Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __KVM_X86_MMU_H
3#define __KVM_X86_MMU_H
4
5#include <linux/kvm_host.h>
6#include "kvm_cache_regs.h"
7#include "cpuid.h"
8
9#define PT64_PT_BITS 9
10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11#define PT32_PT_BITS 10
12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13
14#define PT_WRITABLE_SHIFT 1
15#define PT_USER_SHIFT 2
16
17#define PT_PRESENT_MASK (1ULL << 0)
18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20#define PT_PWT_MASK (1ULL << 3)
21#define PT_PCD_MASK (1ULL << 4)
22#define PT_ACCESSED_SHIFT 5
23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24#define PT_DIRTY_SHIFT 6
25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26#define PT_PAGE_SIZE_SHIFT 7
27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28#define PT_PAT_MASK (1ULL << 7)
29#define PT_GLOBAL_MASK (1ULL << 8)
30#define PT64_NX_SHIFT 63
31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32
33#define PT_PAT_SHIFT 7
34#define PT_DIR_PAT_SHIFT 12
35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36
37#define PT32_DIR_PSE36_SIZE 4
38#define PT32_DIR_PSE36_SHIFT 13
39#define PT32_DIR_PSE36_MASK \
40 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41
42#define PT64_ROOT_5LEVEL 5
43#define PT64_ROOT_4LEVEL 4
44#define PT32_ROOT_LEVEL 2
45#define PT32E_ROOT_LEVEL 3
46
47#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
48 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
49 X86_CR4_LA57)
50
51#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
52
53static __always_inline u64 rsvd_bits(int s, int e)
54{
55 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
56
57 if (__builtin_constant_p(e))
58 BUILD_BUG_ON(e > 63);
59 else
60 e &= 63;
61
62 if (e < s)
63 return 0;
64
65 return ((2ULL << (e - s)) - 1) << s;
66}
67
68void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
69void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
70
71void kvm_init_mmu(struct kvm_vcpu *vcpu);
72void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
73 unsigned long cr4, u64 efer, gpa_t nested_cr3);
74void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
75 bool accessed_dirty, gpa_t new_eptp);
76bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
77int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
78 u64 fault_address, char *insn, int insn_len);
79
80int kvm_mmu_load(struct kvm_vcpu *vcpu);
81void kvm_mmu_unload(struct kvm_vcpu *vcpu);
82void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
83
84static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
85{
86 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
87 return 0;
88
89 return kvm_mmu_load(vcpu);
90}
91
92static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
93{
94 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
95
96 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
97 ? cr3 & X86_CR3_PCID_MASK
98 : 0;
99}
100
101static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102{
103 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104}
105
106static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
107{
108 u64 root_hpa = vcpu->arch.mmu->root_hpa;
109
110 if (!VALID_PAGE(root_hpa))
111 return;
112
113 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
114 vcpu->arch.mmu->shadow_root_level);
115}
116
117int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
118 bool prefault);
119
120static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
121 u32 err, bool prefault)
122{
123#ifdef CONFIG_RETPOLINE
124 if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
125 return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
126#endif
127 return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
128}
129
130/*
131 * Currently, we have two sorts of write-protection, a) the first one
132 * write-protects guest page to sync the guest modification, b) another one is
133 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
134 * between these two sorts are:
135 * 1) the first case clears MMU-writable bit.
136 * 2) the first case requires flushing tlb immediately avoiding corrupting
137 * shadow page table between all vcpus so it should be in the protection of
138 * mmu-lock. And the another case does not need to flush tlb until returning
139 * the dirty bitmap to userspace since it only write-protects the page
140 * logged in the bitmap, that means the page in the dirty bitmap is not
141 * missed, so it can flush tlb out of mmu-lock.
142 *
143 * So, there is the problem: the first case can meet the corrupted tlb caused
144 * by another case which write-protects pages but without flush tlb
145 * immediately. In order to making the first case be aware this problem we let
146 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
147 * is set, it works since another case never touches MMU-writable bit.
148 *
149 * Anyway, whenever a spte is updated (only permission and status bits are
150 * changed) we need to check whether the spte with MMU-writable becomes
151 * readonly, if that happens, we need to flush tlb. Fortunately,
152 * mmu_spte_update() has already handled it perfectly.
153 *
154 * The rules to use MMU-writable and PT_WRITABLE_MASK:
155 * - if we want to see if it has writable tlb entry or if the spte can be
156 * writable on the mmu mapping, check MMU-writable, this is the most
157 * case, otherwise
158 * - if we fix page fault on the spte or do write-protection by dirty logging,
159 * check PT_WRITABLE_MASK.
160 *
161 * TODO: introduce APIs to split these two cases.
162 */
163static inline bool is_writable_pte(unsigned long pte)
164{
165 return pte & PT_WRITABLE_MASK;
166}
167
168/*
169 * Check if a given access (described through the I/D, W/R and U/S bits of a
170 * page fault error code pfec) causes a permission fault with the given PTE
171 * access rights (in ACC_* format).
172 *
173 * Return zero if the access does not fault; return the page fault error code
174 * if the access faults.
175 */
176static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
177 unsigned pte_access, unsigned pte_pkey,
178 unsigned pfec)
179{
180 int cpl = static_call(kvm_x86_get_cpl)(vcpu);
181 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
182
183 /*
184 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
185 *
186 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
187 * (these are implicit supervisor accesses) regardless of the value
188 * of EFLAGS.AC.
189 *
190 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
191 * the result in X86_EFLAGS_AC. We then insert it in place of
192 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
193 * but it will be one in index if SMAP checks are being overridden.
194 * It is important to keep this branchless.
195 */
196 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
197 int index = (pfec >> 1) +
198 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
199 bool fault = (mmu->permissions[index] >> pte_access) & 1;
200 u32 errcode = PFERR_PRESENT_MASK;
201
202 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203 if (unlikely(mmu->pkru_mask)) {
204 u32 pkru_bits, offset;
205
206 /*
207 * PKRU defines 32 bits, there are 16 domains and 2
208 * attribute bits per domain in pkru. pte_pkey is the
209 * index of the protection domain, so pte_pkey * 2 is
210 * is the index of the first bit for the domain.
211 */
212 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213
214 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215 offset = (pfec & ~1) +
216 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
217
218 pkru_bits &= mmu->pkru_mask >> offset;
219 errcode |= -pkru_bits & PFERR_PK_MASK;
220 fault |= (pkru_bits != 0);
221 }
222
223 return -(u32)fault & errcode;
224}
225
226void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
227
228int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
229
230int kvm_mmu_post_init_vm(struct kvm *kvm);
231void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
232
233static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
234{
235 /*
236 * Read memslot_have_rmaps before rmap pointers. Hence, threads reading
237 * memslots_have_rmaps in any lock context are guaranteed to see the
238 * pointers. Pairs with smp_store_release in alloc_all_memslots_rmaps.
239 */
240 return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
241}
242
243#endif
1#ifndef __KVM_X86_MMU_H
2#define __KVM_X86_MMU_H
3
4#include <linux/kvm_host.h>
5#include "kvm_cache_regs.h"
6
7#define PT64_PT_BITS 9
8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9#define PT32_PT_BITS 10
10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12#define PT_WRITABLE_SHIFT 1
13
14#define PT_PRESENT_MASK (1ULL << 0)
15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16#define PT_USER_MASK (1ULL << 2)
17#define PT_PWT_MASK (1ULL << 3)
18#define PT_PCD_MASK (1ULL << 4)
19#define PT_ACCESSED_SHIFT 5
20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21#define PT_DIRTY_MASK (1ULL << 6)
22#define PT_PAGE_SIZE_MASK (1ULL << 7)
23#define PT_PAT_MASK (1ULL << 7)
24#define PT_GLOBAL_MASK (1ULL << 8)
25#define PT64_NX_SHIFT 63
26#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
27
28#define PT_PAT_SHIFT 7
29#define PT_DIR_PAT_SHIFT 12
30#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
31
32#define PT32_DIR_PSE36_SIZE 4
33#define PT32_DIR_PSE36_SHIFT 13
34#define PT32_DIR_PSE36_MASK \
35 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
36
37#define PT64_ROOT_LEVEL 4
38#define PT32_ROOT_LEVEL 2
39#define PT32E_ROOT_LEVEL 3
40
41#define PT_PDPE_LEVEL 3
42#define PT_DIRECTORY_LEVEL 2
43#define PT_PAGE_TABLE_LEVEL 1
44
45#define PFERR_PRESENT_MASK (1U << 0)
46#define PFERR_WRITE_MASK (1U << 1)
47#define PFERR_USER_MASK (1U << 2)
48#define PFERR_RSVD_MASK (1U << 3)
49#define PFERR_FETCH_MASK (1U << 4)
50
51int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
52void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
53int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
54int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
55
56static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
57{
58 return kvm->arch.n_max_mmu_pages -
59 kvm->arch.n_used_mmu_pages;
60}
61
62static inline void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
63{
64 if (unlikely(kvm_mmu_available_pages(vcpu->kvm)< KVM_MIN_FREE_MMU_PAGES))
65 __kvm_mmu_free_some_pages(vcpu);
66}
67
68static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
69{
70 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
71 return 0;
72
73 return kvm_mmu_load(vcpu);
74}
75
76static inline int is_present_gpte(unsigned long pte)
77{
78 return pte & PT_PRESENT_MASK;
79}
80
81static inline int is_writable_pte(unsigned long pte)
82{
83 return pte & PT_WRITABLE_MASK;
84}
85
86static inline bool is_write_protection(struct kvm_vcpu *vcpu)
87{
88 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
89}
90
91static inline bool check_write_user_access(struct kvm_vcpu *vcpu,
92 bool write_fault, bool user_fault,
93 unsigned long pte)
94{
95 if (unlikely(write_fault && !is_writable_pte(pte)
96 && (user_fault || is_write_protection(vcpu))))
97 return false;
98
99 if (unlikely(user_fault && !(pte & PT_USER_MASK)))
100 return false;
101
102 return true;
103}
104#endif