Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/file.h>
  62#include <linux/tracehook.h>
  63#include <linux/psi.h>
  64#include <linux/seq_buf.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include "slab.h"
  69
  70#include <linux/uaccess.h>
  71
  72#include <trace/events/vmscan.h>
  73
  74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  75EXPORT_SYMBOL(memory_cgrp_subsys);
  76
  77struct mem_cgroup *root_mem_cgroup __read_mostly;
  78
  79/* Active memory cgroup to use from an interrupt context */
  80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  82
  83/* Socket memory accounting disabled? */
  84static bool cgroup_memory_nosocket __ro_after_init;
  85
  86/* Kernel memory accounting disabled? */
  87bool cgroup_memory_nokmem __ro_after_init;
  88
  89/* Whether the swap controller is active */
  90#ifdef CONFIG_MEMCG_SWAP
  91bool cgroup_memory_noswap __ro_after_init;
  92#else
  93#define cgroup_memory_noswap		1
  94#endif
  95
  96#ifdef CONFIG_CGROUP_WRITEBACK
  97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  98#endif
  99
 100/* Whether legacy memory+swap accounting is active */
 101static bool do_memsw_account(void)
 102{
 103	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 104}
 105
 106#define THRESHOLDS_EVENTS_TARGET 128
 107#define SOFTLIMIT_EVENTS_TARGET 1024
 108
 109/*
 110 * Cgroups above their limits are maintained in a RB-Tree, independent of
 111 * their hierarchy representation
 112 */
 113
 114struct mem_cgroup_tree_per_node {
 115	struct rb_root rb_root;
 116	struct rb_node *rb_rightmost;
 117	spinlock_t lock;
 118};
 119
 120struct mem_cgroup_tree {
 121	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 122};
 123
 124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 125
 126/* for OOM */
 127struct mem_cgroup_eventfd_list {
 128	struct list_head list;
 129	struct eventfd_ctx *eventfd;
 130};
 131
 132/*
 133 * cgroup_event represents events which userspace want to receive.
 134 */
 135struct mem_cgroup_event {
 136	/*
 137	 * memcg which the event belongs to.
 138	 */
 139	struct mem_cgroup *memcg;
 140	/*
 141	 * eventfd to signal userspace about the event.
 142	 */
 143	struct eventfd_ctx *eventfd;
 144	/*
 145	 * Each of these stored in a list by the cgroup.
 146	 */
 147	struct list_head list;
 148	/*
 149	 * register_event() callback will be used to add new userspace
 150	 * waiter for changes related to this event.  Use eventfd_signal()
 151	 * on eventfd to send notification to userspace.
 152	 */
 153	int (*register_event)(struct mem_cgroup *memcg,
 154			      struct eventfd_ctx *eventfd, const char *args);
 155	/*
 156	 * unregister_event() callback will be called when userspace closes
 157	 * the eventfd or on cgroup removing.  This callback must be set,
 158	 * if you want provide notification functionality.
 159	 */
 160	void (*unregister_event)(struct mem_cgroup *memcg,
 161				 struct eventfd_ctx *eventfd);
 162	/*
 163	 * All fields below needed to unregister event when
 164	 * userspace closes eventfd.
 165	 */
 166	poll_table pt;
 167	wait_queue_head_t *wqh;
 168	wait_queue_entry_t wait;
 169	struct work_struct remove;
 170};
 171
 172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 174
 175/* Stuffs for move charges at task migration. */
 176/*
 177 * Types of charges to be moved.
 178 */
 179#define MOVE_ANON	0x1U
 180#define MOVE_FILE	0x2U
 181#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 182
 183/* "mc" and its members are protected by cgroup_mutex */
 184static struct move_charge_struct {
 185	spinlock_t	  lock; /* for from, to */
 186	struct mm_struct  *mm;
 187	struct mem_cgroup *from;
 188	struct mem_cgroup *to;
 189	unsigned long flags;
 190	unsigned long precharge;
 191	unsigned long moved_charge;
 192	unsigned long moved_swap;
 193	struct task_struct *moving_task;	/* a task moving charges */
 194	wait_queue_head_t waitq;		/* a waitq for other context */
 195} mc = {
 196	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 197	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 198};
 199
 200/*
 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 202 * limit reclaim to prevent infinite loops, if they ever occur.
 203 */
 204#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 205#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 206
 
 
 
 
 
 
 
 
 207/* for encoding cft->private value on file */
 208enum res_type {
 209	_MEM,
 210	_MEMSWAP,
 211	_OOM_TYPE,
 212	_KMEM,
 213	_TCP,
 214};
 215
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219/* Used for OOM notifier */
 220#define OOM_CONTROL		(0)
 221
 222/*
 223 * Iteration constructs for visiting all cgroups (under a tree).  If
 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 225 * be used for reference counting.
 226 */
 227#define for_each_mem_cgroup_tree(iter, root)		\
 228	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 229	     iter != NULL;				\
 230	     iter = mem_cgroup_iter(root, iter, NULL))
 231
 232#define for_each_mem_cgroup(iter)			\
 233	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 234	     iter != NULL;				\
 235	     iter = mem_cgroup_iter(NULL, iter, NULL))
 236
 237static inline bool should_force_charge(void)
 238{
 239	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 240		(current->flags & PF_EXITING);
 241}
 242
 243/* Some nice accessors for the vmpressure. */
 244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 245{
 246	if (!memcg)
 247		memcg = root_mem_cgroup;
 248	return &memcg->vmpressure;
 249}
 250
 251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 252{
 253	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 254}
 255
 256#ifdef CONFIG_MEMCG_KMEM
 257extern spinlock_t css_set_lock;
 258
 259bool mem_cgroup_kmem_disabled(void)
 260{
 261	return cgroup_memory_nokmem;
 262}
 263
 264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 265				      unsigned int nr_pages);
 266
 267static void obj_cgroup_release(struct percpu_ref *ref)
 268{
 269	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 
 270	unsigned int nr_bytes;
 271	unsigned int nr_pages;
 272	unsigned long flags;
 273
 274	/*
 275	 * At this point all allocated objects are freed, and
 276	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 277	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 278	 *
 279	 * The following sequence can lead to it:
 280	 * 1) CPU0: objcg == stock->cached_objcg
 281	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 282	 *          PAGE_SIZE bytes are charged
 283	 * 3) CPU1: a process from another memcg is allocating something,
 284	 *          the stock if flushed,
 285	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 286	 * 5) CPU0: we do release this object,
 287	 *          92 bytes are added to stock->nr_bytes
 288	 * 6) CPU0: stock is flushed,
 289	 *          92 bytes are added to objcg->nr_charged_bytes
 290	 *
 291	 * In the result, nr_charged_bytes == PAGE_SIZE.
 292	 * This page will be uncharged in obj_cgroup_release().
 293	 */
 294	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 295	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 296	nr_pages = nr_bytes >> PAGE_SHIFT;
 297
 298	if (nr_pages)
 299		obj_cgroup_uncharge_pages(objcg, nr_pages);
 300
 301	spin_lock_irqsave(&css_set_lock, flags);
 
 
 
 302	list_del(&objcg->list);
 
 303	spin_unlock_irqrestore(&css_set_lock, flags);
 304
 305	percpu_ref_exit(ref);
 306	kfree_rcu(objcg, rcu);
 307}
 308
 309static struct obj_cgroup *obj_cgroup_alloc(void)
 310{
 311	struct obj_cgroup *objcg;
 312	int ret;
 313
 314	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 315	if (!objcg)
 316		return NULL;
 317
 318	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 319			      GFP_KERNEL);
 320	if (ret) {
 321		kfree(objcg);
 322		return NULL;
 323	}
 324	INIT_LIST_HEAD(&objcg->list);
 325	return objcg;
 326}
 327
 328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 329				  struct mem_cgroup *parent)
 330{
 331	struct obj_cgroup *objcg, *iter;
 332
 333	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 334
 335	spin_lock_irq(&css_set_lock);
 336
 337	/* 1) Ready to reparent active objcg. */
 338	list_add(&objcg->list, &memcg->objcg_list);
 339	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 340	list_for_each_entry(iter, &memcg->objcg_list, list)
 341		WRITE_ONCE(iter->memcg, parent);
 342	/* 3) Move already reparented objcgs to the parent's list */
 
 
 
 
 
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402/**
 403 * mem_cgroup_css_from_page - css of the memcg associated with a page
 404 * @page: page of interest
 405 *
 406 * If memcg is bound to the default hierarchy, css of the memcg associated
 407 * with @page is returned.  The returned css remains associated with @page
 408 * until it is released.
 409 *
 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 411 * is returned.
 412 */
 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 414{
 415	struct mem_cgroup *memcg;
 416
 417	memcg = page_memcg(page);
 418
 419	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 420		memcg = root_mem_cgroup;
 421
 422	return &memcg->css;
 423}
 424
 425/**
 426 * page_cgroup_ino - return inode number of the memcg a page is charged to
 427 * @page: the page
 428 *
 429 * Look up the closest online ancestor of the memory cgroup @page is charged to
 430 * and return its inode number or 0 if @page is not charged to any cgroup. It
 431 * is safe to call this function without holding a reference to @page.
 432 *
 433 * Note, this function is inherently racy, because there is nothing to prevent
 434 * the cgroup inode from getting torn down and potentially reallocated a moment
 435 * after page_cgroup_ino() returns, so it only should be used by callers that
 436 * do not care (such as procfs interfaces).
 437 */
 438ino_t page_cgroup_ino(struct page *page)
 439{
 440	struct mem_cgroup *memcg;
 441	unsigned long ino = 0;
 442
 443	rcu_read_lock();
 444	memcg = page_memcg_check(page);
 
 
 
 
 
 
 
 
 
 445
 446	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 447		memcg = parent_mem_cgroup(memcg);
 448	if (memcg)
 449		ino = cgroup_ino(memcg->css.cgroup);
 450	rcu_read_unlock();
 451	return ino;
 452}
 453
 454static struct mem_cgroup_per_node *
 455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 456{
 457	int nid = page_to_nid(page);
 458
 459	return memcg->nodeinfo[nid];
 460}
 461
 462static struct mem_cgroup_tree_per_node *
 463soft_limit_tree_node(int nid)
 464{
 465	return soft_limit_tree.rb_tree_per_node[nid];
 466}
 467
 468static struct mem_cgroup_tree_per_node *
 469soft_limit_tree_from_page(struct page *page)
 470{
 471	int nid = page_to_nid(page);
 472
 473	return soft_limit_tree.rb_tree_per_node[nid];
 474}
 475
 476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 477					 struct mem_cgroup_tree_per_node *mctz,
 478					 unsigned long new_usage_in_excess)
 479{
 480	struct rb_node **p = &mctz->rb_root.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct mem_cgroup_per_node *mz_node;
 483	bool rightmost = true;
 484
 485	if (mz->on_tree)
 486		return;
 487
 488	mz->usage_in_excess = new_usage_in_excess;
 489	if (!mz->usage_in_excess)
 490		return;
 491	while (*p) {
 492		parent = *p;
 493		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 494					tree_node);
 495		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 496			p = &(*p)->rb_left;
 497			rightmost = false;
 498		} else {
 499			p = &(*p)->rb_right;
 500		}
 
 
 
 
 
 
 
 501	}
 502
 503	if (rightmost)
 504		mctz->rb_rightmost = &mz->tree_node;
 505
 506	rb_link_node(&mz->tree_node, parent, p);
 507	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 508	mz->on_tree = true;
 509}
 510
 511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 512					 struct mem_cgroup_tree_per_node *mctz)
 513{
 514	if (!mz->on_tree)
 515		return;
 516
 517	if (&mz->tree_node == mctz->rb_rightmost)
 518		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 519
 520	rb_erase(&mz->tree_node, &mctz->rb_root);
 521	mz->on_tree = false;
 522}
 523
 524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 525				       struct mem_cgroup_tree_per_node *mctz)
 526{
 527	unsigned long flags;
 528
 529	spin_lock_irqsave(&mctz->lock, flags);
 530	__mem_cgroup_remove_exceeded(mz, mctz);
 531	spin_unlock_irqrestore(&mctz->lock, flags);
 532}
 533
 534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 535{
 536	unsigned long nr_pages = page_counter_read(&memcg->memory);
 537	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 538	unsigned long excess = 0;
 539
 540	if (nr_pages > soft_limit)
 541		excess = nr_pages - soft_limit;
 542
 543	return excess;
 544}
 545
 546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 547{
 548	unsigned long excess;
 549	struct mem_cgroup_per_node *mz;
 550	struct mem_cgroup_tree_per_node *mctz;
 551
 552	mctz = soft_limit_tree_from_page(page);
 553	if (!mctz)
 554		return;
 555	/*
 556	 * Necessary to update all ancestors when hierarchy is used.
 557	 * because their event counter is not touched.
 558	 */
 559	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 560		mz = mem_cgroup_page_nodeinfo(memcg, page);
 561		excess = soft_limit_excess(memcg);
 562		/*
 563		 * We have to update the tree if mz is on RB-tree or
 564		 * mem is over its softlimit.
 565		 */
 566		if (excess || mz->on_tree) {
 567			unsigned long flags;
 568
 569			spin_lock_irqsave(&mctz->lock, flags);
 570			/* if on-tree, remove it */
 571			if (mz->on_tree)
 572				__mem_cgroup_remove_exceeded(mz, mctz);
 573			/*
 574			 * Insert again. mz->usage_in_excess will be updated.
 575			 * If excess is 0, no tree ops.
 576			 */
 577			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 578			spin_unlock_irqrestore(&mctz->lock, flags);
 579		}
 580	}
 581}
 582
 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 584{
 585	struct mem_cgroup_tree_per_node *mctz;
 586	struct mem_cgroup_per_node *mz;
 587	int nid;
 588
 589	for_each_node(nid) {
 590		mz = memcg->nodeinfo[nid];
 591		mctz = soft_limit_tree_node(nid);
 592		if (mctz)
 593			mem_cgroup_remove_exceeded(mz, mctz);
 594	}
 595}
 596
 597static struct mem_cgroup_per_node *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 599{
 600	struct mem_cgroup_per_node *mz;
 601
 602retry:
 603	mz = NULL;
 604	if (!mctz->rb_rightmost)
 605		goto done;		/* Nothing to reclaim from */
 606
 607	mz = rb_entry(mctz->rb_rightmost,
 608		      struct mem_cgroup_per_node, tree_node);
 609	/*
 610	 * Remove the node now but someone else can add it back,
 611	 * we will to add it back at the end of reclaim to its correct
 612	 * position in the tree.
 613	 */
 614	__mem_cgroup_remove_exceeded(mz, mctz);
 615	if (!soft_limit_excess(mz->memcg) ||
 616	    !css_tryget(&mz->memcg->css))
 617		goto retry;
 618done:
 619	return mz;
 620}
 621
 622static struct mem_cgroup_per_node *
 623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 624{
 625	struct mem_cgroup_per_node *mz;
 626
 627	spin_lock_irq(&mctz->lock);
 628	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 629	spin_unlock_irq(&mctz->lock);
 630	return mz;
 631}
 632
 633/**
 634 * __mod_memcg_state - update cgroup memory statistics
 635 * @memcg: the memory cgroup
 636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 637 * @val: delta to add to the counter, can be negative
 638 */
 639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 640{
 
 
 641	if (mem_cgroup_disabled())
 642		return;
 643
 644	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 645	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 646}
 647
 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
 649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 650{
 651	long x = READ_ONCE(memcg->vmstats.state[idx]);
 652#ifdef CONFIG_SMP
 653	if (x < 0)
 654		x = 0;
 655#endif
 656	return x;
 657}
 658
 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
 660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 661{
 662	long x = 0;
 663	int cpu;
 664
 665	for_each_possible_cpu(cpu)
 666		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 667#ifdef CONFIG_SMP
 668	if (x < 0)
 
 
 
 669		x = 0;
 670#endif
 671	return x;
 672}
 673
 674static struct mem_cgroup_per_node *
 675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 676{
 677	struct mem_cgroup *parent;
 678
 679	parent = parent_mem_cgroup(pn->memcg);
 680	if (!parent)
 681		return NULL;
 682	return parent->nodeinfo[nid];
 683}
 684
 685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 686			      int val)
 687{
 688	struct mem_cgroup_per_node *pn;
 689	struct mem_cgroup *memcg;
 690	long x, threshold = MEMCG_CHARGE_BATCH;
 691
 692	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 693	memcg = pn->memcg;
 694
 695	/* Update memcg */
 696	__mod_memcg_state(memcg, idx, val);
 697
 698	/* Update lruvec */
 699	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 700
 701	if (vmstat_item_in_bytes(idx))
 702		threshold <<= PAGE_SHIFT;
 703
 704	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 705	if (unlikely(abs(x) > threshold)) {
 706		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 707		struct mem_cgroup_per_node *pi;
 708
 709		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 710			atomic_long_add(x, &pi->lruvec_stat[idx]);
 711		x = 0;
 712	}
 713	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 714}
 715
 716/**
 717 * __mod_lruvec_state - update lruvec memory statistics
 718 * @lruvec: the lruvec
 719 * @idx: the stat item
 720 * @val: delta to add to the counter, can be negative
 721 *
 722 * The lruvec is the intersection of the NUMA node and a cgroup. This
 723 * function updates the all three counters that are affected by a
 724 * change of state at this level: per-node, per-cgroup, per-lruvec.
 725 */
 726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 727			int val)
 728{
 729	/* Update node */
 730	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 731
 732	/* Update memcg and lruvec */
 733	if (!mem_cgroup_disabled())
 734		__mod_memcg_lruvec_state(lruvec, idx, val);
 735}
 736
 737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 738			     int val)
 739{
 740	struct page *head = compound_head(page); /* rmap on tail pages */
 741	struct mem_cgroup *memcg;
 742	pg_data_t *pgdat = page_pgdat(page);
 743	struct lruvec *lruvec;
 744
 745	rcu_read_lock();
 746	memcg = page_memcg(head);
 747	/* Untracked pages have no memcg, no lruvec. Update only the node */
 748	if (!memcg) {
 749		rcu_read_unlock();
 750		__mod_node_page_state(pgdat, idx, val);
 751		return;
 752	}
 753
 754	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 755	__mod_lruvec_state(lruvec, idx, val);
 756	rcu_read_unlock();
 757}
 758EXPORT_SYMBOL(__mod_lruvec_page_state);
 759
 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 761{
 762	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 763	struct mem_cgroup *memcg;
 764	struct lruvec *lruvec;
 765
 766	rcu_read_lock();
 767	memcg = mem_cgroup_from_obj(p);
 768
 769	/*
 770	 * Untracked pages have no memcg, no lruvec. Update only the
 771	 * node. If we reparent the slab objects to the root memcg,
 772	 * when we free the slab object, we need to update the per-memcg
 773	 * vmstats to keep it correct for the root memcg.
 774	 */
 775	if (!memcg) {
 776		__mod_node_page_state(pgdat, idx, val);
 777	} else {
 778		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 779		__mod_lruvec_state(lruvec, idx, val);
 780	}
 781	rcu_read_unlock();
 782}
 783
 784/*
 785 * mod_objcg_mlstate() may be called with irq enabled, so
 786 * mod_memcg_lruvec_state() should be used.
 787 */
 788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 789				     struct pglist_data *pgdat,
 790				     enum node_stat_item idx, int nr)
 791{
 792	struct mem_cgroup *memcg;
 793	struct lruvec *lruvec;
 794
 795	rcu_read_lock();
 796	memcg = obj_cgroup_memcg(objcg);
 797	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798	mod_memcg_lruvec_state(lruvec, idx, nr);
 799	rcu_read_unlock();
 800}
 801
 802/**
 803 * __count_memcg_events - account VM events in a cgroup
 804 * @memcg: the memory cgroup
 805 * @idx: the event item
 806 * @count: the number of events that occurred
 807 */
 808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 809			  unsigned long count)
 810{
 
 
 811	if (mem_cgroup_disabled())
 812		return;
 813
 814	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 815	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 816}
 817
 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 819{
 820	return READ_ONCE(memcg->vmstats.events[event]);
 821}
 822
 823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 824{
 825	long x = 0;
 826	int cpu;
 827
 828	for_each_possible_cpu(cpu)
 829		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 830	return x;
 831}
 832
 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 834					 struct page *page,
 835					 int nr_pages)
 836{
 837	/* pagein of a big page is an event. So, ignore page size */
 838	if (nr_pages > 0)
 839		__count_memcg_events(memcg, PGPGIN, 1);
 840	else {
 841		__count_memcg_events(memcg, PGPGOUT, 1);
 842		nr_pages = -nr_pages; /* for event */
 843	}
 844
 845	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 846}
 847
 848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 849				       enum mem_cgroup_events_target target)
 850{
 851	unsigned long val, next;
 852
 853	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 854	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 855	/* from time_after() in jiffies.h */
 856	if ((long)(next - val) < 0) {
 857		switch (target) {
 858		case MEM_CGROUP_TARGET_THRESH:
 859			next = val + THRESHOLDS_EVENTS_TARGET;
 860			break;
 861		case MEM_CGROUP_TARGET_SOFTLIMIT:
 862			next = val + SOFTLIMIT_EVENTS_TARGET;
 863			break;
 864		default:
 865			break;
 866		}
 867		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 868		return true;
 869	}
 870	return false;
 871}
 872
 873/*
 874 * Check events in order.
 875 *
 876 */
 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 878{
 879	/* threshold event is triggered in finer grain than soft limit */
 880	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 881						MEM_CGROUP_TARGET_THRESH))) {
 882		bool do_softlimit;
 883
 884		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 885						MEM_CGROUP_TARGET_SOFTLIMIT);
 886		mem_cgroup_threshold(memcg);
 887		if (unlikely(do_softlimit))
 888			mem_cgroup_update_tree(memcg, page);
 889	}
 890}
 891
 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 893{
 894	/*
 895	 * mm_update_next_owner() may clear mm->owner to NULL
 896	 * if it races with swapoff, page migration, etc.
 897	 * So this can be called with p == NULL.
 898	 */
 899	if (unlikely(!p))
 900		return NULL;
 901
 902	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 903}
 904EXPORT_SYMBOL(mem_cgroup_from_task);
 905
 906static __always_inline struct mem_cgroup *active_memcg(void)
 907{
 908	if (in_interrupt())
 909		return this_cpu_read(int_active_memcg);
 910	else
 911		return current->active_memcg;
 912}
 913
 914/**
 915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 916 * @mm: mm from which memcg should be extracted. It can be NULL.
 917 *
 918 * Obtain a reference on mm->memcg and returns it if successful. If mm
 919 * is NULL, then the memcg is chosen as follows:
 920 * 1) The active memcg, if set.
 921 * 2) current->mm->memcg, if available
 922 * 3) root memcg
 923 * If mem_cgroup is disabled, NULL is returned.
 924 */
 925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 926{
 927	struct mem_cgroup *memcg;
 928
 929	if (mem_cgroup_disabled())
 930		return NULL;
 931
 932	/*
 933	 * Page cache insertions can happen without an
 934	 * actual mm context, e.g. during disk probing
 935	 * on boot, loopback IO, acct() writes etc.
 936	 *
 937	 * No need to css_get on root memcg as the reference
 938	 * counting is disabled on the root level in the
 939	 * cgroup core. See CSS_NO_REF.
 940	 */
 941	if (unlikely(!mm)) {
 942		memcg = active_memcg();
 943		if (unlikely(memcg)) {
 944			/* remote memcg must hold a ref */
 945			css_get(&memcg->css);
 946			return memcg;
 947		}
 948		mm = current->mm;
 949		if (unlikely(!mm))
 950			return root_mem_cgroup;
 951	}
 952
 953	rcu_read_lock();
 954	do {
 955		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 956		if (unlikely(!memcg))
 
 
 
 
 957			memcg = root_mem_cgroup;
 
 
 
 
 
 958	} while (!css_tryget(&memcg->css));
 959	rcu_read_unlock();
 960	return memcg;
 961}
 962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 963
 964static __always_inline bool memcg_kmem_bypass(void)
 
 
 
 
 
 
 
 965{
 966	/* Allow remote memcg charging from any context. */
 967	if (unlikely(active_memcg()))
 968		return false;
 969
 970	/* Memcg to charge can't be determined. */
 971	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 972		return true;
 973
 974	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975}
 976
 977/**
 978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 979 * @root: hierarchy root
 980 * @prev: previously returned memcg, NULL on first invocation
 981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 982 *
 983 * Returns references to children of the hierarchy below @root, or
 984 * @root itself, or %NULL after a full round-trip.
 985 *
 986 * Caller must pass the return value in @prev on subsequent
 987 * invocations for reference counting, or use mem_cgroup_iter_break()
 988 * to cancel a hierarchy walk before the round-trip is complete.
 989 *
 990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 991 * in the hierarchy among all concurrent reclaimers operating on the
 992 * same node.
 993 */
 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 995				   struct mem_cgroup *prev,
 996				   struct mem_cgroup_reclaim_cookie *reclaim)
 997{
 998	struct mem_cgroup_reclaim_iter *iter;
 999	struct cgroup_subsys_state *css = NULL;
1000	struct mem_cgroup *memcg = NULL;
1001	struct mem_cgroup *pos = NULL;
1002
1003	if (mem_cgroup_disabled())
1004		return NULL;
1005
1006	if (!root)
1007		root = root_mem_cgroup;
1008
1009	if (prev && !reclaim)
1010		pos = prev;
1011
 
 
 
 
 
 
1012	rcu_read_lock();
1013
1014	if (reclaim) {
1015		struct mem_cgroup_per_node *mz;
1016
1017		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018		iter = &mz->iter;
1019
1020		if (prev && reclaim->generation != iter->generation)
1021			goto out_unlock;
1022
1023		while (1) {
1024			pos = READ_ONCE(iter->position);
1025			if (!pos || css_tryget(&pos->css))
1026				break;
1027			/*
1028			 * css reference reached zero, so iter->position will
1029			 * be cleared by ->css_released. However, we should not
1030			 * rely on this happening soon, because ->css_released
1031			 * is called from a work queue, and by busy-waiting we
1032			 * might block it. So we clear iter->position right
1033			 * away.
1034			 */
1035			(void)cmpxchg(&iter->position, pos, NULL);
1036		}
1037	}
1038
1039	if (pos)
1040		css = &pos->css;
1041
1042	for (;;) {
1043		css = css_next_descendant_pre(css, &root->css);
1044		if (!css) {
1045			/*
1046			 * Reclaimers share the hierarchy walk, and a
1047			 * new one might jump in right at the end of
1048			 * the hierarchy - make sure they see at least
1049			 * one group and restart from the beginning.
1050			 */
1051			if (!prev)
1052				continue;
1053			break;
1054		}
1055
1056		/*
1057		 * Verify the css and acquire a reference.  The root
1058		 * is provided by the caller, so we know it's alive
1059		 * and kicking, and don't take an extra reference.
1060		 */
1061		memcg = mem_cgroup_from_css(css);
1062
1063		if (css == &root->css)
1064			break;
1065
1066		if (css_tryget(css))
1067			break;
1068
1069		memcg = NULL;
1070	}
1071
1072	if (reclaim) {
1073		/*
1074		 * The position could have already been updated by a competing
1075		 * thread, so check that the value hasn't changed since we read
1076		 * it to avoid reclaiming from the same cgroup twice.
1077		 */
1078		(void)cmpxchg(&iter->position, pos, memcg);
1079
1080		if (pos)
1081			css_put(&pos->css);
1082
1083		if (!memcg)
1084			iter->generation++;
1085		else if (!prev)
1086			reclaim->generation = iter->generation;
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
 
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgruop1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (last != root_mem_cgroup)
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			  int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164
1165	BUG_ON(memcg == root_mem_cgroup);
1166
1167	for_each_mem_cgroup_tree(iter, memcg) {
1168		struct css_task_iter it;
1169		struct task_struct *task;
1170
1171		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172		while (!ret && (task = css_task_iter_next(&it)))
1173			ret = fn(task, arg);
1174		css_task_iter_end(&it);
1175		if (ret) {
1176			mem_cgroup_iter_break(memcg, iter);
1177			break;
1178		}
1179	}
1180	return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186	struct mem_cgroup *memcg;
1187
1188	if (mem_cgroup_disabled())
1189		return;
1190
1191	memcg = page_memcg(page);
1192
1193	if (!memcg)
1194		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195	else
1196		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
 
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212	struct lruvec *lruvec;
1213
1214	lruvec = mem_cgroup_page_lruvec(page);
1215	spin_lock(&lruvec->lru_lock);
1216
1217	lruvec_memcg_debug(lruvec, page);
1218
1219	return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224	struct lruvec *lruvec;
1225
1226	lruvec = mem_cgroup_page_lruvec(page);
1227	spin_lock_irq(&lruvec->lru_lock);
1228
1229	lruvec_memcg_debug(lruvec, page);
1230
1231	return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
 
 
1236	struct lruvec *lruvec;
1237
1238	lruvec = mem_cgroup_page_lruvec(page);
1239	spin_lock_irqsave(&lruvec->lru_lock, *flags);
 
 
1240
1241	lruvec_memcg_debug(lruvec, page);
 
 
 
 
 
 
1242
 
 
 
 
 
 
 
 
 
 
1243	return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258				int zid, int nr_pages)
1259{
1260	struct mem_cgroup_per_node *mz;
1261	unsigned long *lru_size;
1262	long size;
1263
1264	if (mem_cgroup_disabled())
1265		return;
1266
1267	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268	lru_size = &mz->lru_zone_size[zid][lru];
1269
1270	if (nr_pages < 0)
1271		*lru_size += nr_pages;
1272
1273	size = *lru_size;
1274	if (WARN_ONCE(size < 0,
1275		"%s(%p, %d, %d): lru_size %ld\n",
1276		__func__, lruvec, lru, nr_pages, size)) {
1277		VM_BUG_ON(1);
1278		*lru_size = 0;
1279	}
1280
1281	if (nr_pages > 0)
1282		*lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294	unsigned long margin = 0;
1295	unsigned long count;
1296	unsigned long limit;
1297
1298	count = page_counter_read(&memcg->memory);
1299	limit = READ_ONCE(memcg->memory.max);
1300	if (count < limit)
1301		margin = limit - count;
1302
1303	if (do_memsw_account()) {
1304		count = page_counter_read(&memcg->memsw);
1305		limit = READ_ONCE(memcg->memsw.max);
1306		if (count < limit)
1307			margin = min(margin, limit - count);
1308		else
1309			margin = 0;
1310	}
1311
1312	return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324	struct mem_cgroup *from;
1325	struct mem_cgroup *to;
1326	bool ret = false;
1327	/*
1328	 * Unlike task_move routines, we access mc.to, mc.from not under
1329	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330	 */
1331	spin_lock(&mc.lock);
1332	from = mc.from;
1333	to = mc.to;
1334	if (!from)
1335		goto unlock;
1336
1337	ret = mem_cgroup_is_descendant(from, memcg) ||
1338		mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340	spin_unlock(&mc.lock);
1341	return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346	if (mc.moving_task && current != mc.moving_task) {
1347		if (mem_cgroup_under_move(memcg)) {
1348			DEFINE_WAIT(wait);
1349			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350			/* moving charge context might have finished. */
1351			if (mc.moving_task)
1352				schedule();
1353			finish_wait(&mc.waitq, &wait);
1354			return true;
1355		}
1356	}
1357	return false;
1358}
1359
1360struct memory_stat {
1361	const char *name;
1362	unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366	{ "anon",			NR_ANON_MAPPED			},
1367	{ "file",			NR_FILE_PAGES			},
1368	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369	{ "pagetables",			NR_PAGETABLE			},
1370	{ "percpu",			MEMCG_PERCPU_B			},
1371	{ "sock",			MEMCG_SOCK			},
1372	{ "shmem",			NR_SHMEM			},
1373	{ "file_mapped",		NR_FILE_MAPPED			},
1374	{ "file_dirty",			NR_FILE_DIRTY			},
1375	{ "file_writeback",		NR_WRITEBACK			},
1376#ifdef CONFIG_SWAP
1377	{ "swapcached",			NR_SWAPCACHE			},
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380	{ "anon_thp",			NR_ANON_THPS			},
1381	{ "file_thp",			NR_FILE_THPS			},
1382	{ "shmem_thp",			NR_SHMEM_THPS			},
1383#endif
1384	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385	{ "active_anon",		NR_ACTIVE_ANON			},
1386	{ "inactive_file",		NR_INACTIVE_FILE		},
1387	{ "active_file",		NR_ACTIVE_FILE			},
1388	{ "unevictable",		NR_UNEVICTABLE			},
1389	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391
1392	/* The memory events */
1393	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405	switch (item) {
1406	case MEMCG_PERCPU_B:
1407	case NR_SLAB_RECLAIMABLE_B:
1408	case NR_SLAB_UNRECLAIMABLE_B:
1409	case WORKINGSET_REFAULT_ANON:
1410	case WORKINGSET_REFAULT_FILE:
1411	case WORKINGSET_ACTIVATE_ANON:
1412	case WORKINGSET_ACTIVATE_FILE:
1413	case WORKINGSET_RESTORE_ANON:
1414	case WORKINGSET_RESTORE_FILE:
1415	case WORKINGSET_NODERECLAIM:
1416		return 1;
1417	case NR_KERNEL_STACK_KB:
1418		return SZ_1K;
1419	default:
1420		return PAGE_SIZE;
1421	}
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425						    int item)
1426{
1427	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432	struct seq_buf s;
1433	int i;
1434
1435	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436	if (!s.buffer)
1437		return NULL;
1438
1439	/*
1440	 * Provide statistics on the state of the memory subsystem as
1441	 * well as cumulative event counters that show past behavior.
1442	 *
1443	 * This list is ordered following a combination of these gradients:
1444	 * 1) generic big picture -> specifics and details
1445	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446	 *
1447	 * Current memory state:
1448	 */
1449	cgroup_rstat_flush(memcg->css.cgroup);
1450
1451	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452		u64 size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
 
 
 
1456
1457		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458			size += memcg_page_state_output(memcg,
1459							NR_SLAB_RECLAIMABLE_B);
1460			seq_buf_printf(&s, "slab %llu\n", size);
1461		}
1462	}
 
 
 
1463
1464	/* Accumulated memory events */
1465
1466	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467		       memcg_events(memcg, PGFAULT));
1468	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469		       memcg_events(memcg, PGMAJFAULT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471		       memcg_events(memcg, PGREFILL));
1472	seq_buf_printf(&s, "pgscan %lu\n",
1473		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474		       memcg_events(memcg, PGSCAN_DIRECT));
1475	seq_buf_printf(&s, "pgsteal %lu\n",
1476		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477		       memcg_events(memcg, PGSTEAL_DIRECT));
1478	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479		       memcg_events(memcg, PGACTIVATE));
1480	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481		       memcg_events(memcg, PGDEACTIVATE));
1482	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483		       memcg_events(memcg, PGLAZYFREE));
1484	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485		       memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489		       memcg_events(memcg, THP_FAULT_ALLOC));
1490	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494	/* The above should easily fit into one page */
1495	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497	return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512	rcu_read_lock();
1513
1514	if (memcg) {
1515		pr_cont(",oom_memcg=");
1516		pr_cont_cgroup_path(memcg->css.cgroup);
1517	} else
1518		pr_cont(",global_oom");
1519	if (p) {
1520		pr_cont(",task_memcg=");
1521		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522	}
1523	rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533	char *buf;
1534
1535	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536		K((u64)page_counter_read(&memcg->memory)),
1537		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540			K((u64)page_counter_read(&memcg->swap)),
1541			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542	else {
1543		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544			K((u64)page_counter_read(&memcg->memsw)),
1545			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547			K((u64)page_counter_read(&memcg->kmem)),
1548			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549	}
1550
1551	pr_info("Memory cgroup stats for ");
1552	pr_cont_cgroup_path(memcg->css.cgroup);
1553	pr_cont(":");
1554	buf = memory_stat_format(memcg);
1555	if (!buf)
1556		return;
1557	pr_info("%s", buf);
1558	kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566	unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569		if (mem_cgroup_swappiness(memcg))
1570			max += min(READ_ONCE(memcg->swap.max),
1571				   (unsigned long)total_swap_pages);
1572	} else { /* v1 */
1573		if (mem_cgroup_swappiness(memcg)) {
1574			/* Calculate swap excess capacity from memsw limit */
1575			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577			max += min(swap, (unsigned long)total_swap_pages);
1578		}
 
 
 
 
 
 
 
1579	}
1580	return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585	return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589				     int order)
1590{
1591	struct oom_control oc = {
1592		.zonelist = NULL,
1593		.nodemask = NULL,
1594		.memcg = memcg,
1595		.gfp_mask = gfp_mask,
1596		.order = order,
1597	};
1598	bool ret = true;
1599
1600	if (mutex_lock_killable(&oom_lock))
1601		return true;
1602
1603	if (mem_cgroup_margin(memcg) >= (1 << order))
1604		goto unlock;
1605
1606	/*
1607	 * A few threads which were not waiting at mutex_lock_killable() can
1608	 * fail to bail out. Therefore, check again after holding oom_lock.
1609	 */
1610	ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613	mutex_unlock(&oom_lock);
1614	return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618				   pg_data_t *pgdat,
1619				   gfp_t gfp_mask,
1620				   unsigned long *total_scanned)
1621{
1622	struct mem_cgroup *victim = NULL;
1623	int total = 0;
1624	int loop = 0;
1625	unsigned long excess;
1626	unsigned long nr_scanned;
1627	struct mem_cgroup_reclaim_cookie reclaim = {
1628		.pgdat = pgdat,
1629	};
1630
1631	excess = soft_limit_excess(root_memcg);
1632
1633	while (1) {
1634		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635		if (!victim) {
1636			loop++;
1637			if (loop >= 2) {
1638				/*
1639				 * If we have not been able to reclaim
1640				 * anything, it might because there are
1641				 * no reclaimable pages under this hierarchy
1642				 */
1643				if (!total)
1644					break;
1645				/*
1646				 * We want to do more targeted reclaim.
1647				 * excess >> 2 is not to excessive so as to
1648				 * reclaim too much, nor too less that we keep
1649				 * coming back to reclaim from this cgroup
1650				 */
1651				if (total >= (excess >> 2) ||
1652					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653					break;
1654			}
1655			continue;
1656		}
1657		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658					pgdat, &nr_scanned);
1659		*total_scanned += nr_scanned;
1660		if (!soft_limit_excess(root_memcg))
1661			break;
1662	}
1663	mem_cgroup_iter_break(root_memcg, victim);
1664	return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669	.name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681	struct mem_cgroup *iter, *failed = NULL;
1682
1683	spin_lock(&memcg_oom_lock);
1684
1685	for_each_mem_cgroup_tree(iter, memcg) {
1686		if (iter->oom_lock) {
1687			/*
1688			 * this subtree of our hierarchy is already locked
1689			 * so we cannot give a lock.
1690			 */
1691			failed = iter;
1692			mem_cgroup_iter_break(memcg, iter);
1693			break;
1694		} else
1695			iter->oom_lock = true;
1696	}
1697
1698	if (failed) {
1699		/*
1700		 * OK, we failed to lock the whole subtree so we have
1701		 * to clean up what we set up to the failing subtree
1702		 */
1703		for_each_mem_cgroup_tree(iter, memcg) {
1704			if (iter == failed) {
1705				mem_cgroup_iter_break(memcg, iter);
1706				break;
1707			}
1708			iter->oom_lock = false;
1709		}
1710	} else
1711		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713	spin_unlock(&memcg_oom_lock);
1714
1715	return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720	struct mem_cgroup *iter;
1721
1722	spin_lock(&memcg_oom_lock);
1723	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724	for_each_mem_cgroup_tree(iter, memcg)
1725		iter->oom_lock = false;
1726	spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731	struct mem_cgroup *iter;
1732
1733	spin_lock(&memcg_oom_lock);
1734	for_each_mem_cgroup_tree(iter, memcg)
1735		iter->under_oom++;
1736	spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741	struct mem_cgroup *iter;
1742
1743	/*
1744	 * Be careful about under_oom underflows because a child memcg
1745	 * could have been added after mem_cgroup_mark_under_oom.
1746	 */
1747	spin_lock(&memcg_oom_lock);
1748	for_each_mem_cgroup_tree(iter, memcg)
1749		if (iter->under_oom > 0)
1750			iter->under_oom--;
1751	spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757	struct mem_cgroup *memcg;
1758	wait_queue_entry_t	wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762	unsigned mode, int sync, void *arg)
1763{
1764	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765	struct mem_cgroup *oom_wait_memcg;
1766	struct oom_wait_info *oom_wait_info;
1767
1768	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769	oom_wait_memcg = oom_wait_info->memcg;
1770
1771	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773		return 0;
1774	return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779	/*
1780	 * For the following lockless ->under_oom test, the only required
1781	 * guarantee is that it must see the state asserted by an OOM when
1782	 * this function is called as a result of userland actions
1783	 * triggered by the notification of the OOM.  This is trivially
1784	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785	 * triggering notification.
1786	 */
1787	if (memcg && memcg->under_oom)
1788		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792	OOM_SUCCESS,
1793	OOM_FAILED,
1794	OOM_ASYNC,
1795	OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800	enum oom_status ret;
1801	bool locked;
1802
1803	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804		return OOM_SKIPPED;
1805
1806	memcg_memory_event(memcg, MEMCG_OOM);
1807
1808	/*
1809	 * We are in the middle of the charge context here, so we
1810	 * don't want to block when potentially sitting on a callstack
1811	 * that holds all kinds of filesystem and mm locks.
1812	 *
1813	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814	 * handling until the charge can succeed; remember the context and put
1815	 * the task to sleep at the end of the page fault when all locks are
1816	 * released.
1817	 *
1818	 * On the other hand, in-kernel OOM killer allows for an async victim
1819	 * memory reclaim (oom_reaper) and that means that we are not solely
1820	 * relying on the oom victim to make a forward progress and we can
1821	 * invoke the oom killer here.
1822	 *
1823	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824	 * victim and then we have to bail out from the charge path.
1825	 */
1826	if (memcg->oom_kill_disable) {
1827		if (!current->in_user_fault)
1828			return OOM_SKIPPED;
1829		css_get(&memcg->css);
1830		current->memcg_in_oom = memcg;
1831		current->memcg_oom_gfp_mask = mask;
1832		current->memcg_oom_order = order;
1833
1834		return OOM_ASYNC;
1835	}
1836
1837	mem_cgroup_mark_under_oom(memcg);
1838
1839	locked = mem_cgroup_oom_trylock(memcg);
1840
1841	if (locked)
1842		mem_cgroup_oom_notify(memcg);
1843
1844	mem_cgroup_unmark_under_oom(memcg);
1845	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846		ret = OOM_SUCCESS;
1847	else
1848		ret = OOM_FAILED;
1849
1850	if (locked)
1851		mem_cgroup_oom_unlock(memcg);
1852
1853	return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation.  Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875	struct mem_cgroup *memcg = current->memcg_in_oom;
1876	struct oom_wait_info owait;
1877	bool locked;
1878
1879	/* OOM is global, do not handle */
1880	if (!memcg)
1881		return false;
1882
1883	if (!handle)
1884		goto cleanup;
1885
1886	owait.memcg = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.entry);
1891
1892	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893	mem_cgroup_mark_under_oom(memcg);
1894
1895	locked = mem_cgroup_oom_trylock(memcg);
1896
1897	if (locked)
1898		mem_cgroup_oom_notify(memcg);
1899
1900	if (locked && !memcg->oom_kill_disable) {
1901		mem_cgroup_unmark_under_oom(memcg);
1902		finish_wait(&memcg_oom_waitq, &owait.wait);
1903		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904					 current->memcg_oom_order);
1905	} else {
1906		schedule();
1907		mem_cgroup_unmark_under_oom(memcg);
1908		finish_wait(&memcg_oom_waitq, &owait.wait);
1909	}
1910
1911	if (locked) {
1912		mem_cgroup_oom_unlock(memcg);
1913		/*
1914		 * There is no guarantee that an OOM-lock contender
1915		 * sees the wakeups triggered by the OOM kill
1916		 * uncharges.  Wake any sleepers explicitly.
1917		 */
1918		memcg_oom_recover(memcg);
1919	}
1920cleanup:
1921	current->memcg_in_oom = NULL;
1922	css_put(&memcg->css);
1923	return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937					    struct mem_cgroup *oom_domain)
1938{
1939	struct mem_cgroup *oom_group = NULL;
1940	struct mem_cgroup *memcg;
1941
1942	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943		return NULL;
1944
1945	if (!oom_domain)
1946		oom_domain = root_mem_cgroup;
1947
1948	rcu_read_lock();
1949
1950	memcg = mem_cgroup_from_task(victim);
1951	if (memcg == root_mem_cgroup)
1952		goto out;
1953
1954	/*
1955	 * If the victim task has been asynchronously moved to a different
1956	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957	 * In this case it's better to ignore memory.group.oom.
1958	 */
1959	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960		goto out;
1961
1962	/*
1963	 * Traverse the memory cgroup hierarchy from the victim task's
1964	 * cgroup up to the OOMing cgroup (or root) to find the
1965	 * highest-level memory cgroup with oom.group set.
1966	 */
1967	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968		if (memcg->oom_group)
1969			oom_group = memcg;
1970
1971		if (memcg == oom_domain)
1972			break;
1973	}
1974
1975	if (oom_group)
1976		css_get(&oom_group->css);
1977out:
1978	rcu_read_unlock();
1979
1980	return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985	pr_info("Tasks in ");
1986	pr_cont_cgroup_path(memcg->css.cgroup);
1987	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
 
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002	struct page *head = compound_head(page); /* rmap on tail pages */
2003	struct mem_cgroup *memcg;
2004	unsigned long flags;
2005
2006	/*
2007	 * The RCU lock is held throughout the transaction.  The fast
2008	 * path can get away without acquiring the memcg->move_lock
2009	 * because page moving starts with an RCU grace period.
 
 
 
 
 
 
2010         */
2011	rcu_read_lock();
2012
2013	if (mem_cgroup_disabled())
2014		return;
2015again:
2016	memcg = page_memcg(head);
2017	if (unlikely(!memcg))
2018		return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021	local_irq_save(flags);
2022	might_lock(&memcg->move_lock);
2023	local_irq_restore(flags);
2024#endif
2025
2026	if (atomic_read(&memcg->moving_account) <= 0)
2027		return;
2028
2029	spin_lock_irqsave(&memcg->move_lock, flags);
2030	if (memcg != page_memcg(head)) {
2031		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032		goto again;
2033	}
2034
2035	/*
2036	 * When charge migration first begins, we can have multiple
2037	 * critical sections holding the fast-path RCU lock and one
2038	 * holding the slowpath move_lock. Track the task who has the
2039	 * move_lock for unlock_page_memcg().
2040	 */
2041	memcg->move_lock_task = current;
2042	memcg->move_lock_flags = flags;
 
 
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
 
2047{
2048	if (memcg && memcg->move_lock_task == current) {
2049		unsigned long flags = memcg->move_lock_flags;
2050
2051		memcg->move_lock_task = NULL;
2052		memcg->move_lock_flags = 0;
2053
2054		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055	}
2056
2057	rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066	struct page *head = compound_head(page);
2067
2068	__unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
 
 
 
2073#ifdef CONFIG_MEMCG_KMEM
2074	struct obj_cgroup *cached_objcg;
2075	struct pglist_data *cached_pgdat;
2076	unsigned int nr_bytes;
2077	int nr_slab_reclaimable_b;
2078	int nr_slab_unreclaimable_b;
2079#else
2080	int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085	struct mem_cgroup *cached; /* this never be root cgroup */
2086	unsigned int nr_pages;
2087	struct obj_stock task_obj;
2088	struct obj_stock irq_obj;
2089
2090	struct work_struct work;
2091	unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE	0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100				     struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107				     struct mem_cgroup *root_memcg)
2108{
2109	return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126	struct memcg_stock_pcp *stock;
2127
2128	if (likely(in_task())) {
2129		*pflags = 0UL;
2130		preempt_disable();
2131		stock = this_cpu_ptr(&memcg_stock);
2132		return &stock->task_obj;
2133	}
2134
2135	local_irq_save(*pflags);
2136	stock = this_cpu_ptr(&memcg_stock);
2137	return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142	if (likely(in_task()))
2143		preempt_enable();
2144	else
2145		local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock.  Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161	struct memcg_stock_pcp *stock;
2162	unsigned long flags;
2163	bool ret = false;
2164
2165	if (nr_pages > MEMCG_CHARGE_BATCH)
2166		return ret;
2167
2168	local_irq_save(flags);
2169
2170	stock = this_cpu_ptr(&memcg_stock);
2171	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172		stock->nr_pages -= nr_pages;
2173		ret = true;
2174	}
2175
2176	local_irq_restore(flags);
2177
2178	return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186	struct mem_cgroup *old = stock->cached;
2187
2188	if (!old)
2189		return;
2190
2191	if (stock->nr_pages) {
2192		page_counter_uncharge(&old->memory, stock->nr_pages);
2193		if (do_memsw_account())
2194			page_counter_uncharge(&old->memsw, stock->nr_pages);
2195		stock->nr_pages = 0;
2196	}
2197
2198	css_put(&old->css);
2199	stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204	struct memcg_stock_pcp *stock;
2205	unsigned long flags;
2206
2207	/*
2208	 * The only protection from memory hotplug vs. drain_stock races is
2209	 * that we always operate on local CPU stock here with IRQ disabled
2210	 */
2211	local_irq_save(flags);
2212
2213	stock = this_cpu_ptr(&memcg_stock);
2214	drain_obj_stock(&stock->irq_obj);
2215	if (in_task())
2216		drain_obj_stock(&stock->task_obj);
2217	drain_stock(stock);
2218	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220	local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231
2232	local_irq_save(flags);
2233
2234	stock = this_cpu_ptr(&memcg_stock);
2235	if (stock->cached != memcg) { /* reset if necessary */
2236		drain_stock(stock);
2237		css_get(&memcg->css);
2238		stock->cached = memcg;
2239	}
2240	stock->nr_pages += nr_pages;
2241
2242	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243		drain_stock(stock);
2244
2245	local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254	int cpu, curcpu;
2255
2256	/* If someone's already draining, avoid adding running more workers. */
2257	if (!mutex_trylock(&percpu_charge_mutex))
2258		return;
2259	/*
2260	 * Notify other cpus that system-wide "drain" is running
2261	 * We do not care about races with the cpu hotplug because cpu down
2262	 * as well as workers from this path always operate on the local
2263	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264	 */
2265	curcpu = get_cpu();
2266	for_each_online_cpu(cpu) {
2267		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268		struct mem_cgroup *memcg;
2269		bool flush = false;
2270
2271		rcu_read_lock();
2272		memcg = stock->cached;
2273		if (memcg && stock->nr_pages &&
2274		    mem_cgroup_is_descendant(memcg, root_memcg))
2275			flush = true;
2276		if (obj_stock_flush_required(stock, root_memcg))
2277			flush = true;
2278		rcu_read_unlock();
2279
2280		if (flush &&
2281		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282			if (cpu == curcpu)
2283				drain_local_stock(&stock->work);
2284			else
2285				schedule_work_on(cpu, &stock->work);
2286		}
2287	}
2288	put_cpu();
2289	mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294	int nid;
 
2295
2296	for_each_node(nid) {
2297		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299		struct batched_lruvec_stat *lstatc;
2300		int i;
2301
2302		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304			stat[i] = lstatc->count[i];
2305			lstatc->count[i] = 0;
2306		}
 
 
 
2307
2308		do {
2309			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311		} while ((pn = parent_nodeinfo(pn, nid)));
2312	}
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317	struct memcg_stock_pcp *stock;
2318	struct mem_cgroup *memcg;
2319
2320	stock = &per_cpu(memcg_stock, cpu);
2321	drain_stock(stock);
 
 
 
 
 
 
 
 
 
2322
2323	for_each_mem_cgroup(memcg)
2324		memcg_flush_lruvec_page_state(memcg, cpu);
 
 
 
 
2325
2326	return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330				  unsigned int nr_pages,
2331				  gfp_t gfp_mask)
2332{
2333	unsigned long nr_reclaimed = 0;
2334
2335	do {
2336		unsigned long pflags;
2337
2338		if (page_counter_read(&memcg->memory) <=
2339		    READ_ONCE(memcg->memory.high))
2340			continue;
2341
2342		memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344		psi_memstall_enter(&pflags);
2345		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346							     gfp_mask, true);
2347		psi_memstall_leave(&pflags);
2348	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349		 !mem_cgroup_is_root(memcg));
2350
2351	return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356	struct mem_cgroup *memcg;
2357
2358	memcg = container_of(work, struct mem_cgroup, high_work);
2359	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 *   overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 *   to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 *  +-------+------------------------+
2387 *  | usage | time to allocate in ms |
2388 *  +-------+------------------------+
2389 *  | 100M  |                      0 |
2390 *  | 101M  |                      6 |
2391 *  | 102M  |                     25 |
2392 *  | 103M  |                     57 |
2393 *  | 104M  |                    102 |
2394 *  | 105M  |                    159 |
2395 *  | 106M  |                    230 |
2396 *  | 107M  |                    313 |
2397 *  | 108M  |                    409 |
2398 *  | 109M  |                    518 |
2399 *  | 110M  |                    639 |
2400 *  | 111M  |                    774 |
2401 *  | 112M  |                    921 |
2402 *  | 113M  |                   1081 |
2403 *  | 114M  |                   1254 |
2404 *  | 115M  |                   1439 |
2405 *  | 116M  |                   1638 |
2406 *  | 117M  |                   1849 |
2407 *  | 118M  |                   2000 |
2408 *  | 119M  |                   2000 |
2409 *  | 120M  |                   2000 |
2410 *  +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417	u64 overage;
2418
2419	if (usage <= high)
2420		return 0;
2421
2422	/*
2423	 * Prevent division by 0 in overage calculation by acting as if
2424	 * it was a threshold of 1 page
2425	 */
2426	high = max(high, 1UL);
2427
2428	overage = usage - high;
2429	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430	return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435	u64 overage, max_overage = 0;
2436
2437	do {
2438		overage = calculate_overage(page_counter_read(&memcg->memory),
2439					    READ_ONCE(memcg->memory.high));
2440		max_overage = max(overage, max_overage);
2441	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442		 !mem_cgroup_is_root(memcg));
2443
2444	return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449	u64 overage, max_overage = 0;
2450
2451	do {
2452		overage = calculate_overage(page_counter_read(&memcg->swap),
2453					    READ_ONCE(memcg->swap.high));
2454		if (overage)
2455			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456		max_overage = max(overage, max_overage);
2457	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458		 !mem_cgroup_is_root(memcg));
2459
2460	return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468					  unsigned int nr_pages,
2469					  u64 max_overage)
2470{
2471	unsigned long penalty_jiffies;
2472
2473	if (!max_overage)
2474		return 0;
2475
2476	/*
2477	 * We use overage compared to memory.high to calculate the number of
2478	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479	 * fairly lenient on small overages, and increasingly harsh when the
2480	 * memcg in question makes it clear that it has no intention of stopping
2481	 * its crazy behaviour, so we exponentially increase the delay based on
2482	 * overage amount.
2483	 */
2484	penalty_jiffies = max_overage * max_overage * HZ;
2485	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488	/*
2489	 * Factor in the task's own contribution to the overage, such that four
2490	 * N-sized allocations are throttled approximately the same as one
2491	 * 4N-sized allocation.
2492	 *
2493	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494	 * larger the current charge patch is than that.
2495	 */
2496	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505	unsigned long penalty_jiffies;
2506	unsigned long pflags;
2507	unsigned long nr_reclaimed;
2508	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509	int nr_retries = MAX_RECLAIM_RETRIES;
2510	struct mem_cgroup *memcg;
2511	bool in_retry = false;
2512
2513	if (likely(!nr_pages))
2514		return;
2515
2516	memcg = get_mem_cgroup_from_mm(current->mm);
2517	current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520	/*
2521	 * The allocating task should reclaim at least the batch size, but for
2522	 * subsequent retries we only want to do what's necessary to prevent oom
2523	 * or breaching resource isolation.
2524	 *
2525	 * This is distinct from memory.max or page allocator behaviour because
2526	 * memory.high is currently batched, whereas memory.max and the page
2527	 * allocator run every time an allocation is made.
2528	 */
2529	nr_reclaimed = reclaim_high(memcg,
2530				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531				    GFP_KERNEL);
2532
2533	/*
2534	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535	 * allocators proactively to slow down excessive growth.
2536	 */
2537	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538					       mem_find_max_overage(memcg));
2539
2540	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541						swap_find_max_overage(memcg));
2542
2543	/*
2544	 * Clamp the max delay per usermode return so as to still keep the
2545	 * application moving forwards and also permit diagnostics, albeit
2546	 * extremely slowly.
2547	 */
2548	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550	/*
2551	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552	 * that it's not even worth doing, in an attempt to be nice to those who
2553	 * go only a small amount over their memory.high value and maybe haven't
2554	 * been aggressively reclaimed enough yet.
2555	 */
2556	if (penalty_jiffies <= HZ / 100)
2557		goto out;
2558
2559	/*
2560	 * If reclaim is making forward progress but we're still over
2561	 * memory.high, we want to encourage that rather than doing allocator
2562	 * throttling.
2563	 */
2564	if (nr_reclaimed || nr_retries--) {
2565		in_retry = true;
2566		goto retry_reclaim;
2567	}
2568
2569	/*
2570	 * If we exit early, we're guaranteed to die (since
2571	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572	 * need to account for any ill-begotten jiffies to pay them off later.
2573	 */
2574	psi_memstall_enter(&pflags);
2575	schedule_timeout_killable(penalty_jiffies);
2576	psi_memstall_leave(&pflags);
2577
2578out:
2579	css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583			unsigned int nr_pages)
2584{
2585	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586	int nr_retries = MAX_RECLAIM_RETRIES;
2587	struct mem_cgroup *mem_over_limit;
2588	struct page_counter *counter;
2589	enum oom_status oom_status;
2590	unsigned long nr_reclaimed;
2591	bool may_swap = true;
2592	bool drained = false;
2593	unsigned long pflags;
2594
 
 
2595retry:
2596	if (consume_stock(memcg, nr_pages))
2597		return 0;
2598
2599	if (!do_memsw_account() ||
2600	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602			goto done_restock;
2603		if (do_memsw_account())
2604			page_counter_uncharge(&memcg->memsw, batch);
2605		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606	} else {
2607		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608		may_swap = false;
2609	}
2610
2611	if (batch > nr_pages) {
2612		batch = nr_pages;
2613		goto retry;
2614	}
2615
2616	/*
2617	 * Memcg doesn't have a dedicated reserve for atomic
2618	 * allocations. But like the global atomic pool, we need to
2619	 * put the burden of reclaim on regular allocation requests
2620	 * and let these go through as privileged allocations.
2621	 */
2622	if (gfp_mask & __GFP_ATOMIC)
2623		goto force;
2624
2625	/*
2626	 * Unlike in global OOM situations, memcg is not in a physical
2627	 * memory shortage.  Allow dying and OOM-killed tasks to
2628	 * bypass the last charges so that they can exit quickly and
2629	 * free their memory.
2630	 */
2631	if (unlikely(should_force_charge()))
2632		goto force;
2633
2634	/*
2635	 * Prevent unbounded recursion when reclaim operations need to
2636	 * allocate memory. This might exceed the limits temporarily,
2637	 * but we prefer facilitating memory reclaim and getting back
2638	 * under the limit over triggering OOM kills in these cases.
2639	 */
2640	if (unlikely(current->flags & PF_MEMALLOC))
2641		goto force;
2642
2643	if (unlikely(task_in_memcg_oom(current)))
2644		goto nomem;
2645
2646	if (!gfpflags_allow_blocking(gfp_mask))
2647		goto nomem;
2648
2649	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651	psi_memstall_enter(&pflags);
2652	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653						    gfp_mask, may_swap);
2654	psi_memstall_leave(&pflags);
2655
2656	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657		goto retry;
2658
2659	if (!drained) {
2660		drain_all_stock(mem_over_limit);
2661		drained = true;
2662		goto retry;
2663	}
2664
2665	if (gfp_mask & __GFP_NORETRY)
2666		goto nomem;
2667	/*
2668	 * Even though the limit is exceeded at this point, reclaim
2669	 * may have been able to free some pages.  Retry the charge
2670	 * before killing the task.
2671	 *
2672	 * Only for regular pages, though: huge pages are rather
2673	 * unlikely to succeed so close to the limit, and we fall back
2674	 * to regular pages anyway in case of failure.
2675	 */
2676	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677		goto retry;
2678	/*
2679	 * At task move, charge accounts can be doubly counted. So, it's
2680	 * better to wait until the end of task_move if something is going on.
2681	 */
2682	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683		goto retry;
2684
2685	if (nr_retries--)
2686		goto retry;
2687
2688	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689		goto nomem;
2690
 
 
 
2691	if (fatal_signal_pending(current))
2692		goto force;
2693
2694	/*
2695	 * keep retrying as long as the memcg oom killer is able to make
2696	 * a forward progress or bypass the charge if the oom killer
2697	 * couldn't make any progress.
2698	 */
2699	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700		       get_order(nr_pages * PAGE_SIZE));
2701	switch (oom_status) {
2702	case OOM_SUCCESS:
2703		nr_retries = MAX_RECLAIM_RETRIES;
2704		goto retry;
2705	case OOM_FAILED:
2706		goto force;
2707	default:
2708		goto nomem;
2709	}
2710nomem:
2711	if (!(gfp_mask & __GFP_NOFAIL))
2712		return -ENOMEM;
2713force:
2714	/*
2715	 * The allocation either can't fail or will lead to more memory
2716	 * being freed very soon.  Allow memory usage go over the limit
2717	 * temporarily by force charging it.
2718	 */
2719	page_counter_charge(&memcg->memory, nr_pages);
2720	if (do_memsw_account())
2721		page_counter_charge(&memcg->memsw, nr_pages);
2722
2723	return 0;
2724
2725done_restock:
2726	if (batch > nr_pages)
2727		refill_stock(memcg, batch - nr_pages);
2728
2729	/*
2730	 * If the hierarchy is above the normal consumption range, schedule
2731	 * reclaim on returning to userland.  We can perform reclaim here
2732	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734	 * not recorded as it most likely matches current's and won't
2735	 * change in the meantime.  As high limit is checked again before
2736	 * reclaim, the cost of mismatch is negligible.
2737	 */
2738	do {
2739		bool mem_high, swap_high;
2740
2741		mem_high = page_counter_read(&memcg->memory) >
2742			READ_ONCE(memcg->memory.high);
2743		swap_high = page_counter_read(&memcg->swap) >
2744			READ_ONCE(memcg->swap.high);
2745
2746		/* Don't bother a random interrupted task */
2747		if (in_interrupt()) {
2748			if (mem_high) {
2749				schedule_work(&memcg->high_work);
2750				break;
2751			}
2752			continue;
2753		}
2754
2755		if (mem_high || swap_high) {
2756			/*
2757			 * The allocating tasks in this cgroup will need to do
2758			 * reclaim or be throttled to prevent further growth
2759			 * of the memory or swap footprints.
2760			 *
2761			 * Target some best-effort fairness between the tasks,
2762			 * and distribute reclaim work and delay penalties
2763			 * based on how much each task is actually allocating.
2764			 */
2765			current->memcg_nr_pages_over_high += batch;
2766			set_notify_resume(current);
2767			break;
2768		}
2769	} while ((memcg = parent_mem_cgroup(memcg)));
2770
2771	return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775			     unsigned int nr_pages)
2776{
2777	if (mem_cgroup_is_root(memcg))
2778		return 0;
2779
2780	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786	if (mem_cgroup_is_root(memcg))
2787		return;
2788
2789	page_counter_uncharge(&memcg->memory, nr_pages);
2790	if (do_memsw_account())
2791		page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797	VM_BUG_ON_PAGE(page_memcg(page), page);
2798	/*
2799	 * Any of the following ensures page's memcg stability:
2800	 *
2801	 * - the page lock
2802	 * - LRU isolation
2803	 * - lock_page_memcg()
2804	 * - exclusive reference
2805	 */
2806	page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811	struct mem_cgroup *memcg;
2812
2813	rcu_read_lock();
2814retry:
2815	memcg = obj_cgroup_memcg(objcg);
2816	if (unlikely(!css_tryget(&memcg->css)))
2817		goto retry;
2818	rcu_read_unlock();
2819
2820	return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832				 gfp_t gfp, bool new_page)
2833{
2834	unsigned int objects = objs_per_slab_page(s, page);
2835	unsigned long memcg_data;
2836	void *vec;
2837
2838	gfp &= ~OBJCGS_CLEAR_MASK;
2839	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840			   page_to_nid(page));
2841	if (!vec)
2842		return -ENOMEM;
2843
2844	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845	if (new_page) {
2846		/*
2847		 * If the slab page is brand new and nobody can yet access
2848		 * it's memcg_data, no synchronization is required and
2849		 * memcg_data can be simply assigned.
2850		 */
2851		page->memcg_data = memcg_data;
2852	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853		/*
2854		 * If the slab page is already in use, somebody can allocate
2855		 * and assign obj_cgroups in parallel. In this case the existing
2856		 * objcg vector should be reused.
2857		 */
2858		kfree(vec);
2859		return 0;
2860	}
2861
2862	kmemleak_not_leak(vec);
2863	return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880	struct page *page;
2881
2882	if (mem_cgroup_disabled())
2883		return NULL;
2884
2885	page = virt_to_head_page(p);
2886
2887	/*
2888	 * Slab objects are accounted individually, not per-page.
2889	 * Memcg membership data for each individual object is saved in
2890	 * the page->obj_cgroups.
2891	 */
2892	if (page_objcgs_check(page)) {
2893		struct obj_cgroup *objcg;
2894		unsigned int off;
2895
2896		off = obj_to_index(page->slab_cache, page, p);
2897		objcg = page_objcgs(page)[off];
2898		if (objcg)
2899			return obj_cgroup_memcg(objcg);
2900
2901		return NULL;
2902	}
2903
2904	/*
2905	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906	 * check above could fail because the object cgroups vector wasn't set
2907	 * at that moment, but it can be set concurrently.
2908	 * page_memcg_check(page) will guarantee that a proper memory
2909	 * cgroup pointer or NULL will be returned.
2910	 */
2911	return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916	struct obj_cgroup *objcg = NULL;
2917	struct mem_cgroup *memcg;
2918
2919	if (memcg_kmem_bypass())
2920		return NULL;
2921
2922	rcu_read_lock();
2923	if (unlikely(active_memcg()))
2924		memcg = active_memcg();
2925	else
2926		memcg = mem_cgroup_from_task(current);
2927
2928	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929		objcg = rcu_dereference(memcg->objcg);
2930		if (objcg && obj_cgroup_tryget(objcg))
2931			break;
2932		objcg = NULL;
2933	}
2934	rcu_read_unlock();
2935
2936	return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941	int id, size;
2942	int err;
2943
2944	id = ida_simple_get(&memcg_cache_ida,
2945			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946	if (id < 0)
2947		return id;
2948
2949	if (id < memcg_nr_cache_ids)
2950		return id;
2951
2952	/*
2953	 * There's no space for the new id in memcg_caches arrays,
2954	 * so we have to grow them.
2955	 */
2956	down_write(&memcg_cache_ids_sem);
2957
2958	size = 2 * (id + 1);
2959	if (size < MEMCG_CACHES_MIN_SIZE)
2960		size = MEMCG_CACHES_MIN_SIZE;
2961	else if (size > MEMCG_CACHES_MAX_SIZE)
2962		size = MEMCG_CACHES_MAX_SIZE;
2963
2964	err = memcg_update_all_list_lrus(size);
2965	if (!err)
2966		memcg_nr_cache_ids = size;
2967
2968	up_write(&memcg_cache_ids_sem);
2969
2970	if (err) {
2971		ida_simple_remove(&memcg_cache_ida, id);
2972		return err;
2973	}
2974	return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979	ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988				      unsigned int nr_pages)
2989{
2990	struct mem_cgroup *memcg;
2991
2992	memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995		page_counter_uncharge(&memcg->kmem, nr_pages);
2996	refill_stock(memcg, nr_pages);
2997
2998	css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010				   unsigned int nr_pages)
3011{
3012	struct page_counter *counter;
3013	struct mem_cgroup *memcg;
3014	int ret;
3015
3016	memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019	if (ret)
3020		goto out;
3021
3022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025		/*
3026		 * Enforce __GFP_NOFAIL allocation because callers are not
3027		 * prepared to see failures and likely do not have any failure
3028		 * handling code.
3029		 */
3030		if (gfp & __GFP_NOFAIL) {
3031			page_counter_charge(&memcg->kmem, nr_pages);
3032			goto out;
3033		}
3034		cancel_charge(memcg, nr_pages);
3035		ret = -ENOMEM;
3036	}
3037out:
3038	css_put(&memcg->css);
3039
3040	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053	struct obj_cgroup *objcg;
3054	int ret = 0;
3055
3056	objcg = get_obj_cgroup_from_current();
3057	if (objcg) {
3058		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
 
 
 
3059		if (!ret) {
3060			page->memcg_data = (unsigned long)objcg |
3061				MEMCG_DATA_KMEM;
3062			return 0;
3063		}
3064		obj_cgroup_put(objcg);
3065	}
 
3066	return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076	struct obj_cgroup *objcg;
3077	unsigned int nr_pages = 1 << order;
3078
3079	if (!PageMemcgKmem(page))
3080		return;
3081
3082	objcg = __page_objcg(page);
3083	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084	page->memcg_data = 0;
3085	obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089		     enum node_stat_item idx, int nr)
3090{
3091	unsigned long flags;
3092	struct obj_stock *stock = get_obj_stock(&flags);
3093	int *bytes;
3094
3095	/*
3096	 * Save vmstat data in stock and skip vmstat array update unless
3097	 * accumulating over a page of vmstat data or when pgdat or idx
3098	 * changes.
3099	 */
3100	if (stock->cached_objcg != objcg) {
3101		drain_obj_stock(stock);
3102		obj_cgroup_get(objcg);
3103		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105		stock->cached_objcg = objcg;
3106		stock->cached_pgdat = pgdat;
3107	} else if (stock->cached_pgdat != pgdat) {
3108		/* Flush the existing cached vmstat data */
3109		struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111		if (stock->nr_slab_reclaimable_b) {
3112			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113					  stock->nr_slab_reclaimable_b);
3114			stock->nr_slab_reclaimable_b = 0;
3115		}
3116		if (stock->nr_slab_unreclaimable_b) {
3117			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118					  stock->nr_slab_unreclaimable_b);
3119			stock->nr_slab_unreclaimable_b = 0;
3120		}
3121		stock->cached_pgdat = pgdat;
3122	}
3123
3124	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125					       : &stock->nr_slab_unreclaimable_b;
3126	/*
3127	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128	 * cached locally at least once before pushing it out.
3129	 */
3130	if (!*bytes) {
3131		*bytes = nr;
3132		nr = 0;
3133	} else {
3134		*bytes += nr;
3135		if (abs(*bytes) > PAGE_SIZE) {
3136			nr = *bytes;
3137			*bytes = 0;
3138		} else {
3139			nr = 0;
3140		}
3141	}
3142	if (nr)
3143		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145	put_obj_stock(flags);
 
 
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
 
3150	unsigned long flags;
3151	struct obj_stock *stock = get_obj_stock(&flags);
3152	bool ret = false;
3153
 
 
 
3154	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155		stock->nr_bytes -= nr_bytes;
3156		ret = true;
3157	}
3158
3159	put_obj_stock(flags);
3160
3161	return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166	struct obj_cgroup *old = stock->cached_objcg;
3167
3168	if (!old)
3169		return;
3170
3171	if (stock->nr_bytes) {
3172		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175		if (nr_pages)
3176			obj_cgroup_uncharge_pages(old, nr_pages);
 
 
 
3177
3178		/*
3179		 * The leftover is flushed to the centralized per-memcg value.
3180		 * On the next attempt to refill obj stock it will be moved
3181		 * to a per-cpu stock (probably, on an other CPU), see
3182		 * refill_obj_stock().
3183		 *
3184		 * How often it's flushed is a trade-off between the memory
3185		 * limit enforcement accuracy and potential CPU contention,
3186		 * so it might be changed in the future.
3187		 */
3188		atomic_add(nr_bytes, &old->nr_charged_bytes);
3189		stock->nr_bytes = 0;
3190	}
3191
3192	/*
3193	 * Flush the vmstat data in current stock
3194	 */
3195	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196		if (stock->nr_slab_reclaimable_b) {
3197			mod_objcg_mlstate(old, stock->cached_pgdat,
3198					  NR_SLAB_RECLAIMABLE_B,
3199					  stock->nr_slab_reclaimable_b);
3200			stock->nr_slab_reclaimable_b = 0;
3201		}
3202		if (stock->nr_slab_unreclaimable_b) {
3203			mod_objcg_mlstate(old, stock->cached_pgdat,
3204					  NR_SLAB_UNRECLAIMABLE_B,
3205					  stock->nr_slab_unreclaimable_b);
3206			stock->nr_slab_unreclaimable_b = 0;
3207		}
3208		stock->cached_pgdat = NULL;
3209	}
3210
3211	obj_cgroup_put(old);
3212	stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216				     struct mem_cgroup *root_memcg)
3217{
3218	struct mem_cgroup *memcg;
3219
3220	if (in_task() && stock->task_obj.cached_objcg) {
3221		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223			return true;
3224	}
3225	if (stock->irq_obj.cached_objcg) {
3226		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228			return true;
3229	}
3230
3231	return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235			     bool allow_uncharge)
3236{
 
3237	unsigned long flags;
3238	struct obj_stock *stock = get_obj_stock(&flags);
3239	unsigned int nr_pages = 0;
3240
 
 
 
3241	if (stock->cached_objcg != objcg) { /* reset if necessary */
3242		drain_obj_stock(stock);
3243		obj_cgroup_get(objcg);
3244		stock->cached_objcg = objcg;
3245		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3248	}
3249	stock->nr_bytes += nr_bytes;
3250
3251	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253		stock->nr_bytes &= (PAGE_SIZE - 1);
3254	}
3255
3256	put_obj_stock(flags);
3257
3258	if (nr_pages)
3259		obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
 
3264	unsigned int nr_pages, nr_bytes;
3265	int ret;
3266
3267	if (consume_obj_stock(objcg, size))
3268		return 0;
3269
3270	/*
3271	 * In theory, objcg->nr_charged_bytes can have enough
3272	 * pre-charged bytes to satisfy the allocation. However,
3273	 * flushing objcg->nr_charged_bytes requires two atomic
3274	 * operations, and objcg->nr_charged_bytes can't be big.
3275	 * The shared objcg->nr_charged_bytes can also become a
3276	 * performance bottleneck if all tasks of the same memcg are
3277	 * trying to update it. So it's better to ignore it and try
3278	 * grab some new pages. The stock's nr_bytes will be flushed to
3279	 * objcg->nr_charged_bytes later on when objcg changes.
3280	 *
3281	 * The stock's nr_bytes may contain enough pre-charged bytes
3282	 * to allow one less page from being charged, but we can't rely
3283	 * on the pre-charged bytes not being changed outside of
3284	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285	 * pre-charged bytes as well when charging pages. To avoid a
3286	 * page uncharge right after a page charge, we set the
3287	 * allow_uncharge flag to false when calling refill_obj_stock()
3288	 * to temporarily allow the pre-charged bytes to exceed the page
3289	 * size limit. The maximum reachable value of the pre-charged
3290	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291	 * race.
3292	 */
 
 
 
 
 
3293	nr_pages = size >> PAGE_SHIFT;
3294	nr_bytes = size & (PAGE_SIZE - 1);
3295
3296	if (nr_bytes)
3297		nr_pages += 1;
3298
3299	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300	if (!ret && nr_bytes)
3301		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
 
3303	return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308	refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
 
 
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
 
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318	struct mem_cgroup *memcg = page_memcg(head);
3319	int i;
3320
3321	if (mem_cgroup_disabled() || !memcg)
3322		return;
3323
3324	for (i = 1; i < nr; i++)
3325		head[i].memcg_data = head->memcg_data;
3326
3327	if (PageMemcgKmem(head))
3328		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329	else
3330		css_get_many(&memcg->css, nr - 1);
3331}
 
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from:  mem_cgroup which the entry is moved from
3338 * @to:  mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349				struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351	unsigned short old_id, new_id;
3352
3353	old_id = mem_cgroup_id(from);
3354	new_id = mem_cgroup_id(to);
3355
3356	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357		mod_memcg_state(from, MEMCG_SWAP, -1);
3358		mod_memcg_state(to, MEMCG_SWAP, 1);
3359		return 0;
3360	}
3361	return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365				struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367	return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374				 unsigned long max, bool memsw)
3375{
3376	bool enlarge = false;
3377	bool drained = false;
3378	int ret;
3379	bool limits_invariant;
3380	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382	do {
3383		if (signal_pending(current)) {
3384			ret = -EINTR;
3385			break;
3386		}
3387
3388		mutex_lock(&memcg_max_mutex);
3389		/*
3390		 * Make sure that the new limit (memsw or memory limit) doesn't
3391		 * break our basic invariant rule memory.max <= memsw.max.
3392		 */
3393		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394					   max <= memcg->memsw.max;
3395		if (!limits_invariant) {
3396			mutex_unlock(&memcg_max_mutex);
3397			ret = -EINVAL;
3398			break;
3399		}
3400		if (max > counter->max)
3401			enlarge = true;
3402		ret = page_counter_set_max(counter, max);
3403		mutex_unlock(&memcg_max_mutex);
3404
3405		if (!ret)
3406			break;
3407
3408		if (!drained) {
3409			drain_all_stock(memcg);
3410			drained = true;
3411			continue;
3412		}
3413
3414		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415					GFP_KERNEL, !memsw)) {
3416			ret = -EBUSY;
3417			break;
3418		}
3419	} while (true);
3420
3421	if (!ret && enlarge)
3422		memcg_oom_recover(memcg);
3423
3424	return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428					    gfp_t gfp_mask,
3429					    unsigned long *total_scanned)
3430{
3431	unsigned long nr_reclaimed = 0;
3432	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433	unsigned long reclaimed;
3434	int loop = 0;
3435	struct mem_cgroup_tree_per_node *mctz;
3436	unsigned long excess;
3437	unsigned long nr_scanned;
3438
3439	if (order > 0)
3440		return 0;
3441
3442	mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444	/*
3445	 * Do not even bother to check the largest node if the root
3446	 * is empty. Do it lockless to prevent lock bouncing. Races
3447	 * are acceptable as soft limit is best effort anyway.
3448	 */
3449	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450		return 0;
3451
3452	/*
3453	 * This loop can run a while, specially if mem_cgroup's continuously
3454	 * keep exceeding their soft limit and putting the system under
3455	 * pressure
3456	 */
3457	do {
3458		if (next_mz)
3459			mz = next_mz;
3460		else
3461			mz = mem_cgroup_largest_soft_limit_node(mctz);
3462		if (!mz)
3463			break;
3464
3465		nr_scanned = 0;
3466		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467						    gfp_mask, &nr_scanned);
3468		nr_reclaimed += reclaimed;
3469		*total_scanned += nr_scanned;
3470		spin_lock_irq(&mctz->lock);
3471		__mem_cgroup_remove_exceeded(mz, mctz);
3472
3473		/*
3474		 * If we failed to reclaim anything from this memory cgroup
3475		 * it is time to move on to the next cgroup
3476		 */
3477		next_mz = NULL;
3478		if (!reclaimed)
3479			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481		excess = soft_limit_excess(mz->memcg);
3482		/*
3483		 * One school of thought says that we should not add
3484		 * back the node to the tree if reclaim returns 0.
3485		 * But our reclaim could return 0, simply because due
3486		 * to priority we are exposing a smaller subset of
3487		 * memory to reclaim from. Consider this as a longer
3488		 * term TODO.
3489		 */
3490		/* If excess == 0, no tree ops */
3491		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3492		spin_unlock_irq(&mctz->lock);
3493		css_put(&mz->memcg->css);
3494		loop++;
3495		/*
3496		 * Could not reclaim anything and there are no more
3497		 * mem cgroups to try or we seem to be looping without
3498		 * reclaiming anything.
3499		 */
3500		if (!nr_reclaimed &&
3501			(next_mz == NULL ||
3502			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503			break;
3504	} while (!nr_reclaimed);
3505	if (next_mz)
3506		css_put(&next_mz->memcg->css);
3507	return nr_reclaimed;
3508}
3509
3510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517	int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519	/* we call try-to-free pages for make this cgroup empty */
3520	lru_add_drain_all();
3521
3522	drain_all_stock(memcg);
3523
3524	/* try to free all pages in this cgroup */
3525	while (nr_retries && page_counter_read(&memcg->memory)) {
3526		int progress;
3527
3528		if (signal_pending(current))
3529			return -EINTR;
3530
3531		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532							GFP_KERNEL, true);
3533		if (!progress) {
3534			nr_retries--;
3535			/* maybe some writeback is necessary */
3536			congestion_wait(BLK_RW_ASYNC, HZ/10);
3537		}
3538
3539	}
3540
3541	return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545					    char *buf, size_t nbytes,
3546					    loff_t off)
3547{
3548	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550	if (mem_cgroup_is_root(memcg))
3551		return -EINVAL;
3552	return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556				     struct cftype *cft)
3557{
3558	return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562				      struct cftype *cft, u64 val)
3563{
3564	if (val == 1)
 
 
 
 
3565		return 0;
3566
3567	pr_warn_once("Non-hierarchical mode is deprecated. "
3568		     "Please report your usecase to linux-mm@kvack.org if you "
3569		     "depend on this functionality.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
3570
3571	return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576	unsigned long val;
3577
3578	if (mem_cgroup_is_root(memcg)) {
3579		/* mem_cgroup_threshold() calls here from irqsafe context */
3580		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582			memcg_page_state(memcg, NR_ANON_MAPPED);
3583		if (swap)
3584			val += memcg_page_state(memcg, MEMCG_SWAP);
3585	} else {
3586		if (!swap)
3587			val = page_counter_read(&memcg->memory);
3588		else
3589			val = page_counter_read(&memcg->memsw);
3590	}
3591	return val;
3592}
3593
3594enum {
3595	RES_USAGE,
3596	RES_LIMIT,
3597	RES_MAX_USAGE,
3598	RES_FAILCNT,
3599	RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603			       struct cftype *cft)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606	struct page_counter *counter;
3607
3608	switch (MEMFILE_TYPE(cft->private)) {
3609	case _MEM:
3610		counter = &memcg->memory;
3611		break;
3612	case _MEMSWAP:
3613		counter = &memcg->memsw;
3614		break;
3615	case _KMEM:
3616		counter = &memcg->kmem;
3617		break;
3618	case _TCP:
3619		counter = &memcg->tcpmem;
3620		break;
3621	default:
3622		BUG();
3623	}
3624
3625	switch (MEMFILE_ATTR(cft->private)) {
3626	case RES_USAGE:
3627		if (counter == &memcg->memory)
3628			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629		if (counter == &memcg->memsw)
3630			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631		return (u64)page_counter_read(counter) * PAGE_SIZE;
3632	case RES_LIMIT:
3633		return (u64)counter->max * PAGE_SIZE;
3634	case RES_MAX_USAGE:
3635		return (u64)counter->watermark * PAGE_SIZE;
3636	case RES_FAILCNT:
3637		return counter->failcnt;
3638	case RES_SOFT_LIMIT:
3639		return (u64)memcg->soft_limit * PAGE_SIZE;
3640	default:
3641		BUG();
3642	}
3643}
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648	struct obj_cgroup *objcg;
3649	int memcg_id;
3650
3651	if (cgroup_memory_nokmem)
3652		return 0;
3653
3654	BUG_ON(memcg->kmemcg_id >= 0);
3655	BUG_ON(memcg->kmem_state);
3656
3657	memcg_id = memcg_alloc_cache_id();
3658	if (memcg_id < 0)
3659		return memcg_id;
3660
3661	objcg = obj_cgroup_alloc();
3662	if (!objcg) {
3663		memcg_free_cache_id(memcg_id);
3664		return -ENOMEM;
3665	}
3666	objcg->memcg = memcg;
3667	rcu_assign_pointer(memcg->objcg, objcg);
3668
3669	static_branch_enable(&memcg_kmem_enabled_key);
3670
 
 
 
 
 
 
3671	memcg->kmemcg_id = memcg_id;
3672	memcg->kmem_state = KMEM_ONLINE;
3673
3674	return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679	struct cgroup_subsys_state *css;
3680	struct mem_cgroup *parent, *child;
3681	int kmemcg_id;
3682
3683	if (memcg->kmem_state != KMEM_ONLINE)
3684		return;
3685
3686	memcg->kmem_state = KMEM_ALLOCATED;
3687
3688	parent = parent_mem_cgroup(memcg);
3689	if (!parent)
3690		parent = root_mem_cgroup;
3691
3692	memcg_reparent_objcgs(memcg, parent);
3693
3694	kmemcg_id = memcg->kmemcg_id;
3695	BUG_ON(kmemcg_id < 0);
3696
3697	/*
3698	 * Change kmemcg_id of this cgroup and all its descendants to the
3699	 * parent's id, and then move all entries from this cgroup's list_lrus
3700	 * to ones of the parent. After we have finished, all list_lrus
3701	 * corresponding to this cgroup are guaranteed to remain empty. The
3702	 * ordering is imposed by list_lru_node->lock taken by
3703	 * memcg_drain_all_list_lrus().
3704	 */
3705	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706	css_for_each_descendant_pre(css, &memcg->css) {
3707		child = mem_cgroup_from_css(css);
3708		BUG_ON(child->kmemcg_id != kmemcg_id);
3709		child->kmemcg_id = parent->kmemcg_id;
 
 
3710	}
3711	rcu_read_unlock();
3712
3713	memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715	memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720	/* css_alloc() failed, offlining didn't happen */
3721	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722		memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738				 unsigned long max)
3739{
3740	int ret;
3741
3742	mutex_lock(&memcg_max_mutex);
3743	ret = page_counter_set_max(&memcg->kmem, max);
3744	mutex_unlock(&memcg_max_mutex);
3745	return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750	int ret;
3751
3752	mutex_lock(&memcg_max_mutex);
3753
3754	ret = page_counter_set_max(&memcg->tcpmem, max);
3755	if (ret)
3756		goto out;
3757
3758	if (!memcg->tcpmem_active) {
3759		/*
3760		 * The active flag needs to be written after the static_key
3761		 * update. This is what guarantees that the socket activation
3762		 * function is the last one to run. See mem_cgroup_sk_alloc()
3763		 * for details, and note that we don't mark any socket as
3764		 * belonging to this memcg until that flag is up.
3765		 *
3766		 * We need to do this, because static_keys will span multiple
3767		 * sites, but we can't control their order. If we mark a socket
3768		 * as accounted, but the accounting functions are not patched in
3769		 * yet, we'll lose accounting.
3770		 *
3771		 * We never race with the readers in mem_cgroup_sk_alloc(),
3772		 * because when this value change, the code to process it is not
3773		 * patched in yet.
3774		 */
3775		static_branch_inc(&memcg_sockets_enabled_key);
3776		memcg->tcpmem_active = true;
3777	}
3778out:
3779	mutex_unlock(&memcg_max_mutex);
3780	return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788				char *buf, size_t nbytes, loff_t off)
3789{
3790	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791	unsigned long nr_pages;
3792	int ret;
3793
3794	buf = strstrip(buf);
3795	ret = page_counter_memparse(buf, "-1", &nr_pages);
3796	if (ret)
3797		return ret;
3798
3799	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800	case RES_LIMIT:
3801		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802			ret = -EINVAL;
3803			break;
3804		}
3805		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806		case _MEM:
3807			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808			break;
3809		case _MEMSWAP:
3810			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811			break;
3812		case _KMEM:
3813			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814				     "Please report your usecase to linux-mm@kvack.org if you "
3815				     "depend on this functionality.\n");
3816			ret = memcg_update_kmem_max(memcg, nr_pages);
3817			break;
3818		case _TCP:
3819			ret = memcg_update_tcp_max(memcg, nr_pages);
3820			break;
3821		}
3822		break;
3823	case RES_SOFT_LIMIT:
3824		memcg->soft_limit = nr_pages;
3825		ret = 0;
3826		break;
3827	}
3828	return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832				size_t nbytes, loff_t off)
3833{
3834	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835	struct page_counter *counter;
3836
3837	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838	case _MEM:
3839		counter = &memcg->memory;
3840		break;
3841	case _MEMSWAP:
3842		counter = &memcg->memsw;
3843		break;
3844	case _KMEM:
3845		counter = &memcg->kmem;
3846		break;
3847	case _TCP:
3848		counter = &memcg->tcpmem;
3849		break;
3850	default:
3851		BUG();
3852	}
3853
3854	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855	case RES_MAX_USAGE:
3856		page_counter_reset_watermark(counter);
3857		break;
3858	case RES_FAILCNT:
3859		counter->failcnt = 0;
3860		break;
3861	default:
3862		BUG();
3863	}
3864
3865	return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869					struct cftype *cft)
3870{
3871	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876					struct cftype *cft, u64 val)
3877{
3878	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880	if (val & ~MOVE_MASK)
3881		return -EINVAL;
3882
3883	/*
3884	 * No kind of locking is needed in here, because ->can_attach() will
3885	 * check this value once in the beginning of the process, and then carry
3886	 * on with stale data. This means that changes to this value will only
3887	 * affect task migrations starting after the change.
3888	 */
3889	memcg->move_charge_at_immigrate = val;
3890	return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894					struct cftype *cft, u64 val)
3895{
3896	return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907				int nid, unsigned int lru_mask, bool tree)
3908{
3909	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910	unsigned long nr = 0;
3911	enum lru_list lru;
3912
3913	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915	for_each_lru(lru) {
3916		if (!(BIT(lru) & lru_mask))
3917			continue;
3918		if (tree)
3919			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920		else
3921			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922	}
3923	return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927					     unsigned int lru_mask,
3928					     bool tree)
3929{
3930	unsigned long nr = 0;
3931	enum lru_list lru;
3932
3933	for_each_lru(lru) {
3934		if (!(BIT(lru) & lru_mask))
3935			continue;
3936		if (tree)
3937			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938		else
3939			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940	}
3941	return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946	struct numa_stat {
3947		const char *name;
3948		unsigned int lru_mask;
3949	};
3950
3951	static const struct numa_stat stats[] = {
3952		{ "total", LRU_ALL },
3953		{ "file", LRU_ALL_FILE },
3954		{ "anon", LRU_ALL_ANON },
3955		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3956	};
3957	const struct numa_stat *stat;
3958	int nid;
3959	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961	cgroup_rstat_flush(memcg->css.cgroup);
3962
3963	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964		seq_printf(m, "%s=%lu", stat->name,
3965			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966						   false));
3967		for_each_node_state(nid, N_MEMORY)
3968			seq_printf(m, " N%d=%lu", nid,
3969				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3970							stat->lru_mask, false));
3971		seq_putc(m, '\n');
3972	}
3973
3974	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978						   true));
3979		for_each_node_state(nid, N_MEMORY)
3980			seq_printf(m, " N%d=%lu", nid,
3981				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3982							stat->lru_mask, true));
3983		seq_putc(m, '\n');
3984	}
3985
3986	return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991	NR_FILE_PAGES,
3992	NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994	NR_ANON_THPS,
3995#endif
3996	NR_SHMEM,
3997	NR_FILE_MAPPED,
3998	NR_FILE_DIRTY,
3999	NR_WRITEBACK,
4000	MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004	"cache",
4005	"rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007	"rss_huge",
4008#endif
4009	"shmem",
4010	"mapped_file",
4011	"dirty",
4012	"writeback",
4013	"swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018	PGPGIN,
4019	PGPGOUT,
4020	PGFAULT,
4021	PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027	unsigned long memory, memsw;
4028	struct mem_cgroup *mi;
4029	unsigned int i;
4030
4031	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033	cgroup_rstat_flush(memcg->css.cgroup);
4034
4035	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036		unsigned long nr;
4037
4038		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039			continue;
4040		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
 
 
 
 
4041		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042	}
4043
4044	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046			   memcg_events_local(memcg, memcg1_events[i]));
4047
4048	for (i = 0; i < NR_LRU_LISTS; i++)
4049		seq_printf(m, "%s %lu\n", lru_list_name(i),
4050			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051			   PAGE_SIZE);
4052
4053	/* Hierarchical information */
4054	memory = memsw = PAGE_COUNTER_MAX;
4055	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056		memory = min(memory, READ_ONCE(mi->memory.max));
4057		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058	}
4059	seq_printf(m, "hierarchical_memory_limit %llu\n",
4060		   (u64)memory * PAGE_SIZE);
4061	if (do_memsw_account())
4062		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063			   (u64)memsw * PAGE_SIZE);
4064
4065	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066		unsigned long nr;
4067
4068		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069			continue;
4070		nr = memcg_page_state(memcg, memcg1_stats[i]);
4071		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072						(u64)nr * PAGE_SIZE);
 
4073	}
4074
4075	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076		seq_printf(m, "total_%s %llu\n",
4077			   vm_event_name(memcg1_events[i]),
4078			   (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080	for (i = 0; i < NR_LRU_LISTS; i++)
4081		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083			   PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086	{
4087		pg_data_t *pgdat;
4088		struct mem_cgroup_per_node *mz;
4089		unsigned long anon_cost = 0;
4090		unsigned long file_cost = 0;
4091
4092		for_each_online_pgdat(pgdat) {
4093			mz = memcg->nodeinfo[pgdat->node_id];
4094
4095			anon_cost += mz->lruvec.anon_cost;
4096			file_cost += mz->lruvec.file_cost;
4097		}
4098		seq_printf(m, "anon_cost %lu\n", anon_cost);
4099		seq_printf(m, "file_cost %lu\n", file_cost);
4100	}
4101#endif
4102
4103	return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107				      struct cftype *cft)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115				       struct cftype *cft, u64 val)
4116{
4117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119	if (val > 100)
4120		return -EINVAL;
4121
4122	if (!mem_cgroup_is_root(memcg))
4123		memcg->swappiness = val;
4124	else
4125		vm_swappiness = val;
4126
4127	return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132	struct mem_cgroup_threshold_ary *t;
4133	unsigned long usage;
4134	int i;
4135
4136	rcu_read_lock();
4137	if (!swap)
4138		t = rcu_dereference(memcg->thresholds.primary);
4139	else
4140		t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142	if (!t)
4143		goto unlock;
4144
4145	usage = mem_cgroup_usage(memcg, swap);
4146
4147	/*
4148	 * current_threshold points to threshold just below or equal to usage.
4149	 * If it's not true, a threshold was crossed after last
4150	 * call of __mem_cgroup_threshold().
4151	 */
4152	i = t->current_threshold;
4153
4154	/*
4155	 * Iterate backward over array of thresholds starting from
4156	 * current_threshold and check if a threshold is crossed.
4157	 * If none of thresholds below usage is crossed, we read
4158	 * only one element of the array here.
4159	 */
4160	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161		eventfd_signal(t->entries[i].eventfd, 1);
4162
4163	/* i = current_threshold + 1 */
4164	i++;
4165
4166	/*
4167	 * Iterate forward over array of thresholds starting from
4168	 * current_threshold+1 and check if a threshold is crossed.
4169	 * If none of thresholds above usage is crossed, we read
4170	 * only one element of the array here.
4171	 */
4172	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173		eventfd_signal(t->entries[i].eventfd, 1);
4174
4175	/* Update current_threshold */
4176	t->current_threshold = i - 1;
4177unlock:
4178	rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183	while (memcg) {
4184		__mem_cgroup_threshold(memcg, false);
4185		if (do_memsw_account())
4186			__mem_cgroup_threshold(memcg, true);
4187
4188		memcg = parent_mem_cgroup(memcg);
4189	}
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194	const struct mem_cgroup_threshold *_a = a;
4195	const struct mem_cgroup_threshold *_b = b;
4196
4197	if (_a->threshold > _b->threshold)
4198		return 1;
4199
4200	if (_a->threshold < _b->threshold)
4201		return -1;
4202
4203	return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208	struct mem_cgroup_eventfd_list *ev;
4209
4210	spin_lock(&memcg_oom_lock);
4211
4212	list_for_each_entry(ev, &memcg->oom_notify, list)
4213		eventfd_signal(ev->eventfd, 1);
4214
4215	spin_unlock(&memcg_oom_lock);
4216	return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, memcg)
4224		mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230	struct mem_cgroup_thresholds *thresholds;
4231	struct mem_cgroup_threshold_ary *new;
4232	unsigned long threshold;
4233	unsigned long usage;
4234	int i, size, ret;
4235
4236	ret = page_counter_memparse(args, "-1", &threshold);
4237	if (ret)
4238		return ret;
4239
4240	mutex_lock(&memcg->thresholds_lock);
4241
4242	if (type == _MEM) {
4243		thresholds = &memcg->thresholds;
4244		usage = mem_cgroup_usage(memcg, false);
4245	} else if (type == _MEMSWAP) {
4246		thresholds = &memcg->memsw_thresholds;
4247		usage = mem_cgroup_usage(memcg, true);
4248	} else
4249		BUG();
4250
4251	/* Check if a threshold crossed before adding a new one */
4252	if (thresholds->primary)
4253		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257	/* Allocate memory for new array of thresholds */
4258	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259	if (!new) {
4260		ret = -ENOMEM;
4261		goto unlock;
4262	}
4263	new->size = size;
4264
4265	/* Copy thresholds (if any) to new array */
4266	if (thresholds->primary)
4267		memcpy(new->entries, thresholds->primary->entries,
4268		       flex_array_size(new, entries, size - 1));
 
4269
4270	/* Add new threshold */
4271	new->entries[size - 1].eventfd = eventfd;
4272	new->entries[size - 1].threshold = threshold;
4273
4274	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275	sort(new->entries, size, sizeof(*new->entries),
4276			compare_thresholds, NULL);
4277
4278	/* Find current threshold */
4279	new->current_threshold = -1;
4280	for (i = 0; i < size; i++) {
4281		if (new->entries[i].threshold <= usage) {
4282			/*
4283			 * new->current_threshold will not be used until
4284			 * rcu_assign_pointer(), so it's safe to increment
4285			 * it here.
4286			 */
4287			++new->current_threshold;
4288		} else
4289			break;
4290	}
4291
4292	/* Free old spare buffer and save old primary buffer as spare */
4293	kfree(thresholds->spare);
4294	thresholds->spare = thresholds->primary;
4295
4296	rcu_assign_pointer(thresholds->primary, new);
4297
4298	/* To be sure that nobody uses thresholds */
4299	synchronize_rcu();
4300
4301unlock:
4302	mutex_unlock(&memcg->thresholds_lock);
4303
4304	return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308	struct eventfd_ctx *eventfd, const char *args)
4309{
4310	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314	struct eventfd_ctx *eventfd, const char *args)
4315{
4316	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320	struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322	struct mem_cgroup_thresholds *thresholds;
4323	struct mem_cgroup_threshold_ary *new;
4324	unsigned long usage;
4325	int i, j, size, entries;
4326
4327	mutex_lock(&memcg->thresholds_lock);
4328
4329	if (type == _MEM) {
4330		thresholds = &memcg->thresholds;
4331		usage = mem_cgroup_usage(memcg, false);
4332	} else if (type == _MEMSWAP) {
4333		thresholds = &memcg->memsw_thresholds;
4334		usage = mem_cgroup_usage(memcg, true);
4335	} else
4336		BUG();
4337
4338	if (!thresholds->primary)
4339		goto unlock;
4340
4341	/* Check if a threshold crossed before removing */
4342	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344	/* Calculate new number of threshold */
4345	size = entries = 0;
4346	for (i = 0; i < thresholds->primary->size; i++) {
4347		if (thresholds->primary->entries[i].eventfd != eventfd)
4348			size++;
4349		else
4350			entries++;
4351	}
4352
4353	new = thresholds->spare;
4354
4355	/* If no items related to eventfd have been cleared, nothing to do */
4356	if (!entries)
4357		goto unlock;
4358
4359	/* Set thresholds array to NULL if we don't have thresholds */
4360	if (!size) {
4361		kfree(new);
4362		new = NULL;
4363		goto swap_buffers;
4364	}
4365
4366	new->size = size;
4367
4368	/* Copy thresholds and find current threshold */
4369	new->current_threshold = -1;
4370	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371		if (thresholds->primary->entries[i].eventfd == eventfd)
4372			continue;
4373
4374		new->entries[j] = thresholds->primary->entries[i];
4375		if (new->entries[j].threshold <= usage) {
4376			/*
4377			 * new->current_threshold will not be used
4378			 * until rcu_assign_pointer(), so it's safe to increment
4379			 * it here.
4380			 */
4381			++new->current_threshold;
4382		}
4383		j++;
4384	}
4385
4386swap_buffers:
4387	/* Swap primary and spare array */
4388	thresholds->spare = thresholds->primary;
4389
4390	rcu_assign_pointer(thresholds->primary, new);
4391
4392	/* To be sure that nobody uses thresholds */
4393	synchronize_rcu();
4394
4395	/* If all events are unregistered, free the spare array */
4396	if (!new) {
4397		kfree(thresholds->spare);
4398		thresholds->spare = NULL;
4399	}
4400unlock:
4401	mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405	struct eventfd_ctx *eventfd)
4406{
4407	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411	struct eventfd_ctx *eventfd)
4412{
4413	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417	struct eventfd_ctx *eventfd, const char *args)
4418{
4419	struct mem_cgroup_eventfd_list *event;
4420
4421	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4422	if (!event)
4423		return -ENOMEM;
4424
4425	spin_lock(&memcg_oom_lock);
4426
4427	event->eventfd = eventfd;
4428	list_add(&event->list, &memcg->oom_notify);
4429
4430	/* already in OOM ? */
4431	if (memcg->under_oom)
4432		eventfd_signal(eventfd, 1);
4433	spin_unlock(&memcg_oom_lock);
4434
4435	return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439	struct eventfd_ctx *eventfd)
4440{
4441	struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443	spin_lock(&memcg_oom_lock);
4444
4445	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446		if (ev->eventfd == eventfd) {
4447			list_del(&ev->list);
4448			kfree(ev);
4449		}
4450	}
4451
4452	spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461	seq_printf(sf, "oom_kill %lu\n",
4462		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463	return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467	struct cftype *cft, u64 val)
4468{
4469	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471	/* cannot set to root cgroup and only 0 and 1 are allowed */
4472	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473		return -EINVAL;
4474
4475	memcg->oom_kill_disable = val;
4476	if (!val)
4477		memcg_oom_recover(memcg);
4478
4479	return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488	return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493	wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498	wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505	if (!memcg->css.parent)
4506		return NULL;
4507
4508	return &memcg->cgwb_domain;
4509}
4510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors.  Note that this doesn't consider the actual amount of
4526 * available memory in the system.  The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530			 unsigned long *pheadroom, unsigned long *pdirty,
4531			 unsigned long *pwriteback)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534	struct mem_cgroup *parent;
4535
4536	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541			memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
 
 
 
4543	*pheadroom = PAGE_COUNTER_MAX;
 
4544	while ((parent = parent_mem_cgroup(memcg))) {
4545		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546					    READ_ONCE(memcg->memory.high));
4547		unsigned long used = page_counter_read(&memcg->memory);
4548
4549		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550		memcg = parent;
4551	}
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback.  The former
4558 * tracks ownership per-page while the latter per-inode.  This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases.  For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode.  B owns the inode and
4568 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback.  A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction.  However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism.  When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599					     struct bdi_writeback *wb)
4600{
4601	struct mem_cgroup *memcg = page_memcg(page);
4602	struct memcg_cgwb_frn *frn;
4603	u64 now = get_jiffies_64();
4604	u64 oldest_at = now;
4605	int oldest = -1;
4606	int i;
4607
4608	trace_track_foreign_dirty(page, wb);
4609
4610	/*
4611	 * Pick the slot to use.  If there is already a slot for @wb, keep
4612	 * using it.  If not replace the oldest one which isn't being
4613	 * written out.
4614	 */
4615	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616		frn = &memcg->cgwb_frn[i];
4617		if (frn->bdi_id == wb->bdi->id &&
4618		    frn->memcg_id == wb->memcg_css->id)
4619			break;
4620		if (time_before64(frn->at, oldest_at) &&
4621		    atomic_read(&frn->done.cnt) == 1) {
4622			oldest = i;
4623			oldest_at = frn->at;
4624		}
4625	}
4626
4627	if (i < MEMCG_CGWB_FRN_CNT) {
4628		/*
4629		 * Re-using an existing one.  Update timestamp lazily to
4630		 * avoid making the cacheline hot.  We want them to be
4631		 * reasonably up-to-date and significantly shorter than
4632		 * dirty_expire_interval as that's what expires the record.
4633		 * Use the shorter of 1s and dirty_expire_interval / 8.
4634		 */
4635		unsigned long update_intv =
4636			min_t(unsigned long, HZ,
4637			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639		if (time_before64(frn->at, now - update_intv))
4640			frn->at = now;
4641	} else if (oldest >= 0) {
4642		/* replace the oldest free one */
4643		frn = &memcg->cgwb_frn[oldest];
4644		frn->bdi_id = wb->bdi->id;
4645		frn->memcg_id = wb->memcg_css->id;
4646		frn->at = now;
4647	}
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655	u64 now = jiffies_64;
4656	int i;
4657
4658	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661		/*
4662		 * If the record is older than dirty_expire_interval,
4663		 * writeback on it has already started.  No need to kick it
4664		 * off again.  Also, don't start a new one if there's
4665		 * already one in flight.
4666		 */
4667		if (time_after64(frn->at, now - intv) &&
4668		    atomic_read(&frn->done.cnt) == 1) {
4669			frn->at = 0;
4670			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672					       WB_REASON_FOREIGN_FLUSH,
4673					       &frn->done);
4674		}
4675	}
4676}
4677
4678#else	/* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682	return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif	/* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered.  It tries to support fully configurable
4701 * events for each user.  Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715	struct mem_cgroup_event *event =
4716		container_of(work, struct mem_cgroup_event, remove);
4717	struct mem_cgroup *memcg = event->memcg;
4718
4719	remove_wait_queue(event->wqh, &event->wait);
4720
4721	event->unregister_event(memcg, event->eventfd);
4722
4723	/* Notify userspace the event is going away. */
4724	eventfd_signal(event->eventfd, 1);
4725
4726	eventfd_ctx_put(event->eventfd);
4727	kfree(event);
4728	css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737			    int sync, void *key)
4738{
4739	struct mem_cgroup_event *event =
4740		container_of(wait, struct mem_cgroup_event, wait);
4741	struct mem_cgroup *memcg = event->memcg;
4742	__poll_t flags = key_to_poll(key);
4743
4744	if (flags & EPOLLHUP) {
4745		/*
4746		 * If the event has been detached at cgroup removal, we
4747		 * can simply return knowing the other side will cleanup
4748		 * for us.
4749		 *
4750		 * We can't race against event freeing since the other
4751		 * side will require wqh->lock via remove_wait_queue(),
4752		 * which we hold.
4753		 */
4754		spin_lock(&memcg->event_list_lock);
4755		if (!list_empty(&event->list)) {
4756			list_del_init(&event->list);
4757			/*
4758			 * We are in atomic context, but cgroup_event_remove()
4759			 * may sleep, so we have to call it in workqueue.
4760			 */
4761			schedule_work(&event->remove);
4762		}
4763		spin_unlock(&memcg->event_list_lock);
4764	}
4765
4766	return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770		wait_queue_head_t *wqh, poll_table *pt)
4771{
4772	struct mem_cgroup_event *event =
4773		container_of(pt, struct mem_cgroup_event, pt);
4774
4775	event->wqh = wqh;
4776	add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788					 char *buf, size_t nbytes, loff_t off)
4789{
4790	struct cgroup_subsys_state *css = of_css(of);
4791	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792	struct mem_cgroup_event *event;
4793	struct cgroup_subsys_state *cfile_css;
4794	unsigned int efd, cfd;
4795	struct fd efile;
4796	struct fd cfile;
4797	const char *name;
4798	char *endp;
4799	int ret;
4800
4801	buf = strstrip(buf);
4802
4803	efd = simple_strtoul(buf, &endp, 10);
4804	if (*endp != ' ')
4805		return -EINVAL;
4806	buf = endp + 1;
4807
4808	cfd = simple_strtoul(buf, &endp, 10);
4809	if ((*endp != ' ') && (*endp != '\0'))
4810		return -EINVAL;
4811	buf = endp + 1;
4812
4813	event = kzalloc(sizeof(*event), GFP_KERNEL);
4814	if (!event)
4815		return -ENOMEM;
4816
4817	event->memcg = memcg;
4818	INIT_LIST_HEAD(&event->list);
4819	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821	INIT_WORK(&event->remove, memcg_event_remove);
4822
4823	efile = fdget(efd);
4824	if (!efile.file) {
4825		ret = -EBADF;
4826		goto out_kfree;
4827	}
4828
4829	event->eventfd = eventfd_ctx_fileget(efile.file);
4830	if (IS_ERR(event->eventfd)) {
4831		ret = PTR_ERR(event->eventfd);
4832		goto out_put_efile;
4833	}
4834
4835	cfile = fdget(cfd);
4836	if (!cfile.file) {
4837		ret = -EBADF;
4838		goto out_put_eventfd;
4839	}
4840
4841	/* the process need read permission on control file */
4842	/* AV: shouldn't we check that it's been opened for read instead? */
4843	ret = file_permission(cfile.file, MAY_READ);
4844	if (ret < 0)
4845		goto out_put_cfile;
4846
4847	/*
4848	 * Determine the event callbacks and set them in @event.  This used
4849	 * to be done via struct cftype but cgroup core no longer knows
4850	 * about these events.  The following is crude but the whole thing
4851	 * is for compatibility anyway.
4852	 *
4853	 * DO NOT ADD NEW FILES.
4854	 */
4855	name = cfile.file->f_path.dentry->d_name.name;
4856
4857	if (!strcmp(name, "memory.usage_in_bytes")) {
4858		event->register_event = mem_cgroup_usage_register_event;
4859		event->unregister_event = mem_cgroup_usage_unregister_event;
4860	} else if (!strcmp(name, "memory.oom_control")) {
4861		event->register_event = mem_cgroup_oom_register_event;
4862		event->unregister_event = mem_cgroup_oom_unregister_event;
4863	} else if (!strcmp(name, "memory.pressure_level")) {
4864		event->register_event = vmpressure_register_event;
4865		event->unregister_event = vmpressure_unregister_event;
4866	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867		event->register_event = memsw_cgroup_usage_register_event;
4868		event->unregister_event = memsw_cgroup_usage_unregister_event;
4869	} else {
4870		ret = -EINVAL;
4871		goto out_put_cfile;
4872	}
4873
4874	/*
4875	 * Verify @cfile should belong to @css.  Also, remaining events are
4876	 * automatically removed on cgroup destruction but the removal is
4877	 * asynchronous, so take an extra ref on @css.
4878	 */
4879	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880					       &memory_cgrp_subsys);
4881	ret = -EINVAL;
4882	if (IS_ERR(cfile_css))
4883		goto out_put_cfile;
4884	if (cfile_css != css) {
4885		css_put(cfile_css);
4886		goto out_put_cfile;
4887	}
4888
4889	ret = event->register_event(memcg, event->eventfd, buf);
4890	if (ret)
4891		goto out_put_css;
4892
4893	vfs_poll(efile.file, &event->pt);
4894
4895	spin_lock(&memcg->event_list_lock);
4896	list_add(&event->list, &memcg->event_list);
4897	spin_unlock(&memcg->event_list_lock);
4898
4899	fdput(cfile);
4900	fdput(efile);
4901
4902	return nbytes;
4903
4904out_put_css:
4905	css_put(css);
4906out_put_cfile:
4907	fdput(cfile);
4908out_put_eventfd:
4909	eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911	fdput(efile);
4912out_kfree:
4913	kfree(event);
4914
4915	return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919	{
4920		.name = "usage_in_bytes",
4921		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922		.read_u64 = mem_cgroup_read_u64,
4923	},
4924	{
4925		.name = "max_usage_in_bytes",
4926		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927		.write = mem_cgroup_reset,
4928		.read_u64 = mem_cgroup_read_u64,
4929	},
4930	{
4931		.name = "limit_in_bytes",
4932		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933		.write = mem_cgroup_write,
4934		.read_u64 = mem_cgroup_read_u64,
4935	},
4936	{
4937		.name = "soft_limit_in_bytes",
4938		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939		.write = mem_cgroup_write,
4940		.read_u64 = mem_cgroup_read_u64,
4941	},
4942	{
4943		.name = "failcnt",
4944		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945		.write = mem_cgroup_reset,
4946		.read_u64 = mem_cgroup_read_u64,
4947	},
4948	{
4949		.name = "stat",
4950		.seq_show = memcg_stat_show,
4951	},
4952	{
4953		.name = "force_empty",
4954		.write = mem_cgroup_force_empty_write,
4955	},
4956	{
4957		.name = "use_hierarchy",
4958		.write_u64 = mem_cgroup_hierarchy_write,
4959		.read_u64 = mem_cgroup_hierarchy_read,
4960	},
4961	{
4962		.name = "cgroup.event_control",		/* XXX: for compat */
4963		.write = memcg_write_event_control,
4964		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965	},
4966	{
4967		.name = "swappiness",
4968		.read_u64 = mem_cgroup_swappiness_read,
4969		.write_u64 = mem_cgroup_swappiness_write,
4970	},
4971	{
4972		.name = "move_charge_at_immigrate",
4973		.read_u64 = mem_cgroup_move_charge_read,
4974		.write_u64 = mem_cgroup_move_charge_write,
4975	},
4976	{
4977		.name = "oom_control",
4978		.seq_show = mem_cgroup_oom_control_read,
4979		.write_u64 = mem_cgroup_oom_control_write,
4980		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981	},
4982	{
4983		.name = "pressure_level",
4984	},
4985#ifdef CONFIG_NUMA
4986	{
4987		.name = "numa_stat",
4988		.seq_show = memcg_numa_stat_show,
4989	},
4990#endif
4991	{
4992		.name = "kmem.limit_in_bytes",
4993		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994		.write = mem_cgroup_write,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "kmem.usage_in_bytes",
4999		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000		.read_u64 = mem_cgroup_read_u64,
5001	},
5002	{
5003		.name = "kmem.failcnt",
5004		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005		.write = mem_cgroup_reset,
5006		.read_u64 = mem_cgroup_read_u64,
5007	},
5008	{
5009		.name = "kmem.max_usage_in_bytes",
5010		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011		.write = mem_cgroup_reset,
5012		.read_u64 = mem_cgroup_read_u64,
5013	},
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016	{
5017		.name = "kmem.slabinfo",
5018		.seq_show = memcg_slab_show,
5019	},
5020#endif
5021	{
5022		.name = "kmem.tcp.limit_in_bytes",
5023		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024		.write = mem_cgroup_write,
5025		.read_u64 = mem_cgroup_read_u64,
5026	},
5027	{
5028		.name = "kmem.tcp.usage_in_bytes",
5029		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030		.read_u64 = mem_cgroup_read_u64,
5031	},
5032	{
5033		.name = "kmem.tcp.failcnt",
5034		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035		.write = mem_cgroup_reset,
5036		.read_u64 = mem_cgroup_read_u64,
5037	},
5038	{
5039		.name = "kmem.tcp.max_usage_in_bytes",
5040		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041		.write = mem_cgroup_reset,
5042		.read_u64 = mem_cgroup_read_u64,
5043	},
5044	{ },	/* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075	if (memcg->id.id > 0) {
5076		idr_remove(&mem_cgroup_idr, memcg->id.id);
5077		memcg->id.id = 0;
5078	}
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082						  unsigned int n)
5083{
5084	refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090		mem_cgroup_id_remove(memcg);
5091
5092		/* Memcg ID pins CSS */
5093		css_put(&memcg->css);
5094	}
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099	mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110	WARN_ON_ONCE(!rcu_read_lock_held());
5111	return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116	struct mem_cgroup_per_node *pn;
5117	int tmp = node;
5118	/*
5119	 * This routine is called against possible nodes.
5120	 * But it's BUG to call kmalloc() against offline node.
5121	 *
5122	 * TODO: this routine can waste much memory for nodes which will
5123	 *       never be onlined. It's better to use memory hotplug callback
5124	 *       function.
5125	 */
5126	if (!node_state(node, N_NORMAL_MEMORY))
5127		tmp = -1;
5128	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129	if (!pn)
5130		return 1;
5131
5132	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133						 GFP_KERNEL_ACCOUNT);
5134	if (!pn->lruvec_stat_local) {
5135		kfree(pn);
5136		return 1;
5137	}
5138
5139	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140					       GFP_KERNEL_ACCOUNT);
5141	if (!pn->lruvec_stat_cpu) {
5142		free_percpu(pn->lruvec_stat_local);
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	lruvec_init(&pn->lruvec);
5148	pn->usage_in_excess = 0;
5149	pn->on_tree = false;
5150	pn->memcg = memcg;
5151
5152	memcg->nodeinfo[node] = pn;
5153	return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160	if (!pn)
5161		return;
5162
5163	free_percpu(pn->lruvec_stat_cpu);
5164	free_percpu(pn->lruvec_stat_local);
5165	kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170	int node;
5171
5172	for_each_node(node)
5173		free_mem_cgroup_per_node_info(memcg, node);
5174	free_percpu(memcg->vmstats_percpu);
 
5175	kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180	int cpu;
5181
5182	memcg_wb_domain_exit(memcg);
5183	/*
5184	 * Flush percpu lruvec stats to guarantee the value
5185	 * correctness on parent's and all ancestor levels.
5186	 */
5187	for_each_online_cpu(cpu)
5188		memcg_flush_lruvec_page_state(memcg, cpu);
5189	__mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194	struct mem_cgroup *memcg;
5195	unsigned int size;
5196	int node;
5197	int __maybe_unused i;
5198	long error = -ENOMEM;
5199
5200	size = sizeof(struct mem_cgroup);
5201	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203	memcg = kzalloc(size, GFP_KERNEL);
5204	if (!memcg)
5205		return ERR_PTR(error);
5206
5207	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208				 1, MEM_CGROUP_ID_MAX,
5209				 GFP_KERNEL);
5210	if (memcg->id.id < 0) {
5211		error = memcg->id.id;
5212		goto fail;
5213	}
5214
 
 
 
 
 
5215	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216						 GFP_KERNEL_ACCOUNT);
5217	if (!memcg->vmstats_percpu)
5218		goto fail;
5219
5220	for_each_node(node)
5221		if (alloc_mem_cgroup_per_node_info(memcg, node))
5222			goto fail;
5223
5224	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225		goto fail;
5226
5227	INIT_WORK(&memcg->high_work, high_work_func);
5228	INIT_LIST_HEAD(&memcg->oom_notify);
5229	mutex_init(&memcg->thresholds_lock);
5230	spin_lock_init(&memcg->move_lock);
5231	vmpressure_init(&memcg->vmpressure);
5232	INIT_LIST_HEAD(&memcg->event_list);
5233	spin_lock_init(&memcg->event_list_lock);
5234	memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236	memcg->kmemcg_id = -1;
5237	INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240	INIT_LIST_HEAD(&memcg->cgwb_list);
5241	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242		memcg->cgwb_frn[i].done =
5243			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248	memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251	return memcg;
5252fail:
5253	mem_cgroup_id_remove(memcg);
5254	__mem_cgroup_free(memcg);
5255	return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262	struct mem_cgroup *memcg, *old_memcg;
5263	long error = -ENOMEM;
5264
5265	old_memcg = set_active_memcg(parent);
5266	memcg = mem_cgroup_alloc();
5267	set_active_memcg(old_memcg);
5268	if (IS_ERR(memcg))
5269		return ERR_CAST(memcg);
5270
5271	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272	memcg->soft_limit = PAGE_COUNTER_MAX;
5273	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274	if (parent) {
5275		memcg->swappiness = mem_cgroup_swappiness(parent);
5276		memcg->oom_kill_disable = parent->oom_kill_disable;
5277
 
 
5278		page_counter_init(&memcg->memory, &parent->memory);
5279		page_counter_init(&memcg->swap, &parent->swap);
 
5280		page_counter_init(&memcg->kmem, &parent->kmem);
5281		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282	} else {
5283		page_counter_init(&memcg->memory, NULL);
5284		page_counter_init(&memcg->swap, NULL);
 
5285		page_counter_init(&memcg->kmem, NULL);
5286		page_counter_init(&memcg->tcpmem, NULL);
 
 
 
 
 
 
 
 
5287
 
 
5288		root_mem_cgroup = memcg;
5289		return &memcg->css;
5290	}
5291
5292	/* The following stuff does not apply to the root */
5293	error = memcg_online_kmem(memcg);
5294	if (error)
5295		goto fail;
5296
5297	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298		static_branch_inc(&memcg_sockets_enabled_key);
5299
5300	return &memcg->css;
5301fail:
5302	mem_cgroup_id_remove(memcg);
5303	mem_cgroup_free(memcg);
5304	return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311	/*
5312	 * A memcg must be visible for expand_shrinker_info()
5313	 * by the time the maps are allocated. So, we allocate maps
5314	 * here, when for_each_mem_cgroup() can't skip it.
5315	 */
5316	if (alloc_shrinker_info(memcg)) {
5317		mem_cgroup_id_remove(memcg);
5318		return -ENOMEM;
5319	}
5320
5321	/* Online state pins memcg ID, memcg ID pins CSS */
5322	refcount_set(&memcg->id.ref, 1);
5323	css_get(css);
5324	return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330	struct mem_cgroup_event *event, *tmp;
5331
5332	/*
5333	 * Unregister events and notify userspace.
5334	 * Notify userspace about cgroup removing only after rmdir of cgroup
5335	 * directory to avoid race between userspace and kernelspace.
5336	 */
5337	spin_lock(&memcg->event_list_lock);
5338	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339		list_del_init(&event->list);
5340		schedule_work(&event->remove);
5341	}
5342	spin_unlock(&memcg->event_list_lock);
5343
5344	page_counter_set_min(&memcg->memory, 0);
5345	page_counter_set_low(&memcg->memory, 0);
5346
5347	memcg_offline_kmem(memcg);
5348	reparent_shrinker_deferred(memcg);
5349	wb_memcg_offline(memcg);
5350
5351	drain_all_stock(memcg);
5352
5353	mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360	invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366	int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373		static_branch_dec(&memcg_sockets_enabled_key);
5374
5375	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376		static_branch_dec(&memcg_sockets_enabled_key);
5377
5378	vmpressure_cleanup(&memcg->vmpressure);
5379	cancel_work_sync(&memcg->high_work);
5380	mem_cgroup_remove_from_trees(memcg);
5381	free_shrinker_info(memcg);
5382	memcg_free_kmem(memcg);
5383	mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css.  This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency.  The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
 
5405	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407	page_counter_set_min(&memcg->memory, 0);
5408	page_counter_set_low(&memcg->memory, 0);
5409	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410	memcg->soft_limit = PAGE_COUNTER_MAX;
5411	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412	memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419	struct memcg_vmstats_percpu *statc;
5420	long delta, v;
5421	int i;
5422
5423	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425	for (i = 0; i < MEMCG_NR_STAT; i++) {
5426		/*
5427		 * Collect the aggregated propagation counts of groups
5428		 * below us. We're in a per-cpu loop here and this is
5429		 * a global counter, so the first cycle will get them.
5430		 */
5431		delta = memcg->vmstats.state_pending[i];
5432		if (delta)
5433			memcg->vmstats.state_pending[i] = 0;
5434
5435		/* Add CPU changes on this level since the last flush */
5436		v = READ_ONCE(statc->state[i]);
5437		if (v != statc->state_prev[i]) {
5438			delta += v - statc->state_prev[i];
5439			statc->state_prev[i] = v;
5440		}
5441
5442		if (!delta)
5443			continue;
5444
5445		/* Aggregate counts on this level and propagate upwards */
5446		memcg->vmstats.state[i] += delta;
5447		if (parent)
5448			parent->vmstats.state_pending[i] += delta;
5449	}
5450
5451	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452		delta = memcg->vmstats.events_pending[i];
5453		if (delta)
5454			memcg->vmstats.events_pending[i] = 0;
5455
5456		v = READ_ONCE(statc->events[i]);
5457		if (v != statc->events_prev[i]) {
5458			delta += v - statc->events_prev[i];
5459			statc->events_prev[i] = v;
5460		}
5461
5462		if (!delta)
5463			continue;
5464
5465		memcg->vmstats.events[i] += delta;
5466		if (parent)
5467			parent->vmstats.events_pending[i] += delta;
5468	}
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475	int ret;
5476
5477	/* Try a single bulk charge without reclaim first, kswapd may wake */
5478	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479	if (!ret) {
5480		mc.precharge += count;
5481		return ret;
5482	}
5483
5484	/* Try charges one by one with reclaim, but do not retry */
5485	while (count--) {
5486		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487		if (ret)
5488			return ret;
5489		mc.precharge++;
5490		cond_resched();
5491	}
5492	return 0;
5493}
5494
5495union mc_target {
5496	struct page	*page;
5497	swp_entry_t	ent;
5498};
5499
5500enum mc_target_type {
5501	MC_TARGET_NONE = 0,
5502	MC_TARGET_PAGE,
5503	MC_TARGET_SWAP,
5504	MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508						unsigned long addr, pte_t ptent)
5509{
5510	struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512	if (!page || !page_mapped(page))
5513		return NULL;
5514	if (PageAnon(page)) {
5515		if (!(mc.flags & MOVE_ANON))
5516			return NULL;
5517	} else {
5518		if (!(mc.flags & MOVE_FILE))
5519			return NULL;
5520	}
5521	if (!get_page_unless_zero(page))
5522		return NULL;
5523
5524	return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529			pte_t ptent, swp_entry_t *entry)
5530{
5531	struct page *page = NULL;
5532	swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534	if (!(mc.flags & MOVE_ANON))
5535		return NULL;
5536
5537	/*
5538	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539	 * a device and because they are not accessible by CPU they are store
5540	 * as special swap entry in the CPU page table.
5541	 */
5542	if (is_device_private_entry(ent)) {
5543		page = pfn_swap_entry_to_page(ent);
5544		/*
5545		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546		 * a refcount of 1 when free (unlike normal page)
5547		 */
5548		if (!page_ref_add_unless(page, 1, 1))
5549			return NULL;
5550		return page;
5551	}
5552
5553	if (non_swap_entry(ent))
5554		return NULL;
5555
5556	/*
5557	 * Because lookup_swap_cache() updates some statistics counter,
5558	 * we call find_get_page() with swapper_space directly.
5559	 */
5560	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561	entry->val = ent.val;
5562
5563	return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567			pte_t ptent, swp_entry_t *entry)
5568{
5569	return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
 
 
 
 
5576	if (!vma->vm_file) /* anonymous vma */
5577		return NULL;
5578	if (!(mc.flags & MOVE_FILE))
5579		return NULL;
5580
 
 
 
5581	/* page is moved even if it's not RSS of this task(page-faulted). */
 
5582	/* shmem/tmpfs may report page out on swap: account for that too. */
5583	return find_get_incore_page(vma->vm_file->f_mapping,
5584			linear_page_index(vma, addr));
 
 
 
 
 
 
 
 
 
 
 
 
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to:	mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600				   bool compound,
5601				   struct mem_cgroup *from,
5602				   struct mem_cgroup *to)
5603{
5604	struct lruvec *from_vec, *to_vec;
5605	struct pglist_data *pgdat;
5606	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607	int ret;
5608
5609	VM_BUG_ON(from == to);
5610	VM_BUG_ON_PAGE(PageLRU(page), page);
5611	VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613	/*
5614	 * Prevent mem_cgroup_migrate() from looking at
5615	 * page's memory cgroup of its source page while we change it.
5616	 */
5617	ret = -EBUSY;
5618	if (!trylock_page(page))
5619		goto out;
5620
5621	ret = -EINVAL;
5622	if (page_memcg(page) != from)
5623		goto out_unlock;
5624
5625	pgdat = page_pgdat(page);
5626	from_vec = mem_cgroup_lruvec(from, pgdat);
5627	to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629	lock_page_memcg(page);
5630
5631	if (PageAnon(page)) {
5632		if (page_mapped(page)) {
5633			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635			if (PageTransHuge(page)) {
5636				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5637						   -nr_pages);
5638				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5639						   nr_pages);
5640			}
 
5641		}
5642	} else {
5643		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646		if (PageSwapBacked(page)) {
5647			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649		}
5650
5651		if (page_mapped(page)) {
5652			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654		}
5655
5656		if (PageDirty(page)) {
5657			struct address_space *mapping = page_mapping(page);
5658
5659			if (mapping_can_writeback(mapping)) {
5660				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661						   -nr_pages);
5662				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663						   nr_pages);
5664			}
5665		}
5666	}
5667
5668	if (PageWriteback(page)) {
5669		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671	}
5672
5673	/*
5674	 * All state has been migrated, let's switch to the new memcg.
5675	 *
5676	 * It is safe to change page's memcg here because the page
5677	 * is referenced, charged, isolated, and locked: we can't race
5678	 * with (un)charging, migration, LRU putback, or anything else
5679	 * that would rely on a stable page's memory cgroup.
5680	 *
5681	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682	 * to save space. As soon as we switch page's memory cgroup to a
5683	 * new memcg that isn't locked, the above state can change
5684	 * concurrently again. Make sure we're truly done with it.
5685	 */
5686	smp_mb();
5687
5688	css_get(&to->css);
5689	css_put(&from->css);
5690
5691	page->memcg_data = (unsigned long)to;
5692
5693	__unlock_page_memcg(from);
5694
5695	ret = 0;
5696
5697	local_irq_disable();
5698	mem_cgroup_charge_statistics(to, page, nr_pages);
5699	memcg_check_events(to, page);
5700	mem_cgroup_charge_statistics(from, page, -nr_pages);
5701	memcg_check_events(from, page);
5702	local_irq_enable();
5703out_unlock:
5704	unlock_page(page);
5705out:
5706	return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 *     move charge. if @target is not NULL, the page is stored in target->page
5720 *     with extra refcnt got(Callers should handle it).
5721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 *     target for charge migration. if @target is not NULL, the entry is stored
5723 *     in target->ent.
5724 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5725 *     (so ZONE_DEVICE page and thus not on the lru).
5726 *     For now we such page is charge like a regular page would be as for all
5727 *     intent and purposes it is just special memory taking the place of a
5728 *     regular page.
5729 *
5730 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736		unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738	struct page *page = NULL;
5739	enum mc_target_type ret = MC_TARGET_NONE;
5740	swp_entry_t ent = { .val = 0 };
5741
5742	if (pte_present(ptent))
5743		page = mc_handle_present_pte(vma, addr, ptent);
5744	else if (is_swap_pte(ptent))
5745		page = mc_handle_swap_pte(vma, ptent, &ent);
5746	else if (pte_none(ptent))
5747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749	if (!page && !ent.val)
5750		return ret;
5751	if (page) {
5752		/*
5753		 * Do only loose check w/o serialization.
5754		 * mem_cgroup_move_account() checks the page is valid or
5755		 * not under LRU exclusion.
5756		 */
5757		if (page_memcg(page) == mc.from) {
5758			ret = MC_TARGET_PAGE;
5759			if (is_device_private_page(page))
5760				ret = MC_TARGET_DEVICE;
5761			if (target)
5762				target->page = page;
5763		}
5764		if (!ret || !target)
5765			put_page(page);
5766	}
5767	/*
5768	 * There is a swap entry and a page doesn't exist or isn't charged.
5769	 * But we cannot move a tail-page in a THP.
5770	 */
5771	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773		ret = MC_TARGET_SWAP;
5774		if (target)
5775			target->ent = ent;
5776	}
5777	return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787		unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789	struct page *page = NULL;
5790	enum mc_target_type ret = MC_TARGET_NONE;
5791
5792	if (unlikely(is_swap_pmd(pmd))) {
5793		VM_BUG_ON(thp_migration_supported() &&
5794				  !is_pmd_migration_entry(pmd));
5795		return ret;
5796	}
5797	page = pmd_page(pmd);
5798	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799	if (!(mc.flags & MOVE_ANON))
5800		return ret;
5801	if (page_memcg(page) == mc.from) {
5802		ret = MC_TARGET_PAGE;
5803		if (target) {
5804			get_page(page);
5805			target->page = page;
5806		}
5807	}
5808	return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812		unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814	return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819					unsigned long addr, unsigned long end,
5820					struct mm_walk *walk)
5821{
5822	struct vm_area_struct *vma = walk->vma;
5823	pte_t *pte;
5824	spinlock_t *ptl;
5825
5826	ptl = pmd_trans_huge_lock(pmd, vma);
5827	if (ptl) {
5828		/*
5829		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831		 * this might change.
5832		 */
5833		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834			mc.precharge += HPAGE_PMD_NR;
5835		spin_unlock(ptl);
5836		return 0;
5837	}
5838
5839	if (pmd_trans_unstable(pmd))
5840		return 0;
5841	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842	for (; addr != end; pte++, addr += PAGE_SIZE)
5843		if (get_mctgt_type(vma, addr, *pte, NULL))
5844			mc.precharge++;	/* increment precharge temporarily */
5845	pte_unmap_unlock(pte - 1, ptl);
5846	cond_resched();
5847
5848	return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857	unsigned long precharge;
5858
5859	mmap_read_lock(mm);
5860	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861	mmap_read_unlock(mm);
5862
5863	precharge = mc.precharge;
5864	mc.precharge = 0;
5865
5866	return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871	unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873	VM_BUG_ON(mc.moving_task);
5874	mc.moving_task = current;
5875	return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881	struct mem_cgroup *from = mc.from;
5882	struct mem_cgroup *to = mc.to;
5883
5884	/* we must uncharge all the leftover precharges from mc.to */
5885	if (mc.precharge) {
5886		cancel_charge(mc.to, mc.precharge);
5887		mc.precharge = 0;
5888	}
5889	/*
5890	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891	 * we must uncharge here.
5892	 */
5893	if (mc.moved_charge) {
5894		cancel_charge(mc.from, mc.moved_charge);
5895		mc.moved_charge = 0;
5896	}
5897	/* we must fixup refcnts and charges */
5898	if (mc.moved_swap) {
5899		/* uncharge swap account from the old cgroup */
5900		if (!mem_cgroup_is_root(mc.from))
5901			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905		/*
5906		 * we charged both to->memory and to->memsw, so we
5907		 * should uncharge to->memory.
5908		 */
5909		if (!mem_cgroup_is_root(mc.to))
5910			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912		mc.moved_swap = 0;
5913	}
5914	memcg_oom_recover(from);
5915	memcg_oom_recover(to);
5916	wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921	struct mm_struct *mm = mc.mm;
5922
5923	/*
5924	 * we must clear moving_task before waking up waiters at the end of
5925	 * task migration.
5926	 */
5927	mc.moving_task = NULL;
5928	__mem_cgroup_clear_mc();
5929	spin_lock(&mc.lock);
5930	mc.from = NULL;
5931	mc.to = NULL;
5932	mc.mm = NULL;
5933	spin_unlock(&mc.lock);
5934
5935	mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940	struct cgroup_subsys_state *css;
5941	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942	struct mem_cgroup *from;
5943	struct task_struct *leader, *p;
5944	struct mm_struct *mm;
5945	unsigned long move_flags;
5946	int ret = 0;
5947
5948	/* charge immigration isn't supported on the default hierarchy */
5949	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950		return 0;
5951
5952	/*
5953	 * Multi-process migrations only happen on the default hierarchy
5954	 * where charge immigration is not used.  Perform charge
5955	 * immigration if @tset contains a leader and whine if there are
5956	 * multiple.
5957	 */
5958	p = NULL;
5959	cgroup_taskset_for_each_leader(leader, css, tset) {
5960		WARN_ON_ONCE(p);
5961		p = leader;
5962		memcg = mem_cgroup_from_css(css);
5963	}
5964	if (!p)
5965		return 0;
5966
5967	/*
5968	 * We are now committed to this value whatever it is. Changes in this
5969	 * tunable will only affect upcoming migrations, not the current one.
5970	 * So we need to save it, and keep it going.
5971	 */
5972	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973	if (!move_flags)
5974		return 0;
5975
5976	from = mem_cgroup_from_task(p);
5977
5978	VM_BUG_ON(from == memcg);
5979
5980	mm = get_task_mm(p);
5981	if (!mm)
5982		return 0;
5983	/* We move charges only when we move a owner of the mm */
5984	if (mm->owner == p) {
5985		VM_BUG_ON(mc.from);
5986		VM_BUG_ON(mc.to);
5987		VM_BUG_ON(mc.precharge);
5988		VM_BUG_ON(mc.moved_charge);
5989		VM_BUG_ON(mc.moved_swap);
5990
5991		spin_lock(&mc.lock);
5992		mc.mm = mm;
5993		mc.from = from;
5994		mc.to = memcg;
5995		mc.flags = move_flags;
5996		spin_unlock(&mc.lock);
5997		/* We set mc.moving_task later */
5998
5999		ret = mem_cgroup_precharge_mc(mm);
6000		if (ret)
6001			mem_cgroup_clear_mc();
6002	} else {
6003		mmput(mm);
6004	}
6005	return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010	if (mc.to)
6011		mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015				unsigned long addr, unsigned long end,
6016				struct mm_walk *walk)
6017{
6018	int ret = 0;
6019	struct vm_area_struct *vma = walk->vma;
6020	pte_t *pte;
6021	spinlock_t *ptl;
6022	enum mc_target_type target_type;
6023	union mc_target target;
6024	struct page *page;
6025
6026	ptl = pmd_trans_huge_lock(pmd, vma);
6027	if (ptl) {
6028		if (mc.precharge < HPAGE_PMD_NR) {
6029			spin_unlock(ptl);
6030			return 0;
6031		}
6032		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033		if (target_type == MC_TARGET_PAGE) {
6034			page = target.page;
6035			if (!isolate_lru_page(page)) {
6036				if (!mem_cgroup_move_account(page, true,
6037							     mc.from, mc.to)) {
6038					mc.precharge -= HPAGE_PMD_NR;
6039					mc.moved_charge += HPAGE_PMD_NR;
6040				}
6041				putback_lru_page(page);
6042			}
6043			put_page(page);
6044		} else if (target_type == MC_TARGET_DEVICE) {
6045			page = target.page;
6046			if (!mem_cgroup_move_account(page, true,
6047						     mc.from, mc.to)) {
6048				mc.precharge -= HPAGE_PMD_NR;
6049				mc.moved_charge += HPAGE_PMD_NR;
6050			}
6051			put_page(page);
6052		}
6053		spin_unlock(ptl);
6054		return 0;
6055	}
6056
6057	if (pmd_trans_unstable(pmd))
6058		return 0;
6059retry:
6060	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061	for (; addr != end; addr += PAGE_SIZE) {
6062		pte_t ptent = *(pte++);
6063		bool device = false;
6064		swp_entry_t ent;
6065
6066		if (!mc.precharge)
6067			break;
6068
6069		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070		case MC_TARGET_DEVICE:
6071			device = true;
6072			fallthrough;
6073		case MC_TARGET_PAGE:
6074			page = target.page;
6075			/*
6076			 * We can have a part of the split pmd here. Moving it
6077			 * can be done but it would be too convoluted so simply
6078			 * ignore such a partial THP and keep it in original
6079			 * memcg. There should be somebody mapping the head.
6080			 */
6081			if (PageTransCompound(page))
6082				goto put;
6083			if (!device && isolate_lru_page(page))
6084				goto put;
6085			if (!mem_cgroup_move_account(page, false,
6086						mc.from, mc.to)) {
6087				mc.precharge--;
6088				/* we uncharge from mc.from later. */
6089				mc.moved_charge++;
6090			}
6091			if (!device)
6092				putback_lru_page(page);
6093put:			/* get_mctgt_type() gets the page */
6094			put_page(page);
6095			break;
6096		case MC_TARGET_SWAP:
6097			ent = target.ent;
6098			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099				mc.precharge--;
6100				mem_cgroup_id_get_many(mc.to, 1);
6101				/* we fixup other refcnts and charges later. */
6102				mc.moved_swap++;
6103			}
6104			break;
6105		default:
6106			break;
6107		}
6108	}
6109	pte_unmap_unlock(pte - 1, ptl);
6110	cond_resched();
6111
6112	if (addr != end) {
6113		/*
6114		 * We have consumed all precharges we got in can_attach().
6115		 * We try charge one by one, but don't do any additional
6116		 * charges to mc.to if we have failed in charge once in attach()
6117		 * phase.
6118		 */
6119		ret = mem_cgroup_do_precharge(1);
6120		if (!ret)
6121			goto retry;
6122	}
6123
6124	return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133	lru_add_drain_all();
6134	/*
6135	 * Signal lock_page_memcg() to take the memcg's move_lock
6136	 * while we're moving its pages to another memcg. Then wait
6137	 * for already started RCU-only updates to finish.
6138	 */
6139	atomic_inc(&mc.from->moving_account);
6140	synchronize_rcu();
6141retry:
6142	if (unlikely(!mmap_read_trylock(mc.mm))) {
6143		/*
6144		 * Someone who are holding the mmap_lock might be waiting in
6145		 * waitq. So we cancel all extra charges, wake up all waiters,
6146		 * and retry. Because we cancel precharges, we might not be able
6147		 * to move enough charges, but moving charge is a best-effort
6148		 * feature anyway, so it wouldn't be a big problem.
6149		 */
6150		__mem_cgroup_clear_mc();
6151		cond_resched();
6152		goto retry;
6153	}
6154	/*
6155	 * When we have consumed all precharges and failed in doing
6156	 * additional charge, the page walk just aborts.
6157	 */
6158	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159			NULL);
6160
6161	mmap_read_unlock(mc.mm);
6162	atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167	if (mc.to) {
6168		mem_cgroup_move_charge();
6169		mem_cgroup_clear_mc();
6170	}
6171}
6172#else	/* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175	return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187	if (value == PAGE_COUNTER_MAX)
6188		seq_puts(m, "max\n");
6189	else
6190		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192	return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196			       struct cftype *cft)
6197{
6198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205	return seq_puts_memcg_tunable(m,
6206		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210				char *buf, size_t nbytes, loff_t off)
6211{
6212	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213	unsigned long min;
6214	int err;
6215
6216	buf = strstrip(buf);
6217	err = page_counter_memparse(buf, "max", &min);
6218	if (err)
6219		return err;
6220
6221	page_counter_set_min(&memcg->memory, min);
6222
6223	return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228	return seq_puts_memcg_tunable(m,
6229		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233				char *buf, size_t nbytes, loff_t off)
6234{
6235	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236	unsigned long low;
6237	int err;
6238
6239	buf = strstrip(buf);
6240	err = page_counter_memparse(buf, "max", &low);
6241	if (err)
6242		return err;
6243
6244	page_counter_set_low(&memcg->memory, low);
6245
6246	return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251	return seq_puts_memcg_tunable(m,
6252		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256				 char *buf, size_t nbytes, loff_t off)
6257{
6258	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260	bool drained = false;
6261	unsigned long high;
6262	int err;
6263
6264	buf = strstrip(buf);
6265	err = page_counter_memparse(buf, "max", &high);
6266	if (err)
6267		return err;
6268
6269	page_counter_set_high(&memcg->memory, high);
6270
6271	for (;;) {
6272		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273		unsigned long reclaimed;
6274
6275		if (nr_pages <= high)
6276			break;
6277
6278		if (signal_pending(current))
6279			break;
6280
6281		if (!drained) {
6282			drain_all_stock(memcg);
6283			drained = true;
6284			continue;
6285		}
6286
6287		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288							 GFP_KERNEL, true);
6289
6290		if (!reclaimed && !nr_retries--)
6291			break;
6292	}
6293
 
 
6294	memcg_wb_domain_size_changed(memcg);
 
6295	return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300	return seq_puts_memcg_tunable(m,
6301		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305				char *buf, size_t nbytes, loff_t off)
6306{
6307	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309	bool drained = false;
6310	unsigned long max;
6311	int err;
6312
6313	buf = strstrip(buf);
6314	err = page_counter_memparse(buf, "max", &max);
6315	if (err)
6316		return err;
6317
6318	xchg(&memcg->memory.max, max);
6319
6320	for (;;) {
6321		unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323		if (nr_pages <= max)
6324			break;
6325
6326		if (signal_pending(current))
6327			break;
6328
6329		if (!drained) {
6330			drain_all_stock(memcg);
6331			drained = true;
6332			continue;
6333		}
6334
6335		if (nr_reclaims) {
6336			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337							  GFP_KERNEL, true))
6338				nr_reclaims--;
6339			continue;
6340		}
6341
6342		memcg_memory_event(memcg, MEMCG_OOM);
6343		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344			break;
6345	}
6346
6347	memcg_wb_domain_size_changed(memcg);
6348	return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357	seq_printf(m, "oom_kill %lu\n",
6358		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365	__memory_events_show(m, memcg->memory_events);
6366	return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373	__memory_events_show(m, memcg->memory_events_local);
6374	return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380	char *buf;
6381
6382	buf = memory_stat_format(memcg);
6383	if (!buf)
6384		return -ENOMEM;
6385	seq_puts(m, buf);
6386	kfree(buf);
6387	return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392						     int item)
6393{
6394	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399	int i;
6400	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403		int nid;
6404
6405		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406			continue;
6407
6408		seq_printf(m, "%s", memory_stats[i].name);
6409		for_each_node_state(nid, N_MEMORY) {
6410			u64 size;
6411			struct lruvec *lruvec;
6412
6413			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414			size = lruvec_page_state_output(lruvec,
6415							memory_stats[i].idx);
6416			seq_printf(m, " N%d=%llu", nid, size);
6417		}
6418		seq_putc(m, '\n');
6419	}
6420
6421	return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429	seq_printf(m, "%d\n", memcg->oom_group);
6430
6431	return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435				      char *buf, size_t nbytes, loff_t off)
6436{
6437	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438	int ret, oom_group;
6439
6440	buf = strstrip(buf);
6441	if (!buf)
6442		return -EINVAL;
6443
6444	ret = kstrtoint(buf, 0, &oom_group);
6445	if (ret)
6446		return ret;
6447
6448	if (oom_group != 0 && oom_group != 1)
6449		return -EINVAL;
6450
6451	memcg->oom_group = oom_group;
6452
6453	return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457	{
6458		.name = "current",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.read_u64 = memory_current_read,
6461	},
6462	{
6463		.name = "min",
6464		.flags = CFTYPE_NOT_ON_ROOT,
6465		.seq_show = memory_min_show,
6466		.write = memory_min_write,
6467	},
6468	{
6469		.name = "low",
6470		.flags = CFTYPE_NOT_ON_ROOT,
6471		.seq_show = memory_low_show,
6472		.write = memory_low_write,
6473	},
6474	{
6475		.name = "high",
6476		.flags = CFTYPE_NOT_ON_ROOT,
6477		.seq_show = memory_high_show,
6478		.write = memory_high_write,
6479	},
6480	{
6481		.name = "max",
6482		.flags = CFTYPE_NOT_ON_ROOT,
6483		.seq_show = memory_max_show,
6484		.write = memory_max_write,
6485	},
6486	{
6487		.name = "events",
6488		.flags = CFTYPE_NOT_ON_ROOT,
6489		.file_offset = offsetof(struct mem_cgroup, events_file),
6490		.seq_show = memory_events_show,
6491	},
6492	{
6493		.name = "events.local",
6494		.flags = CFTYPE_NOT_ON_ROOT,
6495		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6496		.seq_show = memory_events_local_show,
6497	},
6498	{
6499		.name = "stat",
6500		.seq_show = memory_stat_show,
6501	},
6502#ifdef CONFIG_NUMA
6503	{
6504		.name = "numa_stat",
6505		.seq_show = memory_numa_stat_show,
6506	},
6507#endif
6508	{
6509		.name = "oom.group",
6510		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511		.seq_show = memory_oom_group_show,
6512		.write = memory_oom_group_write,
6513	},
6514	{ }	/* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518	.css_alloc = mem_cgroup_css_alloc,
6519	.css_online = mem_cgroup_css_online,
6520	.css_offline = mem_cgroup_css_offline,
6521	.css_released = mem_cgroup_css_released,
6522	.css_free = mem_cgroup_css_free,
6523	.css_reset = mem_cgroup_css_reset,
6524	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6525	.can_attach = mem_cgroup_can_attach,
6526	.cancel_attach = mem_cgroup_cancel_attach,
6527	.post_attach = mem_cgroup_move_task,
 
6528	.dfl_cftypes = memory_files,
6529	.legacy_cftypes = mem_cgroup_legacy_files,
6530	.early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 *    the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 *    subsequent levels the effective protection is capped to the
6546 *    parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 *    user is allowed to overcommit the declared protection at a given
6550 *    level. If that is the case, the parent's effective protection is
6551 *    distributed to the children in proportion to how much protection
6552 *    they have declared and how much of it they are utilizing.
6553 *
6554 *    This makes distribution proportional, but also work-conserving:
6555 *    if one cgroup claims much more protection than it uses memory,
6556 *    the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 *    given level, the distribution of the larger parental protection
6560 *    budget is NOT proportional. A cgroup's protection from a sibling
6561 *    is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 *    without having to declare each individual cgroup's fixed share
6565 *    of the ancestor's claim to protection, any unutilized -
6566 *    "floating" - protection from up the tree is distributed in
6567 *    proportion to each cgroup's *usage*. This makes the protection
6568 *    neutral wrt sibling cgroups and lets them compete freely over
6569 *    the shared parental protection budget, but it protects the
6570 *    subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577					  unsigned long parent_usage,
6578					  unsigned long setting,
6579					  unsigned long parent_effective,
6580					  unsigned long siblings_protected)
6581{
6582	unsigned long protected;
6583	unsigned long ep;
6584
6585	protected = min(usage, setting);
6586	/*
6587	 * If all cgroups at this level combined claim and use more
6588	 * protection then what the parent affords them, distribute
6589	 * shares in proportion to utilization.
6590	 *
6591	 * We are using actual utilization rather than the statically
6592	 * claimed protection in order to be work-conserving: claimed
6593	 * but unused protection is available to siblings that would
6594	 * otherwise get a smaller chunk than what they claimed.
6595	 */
6596	if (siblings_protected > parent_effective)
6597		return protected * parent_effective / siblings_protected;
6598
6599	/*
6600	 * Ok, utilized protection of all children is within what the
6601	 * parent affords them, so we know whatever this child claims
6602	 * and utilizes is effectively protected.
6603	 *
6604	 * If there is unprotected usage beyond this value, reclaim
6605	 * will apply pressure in proportion to that amount.
6606	 *
6607	 * If there is unutilized protection, the cgroup will be fully
6608	 * shielded from reclaim, but we do return a smaller value for
6609	 * protection than what the group could enjoy in theory. This
6610	 * is okay. With the overcommit distribution above, effective
6611	 * protection is always dependent on how memory is actually
6612	 * consumed among the siblings anyway.
6613	 */
6614	ep = protected;
6615
6616	/*
6617	 * If the children aren't claiming (all of) the protection
6618	 * afforded to them by the parent, distribute the remainder in
6619	 * proportion to the (unprotected) memory of each cgroup. That
6620	 * way, cgroups that aren't explicitly prioritized wrt each
6621	 * other compete freely over the allowance, but they are
6622	 * collectively protected from neighboring trees.
6623	 *
6624	 * We're using unprotected memory for the weight so that if
6625	 * some cgroups DO claim explicit protection, we don't protect
6626	 * the same bytes twice.
6627	 *
6628	 * Check both usage and parent_usage against the respective
6629	 * protected values. One should imply the other, but they
6630	 * aren't read atomically - make sure the division is sane.
6631	 */
6632	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633		return ep;
6634	if (parent_effective > siblings_protected &&
6635	    parent_usage > siblings_protected &&
6636	    usage > protected) {
6637		unsigned long unclaimed;
6638
6639		unclaimed = parent_effective - siblings_protected;
6640		unclaimed *= usage - protected;
6641		unclaimed /= parent_usage - siblings_protected;
6642
6643		ep += unclaimed;
6644	}
6645
6646	return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 *          of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658				     struct mem_cgroup *memcg)
6659{
6660	unsigned long usage, parent_usage;
6661	struct mem_cgroup *parent;
6662
6663	if (mem_cgroup_disabled())
6664		return;
6665
6666	if (!root)
6667		root = root_mem_cgroup;
6668
6669	/*
6670	 * Effective values of the reclaim targets are ignored so they
6671	 * can be stale. Have a look at mem_cgroup_protection for more
6672	 * details.
6673	 * TODO: calculation should be more robust so that we do not need
6674	 * that special casing.
6675	 */
6676	if (memcg == root)
6677		return;
6678
6679	usage = page_counter_read(&memcg->memory);
6680	if (!usage)
6681		return;
6682
6683	parent = parent_mem_cgroup(memcg);
6684	/* No parent means a non-hierarchical mode on v1 memcg */
6685	if (!parent)
6686		return;
6687
6688	if (parent == root) {
6689		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691		return;
6692	}
6693
6694	parent_usage = page_counter_read(&parent->memory);
6695
6696	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697			READ_ONCE(memcg->memory.min),
6698			READ_ONCE(parent->memory.emin),
6699			atomic_long_read(&parent->memory.children_min_usage)));
6700
6701	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702			READ_ONCE(memcg->memory.low),
6703			READ_ONCE(parent->memory.elow),
6704			atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708			       gfp_t gfp)
6709{
6710	unsigned int nr_pages = thp_nr_pages(page);
6711	int ret;
6712
6713	ret = try_charge(memcg, gfp, nr_pages);
6714	if (ret)
6715		goto out;
6716
6717	css_get(&memcg->css);
6718	commit_charge(page, memcg);
6719
6720	local_irq_disable();
6721	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722	memcg_check_events(memcg, page);
6723	local_irq_enable();
6724out:
6725	return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744	struct mem_cgroup *memcg;
6745	int ret;
 
6746
6747	if (mem_cgroup_disabled())
6748		return 0;
6749
6750	memcg = get_mem_cgroup_from_mm(mm);
6751	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752	css_put(&memcg->css);
6753
6754	return ret;
6755}
 
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770				  gfp_t gfp, swp_entry_t entry)
6771{
6772	struct mem_cgroup *memcg;
6773	unsigned short id;
6774	int ret;
6775
6776	if (mem_cgroup_disabled())
6777		return 0;
 
 
 
 
 
6778
6779	id = lookup_swap_cgroup_id(entry);
6780	rcu_read_lock();
6781	memcg = mem_cgroup_from_id(id);
6782	if (!memcg || !css_tryget_online(&memcg->css))
6783		memcg = get_mem_cgroup_from_mm(mm);
6784	rcu_read_unlock();
6785
6786	ret = __mem_cgroup_charge(page, memcg, gfp);
 
 
6787
6788	css_put(&memcg->css);
6789	return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803	/*
6804	 * Cgroup1's unified memory+swap counter has been charged with the
6805	 * new swapcache page, finish the transfer by uncharging the swap
6806	 * slot. The swap slot would also get uncharged when it dies, but
6807	 * it can stick around indefinitely and we'd count the page twice
6808	 * the entire time.
6809	 *
6810	 * Cgroup2 has separate resource counters for memory and swap,
6811	 * so this is a non-issue here. Memory and swap charge lifetimes
6812	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813	 * page to memory here, and uncharge swap when the slot is freed.
6814	 */
6815	if (!mem_cgroup_disabled() && do_memsw_account()) {
6816		/*
6817		 * The swap entry might not get freed for a long time,
6818		 * let's not wait for it.  The page already received a
6819		 * memory+swap charge, drop the swap entry duplicate.
6820		 */
6821		mem_cgroup_uncharge_swap(entry, 1);
6822	}
 
 
 
 
 
6823}
6824
6825struct uncharge_gather {
6826	struct mem_cgroup *memcg;
6827	unsigned long nr_memory;
6828	unsigned long pgpgout;
6829	unsigned long nr_kmem;
6830	struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835	memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840	unsigned long flags;
6841
6842	if (ug->nr_memory) {
6843		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844		if (do_memsw_account())
6845			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848		memcg_oom_recover(ug->memcg);
6849	}
6850
6851	local_irq_save(flags);
6852	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854	memcg_check_events(ug->memcg, ug->dummy_page);
6855	local_irq_restore(flags);
6856
6857	/* drop reference from uncharge_page */
6858	css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863	unsigned long nr_pages;
6864	struct mem_cgroup *memcg;
6865	struct obj_cgroup *objcg;
6866	bool use_objcg = PageMemcgKmem(page);
6867
6868	VM_BUG_ON_PAGE(PageLRU(page), page);
6869
 
 
 
6870	/*
6871	 * Nobody should be changing or seriously looking at
6872	 * page memcg or objcg at this point, we have fully
6873	 * exclusive access to the page.
6874	 */
6875	if (use_objcg) {
6876		objcg = __page_objcg(page);
6877		/*
6878		 * This get matches the put at the end of the function and
6879		 * kmem pages do not hold memcg references anymore.
6880		 */
6881		memcg = get_mem_cgroup_from_objcg(objcg);
6882	} else {
6883		memcg = __page_memcg(page);
6884	}
6885
6886	if (!memcg)
6887		return;
6888
6889	if (ug->memcg != memcg) {
6890		if (ug->memcg) {
6891			uncharge_batch(ug);
6892			uncharge_gather_clear(ug);
6893		}
6894		ug->memcg = memcg;
6895		ug->dummy_page = page;
6896
6897		/* pairs with css_put in uncharge_batch */
6898		css_get(&memcg->css);
6899	}
6900
6901	nr_pages = compound_nr(page);
 
6902
6903	if (use_objcg) {
6904		ug->nr_memory += nr_pages;
 
6905		ug->nr_kmem += nr_pages;
 
 
6906
6907		page->memcg_data = 0;
6908		obj_cgroup_put(objcg);
6909	} else {
6910		/* LRU pages aren't accounted at the root level */
6911		if (!mem_cgroup_is_root(memcg))
6912			ug->nr_memory += nr_pages;
6913		ug->pgpgout++;
6914
6915		page->memcg_data = 0;
6916	}
 
 
6917
6918	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929	struct uncharge_gather ug;
6930
6931	if (mem_cgroup_disabled())
6932		return;
6933
6934	/* Don't touch page->lru of any random page, pre-check: */
6935	if (!page_memcg(page))
6936		return;
6937
6938	uncharge_gather_clear(&ug);
6939	uncharge_page(page, &ug);
6940	uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952	struct uncharge_gather ug;
6953	struct page *page;
6954
6955	if (mem_cgroup_disabled())
6956		return;
6957
6958	uncharge_gather_clear(&ug);
6959	list_for_each_entry(page, page_list, lru)
6960		uncharge_page(page, &ug);
6961	if (ug.memcg)
6962		uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977	struct mem_cgroup *memcg;
6978	unsigned int nr_pages;
6979	unsigned long flags;
6980
6981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985		       newpage);
6986
6987	if (mem_cgroup_disabled())
6988		return;
6989
6990	/* Page cache replacement: new page already charged? */
6991	if (page_memcg(newpage))
6992		return;
6993
6994	memcg = page_memcg(oldpage);
6995	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996	if (!memcg)
6997		return;
6998
6999	/* Force-charge the new page. The old one will be freed soon */
7000	nr_pages = thp_nr_pages(newpage);
7001
7002	if (!mem_cgroup_is_root(memcg)) {
7003		page_counter_charge(&memcg->memory, nr_pages);
7004		if (do_memsw_account())
7005			page_counter_charge(&memcg->memsw, nr_pages);
7006	}
7007
7008	css_get(&memcg->css);
7009	commit_charge(newpage, memcg);
7010
7011	local_irq_save(flags);
7012	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013	memcg_check_events(memcg, newpage);
7014	local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022	struct mem_cgroup *memcg;
7023
7024	if (!mem_cgroup_sockets_enabled)
7025		return;
7026
7027	/* Do not associate the sock with unrelated interrupted task's memcg. */
7028	if (in_interrupt())
7029		return;
7030
7031	rcu_read_lock();
7032	memcg = mem_cgroup_from_task(current);
7033	if (memcg == root_mem_cgroup)
7034		goto out;
7035	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036		goto out;
7037	if (css_tryget(&memcg->css))
7038		sk->sk_memcg = memcg;
7039out:
7040	rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045	if (sk->sk_memcg)
7046		css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059	gfp_t gfp_mask = GFP_KERNEL;
7060
7061	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062		struct page_counter *fail;
7063
7064		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065			memcg->tcpmem_pressure = 0;
7066			return true;
7067		}
7068		page_counter_charge(&memcg->tcpmem, nr_pages);
7069		memcg->tcpmem_pressure = 1;
7070		return false;
7071	}
7072
7073	/* Don't block in the packet receive path */
7074	if (in_softirq())
7075		gfp_mask = GFP_NOWAIT;
7076
7077	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080		return true;
7081
7082	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083	return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095		return;
7096	}
7097
7098	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100	refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105	char *token;
7106
7107	while ((token = strsep(&s, ",")) != NULL) {
7108		if (!*token)
7109			continue;
7110		if (!strcmp(token, "nosocket"))
7111			cgroup_memory_nosocket = true;
7112		if (!strcmp(token, "nokmem"))
7113			cgroup_memory_nokmem = true;
7114	}
7115	return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129	int cpu, node;
7130
7131	/*
7132	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134	 * to work fine, we should make sure that the overfill threshold can't
7135	 * exceed S32_MAX / PAGE_SIZE.
7136	 */
7137	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140				  memcg_hotplug_cpu_dead);
7141
7142	for_each_possible_cpu(cpu)
7143		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144			  drain_local_stock);
7145
7146	for_each_node(node) {
7147		struct mem_cgroup_tree_per_node *rtpn;
7148
7149		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150				    node_online(node) ? node : NUMA_NO_NODE);
7151
7152		rtpn->rb_root = RB_ROOT;
7153		rtpn->rb_rightmost = NULL;
7154		spin_lock_init(&rtpn->lock);
7155		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156	}
7157
7158	return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166		/*
7167		 * The root cgroup cannot be destroyed, so it's refcount must
7168		 * always be >= 1.
7169		 */
7170		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171			VM_BUG_ON(1);
7172			break;
7173		}
7174		memcg = parent_mem_cgroup(memcg);
7175		if (!memcg)
7176			memcg = root_mem_cgroup;
7177	}
7178	return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190	struct mem_cgroup *memcg, *swap_memcg;
7191	unsigned int nr_entries;
7192	unsigned short oldid;
7193
7194	VM_BUG_ON_PAGE(PageLRU(page), page);
7195	VM_BUG_ON_PAGE(page_count(page), page);
7196
7197	if (mem_cgroup_disabled())
7198		return;
7199
7200	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201		return;
7202
7203	memcg = page_memcg(page);
7204
7205	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206	if (!memcg)
7207		return;
7208
7209	/*
7210	 * In case the memcg owning these pages has been offlined and doesn't
7211	 * have an ID allocated to it anymore, charge the closest online
7212	 * ancestor for the swap instead and transfer the memory+swap charge.
7213	 */
7214	swap_memcg = mem_cgroup_id_get_online(memcg);
7215	nr_entries = thp_nr_pages(page);
7216	/* Get references for the tail pages, too */
7217	if (nr_entries > 1)
7218		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220				   nr_entries);
7221	VM_BUG_ON_PAGE(oldid, page);
7222	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224	page->memcg_data = 0;
7225
7226	if (!mem_cgroup_is_root(memcg))
7227		page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230		if (!mem_cgroup_is_root(swap_memcg))
7231			page_counter_charge(&swap_memcg->memsw, nr_entries);
7232		page_counter_uncharge(&memcg->memsw, nr_entries);
7233	}
7234
7235	/*
7236	 * Interrupts should be disabled here because the caller holds the
7237	 * i_pages lock which is taken with interrupts-off. It is
7238	 * important here to have the interrupts disabled because it is the
7239	 * only synchronisation we have for updating the per-CPU variables.
7240	 */
7241	VM_BUG_ON(!irqs_disabled());
7242	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243	memcg_check_events(memcg, page);
7244
7245	css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259	unsigned int nr_pages = thp_nr_pages(page);
7260	struct page_counter *counter;
7261	struct mem_cgroup *memcg;
7262	unsigned short oldid;
7263
7264	if (mem_cgroup_disabled())
7265		return 0;
7266
7267	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268		return 0;
7269
7270	memcg = page_memcg(page);
7271
7272	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273	if (!memcg)
7274		return 0;
7275
7276	if (!entry.val) {
7277		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278		return 0;
7279	}
7280
7281	memcg = mem_cgroup_id_get_online(memcg);
7282
7283	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287		mem_cgroup_id_put(memcg);
7288		return -ENOMEM;
7289	}
7290
7291	/* Get references for the tail pages, too */
7292	if (nr_pages > 1)
7293		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295	VM_BUG_ON_PAGE(oldid, page);
7296	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298	return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308	struct mem_cgroup *memcg;
7309	unsigned short id;
7310
7311	id = swap_cgroup_record(entry, 0, nr_pages);
7312	rcu_read_lock();
7313	memcg = mem_cgroup_from_id(id);
7314	if (memcg) {
7315		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317				page_counter_uncharge(&memcg->swap, nr_pages);
7318			else
7319				page_counter_uncharge(&memcg->memsw, nr_pages);
7320		}
7321		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322		mem_cgroup_id_put_many(memcg, nr_pages);
7323	}
7324	rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329	long nr_swap_pages = get_nr_swap_pages();
7330
7331	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332		return nr_swap_pages;
7333	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334		nr_swap_pages = min_t(long, nr_swap_pages,
7335				      READ_ONCE(memcg->swap.max) -
7336				      page_counter_read(&memcg->swap));
7337	return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342	struct mem_cgroup *memcg;
7343
7344	VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346	if (vm_swap_full())
7347		return true;
7348	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349		return false;
7350
7351	memcg = page_memcg(page);
7352	if (!memcg)
7353		return false;
7354
7355	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356		unsigned long usage = page_counter_read(&memcg->swap);
7357
7358		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359		    usage * 2 >= READ_ONCE(memcg->swap.max))
7360			return true;
7361	}
7362
7363	return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368	if (!strcmp(s, "1"))
7369		cgroup_memory_noswap = false;
7370	else if (!strcmp(s, "0"))
7371		cgroup_memory_noswap = true;
7372	return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377			     struct cftype *cft)
7378{
7379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386	return seq_puts_memcg_tunable(m,
7387		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391			       char *buf, size_t nbytes, loff_t off)
7392{
7393	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394	unsigned long high;
7395	int err;
7396
7397	buf = strstrip(buf);
7398	err = page_counter_memparse(buf, "max", &high);
7399	if (err)
7400		return err;
7401
7402	page_counter_set_high(&memcg->swap, high);
7403
7404	return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409	return seq_puts_memcg_tunable(m,
7410		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414			      char *buf, size_t nbytes, loff_t off)
7415{
7416	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417	unsigned long max;
7418	int err;
7419
7420	buf = strstrip(buf);
7421	err = page_counter_memparse(buf, "max", &max);
7422	if (err)
7423		return err;
7424
7425	xchg(&memcg->swap.max, max);
7426
7427	return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434	seq_printf(m, "high %lu\n",
7435		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436	seq_printf(m, "max %lu\n",
7437		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438	seq_printf(m, "fail %lu\n",
7439		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441	return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445	{
7446		.name = "swap.current",
7447		.flags = CFTYPE_NOT_ON_ROOT,
7448		.read_u64 = swap_current_read,
7449	},
7450	{
7451		.name = "swap.high",
7452		.flags = CFTYPE_NOT_ON_ROOT,
7453		.seq_show = swap_high_show,
7454		.write = swap_high_write,
7455	},
7456	{
7457		.name = "swap.max",
7458		.flags = CFTYPE_NOT_ON_ROOT,
7459		.seq_show = swap_max_show,
7460		.write = swap_max_write,
7461	},
7462	{
7463		.name = "swap.events",
7464		.flags = CFTYPE_NOT_ON_ROOT,
7465		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466		.seq_show = swap_events_show,
7467	},
7468	{ }	/* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472	{
7473		.name = "memsw.usage_in_bytes",
7474		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475		.read_u64 = mem_cgroup_read_u64,
7476	},
7477	{
7478		.name = "memsw.max_usage_in_bytes",
7479		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480		.write = mem_cgroup_reset,
7481		.read_u64 = mem_cgroup_read_u64,
7482	},
7483	{
7484		.name = "memsw.limit_in_bytes",
7485		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486		.write = mem_cgroup_write,
7487		.read_u64 = mem_cgroup_read_u64,
7488	},
7489	{
7490		.name = "memsw.failcnt",
7491		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492		.write = mem_cgroup_reset,
7493		.read_u64 = mem_cgroup_read_u64,
7494	},
7495	{ },	/* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507	/* No memory control -> no swap control */
7508	if (mem_cgroup_disabled())
7509		cgroup_memory_noswap = true;
7510
7511	if (cgroup_memory_noswap)
7512		return 0;
7513
7514	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517	return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 
 
 
  23 */
  24
  25#include <linux/page_counter.h>
  26#include <linux/memcontrol.h>
  27#include <linux/cgroup.h>
  28#include <linux/pagewalk.h>
  29#include <linux/sched/mm.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vm_event_item.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include <linux/tracehook.h>
  60#include <linux/psi.h>
  61#include <linux/seq_buf.h>
  62#include "internal.h"
  63#include <net/sock.h>
  64#include <net/ip.h>
  65#include "slab.h"
  66
  67#include <linux/uaccess.h>
  68
  69#include <trace/events/vmscan.h>
  70
  71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72EXPORT_SYMBOL(memory_cgrp_subsys);
  73
  74struct mem_cgroup *root_mem_cgroup __read_mostly;
  75
 
 
 
 
  76/* Socket memory accounting disabled? */
  77static bool cgroup_memory_nosocket;
  78
  79/* Kernel memory accounting disabled? */
  80static bool cgroup_memory_nokmem;
  81
  82/* Whether the swap controller is active */
  83#ifdef CONFIG_MEMCG_SWAP
  84bool cgroup_memory_noswap __read_mostly;
  85#else
  86#define cgroup_memory_noswap		1
  87#endif
  88
  89#ifdef CONFIG_CGROUP_WRITEBACK
  90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  91#endif
  92
  93/* Whether legacy memory+swap accounting is active */
  94static bool do_memsw_account(void)
  95{
  96	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
  97}
  98
  99#define THRESHOLDS_EVENTS_TARGET 128
 100#define SOFTLIMIT_EVENTS_TARGET 1024
 101
 102/*
 103 * Cgroups above their limits are maintained in a RB-Tree, independent of
 104 * their hierarchy representation
 105 */
 106
 107struct mem_cgroup_tree_per_node {
 108	struct rb_root rb_root;
 109	struct rb_node *rb_rightmost;
 110	spinlock_t lock;
 111};
 112
 113struct mem_cgroup_tree {
 114	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 115};
 116
 117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 118
 119/* for OOM */
 120struct mem_cgroup_eventfd_list {
 121	struct list_head list;
 122	struct eventfd_ctx *eventfd;
 123};
 124
 125/*
 126 * cgroup_event represents events which userspace want to receive.
 127 */
 128struct mem_cgroup_event {
 129	/*
 130	 * memcg which the event belongs to.
 131	 */
 132	struct mem_cgroup *memcg;
 133	/*
 134	 * eventfd to signal userspace about the event.
 135	 */
 136	struct eventfd_ctx *eventfd;
 137	/*
 138	 * Each of these stored in a list by the cgroup.
 139	 */
 140	struct list_head list;
 141	/*
 142	 * register_event() callback will be used to add new userspace
 143	 * waiter for changes related to this event.  Use eventfd_signal()
 144	 * on eventfd to send notification to userspace.
 145	 */
 146	int (*register_event)(struct mem_cgroup *memcg,
 147			      struct eventfd_ctx *eventfd, const char *args);
 148	/*
 149	 * unregister_event() callback will be called when userspace closes
 150	 * the eventfd or on cgroup removing.  This callback must be set,
 151	 * if you want provide notification functionality.
 152	 */
 153	void (*unregister_event)(struct mem_cgroup *memcg,
 154				 struct eventfd_ctx *eventfd);
 155	/*
 156	 * All fields below needed to unregister event when
 157	 * userspace closes eventfd.
 158	 */
 159	poll_table pt;
 160	wait_queue_head_t *wqh;
 161	wait_queue_entry_t wait;
 162	struct work_struct remove;
 163};
 164
 165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 167
 168/* Stuffs for move charges at task migration. */
 169/*
 170 * Types of charges to be moved.
 171 */
 172#define MOVE_ANON	0x1U
 173#define MOVE_FILE	0x2U
 174#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 175
 176/* "mc" and its members are protected by cgroup_mutex */
 177static struct move_charge_struct {
 178	spinlock_t	  lock; /* for from, to */
 179	struct mm_struct  *mm;
 180	struct mem_cgroup *from;
 181	struct mem_cgroup *to;
 182	unsigned long flags;
 183	unsigned long precharge;
 184	unsigned long moved_charge;
 185	unsigned long moved_swap;
 186	struct task_struct *moving_task;	/* a task moving charges */
 187	wait_queue_head_t waitq;		/* a waitq for other context */
 188} mc = {
 189	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 190	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 191};
 192
 193/*
 194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 195 * limit reclaim to prevent infinite loops, if they ever occur.
 196 */
 197#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 198#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 199
 200enum charge_type {
 201	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 202	MEM_CGROUP_CHARGE_TYPE_ANON,
 203	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 204	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 205	NR_CHARGE_TYPE,
 206};
 207
 208/* for encoding cft->private value on file */
 209enum res_type {
 210	_MEM,
 211	_MEMSWAP,
 212	_OOM_TYPE,
 213	_KMEM,
 214	_TCP,
 215};
 216
 217#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 218#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 219#define MEMFILE_ATTR(val)	((val) & 0xffff)
 220/* Used for OOM nofiier */
 221#define OOM_CONTROL		(0)
 222
 223/*
 224 * Iteration constructs for visiting all cgroups (under a tree).  If
 225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 226 * be used for reference counting.
 227 */
 228#define for_each_mem_cgroup_tree(iter, root)		\
 229	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 230	     iter != NULL;				\
 231	     iter = mem_cgroup_iter(root, iter, NULL))
 232
 233#define for_each_mem_cgroup(iter)			\
 234	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 235	     iter != NULL;				\
 236	     iter = mem_cgroup_iter(NULL, iter, NULL))
 237
 238static inline bool should_force_charge(void)
 239{
 240	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 241		(current->flags & PF_EXITING);
 242}
 243
 244/* Some nice accessors for the vmpressure. */
 245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 246{
 247	if (!memcg)
 248		memcg = root_mem_cgroup;
 249	return &memcg->vmpressure;
 250}
 251
 252struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 253{
 254	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 255}
 256
 257#ifdef CONFIG_MEMCG_KMEM
 258extern spinlock_t css_set_lock;
 259
 
 
 
 
 
 
 
 
 260static void obj_cgroup_release(struct percpu_ref *ref)
 261{
 262	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 263	struct mem_cgroup *memcg;
 264	unsigned int nr_bytes;
 265	unsigned int nr_pages;
 266	unsigned long flags;
 267
 268	/*
 269	 * At this point all allocated objects are freed, and
 270	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 271	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 272	 *
 273	 * The following sequence can lead to it:
 274	 * 1) CPU0: objcg == stock->cached_objcg
 275	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 276	 *          PAGE_SIZE bytes are charged
 277	 * 3) CPU1: a process from another memcg is allocating something,
 278	 *          the stock if flushed,
 279	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 280	 * 5) CPU0: we do release this object,
 281	 *          92 bytes are added to stock->nr_bytes
 282	 * 6) CPU0: stock is flushed,
 283	 *          92 bytes are added to objcg->nr_charged_bytes
 284	 *
 285	 * In the result, nr_charged_bytes == PAGE_SIZE.
 286	 * This page will be uncharged in obj_cgroup_release().
 287	 */
 288	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 289	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 290	nr_pages = nr_bytes >> PAGE_SHIFT;
 291
 
 
 
 292	spin_lock_irqsave(&css_set_lock, flags);
 293	memcg = obj_cgroup_memcg(objcg);
 294	if (nr_pages)
 295		__memcg_kmem_uncharge(memcg, nr_pages);
 296	list_del(&objcg->list);
 297	mem_cgroup_put(memcg);
 298	spin_unlock_irqrestore(&css_set_lock, flags);
 299
 300	percpu_ref_exit(ref);
 301	kfree_rcu(objcg, rcu);
 302}
 303
 304static struct obj_cgroup *obj_cgroup_alloc(void)
 305{
 306	struct obj_cgroup *objcg;
 307	int ret;
 308
 309	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 310	if (!objcg)
 311		return NULL;
 312
 313	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 314			      GFP_KERNEL);
 315	if (ret) {
 316		kfree(objcg);
 317		return NULL;
 318	}
 319	INIT_LIST_HEAD(&objcg->list);
 320	return objcg;
 321}
 322
 323static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 324				  struct mem_cgroup *parent)
 325{
 326	struct obj_cgroup *objcg, *iter;
 327
 328	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 329
 330	spin_lock_irq(&css_set_lock);
 331
 332	/* Move active objcg to the parent's list */
 333	xchg(&objcg->memcg, parent);
 334	css_get(&parent->css);
 335	list_add(&objcg->list, &parent->objcg_list);
 336
 337	/* Move already reparented objcgs to the parent's list */
 338	list_for_each_entry(iter, &memcg->objcg_list, list) {
 339		css_get(&parent->css);
 340		xchg(&iter->memcg, parent);
 341		css_put(&memcg->css);
 342	}
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 401
 402static int memcg_shrinker_map_size;
 403static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 404
 405static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 406{
 407	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 408}
 409
 410static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 411					 int size, int old_size)
 412{
 413	struct memcg_shrinker_map *new, *old;
 414	int nid;
 415
 416	lockdep_assert_held(&memcg_shrinker_map_mutex);
 417
 418	for_each_node(nid) {
 419		old = rcu_dereference_protected(
 420			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 421		/* Not yet online memcg */
 422		if (!old)
 423			return 0;
 424
 425		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 426		if (!new)
 427			return -ENOMEM;
 428
 429		/* Set all old bits, clear all new bits */
 430		memset(new->map, (int)0xff, old_size);
 431		memset((void *)new->map + old_size, 0, size - old_size);
 432
 433		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 434		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 435	}
 436
 437	return 0;
 438}
 439
 440static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 441{
 442	struct mem_cgroup_per_node *pn;
 443	struct memcg_shrinker_map *map;
 444	int nid;
 445
 446	if (mem_cgroup_is_root(memcg))
 447		return;
 448
 449	for_each_node(nid) {
 450		pn = mem_cgroup_nodeinfo(memcg, nid);
 451		map = rcu_dereference_protected(pn->shrinker_map, true);
 452		if (map)
 453			kvfree(map);
 454		rcu_assign_pointer(pn->shrinker_map, NULL);
 455	}
 456}
 457
 458static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 459{
 460	struct memcg_shrinker_map *map;
 461	int nid, size, ret = 0;
 462
 463	if (mem_cgroup_is_root(memcg))
 464		return 0;
 465
 466	mutex_lock(&memcg_shrinker_map_mutex);
 467	size = memcg_shrinker_map_size;
 468	for_each_node(nid) {
 469		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
 470		if (!map) {
 471			memcg_free_shrinker_maps(memcg);
 472			ret = -ENOMEM;
 473			break;
 474		}
 475		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 476	}
 477	mutex_unlock(&memcg_shrinker_map_mutex);
 478
 479	return ret;
 480}
 481
 482int memcg_expand_shrinker_maps(int new_id)
 483{
 484	int size, old_size, ret = 0;
 485	struct mem_cgroup *memcg;
 486
 487	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 488	old_size = memcg_shrinker_map_size;
 489	if (size <= old_size)
 490		return 0;
 491
 492	mutex_lock(&memcg_shrinker_map_mutex);
 493	if (!root_mem_cgroup)
 494		goto unlock;
 495
 496	for_each_mem_cgroup(memcg) {
 497		if (mem_cgroup_is_root(memcg))
 498			continue;
 499		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 500		if (ret) {
 501			mem_cgroup_iter_break(NULL, memcg);
 502			goto unlock;
 503		}
 504	}
 505unlock:
 506	if (!ret)
 507		memcg_shrinker_map_size = size;
 508	mutex_unlock(&memcg_shrinker_map_mutex);
 509	return ret;
 510}
 511
 512void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 513{
 514	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 515		struct memcg_shrinker_map *map;
 516
 517		rcu_read_lock();
 518		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 519		/* Pairs with smp mb in shrink_slab() */
 520		smp_mb__before_atomic();
 521		set_bit(shrinker_id, map->map);
 522		rcu_read_unlock();
 523	}
 524}
 525
 526/**
 527 * mem_cgroup_css_from_page - css of the memcg associated with a page
 528 * @page: page of interest
 529 *
 530 * If memcg is bound to the default hierarchy, css of the memcg associated
 531 * with @page is returned.  The returned css remains associated with @page
 532 * until it is released.
 533 *
 534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 535 * is returned.
 536 */
 537struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 538{
 539	struct mem_cgroup *memcg;
 540
 541	memcg = page->mem_cgroup;
 542
 543	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 544		memcg = root_mem_cgroup;
 545
 546	return &memcg->css;
 547}
 548
 549/**
 550 * page_cgroup_ino - return inode number of the memcg a page is charged to
 551 * @page: the page
 552 *
 553 * Look up the closest online ancestor of the memory cgroup @page is charged to
 554 * and return its inode number or 0 if @page is not charged to any cgroup. It
 555 * is safe to call this function without holding a reference to @page.
 556 *
 557 * Note, this function is inherently racy, because there is nothing to prevent
 558 * the cgroup inode from getting torn down and potentially reallocated a moment
 559 * after page_cgroup_ino() returns, so it only should be used by callers that
 560 * do not care (such as procfs interfaces).
 561 */
 562ino_t page_cgroup_ino(struct page *page)
 563{
 564	struct mem_cgroup *memcg;
 565	unsigned long ino = 0;
 566
 567	rcu_read_lock();
 568	memcg = page->mem_cgroup;
 569
 570	/*
 571	 * The lowest bit set means that memcg isn't a valid
 572	 * memcg pointer, but a obj_cgroups pointer.
 573	 * In this case the page is shared and doesn't belong
 574	 * to any specific memory cgroup.
 575	 */
 576	if ((unsigned long) memcg & 0x1UL)
 577		memcg = NULL;
 578
 579	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 580		memcg = parent_mem_cgroup(memcg);
 581	if (memcg)
 582		ino = cgroup_ino(memcg->css.cgroup);
 583	rcu_read_unlock();
 584	return ino;
 585}
 586
 587static struct mem_cgroup_per_node *
 588mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 589{
 590	int nid = page_to_nid(page);
 591
 592	return memcg->nodeinfo[nid];
 593}
 594
 595static struct mem_cgroup_tree_per_node *
 596soft_limit_tree_node(int nid)
 597{
 598	return soft_limit_tree.rb_tree_per_node[nid];
 599}
 600
 601static struct mem_cgroup_tree_per_node *
 602soft_limit_tree_from_page(struct page *page)
 603{
 604	int nid = page_to_nid(page);
 605
 606	return soft_limit_tree.rb_tree_per_node[nid];
 607}
 608
 609static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 610					 struct mem_cgroup_tree_per_node *mctz,
 611					 unsigned long new_usage_in_excess)
 612{
 613	struct rb_node **p = &mctz->rb_root.rb_node;
 614	struct rb_node *parent = NULL;
 615	struct mem_cgroup_per_node *mz_node;
 616	bool rightmost = true;
 617
 618	if (mz->on_tree)
 619		return;
 620
 621	mz->usage_in_excess = new_usage_in_excess;
 622	if (!mz->usage_in_excess)
 623		return;
 624	while (*p) {
 625		parent = *p;
 626		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 627					tree_node);
 628		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 629			p = &(*p)->rb_left;
 630			rightmost = false;
 
 
 631		}
 632
 633		/*
 634		 * We can't avoid mem cgroups that are over their soft
 635		 * limit by the same amount
 636		 */
 637		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 638			p = &(*p)->rb_right;
 639	}
 640
 641	if (rightmost)
 642		mctz->rb_rightmost = &mz->tree_node;
 643
 644	rb_link_node(&mz->tree_node, parent, p);
 645	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 646	mz->on_tree = true;
 647}
 648
 649static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 650					 struct mem_cgroup_tree_per_node *mctz)
 651{
 652	if (!mz->on_tree)
 653		return;
 654
 655	if (&mz->tree_node == mctz->rb_rightmost)
 656		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 657
 658	rb_erase(&mz->tree_node, &mctz->rb_root);
 659	mz->on_tree = false;
 660}
 661
 662static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 663				       struct mem_cgroup_tree_per_node *mctz)
 664{
 665	unsigned long flags;
 666
 667	spin_lock_irqsave(&mctz->lock, flags);
 668	__mem_cgroup_remove_exceeded(mz, mctz);
 669	spin_unlock_irqrestore(&mctz->lock, flags);
 670}
 671
 672static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 673{
 674	unsigned long nr_pages = page_counter_read(&memcg->memory);
 675	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 676	unsigned long excess = 0;
 677
 678	if (nr_pages > soft_limit)
 679		excess = nr_pages - soft_limit;
 680
 681	return excess;
 682}
 683
 684static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 685{
 686	unsigned long excess;
 687	struct mem_cgroup_per_node *mz;
 688	struct mem_cgroup_tree_per_node *mctz;
 689
 690	mctz = soft_limit_tree_from_page(page);
 691	if (!mctz)
 692		return;
 693	/*
 694	 * Necessary to update all ancestors when hierarchy is used.
 695	 * because their event counter is not touched.
 696	 */
 697	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 698		mz = mem_cgroup_page_nodeinfo(memcg, page);
 699		excess = soft_limit_excess(memcg);
 700		/*
 701		 * We have to update the tree if mz is on RB-tree or
 702		 * mem is over its softlimit.
 703		 */
 704		if (excess || mz->on_tree) {
 705			unsigned long flags;
 706
 707			spin_lock_irqsave(&mctz->lock, flags);
 708			/* if on-tree, remove it */
 709			if (mz->on_tree)
 710				__mem_cgroup_remove_exceeded(mz, mctz);
 711			/*
 712			 * Insert again. mz->usage_in_excess will be updated.
 713			 * If excess is 0, no tree ops.
 714			 */
 715			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 716			spin_unlock_irqrestore(&mctz->lock, flags);
 717		}
 718	}
 719}
 720
 721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 722{
 723	struct mem_cgroup_tree_per_node *mctz;
 724	struct mem_cgroup_per_node *mz;
 725	int nid;
 726
 727	for_each_node(nid) {
 728		mz = mem_cgroup_nodeinfo(memcg, nid);
 729		mctz = soft_limit_tree_node(nid);
 730		if (mctz)
 731			mem_cgroup_remove_exceeded(mz, mctz);
 732	}
 733}
 734
 735static struct mem_cgroup_per_node *
 736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 737{
 738	struct mem_cgroup_per_node *mz;
 739
 740retry:
 741	mz = NULL;
 742	if (!mctz->rb_rightmost)
 743		goto done;		/* Nothing to reclaim from */
 744
 745	mz = rb_entry(mctz->rb_rightmost,
 746		      struct mem_cgroup_per_node, tree_node);
 747	/*
 748	 * Remove the node now but someone else can add it back,
 749	 * we will to add it back at the end of reclaim to its correct
 750	 * position in the tree.
 751	 */
 752	__mem_cgroup_remove_exceeded(mz, mctz);
 753	if (!soft_limit_excess(mz->memcg) ||
 754	    !css_tryget(&mz->memcg->css))
 755		goto retry;
 756done:
 757	return mz;
 758}
 759
 760static struct mem_cgroup_per_node *
 761mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 762{
 763	struct mem_cgroup_per_node *mz;
 764
 765	spin_lock_irq(&mctz->lock);
 766	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 767	spin_unlock_irq(&mctz->lock);
 768	return mz;
 769}
 770
 771/**
 772 * __mod_memcg_state - update cgroup memory statistics
 773 * @memcg: the memory cgroup
 774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 775 * @val: delta to add to the counter, can be negative
 776 */
 777void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 778{
 779	long x, threshold = MEMCG_CHARGE_BATCH;
 780
 781	if (mem_cgroup_disabled())
 782		return;
 783
 784	if (memcg_stat_item_in_bytes(idx))
 785		threshold <<= PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 786
 787	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 788	if (unlikely(abs(x) > threshold)) {
 789		struct mem_cgroup *mi;
 
 
 790
 791		/*
 792		 * Batch local counters to keep them in sync with
 793		 * the hierarchical ones.
 794		 */
 795		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
 796		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 797			atomic_long_add(x, &mi->vmstats[idx]);
 798		x = 0;
 799	}
 800	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 801}
 802
 803static struct mem_cgroup_per_node *
 804parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 805{
 806	struct mem_cgroup *parent;
 807
 808	parent = parent_mem_cgroup(pn->memcg);
 809	if (!parent)
 810		return NULL;
 811	return mem_cgroup_nodeinfo(parent, nid);
 812}
 813
 814void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 815			      int val)
 816{
 817	struct mem_cgroup_per_node *pn;
 818	struct mem_cgroup *memcg;
 819	long x, threshold = MEMCG_CHARGE_BATCH;
 820
 821	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 822	memcg = pn->memcg;
 823
 824	/* Update memcg */
 825	__mod_memcg_state(memcg, idx, val);
 826
 827	/* Update lruvec */
 828	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 829
 830	if (vmstat_item_in_bytes(idx))
 831		threshold <<= PAGE_SHIFT;
 832
 833	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 834	if (unlikely(abs(x) > threshold)) {
 835		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 836		struct mem_cgroup_per_node *pi;
 837
 838		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 839			atomic_long_add(x, &pi->lruvec_stat[idx]);
 840		x = 0;
 841	}
 842	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 843}
 844
 845/**
 846 * __mod_lruvec_state - update lruvec memory statistics
 847 * @lruvec: the lruvec
 848 * @idx: the stat item
 849 * @val: delta to add to the counter, can be negative
 850 *
 851 * The lruvec is the intersection of the NUMA node and a cgroup. This
 852 * function updates the all three counters that are affected by a
 853 * change of state at this level: per-node, per-cgroup, per-lruvec.
 854 */
 855void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 856			int val)
 857{
 858	/* Update node */
 859	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 860
 861	/* Update memcg and lruvec */
 862	if (!mem_cgroup_disabled())
 863		__mod_memcg_lruvec_state(lruvec, idx, val);
 864}
 865
 866void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867{
 868	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 869	struct mem_cgroup *memcg;
 870	struct lruvec *lruvec;
 871
 872	rcu_read_lock();
 873	memcg = mem_cgroup_from_obj(p);
 874
 875	/* Untracked pages have no memcg, no lruvec. Update only the node */
 876	if (!memcg || memcg == root_mem_cgroup) {
 
 
 
 
 
 877		__mod_node_page_state(pgdat, idx, val);
 878	} else {
 879		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 880		__mod_lruvec_state(lruvec, idx, val);
 881	}
 882	rcu_read_unlock();
 883}
 884
 885void mod_memcg_obj_state(void *p, int idx, int val)
 
 
 
 
 
 
 886{
 887	struct mem_cgroup *memcg;
 
 888
 889	rcu_read_lock();
 890	memcg = mem_cgroup_from_obj(p);
 891	if (memcg)
 892		mod_memcg_state(memcg, idx, val);
 893	rcu_read_unlock();
 894}
 895
 896/**
 897 * __count_memcg_events - account VM events in a cgroup
 898 * @memcg: the memory cgroup
 899 * @idx: the event item
 900 * @count: the number of events that occured
 901 */
 902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 903			  unsigned long count)
 904{
 905	unsigned long x;
 906
 907	if (mem_cgroup_disabled())
 908		return;
 909
 910	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 911	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 912		struct mem_cgroup *mi;
 913
 914		/*
 915		 * Batch local counters to keep them in sync with
 916		 * the hierarchical ones.
 917		 */
 918		__this_cpu_add(memcg->vmstats_local->events[idx], x);
 919		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 920			atomic_long_add(x, &mi->vmevents[idx]);
 921		x = 0;
 922	}
 923	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 924}
 925
 926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 927{
 928	return atomic_long_read(&memcg->vmevents[event]);
 929}
 930
 931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 932{
 933	long x = 0;
 934	int cpu;
 935
 936	for_each_possible_cpu(cpu)
 937		x += per_cpu(memcg->vmstats_local->events[event], cpu);
 938	return x;
 939}
 940
 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 942					 struct page *page,
 943					 int nr_pages)
 944{
 945	/* pagein of a big page is an event. So, ignore page size */
 946	if (nr_pages > 0)
 947		__count_memcg_events(memcg, PGPGIN, 1);
 948	else {
 949		__count_memcg_events(memcg, PGPGOUT, 1);
 950		nr_pages = -nr_pages; /* for event */
 951	}
 952
 953	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 954}
 955
 956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 957				       enum mem_cgroup_events_target target)
 958{
 959	unsigned long val, next;
 960
 961	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 962	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 963	/* from time_after() in jiffies.h */
 964	if ((long)(next - val) < 0) {
 965		switch (target) {
 966		case MEM_CGROUP_TARGET_THRESH:
 967			next = val + THRESHOLDS_EVENTS_TARGET;
 968			break;
 969		case MEM_CGROUP_TARGET_SOFTLIMIT:
 970			next = val + SOFTLIMIT_EVENTS_TARGET;
 971			break;
 972		default:
 973			break;
 974		}
 975		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 976		return true;
 977	}
 978	return false;
 979}
 980
 981/*
 982 * Check events in order.
 983 *
 984 */
 985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 986{
 987	/* threshold event is triggered in finer grain than soft limit */
 988	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 989						MEM_CGROUP_TARGET_THRESH))) {
 990		bool do_softlimit;
 991
 992		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 993						MEM_CGROUP_TARGET_SOFTLIMIT);
 994		mem_cgroup_threshold(memcg);
 995		if (unlikely(do_softlimit))
 996			mem_cgroup_update_tree(memcg, page);
 997	}
 998}
 999
1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001{
1002	/*
1003	 * mm_update_next_owner() may clear mm->owner to NULL
1004	 * if it races with swapoff, page migration, etc.
1005	 * So this can be called with p == NULL.
1006	 */
1007	if (unlikely(!p))
1008		return NULL;
1009
1010	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011}
1012EXPORT_SYMBOL(mem_cgroup_from_task);
1013
 
 
 
 
 
 
 
 
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
 
 
 
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023{
1024	struct mem_cgroup *memcg;
1025
1026	if (mem_cgroup_disabled())
1027		return NULL;
1028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029	rcu_read_lock();
1030	do {
1031		/*
1032		 * Page cache insertions can happen withou an
1033		 * actual mm context, e.g. during disk probing
1034		 * on boot, loopback IO, acct() writes etc.
1035		 */
1036		if (unlikely(!mm))
1037			memcg = root_mem_cgroup;
1038		else {
1039			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040			if (unlikely(!memcg))
1041				memcg = root_mem_cgroup;
1042		}
1043	} while (!css_tryget(&memcg->css));
1044	rcu_read_unlock();
1045	return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058	struct mem_cgroup *memcg = page->mem_cgroup;
 
 
1059
1060	if (mem_cgroup_disabled())
1061		return NULL;
 
1062
1063	rcu_read_lock();
1064	/* Page should not get uncharged and freed memcg under us. */
1065	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066		memcg = root_mem_cgroup;
1067	rcu_read_unlock();
1068	return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072/**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076{
1077	if (unlikely(current->active_memcg)) {
1078		struct mem_cgroup *memcg;
1079
1080		rcu_read_lock();
1081		/* current->active_memcg must hold a ref. */
1082		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083			memcg = root_mem_cgroup;
1084		else
1085			memcg = current->active_memcg;
1086		rcu_read_unlock();
1087		return memcg;
1088	}
1089	return get_mem_cgroup_from_mm(current->mm);
1090}
1091
1092/**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110				   struct mem_cgroup *prev,
1111				   struct mem_cgroup_reclaim_cookie *reclaim)
1112{
1113	struct mem_cgroup_reclaim_iter *iter;
1114	struct cgroup_subsys_state *css = NULL;
1115	struct mem_cgroup *memcg = NULL;
1116	struct mem_cgroup *pos = NULL;
1117
1118	if (mem_cgroup_disabled())
1119		return NULL;
1120
1121	if (!root)
1122		root = root_mem_cgroup;
1123
1124	if (prev && !reclaim)
1125		pos = prev;
1126
1127	if (!root->use_hierarchy && root != root_mem_cgroup) {
1128		if (prev)
1129			goto out;
1130		return root;
1131	}
1132
1133	rcu_read_lock();
1134
1135	if (reclaim) {
1136		struct mem_cgroup_per_node *mz;
1137
1138		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139		iter = &mz->iter;
1140
1141		if (prev && reclaim->generation != iter->generation)
1142			goto out_unlock;
1143
1144		while (1) {
1145			pos = READ_ONCE(iter->position);
1146			if (!pos || css_tryget(&pos->css))
1147				break;
1148			/*
1149			 * css reference reached zero, so iter->position will
1150			 * be cleared by ->css_released. However, we should not
1151			 * rely on this happening soon, because ->css_released
1152			 * is called from a work queue, and by busy-waiting we
1153			 * might block it. So we clear iter->position right
1154			 * away.
1155			 */
1156			(void)cmpxchg(&iter->position, pos, NULL);
1157		}
1158	}
1159
1160	if (pos)
1161		css = &pos->css;
1162
1163	for (;;) {
1164		css = css_next_descendant_pre(css, &root->css);
1165		if (!css) {
1166			/*
1167			 * Reclaimers share the hierarchy walk, and a
1168			 * new one might jump in right at the end of
1169			 * the hierarchy - make sure they see at least
1170			 * one group and restart from the beginning.
1171			 */
1172			if (!prev)
1173				continue;
1174			break;
1175		}
1176
1177		/*
1178		 * Verify the css and acquire a reference.  The root
1179		 * is provided by the caller, so we know it's alive
1180		 * and kicking, and don't take an extra reference.
1181		 */
1182		memcg = mem_cgroup_from_css(css);
1183
1184		if (css == &root->css)
1185			break;
1186
1187		if (css_tryget(css))
1188			break;
1189
1190		memcg = NULL;
1191	}
1192
1193	if (reclaim) {
1194		/*
1195		 * The position could have already been updated by a competing
1196		 * thread, so check that the value hasn't changed since we read
1197		 * it to avoid reclaiming from the same cgroup twice.
1198		 */
1199		(void)cmpxchg(&iter->position, pos, memcg);
1200
1201		if (pos)
1202			css_put(&pos->css);
1203
1204		if (!memcg)
1205			iter->generation++;
1206		else if (!prev)
1207			reclaim->generation = iter->generation;
1208	}
1209
1210out_unlock:
1211	rcu_read_unlock();
1212out:
1213	if (prev && prev != root)
1214		css_put(&prev->css);
1215
1216	return memcg;
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225			   struct mem_cgroup *prev)
1226{
1227	if (!root)
1228		root = root_mem_cgroup;
1229	if (prev && prev != root)
1230		css_put(&prev->css);
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234					struct mem_cgroup *dead_memcg)
1235{
1236	struct mem_cgroup_reclaim_iter *iter;
1237	struct mem_cgroup_per_node *mz;
1238	int nid;
1239
1240	for_each_node(nid) {
1241		mz = mem_cgroup_nodeinfo(from, nid);
1242		iter = &mz->iter;
1243		cmpxchg(&iter->position, dead_memcg, NULL);
1244	}
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249	struct mem_cgroup *memcg = dead_memcg;
1250	struct mem_cgroup *last;
1251
1252	do {
1253		__invalidate_reclaim_iterators(memcg, dead_memcg);
1254		last = memcg;
1255	} while ((memcg = parent_mem_cgroup(memcg)));
1256
1257	/*
1258	 * When cgruop1 non-hierarchy mode is used,
1259	 * parent_mem_cgroup() does not walk all the way up to the
1260	 * cgroup root (root_mem_cgroup). So we have to handle
1261	 * dead_memcg from cgroup root separately.
1262	 */
1263	if (last != root_mem_cgroup)
1264		__invalidate_reclaim_iterators(root_mem_cgroup,
1265						dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282			  int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284	struct mem_cgroup *iter;
1285	int ret = 0;
1286
1287	BUG_ON(memcg == root_mem_cgroup);
1288
1289	for_each_mem_cgroup_tree(iter, memcg) {
1290		struct css_task_iter it;
1291		struct task_struct *task;
1292
1293		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294		while (!ret && (task = css_task_iter_next(&it)))
1295			ret = fn(task, arg);
1296		css_task_iter_end(&it);
1297		if (ret) {
1298			mem_cgroup_iter_break(memcg, iter);
1299			break;
1300		}
1301	}
1302	return ret;
1303}
1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305/**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
 
 
 
1312 */
1313struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314{
1315	struct mem_cgroup_per_node *mz;
1316	struct mem_cgroup *memcg;
1317	struct lruvec *lruvec;
1318
1319	if (mem_cgroup_disabled()) {
1320		lruvec = &pgdat->__lruvec;
1321		goto out;
1322	}
1323
1324	memcg = page->mem_cgroup;
1325	/*
1326	 * Swapcache readahead pages are added to the LRU - and
1327	 * possibly migrated - before they are charged.
1328	 */
1329	if (!memcg)
1330		memcg = root_mem_cgroup;
1331
1332	mz = mem_cgroup_page_nodeinfo(memcg, page);
1333	lruvec = &mz->lruvec;
1334out:
1335	/*
1336	 * Since a node can be onlined after the mem_cgroup was created,
1337	 * we have to be prepared to initialize lruvec->zone here;
1338	 * and if offlined then reonlined, we need to reinitialize it.
1339	 */
1340	if (unlikely(lruvec->pgdat != pgdat))
1341		lruvec->pgdat = pgdat;
1342	return lruvec;
1343}
1344
1345/**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357				int zid, int nr_pages)
1358{
1359	struct mem_cgroup_per_node *mz;
1360	unsigned long *lru_size;
1361	long size;
1362
1363	if (mem_cgroup_disabled())
1364		return;
1365
1366	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367	lru_size = &mz->lru_zone_size[zid][lru];
1368
1369	if (nr_pages < 0)
1370		*lru_size += nr_pages;
1371
1372	size = *lru_size;
1373	if (WARN_ONCE(size < 0,
1374		"%s(%p, %d, %d): lru_size %ld\n",
1375		__func__, lruvec, lru, nr_pages, size)) {
1376		VM_BUG_ON(1);
1377		*lru_size = 0;
1378	}
1379
1380	if (nr_pages > 0)
1381		*lru_size += nr_pages;
1382}
1383
1384/**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392{
1393	unsigned long margin = 0;
1394	unsigned long count;
1395	unsigned long limit;
1396
1397	count = page_counter_read(&memcg->memory);
1398	limit = READ_ONCE(memcg->memory.max);
1399	if (count < limit)
1400		margin = limit - count;
1401
1402	if (do_memsw_account()) {
1403		count = page_counter_read(&memcg->memsw);
1404		limit = READ_ONCE(memcg->memsw.max);
1405		if (count < limit)
1406			margin = min(margin, limit - count);
1407		else
1408			margin = 0;
1409	}
1410
1411	return margin;
1412}
1413
1414/*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
1420 */
1421static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422{
1423	struct mem_cgroup *from;
1424	struct mem_cgroup *to;
1425	bool ret = false;
1426	/*
1427	 * Unlike task_move routines, we access mc.to, mc.from not under
1428	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429	 */
1430	spin_lock(&mc.lock);
1431	from = mc.from;
1432	to = mc.to;
1433	if (!from)
1434		goto unlock;
1435
1436	ret = mem_cgroup_is_descendant(from, memcg) ||
1437		mem_cgroup_is_descendant(to, memcg);
1438unlock:
1439	spin_unlock(&mc.lock);
1440	return ret;
1441}
1442
1443static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444{
1445	if (mc.moving_task && current != mc.moving_task) {
1446		if (mem_cgroup_under_move(memcg)) {
1447			DEFINE_WAIT(wait);
1448			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449			/* moving charge context might have finished. */
1450			if (mc.moving_task)
1451				schedule();
1452			finish_wait(&mc.waitq, &wait);
1453			return true;
1454		}
1455	}
1456	return false;
1457}
1458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459static char *memory_stat_format(struct mem_cgroup *memcg)
1460{
1461	struct seq_buf s;
1462	int i;
1463
1464	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465	if (!s.buffer)
1466		return NULL;
1467
1468	/*
1469	 * Provide statistics on the state of the memory subsystem as
1470	 * well as cumulative event counters that show past behavior.
1471	 *
1472	 * This list is ordered following a combination of these gradients:
1473	 * 1) generic big picture -> specifics and details
1474	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475	 *
1476	 * Current memory state:
1477	 */
 
1478
1479	seq_buf_printf(&s, "anon %llu\n",
1480		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481		       PAGE_SIZE);
1482	seq_buf_printf(&s, "file %llu\n",
1483		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484		       PAGE_SIZE);
1485	seq_buf_printf(&s, "kernel_stack %llu\n",
1486		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487		       1024);
1488	seq_buf_printf(&s, "slab %llu\n",
1489		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491	seq_buf_printf(&s, "percpu %llu\n",
1492		       (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493	seq_buf_printf(&s, "sock %llu\n",
1494		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495		       PAGE_SIZE);
1496
1497	seq_buf_printf(&s, "shmem %llu\n",
1498		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1499		       PAGE_SIZE);
1500	seq_buf_printf(&s, "file_mapped %llu\n",
1501		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502		       PAGE_SIZE);
1503	seq_buf_printf(&s, "file_dirty %llu\n",
1504		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505		       PAGE_SIZE);
1506	seq_buf_printf(&s, "file_writeback %llu\n",
1507		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508		       PAGE_SIZE);
1509
1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511	seq_buf_printf(&s, "anon_thp %llu\n",
1512		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513		       HPAGE_PMD_SIZE);
1514#endif
1515
1516	for (i = 0; i < NR_LRU_LISTS; i++)
1517		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519			       PAGE_SIZE);
1520
1521	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526	/* Accumulated memory events */
1527
1528	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529		       memcg_events(memcg, PGFAULT));
1530	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531		       memcg_events(memcg, PGMAJFAULT));
1532
1533	seq_buf_printf(&s, "workingset_refault_anon %lu\n",
1534		       memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
1535	seq_buf_printf(&s, "workingset_refault_file %lu\n",
1536		       memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
1537	seq_buf_printf(&s, "workingset_activate_anon %lu\n",
1538		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
1539	seq_buf_printf(&s, "workingset_activate_file %lu\n",
1540		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541	seq_buf_printf(&s, "workingset_restore_anon %lu\n",
1542		       memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1543	seq_buf_printf(&s, "workingset_restore_file %lu\n",
1544		       memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1546		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1547
1548	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1549		       memcg_events(memcg, PGREFILL));
1550	seq_buf_printf(&s, "pgscan %lu\n",
1551		       memcg_events(memcg, PGSCAN_KSWAPD) +
1552		       memcg_events(memcg, PGSCAN_DIRECT));
1553	seq_buf_printf(&s, "pgsteal %lu\n",
1554		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1555		       memcg_events(memcg, PGSTEAL_DIRECT));
1556	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1557		       memcg_events(memcg, PGACTIVATE));
1558	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1559		       memcg_events(memcg, PGDEACTIVATE));
1560	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1561		       memcg_events(memcg, PGLAZYFREE));
1562	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1563		       memcg_events(memcg, PGLAZYFREED));
1564
1565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567		       memcg_events(memcg, THP_FAULT_ALLOC));
1568	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1570#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1571
1572	/* The above should easily fit into one page */
1573	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1574
1575	return s.buffer;
1576}
1577
1578#define K(x) ((x) << (PAGE_SHIFT-10))
1579/**
1580 * mem_cgroup_print_oom_context: Print OOM information relevant to
1581 * memory controller.
1582 * @memcg: The memory cgroup that went over limit
1583 * @p: Task that is going to be killed
1584 *
1585 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1586 * enabled
1587 */
1588void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589{
1590	rcu_read_lock();
1591
1592	if (memcg) {
1593		pr_cont(",oom_memcg=");
1594		pr_cont_cgroup_path(memcg->css.cgroup);
1595	} else
1596		pr_cont(",global_oom");
1597	if (p) {
1598		pr_cont(",task_memcg=");
1599		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1600	}
1601	rcu_read_unlock();
1602}
1603
1604/**
1605 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1606 * memory controller.
1607 * @memcg: The memory cgroup that went over limit
1608 */
1609void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1610{
1611	char *buf;
1612
1613	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1614		K((u64)page_counter_read(&memcg->memory)),
1615		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1617		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1618			K((u64)page_counter_read(&memcg->swap)),
1619			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620	else {
1621		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1622			K((u64)page_counter_read(&memcg->memsw)),
1623			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1624		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1625			K((u64)page_counter_read(&memcg->kmem)),
1626			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627	}
1628
1629	pr_info("Memory cgroup stats for ");
1630	pr_cont_cgroup_path(memcg->css.cgroup);
1631	pr_cont(":");
1632	buf = memory_stat_format(memcg);
1633	if (!buf)
1634		return;
1635	pr_info("%s", buf);
1636	kfree(buf);
1637}
1638
1639/*
1640 * Return the memory (and swap, if configured) limit for a memcg.
1641 */
1642unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1643{
1644	unsigned long max;
 
 
 
 
 
 
 
 
 
1645
1646	max = READ_ONCE(memcg->memory.max);
1647	if (mem_cgroup_swappiness(memcg)) {
1648		unsigned long memsw_max;
1649		unsigned long swap_max;
1650
1651		memsw_max = memcg->memsw.max;
1652		swap_max = READ_ONCE(memcg->swap.max);
1653		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1654		max = min(max + swap_max, memsw_max);
1655	}
1656	return max;
1657}
1658
1659unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1660{
1661	return page_counter_read(&memcg->memory);
1662}
1663
1664static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665				     int order)
1666{
1667	struct oom_control oc = {
1668		.zonelist = NULL,
1669		.nodemask = NULL,
1670		.memcg = memcg,
1671		.gfp_mask = gfp_mask,
1672		.order = order,
1673	};
1674	bool ret = true;
1675
1676	if (mutex_lock_killable(&oom_lock))
1677		return true;
1678
1679	if (mem_cgroup_margin(memcg) >= (1 << order))
1680		goto unlock;
1681
1682	/*
1683	 * A few threads which were not waiting at mutex_lock_killable() can
1684	 * fail to bail out. Therefore, check again after holding oom_lock.
1685	 */
1686	ret = should_force_charge() || out_of_memory(&oc);
1687
1688unlock:
1689	mutex_unlock(&oom_lock);
1690	return ret;
1691}
1692
1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694				   pg_data_t *pgdat,
1695				   gfp_t gfp_mask,
1696				   unsigned long *total_scanned)
1697{
1698	struct mem_cgroup *victim = NULL;
1699	int total = 0;
1700	int loop = 0;
1701	unsigned long excess;
1702	unsigned long nr_scanned;
1703	struct mem_cgroup_reclaim_cookie reclaim = {
1704		.pgdat = pgdat,
1705	};
1706
1707	excess = soft_limit_excess(root_memcg);
1708
1709	while (1) {
1710		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711		if (!victim) {
1712			loop++;
1713			if (loop >= 2) {
1714				/*
1715				 * If we have not been able to reclaim
1716				 * anything, it might because there are
1717				 * no reclaimable pages under this hierarchy
1718				 */
1719				if (!total)
1720					break;
1721				/*
1722				 * We want to do more targeted reclaim.
1723				 * excess >> 2 is not to excessive so as to
1724				 * reclaim too much, nor too less that we keep
1725				 * coming back to reclaim from this cgroup
1726				 */
1727				if (total >= (excess >> 2) ||
1728					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729					break;
1730			}
1731			continue;
1732		}
1733		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734					pgdat, &nr_scanned);
1735		*total_scanned += nr_scanned;
1736		if (!soft_limit_excess(root_memcg))
1737			break;
1738	}
1739	mem_cgroup_iter_break(root_memcg, victim);
1740	return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745	.name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757	struct mem_cgroup *iter, *failed = NULL;
1758
1759	spin_lock(&memcg_oom_lock);
1760
1761	for_each_mem_cgroup_tree(iter, memcg) {
1762		if (iter->oom_lock) {
1763			/*
1764			 * this subtree of our hierarchy is already locked
1765			 * so we cannot give a lock.
1766			 */
1767			failed = iter;
1768			mem_cgroup_iter_break(memcg, iter);
1769			break;
1770		} else
1771			iter->oom_lock = true;
1772	}
1773
1774	if (failed) {
1775		/*
1776		 * OK, we failed to lock the whole subtree so we have
1777		 * to clean up what we set up to the failing subtree
1778		 */
1779		for_each_mem_cgroup_tree(iter, memcg) {
1780			if (iter == failed) {
1781				mem_cgroup_iter_break(memcg, iter);
1782				break;
1783			}
1784			iter->oom_lock = false;
1785		}
1786	} else
1787		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789	spin_unlock(&memcg_oom_lock);
1790
1791	return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795{
1796	struct mem_cgroup *iter;
1797
1798	spin_lock(&memcg_oom_lock);
1799	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800	for_each_mem_cgroup_tree(iter, memcg)
1801		iter->oom_lock = false;
1802	spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807	struct mem_cgroup *iter;
1808
1809	spin_lock(&memcg_oom_lock);
1810	for_each_mem_cgroup_tree(iter, memcg)
1811		iter->under_oom++;
1812	spin_unlock(&memcg_oom_lock);
1813}
1814
1815static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816{
1817	struct mem_cgroup *iter;
1818
1819	/*
1820	 * When a new child is created while the hierarchy is under oom,
1821	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1822	 */
1823	spin_lock(&memcg_oom_lock);
1824	for_each_mem_cgroup_tree(iter, memcg)
1825		if (iter->under_oom > 0)
1826			iter->under_oom--;
1827	spin_unlock(&memcg_oom_lock);
1828}
1829
1830static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832struct oom_wait_info {
1833	struct mem_cgroup *memcg;
1834	wait_queue_entry_t	wait;
1835};
1836
1837static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1838	unsigned mode, int sync, void *arg)
1839{
1840	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841	struct mem_cgroup *oom_wait_memcg;
1842	struct oom_wait_info *oom_wait_info;
1843
1844	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845	oom_wait_memcg = oom_wait_info->memcg;
1846
1847	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1849		return 0;
1850	return autoremove_wake_function(wait, mode, sync, arg);
1851}
1852
1853static void memcg_oom_recover(struct mem_cgroup *memcg)
1854{
1855	/*
1856	 * For the following lockless ->under_oom test, the only required
1857	 * guarantee is that it must see the state asserted by an OOM when
1858	 * this function is called as a result of userland actions
1859	 * triggered by the notification of the OOM.  This is trivially
1860	 * achieved by invoking mem_cgroup_mark_under_oom() before
1861	 * triggering notification.
1862	 */
1863	if (memcg && memcg->under_oom)
1864		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865}
1866
1867enum oom_status {
1868	OOM_SUCCESS,
1869	OOM_FAILED,
1870	OOM_ASYNC,
1871	OOM_SKIPPED
1872};
1873
1874static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875{
1876	enum oom_status ret;
1877	bool locked;
1878
1879	if (order > PAGE_ALLOC_COSTLY_ORDER)
1880		return OOM_SKIPPED;
1881
1882	memcg_memory_event(memcg, MEMCG_OOM);
1883
1884	/*
1885	 * We are in the middle of the charge context here, so we
1886	 * don't want to block when potentially sitting on a callstack
1887	 * that holds all kinds of filesystem and mm locks.
1888	 *
1889	 * cgroup1 allows disabling the OOM killer and waiting for outside
1890	 * handling until the charge can succeed; remember the context and put
1891	 * the task to sleep at the end of the page fault when all locks are
1892	 * released.
1893	 *
1894	 * On the other hand, in-kernel OOM killer allows for an async victim
1895	 * memory reclaim (oom_reaper) and that means that we are not solely
1896	 * relying on the oom victim to make a forward progress and we can
1897	 * invoke the oom killer here.
1898	 *
1899	 * Please note that mem_cgroup_out_of_memory might fail to find a
1900	 * victim and then we have to bail out from the charge path.
1901	 */
1902	if (memcg->oom_kill_disable) {
1903		if (!current->in_user_fault)
1904			return OOM_SKIPPED;
1905		css_get(&memcg->css);
1906		current->memcg_in_oom = memcg;
1907		current->memcg_oom_gfp_mask = mask;
1908		current->memcg_oom_order = order;
1909
1910		return OOM_ASYNC;
1911	}
1912
1913	mem_cgroup_mark_under_oom(memcg);
1914
1915	locked = mem_cgroup_oom_trylock(memcg);
1916
1917	if (locked)
1918		mem_cgroup_oom_notify(memcg);
1919
1920	mem_cgroup_unmark_under_oom(memcg);
1921	if (mem_cgroup_out_of_memory(memcg, mask, order))
1922		ret = OOM_SUCCESS;
1923	else
1924		ret = OOM_FAILED;
1925
1926	if (locked)
1927		mem_cgroup_oom_unlock(memcg);
1928
1929	return ret;
1930}
1931
1932/**
1933 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934 * @handle: actually kill/wait or just clean up the OOM state
1935 *
1936 * This has to be called at the end of a page fault if the memcg OOM
1937 * handler was enabled.
1938 *
1939 * Memcg supports userspace OOM handling where failed allocations must
1940 * sleep on a waitqueue until the userspace task resolves the
1941 * situation.  Sleeping directly in the charge context with all kinds
1942 * of locks held is not a good idea, instead we remember an OOM state
1943 * in the task and mem_cgroup_oom_synchronize() has to be called at
1944 * the end of the page fault to complete the OOM handling.
1945 *
1946 * Returns %true if an ongoing memcg OOM situation was detected and
1947 * completed, %false otherwise.
1948 */
1949bool mem_cgroup_oom_synchronize(bool handle)
1950{
1951	struct mem_cgroup *memcg = current->memcg_in_oom;
1952	struct oom_wait_info owait;
1953	bool locked;
1954
1955	/* OOM is global, do not handle */
1956	if (!memcg)
1957		return false;
1958
1959	if (!handle)
1960		goto cleanup;
1961
1962	owait.memcg = memcg;
1963	owait.wait.flags = 0;
1964	owait.wait.func = memcg_oom_wake_function;
1965	owait.wait.private = current;
1966	INIT_LIST_HEAD(&owait.wait.entry);
1967
1968	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969	mem_cgroup_mark_under_oom(memcg);
1970
1971	locked = mem_cgroup_oom_trylock(memcg);
1972
1973	if (locked)
1974		mem_cgroup_oom_notify(memcg);
1975
1976	if (locked && !memcg->oom_kill_disable) {
1977		mem_cgroup_unmark_under_oom(memcg);
1978		finish_wait(&memcg_oom_waitq, &owait.wait);
1979		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1980					 current->memcg_oom_order);
1981	} else {
1982		schedule();
1983		mem_cgroup_unmark_under_oom(memcg);
1984		finish_wait(&memcg_oom_waitq, &owait.wait);
1985	}
1986
1987	if (locked) {
1988		mem_cgroup_oom_unlock(memcg);
1989		/*
1990		 * There is no guarantee that an OOM-lock contender
1991		 * sees the wakeups triggered by the OOM kill
1992		 * uncharges.  Wake any sleepers explicitely.
1993		 */
1994		memcg_oom_recover(memcg);
1995	}
1996cleanup:
1997	current->memcg_in_oom = NULL;
1998	css_put(&memcg->css);
1999	return true;
2000}
2001
2002/**
2003 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2004 * @victim: task to be killed by the OOM killer
2005 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2006 *
2007 * Returns a pointer to a memory cgroup, which has to be cleaned up
2008 * by killing all belonging OOM-killable tasks.
2009 *
2010 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2011 */
2012struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2013					    struct mem_cgroup *oom_domain)
2014{
2015	struct mem_cgroup *oom_group = NULL;
2016	struct mem_cgroup *memcg;
2017
2018	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2019		return NULL;
2020
2021	if (!oom_domain)
2022		oom_domain = root_mem_cgroup;
2023
2024	rcu_read_lock();
2025
2026	memcg = mem_cgroup_from_task(victim);
2027	if (memcg == root_mem_cgroup)
2028		goto out;
2029
2030	/*
2031	 * If the victim task has been asynchronously moved to a different
2032	 * memory cgroup, we might end up killing tasks outside oom_domain.
2033	 * In this case it's better to ignore memory.group.oom.
2034	 */
2035	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2036		goto out;
2037
2038	/*
2039	 * Traverse the memory cgroup hierarchy from the victim task's
2040	 * cgroup up to the OOMing cgroup (or root) to find the
2041	 * highest-level memory cgroup with oom.group set.
2042	 */
2043	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2044		if (memcg->oom_group)
2045			oom_group = memcg;
2046
2047		if (memcg == oom_domain)
2048			break;
2049	}
2050
2051	if (oom_group)
2052		css_get(&oom_group->css);
2053out:
2054	rcu_read_unlock();
2055
2056	return oom_group;
2057}
2058
2059void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2060{
2061	pr_info("Tasks in ");
2062	pr_cont_cgroup_path(memcg->css.cgroup);
2063	pr_cont(" are going to be killed due to memory.oom.group set\n");
2064}
2065
2066/**
2067 * lock_page_memcg - lock a page->mem_cgroup binding
2068 * @page: the page
2069 *
2070 * This function protects unlocked LRU pages from being moved to
2071 * another cgroup.
2072 *
2073 * It ensures lifetime of the returned memcg. Caller is responsible
2074 * for the lifetime of the page; __unlock_page_memcg() is available
2075 * when @page might get freed inside the locked section.
2076 */
2077struct mem_cgroup *lock_page_memcg(struct page *page)
2078{
2079	struct page *head = compound_head(page); /* rmap on tail pages */
2080	struct mem_cgroup *memcg;
2081	unsigned long flags;
2082
2083	/*
2084	 * The RCU lock is held throughout the transaction.  The fast
2085	 * path can get away without acquiring the memcg->move_lock
2086	 * because page moving starts with an RCU grace period.
2087	 *
2088	 * The RCU lock also protects the memcg from being freed when
2089	 * the page state that is going to change is the only thing
2090	 * preventing the page itself from being freed. E.g. writeback
2091	 * doesn't hold a page reference and relies on PG_writeback to
2092	 * keep off truncation, migration and so forth.
2093         */
2094	rcu_read_lock();
2095
2096	if (mem_cgroup_disabled())
2097		return NULL;
2098again:
2099	memcg = head->mem_cgroup;
2100	if (unlikely(!memcg))
2101		return NULL;
 
 
 
 
 
 
2102
2103	if (atomic_read(&memcg->moving_account) <= 0)
2104		return memcg;
2105
2106	spin_lock_irqsave(&memcg->move_lock, flags);
2107	if (memcg != head->mem_cgroup) {
2108		spin_unlock_irqrestore(&memcg->move_lock, flags);
2109		goto again;
2110	}
2111
2112	/*
2113	 * When charge migration first begins, we can have locked and
2114	 * unlocked page stat updates happening concurrently.  Track
2115	 * the task who has the lock for unlock_page_memcg().
 
2116	 */
2117	memcg->move_lock_task = current;
2118	memcg->move_lock_flags = flags;
2119
2120	return memcg;
2121}
2122EXPORT_SYMBOL(lock_page_memcg);
2123
2124/**
2125 * __unlock_page_memcg - unlock and unpin a memcg
2126 * @memcg: the memcg
2127 *
2128 * Unlock and unpin a memcg returned by lock_page_memcg().
2129 */
2130void __unlock_page_memcg(struct mem_cgroup *memcg)
2131{
2132	if (memcg && memcg->move_lock_task == current) {
2133		unsigned long flags = memcg->move_lock_flags;
2134
2135		memcg->move_lock_task = NULL;
2136		memcg->move_lock_flags = 0;
2137
2138		spin_unlock_irqrestore(&memcg->move_lock, flags);
2139	}
2140
2141	rcu_read_unlock();
2142}
2143
2144/**
2145 * unlock_page_memcg - unlock a page->mem_cgroup binding
2146 * @page: the page
2147 */
2148void unlock_page_memcg(struct page *page)
2149{
2150	struct page *head = compound_head(page);
2151
2152	__unlock_page_memcg(head->mem_cgroup);
2153}
2154EXPORT_SYMBOL(unlock_page_memcg);
2155
2156struct memcg_stock_pcp {
2157	struct mem_cgroup *cached; /* this never be root cgroup */
2158	unsigned int nr_pages;
2159
2160#ifdef CONFIG_MEMCG_KMEM
2161	struct obj_cgroup *cached_objcg;
 
2162	unsigned int nr_bytes;
 
 
 
 
2163#endif
 
 
 
 
 
 
 
2164
2165	struct work_struct work;
2166	unsigned long flags;
2167#define FLUSHING_CACHED_CHARGE	0
2168};
2169static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170static DEFINE_MUTEX(percpu_charge_mutex);
2171
2172#ifdef CONFIG_MEMCG_KMEM
2173static void drain_obj_stock(struct memcg_stock_pcp *stock);
2174static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175				     struct mem_cgroup *root_memcg);
2176
2177#else
2178static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2179{
2180}
2181static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2182				     struct mem_cgroup *root_memcg)
2183{
2184	return false;
2185}
2186#endif
2187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2188/**
2189 * consume_stock: Try to consume stocked charge on this cpu.
2190 * @memcg: memcg to consume from.
2191 * @nr_pages: how many pages to charge.
2192 *
2193 * The charges will only happen if @memcg matches the current cpu's memcg
2194 * stock, and at least @nr_pages are available in that stock.  Failure to
2195 * service an allocation will refill the stock.
2196 *
2197 * returns true if successful, false otherwise.
2198 */
2199static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200{
2201	struct memcg_stock_pcp *stock;
2202	unsigned long flags;
2203	bool ret = false;
2204
2205	if (nr_pages > MEMCG_CHARGE_BATCH)
2206		return ret;
2207
2208	local_irq_save(flags);
2209
2210	stock = this_cpu_ptr(&memcg_stock);
2211	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212		stock->nr_pages -= nr_pages;
2213		ret = true;
2214	}
2215
2216	local_irq_restore(flags);
2217
2218	return ret;
2219}
2220
2221/*
2222 * Returns stocks cached in percpu and reset cached information.
2223 */
2224static void drain_stock(struct memcg_stock_pcp *stock)
2225{
2226	struct mem_cgroup *old = stock->cached;
2227
2228	if (!old)
2229		return;
2230
2231	if (stock->nr_pages) {
2232		page_counter_uncharge(&old->memory, stock->nr_pages);
2233		if (do_memsw_account())
2234			page_counter_uncharge(&old->memsw, stock->nr_pages);
2235		stock->nr_pages = 0;
2236	}
2237
2238	css_put(&old->css);
2239	stock->cached = NULL;
2240}
2241
2242static void drain_local_stock(struct work_struct *dummy)
2243{
2244	struct memcg_stock_pcp *stock;
2245	unsigned long flags;
2246
2247	/*
2248	 * The only protection from memory hotplug vs. drain_stock races is
2249	 * that we always operate on local CPU stock here with IRQ disabled
2250	 */
2251	local_irq_save(flags);
2252
2253	stock = this_cpu_ptr(&memcg_stock);
2254	drain_obj_stock(stock);
 
 
2255	drain_stock(stock);
2256	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257
2258	local_irq_restore(flags);
2259}
2260
2261/*
2262 * Cache charges(val) to local per_cpu area.
2263 * This will be consumed by consume_stock() function, later.
2264 */
2265static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266{
2267	struct memcg_stock_pcp *stock;
2268	unsigned long flags;
2269
2270	local_irq_save(flags);
2271
2272	stock = this_cpu_ptr(&memcg_stock);
2273	if (stock->cached != memcg) { /* reset if necessary */
2274		drain_stock(stock);
2275		css_get(&memcg->css);
2276		stock->cached = memcg;
2277	}
2278	stock->nr_pages += nr_pages;
2279
2280	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281		drain_stock(stock);
2282
2283	local_irq_restore(flags);
2284}
2285
2286/*
2287 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288 * of the hierarchy under it.
2289 */
2290static void drain_all_stock(struct mem_cgroup *root_memcg)
2291{
2292	int cpu, curcpu;
2293
2294	/* If someone's already draining, avoid adding running more workers. */
2295	if (!mutex_trylock(&percpu_charge_mutex))
2296		return;
2297	/*
2298	 * Notify other cpus that system-wide "drain" is running
2299	 * We do not care about races with the cpu hotplug because cpu down
2300	 * as well as workers from this path always operate on the local
2301	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2302	 */
2303	curcpu = get_cpu();
2304	for_each_online_cpu(cpu) {
2305		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306		struct mem_cgroup *memcg;
2307		bool flush = false;
2308
2309		rcu_read_lock();
2310		memcg = stock->cached;
2311		if (memcg && stock->nr_pages &&
2312		    mem_cgroup_is_descendant(memcg, root_memcg))
2313			flush = true;
2314		if (obj_stock_flush_required(stock, root_memcg))
2315			flush = true;
2316		rcu_read_unlock();
2317
2318		if (flush &&
2319		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320			if (cpu == curcpu)
2321				drain_local_stock(&stock->work);
2322			else
2323				schedule_work_on(cpu, &stock->work);
2324		}
2325	}
2326	put_cpu();
2327	mutex_unlock(&percpu_charge_mutex);
2328}
2329
2330static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331{
2332	struct memcg_stock_pcp *stock;
2333	struct mem_cgroup *memcg, *mi;
2334
2335	stock = &per_cpu(memcg_stock, cpu);
2336	drain_stock(stock);
2337
2338	for_each_mem_cgroup(memcg) {
2339		int i;
2340
2341		for (i = 0; i < MEMCG_NR_STAT; i++) {
2342			int nid;
2343			long x;
2344
2345			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346			if (x)
2347				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2348					atomic_long_add(x, &memcg->vmstats[i]);
2349
2350			if (i >= NR_VM_NODE_STAT_ITEMS)
2351				continue;
 
 
 
 
2352
2353			for_each_node(nid) {
2354				struct mem_cgroup_per_node *pn;
 
 
2355
2356				pn = mem_cgroup_nodeinfo(memcg, nid);
2357				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358				if (x)
2359					do {
2360						atomic_long_add(x, &pn->lruvec_stat[i]);
2361					} while ((pn = parent_nodeinfo(pn, nid)));
2362			}
2363		}
2364
2365		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366			long x;
2367
2368			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369			if (x)
2370				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2371					atomic_long_add(x, &memcg->vmevents[i]);
2372		}
2373	}
2374
2375	return 0;
2376}
2377
2378static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379				  unsigned int nr_pages,
2380				  gfp_t gfp_mask)
2381{
2382	unsigned long nr_reclaimed = 0;
2383
2384	do {
2385		unsigned long pflags;
2386
2387		if (page_counter_read(&memcg->memory) <=
2388		    READ_ONCE(memcg->memory.high))
2389			continue;
2390
2391		memcg_memory_event(memcg, MEMCG_HIGH);
2392
2393		psi_memstall_enter(&pflags);
2394		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395							     gfp_mask, true);
2396		psi_memstall_leave(&pflags);
2397	} while ((memcg = parent_mem_cgroup(memcg)) &&
2398		 !mem_cgroup_is_root(memcg));
2399
2400	return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405	struct mem_cgroup *memcg;
2406
2407	memcg = container_of(work, struct mem_cgroup, high_work);
2408	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 *   overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 *   to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 *  +-------+------------------------+
2436 *  | usage | time to allocate in ms |
2437 *  +-------+------------------------+
2438 *  | 100M  |                      0 |
2439 *  | 101M  |                      6 |
2440 *  | 102M  |                     25 |
2441 *  | 103M  |                     57 |
2442 *  | 104M  |                    102 |
2443 *  | 105M  |                    159 |
2444 *  | 106M  |                    230 |
2445 *  | 107M  |                    313 |
2446 *  | 108M  |                    409 |
2447 *  | 109M  |                    518 |
2448 *  | 110M  |                    639 |
2449 *  | 111M  |                    774 |
2450 *  | 112M  |                    921 |
2451 *  | 113M  |                   1081 |
2452 *  | 114M  |                   1254 |
2453 *  | 115M  |                   1439 |
2454 *  | 116M  |                   1638 |
2455 *  | 117M  |                   1849 |
2456 *  | 118M  |                   2000 |
2457 *  | 119M  |                   2000 |
2458 *  | 120M  |                   2000 |
2459 *  +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466	u64 overage;
2467
2468	if (usage <= high)
2469		return 0;
2470
2471	/*
2472	 * Prevent division by 0 in overage calculation by acting as if
2473	 * it was a threshold of 1 page
2474	 */
2475	high = max(high, 1UL);
2476
2477	overage = usage - high;
2478	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479	return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484	u64 overage, max_overage = 0;
2485
2486	do {
2487		overage = calculate_overage(page_counter_read(&memcg->memory),
2488					    READ_ONCE(memcg->memory.high));
2489		max_overage = max(overage, max_overage);
2490	} while ((memcg = parent_mem_cgroup(memcg)) &&
2491		 !mem_cgroup_is_root(memcg));
2492
2493	return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498	u64 overage, max_overage = 0;
2499
2500	do {
2501		overage = calculate_overage(page_counter_read(&memcg->swap),
2502					    READ_ONCE(memcg->swap.high));
2503		if (overage)
2504			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505		max_overage = max(overage, max_overage);
2506	} while ((memcg = parent_mem_cgroup(memcg)) &&
2507		 !mem_cgroup_is_root(memcg));
2508
2509	return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517					  unsigned int nr_pages,
2518					  u64 max_overage)
2519{
2520	unsigned long penalty_jiffies;
2521
2522	if (!max_overage)
2523		return 0;
2524
2525	/*
2526	 * We use overage compared to memory.high to calculate the number of
2527	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528	 * fairly lenient on small overages, and increasingly harsh when the
2529	 * memcg in question makes it clear that it has no intention of stopping
2530	 * its crazy behaviour, so we exponentially increase the delay based on
2531	 * overage amount.
2532	 */
2533	penalty_jiffies = max_overage * max_overage * HZ;
2534	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537	/*
2538	 * Factor in the task's own contribution to the overage, such that four
2539	 * N-sized allocations are throttled approximately the same as one
2540	 * 4N-sized allocation.
2541	 *
2542	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543	 * larger the current charge patch is than that.
2544	 */
2545	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554	unsigned long penalty_jiffies;
2555	unsigned long pflags;
2556	unsigned long nr_reclaimed;
2557	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558	int nr_retries = MAX_RECLAIM_RETRIES;
2559	struct mem_cgroup *memcg;
2560	bool in_retry = false;
2561
2562	if (likely(!nr_pages))
2563		return;
2564
2565	memcg = get_mem_cgroup_from_mm(current->mm);
2566	current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569	/*
2570	 * The allocating task should reclaim at least the batch size, but for
2571	 * subsequent retries we only want to do what's necessary to prevent oom
2572	 * or breaching resource isolation.
2573	 *
2574	 * This is distinct from memory.max or page allocator behaviour because
2575	 * memory.high is currently batched, whereas memory.max and the page
2576	 * allocator run every time an allocation is made.
2577	 */
2578	nr_reclaimed = reclaim_high(memcg,
2579				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580				    GFP_KERNEL);
2581
2582	/*
2583	 * memory.high is breached and reclaim is unable to keep up. Throttle
2584	 * allocators proactively to slow down excessive growth.
2585	 */
2586	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587					       mem_find_max_overage(memcg));
2588
2589	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590						swap_find_max_overage(memcg));
2591
2592	/*
2593	 * Clamp the max delay per usermode return so as to still keep the
2594	 * application moving forwards and also permit diagnostics, albeit
2595	 * extremely slowly.
2596	 */
2597	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599	/*
2600	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601	 * that it's not even worth doing, in an attempt to be nice to those who
2602	 * go only a small amount over their memory.high value and maybe haven't
2603	 * been aggressively reclaimed enough yet.
2604	 */
2605	if (penalty_jiffies <= HZ / 100)
2606		goto out;
2607
2608	/*
2609	 * If reclaim is making forward progress but we're still over
2610	 * memory.high, we want to encourage that rather than doing allocator
2611	 * throttling.
2612	 */
2613	if (nr_reclaimed || nr_retries--) {
2614		in_retry = true;
2615		goto retry_reclaim;
2616	}
2617
2618	/*
2619	 * If we exit early, we're guaranteed to die (since
2620	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621	 * need to account for any ill-begotten jiffies to pay them off later.
2622	 */
2623	psi_memstall_enter(&pflags);
2624	schedule_timeout_killable(penalty_jiffies);
2625	psi_memstall_leave(&pflags);
2626
2627out:
2628	css_put(&memcg->css);
2629}
2630
2631static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632		      unsigned int nr_pages)
2633{
2634	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635	int nr_retries = MAX_RECLAIM_RETRIES;
2636	struct mem_cgroup *mem_over_limit;
2637	struct page_counter *counter;
2638	enum oom_status oom_status;
2639	unsigned long nr_reclaimed;
2640	bool may_swap = true;
2641	bool drained = false;
2642	unsigned long pflags;
2643
2644	if (mem_cgroup_is_root(memcg))
2645		return 0;
2646retry:
2647	if (consume_stock(memcg, nr_pages))
2648		return 0;
2649
2650	if (!do_memsw_account() ||
2651	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653			goto done_restock;
2654		if (do_memsw_account())
2655			page_counter_uncharge(&memcg->memsw, batch);
2656		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657	} else {
2658		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659		may_swap = false;
2660	}
2661
2662	if (batch > nr_pages) {
2663		batch = nr_pages;
2664		goto retry;
2665	}
2666
2667	/*
2668	 * Memcg doesn't have a dedicated reserve for atomic
2669	 * allocations. But like the global atomic pool, we need to
2670	 * put the burden of reclaim on regular allocation requests
2671	 * and let these go through as privileged allocations.
2672	 */
2673	if (gfp_mask & __GFP_ATOMIC)
2674		goto force;
2675
2676	/*
2677	 * Unlike in global OOM situations, memcg is not in a physical
2678	 * memory shortage.  Allow dying and OOM-killed tasks to
2679	 * bypass the last charges so that they can exit quickly and
2680	 * free their memory.
2681	 */
2682	if (unlikely(should_force_charge()))
2683		goto force;
2684
2685	/*
2686	 * Prevent unbounded recursion when reclaim operations need to
2687	 * allocate memory. This might exceed the limits temporarily,
2688	 * but we prefer facilitating memory reclaim and getting back
2689	 * under the limit over triggering OOM kills in these cases.
2690	 */
2691	if (unlikely(current->flags & PF_MEMALLOC))
2692		goto force;
2693
2694	if (unlikely(task_in_memcg_oom(current)))
2695		goto nomem;
2696
2697	if (!gfpflags_allow_blocking(gfp_mask))
2698		goto nomem;
2699
2700	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701
2702	psi_memstall_enter(&pflags);
2703	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704						    gfp_mask, may_swap);
2705	psi_memstall_leave(&pflags);
2706
2707	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708		goto retry;
2709
2710	if (!drained) {
2711		drain_all_stock(mem_over_limit);
2712		drained = true;
2713		goto retry;
2714	}
2715
2716	if (gfp_mask & __GFP_NORETRY)
2717		goto nomem;
2718	/*
2719	 * Even though the limit is exceeded at this point, reclaim
2720	 * may have been able to free some pages.  Retry the charge
2721	 * before killing the task.
2722	 *
2723	 * Only for regular pages, though: huge pages are rather
2724	 * unlikely to succeed so close to the limit, and we fall back
2725	 * to regular pages anyway in case of failure.
2726	 */
2727	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728		goto retry;
2729	/*
2730	 * At task move, charge accounts can be doubly counted. So, it's
2731	 * better to wait until the end of task_move if something is going on.
2732	 */
2733	if (mem_cgroup_wait_acct_move(mem_over_limit))
2734		goto retry;
2735
2736	if (nr_retries--)
2737		goto retry;
2738
2739	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740		goto nomem;
2741
2742	if (gfp_mask & __GFP_NOFAIL)
2743		goto force;
2744
2745	if (fatal_signal_pending(current))
2746		goto force;
2747
2748	/*
2749	 * keep retrying as long as the memcg oom killer is able to make
2750	 * a forward progress or bypass the charge if the oom killer
2751	 * couldn't make any progress.
2752	 */
2753	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754		       get_order(nr_pages * PAGE_SIZE));
2755	switch (oom_status) {
2756	case OOM_SUCCESS:
2757		nr_retries = MAX_RECLAIM_RETRIES;
2758		goto retry;
2759	case OOM_FAILED:
2760		goto force;
2761	default:
2762		goto nomem;
2763	}
2764nomem:
2765	if (!(gfp_mask & __GFP_NOFAIL))
2766		return -ENOMEM;
2767force:
2768	/*
2769	 * The allocation either can't fail or will lead to more memory
2770	 * being freed very soon.  Allow memory usage go over the limit
2771	 * temporarily by force charging it.
2772	 */
2773	page_counter_charge(&memcg->memory, nr_pages);
2774	if (do_memsw_account())
2775		page_counter_charge(&memcg->memsw, nr_pages);
2776
2777	return 0;
2778
2779done_restock:
2780	if (batch > nr_pages)
2781		refill_stock(memcg, batch - nr_pages);
2782
2783	/*
2784	 * If the hierarchy is above the normal consumption range, schedule
2785	 * reclaim on returning to userland.  We can perform reclaim here
2786	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2788	 * not recorded as it most likely matches current's and won't
2789	 * change in the meantime.  As high limit is checked again before
2790	 * reclaim, the cost of mismatch is negligible.
2791	 */
2792	do {
2793		bool mem_high, swap_high;
2794
2795		mem_high = page_counter_read(&memcg->memory) >
2796			READ_ONCE(memcg->memory.high);
2797		swap_high = page_counter_read(&memcg->swap) >
2798			READ_ONCE(memcg->swap.high);
2799
2800		/* Don't bother a random interrupted task */
2801		if (in_interrupt()) {
2802			if (mem_high) {
2803				schedule_work(&memcg->high_work);
2804				break;
2805			}
2806			continue;
2807		}
2808
2809		if (mem_high || swap_high) {
2810			/*
2811			 * The allocating tasks in this cgroup will need to do
2812			 * reclaim or be throttled to prevent further growth
2813			 * of the memory or swap footprints.
2814			 *
2815			 * Target some best-effort fairness between the tasks,
2816			 * and distribute reclaim work and delay penalties
2817			 * based on how much each task is actually allocating.
2818			 */
2819			current->memcg_nr_pages_over_high += batch;
2820			set_notify_resume(current);
2821			break;
2822		}
2823	} while ((memcg = parent_mem_cgroup(memcg)));
2824
2825	return 0;
2826}
2827
 
 
 
 
 
 
 
 
 
2828#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2830{
2831	if (mem_cgroup_is_root(memcg))
2832		return;
2833
2834	page_counter_uncharge(&memcg->memory, nr_pages);
2835	if (do_memsw_account())
2836		page_counter_uncharge(&memcg->memsw, nr_pages);
2837}
2838#endif
2839
2840static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841{
2842	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2843	/*
2844	 * Any of the following ensures page->mem_cgroup stability:
2845	 *
2846	 * - the page lock
2847	 * - LRU isolation
2848	 * - lock_page_memcg()
2849	 * - exclusive reference
2850	 */
2851	page->mem_cgroup = memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2852}
2853
2854#ifdef CONFIG_MEMCG_KMEM
 
 
 
 
 
 
 
2855int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2856				 gfp_t gfp)
2857{
2858	unsigned int objects = objs_per_slab_page(s, page);
 
2859	void *vec;
2860
 
2861	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2862			   page_to_nid(page));
2863	if (!vec)
2864		return -ENOMEM;
2865
2866	if (cmpxchg(&page->obj_cgroups, NULL,
2867		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
 
 
 
 
 
 
 
 
 
 
 
 
2868		kfree(vec);
2869	else
2870		kmemleak_not_leak(vec);
2871
 
2872	return 0;
2873}
2874
2875/*
2876 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2877 *
 
 
 
 
 
 
2878 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2879 * cgroup_mutex, etc.
2880 */
2881struct mem_cgroup *mem_cgroup_from_obj(void *p)
2882{
2883	struct page *page;
2884
2885	if (mem_cgroup_disabled())
2886		return NULL;
2887
2888	page = virt_to_head_page(p);
2889
2890	/*
2891	 * Slab objects are accounted individually, not per-page.
2892	 * Memcg membership data for each individual object is saved in
2893	 * the page->obj_cgroups.
2894	 */
2895	if (page_has_obj_cgroups(page)) {
2896		struct obj_cgroup *objcg;
2897		unsigned int off;
2898
2899		off = obj_to_index(page->slab_cache, page, p);
2900		objcg = page_obj_cgroups(page)[off];
2901		if (objcg)
2902			return obj_cgroup_memcg(objcg);
2903
2904		return NULL;
2905	}
2906
2907	/* All other pages use page->mem_cgroup */
2908	return page->mem_cgroup;
 
 
 
 
 
 
2909}
2910
2911__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912{
2913	struct obj_cgroup *objcg = NULL;
2914	struct mem_cgroup *memcg;
2915
2916	if (unlikely(!current->mm && !current->active_memcg))
2917		return NULL;
2918
2919	rcu_read_lock();
2920	if (unlikely(current->active_memcg))
2921		memcg = rcu_dereference(current->active_memcg);
2922	else
2923		memcg = mem_cgroup_from_task(current);
2924
2925	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2926		objcg = rcu_dereference(memcg->objcg);
2927		if (objcg && obj_cgroup_tryget(objcg))
2928			break;
 
2929	}
2930	rcu_read_unlock();
2931
2932	return objcg;
2933}
2934
2935static int memcg_alloc_cache_id(void)
2936{
2937	int id, size;
2938	int err;
2939
2940	id = ida_simple_get(&memcg_cache_ida,
2941			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2942	if (id < 0)
2943		return id;
2944
2945	if (id < memcg_nr_cache_ids)
2946		return id;
2947
2948	/*
2949	 * There's no space for the new id in memcg_caches arrays,
2950	 * so we have to grow them.
2951	 */
2952	down_write(&memcg_cache_ids_sem);
2953
2954	size = 2 * (id + 1);
2955	if (size < MEMCG_CACHES_MIN_SIZE)
2956		size = MEMCG_CACHES_MIN_SIZE;
2957	else if (size > MEMCG_CACHES_MAX_SIZE)
2958		size = MEMCG_CACHES_MAX_SIZE;
2959
2960	err = memcg_update_all_list_lrus(size);
2961	if (!err)
2962		memcg_nr_cache_ids = size;
2963
2964	up_write(&memcg_cache_ids_sem);
2965
2966	if (err) {
2967		ida_simple_remove(&memcg_cache_ida, id);
2968		return err;
2969	}
2970	return id;
2971}
2972
2973static void memcg_free_cache_id(int id)
2974{
2975	ida_simple_remove(&memcg_cache_ida, id);
2976}
2977
2978/**
2979 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2980 * @memcg: memory cgroup to charge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981 * @gfp: reclaim mode
2982 * @nr_pages: number of pages to charge
2983 *
2984 * Returns 0 on success, an error code on failure.
2985 */
2986int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2987			unsigned int nr_pages)
2988{
2989	struct page_counter *counter;
 
2990	int ret;
2991
2992	ret = try_charge(memcg, gfp, nr_pages);
 
 
2993	if (ret)
2994		return ret;
2995
2996	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2997	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2998
2999		/*
3000		 * Enforce __GFP_NOFAIL allocation because callers are not
3001		 * prepared to see failures and likely do not have any failure
3002		 * handling code.
3003		 */
3004		if (gfp & __GFP_NOFAIL) {
3005			page_counter_charge(&memcg->kmem, nr_pages);
3006			return 0;
3007		}
3008		cancel_charge(memcg, nr_pages);
3009		return -ENOMEM;
3010	}
3011	return 0;
3012}
3013
3014/**
3015 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3016 * @memcg: memcg to uncharge
3017 * @nr_pages: number of pages to uncharge
3018 */
3019void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3020{
3021	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022		page_counter_uncharge(&memcg->kmem, nr_pages);
3023
3024	page_counter_uncharge(&memcg->memory, nr_pages);
3025	if (do_memsw_account())
3026		page_counter_uncharge(&memcg->memsw, nr_pages);
3027}
3028
3029/**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038{
3039	struct mem_cgroup *memcg;
3040	int ret = 0;
3041
3042	if (memcg_kmem_bypass())
3043		return 0;
3044
3045	memcg = get_mem_cgroup_from_current();
3046	if (!mem_cgroup_is_root(memcg)) {
3047		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3048		if (!ret) {
3049			page->mem_cgroup = memcg;
3050			__SetPageKmemcg(page);
3051			return 0;
3052		}
 
3053	}
3054	css_put(&memcg->css);
3055	return ret;
3056}
3057
3058/**
3059 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 * @page: page to uncharge
3061 * @order: allocation order
3062 */
3063void __memcg_kmem_uncharge_page(struct page *page, int order)
3064{
3065	struct mem_cgroup *memcg = page->mem_cgroup;
3066	unsigned int nr_pages = 1 << order;
3067
3068	if (!memcg)
3069		return;
3070
3071	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3072	__memcg_kmem_uncharge(memcg, nr_pages);
3073	page->mem_cgroup = NULL;
3074	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075
3076	/* slab pages do not have PageKmemcg flag set */
3077	if (PageKmemcg(page))
3078		__ClearPageKmemcg(page);
3079}
3080
3081static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3082{
3083	struct memcg_stock_pcp *stock;
3084	unsigned long flags;
 
3085	bool ret = false;
3086
3087	local_irq_save(flags);
3088
3089	stock = this_cpu_ptr(&memcg_stock);
3090	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3091		stock->nr_bytes -= nr_bytes;
3092		ret = true;
3093	}
3094
3095	local_irq_restore(flags);
3096
3097	return ret;
3098}
3099
3100static void drain_obj_stock(struct memcg_stock_pcp *stock)
3101{
3102	struct obj_cgroup *old = stock->cached_objcg;
3103
3104	if (!old)
3105		return;
3106
3107	if (stock->nr_bytes) {
3108		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3109		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3110
3111		if (nr_pages) {
3112			rcu_read_lock();
3113			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3114			rcu_read_unlock();
3115		}
3116
3117		/*
3118		 * The leftover is flushed to the centralized per-memcg value.
3119		 * On the next attempt to refill obj stock it will be moved
3120		 * to a per-cpu stock (probably, on an other CPU), see
3121		 * refill_obj_stock().
3122		 *
3123		 * How often it's flushed is a trade-off between the memory
3124		 * limit enforcement accuracy and potential CPU contention,
3125		 * so it might be changed in the future.
3126		 */
3127		atomic_add(nr_bytes, &old->nr_charged_bytes);
3128		stock->nr_bytes = 0;
3129	}
3130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3131	obj_cgroup_put(old);
3132	stock->cached_objcg = NULL;
3133}
3134
3135static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3136				     struct mem_cgroup *root_memcg)
3137{
3138	struct mem_cgroup *memcg;
3139
3140	if (stock->cached_objcg) {
3141		memcg = obj_cgroup_memcg(stock->cached_objcg);
 
 
 
 
 
3142		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3143			return true;
3144	}
3145
3146	return false;
3147}
3148
3149static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
 
3150{
3151	struct memcg_stock_pcp *stock;
3152	unsigned long flags;
 
 
3153
3154	local_irq_save(flags);
3155
3156	stock = this_cpu_ptr(&memcg_stock);
3157	if (stock->cached_objcg != objcg) { /* reset if necessary */
3158		drain_obj_stock(stock);
3159		obj_cgroup_get(objcg);
3160		stock->cached_objcg = objcg;
3161		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
 
 
3162	}
3163	stock->nr_bytes += nr_bytes;
3164
3165	if (stock->nr_bytes > PAGE_SIZE)
3166		drain_obj_stock(stock);
 
 
 
 
3167
3168	local_irq_restore(flags);
 
3169}
3170
3171int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3172{
3173	struct mem_cgroup *memcg;
3174	unsigned int nr_pages, nr_bytes;
3175	int ret;
3176
3177	if (consume_obj_stock(objcg, size))
3178		return 0;
3179
3180	/*
3181	 * In theory, memcg->nr_charged_bytes can have enough
3182	 * pre-charged bytes to satisfy the allocation. However,
3183	 * flushing memcg->nr_charged_bytes requires two atomic
3184	 * operations, and memcg->nr_charged_bytes can't be big,
3185	 * so it's better to ignore it and try grab some new pages.
3186	 * memcg->nr_charged_bytes will be flushed in
3187	 * refill_obj_stock(), called from this function or
3188	 * independently later.
 
 
 
 
 
 
 
 
 
 
 
 
 
3189	 */
3190	rcu_read_lock();
3191	memcg = obj_cgroup_memcg(objcg);
3192	css_get(&memcg->css);
3193	rcu_read_unlock();
3194
3195	nr_pages = size >> PAGE_SHIFT;
3196	nr_bytes = size & (PAGE_SIZE - 1);
3197
3198	if (nr_bytes)
3199		nr_pages += 1;
3200
3201	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3202	if (!ret && nr_bytes)
3203		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3204
3205	css_put(&memcg->css);
3206	return ret;
3207}
3208
3209void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3210{
3211	refill_obj_stock(objcg, size);
3212}
3213
3214#endif /* CONFIG_MEMCG_KMEM */
3215
3216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3217
3218/*
3219 * Because tail pages are not marked as "used", set it. We're under
3220 * pgdat->lru_lock and migration entries setup in all page mappings.
3221 */
3222void mem_cgroup_split_huge_fixup(struct page *head)
3223{
3224	struct mem_cgroup *memcg = head->mem_cgroup;
3225	int i;
3226
3227	if (mem_cgroup_disabled())
3228		return;
3229
3230	for (i = 1; i < HPAGE_PMD_NR; i++) {
3231		css_get(&memcg->css);
3232		head[i].mem_cgroup = memcg;
3233	}
 
 
 
3234}
3235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3236
3237#ifdef CONFIG_MEMCG_SWAP
3238/**
3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240 * @entry: swap entry to be moved
3241 * @from:  mem_cgroup which the entry is moved from
3242 * @to:  mem_cgroup which the entry is moved to
3243 *
3244 * It succeeds only when the swap_cgroup's record for this entry is the same
3245 * as the mem_cgroup's id of @from.
3246 *
3247 * Returns 0 on success, -EINVAL on failure.
3248 *
3249 * The caller must have charged to @to, IOW, called page_counter_charge() about
3250 * both res and memsw, and called css_get().
3251 */
3252static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253				struct mem_cgroup *from, struct mem_cgroup *to)
3254{
3255	unsigned short old_id, new_id;
3256
3257	old_id = mem_cgroup_id(from);
3258	new_id = mem_cgroup_id(to);
3259
3260	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261		mod_memcg_state(from, MEMCG_SWAP, -1);
3262		mod_memcg_state(to, MEMCG_SWAP, 1);
3263		return 0;
3264	}
3265	return -EINVAL;
3266}
3267#else
3268static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3269				struct mem_cgroup *from, struct mem_cgroup *to)
3270{
3271	return -EINVAL;
3272}
3273#endif
3274
3275static DEFINE_MUTEX(memcg_max_mutex);
3276
3277static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3278				 unsigned long max, bool memsw)
3279{
3280	bool enlarge = false;
3281	bool drained = false;
3282	int ret;
3283	bool limits_invariant;
3284	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3285
3286	do {
3287		if (signal_pending(current)) {
3288			ret = -EINTR;
3289			break;
3290		}
3291
3292		mutex_lock(&memcg_max_mutex);
3293		/*
3294		 * Make sure that the new limit (memsw or memory limit) doesn't
3295		 * break our basic invariant rule memory.max <= memsw.max.
3296		 */
3297		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3298					   max <= memcg->memsw.max;
3299		if (!limits_invariant) {
3300			mutex_unlock(&memcg_max_mutex);
3301			ret = -EINVAL;
3302			break;
3303		}
3304		if (max > counter->max)
3305			enlarge = true;
3306		ret = page_counter_set_max(counter, max);
3307		mutex_unlock(&memcg_max_mutex);
3308
3309		if (!ret)
3310			break;
3311
3312		if (!drained) {
3313			drain_all_stock(memcg);
3314			drained = true;
3315			continue;
3316		}
3317
3318		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3319					GFP_KERNEL, !memsw)) {
3320			ret = -EBUSY;
3321			break;
3322		}
3323	} while (true);
3324
3325	if (!ret && enlarge)
3326		memcg_oom_recover(memcg);
3327
3328	return ret;
3329}
3330
3331unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3332					    gfp_t gfp_mask,
3333					    unsigned long *total_scanned)
3334{
3335	unsigned long nr_reclaimed = 0;
3336	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3337	unsigned long reclaimed;
3338	int loop = 0;
3339	struct mem_cgroup_tree_per_node *mctz;
3340	unsigned long excess;
3341	unsigned long nr_scanned;
3342
3343	if (order > 0)
3344		return 0;
3345
3346	mctz = soft_limit_tree_node(pgdat->node_id);
3347
3348	/*
3349	 * Do not even bother to check the largest node if the root
3350	 * is empty. Do it lockless to prevent lock bouncing. Races
3351	 * are acceptable as soft limit is best effort anyway.
3352	 */
3353	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3354		return 0;
3355
3356	/*
3357	 * This loop can run a while, specially if mem_cgroup's continuously
3358	 * keep exceeding their soft limit and putting the system under
3359	 * pressure
3360	 */
3361	do {
3362		if (next_mz)
3363			mz = next_mz;
3364		else
3365			mz = mem_cgroup_largest_soft_limit_node(mctz);
3366		if (!mz)
3367			break;
3368
3369		nr_scanned = 0;
3370		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3371						    gfp_mask, &nr_scanned);
3372		nr_reclaimed += reclaimed;
3373		*total_scanned += nr_scanned;
3374		spin_lock_irq(&mctz->lock);
3375		__mem_cgroup_remove_exceeded(mz, mctz);
3376
3377		/*
3378		 * If we failed to reclaim anything from this memory cgroup
3379		 * it is time to move on to the next cgroup
3380		 */
3381		next_mz = NULL;
3382		if (!reclaimed)
3383			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3384
3385		excess = soft_limit_excess(mz->memcg);
3386		/*
3387		 * One school of thought says that we should not add
3388		 * back the node to the tree if reclaim returns 0.
3389		 * But our reclaim could return 0, simply because due
3390		 * to priority we are exposing a smaller subset of
3391		 * memory to reclaim from. Consider this as a longer
3392		 * term TODO.
3393		 */
3394		/* If excess == 0, no tree ops */
3395		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3396		spin_unlock_irq(&mctz->lock);
3397		css_put(&mz->memcg->css);
3398		loop++;
3399		/*
3400		 * Could not reclaim anything and there are no more
3401		 * mem cgroups to try or we seem to be looping without
3402		 * reclaiming anything.
3403		 */
3404		if (!nr_reclaimed &&
3405			(next_mz == NULL ||
3406			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3407			break;
3408	} while (!nr_reclaimed);
3409	if (next_mz)
3410		css_put(&next_mz->memcg->css);
3411	return nr_reclaimed;
3412}
3413
3414/*
3415 * Test whether @memcg has children, dead or alive.  Note that this
3416 * function doesn't care whether @memcg has use_hierarchy enabled and
3417 * returns %true if there are child csses according to the cgroup
3418 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3419 */
3420static inline bool memcg_has_children(struct mem_cgroup *memcg)
3421{
3422	bool ret;
3423
3424	rcu_read_lock();
3425	ret = css_next_child(NULL, &memcg->css);
3426	rcu_read_unlock();
3427	return ret;
3428}
3429
3430/*
3431 * Reclaims as many pages from the given memcg as possible.
3432 *
3433 * Caller is responsible for holding css reference for memcg.
3434 */
3435static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3436{
3437	int nr_retries = MAX_RECLAIM_RETRIES;
3438
3439	/* we call try-to-free pages for make this cgroup empty */
3440	lru_add_drain_all();
3441
3442	drain_all_stock(memcg);
3443
3444	/* try to free all pages in this cgroup */
3445	while (nr_retries && page_counter_read(&memcg->memory)) {
3446		int progress;
3447
3448		if (signal_pending(current))
3449			return -EINTR;
3450
3451		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3452							GFP_KERNEL, true);
3453		if (!progress) {
3454			nr_retries--;
3455			/* maybe some writeback is necessary */
3456			congestion_wait(BLK_RW_ASYNC, HZ/10);
3457		}
3458
3459	}
3460
3461	return 0;
3462}
3463
3464static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3465					    char *buf, size_t nbytes,
3466					    loff_t off)
3467{
3468	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3469
3470	if (mem_cgroup_is_root(memcg))
3471		return -EINVAL;
3472	return mem_cgroup_force_empty(memcg) ?: nbytes;
3473}
3474
3475static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3476				     struct cftype *cft)
3477{
3478	return mem_cgroup_from_css(css)->use_hierarchy;
3479}
3480
3481static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3482				      struct cftype *cft, u64 val)
3483{
3484	int retval = 0;
3485	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3486	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3487
3488	if (memcg->use_hierarchy == val)
3489		return 0;
3490
3491	/*
3492	 * If parent's use_hierarchy is set, we can't make any modifications
3493	 * in the child subtrees. If it is unset, then the change can
3494	 * occur, provided the current cgroup has no children.
3495	 *
3496	 * For the root cgroup, parent_mem is NULL, we allow value to be
3497	 * set if there are no children.
3498	 */
3499	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3500				(val == 1 || val == 0)) {
3501		if (!memcg_has_children(memcg))
3502			memcg->use_hierarchy = val;
3503		else
3504			retval = -EBUSY;
3505	} else
3506		retval = -EINVAL;
3507
3508	return retval;
3509}
3510
3511static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512{
3513	unsigned long val;
3514
3515	if (mem_cgroup_is_root(memcg)) {
 
 
3516		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517			memcg_page_state(memcg, NR_ANON_MAPPED);
3518		if (swap)
3519			val += memcg_page_state(memcg, MEMCG_SWAP);
3520	} else {
3521		if (!swap)
3522			val = page_counter_read(&memcg->memory);
3523		else
3524			val = page_counter_read(&memcg->memsw);
3525	}
3526	return val;
3527}
3528
3529enum {
3530	RES_USAGE,
3531	RES_LIMIT,
3532	RES_MAX_USAGE,
3533	RES_FAILCNT,
3534	RES_SOFT_LIMIT,
3535};
3536
3537static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538			       struct cftype *cft)
3539{
3540	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541	struct page_counter *counter;
3542
3543	switch (MEMFILE_TYPE(cft->private)) {
3544	case _MEM:
3545		counter = &memcg->memory;
3546		break;
3547	case _MEMSWAP:
3548		counter = &memcg->memsw;
3549		break;
3550	case _KMEM:
3551		counter = &memcg->kmem;
3552		break;
3553	case _TCP:
3554		counter = &memcg->tcpmem;
3555		break;
3556	default:
3557		BUG();
3558	}
3559
3560	switch (MEMFILE_ATTR(cft->private)) {
3561	case RES_USAGE:
3562		if (counter == &memcg->memory)
3563			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564		if (counter == &memcg->memsw)
3565			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566		return (u64)page_counter_read(counter) * PAGE_SIZE;
3567	case RES_LIMIT:
3568		return (u64)counter->max * PAGE_SIZE;
3569	case RES_MAX_USAGE:
3570		return (u64)counter->watermark * PAGE_SIZE;
3571	case RES_FAILCNT:
3572		return counter->failcnt;
3573	case RES_SOFT_LIMIT:
3574		return (u64)memcg->soft_limit * PAGE_SIZE;
3575	default:
3576		BUG();
3577	}
3578}
3579
3580static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3581{
3582	unsigned long stat[MEMCG_NR_STAT] = {0};
3583	struct mem_cgroup *mi;
3584	int node, cpu, i;
3585
3586	for_each_online_cpu(cpu)
3587		for (i = 0; i < MEMCG_NR_STAT; i++)
3588			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3589
3590	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3591		for (i = 0; i < MEMCG_NR_STAT; i++)
3592			atomic_long_add(stat[i], &mi->vmstats[i]);
3593
3594	for_each_node(node) {
3595		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3596		struct mem_cgroup_per_node *pi;
3597
3598		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3599			stat[i] = 0;
3600
3601		for_each_online_cpu(cpu)
3602			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3603				stat[i] += per_cpu(
3604					pn->lruvec_stat_cpu->count[i], cpu);
3605
3606		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3607			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3609	}
3610}
3611
3612static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3613{
3614	unsigned long events[NR_VM_EVENT_ITEMS];
3615	struct mem_cgroup *mi;
3616	int cpu, i;
3617
3618	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3619		events[i] = 0;
3620
3621	for_each_online_cpu(cpu)
3622		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3623			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3624					     cpu);
3625
3626	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628			atomic_long_add(events[i], &mi->vmevents[i]);
3629}
3630
3631#ifdef CONFIG_MEMCG_KMEM
3632static int memcg_online_kmem(struct mem_cgroup *memcg)
3633{
3634	struct obj_cgroup *objcg;
3635	int memcg_id;
3636
3637	if (cgroup_memory_nokmem)
3638		return 0;
3639
3640	BUG_ON(memcg->kmemcg_id >= 0);
3641	BUG_ON(memcg->kmem_state);
3642
3643	memcg_id = memcg_alloc_cache_id();
3644	if (memcg_id < 0)
3645		return memcg_id;
3646
3647	objcg = obj_cgroup_alloc();
3648	if (!objcg) {
3649		memcg_free_cache_id(memcg_id);
3650		return -ENOMEM;
3651	}
3652	objcg->memcg = memcg;
3653	rcu_assign_pointer(memcg->objcg, objcg);
3654
3655	static_branch_enable(&memcg_kmem_enabled_key);
3656
3657	/*
3658	 * A memory cgroup is considered kmem-online as soon as it gets
3659	 * kmemcg_id. Setting the id after enabling static branching will
3660	 * guarantee no one starts accounting before all call sites are
3661	 * patched.
3662	 */
3663	memcg->kmemcg_id = memcg_id;
3664	memcg->kmem_state = KMEM_ONLINE;
3665
3666	return 0;
3667}
3668
3669static void memcg_offline_kmem(struct mem_cgroup *memcg)
3670{
3671	struct cgroup_subsys_state *css;
3672	struct mem_cgroup *parent, *child;
3673	int kmemcg_id;
3674
3675	if (memcg->kmem_state != KMEM_ONLINE)
3676		return;
3677
3678	memcg->kmem_state = KMEM_ALLOCATED;
3679
3680	parent = parent_mem_cgroup(memcg);
3681	if (!parent)
3682		parent = root_mem_cgroup;
3683
3684	memcg_reparent_objcgs(memcg, parent);
3685
3686	kmemcg_id = memcg->kmemcg_id;
3687	BUG_ON(kmemcg_id < 0);
3688
3689	/*
3690	 * Change kmemcg_id of this cgroup and all its descendants to the
3691	 * parent's id, and then move all entries from this cgroup's list_lrus
3692	 * to ones of the parent. After we have finished, all list_lrus
3693	 * corresponding to this cgroup are guaranteed to remain empty. The
3694	 * ordering is imposed by list_lru_node->lock taken by
3695	 * memcg_drain_all_list_lrus().
3696	 */
3697	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698	css_for_each_descendant_pre(css, &memcg->css) {
3699		child = mem_cgroup_from_css(css);
3700		BUG_ON(child->kmemcg_id != kmemcg_id);
3701		child->kmemcg_id = parent->kmemcg_id;
3702		if (!memcg->use_hierarchy)
3703			break;
3704	}
3705	rcu_read_unlock();
3706
3707	memcg_drain_all_list_lrus(kmemcg_id, parent);
3708
3709	memcg_free_cache_id(kmemcg_id);
3710}
3711
3712static void memcg_free_kmem(struct mem_cgroup *memcg)
3713{
3714	/* css_alloc() failed, offlining didn't happen */
3715	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3716		memcg_offline_kmem(memcg);
3717}
3718#else
3719static int memcg_online_kmem(struct mem_cgroup *memcg)
3720{
3721	return 0;
3722}
3723static void memcg_offline_kmem(struct mem_cgroup *memcg)
3724{
3725}
3726static void memcg_free_kmem(struct mem_cgroup *memcg)
3727{
3728}
3729#endif /* CONFIG_MEMCG_KMEM */
3730
3731static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3732				 unsigned long max)
3733{
3734	int ret;
3735
3736	mutex_lock(&memcg_max_mutex);
3737	ret = page_counter_set_max(&memcg->kmem, max);
3738	mutex_unlock(&memcg_max_mutex);
3739	return ret;
3740}
3741
3742static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3743{
3744	int ret;
3745
3746	mutex_lock(&memcg_max_mutex);
3747
3748	ret = page_counter_set_max(&memcg->tcpmem, max);
3749	if (ret)
3750		goto out;
3751
3752	if (!memcg->tcpmem_active) {
3753		/*
3754		 * The active flag needs to be written after the static_key
3755		 * update. This is what guarantees that the socket activation
3756		 * function is the last one to run. See mem_cgroup_sk_alloc()
3757		 * for details, and note that we don't mark any socket as
3758		 * belonging to this memcg until that flag is up.
3759		 *
3760		 * We need to do this, because static_keys will span multiple
3761		 * sites, but we can't control their order. If we mark a socket
3762		 * as accounted, but the accounting functions are not patched in
3763		 * yet, we'll lose accounting.
3764		 *
3765		 * We never race with the readers in mem_cgroup_sk_alloc(),
3766		 * because when this value change, the code to process it is not
3767		 * patched in yet.
3768		 */
3769		static_branch_inc(&memcg_sockets_enabled_key);
3770		memcg->tcpmem_active = true;
3771	}
3772out:
3773	mutex_unlock(&memcg_max_mutex);
3774	return ret;
3775}
3776
3777/*
3778 * The user of this function is...
3779 * RES_LIMIT.
3780 */
3781static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3782				char *buf, size_t nbytes, loff_t off)
3783{
3784	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3785	unsigned long nr_pages;
3786	int ret;
3787
3788	buf = strstrip(buf);
3789	ret = page_counter_memparse(buf, "-1", &nr_pages);
3790	if (ret)
3791		return ret;
3792
3793	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3794	case RES_LIMIT:
3795		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3796			ret = -EINVAL;
3797			break;
3798		}
3799		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3800		case _MEM:
3801			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3802			break;
3803		case _MEMSWAP:
3804			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3805			break;
3806		case _KMEM:
3807			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3808				     "Please report your usecase to linux-mm@kvack.org if you "
3809				     "depend on this functionality.\n");
3810			ret = memcg_update_kmem_max(memcg, nr_pages);
3811			break;
3812		case _TCP:
3813			ret = memcg_update_tcp_max(memcg, nr_pages);
3814			break;
3815		}
3816		break;
3817	case RES_SOFT_LIMIT:
3818		memcg->soft_limit = nr_pages;
3819		ret = 0;
3820		break;
3821	}
3822	return ret ?: nbytes;
3823}
3824
3825static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3826				size_t nbytes, loff_t off)
3827{
3828	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829	struct page_counter *counter;
3830
3831	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3832	case _MEM:
3833		counter = &memcg->memory;
3834		break;
3835	case _MEMSWAP:
3836		counter = &memcg->memsw;
3837		break;
3838	case _KMEM:
3839		counter = &memcg->kmem;
3840		break;
3841	case _TCP:
3842		counter = &memcg->tcpmem;
3843		break;
3844	default:
3845		BUG();
3846	}
3847
3848	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3849	case RES_MAX_USAGE:
3850		page_counter_reset_watermark(counter);
3851		break;
3852	case RES_FAILCNT:
3853		counter->failcnt = 0;
3854		break;
3855	default:
3856		BUG();
3857	}
3858
3859	return nbytes;
3860}
3861
3862static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3863					struct cftype *cft)
3864{
3865	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3866}
3867
3868#ifdef CONFIG_MMU
3869static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3870					struct cftype *cft, u64 val)
3871{
3872	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3873
3874	if (val & ~MOVE_MASK)
3875		return -EINVAL;
3876
3877	/*
3878	 * No kind of locking is needed in here, because ->can_attach() will
3879	 * check this value once in the beginning of the process, and then carry
3880	 * on with stale data. This means that changes to this value will only
3881	 * affect task migrations starting after the change.
3882	 */
3883	memcg->move_charge_at_immigrate = val;
3884	return 0;
3885}
3886#else
3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888					struct cftype *cft, u64 val)
3889{
3890	return -ENOSYS;
3891}
3892#endif
3893
3894#ifdef CONFIG_NUMA
3895
3896#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3897#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3898#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3899
3900static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3901				int nid, unsigned int lru_mask, bool tree)
3902{
3903	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3904	unsigned long nr = 0;
3905	enum lru_list lru;
3906
3907	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3908
3909	for_each_lru(lru) {
3910		if (!(BIT(lru) & lru_mask))
3911			continue;
3912		if (tree)
3913			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3914		else
3915			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3916	}
3917	return nr;
3918}
3919
3920static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3921					     unsigned int lru_mask,
3922					     bool tree)
3923{
3924	unsigned long nr = 0;
3925	enum lru_list lru;
3926
3927	for_each_lru(lru) {
3928		if (!(BIT(lru) & lru_mask))
3929			continue;
3930		if (tree)
3931			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3932		else
3933			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3934	}
3935	return nr;
3936}
3937
3938static int memcg_numa_stat_show(struct seq_file *m, void *v)
3939{
3940	struct numa_stat {
3941		const char *name;
3942		unsigned int lru_mask;
3943	};
3944
3945	static const struct numa_stat stats[] = {
3946		{ "total", LRU_ALL },
3947		{ "file", LRU_ALL_FILE },
3948		{ "anon", LRU_ALL_ANON },
3949		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3950	};
3951	const struct numa_stat *stat;
3952	int nid;
3953	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3954
 
 
3955	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956		seq_printf(m, "%s=%lu", stat->name,
3957			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3958						   false));
3959		for_each_node_state(nid, N_MEMORY)
3960			seq_printf(m, " N%d=%lu", nid,
3961				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3962							stat->lru_mask, false));
3963		seq_putc(m, '\n');
3964	}
3965
3966	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967
3968		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3969			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3970						   true));
3971		for_each_node_state(nid, N_MEMORY)
3972			seq_printf(m, " N%d=%lu", nid,
3973				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3974							stat->lru_mask, true));
3975		seq_putc(m, '\n');
3976	}
3977
3978	return 0;
3979}
3980#endif /* CONFIG_NUMA */
3981
3982static const unsigned int memcg1_stats[] = {
3983	NR_FILE_PAGES,
3984	NR_ANON_MAPPED,
3985#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986	NR_ANON_THPS,
3987#endif
3988	NR_SHMEM,
3989	NR_FILE_MAPPED,
3990	NR_FILE_DIRTY,
3991	NR_WRITEBACK,
3992	MEMCG_SWAP,
3993};
3994
3995static const char *const memcg1_stat_names[] = {
3996	"cache",
3997	"rss",
3998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999	"rss_huge",
4000#endif
4001	"shmem",
4002	"mapped_file",
4003	"dirty",
4004	"writeback",
4005	"swap",
4006};
4007
4008/* Universal VM events cgroup1 shows, original sort order */
4009static const unsigned int memcg1_events[] = {
4010	PGPGIN,
4011	PGPGOUT,
4012	PGFAULT,
4013	PGMAJFAULT,
4014};
4015
4016static int memcg_stat_show(struct seq_file *m, void *v)
4017{
4018	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019	unsigned long memory, memsw;
4020	struct mem_cgroup *mi;
4021	unsigned int i;
4022
4023	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4024
 
 
4025	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4026		unsigned long nr;
4027
4028		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4029			continue;
4030		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032		if (memcg1_stats[i] == NR_ANON_THPS)
4033			nr *= HPAGE_PMD_NR;
4034#endif
4035		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4036	}
4037
4038	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4039		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4040			   memcg_events_local(memcg, memcg1_events[i]));
4041
4042	for (i = 0; i < NR_LRU_LISTS; i++)
4043		seq_printf(m, "%s %lu\n", lru_list_name(i),
4044			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4045			   PAGE_SIZE);
4046
4047	/* Hierarchical information */
4048	memory = memsw = PAGE_COUNTER_MAX;
4049	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4050		memory = min(memory, READ_ONCE(mi->memory.max));
4051		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4052	}
4053	seq_printf(m, "hierarchical_memory_limit %llu\n",
4054		   (u64)memory * PAGE_SIZE);
4055	if (do_memsw_account())
4056		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4057			   (u64)memsw * PAGE_SIZE);
4058
4059	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 
 
4060		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4061			continue;
 
4062		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4064			   PAGE_SIZE);
4065	}
4066
4067	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068		seq_printf(m, "total_%s %llu\n",
4069			   vm_event_name(memcg1_events[i]),
4070			   (u64)memcg_events(memcg, memcg1_events[i]));
4071
4072	for (i = 0; i < NR_LRU_LISTS; i++)
4073		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4075			   PAGE_SIZE);
4076
4077#ifdef CONFIG_DEBUG_VM
4078	{
4079		pg_data_t *pgdat;
4080		struct mem_cgroup_per_node *mz;
4081		unsigned long anon_cost = 0;
4082		unsigned long file_cost = 0;
4083
4084		for_each_online_pgdat(pgdat) {
4085			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4086
4087			anon_cost += mz->lruvec.anon_cost;
4088			file_cost += mz->lruvec.file_cost;
4089		}
4090		seq_printf(m, "anon_cost %lu\n", anon_cost);
4091		seq_printf(m, "file_cost %lu\n", file_cost);
4092	}
4093#endif
4094
4095	return 0;
4096}
4097
4098static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4099				      struct cftype *cft)
4100{
4101	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103	return mem_cgroup_swappiness(memcg);
4104}
4105
4106static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4107				       struct cftype *cft, u64 val)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	if (val > 100)
4112		return -EINVAL;
4113
4114	if (css->parent)
4115		memcg->swappiness = val;
4116	else
4117		vm_swappiness = val;
4118
4119	return 0;
4120}
4121
4122static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4123{
4124	struct mem_cgroup_threshold_ary *t;
4125	unsigned long usage;
4126	int i;
4127
4128	rcu_read_lock();
4129	if (!swap)
4130		t = rcu_dereference(memcg->thresholds.primary);
4131	else
4132		t = rcu_dereference(memcg->memsw_thresholds.primary);
4133
4134	if (!t)
4135		goto unlock;
4136
4137	usage = mem_cgroup_usage(memcg, swap);
4138
4139	/*
4140	 * current_threshold points to threshold just below or equal to usage.
4141	 * If it's not true, a threshold was crossed after last
4142	 * call of __mem_cgroup_threshold().
4143	 */
4144	i = t->current_threshold;
4145
4146	/*
4147	 * Iterate backward over array of thresholds starting from
4148	 * current_threshold and check if a threshold is crossed.
4149	 * If none of thresholds below usage is crossed, we read
4150	 * only one element of the array here.
4151	 */
4152	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4153		eventfd_signal(t->entries[i].eventfd, 1);
4154
4155	/* i = current_threshold + 1 */
4156	i++;
4157
4158	/*
4159	 * Iterate forward over array of thresholds starting from
4160	 * current_threshold+1 and check if a threshold is crossed.
4161	 * If none of thresholds above usage is crossed, we read
4162	 * only one element of the array here.
4163	 */
4164	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4165		eventfd_signal(t->entries[i].eventfd, 1);
4166
4167	/* Update current_threshold */
4168	t->current_threshold = i - 1;
4169unlock:
4170	rcu_read_unlock();
4171}
4172
4173static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4174{
4175	while (memcg) {
4176		__mem_cgroup_threshold(memcg, false);
4177		if (do_memsw_account())
4178			__mem_cgroup_threshold(memcg, true);
4179
4180		memcg = parent_mem_cgroup(memcg);
4181	}
4182}
4183
4184static int compare_thresholds(const void *a, const void *b)
4185{
4186	const struct mem_cgroup_threshold *_a = a;
4187	const struct mem_cgroup_threshold *_b = b;
4188
4189	if (_a->threshold > _b->threshold)
4190		return 1;
4191
4192	if (_a->threshold < _b->threshold)
4193		return -1;
4194
4195	return 0;
4196}
4197
4198static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4199{
4200	struct mem_cgroup_eventfd_list *ev;
4201
4202	spin_lock(&memcg_oom_lock);
4203
4204	list_for_each_entry(ev, &memcg->oom_notify, list)
4205		eventfd_signal(ev->eventfd, 1);
4206
4207	spin_unlock(&memcg_oom_lock);
4208	return 0;
4209}
4210
4211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4212{
4213	struct mem_cgroup *iter;
4214
4215	for_each_mem_cgroup_tree(iter, memcg)
4216		mem_cgroup_oom_notify_cb(iter);
4217}
4218
4219static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4220	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221{
4222	struct mem_cgroup_thresholds *thresholds;
4223	struct mem_cgroup_threshold_ary *new;
4224	unsigned long threshold;
4225	unsigned long usage;
4226	int i, size, ret;
4227
4228	ret = page_counter_memparse(args, "-1", &threshold);
4229	if (ret)
4230		return ret;
4231
4232	mutex_lock(&memcg->thresholds_lock);
4233
4234	if (type == _MEM) {
4235		thresholds = &memcg->thresholds;
4236		usage = mem_cgroup_usage(memcg, false);
4237	} else if (type == _MEMSWAP) {
4238		thresholds = &memcg->memsw_thresholds;
4239		usage = mem_cgroup_usage(memcg, true);
4240	} else
4241		BUG();
4242
4243	/* Check if a threshold crossed before adding a new one */
4244	if (thresholds->primary)
4245		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246
4247	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248
4249	/* Allocate memory for new array of thresholds */
4250	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251	if (!new) {
4252		ret = -ENOMEM;
4253		goto unlock;
4254	}
4255	new->size = size;
4256
4257	/* Copy thresholds (if any) to new array */
4258	if (thresholds->primary) {
4259		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4260				sizeof(struct mem_cgroup_threshold));
4261	}
4262
4263	/* Add new threshold */
4264	new->entries[size - 1].eventfd = eventfd;
4265	new->entries[size - 1].threshold = threshold;
4266
4267	/* Sort thresholds. Registering of new threshold isn't time-critical */
4268	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4269			compare_thresholds, NULL);
4270
4271	/* Find current threshold */
4272	new->current_threshold = -1;
4273	for (i = 0; i < size; i++) {
4274		if (new->entries[i].threshold <= usage) {
4275			/*
4276			 * new->current_threshold will not be used until
4277			 * rcu_assign_pointer(), so it's safe to increment
4278			 * it here.
4279			 */
4280			++new->current_threshold;
4281		} else
4282			break;
4283	}
4284
4285	/* Free old spare buffer and save old primary buffer as spare */
4286	kfree(thresholds->spare);
4287	thresholds->spare = thresholds->primary;
4288
4289	rcu_assign_pointer(thresholds->primary, new);
4290
4291	/* To be sure that nobody uses thresholds */
4292	synchronize_rcu();
4293
4294unlock:
4295	mutex_unlock(&memcg->thresholds_lock);
4296
4297	return ret;
4298}
4299
4300static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301	struct eventfd_ctx *eventfd, const char *args)
4302{
4303	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4304}
4305
4306static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4307	struct eventfd_ctx *eventfd, const char *args)
4308{
4309	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4310}
4311
4312static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313	struct eventfd_ctx *eventfd, enum res_type type)
4314{
4315	struct mem_cgroup_thresholds *thresholds;
4316	struct mem_cgroup_threshold_ary *new;
4317	unsigned long usage;
4318	int i, j, size, entries;
4319
4320	mutex_lock(&memcg->thresholds_lock);
4321
4322	if (type == _MEM) {
4323		thresholds = &memcg->thresholds;
4324		usage = mem_cgroup_usage(memcg, false);
4325	} else if (type == _MEMSWAP) {
4326		thresholds = &memcg->memsw_thresholds;
4327		usage = mem_cgroup_usage(memcg, true);
4328	} else
4329		BUG();
4330
4331	if (!thresholds->primary)
4332		goto unlock;
4333
4334	/* Check if a threshold crossed before removing */
4335	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4336
4337	/* Calculate new number of threshold */
4338	size = entries = 0;
4339	for (i = 0; i < thresholds->primary->size; i++) {
4340		if (thresholds->primary->entries[i].eventfd != eventfd)
4341			size++;
4342		else
4343			entries++;
4344	}
4345
4346	new = thresholds->spare;
4347
4348	/* If no items related to eventfd have been cleared, nothing to do */
4349	if (!entries)
4350		goto unlock;
4351
4352	/* Set thresholds array to NULL if we don't have thresholds */
4353	if (!size) {
4354		kfree(new);
4355		new = NULL;
4356		goto swap_buffers;
4357	}
4358
4359	new->size = size;
4360
4361	/* Copy thresholds and find current threshold */
4362	new->current_threshold = -1;
4363	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4364		if (thresholds->primary->entries[i].eventfd == eventfd)
4365			continue;
4366
4367		new->entries[j] = thresholds->primary->entries[i];
4368		if (new->entries[j].threshold <= usage) {
4369			/*
4370			 * new->current_threshold will not be used
4371			 * until rcu_assign_pointer(), so it's safe to increment
4372			 * it here.
4373			 */
4374			++new->current_threshold;
4375		}
4376		j++;
4377	}
4378
4379swap_buffers:
4380	/* Swap primary and spare array */
4381	thresholds->spare = thresholds->primary;
4382
4383	rcu_assign_pointer(thresholds->primary, new);
4384
4385	/* To be sure that nobody uses thresholds */
4386	synchronize_rcu();
4387
4388	/* If all events are unregistered, free the spare array */
4389	if (!new) {
4390		kfree(thresholds->spare);
4391		thresholds->spare = NULL;
4392	}
4393unlock:
4394	mutex_unlock(&memcg->thresholds_lock);
4395}
4396
4397static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398	struct eventfd_ctx *eventfd)
4399{
4400	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4401}
4402
4403static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404	struct eventfd_ctx *eventfd)
4405{
4406	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4407}
4408
4409static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4410	struct eventfd_ctx *eventfd, const char *args)
4411{
4412	struct mem_cgroup_eventfd_list *event;
4413
4414	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4415	if (!event)
4416		return -ENOMEM;
4417
4418	spin_lock(&memcg_oom_lock);
4419
4420	event->eventfd = eventfd;
4421	list_add(&event->list, &memcg->oom_notify);
4422
4423	/* already in OOM ? */
4424	if (memcg->under_oom)
4425		eventfd_signal(eventfd, 1);
4426	spin_unlock(&memcg_oom_lock);
4427
4428	return 0;
4429}
4430
4431static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4432	struct eventfd_ctx *eventfd)
4433{
4434	struct mem_cgroup_eventfd_list *ev, *tmp;
4435
4436	spin_lock(&memcg_oom_lock);
4437
4438	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4439		if (ev->eventfd == eventfd) {
4440			list_del(&ev->list);
4441			kfree(ev);
4442		}
4443	}
4444
4445	spin_unlock(&memcg_oom_lock);
4446}
4447
4448static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449{
4450	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4451
4452	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4454	seq_printf(sf, "oom_kill %lu\n",
4455		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4456	return 0;
4457}
4458
4459static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460	struct cftype *cft, u64 val)
4461{
4462	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463
4464	/* cannot set to root cgroup and only 0 and 1 are allowed */
4465	if (!css->parent || !((val == 0) || (val == 1)))
4466		return -EINVAL;
4467
4468	memcg->oom_kill_disable = val;
4469	if (!val)
4470		memcg_oom_recover(memcg);
4471
4472	return 0;
4473}
4474
4475#ifdef CONFIG_CGROUP_WRITEBACK
4476
4477#include <trace/events/writeback.h>
4478
4479static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4480{
4481	return wb_domain_init(&memcg->cgwb_domain, gfp);
4482}
4483
4484static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4485{
4486	wb_domain_exit(&memcg->cgwb_domain);
4487}
4488
4489static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4490{
4491	wb_domain_size_changed(&memcg->cgwb_domain);
4492}
4493
4494struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4495{
4496	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4497
4498	if (!memcg->css.parent)
4499		return NULL;
4500
4501	return &memcg->cgwb_domain;
4502}
4503
4504/*
4505 * idx can be of type enum memcg_stat_item or node_stat_item.
4506 * Keep in sync with memcg_exact_page().
4507 */
4508static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4509{
4510	long x = atomic_long_read(&memcg->vmstats[idx]);
4511	int cpu;
4512
4513	for_each_online_cpu(cpu)
4514		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4515	if (x < 0)
4516		x = 0;
4517	return x;
4518}
4519
4520/**
4521 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4522 * @wb: bdi_writeback in question
4523 * @pfilepages: out parameter for number of file pages
4524 * @pheadroom: out parameter for number of allocatable pages according to memcg
4525 * @pdirty: out parameter for number of dirty pages
4526 * @pwriteback: out parameter for number of pages under writeback
4527 *
4528 * Determine the numbers of file, headroom, dirty, and writeback pages in
4529 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4530 * is a bit more involved.
4531 *
4532 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4533 * headroom is calculated as the lowest headroom of itself and the
4534 * ancestors.  Note that this doesn't consider the actual amount of
4535 * available memory in the system.  The caller should further cap
4536 * *@pheadroom accordingly.
4537 */
4538void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4539			 unsigned long *pheadroom, unsigned long *pdirty,
4540			 unsigned long *pwriteback)
4541{
4542	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4543	struct mem_cgroup *parent;
4544
4545	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
 
 
 
 
 
4546
4547	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4548	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4549			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4550	*pheadroom = PAGE_COUNTER_MAX;
4551
4552	while ((parent = parent_mem_cgroup(memcg))) {
4553		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4554					    READ_ONCE(memcg->memory.high));
4555		unsigned long used = page_counter_read(&memcg->memory);
4556
4557		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4558		memcg = parent;
4559	}
4560}
4561
4562/*
4563 * Foreign dirty flushing
4564 *
4565 * There's an inherent mismatch between memcg and writeback.  The former
4566 * trackes ownership per-page while the latter per-inode.  This was a
4567 * deliberate design decision because honoring per-page ownership in the
4568 * writeback path is complicated, may lead to higher CPU and IO overheads
4569 * and deemed unnecessary given that write-sharing an inode across
4570 * different cgroups isn't a common use-case.
4571 *
4572 * Combined with inode majority-writer ownership switching, this works well
4573 * enough in most cases but there are some pathological cases.  For
4574 * example, let's say there are two cgroups A and B which keep writing to
4575 * different but confined parts of the same inode.  B owns the inode and
4576 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4577 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4578 * triggering background writeback.  A will be slowed down without a way to
4579 * make writeback of the dirty pages happen.
4580 *
4581 * Conditions like the above can lead to a cgroup getting repatedly and
4582 * severely throttled after making some progress after each
4583 * dirty_expire_interval while the underyling IO device is almost
4584 * completely idle.
4585 *
4586 * Solving this problem completely requires matching the ownership tracking
4587 * granularities between memcg and writeback in either direction.  However,
4588 * the more egregious behaviors can be avoided by simply remembering the
4589 * most recent foreign dirtying events and initiating remote flushes on
4590 * them when local writeback isn't enough to keep the memory clean enough.
4591 *
4592 * The following two functions implement such mechanism.  When a foreign
4593 * page - a page whose memcg and writeback ownerships don't match - is
4594 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4595 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4596 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4597 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4598 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4599 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4600 * limited to MEMCG_CGWB_FRN_CNT.
4601 *
4602 * The mechanism only remembers IDs and doesn't hold any object references.
4603 * As being wrong occasionally doesn't matter, updates and accesses to the
4604 * records are lockless and racy.
4605 */
4606void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4607					     struct bdi_writeback *wb)
4608{
4609	struct mem_cgroup *memcg = page->mem_cgroup;
4610	struct memcg_cgwb_frn *frn;
4611	u64 now = get_jiffies_64();
4612	u64 oldest_at = now;
4613	int oldest = -1;
4614	int i;
4615
4616	trace_track_foreign_dirty(page, wb);
4617
4618	/*
4619	 * Pick the slot to use.  If there is already a slot for @wb, keep
4620	 * using it.  If not replace the oldest one which isn't being
4621	 * written out.
4622	 */
4623	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4624		frn = &memcg->cgwb_frn[i];
4625		if (frn->bdi_id == wb->bdi->id &&
4626		    frn->memcg_id == wb->memcg_css->id)
4627			break;
4628		if (time_before64(frn->at, oldest_at) &&
4629		    atomic_read(&frn->done.cnt) == 1) {
4630			oldest = i;
4631			oldest_at = frn->at;
4632		}
4633	}
4634
4635	if (i < MEMCG_CGWB_FRN_CNT) {
4636		/*
4637		 * Re-using an existing one.  Update timestamp lazily to
4638		 * avoid making the cacheline hot.  We want them to be
4639		 * reasonably up-to-date and significantly shorter than
4640		 * dirty_expire_interval as that's what expires the record.
4641		 * Use the shorter of 1s and dirty_expire_interval / 8.
4642		 */
4643		unsigned long update_intv =
4644			min_t(unsigned long, HZ,
4645			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4646
4647		if (time_before64(frn->at, now - update_intv))
4648			frn->at = now;
4649	} else if (oldest >= 0) {
4650		/* replace the oldest free one */
4651		frn = &memcg->cgwb_frn[oldest];
4652		frn->bdi_id = wb->bdi->id;
4653		frn->memcg_id = wb->memcg_css->id;
4654		frn->at = now;
4655	}
4656}
4657
4658/* issue foreign writeback flushes for recorded foreign dirtying events */
4659void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4660{
4661	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4662	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4663	u64 now = jiffies_64;
4664	int i;
4665
4666	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4667		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4668
4669		/*
4670		 * If the record is older than dirty_expire_interval,
4671		 * writeback on it has already started.  No need to kick it
4672		 * off again.  Also, don't start a new one if there's
4673		 * already one in flight.
4674		 */
4675		if (time_after64(frn->at, now - intv) &&
4676		    atomic_read(&frn->done.cnt) == 1) {
4677			frn->at = 0;
4678			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4679			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4680					       WB_REASON_FOREIGN_FLUSH,
4681					       &frn->done);
4682		}
4683	}
4684}
4685
4686#else	/* CONFIG_CGROUP_WRITEBACK */
4687
4688static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4689{
4690	return 0;
4691}
4692
4693static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4694{
4695}
4696
4697static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4698{
4699}
4700
4701#endif	/* CONFIG_CGROUP_WRITEBACK */
4702
4703/*
4704 * DO NOT USE IN NEW FILES.
4705 *
4706 * "cgroup.event_control" implementation.
4707 *
4708 * This is way over-engineered.  It tries to support fully configurable
4709 * events for each user.  Such level of flexibility is completely
4710 * unnecessary especially in the light of the planned unified hierarchy.
4711 *
4712 * Please deprecate this and replace with something simpler if at all
4713 * possible.
4714 */
4715
4716/*
4717 * Unregister event and free resources.
4718 *
4719 * Gets called from workqueue.
4720 */
4721static void memcg_event_remove(struct work_struct *work)
4722{
4723	struct mem_cgroup_event *event =
4724		container_of(work, struct mem_cgroup_event, remove);
4725	struct mem_cgroup *memcg = event->memcg;
4726
4727	remove_wait_queue(event->wqh, &event->wait);
4728
4729	event->unregister_event(memcg, event->eventfd);
4730
4731	/* Notify userspace the event is going away. */
4732	eventfd_signal(event->eventfd, 1);
4733
4734	eventfd_ctx_put(event->eventfd);
4735	kfree(event);
4736	css_put(&memcg->css);
4737}
4738
4739/*
4740 * Gets called on EPOLLHUP on eventfd when user closes it.
4741 *
4742 * Called with wqh->lock held and interrupts disabled.
4743 */
4744static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4745			    int sync, void *key)
4746{
4747	struct mem_cgroup_event *event =
4748		container_of(wait, struct mem_cgroup_event, wait);
4749	struct mem_cgroup *memcg = event->memcg;
4750	__poll_t flags = key_to_poll(key);
4751
4752	if (flags & EPOLLHUP) {
4753		/*
4754		 * If the event has been detached at cgroup removal, we
4755		 * can simply return knowing the other side will cleanup
4756		 * for us.
4757		 *
4758		 * We can't race against event freeing since the other
4759		 * side will require wqh->lock via remove_wait_queue(),
4760		 * which we hold.
4761		 */
4762		spin_lock(&memcg->event_list_lock);
4763		if (!list_empty(&event->list)) {
4764			list_del_init(&event->list);
4765			/*
4766			 * We are in atomic context, but cgroup_event_remove()
4767			 * may sleep, so we have to call it in workqueue.
4768			 */
4769			schedule_work(&event->remove);
4770		}
4771		spin_unlock(&memcg->event_list_lock);
4772	}
4773
4774	return 0;
4775}
4776
4777static void memcg_event_ptable_queue_proc(struct file *file,
4778		wait_queue_head_t *wqh, poll_table *pt)
4779{
4780	struct mem_cgroup_event *event =
4781		container_of(pt, struct mem_cgroup_event, pt);
4782
4783	event->wqh = wqh;
4784	add_wait_queue(wqh, &event->wait);
4785}
4786
4787/*
4788 * DO NOT USE IN NEW FILES.
4789 *
4790 * Parse input and register new cgroup event handler.
4791 *
4792 * Input must be in format '<event_fd> <control_fd> <args>'.
4793 * Interpretation of args is defined by control file implementation.
4794 */
4795static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4796					 char *buf, size_t nbytes, loff_t off)
4797{
4798	struct cgroup_subsys_state *css = of_css(of);
4799	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800	struct mem_cgroup_event *event;
4801	struct cgroup_subsys_state *cfile_css;
4802	unsigned int efd, cfd;
4803	struct fd efile;
4804	struct fd cfile;
4805	const char *name;
4806	char *endp;
4807	int ret;
4808
4809	buf = strstrip(buf);
4810
4811	efd = simple_strtoul(buf, &endp, 10);
4812	if (*endp != ' ')
4813		return -EINVAL;
4814	buf = endp + 1;
4815
4816	cfd = simple_strtoul(buf, &endp, 10);
4817	if ((*endp != ' ') && (*endp != '\0'))
4818		return -EINVAL;
4819	buf = endp + 1;
4820
4821	event = kzalloc(sizeof(*event), GFP_KERNEL);
4822	if (!event)
4823		return -ENOMEM;
4824
4825	event->memcg = memcg;
4826	INIT_LIST_HEAD(&event->list);
4827	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4828	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4829	INIT_WORK(&event->remove, memcg_event_remove);
4830
4831	efile = fdget(efd);
4832	if (!efile.file) {
4833		ret = -EBADF;
4834		goto out_kfree;
4835	}
4836
4837	event->eventfd = eventfd_ctx_fileget(efile.file);
4838	if (IS_ERR(event->eventfd)) {
4839		ret = PTR_ERR(event->eventfd);
4840		goto out_put_efile;
4841	}
4842
4843	cfile = fdget(cfd);
4844	if (!cfile.file) {
4845		ret = -EBADF;
4846		goto out_put_eventfd;
4847	}
4848
4849	/* the process need read permission on control file */
4850	/* AV: shouldn't we check that it's been opened for read instead? */
4851	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4852	if (ret < 0)
4853		goto out_put_cfile;
4854
4855	/*
4856	 * Determine the event callbacks and set them in @event.  This used
4857	 * to be done via struct cftype but cgroup core no longer knows
4858	 * about these events.  The following is crude but the whole thing
4859	 * is for compatibility anyway.
4860	 *
4861	 * DO NOT ADD NEW FILES.
4862	 */
4863	name = cfile.file->f_path.dentry->d_name.name;
4864
4865	if (!strcmp(name, "memory.usage_in_bytes")) {
4866		event->register_event = mem_cgroup_usage_register_event;
4867		event->unregister_event = mem_cgroup_usage_unregister_event;
4868	} else if (!strcmp(name, "memory.oom_control")) {
4869		event->register_event = mem_cgroup_oom_register_event;
4870		event->unregister_event = mem_cgroup_oom_unregister_event;
4871	} else if (!strcmp(name, "memory.pressure_level")) {
4872		event->register_event = vmpressure_register_event;
4873		event->unregister_event = vmpressure_unregister_event;
4874	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4875		event->register_event = memsw_cgroup_usage_register_event;
4876		event->unregister_event = memsw_cgroup_usage_unregister_event;
4877	} else {
4878		ret = -EINVAL;
4879		goto out_put_cfile;
4880	}
4881
4882	/*
4883	 * Verify @cfile should belong to @css.  Also, remaining events are
4884	 * automatically removed on cgroup destruction but the removal is
4885	 * asynchronous, so take an extra ref on @css.
4886	 */
4887	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4888					       &memory_cgrp_subsys);
4889	ret = -EINVAL;
4890	if (IS_ERR(cfile_css))
4891		goto out_put_cfile;
4892	if (cfile_css != css) {
4893		css_put(cfile_css);
4894		goto out_put_cfile;
4895	}
4896
4897	ret = event->register_event(memcg, event->eventfd, buf);
4898	if (ret)
4899		goto out_put_css;
4900
4901	vfs_poll(efile.file, &event->pt);
4902
4903	spin_lock(&memcg->event_list_lock);
4904	list_add(&event->list, &memcg->event_list);
4905	spin_unlock(&memcg->event_list_lock);
4906
4907	fdput(cfile);
4908	fdput(efile);
4909
4910	return nbytes;
4911
4912out_put_css:
4913	css_put(css);
4914out_put_cfile:
4915	fdput(cfile);
4916out_put_eventfd:
4917	eventfd_ctx_put(event->eventfd);
4918out_put_efile:
4919	fdput(efile);
4920out_kfree:
4921	kfree(event);
4922
4923	return ret;
4924}
4925
4926static struct cftype mem_cgroup_legacy_files[] = {
4927	{
4928		.name = "usage_in_bytes",
4929		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4930		.read_u64 = mem_cgroup_read_u64,
4931	},
4932	{
4933		.name = "max_usage_in_bytes",
4934		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4935		.write = mem_cgroup_reset,
4936		.read_u64 = mem_cgroup_read_u64,
4937	},
4938	{
4939		.name = "limit_in_bytes",
4940		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4941		.write = mem_cgroup_write,
4942		.read_u64 = mem_cgroup_read_u64,
4943	},
4944	{
4945		.name = "soft_limit_in_bytes",
4946		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4947		.write = mem_cgroup_write,
4948		.read_u64 = mem_cgroup_read_u64,
4949	},
4950	{
4951		.name = "failcnt",
4952		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4953		.write = mem_cgroup_reset,
4954		.read_u64 = mem_cgroup_read_u64,
4955	},
4956	{
4957		.name = "stat",
4958		.seq_show = memcg_stat_show,
4959	},
4960	{
4961		.name = "force_empty",
4962		.write = mem_cgroup_force_empty_write,
4963	},
4964	{
4965		.name = "use_hierarchy",
4966		.write_u64 = mem_cgroup_hierarchy_write,
4967		.read_u64 = mem_cgroup_hierarchy_read,
4968	},
4969	{
4970		.name = "cgroup.event_control",		/* XXX: for compat */
4971		.write = memcg_write_event_control,
4972		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4973	},
4974	{
4975		.name = "swappiness",
4976		.read_u64 = mem_cgroup_swappiness_read,
4977		.write_u64 = mem_cgroup_swappiness_write,
4978	},
4979	{
4980		.name = "move_charge_at_immigrate",
4981		.read_u64 = mem_cgroup_move_charge_read,
4982		.write_u64 = mem_cgroup_move_charge_write,
4983	},
4984	{
4985		.name = "oom_control",
4986		.seq_show = mem_cgroup_oom_control_read,
4987		.write_u64 = mem_cgroup_oom_control_write,
4988		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4989	},
4990	{
4991		.name = "pressure_level",
4992	},
4993#ifdef CONFIG_NUMA
4994	{
4995		.name = "numa_stat",
4996		.seq_show = memcg_numa_stat_show,
4997	},
4998#endif
4999	{
5000		.name = "kmem.limit_in_bytes",
5001		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5002		.write = mem_cgroup_write,
5003		.read_u64 = mem_cgroup_read_u64,
5004	},
5005	{
5006		.name = "kmem.usage_in_bytes",
5007		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5008		.read_u64 = mem_cgroup_read_u64,
5009	},
5010	{
5011		.name = "kmem.failcnt",
5012		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5013		.write = mem_cgroup_reset,
5014		.read_u64 = mem_cgroup_read_u64,
5015	},
5016	{
5017		.name = "kmem.max_usage_in_bytes",
5018		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5019		.write = mem_cgroup_reset,
5020		.read_u64 = mem_cgroup_read_u64,
5021	},
5022#if defined(CONFIG_MEMCG_KMEM) && \
5023	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5024	{
5025		.name = "kmem.slabinfo",
5026		.seq_show = memcg_slab_show,
5027	},
5028#endif
5029	{
5030		.name = "kmem.tcp.limit_in_bytes",
5031		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5032		.write = mem_cgroup_write,
5033		.read_u64 = mem_cgroup_read_u64,
5034	},
5035	{
5036		.name = "kmem.tcp.usage_in_bytes",
5037		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5038		.read_u64 = mem_cgroup_read_u64,
5039	},
5040	{
5041		.name = "kmem.tcp.failcnt",
5042		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5043		.write = mem_cgroup_reset,
5044		.read_u64 = mem_cgroup_read_u64,
5045	},
5046	{
5047		.name = "kmem.tcp.max_usage_in_bytes",
5048		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5049		.write = mem_cgroup_reset,
5050		.read_u64 = mem_cgroup_read_u64,
5051	},
5052	{ },	/* terminate */
5053};
5054
5055/*
5056 * Private memory cgroup IDR
5057 *
5058 * Swap-out records and page cache shadow entries need to store memcg
5059 * references in constrained space, so we maintain an ID space that is
5060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5061 * memory-controlled cgroups to 64k.
5062 *
5063 * However, there usually are many references to the offline CSS after
5064 * the cgroup has been destroyed, such as page cache or reclaimable
5065 * slab objects, that don't need to hang on to the ID. We want to keep
5066 * those dead CSS from occupying IDs, or we might quickly exhaust the
5067 * relatively small ID space and prevent the creation of new cgroups
5068 * even when there are much fewer than 64k cgroups - possibly none.
5069 *
5070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5071 * be freed and recycled when it's no longer needed, which is usually
5072 * when the CSS is offlined.
5073 *
5074 * The only exception to that are records of swapped out tmpfs/shmem
5075 * pages that need to be attributed to live ancestors on swapin. But
5076 * those references are manageable from userspace.
5077 */
5078
5079static DEFINE_IDR(mem_cgroup_idr);
5080
5081static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5082{
5083	if (memcg->id.id > 0) {
5084		idr_remove(&mem_cgroup_idr, memcg->id.id);
5085		memcg->id.id = 0;
5086	}
5087}
5088
5089static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5090						  unsigned int n)
5091{
5092	refcount_add(n, &memcg->id.ref);
5093}
5094
5095static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5096{
5097	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5098		mem_cgroup_id_remove(memcg);
5099
5100		/* Memcg ID pins CSS */
5101		css_put(&memcg->css);
5102	}
5103}
5104
5105static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5106{
5107	mem_cgroup_id_put_many(memcg, 1);
5108}
5109
5110/**
5111 * mem_cgroup_from_id - look up a memcg from a memcg id
5112 * @id: the memcg id to look up
5113 *
5114 * Caller must hold rcu_read_lock().
5115 */
5116struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5117{
5118	WARN_ON_ONCE(!rcu_read_lock_held());
5119	return idr_find(&mem_cgroup_idr, id);
5120}
5121
5122static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5123{
5124	struct mem_cgroup_per_node *pn;
5125	int tmp = node;
5126	/*
5127	 * This routine is called against possible nodes.
5128	 * But it's BUG to call kmalloc() against offline node.
5129	 *
5130	 * TODO: this routine can waste much memory for nodes which will
5131	 *       never be onlined. It's better to use memory hotplug callback
5132	 *       function.
5133	 */
5134	if (!node_state(node, N_NORMAL_MEMORY))
5135		tmp = -1;
5136	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5137	if (!pn)
5138		return 1;
5139
5140	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5141						 GFP_KERNEL_ACCOUNT);
5142	if (!pn->lruvec_stat_local) {
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5148					       GFP_KERNEL_ACCOUNT);
5149	if (!pn->lruvec_stat_cpu) {
5150		free_percpu(pn->lruvec_stat_local);
5151		kfree(pn);
5152		return 1;
5153	}
5154
5155	lruvec_init(&pn->lruvec);
5156	pn->usage_in_excess = 0;
5157	pn->on_tree = false;
5158	pn->memcg = memcg;
5159
5160	memcg->nodeinfo[node] = pn;
5161	return 0;
5162}
5163
5164static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5165{
5166	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5167
5168	if (!pn)
5169		return;
5170
5171	free_percpu(pn->lruvec_stat_cpu);
5172	free_percpu(pn->lruvec_stat_local);
5173	kfree(pn);
5174}
5175
5176static void __mem_cgroup_free(struct mem_cgroup *memcg)
5177{
5178	int node;
5179
5180	for_each_node(node)
5181		free_mem_cgroup_per_node_info(memcg, node);
5182	free_percpu(memcg->vmstats_percpu);
5183	free_percpu(memcg->vmstats_local);
5184	kfree(memcg);
5185}
5186
5187static void mem_cgroup_free(struct mem_cgroup *memcg)
5188{
 
 
5189	memcg_wb_domain_exit(memcg);
5190	/*
5191	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5192	 * on parent's and all ancestor levels.
5193	 */
5194	memcg_flush_percpu_vmstats(memcg);
5195	memcg_flush_percpu_vmevents(memcg);
5196	__mem_cgroup_free(memcg);
5197}
5198
5199static struct mem_cgroup *mem_cgroup_alloc(void)
5200{
5201	struct mem_cgroup *memcg;
5202	unsigned int size;
5203	int node;
5204	int __maybe_unused i;
5205	long error = -ENOMEM;
5206
5207	size = sizeof(struct mem_cgroup);
5208	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5209
5210	memcg = kzalloc(size, GFP_KERNEL);
5211	if (!memcg)
5212		return ERR_PTR(error);
5213
5214	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5215				 1, MEM_CGROUP_ID_MAX,
5216				 GFP_KERNEL);
5217	if (memcg->id.id < 0) {
5218		error = memcg->id.id;
5219		goto fail;
5220	}
5221
5222	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5223						GFP_KERNEL_ACCOUNT);
5224	if (!memcg->vmstats_local)
5225		goto fail;
5226
5227	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5228						 GFP_KERNEL_ACCOUNT);
5229	if (!memcg->vmstats_percpu)
5230		goto fail;
5231
5232	for_each_node(node)
5233		if (alloc_mem_cgroup_per_node_info(memcg, node))
5234			goto fail;
5235
5236	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5237		goto fail;
5238
5239	INIT_WORK(&memcg->high_work, high_work_func);
5240	INIT_LIST_HEAD(&memcg->oom_notify);
5241	mutex_init(&memcg->thresholds_lock);
5242	spin_lock_init(&memcg->move_lock);
5243	vmpressure_init(&memcg->vmpressure);
5244	INIT_LIST_HEAD(&memcg->event_list);
5245	spin_lock_init(&memcg->event_list_lock);
5246	memcg->socket_pressure = jiffies;
5247#ifdef CONFIG_MEMCG_KMEM
5248	memcg->kmemcg_id = -1;
5249	INIT_LIST_HEAD(&memcg->objcg_list);
5250#endif
5251#ifdef CONFIG_CGROUP_WRITEBACK
5252	INIT_LIST_HEAD(&memcg->cgwb_list);
5253	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5254		memcg->cgwb_frn[i].done =
5255			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5256#endif
5257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5258	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5259	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5260	memcg->deferred_split_queue.split_queue_len = 0;
5261#endif
5262	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5263	return memcg;
5264fail:
5265	mem_cgroup_id_remove(memcg);
5266	__mem_cgroup_free(memcg);
5267	return ERR_PTR(error);
5268}
5269
5270static struct cgroup_subsys_state * __ref
5271mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5272{
5273	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5274	struct mem_cgroup *memcg;
5275	long error = -ENOMEM;
5276
5277	memalloc_use_memcg(parent);
5278	memcg = mem_cgroup_alloc();
5279	memalloc_unuse_memcg();
5280	if (IS_ERR(memcg))
5281		return ERR_CAST(memcg);
5282
5283	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5284	memcg->soft_limit = PAGE_COUNTER_MAX;
5285	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5286	if (parent) {
5287		memcg->swappiness = mem_cgroup_swappiness(parent);
5288		memcg->oom_kill_disable = parent->oom_kill_disable;
5289	}
5290	if (parent && parent->use_hierarchy) {
5291		memcg->use_hierarchy = true;
5292		page_counter_init(&memcg->memory, &parent->memory);
5293		page_counter_init(&memcg->swap, &parent->swap);
5294		page_counter_init(&memcg->memsw, &parent->memsw);
5295		page_counter_init(&memcg->kmem, &parent->kmem);
5296		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5297	} else {
5298		page_counter_init(&memcg->memory, NULL);
5299		page_counter_init(&memcg->swap, NULL);
5300		page_counter_init(&memcg->memsw, NULL);
5301		page_counter_init(&memcg->kmem, NULL);
5302		page_counter_init(&memcg->tcpmem, NULL);
5303		/*
5304		 * Deeper hierachy with use_hierarchy == false doesn't make
5305		 * much sense so let cgroup subsystem know about this
5306		 * unfortunate state in our controller.
5307		 */
5308		if (parent != root_mem_cgroup)
5309			memory_cgrp_subsys.broken_hierarchy = true;
5310	}
5311
5312	/* The following stuff does not apply to the root */
5313	if (!parent) {
5314		root_mem_cgroup = memcg;
5315		return &memcg->css;
5316	}
5317
 
5318	error = memcg_online_kmem(memcg);
5319	if (error)
5320		goto fail;
5321
5322	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5323		static_branch_inc(&memcg_sockets_enabled_key);
5324
5325	return &memcg->css;
5326fail:
5327	mem_cgroup_id_remove(memcg);
5328	mem_cgroup_free(memcg);
5329	return ERR_PTR(error);
5330}
5331
5332static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5333{
5334	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335
5336	/*
5337	 * A memcg must be visible for memcg_expand_shrinker_maps()
5338	 * by the time the maps are allocated. So, we allocate maps
5339	 * here, when for_each_mem_cgroup() can't skip it.
5340	 */
5341	if (memcg_alloc_shrinker_maps(memcg)) {
5342		mem_cgroup_id_remove(memcg);
5343		return -ENOMEM;
5344	}
5345
5346	/* Online state pins memcg ID, memcg ID pins CSS */
5347	refcount_set(&memcg->id.ref, 1);
5348	css_get(css);
5349	return 0;
5350}
5351
5352static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5353{
5354	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355	struct mem_cgroup_event *event, *tmp;
5356
5357	/*
5358	 * Unregister events and notify userspace.
5359	 * Notify userspace about cgroup removing only after rmdir of cgroup
5360	 * directory to avoid race between userspace and kernelspace.
5361	 */
5362	spin_lock(&memcg->event_list_lock);
5363	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5364		list_del_init(&event->list);
5365		schedule_work(&event->remove);
5366	}
5367	spin_unlock(&memcg->event_list_lock);
5368
5369	page_counter_set_min(&memcg->memory, 0);
5370	page_counter_set_low(&memcg->memory, 0);
5371
5372	memcg_offline_kmem(memcg);
 
5373	wb_memcg_offline(memcg);
5374
5375	drain_all_stock(memcg);
5376
5377	mem_cgroup_id_put(memcg);
5378}
5379
5380static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5381{
5382	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384	invalidate_reclaim_iterators(memcg);
5385}
5386
5387static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5388{
5389	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390	int __maybe_unused i;
5391
5392#ifdef CONFIG_CGROUP_WRITEBACK
5393	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5394		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5395#endif
5396	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5397		static_branch_dec(&memcg_sockets_enabled_key);
5398
5399	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5400		static_branch_dec(&memcg_sockets_enabled_key);
5401
5402	vmpressure_cleanup(&memcg->vmpressure);
5403	cancel_work_sync(&memcg->high_work);
5404	mem_cgroup_remove_from_trees(memcg);
5405	memcg_free_shrinker_maps(memcg);
5406	memcg_free_kmem(memcg);
5407	mem_cgroup_free(memcg);
5408}
5409
5410/**
5411 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5412 * @css: the target css
5413 *
5414 * Reset the states of the mem_cgroup associated with @css.  This is
5415 * invoked when the userland requests disabling on the default hierarchy
5416 * but the memcg is pinned through dependency.  The memcg should stop
5417 * applying policies and should revert to the vanilla state as it may be
5418 * made visible again.
5419 *
5420 * The current implementation only resets the essential configurations.
5421 * This needs to be expanded to cover all the visible parts.
5422 */
5423static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5424{
5425	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426
5427	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5428	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5429	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5430	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5431	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5432	page_counter_set_min(&memcg->memory, 0);
5433	page_counter_set_low(&memcg->memory, 0);
5434	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5435	memcg->soft_limit = PAGE_COUNTER_MAX;
5436	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5437	memcg_wb_domain_size_changed(memcg);
5438}
5439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5440#ifdef CONFIG_MMU
5441/* Handlers for move charge at task migration. */
5442static int mem_cgroup_do_precharge(unsigned long count)
5443{
5444	int ret;
5445
5446	/* Try a single bulk charge without reclaim first, kswapd may wake */
5447	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5448	if (!ret) {
5449		mc.precharge += count;
5450		return ret;
5451	}
5452
5453	/* Try charges one by one with reclaim, but do not retry */
5454	while (count--) {
5455		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5456		if (ret)
5457			return ret;
5458		mc.precharge++;
5459		cond_resched();
5460	}
5461	return 0;
5462}
5463
5464union mc_target {
5465	struct page	*page;
5466	swp_entry_t	ent;
5467};
5468
5469enum mc_target_type {
5470	MC_TARGET_NONE = 0,
5471	MC_TARGET_PAGE,
5472	MC_TARGET_SWAP,
5473	MC_TARGET_DEVICE,
5474};
5475
5476static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5477						unsigned long addr, pte_t ptent)
5478{
5479	struct page *page = vm_normal_page(vma, addr, ptent);
5480
5481	if (!page || !page_mapped(page))
5482		return NULL;
5483	if (PageAnon(page)) {
5484		if (!(mc.flags & MOVE_ANON))
5485			return NULL;
5486	} else {
5487		if (!(mc.flags & MOVE_FILE))
5488			return NULL;
5489	}
5490	if (!get_page_unless_zero(page))
5491		return NULL;
5492
5493	return page;
5494}
5495
5496#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5497static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5498			pte_t ptent, swp_entry_t *entry)
5499{
5500	struct page *page = NULL;
5501	swp_entry_t ent = pte_to_swp_entry(ptent);
5502
5503	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5504		return NULL;
5505
5506	/*
5507	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5508	 * a device and because they are not accessible by CPU they are store
5509	 * as special swap entry in the CPU page table.
5510	 */
5511	if (is_device_private_entry(ent)) {
5512		page = device_private_entry_to_page(ent);
5513		/*
5514		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5515		 * a refcount of 1 when free (unlike normal page)
5516		 */
5517		if (!page_ref_add_unless(page, 1, 1))
5518			return NULL;
5519		return page;
5520	}
5521
 
 
 
5522	/*
5523	 * Because lookup_swap_cache() updates some statistics counter,
5524	 * we call find_get_page() with swapper_space directly.
5525	 */
5526	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527	entry->val = ent.val;
5528
5529	return page;
5530}
5531#else
5532static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533			pte_t ptent, swp_entry_t *entry)
5534{
5535	return NULL;
5536}
5537#endif
5538
5539static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5540			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5541{
5542	struct page *page = NULL;
5543	struct address_space *mapping;
5544	pgoff_t pgoff;
5545
5546	if (!vma->vm_file) /* anonymous vma */
5547		return NULL;
5548	if (!(mc.flags & MOVE_FILE))
5549		return NULL;
5550
5551	mapping = vma->vm_file->f_mapping;
5552	pgoff = linear_page_index(vma, addr);
5553
5554	/* page is moved even if it's not RSS of this task(page-faulted). */
5555#ifdef CONFIG_SWAP
5556	/* shmem/tmpfs may report page out on swap: account for that too. */
5557	if (shmem_mapping(mapping)) {
5558		page = find_get_entry(mapping, pgoff);
5559		if (xa_is_value(page)) {
5560			swp_entry_t swp = radix_to_swp_entry(page);
5561			*entry = swp;
5562			page = find_get_page(swap_address_space(swp),
5563					     swp_offset(swp));
5564		}
5565	} else
5566		page = find_get_page(mapping, pgoff);
5567#else
5568	page = find_get_page(mapping, pgoff);
5569#endif
5570	return page;
5571}
5572
5573/**
5574 * mem_cgroup_move_account - move account of the page
5575 * @page: the page
5576 * @compound: charge the page as compound or small page
5577 * @from: mem_cgroup which the page is moved from.
5578 * @to:	mem_cgroup which the page is moved to. @from != @to.
5579 *
5580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5581 *
5582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5583 * from old cgroup.
5584 */
5585static int mem_cgroup_move_account(struct page *page,
5586				   bool compound,
5587				   struct mem_cgroup *from,
5588				   struct mem_cgroup *to)
5589{
5590	struct lruvec *from_vec, *to_vec;
5591	struct pglist_data *pgdat;
5592	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5593	int ret;
5594
5595	VM_BUG_ON(from == to);
5596	VM_BUG_ON_PAGE(PageLRU(page), page);
5597	VM_BUG_ON(compound && !PageTransHuge(page));
5598
5599	/*
5600	 * Prevent mem_cgroup_migrate() from looking at
5601	 * page->mem_cgroup of its source page while we change it.
5602	 */
5603	ret = -EBUSY;
5604	if (!trylock_page(page))
5605		goto out;
5606
5607	ret = -EINVAL;
5608	if (page->mem_cgroup != from)
5609		goto out_unlock;
5610
5611	pgdat = page_pgdat(page);
5612	from_vec = mem_cgroup_lruvec(from, pgdat);
5613	to_vec = mem_cgroup_lruvec(to, pgdat);
5614
5615	lock_page_memcg(page);
5616
5617	if (PageAnon(page)) {
5618		if (page_mapped(page)) {
5619			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5620			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621			if (PageTransHuge(page)) {
5622				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5623						   -nr_pages);
5624				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5625						   nr_pages);
5626			}
5627
5628		}
5629	} else {
5630		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5631		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632
5633		if (PageSwapBacked(page)) {
5634			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5635			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5636		}
5637
5638		if (page_mapped(page)) {
5639			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5640			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5641		}
5642
5643		if (PageDirty(page)) {
5644			struct address_space *mapping = page_mapping(page);
5645
5646			if (mapping_cap_account_dirty(mapping)) {
5647				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648						   -nr_pages);
5649				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5650						   nr_pages);
5651			}
5652		}
5653	}
5654
5655	if (PageWriteback(page)) {
5656		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5657		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5658	}
5659
5660	/*
5661	 * All state has been migrated, let's switch to the new memcg.
5662	 *
5663	 * It is safe to change page->mem_cgroup here because the page
5664	 * is referenced, charged, isolated, and locked: we can't race
5665	 * with (un)charging, migration, LRU putback, or anything else
5666	 * that would rely on a stable page->mem_cgroup.
5667	 *
5668	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5669	 * to save space. As soon as we switch page->mem_cgroup to a
5670	 * new memcg that isn't locked, the above state can change
5671	 * concurrently again. Make sure we're truly done with it.
5672	 */
5673	smp_mb();
5674
5675	css_get(&to->css);
5676	css_put(&from->css);
5677
5678	page->mem_cgroup = to;
5679
5680	__unlock_page_memcg(from);
5681
5682	ret = 0;
5683
5684	local_irq_disable();
5685	mem_cgroup_charge_statistics(to, page, nr_pages);
5686	memcg_check_events(to, page);
5687	mem_cgroup_charge_statistics(from, page, -nr_pages);
5688	memcg_check_events(from, page);
5689	local_irq_enable();
5690out_unlock:
5691	unlock_page(page);
5692out:
5693	return ret;
5694}
5695
5696/**
5697 * get_mctgt_type - get target type of moving charge
5698 * @vma: the vma the pte to be checked belongs
5699 * @addr: the address corresponding to the pte to be checked
5700 * @ptent: the pte to be checked
5701 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5702 *
5703 * Returns
5704 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5705 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5706 *     move charge. if @target is not NULL, the page is stored in target->page
5707 *     with extra refcnt got(Callers should handle it).
5708 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5709 *     target for charge migration. if @target is not NULL, the entry is stored
5710 *     in target->ent.
5711 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5712 *     (so ZONE_DEVICE page and thus not on the lru).
5713 *     For now we such page is charge like a regular page would be as for all
5714 *     intent and purposes it is just special memory taking the place of a
5715 *     regular page.
5716 *
5717 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5718 *
5719 * Called with pte lock held.
5720 */
5721
5722static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5723		unsigned long addr, pte_t ptent, union mc_target *target)
5724{
5725	struct page *page = NULL;
5726	enum mc_target_type ret = MC_TARGET_NONE;
5727	swp_entry_t ent = { .val = 0 };
5728
5729	if (pte_present(ptent))
5730		page = mc_handle_present_pte(vma, addr, ptent);
5731	else if (is_swap_pte(ptent))
5732		page = mc_handle_swap_pte(vma, ptent, &ent);
5733	else if (pte_none(ptent))
5734		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5735
5736	if (!page && !ent.val)
5737		return ret;
5738	if (page) {
5739		/*
5740		 * Do only loose check w/o serialization.
5741		 * mem_cgroup_move_account() checks the page is valid or
5742		 * not under LRU exclusion.
5743		 */
5744		if (page->mem_cgroup == mc.from) {
5745			ret = MC_TARGET_PAGE;
5746			if (is_device_private_page(page))
5747				ret = MC_TARGET_DEVICE;
5748			if (target)
5749				target->page = page;
5750		}
5751		if (!ret || !target)
5752			put_page(page);
5753	}
5754	/*
5755	 * There is a swap entry and a page doesn't exist or isn't charged.
5756	 * But we cannot move a tail-page in a THP.
5757	 */
5758	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5759	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5760		ret = MC_TARGET_SWAP;
5761		if (target)
5762			target->ent = ent;
5763	}
5764	return ret;
5765}
5766
5767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768/*
5769 * We don't consider PMD mapped swapping or file mapped pages because THP does
5770 * not support them for now.
5771 * Caller should make sure that pmd_trans_huge(pmd) is true.
5772 */
5773static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774		unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776	struct page *page = NULL;
5777	enum mc_target_type ret = MC_TARGET_NONE;
5778
5779	if (unlikely(is_swap_pmd(pmd))) {
5780		VM_BUG_ON(thp_migration_supported() &&
5781				  !is_pmd_migration_entry(pmd));
5782		return ret;
5783	}
5784	page = pmd_page(pmd);
5785	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5786	if (!(mc.flags & MOVE_ANON))
5787		return ret;
5788	if (page->mem_cgroup == mc.from) {
5789		ret = MC_TARGET_PAGE;
5790		if (target) {
5791			get_page(page);
5792			target->page = page;
5793		}
5794	}
5795	return ret;
5796}
5797#else
5798static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799		unsigned long addr, pmd_t pmd, union mc_target *target)
5800{
5801	return MC_TARGET_NONE;
5802}
5803#endif
5804
5805static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5806					unsigned long addr, unsigned long end,
5807					struct mm_walk *walk)
5808{
5809	struct vm_area_struct *vma = walk->vma;
5810	pte_t *pte;
5811	spinlock_t *ptl;
5812
5813	ptl = pmd_trans_huge_lock(pmd, vma);
5814	if (ptl) {
5815		/*
5816		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5817		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5818		 * this might change.
5819		 */
5820		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5821			mc.precharge += HPAGE_PMD_NR;
5822		spin_unlock(ptl);
5823		return 0;
5824	}
5825
5826	if (pmd_trans_unstable(pmd))
5827		return 0;
5828	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5829	for (; addr != end; pte++, addr += PAGE_SIZE)
5830		if (get_mctgt_type(vma, addr, *pte, NULL))
5831			mc.precharge++;	/* increment precharge temporarily */
5832	pte_unmap_unlock(pte - 1, ptl);
5833	cond_resched();
5834
5835	return 0;
5836}
5837
5838static const struct mm_walk_ops precharge_walk_ops = {
5839	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5840};
5841
5842static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843{
5844	unsigned long precharge;
5845
5846	mmap_read_lock(mm);
5847	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5848	mmap_read_unlock(mm);
5849
5850	precharge = mc.precharge;
5851	mc.precharge = 0;
5852
5853	return precharge;
5854}
5855
5856static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857{
5858	unsigned long precharge = mem_cgroup_count_precharge(mm);
5859
5860	VM_BUG_ON(mc.moving_task);
5861	mc.moving_task = current;
5862	return mem_cgroup_do_precharge(precharge);
5863}
5864
5865/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5866static void __mem_cgroup_clear_mc(void)
5867{
5868	struct mem_cgroup *from = mc.from;
5869	struct mem_cgroup *to = mc.to;
5870
5871	/* we must uncharge all the leftover precharges from mc.to */
5872	if (mc.precharge) {
5873		cancel_charge(mc.to, mc.precharge);
5874		mc.precharge = 0;
5875	}
5876	/*
5877	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5878	 * we must uncharge here.
5879	 */
5880	if (mc.moved_charge) {
5881		cancel_charge(mc.from, mc.moved_charge);
5882		mc.moved_charge = 0;
5883	}
5884	/* we must fixup refcnts and charges */
5885	if (mc.moved_swap) {
5886		/* uncharge swap account from the old cgroup */
5887		if (!mem_cgroup_is_root(mc.from))
5888			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889
5890		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5891
5892		/*
5893		 * we charged both to->memory and to->memsw, so we
5894		 * should uncharge to->memory.
5895		 */
5896		if (!mem_cgroup_is_root(mc.to))
5897			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5898
5899		mc.moved_swap = 0;
5900	}
5901	memcg_oom_recover(from);
5902	memcg_oom_recover(to);
5903	wake_up_all(&mc.waitq);
5904}
5905
5906static void mem_cgroup_clear_mc(void)
5907{
5908	struct mm_struct *mm = mc.mm;
5909
5910	/*
5911	 * we must clear moving_task before waking up waiters at the end of
5912	 * task migration.
5913	 */
5914	mc.moving_task = NULL;
5915	__mem_cgroup_clear_mc();
5916	spin_lock(&mc.lock);
5917	mc.from = NULL;
5918	mc.to = NULL;
5919	mc.mm = NULL;
5920	spin_unlock(&mc.lock);
5921
5922	mmput(mm);
5923}
5924
5925static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926{
5927	struct cgroup_subsys_state *css;
5928	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5929	struct mem_cgroup *from;
5930	struct task_struct *leader, *p;
5931	struct mm_struct *mm;
5932	unsigned long move_flags;
5933	int ret = 0;
5934
5935	/* charge immigration isn't supported on the default hierarchy */
5936	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937		return 0;
5938
5939	/*
5940	 * Multi-process migrations only happen on the default hierarchy
5941	 * where charge immigration is not used.  Perform charge
5942	 * immigration if @tset contains a leader and whine if there are
5943	 * multiple.
5944	 */
5945	p = NULL;
5946	cgroup_taskset_for_each_leader(leader, css, tset) {
5947		WARN_ON_ONCE(p);
5948		p = leader;
5949		memcg = mem_cgroup_from_css(css);
5950	}
5951	if (!p)
5952		return 0;
5953
5954	/*
5955	 * We are now commited to this value whatever it is. Changes in this
5956	 * tunable will only affect upcoming migrations, not the current one.
5957	 * So we need to save it, and keep it going.
5958	 */
5959	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5960	if (!move_flags)
5961		return 0;
5962
5963	from = mem_cgroup_from_task(p);
5964
5965	VM_BUG_ON(from == memcg);
5966
5967	mm = get_task_mm(p);
5968	if (!mm)
5969		return 0;
5970	/* We move charges only when we move a owner of the mm */
5971	if (mm->owner == p) {
5972		VM_BUG_ON(mc.from);
5973		VM_BUG_ON(mc.to);
5974		VM_BUG_ON(mc.precharge);
5975		VM_BUG_ON(mc.moved_charge);
5976		VM_BUG_ON(mc.moved_swap);
5977
5978		spin_lock(&mc.lock);
5979		mc.mm = mm;
5980		mc.from = from;
5981		mc.to = memcg;
5982		mc.flags = move_flags;
5983		spin_unlock(&mc.lock);
5984		/* We set mc.moving_task later */
5985
5986		ret = mem_cgroup_precharge_mc(mm);
5987		if (ret)
5988			mem_cgroup_clear_mc();
5989	} else {
5990		mmput(mm);
5991	}
5992	return ret;
5993}
5994
5995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5996{
5997	if (mc.to)
5998		mem_cgroup_clear_mc();
5999}
6000
6001static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002				unsigned long addr, unsigned long end,
6003				struct mm_walk *walk)
6004{
6005	int ret = 0;
6006	struct vm_area_struct *vma = walk->vma;
6007	pte_t *pte;
6008	spinlock_t *ptl;
6009	enum mc_target_type target_type;
6010	union mc_target target;
6011	struct page *page;
6012
6013	ptl = pmd_trans_huge_lock(pmd, vma);
6014	if (ptl) {
6015		if (mc.precharge < HPAGE_PMD_NR) {
6016			spin_unlock(ptl);
6017			return 0;
6018		}
6019		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6020		if (target_type == MC_TARGET_PAGE) {
6021			page = target.page;
6022			if (!isolate_lru_page(page)) {
6023				if (!mem_cgroup_move_account(page, true,
6024							     mc.from, mc.to)) {
6025					mc.precharge -= HPAGE_PMD_NR;
6026					mc.moved_charge += HPAGE_PMD_NR;
6027				}
6028				putback_lru_page(page);
6029			}
6030			put_page(page);
6031		} else if (target_type == MC_TARGET_DEVICE) {
6032			page = target.page;
6033			if (!mem_cgroup_move_account(page, true,
6034						     mc.from, mc.to)) {
6035				mc.precharge -= HPAGE_PMD_NR;
6036				mc.moved_charge += HPAGE_PMD_NR;
6037			}
6038			put_page(page);
6039		}
6040		spin_unlock(ptl);
6041		return 0;
6042	}
6043
6044	if (pmd_trans_unstable(pmd))
6045		return 0;
6046retry:
6047	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6048	for (; addr != end; addr += PAGE_SIZE) {
6049		pte_t ptent = *(pte++);
6050		bool device = false;
6051		swp_entry_t ent;
6052
6053		if (!mc.precharge)
6054			break;
6055
6056		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6057		case MC_TARGET_DEVICE:
6058			device = true;
6059			fallthrough;
6060		case MC_TARGET_PAGE:
6061			page = target.page;
6062			/*
6063			 * We can have a part of the split pmd here. Moving it
6064			 * can be done but it would be too convoluted so simply
6065			 * ignore such a partial THP and keep it in original
6066			 * memcg. There should be somebody mapping the head.
6067			 */
6068			if (PageTransCompound(page))
6069				goto put;
6070			if (!device && isolate_lru_page(page))
6071				goto put;
6072			if (!mem_cgroup_move_account(page, false,
6073						mc.from, mc.to)) {
6074				mc.precharge--;
6075				/* we uncharge from mc.from later. */
6076				mc.moved_charge++;
6077			}
6078			if (!device)
6079				putback_lru_page(page);
6080put:			/* get_mctgt_type() gets the page */
6081			put_page(page);
6082			break;
6083		case MC_TARGET_SWAP:
6084			ent = target.ent;
6085			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086				mc.precharge--;
6087				mem_cgroup_id_get_many(mc.to, 1);
6088				/* we fixup other refcnts and charges later. */
6089				mc.moved_swap++;
6090			}
6091			break;
6092		default:
6093			break;
6094		}
6095	}
6096	pte_unmap_unlock(pte - 1, ptl);
6097	cond_resched();
6098
6099	if (addr != end) {
6100		/*
6101		 * We have consumed all precharges we got in can_attach().
6102		 * We try charge one by one, but don't do any additional
6103		 * charges to mc.to if we have failed in charge once in attach()
6104		 * phase.
6105		 */
6106		ret = mem_cgroup_do_precharge(1);
6107		if (!ret)
6108			goto retry;
6109	}
6110
6111	return ret;
6112}
6113
6114static const struct mm_walk_ops charge_walk_ops = {
6115	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6116};
6117
6118static void mem_cgroup_move_charge(void)
6119{
6120	lru_add_drain_all();
6121	/*
6122	 * Signal lock_page_memcg() to take the memcg's move_lock
6123	 * while we're moving its pages to another memcg. Then wait
6124	 * for already started RCU-only updates to finish.
6125	 */
6126	atomic_inc(&mc.from->moving_account);
6127	synchronize_rcu();
6128retry:
6129	if (unlikely(!mmap_read_trylock(mc.mm))) {
6130		/*
6131		 * Someone who are holding the mmap_lock might be waiting in
6132		 * waitq. So we cancel all extra charges, wake up all waiters,
6133		 * and retry. Because we cancel precharges, we might not be able
6134		 * to move enough charges, but moving charge is a best-effort
6135		 * feature anyway, so it wouldn't be a big problem.
6136		 */
6137		__mem_cgroup_clear_mc();
6138		cond_resched();
6139		goto retry;
6140	}
6141	/*
6142	 * When we have consumed all precharges and failed in doing
6143	 * additional charge, the page walk just aborts.
6144	 */
6145	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6146			NULL);
6147
6148	mmap_read_unlock(mc.mm);
6149	atomic_dec(&mc.from->moving_account);
6150}
6151
6152static void mem_cgroup_move_task(void)
6153{
6154	if (mc.to) {
6155		mem_cgroup_move_charge();
6156		mem_cgroup_clear_mc();
6157	}
6158}
6159#else	/* !CONFIG_MMU */
6160static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6161{
6162	return 0;
6163}
6164static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6165{
6166}
6167static void mem_cgroup_move_task(void)
6168{
6169}
6170#endif
6171
6172/*
6173 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6174 * to verify whether we're attached to the default hierarchy on each mount
6175 * attempt.
6176 */
6177static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6178{
6179	/*
6180	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6181	 * guarantees that @root doesn't have any children, so turning it
6182	 * on for the root memcg is enough.
6183	 */
6184	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6185		root_mem_cgroup->use_hierarchy = true;
6186	else
6187		root_mem_cgroup->use_hierarchy = false;
6188}
6189
6190static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6191{
6192	if (value == PAGE_COUNTER_MAX)
6193		seq_puts(m, "max\n");
6194	else
6195		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6196
6197	return 0;
6198}
6199
6200static u64 memory_current_read(struct cgroup_subsys_state *css,
6201			       struct cftype *cft)
6202{
6203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6204
6205	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6206}
6207
6208static int memory_min_show(struct seq_file *m, void *v)
6209{
6210	return seq_puts_memcg_tunable(m,
6211		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6212}
6213
6214static ssize_t memory_min_write(struct kernfs_open_file *of,
6215				char *buf, size_t nbytes, loff_t off)
6216{
6217	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218	unsigned long min;
6219	int err;
6220
6221	buf = strstrip(buf);
6222	err = page_counter_memparse(buf, "max", &min);
6223	if (err)
6224		return err;
6225
6226	page_counter_set_min(&memcg->memory, min);
6227
6228	return nbytes;
6229}
6230
6231static int memory_low_show(struct seq_file *m, void *v)
6232{
6233	return seq_puts_memcg_tunable(m,
6234		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6235}
6236
6237static ssize_t memory_low_write(struct kernfs_open_file *of,
6238				char *buf, size_t nbytes, loff_t off)
6239{
6240	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241	unsigned long low;
6242	int err;
6243
6244	buf = strstrip(buf);
6245	err = page_counter_memparse(buf, "max", &low);
6246	if (err)
6247		return err;
6248
6249	page_counter_set_low(&memcg->memory, low);
6250
6251	return nbytes;
6252}
6253
6254static int memory_high_show(struct seq_file *m, void *v)
6255{
6256	return seq_puts_memcg_tunable(m,
6257		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6258}
6259
6260static ssize_t memory_high_write(struct kernfs_open_file *of,
6261				 char *buf, size_t nbytes, loff_t off)
6262{
6263	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6265	bool drained = false;
6266	unsigned long high;
6267	int err;
6268
6269	buf = strstrip(buf);
6270	err = page_counter_memparse(buf, "max", &high);
6271	if (err)
6272		return err;
6273
 
 
6274	for (;;) {
6275		unsigned long nr_pages = page_counter_read(&memcg->memory);
6276		unsigned long reclaimed;
6277
6278		if (nr_pages <= high)
6279			break;
6280
6281		if (signal_pending(current))
6282			break;
6283
6284		if (!drained) {
6285			drain_all_stock(memcg);
6286			drained = true;
6287			continue;
6288		}
6289
6290		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6291							 GFP_KERNEL, true);
6292
6293		if (!reclaimed && !nr_retries--)
6294			break;
6295	}
6296
6297	page_counter_set_high(&memcg->memory, high);
6298
6299	memcg_wb_domain_size_changed(memcg);
6300
6301	return nbytes;
6302}
6303
6304static int memory_max_show(struct seq_file *m, void *v)
6305{
6306	return seq_puts_memcg_tunable(m,
6307		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6308}
6309
6310static ssize_t memory_max_write(struct kernfs_open_file *of,
6311				char *buf, size_t nbytes, loff_t off)
6312{
6313	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315	bool drained = false;
6316	unsigned long max;
6317	int err;
6318
6319	buf = strstrip(buf);
6320	err = page_counter_memparse(buf, "max", &max);
6321	if (err)
6322		return err;
6323
6324	xchg(&memcg->memory.max, max);
6325
6326	for (;;) {
6327		unsigned long nr_pages = page_counter_read(&memcg->memory);
6328
6329		if (nr_pages <= max)
6330			break;
6331
6332		if (signal_pending(current))
6333			break;
6334
6335		if (!drained) {
6336			drain_all_stock(memcg);
6337			drained = true;
6338			continue;
6339		}
6340
6341		if (nr_reclaims) {
6342			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6343							  GFP_KERNEL, true))
6344				nr_reclaims--;
6345			continue;
6346		}
6347
6348		memcg_memory_event(memcg, MEMCG_OOM);
6349		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6350			break;
6351	}
6352
6353	memcg_wb_domain_size_changed(memcg);
6354	return nbytes;
6355}
6356
6357static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6358{
6359	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6360	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6361	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6362	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6363	seq_printf(m, "oom_kill %lu\n",
6364		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6365}
6366
6367static int memory_events_show(struct seq_file *m, void *v)
6368{
6369	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6370
6371	__memory_events_show(m, memcg->memory_events);
6372	return 0;
6373}
6374
6375static int memory_events_local_show(struct seq_file *m, void *v)
6376{
6377	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6378
6379	__memory_events_show(m, memcg->memory_events_local);
6380	return 0;
6381}
6382
6383static int memory_stat_show(struct seq_file *m, void *v)
6384{
6385	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386	char *buf;
6387
6388	buf = memory_stat_format(memcg);
6389	if (!buf)
6390		return -ENOMEM;
6391	seq_puts(m, buf);
6392	kfree(buf);
6393	return 0;
6394}
6395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6396static int memory_oom_group_show(struct seq_file *m, void *v)
6397{
6398	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6399
6400	seq_printf(m, "%d\n", memcg->oom_group);
6401
6402	return 0;
6403}
6404
6405static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6406				      char *buf, size_t nbytes, loff_t off)
6407{
6408	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6409	int ret, oom_group;
6410
6411	buf = strstrip(buf);
6412	if (!buf)
6413		return -EINVAL;
6414
6415	ret = kstrtoint(buf, 0, &oom_group);
6416	if (ret)
6417		return ret;
6418
6419	if (oom_group != 0 && oom_group != 1)
6420		return -EINVAL;
6421
6422	memcg->oom_group = oom_group;
6423
6424	return nbytes;
6425}
6426
6427static struct cftype memory_files[] = {
6428	{
6429		.name = "current",
6430		.flags = CFTYPE_NOT_ON_ROOT,
6431		.read_u64 = memory_current_read,
6432	},
6433	{
6434		.name = "min",
6435		.flags = CFTYPE_NOT_ON_ROOT,
6436		.seq_show = memory_min_show,
6437		.write = memory_min_write,
6438	},
6439	{
6440		.name = "low",
6441		.flags = CFTYPE_NOT_ON_ROOT,
6442		.seq_show = memory_low_show,
6443		.write = memory_low_write,
6444	},
6445	{
6446		.name = "high",
6447		.flags = CFTYPE_NOT_ON_ROOT,
6448		.seq_show = memory_high_show,
6449		.write = memory_high_write,
6450	},
6451	{
6452		.name = "max",
6453		.flags = CFTYPE_NOT_ON_ROOT,
6454		.seq_show = memory_max_show,
6455		.write = memory_max_write,
6456	},
6457	{
6458		.name = "events",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.file_offset = offsetof(struct mem_cgroup, events_file),
6461		.seq_show = memory_events_show,
6462	},
6463	{
6464		.name = "events.local",
6465		.flags = CFTYPE_NOT_ON_ROOT,
6466		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6467		.seq_show = memory_events_local_show,
6468	},
6469	{
6470		.name = "stat",
6471		.seq_show = memory_stat_show,
6472	},
 
 
 
 
 
 
6473	{
6474		.name = "oom.group",
6475		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6476		.seq_show = memory_oom_group_show,
6477		.write = memory_oom_group_write,
6478	},
6479	{ }	/* terminate */
6480};
6481
6482struct cgroup_subsys memory_cgrp_subsys = {
6483	.css_alloc = mem_cgroup_css_alloc,
6484	.css_online = mem_cgroup_css_online,
6485	.css_offline = mem_cgroup_css_offline,
6486	.css_released = mem_cgroup_css_released,
6487	.css_free = mem_cgroup_css_free,
6488	.css_reset = mem_cgroup_css_reset,
 
6489	.can_attach = mem_cgroup_can_attach,
6490	.cancel_attach = mem_cgroup_cancel_attach,
6491	.post_attach = mem_cgroup_move_task,
6492	.bind = mem_cgroup_bind,
6493	.dfl_cftypes = memory_files,
6494	.legacy_cftypes = mem_cgroup_legacy_files,
6495	.early_init = 0,
6496};
6497
6498/*
6499 * This function calculates an individual cgroup's effective
6500 * protection which is derived from its own memory.min/low, its
6501 * parent's and siblings' settings, as well as the actual memory
6502 * distribution in the tree.
6503 *
6504 * The following rules apply to the effective protection values:
6505 *
6506 * 1. At the first level of reclaim, effective protection is equal to
6507 *    the declared protection in memory.min and memory.low.
6508 *
6509 * 2. To enable safe delegation of the protection configuration, at
6510 *    subsequent levels the effective protection is capped to the
6511 *    parent's effective protection.
6512 *
6513 * 3. To make complex and dynamic subtrees easier to configure, the
6514 *    user is allowed to overcommit the declared protection at a given
6515 *    level. If that is the case, the parent's effective protection is
6516 *    distributed to the children in proportion to how much protection
6517 *    they have declared and how much of it they are utilizing.
6518 *
6519 *    This makes distribution proportional, but also work-conserving:
6520 *    if one cgroup claims much more protection than it uses memory,
6521 *    the unused remainder is available to its siblings.
6522 *
6523 * 4. Conversely, when the declared protection is undercommitted at a
6524 *    given level, the distribution of the larger parental protection
6525 *    budget is NOT proportional. A cgroup's protection from a sibling
6526 *    is capped to its own memory.min/low setting.
6527 *
6528 * 5. However, to allow protecting recursive subtrees from each other
6529 *    without having to declare each individual cgroup's fixed share
6530 *    of the ancestor's claim to protection, any unutilized -
6531 *    "floating" - protection from up the tree is distributed in
6532 *    proportion to each cgroup's *usage*. This makes the protection
6533 *    neutral wrt sibling cgroups and lets them compete freely over
6534 *    the shared parental protection budget, but it protects the
6535 *    subtree as a whole from neighboring subtrees.
6536 *
6537 * Note that 4. and 5. are not in conflict: 4. is about protecting
6538 * against immediate siblings whereas 5. is about protecting against
6539 * neighboring subtrees.
6540 */
6541static unsigned long effective_protection(unsigned long usage,
6542					  unsigned long parent_usage,
6543					  unsigned long setting,
6544					  unsigned long parent_effective,
6545					  unsigned long siblings_protected)
6546{
6547	unsigned long protected;
6548	unsigned long ep;
6549
6550	protected = min(usage, setting);
6551	/*
6552	 * If all cgroups at this level combined claim and use more
6553	 * protection then what the parent affords them, distribute
6554	 * shares in proportion to utilization.
6555	 *
6556	 * We are using actual utilization rather than the statically
6557	 * claimed protection in order to be work-conserving: claimed
6558	 * but unused protection is available to siblings that would
6559	 * otherwise get a smaller chunk than what they claimed.
6560	 */
6561	if (siblings_protected > parent_effective)
6562		return protected * parent_effective / siblings_protected;
6563
6564	/*
6565	 * Ok, utilized protection of all children is within what the
6566	 * parent affords them, so we know whatever this child claims
6567	 * and utilizes is effectively protected.
6568	 *
6569	 * If there is unprotected usage beyond this value, reclaim
6570	 * will apply pressure in proportion to that amount.
6571	 *
6572	 * If there is unutilized protection, the cgroup will be fully
6573	 * shielded from reclaim, but we do return a smaller value for
6574	 * protection than what the group could enjoy in theory. This
6575	 * is okay. With the overcommit distribution above, effective
6576	 * protection is always dependent on how memory is actually
6577	 * consumed among the siblings anyway.
6578	 */
6579	ep = protected;
6580
6581	/*
6582	 * If the children aren't claiming (all of) the protection
6583	 * afforded to them by the parent, distribute the remainder in
6584	 * proportion to the (unprotected) memory of each cgroup. That
6585	 * way, cgroups that aren't explicitly prioritized wrt each
6586	 * other compete freely over the allowance, but they are
6587	 * collectively protected from neighboring trees.
6588	 *
6589	 * We're using unprotected memory for the weight so that if
6590	 * some cgroups DO claim explicit protection, we don't protect
6591	 * the same bytes twice.
6592	 *
6593	 * Check both usage and parent_usage against the respective
6594	 * protected values. One should imply the other, but they
6595	 * aren't read atomically - make sure the division is sane.
6596	 */
6597	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6598		return ep;
6599	if (parent_effective > siblings_protected &&
6600	    parent_usage > siblings_protected &&
6601	    usage > protected) {
6602		unsigned long unclaimed;
6603
6604		unclaimed = parent_effective - siblings_protected;
6605		unclaimed *= usage - protected;
6606		unclaimed /= parent_usage - siblings_protected;
6607
6608		ep += unclaimed;
6609	}
6610
6611	return ep;
6612}
6613
6614/**
6615 * mem_cgroup_protected - check if memory consumption is in the normal range
6616 * @root: the top ancestor of the sub-tree being checked
6617 * @memcg: the memory cgroup to check
6618 *
6619 * WARNING: This function is not stateless! It can only be used as part
6620 *          of a top-down tree iteration, not for isolated queries.
6621 */
6622void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6623				     struct mem_cgroup *memcg)
6624{
6625	unsigned long usage, parent_usage;
6626	struct mem_cgroup *parent;
6627
6628	if (mem_cgroup_disabled())
6629		return;
6630
6631	if (!root)
6632		root = root_mem_cgroup;
6633
6634	/*
6635	 * Effective values of the reclaim targets are ignored so they
6636	 * can be stale. Have a look at mem_cgroup_protection for more
6637	 * details.
6638	 * TODO: calculation should be more robust so that we do not need
6639	 * that special casing.
6640	 */
6641	if (memcg == root)
6642		return;
6643
6644	usage = page_counter_read(&memcg->memory);
6645	if (!usage)
6646		return;
6647
6648	parent = parent_mem_cgroup(memcg);
6649	/* No parent means a non-hierarchical mode on v1 memcg */
6650	if (!parent)
6651		return;
6652
6653	if (parent == root) {
6654		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6655		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6656		return;
6657	}
6658
6659	parent_usage = page_counter_read(&parent->memory);
6660
6661	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6662			READ_ONCE(memcg->memory.min),
6663			READ_ONCE(parent->memory.emin),
6664			atomic_long_read(&parent->memory.children_min_usage)));
6665
6666	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6667			READ_ONCE(memcg->memory.low),
6668			READ_ONCE(parent->memory.elow),
6669			atomic_long_read(&parent->memory.children_low_usage)));
6670}
6671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6672/**
6673 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6674 * @page: page to charge
6675 * @mm: mm context of the victim
6676 * @gfp_mask: reclaim mode
6677 *
6678 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6679 * pages according to @gfp_mask if necessary.
 
 
 
6680 *
6681 * Returns 0 on success. Otherwise, an error code is returned.
6682 */
6683int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6684{
6685	unsigned int nr_pages = thp_nr_pages(page);
6686	struct mem_cgroup *memcg = NULL;
6687	int ret = 0;
6688
6689	if (mem_cgroup_disabled())
6690		goto out;
 
 
 
 
6691
6692	if (PageSwapCache(page)) {
6693		swp_entry_t ent = { .val = page_private(page), };
6694		unsigned short id;
6695
6696		/*
6697		 * Every swap fault against a single page tries to charge the
6698		 * page, bail as early as possible.  shmem_unuse() encounters
6699		 * already charged pages, too.  page->mem_cgroup is protected
6700		 * by the page lock, which serializes swap cache removal, which
6701		 * in turn serializes uncharging.
6702		 */
6703		VM_BUG_ON_PAGE(!PageLocked(page), page);
6704		if (compound_head(page)->mem_cgroup)
6705			goto out;
 
 
 
 
 
 
 
 
6706
6707		id = lookup_swap_cgroup_id(ent);
6708		rcu_read_lock();
6709		memcg = mem_cgroup_from_id(id);
6710		if (memcg && !css_tryget_online(&memcg->css))
6711			memcg = NULL;
6712		rcu_read_unlock();
6713	}
6714
6715	if (!memcg)
 
 
 
6716		memcg = get_mem_cgroup_from_mm(mm);
 
6717
6718	ret = try_charge(memcg, gfp_mask, nr_pages);
6719	if (ret)
6720		goto out_put;
6721
6722	css_get(&memcg->css);
6723	commit_charge(page, memcg);
 
6724
6725	local_irq_disable();
6726	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6727	memcg_check_events(memcg, page);
6728	local_irq_enable();
6729
6730	if (PageSwapCache(page)) {
6731		swp_entry_t entry = { .val = page_private(page) };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6732		/*
6733		 * The swap entry might not get freed for a long time,
6734		 * let's not wait for it.  The page already received a
6735		 * memory+swap charge, drop the swap entry duplicate.
6736		 */
6737		mem_cgroup_uncharge_swap(entry, nr_pages);
6738	}
6739
6740out_put:
6741	css_put(&memcg->css);
6742out:
6743	return ret;
6744}
6745
6746struct uncharge_gather {
6747	struct mem_cgroup *memcg;
6748	unsigned long nr_pages;
6749	unsigned long pgpgout;
6750	unsigned long nr_kmem;
6751	struct page *dummy_page;
6752};
6753
6754static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6755{
6756	memset(ug, 0, sizeof(*ug));
6757}
6758
6759static void uncharge_batch(const struct uncharge_gather *ug)
6760{
6761	unsigned long flags;
6762
6763	if (!mem_cgroup_is_root(ug->memcg)) {
6764		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6765		if (do_memsw_account())
6766			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6767		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6768			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6769		memcg_oom_recover(ug->memcg);
6770	}
6771
6772	local_irq_save(flags);
6773	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6774	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6775	memcg_check_events(ug->memcg, ug->dummy_page);
6776	local_irq_restore(flags);
6777
6778	/* drop reference from uncharge_page */
6779	css_put(&ug->memcg->css);
6780}
6781
6782static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6783{
6784	unsigned long nr_pages;
 
 
 
6785
6786	VM_BUG_ON_PAGE(PageLRU(page), page);
6787
6788	if (!page->mem_cgroup)
6789		return;
6790
6791	/*
6792	 * Nobody should be changing or seriously looking at
6793	 * page->mem_cgroup at this point, we have fully
6794	 * exclusive access to the page.
6795	 */
 
 
 
 
 
 
 
 
 
 
6796
6797	if (ug->memcg != page->mem_cgroup) {
 
 
 
6798		if (ug->memcg) {
6799			uncharge_batch(ug);
6800			uncharge_gather_clear(ug);
6801		}
6802		ug->memcg = page->mem_cgroup;
 
6803
6804		/* pairs with css_put in uncharge_batch */
6805		css_get(&ug->memcg->css);
6806	}
6807
6808	nr_pages = compound_nr(page);
6809	ug->nr_pages += nr_pages;
6810
6811	if (!PageKmemcg(page)) {
6812		ug->pgpgout++;
6813	} else {
6814		ug->nr_kmem += nr_pages;
6815		__ClearPageKmemcg(page);
6816	}
6817
6818	ug->dummy_page = page;
6819	page->mem_cgroup = NULL;
6820	css_put(&ug->memcg->css);
6821}
 
 
 
6822
6823static void uncharge_list(struct list_head *page_list)
6824{
6825	struct uncharge_gather ug;
6826	struct list_head *next;
6827
6828	uncharge_gather_clear(&ug);
6829
6830	/*
6831	 * Note that the list can be a single page->lru; hence the
6832	 * do-while loop instead of a simple list_for_each_entry().
6833	 */
6834	next = page_list->next;
6835	do {
6836		struct page *page;
6837
6838		page = list_entry(next, struct page, lru);
6839		next = page->lru.next;
6840
6841		uncharge_page(page, &ug);
6842	} while (next != page_list);
6843
6844	if (ug.memcg)
6845		uncharge_batch(&ug);
6846}
6847
6848/**
6849 * mem_cgroup_uncharge - uncharge a page
6850 * @page: page to uncharge
6851 *
6852 * Uncharge a page previously charged with mem_cgroup_charge().
6853 */
6854void mem_cgroup_uncharge(struct page *page)
6855{
6856	struct uncharge_gather ug;
6857
6858	if (mem_cgroup_disabled())
6859		return;
6860
6861	/* Don't touch page->lru of any random page, pre-check: */
6862	if (!page->mem_cgroup)
6863		return;
6864
6865	uncharge_gather_clear(&ug);
6866	uncharge_page(page, &ug);
6867	uncharge_batch(&ug);
6868}
6869
6870/**
6871 * mem_cgroup_uncharge_list - uncharge a list of page
6872 * @page_list: list of pages to uncharge
6873 *
6874 * Uncharge a list of pages previously charged with
6875 * mem_cgroup_charge().
6876 */
6877void mem_cgroup_uncharge_list(struct list_head *page_list)
6878{
 
 
 
6879	if (mem_cgroup_disabled())
6880		return;
6881
6882	if (!list_empty(page_list))
6883		uncharge_list(page_list);
 
 
 
6884}
6885
6886/**
6887 * mem_cgroup_migrate - charge a page's replacement
6888 * @oldpage: currently circulating page
6889 * @newpage: replacement page
6890 *
6891 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6892 * be uncharged upon free.
6893 *
6894 * Both pages must be locked, @newpage->mapping must be set up.
6895 */
6896void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6897{
6898	struct mem_cgroup *memcg;
6899	unsigned int nr_pages;
6900	unsigned long flags;
6901
6902	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6903	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6904	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6905	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6906		       newpage);
6907
6908	if (mem_cgroup_disabled())
6909		return;
6910
6911	/* Page cache replacement: new page already charged? */
6912	if (newpage->mem_cgroup)
6913		return;
6914
6915	/* Swapcache readahead pages can get replaced before being charged */
6916	memcg = oldpage->mem_cgroup;
6917	if (!memcg)
6918		return;
6919
6920	/* Force-charge the new page. The old one will be freed soon */
6921	nr_pages = thp_nr_pages(newpage);
6922
6923	page_counter_charge(&memcg->memory, nr_pages);
6924	if (do_memsw_account())
6925		page_counter_charge(&memcg->memsw, nr_pages);
 
 
6926
6927	css_get(&memcg->css);
6928	commit_charge(newpage, memcg);
6929
6930	local_irq_save(flags);
6931	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6932	memcg_check_events(memcg, newpage);
6933	local_irq_restore(flags);
6934}
6935
6936DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6937EXPORT_SYMBOL(memcg_sockets_enabled_key);
6938
6939void mem_cgroup_sk_alloc(struct sock *sk)
6940{
6941	struct mem_cgroup *memcg;
6942
6943	if (!mem_cgroup_sockets_enabled)
6944		return;
6945
6946	/* Do not associate the sock with unrelated interrupted task's memcg. */
6947	if (in_interrupt())
6948		return;
6949
6950	rcu_read_lock();
6951	memcg = mem_cgroup_from_task(current);
6952	if (memcg == root_mem_cgroup)
6953		goto out;
6954	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6955		goto out;
6956	if (css_tryget(&memcg->css))
6957		sk->sk_memcg = memcg;
6958out:
6959	rcu_read_unlock();
6960}
6961
6962void mem_cgroup_sk_free(struct sock *sk)
6963{
6964	if (sk->sk_memcg)
6965		css_put(&sk->sk_memcg->css);
6966}
6967
6968/**
6969 * mem_cgroup_charge_skmem - charge socket memory
6970 * @memcg: memcg to charge
6971 * @nr_pages: number of pages to charge
6972 *
6973 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6974 * @memcg's configured limit, %false if the charge had to be forced.
6975 */
6976bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
6978	gfp_t gfp_mask = GFP_KERNEL;
6979
6980	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6981		struct page_counter *fail;
6982
6983		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6984			memcg->tcpmem_pressure = 0;
6985			return true;
6986		}
6987		page_counter_charge(&memcg->tcpmem, nr_pages);
6988		memcg->tcpmem_pressure = 1;
6989		return false;
6990	}
6991
6992	/* Don't block in the packet receive path */
6993	if (in_softirq())
6994		gfp_mask = GFP_NOWAIT;
6995
6996	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6997
6998	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6999		return true;
7000
7001	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7002	return false;
7003}
7004
7005/**
7006 * mem_cgroup_uncharge_skmem - uncharge socket memory
7007 * @memcg: memcg to uncharge
7008 * @nr_pages: number of pages to uncharge
7009 */
7010void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011{
7012	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7013		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7014		return;
7015	}
7016
7017	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7018
7019	refill_stock(memcg, nr_pages);
7020}
7021
7022static int __init cgroup_memory(char *s)
7023{
7024	char *token;
7025
7026	while ((token = strsep(&s, ",")) != NULL) {
7027		if (!*token)
7028			continue;
7029		if (!strcmp(token, "nosocket"))
7030			cgroup_memory_nosocket = true;
7031		if (!strcmp(token, "nokmem"))
7032			cgroup_memory_nokmem = true;
7033	}
7034	return 0;
7035}
7036__setup("cgroup.memory=", cgroup_memory);
7037
7038/*
7039 * subsys_initcall() for memory controller.
7040 *
7041 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7042 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7043 * basically everything that doesn't depend on a specific mem_cgroup structure
7044 * should be initialized from here.
7045 */
7046static int __init mem_cgroup_init(void)
7047{
7048	int cpu, node;
7049
 
 
 
 
 
 
 
 
7050	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7051				  memcg_hotplug_cpu_dead);
7052
7053	for_each_possible_cpu(cpu)
7054		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7055			  drain_local_stock);
7056
7057	for_each_node(node) {
7058		struct mem_cgroup_tree_per_node *rtpn;
7059
7060		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7061				    node_online(node) ? node : NUMA_NO_NODE);
7062
7063		rtpn->rb_root = RB_ROOT;
7064		rtpn->rb_rightmost = NULL;
7065		spin_lock_init(&rtpn->lock);
7066		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7067	}
7068
7069	return 0;
7070}
7071subsys_initcall(mem_cgroup_init);
7072
7073#ifdef CONFIG_MEMCG_SWAP
7074static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7075{
7076	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7077		/*
7078		 * The root cgroup cannot be destroyed, so it's refcount must
7079		 * always be >= 1.
7080		 */
7081		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7082			VM_BUG_ON(1);
7083			break;
7084		}
7085		memcg = parent_mem_cgroup(memcg);
7086		if (!memcg)
7087			memcg = root_mem_cgroup;
7088	}
7089	return memcg;
7090}
7091
7092/**
7093 * mem_cgroup_swapout - transfer a memsw charge to swap
7094 * @page: page whose memsw charge to transfer
7095 * @entry: swap entry to move the charge to
7096 *
7097 * Transfer the memsw charge of @page to @entry.
7098 */
7099void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7100{
7101	struct mem_cgroup *memcg, *swap_memcg;
7102	unsigned int nr_entries;
7103	unsigned short oldid;
7104
7105	VM_BUG_ON_PAGE(PageLRU(page), page);
7106	VM_BUG_ON_PAGE(page_count(page), page);
7107
 
 
 
7108	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7109		return;
7110
7111	memcg = page->mem_cgroup;
7112
7113	/* Readahead page, never charged */
7114	if (!memcg)
7115		return;
7116
7117	/*
7118	 * In case the memcg owning these pages has been offlined and doesn't
7119	 * have an ID allocated to it anymore, charge the closest online
7120	 * ancestor for the swap instead and transfer the memory+swap charge.
7121	 */
7122	swap_memcg = mem_cgroup_id_get_online(memcg);
7123	nr_entries = thp_nr_pages(page);
7124	/* Get references for the tail pages, too */
7125	if (nr_entries > 1)
7126		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7127	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7128				   nr_entries);
7129	VM_BUG_ON_PAGE(oldid, page);
7130	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7131
7132	page->mem_cgroup = NULL;
7133
7134	if (!mem_cgroup_is_root(memcg))
7135		page_counter_uncharge(&memcg->memory, nr_entries);
7136
7137	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7138		if (!mem_cgroup_is_root(swap_memcg))
7139			page_counter_charge(&swap_memcg->memsw, nr_entries);
7140		page_counter_uncharge(&memcg->memsw, nr_entries);
7141	}
7142
7143	/*
7144	 * Interrupts should be disabled here because the caller holds the
7145	 * i_pages lock which is taken with interrupts-off. It is
7146	 * important here to have the interrupts disabled because it is the
7147	 * only synchronisation we have for updating the per-CPU variables.
7148	 */
7149	VM_BUG_ON(!irqs_disabled());
7150	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7151	memcg_check_events(memcg, page);
7152
7153	css_put(&memcg->css);
7154}
7155
7156/**
7157 * mem_cgroup_try_charge_swap - try charging swap space for a page
7158 * @page: page being added to swap
7159 * @entry: swap entry to charge
7160 *
7161 * Try to charge @page's memcg for the swap space at @entry.
7162 *
7163 * Returns 0 on success, -ENOMEM on failure.
7164 */
7165int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7166{
7167	unsigned int nr_pages = thp_nr_pages(page);
7168	struct page_counter *counter;
7169	struct mem_cgroup *memcg;
7170	unsigned short oldid;
7171
 
 
 
7172	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7173		return 0;
7174
7175	memcg = page->mem_cgroup;
7176
7177	/* Readahead page, never charged */
7178	if (!memcg)
7179		return 0;
7180
7181	if (!entry.val) {
7182		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7183		return 0;
7184	}
7185
7186	memcg = mem_cgroup_id_get_online(memcg);
7187
7188	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7189	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7190		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7191		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192		mem_cgroup_id_put(memcg);
7193		return -ENOMEM;
7194	}
7195
7196	/* Get references for the tail pages, too */
7197	if (nr_pages > 1)
7198		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7199	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7200	VM_BUG_ON_PAGE(oldid, page);
7201	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7202
7203	return 0;
7204}
7205
7206/**
7207 * mem_cgroup_uncharge_swap - uncharge swap space
7208 * @entry: swap entry to uncharge
7209 * @nr_pages: the amount of swap space to uncharge
7210 */
7211void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7212{
7213	struct mem_cgroup *memcg;
7214	unsigned short id;
7215
7216	id = swap_cgroup_record(entry, 0, nr_pages);
7217	rcu_read_lock();
7218	memcg = mem_cgroup_from_id(id);
7219	if (memcg) {
7220		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7221			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7222				page_counter_uncharge(&memcg->swap, nr_pages);
7223			else
7224				page_counter_uncharge(&memcg->memsw, nr_pages);
7225		}
7226		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7227		mem_cgroup_id_put_many(memcg, nr_pages);
7228	}
7229	rcu_read_unlock();
7230}
7231
7232long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7233{
7234	long nr_swap_pages = get_nr_swap_pages();
7235
7236	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237		return nr_swap_pages;
7238	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7239		nr_swap_pages = min_t(long, nr_swap_pages,
7240				      READ_ONCE(memcg->swap.max) -
7241				      page_counter_read(&memcg->swap));
7242	return nr_swap_pages;
7243}
7244
7245bool mem_cgroup_swap_full(struct page *page)
7246{
7247	struct mem_cgroup *memcg;
7248
7249	VM_BUG_ON_PAGE(!PageLocked(page), page);
7250
7251	if (vm_swap_full())
7252		return true;
7253	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254		return false;
7255
7256	memcg = page->mem_cgroup;
7257	if (!memcg)
7258		return false;
7259
7260	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7261		unsigned long usage = page_counter_read(&memcg->swap);
7262
7263		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7264		    usage * 2 >= READ_ONCE(memcg->swap.max))
7265			return true;
7266	}
7267
7268	return false;
7269}
7270
7271static int __init setup_swap_account(char *s)
7272{
7273	if (!strcmp(s, "1"))
7274		cgroup_memory_noswap = 0;
7275	else if (!strcmp(s, "0"))
7276		cgroup_memory_noswap = 1;
7277	return 1;
7278}
7279__setup("swapaccount=", setup_swap_account);
7280
7281static u64 swap_current_read(struct cgroup_subsys_state *css,
7282			     struct cftype *cft)
7283{
7284	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7285
7286	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7287}
7288
7289static int swap_high_show(struct seq_file *m, void *v)
7290{
7291	return seq_puts_memcg_tunable(m,
7292		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7293}
7294
7295static ssize_t swap_high_write(struct kernfs_open_file *of,
7296			       char *buf, size_t nbytes, loff_t off)
7297{
7298	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7299	unsigned long high;
7300	int err;
7301
7302	buf = strstrip(buf);
7303	err = page_counter_memparse(buf, "max", &high);
7304	if (err)
7305		return err;
7306
7307	page_counter_set_high(&memcg->swap, high);
7308
7309	return nbytes;
7310}
7311
7312static int swap_max_show(struct seq_file *m, void *v)
7313{
7314	return seq_puts_memcg_tunable(m,
7315		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7316}
7317
7318static ssize_t swap_max_write(struct kernfs_open_file *of,
7319			      char *buf, size_t nbytes, loff_t off)
7320{
7321	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322	unsigned long max;
7323	int err;
7324
7325	buf = strstrip(buf);
7326	err = page_counter_memparse(buf, "max", &max);
7327	if (err)
7328		return err;
7329
7330	xchg(&memcg->swap.max, max);
7331
7332	return nbytes;
7333}
7334
7335static int swap_events_show(struct seq_file *m, void *v)
7336{
7337	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7338
7339	seq_printf(m, "high %lu\n",
7340		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7341	seq_printf(m, "max %lu\n",
7342		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7343	seq_printf(m, "fail %lu\n",
7344		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7345
7346	return 0;
7347}
7348
7349static struct cftype swap_files[] = {
7350	{
7351		.name = "swap.current",
7352		.flags = CFTYPE_NOT_ON_ROOT,
7353		.read_u64 = swap_current_read,
7354	},
7355	{
7356		.name = "swap.high",
7357		.flags = CFTYPE_NOT_ON_ROOT,
7358		.seq_show = swap_high_show,
7359		.write = swap_high_write,
7360	},
7361	{
7362		.name = "swap.max",
7363		.flags = CFTYPE_NOT_ON_ROOT,
7364		.seq_show = swap_max_show,
7365		.write = swap_max_write,
7366	},
7367	{
7368		.name = "swap.events",
7369		.flags = CFTYPE_NOT_ON_ROOT,
7370		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7371		.seq_show = swap_events_show,
7372	},
7373	{ }	/* terminate */
7374};
7375
7376static struct cftype memsw_files[] = {
7377	{
7378		.name = "memsw.usage_in_bytes",
7379		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7380		.read_u64 = mem_cgroup_read_u64,
7381	},
7382	{
7383		.name = "memsw.max_usage_in_bytes",
7384		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7385		.write = mem_cgroup_reset,
7386		.read_u64 = mem_cgroup_read_u64,
7387	},
7388	{
7389		.name = "memsw.limit_in_bytes",
7390		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7391		.write = mem_cgroup_write,
7392		.read_u64 = mem_cgroup_read_u64,
7393	},
7394	{
7395		.name = "memsw.failcnt",
7396		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7397		.write = mem_cgroup_reset,
7398		.read_u64 = mem_cgroup_read_u64,
7399	},
7400	{ },	/* terminate */
7401};
7402
7403/*
7404 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7405 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7406 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7407 * boot parameter. This may result in premature OOPS inside
7408 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7409 */
7410static int __init mem_cgroup_swap_init(void)
7411{
7412	/* No memory control -> no swap control */
7413	if (mem_cgroup_disabled())
7414		cgroup_memory_noswap = true;
7415
7416	if (cgroup_memory_noswap)
7417		return 0;
7418
7419	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7420	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7421
7422	return 0;
7423}
7424core_initcall(mem_cgroup_swap_init);
7425
7426#endif /* CONFIG_MEMCG_SWAP */