Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "cpuid.h"
  8
  9#define PT64_PT_BITS 9
 10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 11#define PT32_PT_BITS 10
 12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 13
 14#define PT_WRITABLE_SHIFT 1
 15#define PT_USER_SHIFT 2
 16
 17#define PT_PRESENT_MASK (1ULL << 0)
 18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 20#define PT_PWT_MASK (1ULL << 3)
 21#define PT_PCD_MASK (1ULL << 4)
 22#define PT_ACCESSED_SHIFT 5
 23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 24#define PT_DIRTY_SHIFT 6
 25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 26#define PT_PAGE_SIZE_SHIFT 7
 27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 28#define PT_PAT_MASK (1ULL << 7)
 29#define PT_GLOBAL_MASK (1ULL << 8)
 30#define PT64_NX_SHIFT 63
 31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 32
 33#define PT_PAT_SHIFT 7
 34#define PT_DIR_PAT_SHIFT 12
 35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 36
 37#define PT32_DIR_PSE36_SIZE 4
 38#define PT32_DIR_PSE36_SHIFT 13
 39#define PT32_DIR_PSE36_MASK \
 40	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 41
 42#define PT64_ROOT_5LEVEL 5
 43#define PT64_ROOT_4LEVEL 4
 44#define PT32_ROOT_LEVEL 2
 45#define PT32E_ROOT_LEVEL 3
 46
 47#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
 48			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
 49			       X86_CR4_LA57)
 50
 51#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 
 52
 53static __always_inline u64 rsvd_bits(int s, int e)
 54{
 55	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 56
 57	if (__builtin_constant_p(e))
 58		BUILD_BUG_ON(e > 63);
 59	else
 60		e &= 63;
 61
 62	if (e < s)
 63		return 0;
 64
 65	return ((2ULL << (e - s)) - 1) << s;
 66}
 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
 
 69void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
 70
 71void kvm_init_mmu(struct kvm_vcpu *vcpu);
 72void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 73			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
 74void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 75			     bool accessed_dirty, gpa_t new_eptp);
 
 76bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 77int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 78				u64 fault_address, char *insn, int insn_len);
 79
 80int kvm_mmu_load(struct kvm_vcpu *vcpu);
 81void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 
 82void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
 
 83
 84static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 85{
 86	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
 87		return 0;
 88
 89	return kvm_mmu_load(vcpu);
 90}
 91
 92static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 93{
 94	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 95
 96	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 97	       ? cr3 & X86_CR3_PCID_MASK
 98	       : 0;
 99}
100
101static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102{
103	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104}
105
106static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
107{
108	u64 root_hpa = vcpu->arch.mmu->root_hpa;
109
110	if (!VALID_PAGE(root_hpa))
111		return;
112
113	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
114					  vcpu->arch.mmu->shadow_root_level);
115}
116
117int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
118		       bool prefault);
119
120static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
121					u32 err, bool prefault)
122{
123#ifdef CONFIG_RETPOLINE
124	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
125		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
126#endif
127	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
128}
129
130/*
131 * Currently, we have two sorts of write-protection, a) the first one
132 * write-protects guest page to sync the guest modification, b) another one is
133 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
134 * between these two sorts are:
135 * 1) the first case clears MMU-writable bit.
136 * 2) the first case requires flushing tlb immediately avoiding corrupting
137 *    shadow page table between all vcpus so it should be in the protection of
138 *    mmu-lock. And the another case does not need to flush tlb until returning
139 *    the dirty bitmap to userspace since it only write-protects the page
140 *    logged in the bitmap, that means the page in the dirty bitmap is not
141 *    missed, so it can flush tlb out of mmu-lock.
142 *
143 * So, there is the problem: the first case can meet the corrupted tlb caused
144 * by another case which write-protects pages but without flush tlb
145 * immediately. In order to making the first case be aware this problem we let
146 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
147 * is set, it works since another case never touches MMU-writable bit.
148 *
149 * Anyway, whenever a spte is updated (only permission and status bits are
150 * changed) we need to check whether the spte with MMU-writable becomes
151 * readonly, if that happens, we need to flush tlb. Fortunately,
152 * mmu_spte_update() has already handled it perfectly.
153 *
154 * The rules to use MMU-writable and PT_WRITABLE_MASK:
155 * - if we want to see if it has writable tlb entry or if the spte can be
156 *   writable on the mmu mapping, check MMU-writable, this is the most
157 *   case, otherwise
158 * - if we fix page fault on the spte or do write-protection by dirty logging,
159 *   check PT_WRITABLE_MASK.
160 *
161 * TODO: introduce APIs to split these two cases.
162 */
163static inline bool is_writable_pte(unsigned long pte)
164{
165	return pte & PT_WRITABLE_MASK;
166}
167
168/*
169 * Check if a given access (described through the I/D, W/R and U/S bits of a
170 * page fault error code pfec) causes a permission fault with the given PTE
171 * access rights (in ACC_* format).
172 *
173 * Return zero if the access does not fault; return the page fault error code
174 * if the access faults.
175 */
176static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
177				  unsigned pte_access, unsigned pte_pkey,
178				  unsigned pfec)
179{
180	int cpl = static_call(kvm_x86_get_cpl)(vcpu);
 
181	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
182
183	/*
184	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 
185	 *
186	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
187	 * (these are implicit supervisor accesses) regardless of the value
188	 * of EFLAGS.AC.
189	 *
190	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
191	 * the result in X86_EFLAGS_AC. We then insert it in place of
192	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
193	 * but it will be one in index if SMAP checks are being overridden.
194	 * It is important to keep this branchless.
195	 */
196	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
197	int index = (pfec >> 1) +
198		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
199	bool fault = (mmu->permissions[index] >> pte_access) & 1;
200	u32 errcode = PFERR_PRESENT_MASK;
201
202	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203	if (unlikely(mmu->pkru_mask)) {
204		u32 pkru_bits, offset;
205
206		/*
207		* PKRU defines 32 bits, there are 16 domains and 2
208		* attribute bits per domain in pkru.  pte_pkey is the
209		* index of the protection domain, so pte_pkey * 2 is
210		* is the index of the first bit for the domain.
211		*/
212		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213
214		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215		offset = (pfec & ~1) +
216			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
217
218		pkru_bits &= mmu->pkru_mask >> offset;
219		errcode |= -pkru_bits & PFERR_PK_MASK;
220		fault |= (pkru_bits != 0);
221	}
222
223	return -(u32)fault & errcode;
224}
225
226void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
227
228int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
229
230int kvm_mmu_post_init_vm(struct kvm *kvm);
231void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
232
233static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
234{
235	/*
236	 * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
237	 * memslots_have_rmaps in any lock context are guaranteed to see the
238	 * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
 
239	 */
240	return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
 
 
 
 
 
 
 
 
 
 
 
241}
242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243#endif
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "cpuid.h"
  8
  9extern bool __read_mostly enable_mmio_caching;
 
 
 
 10
 11#define PT_WRITABLE_SHIFT 1
 12#define PT_USER_SHIFT 2
 13
 14#define PT_PRESENT_MASK (1ULL << 0)
 15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 16#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 17#define PT_PWT_MASK (1ULL << 3)
 18#define PT_PCD_MASK (1ULL << 4)
 19#define PT_ACCESSED_SHIFT 5
 20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 21#define PT_DIRTY_SHIFT 6
 22#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 23#define PT_PAGE_SIZE_SHIFT 7
 24#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 25#define PT_PAT_MASK (1ULL << 7)
 26#define PT_GLOBAL_MASK (1ULL << 8)
 27#define PT64_NX_SHIFT 63
 28#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 29
 30#define PT_PAT_SHIFT 7
 31#define PT_DIR_PAT_SHIFT 12
 32#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 33
 
 
 
 
 
 34#define PT64_ROOT_5LEVEL 5
 35#define PT64_ROOT_4LEVEL 4
 36#define PT32_ROOT_LEVEL 2
 37#define PT32E_ROOT_LEVEL 3
 38
 39#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
 40			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
 
 41
 42#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 43#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
 44
 45static __always_inline u64 rsvd_bits(int s, int e)
 46{
 47	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 48
 49	if (__builtin_constant_p(e))
 50		BUILD_BUG_ON(e > 63);
 51	else
 52		e &= 63;
 53
 54	if (e < s)
 55		return 0;
 56
 57	return ((2ULL << (e - s)) - 1) << s;
 58}
 59
 60/*
 61 * The number of non-reserved physical address bits irrespective of features
 62 * that repurpose legal bits, e.g. MKTME.
 63 */
 64extern u8 __read_mostly shadow_phys_bits;
 65
 66static inline gfn_t kvm_mmu_max_gfn(void)
 67{
 68	/*
 69	 * Note that this uses the host MAXPHYADDR, not the guest's.
 70	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
 71	 * assuming KVM is running on bare metal, guest accesses beyond
 72	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
 73	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
 74	 * install a SPTE for such addresses.  If KVM is running as a VM
 75	 * itself, on the other hand, it might see a MAXPHYADDR that is less
 76	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
 77	 * disallows such SPTEs entirely and simplifies the TDP MMU.
 78	 */
 79	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
 80
 81	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
 82}
 83
 84static inline u8 kvm_get_shadow_phys_bits(void)
 85{
 86	/*
 87	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
 88	 * in CPU detection code, but the processor treats those reduced bits as
 89	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
 90	 * the physical address bits reported by CPUID.
 91	 */
 92	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
 93		return cpuid_eax(0x80000008) & 0xff;
 94
 95	/*
 96	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
 97	 * custom CPUID.  Proceed with whatever the kernel found since these features
 98	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
 99	 */
100	return boot_cpu_data.x86_phys_bits;
101}
102
103void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
104void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
105void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
106
107void kvm_init_mmu(struct kvm_vcpu *vcpu);
108void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
109			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
110void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
111			     int huge_page_level, bool accessed_dirty,
112			     gpa_t new_eptp);
113bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
114int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
115				u64 fault_address, char *insn, int insn_len);
116
117int kvm_mmu_load(struct kvm_vcpu *vcpu);
118void kvm_mmu_unload(struct kvm_vcpu *vcpu);
119void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
120void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
121void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
122
123static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
124{
125	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
126		return 0;
127
128	return kvm_mmu_load(vcpu);
129}
130
131static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
132{
133	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
134
135	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
136	       ? cr3 & X86_CR3_PCID_MASK
137	       : 0;
138}
139
140static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
141{
142	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
143}
144
145static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
146{
147	u64 root_hpa = vcpu->arch.mmu->root.hpa;
148
149	if (!VALID_PAGE(root_hpa))
150		return;
151
152	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
153					  vcpu->arch.mmu->root_role.level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154}
155
156/*
157 * Check if a given access (described through the I/D, W/R and U/S bits of a
158 * page fault error code pfec) causes a permission fault with the given PTE
159 * access rights (in ACC_* format).
160 *
161 * Return zero if the access does not fault; return the page fault error code
162 * if the access faults.
163 */
164static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
165				  unsigned pte_access, unsigned pte_pkey,
166				  u64 access)
167{
168	/* strip nested paging fault error codes */
169	unsigned int pfec = access;
170	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
171
172	/*
173	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
174	 * For implicit supervisor accesses, SMAP cannot be overridden.
175	 *
176	 * SMAP works on supervisor accesses only, and not_smap can
177	 * be set or not set when user access with neither has any bearing
178	 * on the result.
179	 *
180	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
181	 * this bit will always be zero in pfec, but it will be one in index
182	 * if SMAP checks are being disabled.
 
 
183	 */
184	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
185	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
186	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
187	bool fault = (mmu->permissions[index] >> pte_access) & 1;
188	u32 errcode = PFERR_PRESENT_MASK;
189
190	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
191	if (unlikely(mmu->pkru_mask)) {
192		u32 pkru_bits, offset;
193
194		/*
195		* PKRU defines 32 bits, there are 16 domains and 2
196		* attribute bits per domain in pkru.  pte_pkey is the
197		* index of the protection domain, so pte_pkey * 2 is
198		* is the index of the first bit for the domain.
199		*/
200		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
201
202		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
203		offset = (pfec & ~1) +
204			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
205
206		pkru_bits &= mmu->pkru_mask >> offset;
207		errcode |= -pkru_bits & PFERR_PK_MASK;
208		fault |= (pkru_bits != 0);
209	}
210
211	return -(u32)fault & errcode;
212}
213
214void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
215
216int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
217
218int kvm_mmu_post_init_vm(struct kvm *kvm);
219void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
220
221static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
222{
223	/*
224	 * Read shadow_root_allocated before related pointers. Hence, threads
225	 * reading shadow_root_allocated in any lock context are guaranteed to
226	 * see the pointers. Pairs with smp_store_release in
227	 * mmu_first_shadow_root_alloc.
228	 */
229	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
230}
231
232#ifdef CONFIG_X86_64
233static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
234#else
235static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
236#endif
237
238static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
239{
240	return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
241}
242
243static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
244{
245	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
246	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
247		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
248}
249
250static inline unsigned long
251__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
252		      int level)
253{
254	return gfn_to_index(slot->base_gfn + npages - 1,
255			    slot->base_gfn, level) + 1;
256}
257
258static inline unsigned long
259kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
260{
261	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
262}
263
264static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
265{
266	atomic64_add(count, &kvm->stat.pages[level - 1]);
267}
268
269gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
270			   struct x86_exception *exception);
271
272static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
273				      struct kvm_mmu *mmu,
274				      gpa_t gpa, u64 access,
275				      struct x86_exception *exception)
276{
277	if (mmu != &vcpu->arch.nested_mmu)
278		return gpa;
279	return translate_nested_gpa(vcpu, gpa, access, exception);
280}
281#endif