Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "cpuid.h"
  8
  9#define PT64_PT_BITS 9
 10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 11#define PT32_PT_BITS 10
 12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 13
 14#define PT_WRITABLE_SHIFT 1
 15#define PT_USER_SHIFT 2
 16
 17#define PT_PRESENT_MASK (1ULL << 0)
 18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 20#define PT_PWT_MASK (1ULL << 3)
 21#define PT_PCD_MASK (1ULL << 4)
 22#define PT_ACCESSED_SHIFT 5
 23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 24#define PT_DIRTY_SHIFT 6
 25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 26#define PT_PAGE_SIZE_SHIFT 7
 27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 28#define PT_PAT_MASK (1ULL << 7)
 29#define PT_GLOBAL_MASK (1ULL << 8)
 30#define PT64_NX_SHIFT 63
 31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 32
 33#define PT_PAT_SHIFT 7
 34#define PT_DIR_PAT_SHIFT 12
 35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 36
 37#define PT32_DIR_PSE36_SIZE 4
 38#define PT32_DIR_PSE36_SHIFT 13
 39#define PT32_DIR_PSE36_MASK \
 40	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 41
 42#define PT64_ROOT_5LEVEL 5
 43#define PT64_ROOT_4LEVEL 4
 44#define PT32_ROOT_LEVEL 2
 45#define PT32E_ROOT_LEVEL 3
 46
 47#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
 48			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
 49			       X86_CR4_LA57)
 50
 51#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 
 
 
 
 52
 53static __always_inline u64 rsvd_bits(int s, int e)
 54{
 55	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 56
 57	if (__builtin_constant_p(e))
 58		BUILD_BUG_ON(e > 63);
 59	else
 60		e &= 63;
 61
 62	if (e < s)
 63		return 0;
 64
 65	return ((2ULL << (e - s)) - 1) << s;
 
 
 
 66}
 67
 68void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
 69void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
 70
 71void kvm_init_mmu(struct kvm_vcpu *vcpu);
 72void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 73			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
 74void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 75			     bool accessed_dirty, gpa_t new_eptp);
 76bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 77int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 78				u64 fault_address, char *insn, int insn_len);
 79
 80int kvm_mmu_load(struct kvm_vcpu *vcpu);
 81void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 82void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
 83
 84static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 85{
 86	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
 87		return 0;
 88
 89	return kvm_mmu_load(vcpu);
 90}
 91
 92static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 93{
 94	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 
 95
 96	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 97	       ? cr3 & X86_CR3_PCID_MASK
 98	       : 0;
 99}
100
101static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102{
103	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104}
105
106static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
107{
108	u64 root_hpa = vcpu->arch.mmu->root_hpa;
109
110	if (!VALID_PAGE(root_hpa))
111		return;
112
113	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
114					  vcpu->arch.mmu->shadow_root_level);
115}
116
117int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
118		       bool prefault);
119
120static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
121					u32 err, bool prefault)
122{
123#ifdef CONFIG_RETPOLINE
124	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
125		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
126#endif
127	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
128}
129
130/*
131 * Currently, we have two sorts of write-protection, a) the first one
132 * write-protects guest page to sync the guest modification, b) another one is
133 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
134 * between these two sorts are:
135 * 1) the first case clears MMU-writable bit.
136 * 2) the first case requires flushing tlb immediately avoiding corrupting
137 *    shadow page table between all vcpus so it should be in the protection of
138 *    mmu-lock. And the another case does not need to flush tlb until returning
139 *    the dirty bitmap to userspace since it only write-protects the page
140 *    logged in the bitmap, that means the page in the dirty bitmap is not
141 *    missed, so it can flush tlb out of mmu-lock.
142 *
143 * So, there is the problem: the first case can meet the corrupted tlb caused
144 * by another case which write-protects pages but without flush tlb
145 * immediately. In order to making the first case be aware this problem we let
146 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
147 * is set, it works since another case never touches MMU-writable bit.
148 *
149 * Anyway, whenever a spte is updated (only permission and status bits are
150 * changed) we need to check whether the spte with MMU-writable becomes
151 * readonly, if that happens, we need to flush tlb. Fortunately,
152 * mmu_spte_update() has already handled it perfectly.
153 *
154 * The rules to use MMU-writable and PT_WRITABLE_MASK:
155 * - if we want to see if it has writable tlb entry or if the spte can be
156 *   writable on the mmu mapping, check MMU-writable, this is the most
157 *   case, otherwise
158 * - if we fix page fault on the spte or do write-protection by dirty logging,
159 *   check PT_WRITABLE_MASK.
160 *
161 * TODO: introduce APIs to split these two cases.
162 */
163static inline bool is_writable_pte(unsigned long pte)
164{
165	return pte & PT_WRITABLE_MASK;
166}
167
168/*
169 * Check if a given access (described through the I/D, W/R and U/S bits of a
170 * page fault error code pfec) causes a permission fault with the given PTE
171 * access rights (in ACC_* format).
172 *
173 * Return zero if the access does not fault; return the page fault error code
174 * if the access faults.
175 */
176static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
177				  unsigned pte_access, unsigned pte_pkey,
178				  unsigned pfec)
179{
180	int cpl = static_call(kvm_x86_get_cpl)(vcpu);
181	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
182
183	/*
184	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
185	 *
186	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
187	 * (these are implicit supervisor accesses) regardless of the value
188	 * of EFLAGS.AC.
189	 *
190	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
191	 * the result in X86_EFLAGS_AC. We then insert it in place of
192	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
193	 * but it will be one in index if SMAP checks are being overridden.
194	 * It is important to keep this branchless.
195	 */
196	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
197	int index = (pfec >> 1) +
198		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
199	bool fault = (mmu->permissions[index] >> pte_access) & 1;
200	u32 errcode = PFERR_PRESENT_MASK;
201
202	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203	if (unlikely(mmu->pkru_mask)) {
204		u32 pkru_bits, offset;
205
206		/*
207		* PKRU defines 32 bits, there are 16 domains and 2
208		* attribute bits per domain in pkru.  pte_pkey is the
209		* index of the protection domain, so pte_pkey * 2 is
210		* is the index of the first bit for the domain.
211		*/
212		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213
214		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215		offset = (pfec & ~1) +
216			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
217
218		pkru_bits &= mmu->pkru_mask >> offset;
219		errcode |= -pkru_bits & PFERR_PK_MASK;
220		fault |= (pkru_bits != 0);
221	}
222
223	return -(u32)fault & errcode;
224}
225
226void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
227
228int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
229
230int kvm_mmu_post_init_vm(struct kvm *kvm);
231void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
232
233static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
234{
235	/*
236	 * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
237	 * memslots_have_rmaps in any lock context are guaranteed to see the
238	 * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
239	 */
240	return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
241}
242
 
 
 
 
 
 
 
 
 
 
 
 
 
243#endif
v3.5.6
 
  1#ifndef __KVM_X86_MMU_H
  2#define __KVM_X86_MMU_H
  3
  4#include <linux/kvm_host.h>
  5#include "kvm_cache_regs.h"
 
  6
  7#define PT64_PT_BITS 9
  8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  9#define PT32_PT_BITS 10
 10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 11
 12#define PT_WRITABLE_SHIFT 1
 
 13
 14#define PT_PRESENT_MASK (1ULL << 0)
 15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 16#define PT_USER_MASK (1ULL << 2)
 17#define PT_PWT_MASK (1ULL << 3)
 18#define PT_PCD_MASK (1ULL << 4)
 19#define PT_ACCESSED_SHIFT 5
 20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 21#define PT_DIRTY_MASK (1ULL << 6)
 22#define PT_PAGE_SIZE_MASK (1ULL << 7)
 
 
 23#define PT_PAT_MASK (1ULL << 7)
 24#define PT_GLOBAL_MASK (1ULL << 8)
 25#define PT64_NX_SHIFT 63
 26#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 27
 28#define PT_PAT_SHIFT 7
 29#define PT_DIR_PAT_SHIFT 12
 30#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 31
 32#define PT32_DIR_PSE36_SIZE 4
 33#define PT32_DIR_PSE36_SHIFT 13
 34#define PT32_DIR_PSE36_MASK \
 35	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 36
 37#define PT64_ROOT_LEVEL 4
 
 38#define PT32_ROOT_LEVEL 2
 39#define PT32E_ROOT_LEVEL 3
 40
 41#define PT_PDPE_LEVEL 3
 42#define PT_DIRECTORY_LEVEL 2
 43#define PT_PAGE_TABLE_LEVEL 1
 44
 45#define PFERR_PRESENT_MASK (1U << 0)
 46#define PFERR_WRITE_MASK (1U << 1)
 47#define PFERR_USER_MASK (1U << 2)
 48#define PFERR_RSVD_MASK (1U << 3)
 49#define PFERR_FETCH_MASK (1U << 4)
 50
 51int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
 52void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
 53int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
 54int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 
 
 
 
 
 
 
 55
 56static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
 57{
 58	return kvm->arch.n_max_mmu_pages -
 59		kvm->arch.n_used_mmu_pages;
 60}
 61
 62static inline void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
 63{
 64	if (unlikely(kvm_mmu_available_pages(vcpu->kvm)< KVM_MIN_FREE_MMU_PAGES))
 65		__kvm_mmu_free_some_pages(vcpu);
 66}
 
 
 
 
 
 
 
 
 
 
 67
 68static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 69{
 70	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
 71		return 0;
 72
 73	return kvm_mmu_load(vcpu);
 74}
 75
 76static inline int is_present_gpte(unsigned long pte)
 77{
 78	return pte & PT_PRESENT_MASK;
 79}
 80
 81static inline int is_writable_pte(unsigned long pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82{
 83	return pte & PT_WRITABLE_MASK;
 84}
 85
 86static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 87{
 88	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89}
 90
 91static inline bool check_write_user_access(struct kvm_vcpu *vcpu,
 92					   bool write_fault, bool user_fault,
 93					   unsigned long pte)
 94{
 95	if (unlikely(write_fault && !is_writable_pte(pte)
 96	      && (user_fault || is_write_protection(vcpu))))
 97		return false;
 98
 99	if (unlikely(user_fault && !(pte & PT_USER_MASK)))
100		return false;
101
102	return true;
103}
104#endif