 0;
5798 v = READ_ONCE(statc->events[i]);
5799 if (v != statc->events_prev[i]) {
5800 delta_cpu = v - statc->events_prev[i];
5801 delta += delta_cpu;
5802 statc->events_prev[i] = v;
5803 }
5804
5805 if (delta_cpu)
5806 memcg->vmstats->events_local[i] += delta_cpu;
5807
5808 if (delta) {
5809 memcg->vmstats->events[i] += delta;
5810 if (parent)
5811 parent->vmstats->events_pending[i] += delta;
5812 }
5813 }
5814
5815 for_each_node_state(nid, N_MEMORY) {
5816 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5817 struct mem_cgroup_per_node *ppn = NULL;
5818 struct lruvec_stats_percpu *lstatc;
5819
5820 if (parent)
5821 ppn = parent->nodeinfo[nid];
5822
5823 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5824
5825 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5826 delta = pn->lruvec_stats.state_pending[i];
5827 if (delta)
5828 pn->lruvec_stats.state_pending[i] = 0;
5829
5830 delta_cpu = 0;
5831 v = READ_ONCE(lstatc->state[i]);
5832 if (v != lstatc->state_prev[i]) {
5833 delta_cpu = v - lstatc->state_prev[i];
5834 delta += delta_cpu;
5835 lstatc->state_prev[i] = v;
5836 }
5837
5838 if (delta_cpu)
5839 pn->lruvec_stats.state_local[i] += delta_cpu;
5840
5841 if (delta) {
5842 pn->lruvec_stats.state[i] += delta;
5843 if (ppn)
5844 ppn->lruvec_stats.state_pending[i] += delta;
5845 }
5846 }
5847 }
5848 statc->stats_updates = 0;
5849 /* We are in a per-cpu loop here, only do the atomic write once */
5850 if (atomic64_read(&memcg->vmstats->stats_updates))
5851 atomic64_set(&memcg->vmstats->stats_updates, 0);
5852}
5853
5854#ifdef CONFIG_MMU
5855/* Handlers for move charge at task migration. */
5856static int mem_cgroup_do_precharge(unsigned long count)
5857{
5858 int ret;
5859
5860 /* Try a single bulk charge without reclaim first, kswapd may wake */
5861 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5862 if (!ret) {
5863 mc.precharge += count;
5864 return ret;
5865 }
5866
5867 /* Try charges one by one with reclaim, but do not retry */
5868 while (count--) {
5869 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5870 if (ret)
5871 return ret;
5872 mc.precharge++;
5873 cond_resched();
5874 }
5875 return 0;
5876}
5877
5878union mc_target {
5879 struct folio *folio;
5880 swp_entry_t ent;
5881};
5882
5883enum mc_target_type {
5884 MC_TARGET_NONE = 0,
5885 MC_TARGET_PAGE,
5886 MC_TARGET_SWAP,
5887 MC_TARGET_DEVICE,
5888};
5889
5890static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5891 unsigned long addr, pte_t ptent)
5892{
5893 struct page *page = vm_normal_page(vma, addr, ptent);
5894
5895 if (!page)
5896 return NULL;
5897 if (PageAnon(page)) {
5898 if (!(mc.flags & MOVE_ANON))
5899 return NULL;
5900 } else {
5901 if (!(mc.flags & MOVE_FILE))
5902 return NULL;
5903 }
5904 get_page(page);
5905
5906 return page;
5907}
5908
5909#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5910static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5911 pte_t ptent, swp_entry_t *entry)
5912{
5913 struct page *page = NULL;
5914 swp_entry_t ent = pte_to_swp_entry(ptent);
5915
5916 if (!(mc.flags & MOVE_ANON))
5917 return NULL;
5918
5919 /*
5920 * Handle device private pages that are not accessible by the CPU, but
5921 * stored as special swap entries in the page table.
5922 */
5923 if (is_device_private_entry(ent)) {
5924 page = pfn_swap_entry_to_page(ent);
5925 if (!get_page_unless_zero(page))
5926 return NULL;
5927 return page;
5928 }
5929
5930 if (non_swap_entry(ent))
5931 return NULL;
5932
5933 /*
5934 * Because swap_cache_get_folio() updates some statistics counter,
5935 * we call find_get_page() with swapper_space directly.
5936 */
5937 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5938 entry->val = ent.val;
5939
5940 return page;
5941}
5942#else
5943static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5944 pte_t ptent, swp_entry_t *entry)
5945{
5946 return NULL;
5947}
5948#endif
5949
5950static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5951 unsigned long addr, pte_t ptent)
5952{
5953 unsigned long index;
5954 struct folio *folio;
5955
5956 if (!vma->vm_file) /* anonymous vma */
5957 return NULL;
5958 if (!(mc.flags & MOVE_FILE))
5959 return NULL;
5960
5961 /* folio is moved even if it's not RSS of this task(page-faulted). */
5962 /* shmem/tmpfs may report page out on swap: account for that too. */
5963 index = linear_page_index(vma, addr);
5964 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5965 if (IS_ERR(folio))
5966 return NULL;
5967 return folio_file_page(folio, index);
5968}
5969
5970/**
5971 * mem_cgroup_move_account - move account of the folio
5972 * @folio: The folio.
5973 * @compound: charge the page as compound or small page
5974 * @from: mem_cgroup which the folio is moved from.
5975 * @to: mem_cgroup which the folio is moved to. @from != @to.
5976 *
5977 * The folio must be locked and not on the LRU.
5978 *
5979 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5980 * from old cgroup.
5981 */
5982static int mem_cgroup_move_account(struct folio *folio,
5983 bool compound,
5984 struct mem_cgroup *from,
5985 struct mem_cgroup *to)
5986{
5987 struct lruvec *from_vec, *to_vec;
5988 struct pglist_data *pgdat;
5989 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5990 int nid, ret;
5991
5992 VM_BUG_ON(from == to);
5993 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5994 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5995 VM_BUG_ON(compound && !folio_test_large(folio));
5996
5997 ret = -EINVAL;
5998 if (folio_memcg(folio) != from)
5999 goto out;
6000
6001 pgdat = folio_pgdat(folio);
6002 from_vec = mem_cgroup_lruvec(from, pgdat);
6003 to_vec = mem_cgroup_lruvec(to, pgdat);
6004
6005 folio_memcg_lock(folio);
6006
6007 if (folio_test_anon(folio)) {
6008 if (folio_mapped(folio)) {
6009 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6010 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6011 if (folio_test_pmd_mappable(folio)) {
6012 __mod_lruvec_state(from_vec, NR_ANON_THPS,
6013 -nr_pages);
6014 __mod_lruvec_state(to_vec, NR_ANON_THPS,
6015 nr_pages);
6016 }
6017 }
6018 } else {
6019 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6020 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6021
6022 if (folio_test_swapbacked(folio)) {
6023 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6024 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6025 }
6026
6027 if (folio_mapped(folio)) {
6028 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6029 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6030 }
6031
6032 if (folio_test_dirty(folio)) {
6033 struct address_space *mapping = folio_mapping(folio);
6034
6035 if (mapping_can_writeback(mapping)) {
6036 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6037 -nr_pages);
6038 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6039 nr_pages);
6040 }
6041 }
6042 }
6043
6044#ifdef CONFIG_SWAP
6045 if (folio_test_swapcache(folio)) {
6046 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6047 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6048 }
6049#endif
6050 if (folio_test_writeback(folio)) {
6051 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6052 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6053 }
6054
6055 /*
6056 * All state has been migrated, let's switch to the new memcg.
6057 *
6058 * It is safe to change page's memcg here because the page
6059 * is referenced, charged, isolated, and locked: we can't race
6060 * with (un)charging, migration, LRU putback, or anything else
6061 * that would rely on a stable page's memory cgroup.
6062 *
6063 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6064 * to save space. As soon as we switch page's memory cgroup to a
6065 * new memcg that isn't locked, the above state can change
6066 * concurrently again. Make sure we're truly done with it.
6067 */
6068 smp_mb();
6069
6070 css_get(&to->css);
6071 css_put(&from->css);
6072
6073 folio->memcg_data = (unsigned long)to;
6074
6075 __folio_memcg_unlock(from);
6076
6077 ret = 0;
6078 nid = folio_nid(folio);
6079
6080 local_irq_disable();
6081 mem_cgroup_charge_statistics(to, nr_pages);
6082 memcg_check_events(to, nid);
6083 mem_cgroup_charge_statistics(from, -nr_pages);
6084 memcg_check_events(from, nid);
6085 local_irq_enable();
6086out:
6087 return ret;
6088}
6089
6090/**
6091 * get_mctgt_type - get target type of moving charge
6092 * @vma: the vma the pte to be checked belongs
6093 * @addr: the address corresponding to the pte to be checked
6094 * @ptent: the pte to be checked
6095 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6096 *
6097 * Context: Called with pte lock held.
6098 * Return:
6099 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6100 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6101 * move charge. If @target is not NULL, the folio is stored in target->folio
6102 * with extra refcnt taken (Caller should release it).
6103 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6104 * target for charge migration. If @target is not NULL, the entry is
6105 * stored in target->ent.
6106 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6107 * thus not on the lru. For now such page is charged like a regular page
6108 * would be as it is just special memory taking the place of a regular page.
6109 * See Documentations/vm/hmm.txt and include/linux/hmm.h
6110 */
6111static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6112 unsigned long addr, pte_t ptent, union mc_target *target)
6113{
6114 struct page *page = NULL;
6115 struct folio *folio;
6116 enum mc_target_type ret = MC_TARGET_NONE;
6117 swp_entry_t ent = { .val = 0 };
6118
6119 if (pte_present(ptent))
6120 page = mc_handle_present_pte(vma, addr, ptent);
6121 else if (pte_none_mostly(ptent))
6122 /*
6123 * PTE markers should be treated as a none pte here, separated
6124 * from other swap handling below.
6125 */
6126 page = mc_handle_file_pte(vma, addr, ptent);
6127 else if (is_swap_pte(ptent))
6128 page = mc_handle_swap_pte(vma, ptent, &ent);
6129
6130 if (page)
6131 folio = page_folio(page);
6132 if (target && page) {
6133 if (!folio_trylock(folio)) {
6134 folio_put(folio);
6135 return ret;
6136 }
6137 /*
6138 * page_mapped() must be stable during the move. This
6139 * pte is locked, so if it's present, the page cannot
6140 * become unmapped. If it isn't, we have only partial
6141 * control over the mapped state: the page lock will
6142 * prevent new faults against pagecache and swapcache,
6143 * so an unmapped page cannot become mapped. However,
6144 * if the page is already mapped elsewhere, it can
6145 * unmap, and there is nothing we can do about it.
6146 * Alas, skip moving the page in this case.
6147 */
6148 if (!pte_present(ptent) && page_mapped(page)) {
6149 folio_unlock(folio);
6150 folio_put(folio);
6151 return ret;
6152 }
6153 }
6154
6155 if (!page && !ent.val)
6156 return ret;
6157 if (page) {
6158 /*
6159 * Do only loose check w/o serialization.
6160 * mem_cgroup_move_account() checks the page is valid or
6161 * not under LRU exclusion.
6162 */
6163 if (folio_memcg(folio) == mc.from) {
6164 ret = MC_TARGET_PAGE;
6165 if (folio_is_device_private(folio) ||
6166 folio_is_device_coherent(folio))
6167 ret = MC_TARGET_DEVICE;
6168 if (target)
6169 target->folio = folio;
6170 }
6171 if (!ret || !target) {
6172 if (target)
6173 folio_unlock(folio);
6174 folio_put(folio);
6175 }
6176 }
6177 /*
6178 * There is a swap entry and a page doesn't exist or isn't charged.
6179 * But we cannot move a tail-page in a THP.
6180 */
6181 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6182 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6183 ret = MC_TARGET_SWAP;
6184 if (target)
6185 target->ent = ent;
6186 }
6187 return ret;
6188}
6189
6190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6191/*
6192 * We don't consider PMD mapped swapping or file mapped pages because THP does
6193 * not support them for now.
6194 * Caller should make sure that pmd_trans_huge(pmd) is true.
6195 */
6196static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6197 unsigned long addr, pmd_t pmd, union mc_target *target)
6198{
6199 struct page *page = NULL;
6200 struct folio *folio;
6201 enum mc_target_type ret = MC_TARGET_NONE;
6202
6203 if (unlikely(is_swap_pmd(pmd))) {
6204 VM_BUG_ON(thp_migration_supported() &&
6205 !is_pmd_migration_entry(pmd));
6206 return ret;
6207 }
6208 page = pmd_page(pmd);
6209 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6210 folio = page_folio(page);
6211 if (!(mc.flags & MOVE_ANON))
6212 return ret;
6213 if (folio_memcg(folio) == mc.from) {
6214 ret = MC_TARGET_PAGE;
6215 if (target) {
6216 folio_get(folio);
6217 if (!folio_trylock(folio)) {
6218 folio_put(folio);
6219 return MC_TARGET_NONE;
6220 }
6221 target->folio = folio;
6222 }
6223 }
6224 return ret;
6225}
6226#else
6227static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6228 unsigned long addr, pmd_t pmd, union mc_target *target)
6229{
6230 return MC_TARGET_NONE;
6231}
6232#endif
6233
6234static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6235 unsigned long addr, unsigned long end,
6236 struct mm_walk *walk)
6237{
6238 struct vm_area_struct *vma = walk->vma;
6239 pte_t *pte;
6240 spinlock_t *ptl;
6241
6242 ptl = pmd_trans_huge_lock(pmd, vma);
6243 if (ptl) {
6244 /*
6245 * Note their can not be MC_TARGET_DEVICE for now as we do not
6246 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6247 * this might change.
6248 */
6249 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6250 mc.precharge += HPAGE_PMD_NR;
6251 spin_unlock(ptl);
6252 return 0;
6253 }
6254
6255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6256 if (!pte)
6257 return 0;
6258 for (; addr != end; pte++, addr += PAGE_SIZE)
6259 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6260 mc.precharge++; /* increment precharge temporarily */
6261 pte_unmap_unlock(pte - 1, ptl);
6262 cond_resched();
6263
6264 return 0;
6265}
6266
6267static const struct mm_walk_ops precharge_walk_ops = {
6268 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6269 .walk_lock = PGWALK_RDLOCK,
6270};
6271
6272static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6273{
6274 unsigned long precharge;
6275
6276 mmap_read_lock(mm);
6277 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6278 mmap_read_unlock(mm);
6279
6280 precharge = mc.precharge;
6281 mc.precharge = 0;
6282
6283 return precharge;
6284}
6285
6286static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6287{
6288 unsigned long precharge = mem_cgroup_count_precharge(mm);
6289
6290 VM_BUG_ON(mc.moving_task);
6291 mc.moving_task = current;
6292 return mem_cgroup_do_precharge(precharge);
6293}
6294
6295/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6296static void __mem_cgroup_clear_mc(void)
6297{
6298 struct mem_cgroup *from = mc.from;
6299 struct mem_cgroup *to = mc.to;
6300
6301 /* we must uncharge all the leftover precharges from mc.to */
6302 if (mc.precharge) {
6303 mem_cgroup_cancel_charge(mc.to, mc.precharge);
6304 mc.precharge = 0;
6305 }
6306 /*
6307 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6308 * we must uncharge here.
6309 */
6310 if (mc.moved_charge) {
6311 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6312 mc.moved_charge = 0;
6313 }
6314 /* we must fixup refcnts and charges */
6315 if (mc.moved_swap) {
6316 /* uncharge swap account from the old cgroup */
6317 if (!mem_cgroup_is_root(mc.from))
6318 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6319
6320 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6321
6322 /*
6323 * we charged both to->memory and to->memsw, so we
6324 * should uncharge to->memory.
6325 */
6326 if (!mem_cgroup_is_root(mc.to))
6327 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6328
6329 mc.moved_swap = 0;
6330 }
6331 memcg_oom_recover(from);
6332 memcg_oom_recover(to);
6333 wake_up_all(&mc.waitq);
6334}
6335
6336static void mem_cgroup_clear_mc(void)
6337{
6338 struct mm_struct *mm = mc.mm;
6339
6340 /*
6341 * we must clear moving_task before waking up waiters at the end of
6342 * task migration.
6343 */
6344 mc.moving_task = NULL;
6345 __mem_cgroup_clear_mc();
6346 spin_lock(&mc.lock);
6347 mc.from = NULL;
6348 mc.to = NULL;
6349 mc.mm = NULL;
6350 spin_unlock(&mc.lock);
6351
6352 mmput(mm);
6353}
6354
6355static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356{
6357 struct cgroup_subsys_state *css;
6358 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6359 struct mem_cgroup *from;
6360 struct task_struct *leader, *p;
6361 struct mm_struct *mm;
6362 unsigned long move_flags;
6363 int ret = 0;
6364
6365 /* charge immigration isn't supported on the default hierarchy */
6366 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6367 return 0;
6368
6369 /*
6370 * Multi-process migrations only happen on the default hierarchy
6371 * where charge immigration is not used. Perform charge
6372 * immigration if @tset contains a leader and whine if there are
6373 * multiple.
6374 */
6375 p = NULL;
6376 cgroup_taskset_for_each_leader(leader, css, tset) {
6377 WARN_ON_ONCE(p);
6378 p = leader;
6379 memcg = mem_cgroup_from_css(css);
6380 }
6381 if (!p)
6382 return 0;
6383
6384 /*
6385 * We are now committed to this value whatever it is. Changes in this
6386 * tunable will only affect upcoming migrations, not the current one.
6387 * So we need to save it, and keep it going.
6388 */
6389 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6390 if (!move_flags)
6391 return 0;
6392
6393 from = mem_cgroup_from_task(p);
6394
6395 VM_BUG_ON(from == memcg);
6396
6397 mm = get_task_mm(p);
6398 if (!mm)
6399 return 0;
6400 /* We move charges only when we move a owner of the mm */
6401 if (mm->owner == p) {
6402 VM_BUG_ON(mc.from);
6403 VM_BUG_ON(mc.to);
6404 VM_BUG_ON(mc.precharge);
6405 VM_BUG_ON(mc.moved_charge);
6406 VM_BUG_ON(mc.moved_swap);
6407
6408 spin_lock(&mc.lock);
6409 mc.mm = mm;
6410 mc.from = from;
6411 mc.to = memcg;
6412 mc.flags = move_flags;
6413 spin_unlock(&mc.lock);
6414 /* We set mc.moving_task later */
6415
6416 ret = mem_cgroup_precharge_mc(mm);
6417 if (ret)
6418 mem_cgroup_clear_mc();
6419 } else {
6420 mmput(mm);
6421 }
6422 return ret;
6423}
6424
6425static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6426{
6427 if (mc.to)
6428 mem_cgroup_clear_mc();
6429}
6430
6431static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6432 unsigned long addr, unsigned long end,
6433 struct mm_walk *walk)
6434{
6435 int ret = 0;
6436 struct vm_area_struct *vma = walk->vma;
6437 pte_t *pte;
6438 spinlock_t *ptl;
6439 enum mc_target_type target_type;
6440 union mc_target target;
6441 struct folio *folio;
6442
6443 ptl = pmd_trans_huge_lock(pmd, vma);
6444 if (ptl) {
6445 if (mc.precharge < HPAGE_PMD_NR) {
6446 spin_unlock(ptl);
6447 return 0;
6448 }
6449 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6450 if (target_type == MC_TARGET_PAGE) {
6451 folio = target.folio;
6452 if (folio_isolate_lru(folio)) {
6453 if (!mem_cgroup_move_account(folio, true,
6454 mc.from, mc.to)) {
6455 mc.precharge -= HPAGE_PMD_NR;
6456 mc.moved_charge += HPAGE_PMD_NR;
6457 }
6458 folio_putback_lru(folio);
6459 }
6460 folio_unlock(folio);
6461 folio_put(folio);
6462 } else if (target_type == MC_TARGET_DEVICE) {
6463 folio = target.folio;
6464 if (!mem_cgroup_move_account(folio, true,
6465 mc.from, mc.to)) {
6466 mc.precharge -= HPAGE_PMD_NR;
6467 mc.moved_charge += HPAGE_PMD_NR;
6468 }
6469 folio_unlock(folio);
6470 folio_put(folio);
6471 }
6472 spin_unlock(ptl);
6473 return 0;
6474 }
6475
6476retry:
6477 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6478 if (!pte)
6479 return 0;
6480 for (; addr != end; addr += PAGE_SIZE) {
6481 pte_t ptent = ptep_get(pte++);
6482 bool device = false;
6483 swp_entry_t ent;
6484
6485 if (!mc.precharge)
6486 break;
6487
6488 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6489 case MC_TARGET_DEVICE:
6490 device = true;
6491 fallthrough;
6492 case MC_TARGET_PAGE:
6493 folio = target.folio;
6494 /*
6495 * We can have a part of the split pmd here. Moving it
6496 * can be done but it would be too convoluted so simply
6497 * ignore such a partial THP and keep it in original
6498 * memcg. There should be somebody mapping the head.
6499 */
6500 if (folio_test_large(folio))
6501 goto put;
6502 if (!device && !folio_isolate_lru(folio))
6503 goto put;
6504 if (!mem_cgroup_move_account(folio, false,
6505 mc.from, mc.to)) {
6506 mc.precharge--;
6507 /* we uncharge from mc.from later. */
6508 mc.moved_charge++;
6509 }
6510 if (!device)
6511 folio_putback_lru(folio);
6512put: /* get_mctgt_type() gets & locks the page */
6513 folio_unlock(folio);
6514 folio_put(folio);
6515 break;
6516 case MC_TARGET_SWAP:
6517 ent = target.ent;
6518 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6519 mc.precharge--;
6520 mem_cgroup_id_get_many(mc.to, 1);
6521 /* we fixup other refcnts and charges later. */
6522 mc.moved_swap++;
6523 }
6524 break;
6525 default:
6526 break;
6527 }
6528 }
6529 pte_unmap_unlock(pte - 1, ptl);
6530 cond_resched();
6531
6532 if (addr != end) {
6533 /*
6534 * We have consumed all precharges we got in can_attach().
6535 * We try charge one by one, but don't do any additional
6536 * charges to mc.to if we have failed in charge once in attach()
6537 * phase.
6538 */
6539 ret = mem_cgroup_do_precharge(1);
6540 if (!ret)
6541 goto retry;
6542 }
6543
6544 return ret;
6545}
6546
6547static const struct mm_walk_ops charge_walk_ops = {
6548 .pmd_entry = mem_cgroup_move_charge_pte_range,
6549 .walk_lock = PGWALK_RDLOCK,
6550};
6551
6552static void mem_cgroup_move_charge(void)
6553{
6554 lru_add_drain_all();
6555 /*
6556 * Signal folio_memcg_lock() to take the memcg's move_lock
6557 * while we're moving its pages to another memcg. Then wait
6558 * for already started RCU-only updates to finish.
6559 */
6560 atomic_inc(&mc.from->moving_account);
6561 synchronize_rcu();
6562retry:
6563 if (unlikely(!mmap_read_trylock(mc.mm))) {
6564 /*
6565 * Someone who are holding the mmap_lock might be waiting in
6566 * waitq. So we cancel all extra charges, wake up all waiters,
6567 * and retry. Because we cancel precharges, we might not be able
6568 * to move enough charges, but moving charge is a best-effort
6569 * feature anyway, so it wouldn't be a big problem.
6570 */
6571 __mem_cgroup_clear_mc();
6572 cond_resched();
6573 goto retry;
6574 }
6575 /*
6576 * When we have consumed all precharges and failed in doing
6577 * additional charge, the page walk just aborts.
6578 */
6579 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6580 mmap_read_unlock(mc.mm);
6581 atomic_dec(&mc.from->moving_account);
6582}
6583
6584static void mem_cgroup_move_task(void)
6585{
6586 if (mc.to) {
6587 mem_cgroup_move_charge();
6588 mem_cgroup_clear_mc();
6589 }
6590}
6591
6592#else /* !CONFIG_MMU */
6593static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6594{
6595 return 0;
6596}
6597static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6598{
6599}
6600static void mem_cgroup_move_task(void)
6601{
6602}
6603#endif
6604
6605#ifdef CONFIG_MEMCG_KMEM
6606static void mem_cgroup_fork(struct task_struct *task)
6607{
6608 /*
6609 * Set the update flag to cause task->objcg to be initialized lazily
6610 * on the first allocation. It can be done without any synchronization
6611 * because it's always performed on the current task, so does
6612 * current_objcg_update().
6613 */
6614 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6615}
6616
6617static void mem_cgroup_exit(struct task_struct *task)
6618{
6619 struct obj_cgroup *objcg = task->objcg;
6620
6621 objcg = (struct obj_cgroup *)
6622 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6623 if (objcg)
6624 obj_cgroup_put(objcg);
6625
6626 /*
6627 * Some kernel allocations can happen after this point,
6628 * but let's ignore them. It can be done without any synchronization
6629 * because it's always performed on the current task, so does
6630 * current_objcg_update().
6631 */
6632 task->objcg = NULL;
6633}
6634#endif
6635
6636#ifdef CONFIG_LRU_GEN
6637static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6638{
6639 struct task_struct *task;
6640 struct cgroup_subsys_state *css;
6641
6642 /* find the first leader if there is any */
6643 cgroup_taskset_for_each_leader(task, css, tset)
6644 break;
6645
6646 if (!task)
6647 return;
6648
6649 task_lock(task);
6650 if (task->mm && READ_ONCE(task->mm->owner) == task)
6651 lru_gen_migrate_mm(task->mm);
6652 task_unlock(task);
6653}
6654#else
6655static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6656#endif /* CONFIG_LRU_GEN */
6657
6658#ifdef CONFIG_MEMCG_KMEM
6659static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6660{
6661 struct task_struct *task;
6662 struct cgroup_subsys_state *css;
6663
6664 cgroup_taskset_for_each(task, css, tset) {
6665 /* atomically set the update bit */
6666 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6667 }
6668}
6669#else
6670static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6671#endif /* CONFIG_MEMCG_KMEM */
6672
6673#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6674static void mem_cgroup_attach(struct cgroup_taskset *tset)
6675{
6676 mem_cgroup_lru_gen_attach(tset);
6677 mem_cgroup_kmem_attach(tset);
6678}
6679#endif
6680
6681static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6682{
6683 if (value == PAGE_COUNTER_MAX)
6684 seq_puts(m, "max\n");
6685 else
6686 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6687
6688 return 0;
6689}
6690
6691static u64 memory_current_read(struct cgroup_subsys_state *css,
6692 struct cftype *cft)
6693{
6694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6695
6696 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6697}
6698
6699static u64 memory_peak_read(struct cgroup_subsys_state *css,
6700 struct cftype *cft)
6701{
6702 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6703
6704 return (u64)memcg->memory.watermark * PAGE_SIZE;
6705}
6706
6707static int memory_min_show(struct seq_file *m, void *v)
6708{
6709 return seq_puts_memcg_tunable(m,
6710 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6711}
6712
6713static ssize_t memory_min_write(struct kernfs_open_file *of,
6714 char *buf, size_t nbytes, loff_t off)
6715{
6716 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717 unsigned long min;
6718 int err;
6719
6720 buf = strstrip(buf);
6721 err = page_counter_memparse(buf, "max", &min);
6722 if (err)
6723 return err;
6724
6725 page_counter_set_min(&memcg->memory, min);
6726
6727 return nbytes;
6728}
6729
6730static int memory_low_show(struct seq_file *m, void *v)
6731{
6732 return seq_puts_memcg_tunable(m,
6733 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6734}
6735
6736static ssize_t memory_low_write(struct kernfs_open_file *of,
6737 char *buf, size_t nbytes, loff_t off)
6738{
6739 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6740 unsigned long low;
6741 int err;
6742
6743 buf = strstrip(buf);
6744 err = page_counter_memparse(buf, "max", &low);
6745 if (err)
6746 return err;
6747
6748 page_counter_set_low(&memcg->memory, low);
6749
6750 return nbytes;
6751}
6752
6753static int memory_high_show(struct seq_file *m, void *v)
6754{
6755 return seq_puts_memcg_tunable(m,
6756 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6757}
6758
6759static ssize_t memory_high_write(struct kernfs_open_file *of,
6760 char *buf, size_t nbytes, loff_t off)
6761{
6762 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6763 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6764 bool drained = false;
6765 unsigned long high;
6766 int err;
6767
6768 buf = strstrip(buf);
6769 err = page_counter_memparse(buf, "max", &high);
6770 if (err)
6771 return err;
6772
6773 page_counter_set_high(&memcg->memory, high);
6774
6775 for (;;) {
6776 unsigned long nr_pages = page_counter_read(&memcg->memory);
6777 unsigned long reclaimed;
6778
6779 if (nr_pages <= high)
6780 break;
6781
6782 if (signal_pending(current))
6783 break;
6784
6785 if (!drained) {
6786 drain_all_stock(memcg);
6787 drained = true;
6788 continue;
6789 }
6790
6791 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6792 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6793
6794 if (!reclaimed && !nr_retries--)
6795 break;
6796 }
6797
6798 memcg_wb_domain_size_changed(memcg);
6799 return nbytes;
6800}
6801
6802static int memory_max_show(struct seq_file *m, void *v)
6803{
6804 return seq_puts_memcg_tunable(m,
6805 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6806}
6807
6808static ssize_t memory_max_write(struct kernfs_open_file *of,
6809 char *buf, size_t nbytes, loff_t off)
6810{
6811 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6812 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6813 bool drained = false;
6814 unsigned long max;
6815 int err;
6816
6817 buf = strstrip(buf);
6818 err = page_counter_memparse(buf, "max", &max);
6819 if (err)
6820 return err;
6821
6822 xchg(&memcg->memory.max, max);
6823
6824 for (;;) {
6825 unsigned long nr_pages = page_counter_read(&memcg->memory);
6826
6827 if (nr_pages <= max)
6828 break;
6829
6830 if (signal_pending(current))
6831 break;
6832
6833 if (!drained) {
6834 drain_all_stock(memcg);
6835 drained = true;
6836 continue;
6837 }
6838
6839 if (nr_reclaims) {
6840 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6841 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6842 nr_reclaims--;
6843 continue;
6844 }
6845
6846 memcg_memory_event(memcg, MEMCG_OOM);
6847 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6848 break;
6849 }
6850
6851 memcg_wb_domain_size_changed(memcg);
6852 return nbytes;
6853}
6854
6855/*
6856 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6857 * if any new events become available.
6858 */
6859static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6860{
6861 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6862 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6863 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6864 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6865 seq_printf(m, "oom_kill %lu\n",
6866 atomic_long_read(&events[MEMCG_OOM_KILL]));
6867 seq_printf(m, "oom_group_kill %lu\n",
6868 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6869}
6870
6871static int memory_events_show(struct seq_file *m, void *v)
6872{
6873 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6874
6875 __memory_events_show(m, memcg->memory_events);
6876 return 0;
6877}
6878
6879static int memory_events_local_show(struct seq_file *m, void *v)
6880{
6881 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6882
6883 __memory_events_show(m, memcg->memory_events_local);
6884 return 0;
6885}
6886
6887static int memory_stat_show(struct seq_file *m, void *v)
6888{
6889 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6890 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6891 struct seq_buf s;
6892
6893 if (!buf)
6894 return -ENOMEM;
6895 seq_buf_init(&s, buf, PAGE_SIZE);
6896 memory_stat_format(memcg, &s);
6897 seq_puts(m, buf);
6898 kfree(buf);
6899 return 0;
6900}
6901
6902#ifdef CONFIG_NUMA
6903static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6904 int item)
6905{
6906 return lruvec_page_state(lruvec, item) *
6907 memcg_page_state_output_unit(item);
6908}
6909
6910static int memory_numa_stat_show(struct seq_file *m, void *v)
6911{
6912 int i;
6913 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6914
6915 mem_cgroup_flush_stats(memcg);
6916
6917 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6918 int nid;
6919
6920 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6921 continue;
6922
6923 seq_printf(m, "%s", memory_stats[i].name);
6924 for_each_node_state(nid, N_MEMORY) {
6925 u64 size;
6926 struct lruvec *lruvec;
6927
6928 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6929 size = lruvec_page_state_output(lruvec,
6930 memory_stats[i].idx);
6931 seq_printf(m, " N%d=%llu", nid, size);
6932 }
6933 seq_putc(m, '\n');
6934 }
6935
6936 return 0;
6937}
6938#endif
6939
6940static int memory_oom_group_show(struct seq_file *m, void *v)
6941{
6942 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6943
6944 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6945
6946 return 0;
6947}
6948
6949static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6950 char *buf, size_t nbytes, loff_t off)
6951{
6952 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953 int ret, oom_group;
6954
6955 buf = strstrip(buf);
6956 if (!buf)
6957 return -EINVAL;
6958
6959 ret = kstrtoint(buf, 0, &oom_group);
6960 if (ret)
6961 return ret;
6962
6963 if (oom_group != 0 && oom_group != 1)
6964 return -EINVAL;
6965
6966 WRITE_ONCE(memcg->oom_group, oom_group);
6967
6968 return nbytes;
6969}
6970
6971static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6972 size_t nbytes, loff_t off)
6973{
6974 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6975 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6976 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6977 unsigned int reclaim_options;
6978 int err;
6979
6980 buf = strstrip(buf);
6981 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6982 if (err)
6983 return err;
6984
6985 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6986 while (nr_reclaimed < nr_to_reclaim) {
6987 /* Will converge on zero, but reclaim enforces a minimum */
6988 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
6989 unsigned long reclaimed;
6990
6991 if (signal_pending(current))
6992 return -EINTR;
6993
6994 /*
6995 * This is the final attempt, drain percpu lru caches in the
6996 * hope of introducing more evictable pages for
6997 * try_to_free_mem_cgroup_pages().
6998 */
6999 if (!nr_retries)
7000 lru_add_drain_all();
7001
7002 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7003 batch_size, GFP_KERNEL, reclaim_options);
7004
7005 if (!reclaimed && !nr_retries--)
7006 return -EAGAIN;
7007
7008 nr_reclaimed += reclaimed;
7009 }
7010
7011 return nbytes;
7012}
7013
7014static struct cftype memory_files[] = {
7015 {
7016 .name = "current",
7017 .flags = CFTYPE_NOT_ON_ROOT,
7018 .read_u64 = memory_current_read,
7019 },
7020 {
7021 .name = "peak",
7022 .flags = CFTYPE_NOT_ON_ROOT,
7023 .read_u64 = memory_peak_read,
7024 },
7025 {
7026 .name = "min",
7027 .flags = CFTYPE_NOT_ON_ROOT,
7028 .seq_show = memory_min_show,
7029 .write = memory_min_write,
7030 },
7031 {
7032 .name = "low",
7033 .flags = CFTYPE_NOT_ON_ROOT,
7034 .seq_show = memory_low_show,
7035 .write = memory_low_write,
7036 },
7037 {
7038 .name = "high",
7039 .flags = CFTYPE_NOT_ON_ROOT,
7040 .seq_show = memory_high_show,
7041 .write = memory_high_write,
7042 },
7043 {
7044 .name = "max",
7045 .flags = CFTYPE_NOT_ON_ROOT,
7046 .seq_show = memory_max_show,
7047 .write = memory_max_write,
7048 },
7049 {
7050 .name = "events",
7051 .flags = CFTYPE_NOT_ON_ROOT,
7052 .file_offset = offsetof(struct mem_cgroup, events_file),
7053 .seq_show = memory_events_show,
7054 },
7055 {
7056 .name = "events.local",
7057 .flags = CFTYPE_NOT_ON_ROOT,
7058 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7059 .seq_show = memory_events_local_show,
7060 },
7061 {
7062 .name = "stat",
7063 .seq_show = memory_stat_show,
7064 },
7065#ifdef CONFIG_NUMA
7066 {
7067 .name = "numa_stat",
7068 .seq_show = memory_numa_stat_show,
7069 },
7070#endif
7071 {
7072 .name = "oom.group",
7073 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7074 .seq_show = memory_oom_group_show,
7075 .write = memory_oom_group_write,
7076 },
7077 {
7078 .name = "reclaim",
7079 .flags = CFTYPE_NS_DELEGATABLE,
7080 .write = memory_reclaim,
7081 },
7082 { } /* terminate */
7083};
7084
7085struct cgroup_subsys memory_cgrp_subsys = {
7086 .css_alloc = mem_cgroup_css_alloc,
7087 .css_online = mem_cgroup_css_online,
7088 .css_offline = mem_cgroup_css_offline,
7089 .css_released = mem_cgroup_css_released,
7090 .css_free = mem_cgroup_css_free,
7091 .css_reset = mem_cgroup_css_reset,
7092 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7093 .can_attach = mem_cgroup_can_attach,
7094#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7095 .attach = mem_cgroup_attach,
7096#endif
7097 .cancel_attach = mem_cgroup_cancel_attach,
7098 .post_attach = mem_cgroup_move_task,
7099#ifdef CONFIG_MEMCG_KMEM
7100 .fork = mem_cgroup_fork,
7101 .exit = mem_cgroup_exit,
7102#endif
7103 .dfl_cftypes = memory_files,
7104 .legacy_cftypes = mem_cgroup_legacy_files,
7105 .early_init = 0,
7106};
7107
7108/*
7109 * This function calculates an individual cgroup's effective
7110 * protection which is derived from its own memory.min/low, its
7111 * parent's and siblings' settings, as well as the actual memory
7112 * distribution in the tree.
7113 *
7114 * The following rules apply to the effective protection values:
7115 *
7116 * 1. At the first level of reclaim, effective protection is equal to
7117 * the declared protection in memory.min and memory.low.
7118 *
7119 * 2. To enable safe delegation of the protection configuration, at
7120 * subsequent levels the effective protection is capped to the
7121 * parent's effective protection.
7122 *
7123 * 3. To make complex and dynamic subtrees easier to configure, the
7124 * user is allowed to overcommit the declared protection at a given
7125 * level. If that is the case, the parent's effective protection is
7126 * distributed to the children in proportion to how much protection
7127 * they have declared and how much of it they are utilizing.
7128 *
7129 * This makes distribution proportional, but also work-conserving:
7130 * if one cgroup claims much more protection than it uses memory,
7131 * the unused remainder is available to its siblings.
7132 *
7133 * 4. Conversely, when the declared protection is undercommitted at a
7134 * given level, the distribution of the larger parental protection
7135 * budget is NOT proportional. A cgroup's protection from a sibling
7136 * is capped to its own memory.min/low setting.
7137 *
7138 * 5. However, to allow protecting recursive subtrees from each other
7139 * without having to declare each individual cgroup's fixed share
7140 * of the ancestor's claim to protection, any unutilized -
7141 * "floating" - protection from up the tree is distributed in
7142 * proportion to each cgroup's *usage*. This makes the protection
7143 * neutral wrt sibling cgroups and lets them compete freely over
7144 * the shared parental protection budget, but it protects the
7145 * subtree as a whole from neighboring subtrees.
7146 *
7147 * Note that 4. and 5. are not in conflict: 4. is about protecting
7148 * against immediate siblings whereas 5. is about protecting against
7149 * neighboring subtrees.
7150 */
7151static unsigned long effective_protection(unsigned long usage,
7152 unsigned long parent_usage,
7153 unsigned long setting,
7154 unsigned long parent_effective,
7155 unsigned long siblings_protected)
7156{
7157 unsigned long protected;
7158 unsigned long ep;
7159
7160 protected = min(usage, setting);
7161 /*
7162 * If all cgroups at this level combined claim and use more
7163 * protection than what the parent affords them, distribute
7164 * shares in proportion to utilization.
7165 *
7166 * We are using actual utilization rather than the statically
7167 * claimed protection in order to be work-conserving: claimed
7168 * but unused protection is available to siblings that would
7169 * otherwise get a smaller chunk than what they claimed.
7170 */
7171 if (siblings_protected > parent_effective)
7172 return protected * parent_effective / siblings_protected;
7173
7174 /*
7175 * Ok, utilized protection of all children is within what the
7176 * parent affords them, so we know whatever this child claims
7177 * and utilizes is effectively protected.
7178 *
7179 * If there is unprotected usage beyond this value, reclaim
7180 * will apply pressure in proportion to that amount.
7181 *
7182 * If there is unutilized protection, the cgroup will be fully
7183 * shielded from reclaim, but we do return a smaller value for
7184 * protection than what the group could enjoy in theory. This
7185 * is okay. With the overcommit distribution above, effective
7186 * protection is always dependent on how memory is actually
7187 * consumed among the siblings anyway.
7188 */
7189 ep = protected;
7190
7191 /*
7192 * If the children aren't claiming (all of) the protection
7193 * afforded to them by the parent, distribute the remainder in
7194 * proportion to the (unprotected) memory of each cgroup. That
7195 * way, cgroups that aren't explicitly prioritized wrt each
7196 * other compete freely over the allowance, but they are
7197 * collectively protected from neighboring trees.
7198 *
7199 * We're using unprotected memory for the weight so that if
7200 * some cgroups DO claim explicit protection, we don't protect
7201 * the same bytes twice.
7202 *
7203 * Check both usage and parent_usage against the respective
7204 * protected values. One should imply the other, but they
7205 * aren't read atomically - make sure the division is sane.
7206 */
7207 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7208 return ep;
7209 if (parent_effective > siblings_protected &&
7210 parent_usage > siblings_protected &&
7211 usage > protected) {
7212 unsigned long unclaimed;
7213
7214 unclaimed = parent_effective - siblings_protected;
7215 unclaimed *= usage - protected;
7216 unclaimed /= parent_usage - siblings_protected;
7217
7218 ep += unclaimed;
7219 }
7220
7221 return ep;
7222}
7223
7224/**
7225 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7226 * @root: the top ancestor of the sub-tree being checked
7227 * @memcg: the memory cgroup to check
7228 *
7229 * WARNING: This function is not stateless! It can only be used as part
7230 * of a top-down tree iteration, not for isolated queries.
7231 */
7232void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7233 struct mem_cgroup *memcg)
7234{
7235 unsigned long usage, parent_usage;
7236 struct mem_cgroup *parent;
7237
7238 if (mem_cgroup_disabled())
7239 return;
7240
7241 if (!root)
7242 root = root_mem_cgroup;
7243
7244 /*
7245 * Effective values of the reclaim targets are ignored so they
7246 * can be stale. Have a look at mem_cgroup_protection for more
7247 * details.
7248 * TODO: calculation should be more robust so that we do not need
7249 * that special casing.
7250 */
7251 if (memcg == root)
7252 return;
7253
7254 usage = page_counter_read(&memcg->memory);
7255 if (!usage)
7256 return;
7257
7258 parent = parent_mem_cgroup(memcg);
7259
7260 if (parent == root) {
7261 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7262 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7263 return;
7264 }
7265
7266 parent_usage = page_counter_read(&parent->memory);
7267
7268 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7269 READ_ONCE(memcg->memory.min),
7270 READ_ONCE(parent->memory.emin),
7271 atomic_long_read(&parent->memory.children_min_usage)));
7272
7273 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7274 READ_ONCE(memcg->memory.low),
7275 READ_ONCE(parent->memory.elow),
7276 atomic_long_read(&parent->memory.children_low_usage)));
7277}
7278
7279static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7280 gfp_t gfp)
7281{
7282 int ret;
7283
7284 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7285 if (ret)
7286 goto out;
7287
7288 mem_cgroup_commit_charge(folio, memcg);
7289out:
7290 return ret;
7291}
7292
7293int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7294{
7295 struct mem_cgroup *memcg;
7296 int ret;
7297
7298 memcg = get_mem_cgroup_from_mm(mm);
7299 ret = charge_memcg(folio, memcg, gfp);
7300 css_put(&memcg->css);
7301
7302 return ret;
7303}
7304
7305/**
7306 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7307 * @memcg: memcg to charge.
7308 * @gfp: reclaim mode.
7309 * @nr_pages: number of pages to charge.
7310 *
7311 * This function is called when allocating a huge page folio to determine if
7312 * the memcg has the capacity for it. It does not commit the charge yet,
7313 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7314 *
7315 * Once we have obtained the hugetlb folio, we can call
7316 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7317 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7318 * of try_charge().
7319 *
7320 * Returns 0 on success. Otherwise, an error code is returned.
7321 */
7322int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7323 long nr_pages)
7324{
7325 /*
7326 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7327 * but do not attempt to commit charge later (or cancel on error) either.
7328 */
7329 if (mem_cgroup_disabled() || !memcg ||
7330 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7331 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7332 return -EOPNOTSUPP;
7333
7334 if (try_charge(memcg, gfp, nr_pages))
7335 return -ENOMEM;
7336
7337 return 0;
7338}
7339
7340/**
7341 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7342 * @folio: folio to charge.
7343 * @mm: mm context of the victim
7344 * @gfp: reclaim mode
7345 * @entry: swap entry for which the folio is allocated
7346 *
7347 * This function charges a folio allocated for swapin. Please call this before
7348 * adding the folio to the swapcache.
7349 *
7350 * Returns 0 on success. Otherwise, an error code is returned.
7351 */
7352int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7353 gfp_t gfp, swp_entry_t entry)
7354{
7355 struct mem_cgroup *memcg;
7356 unsigned short id;
7357 int ret;
7358
7359 if (mem_cgroup_disabled())
7360 return 0;
7361
7362 id = lookup_swap_cgroup_id(entry);
7363 rcu_read_lock();
7364 memcg = mem_cgroup_from_id(id);
7365 if (!memcg || !css_tryget_online(&memcg->css))
7366 memcg = get_mem_cgroup_from_mm(mm);
7367 rcu_read_unlock();
7368
7369 ret = charge_memcg(folio, memcg, gfp);
7370
7371 css_put(&memcg->css);
7372 return ret;
7373}
7374
7375/*
7376 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7377 * @entry: swap entry for which the page is charged
7378 *
7379 * Call this function after successfully adding the charged page to swapcache.
7380 *
7381 * Note: This function assumes the page for which swap slot is being uncharged
7382 * is order 0 page.
7383 */
7384void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7385{
7386 /*
7387 * Cgroup1's unified memory+swap counter has been charged with the
7388 * new swapcache page, finish the transfer by uncharging the swap
7389 * slot. The swap slot would also get uncharged when it dies, but
7390 * it can stick around indefinitely and we'd count the page twice
7391 * the entire time.
7392 *
7393 * Cgroup2 has separate resource counters for memory and swap,
7394 * so this is a non-issue here. Memory and swap charge lifetimes
7395 * correspond 1:1 to page and swap slot lifetimes: we charge the
7396 * page to memory here, and uncharge swap when the slot is freed.
7397 */
7398 if (!mem_cgroup_disabled() && do_memsw_account()) {
7399 /*
7400 * The swap entry might not get freed for a long time,
7401 * let's not wait for it. The page already received a
7402 * memory+swap charge, drop the swap entry duplicate.
7403 */
7404 mem_cgroup_uncharge_swap(entry, 1);
7405 }
7406}
7407
7408struct uncharge_gather {
7409 struct mem_cgroup *memcg;
7410 unsigned long nr_memory;
7411 unsigned long pgpgout;
7412 unsigned long nr_kmem;
7413 int nid;
7414};
7415
7416static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7417{
7418 memset(ug, 0, sizeof(*ug));
7419}
7420
7421static void uncharge_batch(const struct uncharge_gather *ug)
7422{
7423 unsigned long flags;
7424
7425 if (ug->nr_memory) {
7426 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7427 if (do_memsw_account())
7428 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7429 if (ug->nr_kmem)
7430 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7431 memcg_oom_recover(ug->memcg);
7432 }
7433
7434 local_irq_save(flags);
7435 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7436 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7437 memcg_check_events(ug->memcg, ug->nid);
7438 local_irq_restore(flags);
7439
7440 /* drop reference from uncharge_folio */
7441 css_put(&ug->memcg->css);
7442}
7443
7444static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7445{
7446 long nr_pages;
7447 struct mem_cgroup *memcg;
7448 struct obj_cgroup *objcg;
7449
7450 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7451
7452 /*
7453 * Nobody should be changing or seriously looking at
7454 * folio memcg or objcg at this point, we have fully
7455 * exclusive access to the folio.
7456 */
7457 if (folio_memcg_kmem(folio)) {
7458 objcg = __folio_objcg(folio);
7459 /*
7460 * This get matches the put at the end of the function and
7461 * kmem pages do not hold memcg references anymore.
7462 */
7463 memcg = get_mem_cgroup_from_objcg(objcg);
7464 } else {
7465 memcg = __folio_memcg(folio);
7466 }
7467
7468 if (!memcg)
7469 return;
7470
7471 if (ug->memcg != memcg) {
7472 if (ug->memcg) {
7473 uncharge_batch(ug);
7474 uncharge_gather_clear(ug);
7475 }
7476 ug->memcg = memcg;
7477 ug->nid = folio_nid(folio);
7478
7479 /* pairs with css_put in uncharge_batch */
7480 css_get(&memcg->css);
7481 }
7482
7483 nr_pages = folio_nr_pages(folio);
7484
7485 if (folio_memcg_kmem(folio)) {
7486 ug->nr_memory += nr_pages;
7487 ug->nr_kmem += nr_pages;
7488
7489 folio->memcg_data = 0;
7490 obj_cgroup_put(objcg);
7491 } else {
7492 /* LRU pages aren't accounted at the root level */
7493 if (!mem_cgroup_is_root(memcg))
7494 ug->nr_memory += nr_pages;
7495 ug->pgpgout++;
7496
7497 folio->memcg_data = 0;
7498 }
7499
7500 css_put(&memcg->css);
7501}
7502
7503void __mem_cgroup_uncharge(struct folio *folio)
7504{
7505 struct uncharge_gather ug;
7506
7507 /* Don't touch folio->lru of any random page, pre-check: */
7508 if (!folio_memcg(folio))
7509 return;
7510
7511 uncharge_gather_clear(&ug);
7512 uncharge_folio(folio, &ug);
7513 uncharge_batch(&ug);
7514}
7515
7516void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7517{
7518 struct uncharge_gather ug;
7519 unsigned int i;
7520
7521 uncharge_gather_clear(&ug);
7522 for (i = 0; i < folios->nr; i++)
7523 uncharge_folio(folios->folios[i], &ug);
7524 if (ug.memcg)
7525 uncharge_batch(&ug);
7526}
7527
7528/**
7529 * mem_cgroup_replace_folio - Charge a folio's replacement.
7530 * @old: Currently circulating folio.
7531 * @new: Replacement folio.
7532 *
7533 * Charge @new as a replacement folio for @old. @old will
7534 * be uncharged upon free. This is only used by the page cache
7535 * (in replace_page_cache_folio()).
7536 *
7537 * Both folios must be locked, @new->mapping must be set up.
7538 */
7539void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7540{
7541 struct mem_cgroup *memcg;
7542 long nr_pages = folio_nr_pages(new);
7543 unsigned long flags;
7544
7545 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7546 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7547 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7548 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7549
7550 if (mem_cgroup_disabled())
7551 return;
7552
7553 /* Page cache replacement: new folio already charged? */
7554 if (folio_memcg(new))
7555 return;
7556
7557 memcg = folio_memcg(old);
7558 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7559 if (!memcg)
7560 return;
7561
7562 /* Force-charge the new page. The old one will be freed soon */
7563 if (!mem_cgroup_is_root(memcg)) {
7564 page_counter_charge(&memcg->memory, nr_pages);
7565 if (do_memsw_account())
7566 page_counter_charge(&memcg->memsw, nr_pages);
7567 }
7568
7569 css_get(&memcg->css);
7570 commit_charge(new, memcg);
7571
7572 local_irq_save(flags);
7573 mem_cgroup_charge_statistics(memcg, nr_pages);
7574 memcg_check_events(memcg, folio_nid(new));
7575 local_irq_restore(flags);
7576}
7577
7578/**
7579 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7580 * @old: Currently circulating folio.
7581 * @new: Replacement folio.
7582 *
7583 * Transfer the memcg data from the old folio to the new folio for migration.
7584 * The old folio's data info will be cleared. Note that the memory counters
7585 * will remain unchanged throughout the process.
7586 *
7587 * Both folios must be locked, @new->mapping must be set up.
7588 */
7589void mem_cgroup_migrate(struct folio *old, struct folio *new)
7590{
7591 struct mem_cgroup *memcg;
7592
7593 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7594 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7595 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7596 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7597
7598 if (mem_cgroup_disabled())
7599 return;
7600
7601 memcg = folio_memcg(old);
7602 /*
7603 * Note that it is normal to see !memcg for a hugetlb folio.
7604 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7605 * was not selected.
7606 */
7607 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7608 if (!memcg)
7609 return;
7610
7611 /* Transfer the charge and the css ref */
7612 commit_charge(new, memcg);
7613 /*
7614 * If the old folio is a large folio and is in the split queue, it needs
7615 * to be removed from the split queue now, in case getting an incorrect
7616 * split queue in destroy_large_folio() after the memcg of the old folio
7617 * is cleared.
7618 *
7619 * In addition, the old folio is about to be freed after migration, so
7620 * removing from the split queue a bit earlier seems reasonable.
7621 */
7622 if (folio_test_large(old) && folio_test_large_rmappable(old))
7623 folio_undo_large_rmappable(old);
7624 old->memcg_data = 0;
7625}
7626
7627DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7628EXPORT_SYMBOL(memcg_sockets_enabled_key);
7629
7630void mem_cgroup_sk_alloc(struct sock *sk)
7631{
7632 struct mem_cgroup *memcg;
7633
7634 if (!mem_cgroup_sockets_enabled)
7635 return;
7636
7637 /* Do not associate the sock with unrelated interrupted task's memcg. */
7638 if (!in_task())
7639 return;
7640
7641 rcu_read_lock();
7642 memcg = mem_cgroup_from_task(current);
7643 if (mem_cgroup_is_root(memcg))
7644 goto out;
7645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7646 goto out;
7647 if (css_tryget(&memcg->css))
7648 sk->sk_memcg = memcg;
7649out:
7650 rcu_read_unlock();
7651}
7652
7653void mem_cgroup_sk_free(struct sock *sk)
7654{
7655 if (sk->sk_memcg)
7656 css_put(&sk->sk_memcg->css);
7657}
7658
7659/**
7660 * mem_cgroup_charge_skmem - charge socket memory
7661 * @memcg: memcg to charge
7662 * @nr_pages: number of pages to charge
7663 * @gfp_mask: reclaim mode
7664 *
7665 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7666 * @memcg's configured limit, %false if it doesn't.
7667 */
7668bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7669 gfp_t gfp_mask)
7670{
7671 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7672 struct page_counter *fail;
7673
7674 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7675 memcg->tcpmem_pressure = 0;
7676 return true;
7677 }
7678 memcg->tcpmem_pressure = 1;
7679 if (gfp_mask & __GFP_NOFAIL) {
7680 page_counter_charge(&memcg->tcpmem, nr_pages);
7681 return true;
7682 }
7683 return false;
7684 }
7685
7686 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7687 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7688 return true;
7689 }
7690
7691 return false;
7692}
7693
7694/**
7695 * mem_cgroup_uncharge_skmem - uncharge socket memory
7696 * @memcg: memcg to uncharge
7697 * @nr_pages: number of pages to uncharge
7698 */
7699void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7700{
7701 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7702 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7703 return;
7704 }
7705
7706 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7707
7708 refill_stock(memcg, nr_pages);
7709}
7710
7711static int __init cgroup_memory(char *s)
7712{
7713 char *token;
7714
7715 while ((token = strsep(&s, ",")) != NULL) {
7716 if (!*token)
7717 continue;
7718 if (!strcmp(token, "nosocket"))
7719 cgroup_memory_nosocket = true;
7720 if (!strcmp(token, "nokmem"))
7721 cgroup_memory_nokmem = true;
7722 if (!strcmp(token, "nobpf"))
7723 cgroup_memory_nobpf = true;
7724 }
7725 return 1;
7726}
7727__setup("cgroup.memory=", cgroup_memory);
7728
7729/*
7730 * subsys_initcall() for memory controller.
7731 *
7732 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7733 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7734 * basically everything that doesn't depend on a specific mem_cgroup structure
7735 * should be initialized from here.
7736 */
7737static int __init mem_cgroup_init(void)
7738{
7739 int cpu, node;
7740
7741 /*
7742 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7743 * used for per-memcg-per-cpu caching of per-node statistics. In order
7744 * to work fine, we should make sure that the overfill threshold can't
7745 * exceed S32_MAX / PAGE_SIZE.
7746 */
7747 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7748
7749 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7750 memcg_hotplug_cpu_dead);
7751
7752 for_each_possible_cpu(cpu)
7753 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7754 drain_local_stock);
7755
7756 for_each_node(node) {
7757 struct mem_cgroup_tree_per_node *rtpn;
7758
7759 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7760
7761 rtpn->rb_root = RB_ROOT;
7762 rtpn->rb_rightmost = NULL;
7763 spin_lock_init(&rtpn->lock);
7764 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7765 }
7766
7767 return 0;
7768}
7769subsys_initcall(mem_cgroup_init);
7770
7771#ifdef CONFIG_SWAP
7772static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7773{
7774 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7775 /*
7776 * The root cgroup cannot be destroyed, so it's refcount must
7777 * always be >= 1.
7778 */
7779 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7780 VM_BUG_ON(1);
7781 break;
7782 }
7783 memcg = parent_mem_cgroup(memcg);
7784 if (!memcg)
7785 memcg = root_mem_cgroup;
7786 }
7787 return memcg;
7788}
7789
7790/**
7791 * mem_cgroup_swapout - transfer a memsw charge to swap
7792 * @folio: folio whose memsw charge to transfer
7793 * @entry: swap entry to move the charge to
7794 *
7795 * Transfer the memsw charge of @folio to @entry.
7796 */
7797void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7798{
7799 struct mem_cgroup *memcg, *swap_memcg;
7800 unsigned int nr_entries;
7801 unsigned short oldid;
7802
7803 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7804 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7805
7806 if (mem_cgroup_disabled())
7807 return;
7808
7809 if (!do_memsw_account())
7810 return;
7811
7812 memcg = folio_memcg(folio);
7813
7814 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7815 if (!memcg)
7816 return;
7817
7818 /*
7819 * In case the memcg owning these pages has been offlined and doesn't
7820 * have an ID allocated to it anymore, charge the closest online
7821 * ancestor for the swap instead and transfer the memory+swap charge.
7822 */
7823 swap_memcg = mem_cgroup_id_get_online(memcg);
7824 nr_entries = folio_nr_pages(folio);
7825 /* Get references for the tail pages, too */
7826 if (nr_entries > 1)
7827 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7828 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7829 nr_entries);
7830 VM_BUG_ON_FOLIO(oldid, folio);
7831 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7832
7833 folio->memcg_data = 0;
7834
7835 if (!mem_cgroup_is_root(memcg))
7836 page_counter_uncharge(&memcg->memory, nr_entries);
7837
7838 if (memcg != swap_memcg) {
7839 if (!mem_cgroup_is_root(swap_memcg))
7840 page_counter_charge(&swap_memcg->memsw, nr_entries);
7841 page_counter_uncharge(&memcg->memsw, nr_entries);
7842 }
7843
7844 /*
7845 * Interrupts should be disabled here because the caller holds the
7846 * i_pages lock which is taken with interrupts-off. It is
7847 * important here to have the interrupts disabled because it is the
7848 * only synchronisation we have for updating the per-CPU variables.
7849 */
7850 memcg_stats_lock();
7851 mem_cgroup_charge_statistics(memcg, -nr_entries);
7852 memcg_stats_unlock();
7853 memcg_check_events(memcg, folio_nid(folio));
7854
7855 css_put(&memcg->css);
7856}
7857
7858/**
7859 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7860 * @folio: folio being added to swap
7861 * @entry: swap entry to charge
7862 *
7863 * Try to charge @folio's memcg for the swap space at @entry.
7864 *
7865 * Returns 0 on success, -ENOMEM on failure.
7866 */
7867int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7868{
7869 unsigned int nr_pages = folio_nr_pages(folio);
7870 struct page_counter *counter;
7871 struct mem_cgroup *memcg;
7872 unsigned short oldid;
7873
7874 if (do_memsw_account())
7875 return 0;
7876
7877 memcg = folio_memcg(folio);
7878
7879 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7880 if (!memcg)
7881 return 0;
7882
7883 if (!entry.val) {
7884 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7885 return 0;
7886 }
7887
7888 memcg = mem_cgroup_id_get_online(memcg);
7889
7890 if (!mem_cgroup_is_root(memcg) &&
7891 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7892 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7893 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7894 mem_cgroup_id_put(memcg);
7895 return -ENOMEM;
7896 }
7897
7898 /* Get references for the tail pages, too */
7899 if (nr_pages > 1)
7900 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7901 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7902 VM_BUG_ON_FOLIO(oldid, folio);
7903 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7904
7905 return 0;
7906}
7907
7908/**
7909 * __mem_cgroup_uncharge_swap - uncharge swap space
7910 * @entry: swap entry to uncharge
7911 * @nr_pages: the amount of swap space to uncharge
7912 */
7913void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7914{
7915 struct mem_cgroup *memcg;
7916 unsigned short id;
7917
7918 id = swap_cgroup_record(entry, 0, nr_pages);
7919 rcu_read_lock();
7920 memcg = mem_cgroup_from_id(id);
7921 if (memcg) {
7922 if (!mem_cgroup_is_root(memcg)) {
7923 if (do_memsw_account())
7924 page_counter_uncharge(&memcg->memsw, nr_pages);
7925 else
7926 page_counter_uncharge(&memcg->swap, nr_pages);
7927 }
7928 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7929 mem_cgroup_id_put_many(memcg, nr_pages);
7930 }
7931 rcu_read_unlock();
7932}
7933
7934long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7935{
7936 long nr_swap_pages = get_nr_swap_pages();
7937
7938 if (mem_cgroup_disabled() || do_memsw_account())
7939 return nr_swap_pages;
7940 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7941 nr_swap_pages = min_t(long, nr_swap_pages,
7942 READ_ONCE(memcg->swap.max) -
7943 page_counter_read(&memcg->swap));
7944 return nr_swap_pages;
7945}
7946
7947bool mem_cgroup_swap_full(struct folio *folio)
7948{
7949 struct mem_cgroup *memcg;
7950
7951 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7952
7953 if (vm_swap_full())
7954 return true;
7955 if (do_memsw_account())
7956 return false;
7957
7958 memcg = folio_memcg(folio);
7959 if (!memcg)
7960 return false;
7961
7962 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7963 unsigned long usage = page_counter_read(&memcg->swap);
7964
7965 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7966 usage * 2 >= READ_ONCE(memcg->swap.max))
7967 return true;
7968 }
7969
7970 return false;
7971}
7972
7973static int __init setup_swap_account(char *s)
7974{
7975 bool res;
7976
7977 if (!kstrtobool(s, &res) && !res)
7978 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7979 "in favor of configuring swap control via cgroupfs. "
7980 "Please report your usecase to linux-mm@kvack.org if you "
7981 "depend on this functionality.\n");
7982 return 1;
7983}
7984__setup("swapaccount=", setup_swap_account);
7985
7986static u64 swap_current_read(struct cgroup_subsys_state *css,
7987 struct cftype *cft)
7988{
7989 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7990
7991 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7992}
7993
7994static u64 swap_peak_read(struct cgroup_subsys_state *css,
7995 struct cftype *cft)
7996{
7997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7998
7999 return (u64)memcg->swap.watermark * PAGE_SIZE;
8000}
8001
8002static int swap_high_show(struct seq_file *m, void *v)
8003{
8004 return seq_puts_memcg_tunable(m,
8005 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8006}
8007
8008static ssize_t swap_high_write(struct kernfs_open_file *of,
8009 char *buf, size_t nbytes, loff_t off)
8010{
8011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8012 unsigned long high;
8013 int err;
8014
8015 buf = strstrip(buf);
8016 err = page_counter_memparse(buf, "max", &high);
8017 if (err)
8018 return err;
8019
8020 page_counter_set_high(&memcg->swap, high);
8021
8022 return nbytes;
8023}
8024
8025static int swap_max_show(struct seq_file *m, void *v)
8026{
8027 return seq_puts_memcg_tunable(m,
8028 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8029}
8030
8031static ssize_t swap_max_write(struct kernfs_open_file *of,
8032 char *buf, size_t nbytes, loff_t off)
8033{
8034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8035 unsigned long max;
8036 int err;
8037
8038 buf = strstrip(buf);
8039 err = page_counter_memparse(buf, "max", &max);
8040 if (err)
8041 return err;
8042
8043 xchg(&memcg->swap.max, max);
8044
8045 return nbytes;
8046}
8047
8048static int swap_events_show(struct seq_file *m, void *v)
8049{
8050 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8051
8052 seq_printf(m, "high %lu\n",
8053 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8054 seq_printf(m, "max %lu\n",
8055 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8056 seq_printf(m, "fail %lu\n",
8057 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8058
8059 return 0;
8060}
8061
8062static struct cftype swap_files[] = {
8063 {
8064 .name = "swap.current",
8065 .flags = CFTYPE_NOT_ON_ROOT,
8066 .read_u64 = swap_current_read,
8067 },
8068 {
8069 .name = "swap.high",
8070 .flags = CFTYPE_NOT_ON_ROOT,
8071 .seq_show = swap_high_show,
8072 .write = swap_high_write,
8073 },
8074 {
8075 .name = "swap.max",
8076 .flags = CFTYPE_NOT_ON_ROOT,
8077 .seq_show = swap_max_show,
8078 .write = swap_max_write,
8079 },
8080 {
8081 .name = "swap.peak",
8082 .flags = CFTYPE_NOT_ON_ROOT,
8083 .read_u64 = swap_peak_read,
8084 },
8085 {
8086 .name = "swap.events",
8087 .flags = CFTYPE_NOT_ON_ROOT,
8088 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8089 .seq_show = swap_events_show,
8090 },
8091 { } /* terminate */
8092};
8093
8094static struct cftype memsw_files[] = {
8095 {
8096 .name = "memsw.usage_in_bytes",
8097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8098 .read_u64 = mem_cgroup_read_u64,
8099 },
8100 {
8101 .name = "memsw.max_usage_in_bytes",
8102 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8103 .write = mem_cgroup_reset,
8104 .read_u64 = mem_cgroup_read_u64,
8105 },
8106 {
8107 .name = "memsw.limit_in_bytes",
8108 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8109 .write = mem_cgroup_write,
8110 .read_u64 = mem_cgroup_read_u64,
8111 },
8112 {
8113 .name = "memsw.failcnt",
8114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8115 .write = mem_cgroup_reset,
8116 .read_u64 = mem_cgroup_read_u64,
8117 },
8118 { }, /* terminate */
8119};
8120
8121#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8122/**
8123 * obj_cgroup_may_zswap - check if this cgroup can zswap
8124 * @objcg: the object cgroup
8125 *
8126 * Check if the hierarchical zswap limit has been reached.
8127 *
8128 * This doesn't check for specific headroom, and it is not atomic
8129 * either. But with zswap, the size of the allocation is only known
8130 * once compression has occurred, and this optimistic pre-check avoids
8131 * spending cycles on compression when there is already no room left
8132 * or zswap is disabled altogether somewhere in the hierarchy.
8133 */
8134bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8135{
8136 struct mem_cgroup *memcg, *original_memcg;
8137 bool ret = true;
8138
8139 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8140 return true;
8141
8142 original_memcg = get_mem_cgroup_from_objcg(objcg);
8143 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8144 memcg = parent_mem_cgroup(memcg)) {
8145 unsigned long max = READ_ONCE(memcg->zswap_max);
8146 unsigned long pages;
8147
8148 if (max == PAGE_COUNTER_MAX)
8149 continue;
8150 if (max == 0) {
8151 ret = false;
8152 break;
8153 }
8154
8155 /*
8156 * mem_cgroup_flush_stats() ignores small changes. Use
8157 * do_flush_stats() directly to get accurate stats for charging.
8158 */
8159 do_flush_stats(memcg);
8160 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8161 if (pages < max)
8162 continue;
8163 ret = false;
8164 break;
8165 }
8166 mem_cgroup_put(original_memcg);
8167 return ret;
8168}
8169
8170/**
8171 * obj_cgroup_charge_zswap - charge compression backend memory
8172 * @objcg: the object cgroup
8173 * @size: size of compressed object
8174 *
8175 * This forces the charge after obj_cgroup_may_zswap() allowed
8176 * compression and storage in zwap for this cgroup to go ahead.
8177 */
8178void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8179{
8180 struct mem_cgroup *memcg;
8181
8182 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8183 return;
8184
8185 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8186
8187 /* PF_MEMALLOC context, charging must succeed */
8188 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8189 VM_WARN_ON_ONCE(1);
8190
8191 rcu_read_lock();
8192 memcg = obj_cgroup_memcg(objcg);
8193 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8194 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8195 rcu_read_unlock();
8196}
8197
8198/**
8199 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8200 * @objcg: the object cgroup
8201 * @size: size of compressed object
8202 *
8203 * Uncharges zswap memory on page in.
8204 */
8205void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8206{
8207 struct mem_cgroup *memcg;
8208
8209 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8210 return;
8211
8212 obj_cgroup_uncharge(objcg, size);
8213
8214 rcu_read_lock();
8215 memcg = obj_cgroup_memcg(objcg);
8216 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8217 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8218 rcu_read_unlock();
8219}
8220
8221bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8222{
8223 /* if zswap is disabled, do not block pages going to the swapping device */
8224 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8225}
8226
8227static u64 zswap_current_read(struct cgroup_subsys_state *css,
8228 struct cftype *cft)
8229{
8230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8231
8232 mem_cgroup_flush_stats(memcg);
8233 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8234}
8235
8236static int zswap_max_show(struct seq_file *m, void *v)
8237{
8238 return seq_puts_memcg_tunable(m,
8239 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8240}
8241
8242static ssize_t zswap_max_write(struct kernfs_open_file *of,
8243 char *buf, size_t nbytes, loff_t off)
8244{
8245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8246 unsigned long max;
8247 int err;
8248
8249 buf = strstrip(buf);
8250 err = page_counter_memparse(buf, "max", &max);
8251 if (err)
8252 return err;
8253
8254 xchg(&memcg->zswap_max, max);
8255
8256 return nbytes;
8257}
8258
8259static int zswap_writeback_show(struct seq_file *m, void *v)
8260{
8261 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8262
8263 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8264 return 0;
8265}
8266
8267static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8268 char *buf, size_t nbytes, loff_t off)
8269{
8270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8271 int zswap_writeback;
8272 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8273
8274 if (parse_ret)
8275 return parse_ret;
8276
8277 if (zswap_writeback != 0 && zswap_writeback != 1)
8278 return -EINVAL;
8279
8280 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8281 return nbytes;
8282}
8283
8284static struct cftype zswap_files[] = {
8285 {
8286 .name = "zswap.current",
8287 .flags = CFTYPE_NOT_ON_ROOT,
8288 .read_u64 = zswap_current_read,
8289 },
8290 {
8291 .name = "zswap.max",
8292 .flags = CFTYPE_NOT_ON_ROOT,
8293 .seq_show = zswap_max_show,
8294 .write = zswap_max_write,
8295 },
8296 {
8297 .name = "zswap.writeback",
8298 .seq_show = zswap_writeback_show,
8299 .write = zswap_writeback_write,
8300 },
8301 { } /* terminate */
8302};
8303#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8304
8305static int __init mem_cgroup_swap_init(void)
8306{
8307 if (mem_cgroup_disabled())
8308 return 0;
8309
8310 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8311 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8312#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8313 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8314#endif
8315 return 0;
8316}
8317subsys_initcall(mem_cgroup_swap_init);
8318
8319#endif /* CONFIG_SWAP */