Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Procedures for creating, accessing and interpreting the device tree.
  4 *
  5 * Paul Mackerras	August 1996.
  6 * Copyright (C) 1996-2005 Paul Mackerras.
  7 * 
  8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  9 *    {engebret|bergner}@us.ibm.com 
 
 
 
 
 
 10 */
 11
 12#undef DEBUG
 13
 14#include <stdarg.h>
 15#include <linux/kernel.h>
 16#include <linux/string.h>
 17#include <linux/init.h>
 18#include <linux/threads.h>
 19#include <linux/spinlock.h>
 20#include <linux/types.h>
 21#include <linux/pci.h>
 
 22#include <linux/delay.h>
 23#include <linux/initrd.h>
 24#include <linux/bitops.h>
 25#include <linux/export.h>
 26#include <linux/kexec.h>
 27#include <linux/irq.h>
 28#include <linux/memblock.h>
 29#include <linux/of.h>
 30#include <linux/of_fdt.h>
 31#include <linux/libfdt.h>
 32#include <linux/cpu.h>
 33#include <linux/pgtable.h>
 34
 35#include <asm/prom.h>
 36#include <asm/rtas.h>
 37#include <asm/page.h>
 38#include <asm/processor.h>
 39#include <asm/irq.h>
 40#include <asm/io.h>
 41#include <asm/kdump.h>
 42#include <asm/smp.h>
 43#include <asm/mmu.h>
 44#include <asm/paca.h>
 45#include <asm/powernv.h>
 46#include <asm/iommu.h>
 47#include <asm/btext.h>
 48#include <asm/sections.h>
 49#include <asm/machdep.h>
 50#include <asm/pci-bridge.h>
 51#include <asm/kexec.h>
 52#include <asm/opal.h>
 53#include <asm/fadump.h>
 
 54#include <asm/epapr_hcalls.h>
 55#include <asm/firmware.h>
 56#include <asm/dt_cpu_ftrs.h>
 57#include <asm/drmem.h>
 58#include <asm/ultravisor.h>
 59
 60#include <mm/mmu_decl.h>
 61
 62#ifdef DEBUG
 63#define DBG(fmt...) printk(KERN_ERR fmt)
 64#else
 65#define DBG(fmt...)
 66#endif
 67
 68int *chip_id_lookup_table;
 69
 70#ifdef CONFIG_PPC64
 71int __initdata iommu_is_off;
 72int __initdata iommu_force_on;
 73unsigned long tce_alloc_start, tce_alloc_end;
 74u64 ppc64_rma_size;
 75#endif
 76static phys_addr_t first_memblock_size;
 77static int __initdata boot_cpu_count;
 78
 79static int __init early_parse_mem(char *p)
 80{
 81	if (!p)
 82		return 1;
 83
 84	memory_limit = PAGE_ALIGN(memparse(p, &p));
 85	DBG("memory limit = 0x%llx\n", memory_limit);
 86
 87	return 0;
 88}
 89early_param("mem", early_parse_mem);
 90
 91/*
 92 * overlaps_initrd - check for overlap with page aligned extension of
 93 * initrd.
 94 */
 95static inline int overlaps_initrd(unsigned long start, unsigned long size)
 96{
 97#ifdef CONFIG_BLK_DEV_INITRD
 98	if (!initrd_start)
 99		return 0;
100
101	return	(start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
102			start <= ALIGN(initrd_end, PAGE_SIZE);
103#else
104	return 0;
105#endif
106}
107
108/**
109 * move_device_tree - move tree to an unused area, if needed.
110 *
111 * The device tree may be allocated beyond our memory limit, or inside the
112 * crash kernel region for kdump, or within the page aligned range of initrd.
113 * If so, move it out of the way.
114 */
115static void __init move_device_tree(void)
116{
117	unsigned long start, size;
118	void *p;
119
120	DBG("-> move_device_tree\n");
121
122	start = __pa(initial_boot_params);
123	size = fdt_totalsize(initial_boot_params);
124
125	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
126	    !memblock_is_memory(start + size - 1) ||
127	    overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
128		p = memblock_alloc_raw(size, PAGE_SIZE);
129		if (!p)
130			panic("Failed to allocate %lu bytes to move device tree\n",
131			      size);
132		memcpy(p, initial_boot_params, size);
133		initial_boot_params = p;
134		DBG("Moved device tree to 0x%px\n", p);
135	}
136
137	DBG("<- move_device_tree\n");
138}
139
140/*
141 * ibm,pa-features is a per-cpu property that contains a string of
142 * attribute descriptors, each of which has a 2 byte header plus up
143 * to 254 bytes worth of processor attribute bits.  First header
144 * byte specifies the number of bytes following the header.
145 * Second header byte is an "attribute-specifier" type, of which
146 * zero is the only currently-defined value.
147 * Implementation:  Pass in the byte and bit offset for the feature
148 * that we are interested in.  The function will return -1 if the
149 * pa-features property is missing, or a 1/0 to indicate if the feature
150 * is supported/not supported.  Note that the bit numbers are
151 * big-endian to match the definition in PAPR.
152 */
153static struct ibm_pa_feature {
154	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
155	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
156	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
157	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
158	unsigned char	pabyte;		/* byte number in ibm,pa-features */
159	unsigned char	pabit;		/* bit number (big-endian) */
160	unsigned char	invert;		/* if 1, pa bit set => clear feature */
161} ibm_pa_features[] __initdata = {
162	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
163	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
164	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
165	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
166	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
167#ifdef CONFIG_PPC_RADIX_MMU
168	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
169#endif
170	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
171				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
172	/*
173	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
174	 * we don't want to turn on TM here, so we use the *_COMP versions
175	 * which are 0 if the kernel doesn't support TM.
176	 */
177	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
178	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
179
180	{ .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
181};
182
183static void __init scan_features(unsigned long node, const unsigned char *ftrs,
184				 unsigned long tablelen,
185				 struct ibm_pa_feature *fp,
186				 unsigned long ft_size)
187{
188	unsigned long i, len, bit;
189
190	/* find descriptor with type == 0 */
191	for (;;) {
192		if (tablelen < 3)
193			return;
194		len = 2 + ftrs[0];
195		if (tablelen < len)
196			return;		/* descriptor 0 not found */
197		if (ftrs[1] == 0)
198			break;
199		tablelen -= len;
200		ftrs += len;
201	}
202
203	/* loop over bits we know about */
204	for (i = 0; i < ft_size; ++i, ++fp) {
205		if (fp->pabyte >= ftrs[0])
206			continue;
207		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
208		if (bit ^ fp->invert) {
209			cur_cpu_spec->cpu_features |= fp->cpu_features;
210			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
211			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
212			cur_cpu_spec->mmu_features |= fp->mmu_features;
213		} else {
214			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
215			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
216			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
217			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
218		}
219	}
220}
221
222static void __init check_cpu_pa_features(unsigned long node)
223{
224	const unsigned char *pa_ftrs;
225	int tablelen;
226
227	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
228	if (pa_ftrs == NULL)
229		return;
230
231	scan_features(node, pa_ftrs, tablelen,
232		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
233}
234
235#ifdef CONFIG_PPC_BOOK3S_64
236static void __init init_mmu_slb_size(unsigned long node)
237{
238	const __be32 *slb_size_ptr;
239
240	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
241			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
242
243	if (slb_size_ptr)
244		mmu_slb_size = be32_to_cpup(slb_size_ptr);
245}
246#else
247#define init_mmu_slb_size(node) do { } while(0)
248#endif
249
250static struct feature_property {
251	const char *name;
252	u32 min_value;
253	unsigned long cpu_feature;
254	unsigned long cpu_user_ftr;
255} feature_properties[] __initdata = {
256#ifdef CONFIG_ALTIVEC
257	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
258	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
259#endif /* CONFIG_ALTIVEC */
260#ifdef CONFIG_VSX
261	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
262	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
263#endif /* CONFIG_VSX */
264#ifdef CONFIG_PPC64
265	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
266	{"ibm,purr", 1, CPU_FTR_PURR, 0},
267	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
268#endif /* CONFIG_PPC64 */
269};
270
271#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
272static __init void identical_pvr_fixup(unsigned long node)
273{
274	unsigned int pvr;
275	const char *model = of_get_flat_dt_prop(node, "model", NULL);
276
277	/*
278	 * Since 440GR(x)/440EP(x) processors have the same pvr,
279	 * we check the node path and set bit 28 in the cur_cpu_spec
280	 * pvr for EP(x) processor version. This bit is always 0 in
281	 * the "real" pvr. Then we call identify_cpu again with
282	 * the new logical pvr to enable FPU support.
283	 */
284	if (model && strstr(model, "440EP")) {
285		pvr = cur_cpu_spec->pvr_value | 0x8;
286		identify_cpu(0, pvr);
287		DBG("Using logical pvr %x for %s\n", pvr, model);
288	}
289}
290#else
291#define identical_pvr_fixup(node) do { } while(0)
292#endif
293
294static void __init check_cpu_feature_properties(unsigned long node)
295{
296	int i;
297	struct feature_property *fp = feature_properties;
298	const __be32 *prop;
299
300	for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
301		prop = of_get_flat_dt_prop(node, fp->name, NULL);
302		if (prop && be32_to_cpup(prop) >= fp->min_value) {
303			cur_cpu_spec->cpu_features |= fp->cpu_feature;
304			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
305		}
306	}
307}
308
309static int __init early_init_dt_scan_cpus(unsigned long node,
310					  const char *uname, int depth,
311					  void *data)
312{
313	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
314	const __be32 *prop;
315	const __be32 *intserv;
316	int i, nthreads;
317	int len;
318	int found = -1;
319	int found_thread = 0;
320
321	/* We are scanning "cpu" nodes only */
322	if (type == NULL || strcmp(type, "cpu") != 0)
323		return 0;
324
325	/* Get physical cpuid */
326	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
327	if (!intserv)
328		intserv = of_get_flat_dt_prop(node, "reg", &len);
329
330	nthreads = len / sizeof(int);
331
332	/*
333	 * Now see if any of these threads match our boot cpu.
334	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
335	 */
336	for (i = 0; i < nthreads; i++) {
337		if (be32_to_cpu(intserv[i]) ==
338			fdt_boot_cpuid_phys(initial_boot_params)) {
339			found = boot_cpu_count;
340			found_thread = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341		}
342#ifdef CONFIG_SMP
343		/* logical cpu id is always 0 on UP kernels */
344		boot_cpu_count++;
345#endif
346	}
347
348	/* Not the boot CPU */
349	if (found < 0)
350		return 0;
351
352	DBG("boot cpu: logical %d physical %d\n", found,
353	    be32_to_cpu(intserv[found_thread]));
354	boot_cpuid = found;
 
355
356	/*
357	 * PAPR defines "logical" PVR values for cpus that
358	 * meet various levels of the architecture:
359	 * 0x0f000001	Architecture version 2.04
360	 * 0x0f000002	Architecture version 2.05
361	 * If the cpu-version property in the cpu node contains
362	 * such a value, we call identify_cpu again with the
363	 * logical PVR value in order to use the cpu feature
364	 * bits appropriate for the architecture level.
365	 *
366	 * A POWER6 partition in "POWER6 architected" mode
367	 * uses the 0x0f000002 PVR value; in POWER5+ mode
368	 * it uses 0x0f000001.
369	 *
370	 * If we're using device tree CPU feature discovery then we don't
371	 * support the cpu-version property, and it's the responsibility of the
372	 * firmware/hypervisor to provide the correct feature set for the
373	 * architecture level via the ibm,powerpc-cpu-features binding.
374	 */
375	if (!dt_cpu_ftrs_in_use()) {
376		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
377		if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
378			identify_cpu(0, be32_to_cpup(prop));
379
380		check_cpu_feature_properties(node);
381		check_cpu_pa_features(node);
382	}
383
384	identical_pvr_fixup(node);
 
 
 
385	init_mmu_slb_size(node);
386
387#ifdef CONFIG_PPC64
388	if (nthreads == 1)
389		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
390	else if (!dt_cpu_ftrs_in_use())
391		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
392	allocate_paca(boot_cpuid);
 
393#endif
394	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
395
396	return 0;
397}
398
399static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
400						const char *uname,
401						int depth, void *data)
402{
403	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
404
405	/* Use common scan routine to determine if this is the chosen node */
406	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
407		return 0;
408
409#ifdef CONFIG_PPC64
410	/* check if iommu is forced on or off */
411	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
412		iommu_is_off = 1;
413	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
414		iommu_force_on = 1;
415#endif
416
417	/* mem=x on the command line is the preferred mechanism */
418	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
419	if (lprop)
420		memory_limit = *lprop;
421
422#ifdef CONFIG_PPC64
423	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
424	if (lprop)
425		tce_alloc_start = *lprop;
426	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
427	if (lprop)
428		tce_alloc_end = *lprop;
429#endif
430
431#ifdef CONFIG_KEXEC_CORE
432	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
433	if (lprop)
434		crashk_res.start = *lprop;
435
436	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
437	if (lprop)
438		crashk_res.end = crashk_res.start + *lprop - 1;
439#endif
440
441	/* break now */
442	return 1;
443}
444
445/*
446 * Compare the range against max mem limit and update
447 * size if it cross the limit.
448 */
449
450#ifdef CONFIG_SPARSEMEM
451static bool validate_mem_limit(u64 base, u64 *size)
452{
453	u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
454
455	if (base >= max_mem)
456		return false;
457	if ((base + *size) > max_mem)
458		*size = max_mem - base;
459	return true;
460}
461#else
462static bool validate_mem_limit(u64 base, u64 *size)
463{
464	return true;
465}
466#endif
467
468#ifdef CONFIG_PPC_PSERIES
469/*
470 * Interpret the ibm dynamic reconfiguration memory LMBs.
 
471 * This contains a list of memory blocks along with NUMA affinity
472 * information.
473 */
474static int  __init early_init_drmem_lmb(struct drmem_lmb *lmb,
475					const __be32 **usm,
476					void *data)
477{
478	u64 base, size;
479	int is_kexec_kdump = 0, rngs;
480
481	base = lmb->base_addr;
482	size = drmem_lmb_size();
483	rngs = 1;
484
485	/*
486	 * Skip this block if the reserved bit is set in flags
487	 * or if the block is not assigned to this partition.
488	 */
489	if ((lmb->flags & DRCONF_MEM_RESERVED) ||
490	    !(lmb->flags & DRCONF_MEM_ASSIGNED))
491		return 0;
 
492
493	if (*usm)
494		is_kexec_kdump = 1;
 
495
496	if (is_kexec_kdump) {
497		/*
498		 * For each memblock in ibm,dynamic-memory, a
499		 * corresponding entry in linux,drconf-usable-memory
500		 * property contains a counter 'p' followed by 'p'
501		 * (base, size) duple. Now read the counter from
502		 * linux,drconf-usable-memory property
503		 */
504		rngs = dt_mem_next_cell(dt_root_size_cells, usm);
505		if (!rngs) /* there are no (base, size) duple */
506			return 0;
507	}
508
509	do {
510		if (is_kexec_kdump) {
511			base = dt_mem_next_cell(dt_root_addr_cells, usm);
512			size = dt_mem_next_cell(dt_root_size_cells, usm);
513		}
514
515		if (iommu_is_off) {
516			if (base >= 0x80000000ul)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517				continue;
518			if ((base + size) > 0x80000000ul)
519				size = 0x80000000ul - base;
520		}
521
522		if (!validate_mem_limit(base, &size))
523			continue;
524
525		DBG("Adding: %llx -> %llx\n", base, size);
526		memblock_add(base, size);
527
528		if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
529			memblock_mark_hotplug(base, size);
530	} while (--rngs);
531
 
 
 
 
 
 
532	return 0;
533}
 
 
534#endif /* CONFIG_PPC_PSERIES */
535
536static int __init early_init_dt_scan_memory_ppc(unsigned long node,
537						const char *uname,
538						int depth, void *data)
539{
540#ifdef CONFIG_PPC_PSERIES
541	if (depth == 1 &&
542	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
543		walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
544		return 0;
545	}
546#endif
547	
548	return early_init_dt_scan_memory(node, uname, depth, data);
549}
550
551/*
552 * For a relocatable kernel, we need to get the memstart_addr first,
553 * then use it to calculate the virtual kernel start address. This has
554 * to happen at a very early stage (before machine_init). In this case,
555 * we just want to get the memstart_address and would not like to mess the
556 * memblock at this stage. So introduce a variable to skip the memblock_add()
557 * for this reason.
558 */
559#ifdef CONFIG_RELOCATABLE
560static int add_mem_to_memblock = 1;
561#else
562#define add_mem_to_memblock 1
563#endif
564
565void __init early_init_dt_add_memory_arch(u64 base, u64 size)
566{
567#ifdef CONFIG_PPC64
568	if (iommu_is_off) {
569		if (base >= 0x80000000ul)
570			return;
571		if ((base + size) > 0x80000000ul)
572			size = 0x80000000ul - base;
573	}
574#endif
575	/* Keep track of the beginning of memory -and- the size of
576	 * the very first block in the device-tree as it represents
577	 * the RMA on ppc64 server
578	 */
579	if (base < memstart_addr) {
580		memstart_addr = base;
581		first_memblock_size = size;
582	}
583
584	/* Add the chunk to the MEMBLOCK list */
585	if (add_mem_to_memblock) {
586		if (validate_mem_limit(base, &size))
587			memblock_add(base, size);
588	}
589}
590
591static void __init early_reserve_mem_dt(void)
592{
593	unsigned long i, dt_root;
594	int len;
595	const __be32 *prop;
596
597	early_init_fdt_reserve_self();
598	early_init_fdt_scan_reserved_mem();
599
600	dt_root = of_get_flat_dt_root();
601
602	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
603
604	if (!prop)
605		return;
606
607	DBG("Found new-style reserved-ranges\n");
608
609	/* Each reserved range is an (address,size) pair, 2 cells each,
610	 * totalling 4 cells per range. */
611	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
612		u64 base, size;
613
614		base = of_read_number(prop + (i * 4) + 0, 2);
615		size = of_read_number(prop + (i * 4) + 2, 2);
616
617		if (size) {
618			DBG("reserving: %llx -> %llx\n", base, size);
619			memblock_reserve(base, size);
620		}
621	}
622}
623
624static void __init early_reserve_mem(void)
625{
626	__be64 *reserve_map;
627
628	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
629			fdt_off_mem_rsvmap(initial_boot_params));
630
631	/* Look for the new "reserved-regions" property in the DT */
632	early_reserve_mem_dt();
633
634#ifdef CONFIG_BLK_DEV_INITRD
635	/* Then reserve the initrd, if any */
636	if (initrd_start && (initrd_end > initrd_start)) {
637		memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
638			ALIGN(initrd_end, PAGE_SIZE) -
639			ALIGN_DOWN(initrd_start, PAGE_SIZE));
640	}
641#endif /* CONFIG_BLK_DEV_INITRD */
642
643#ifdef CONFIG_PPC32
644	/* 
645	 * Handle the case where we might be booting from an old kexec
646	 * image that setup the mem_rsvmap as pairs of 32-bit values
647	 */
648	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
649		u32 base_32, size_32;
650		__be32 *reserve_map_32 = (__be32 *)reserve_map;
651
652		DBG("Found old 32-bit reserve map\n");
653
654		while (1) {
655			base_32 = be32_to_cpup(reserve_map_32++);
656			size_32 = be32_to_cpup(reserve_map_32++);
657			if (size_32 == 0)
658				break;
659			DBG("reserving: %x -> %x\n", base_32, size_32);
660			memblock_reserve(base_32, size_32);
661		}
662		return;
663	}
664#endif
665}
666
667#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668static bool tm_disabled __initdata;
669
670static int __init parse_ppc_tm(char *str)
671{
672	bool res;
673
674	if (kstrtobool(str, &res))
675		return -EINVAL;
676
677	tm_disabled = !res;
678
679	return 0;
680}
681early_param("ppc_tm", parse_ppc_tm);
682
683static void __init tm_init(void)
684{
685	if (tm_disabled) {
686		pr_info("Disabling hardware transactional memory (HTM)\n");
687		cur_cpu_spec->cpu_user_features2 &=
688			~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
689		cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
690		return;
691	}
692
693	pnv_tm_init();
694}
695#else
696static void tm_init(void) { }
697#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
698
699#ifdef CONFIG_PPC64
700static void __init save_fscr_to_task(void)
701{
702	/*
703	 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
704	 * have configured via the device tree features or via __init_FSCR().
705	 * That value will then be propagated to pid 1 (init) and all future
706	 * processes.
707	 */
708	if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
709		init_task.thread.fscr = mfspr(SPRN_FSCR);
710}
711#else
712static inline void save_fscr_to_task(void) {}
713#endif
714
715
716void __init early_init_devtree(void *params)
717{
718	phys_addr_t limit;
719
720	DBG(" -> early_init_devtree(%px)\n", params);
721
722	/* Too early to BUG_ON(), do it by hand */
723	if (!early_init_dt_verify(params))
724		panic("BUG: Failed verifying flat device tree, bad version?");
725
726#ifdef CONFIG_PPC_RTAS
727	/* Some machines might need RTAS info for debugging, grab it now. */
728	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
729#endif
730
731#ifdef CONFIG_PPC_POWERNV
732	/* Some machines might need OPAL info for debugging, grab it now. */
733	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
734
735	/* Scan tree for ultravisor feature */
736	of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
737#endif
738
739#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
740	/* scan tree to see if dump is active during last boot */
741	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
742#endif
743
744	/* Retrieve various informations from the /chosen node of the
745	 * device-tree, including the platform type, initrd location and
746	 * size, TCE reserve, and more ...
747	 */
748	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
749
750	/* Scan memory nodes and rebuild MEMBLOCKs */
751	of_scan_flat_dt(early_init_dt_scan_root, NULL);
752	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
753
754	parse_early_param();
755
756	/* make sure we've parsed cmdline for mem= before this */
757	if (memory_limit)
758		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
759	setup_initial_memory_limit(memstart_addr, first_memblock_size);
760	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
761	memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
762	/* If relocatable, reserve first 32k for interrupt vectors etc. */
763	if (PHYSICAL_START > MEMORY_START)
764		memblock_reserve(MEMORY_START, 0x8000);
765	reserve_kdump_trampoline();
766#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
767	/*
768	 * If we fail to reserve memory for firmware-assisted dump then
769	 * fallback to kexec based kdump.
770	 */
771	if (fadump_reserve_mem() == 0)
772#endif
773		reserve_crashkernel();
774	early_reserve_mem();
775
776	/* Ensure that total memory size is page-aligned. */
777	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
778	memblock_enforce_memory_limit(limit);
779
780#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
781	if (!early_radix_enabled())
782		memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
783#endif
784
785	memblock_allow_resize();
786	memblock_dump_all();
787
788	DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
789
790	/* We may need to relocate the flat tree, do it now.
791	 * FIXME .. and the initrd too? */
792	move_device_tree();
793
794	allocate_paca_ptrs();
795
796	DBG("Scanning CPUs ...\n");
797
798	dt_cpu_ftrs_scan();
799
800	/* Retrieve CPU related informations from the flat tree
801	 * (altivec support, boot CPU ID, ...)
802	 */
803	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
804	if (boot_cpuid < 0) {
805		printk("Failed to identify boot CPU !\n");
806		BUG();
807	}
808
809	save_fscr_to_task();
810
811#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
812	/* We'll later wait for secondaries to check in; there are
813	 * NCPUS-1 non-boot CPUs  :-)
814	 */
815	spinning_secondaries = boot_cpu_count - 1;
816#endif
817
818	mmu_early_init_devtree();
819
820#ifdef CONFIG_PPC_POWERNV
821	/* Scan and build the list of machine check recoverable ranges */
822	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
823#endif
824	epapr_paravirt_early_init();
825
826	/* Now try to figure out if we are running on LPAR and so on */
827	pseries_probe_fw_features();
828
829	/*
830	 * Initialize pkey features and default AMR/IAMR values
831	 */
832	pkey_early_init_devtree();
833
834#ifdef CONFIG_PPC_PS3
835	/* Identify PS3 firmware */
836	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
837		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
838#endif
839
840	tm_init();
841
842	DBG(" <- early_init_devtree()\n");
843}
844
845#ifdef CONFIG_RELOCATABLE
846/*
847 * This function run before early_init_devtree, so we have to init
848 * initial_boot_params.
849 */
850void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
851{
852	/* Setup flat device-tree pointer */
853	initial_boot_params = params;
854
855	/*
856	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
857	 * mess the memblock.
858	 */
859	add_mem_to_memblock = 0;
860	of_scan_flat_dt(early_init_dt_scan_root, NULL);
861	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
862	add_mem_to_memblock = 1;
863
864	if (size)
865		*size = first_memblock_size;
866}
867#endif
868
869/*******
870 *
871 * New implementation of the OF "find" APIs, return a refcounted
872 * object, call of_node_put() when done.  The device tree and list
873 * are protected by a rw_lock.
874 *
875 * Note that property management will need some locking as well,
876 * this isn't dealt with yet.
877 *
878 *******/
879
880/**
881 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
882 * @np: device node of the device
883 *
884 * This looks for a property "ibm,chip-id" in the node or any
885 * of its parents and returns its content, or -1 if it cannot
886 * be found.
887 */
888int of_get_ibm_chip_id(struct device_node *np)
889{
890	of_node_get(np);
891	while (np) {
892		u32 chip_id;
893
894		/*
895		 * Skiboot may produce memory nodes that contain more than one
896		 * cell in chip-id, we only read the first one here.
897		 */
898		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
899			of_node_put(np);
900			return chip_id;
901		}
902
903		np = of_get_next_parent(np);
904	}
905	return -1;
906}
907EXPORT_SYMBOL(of_get_ibm_chip_id);
908
909/**
910 * cpu_to_chip_id - Return the cpus chip-id
911 * @cpu: The logical cpu number.
912 *
913 * Return the value of the ibm,chip-id property corresponding to the given
914 * logical cpu number. If the chip-id can not be found, returns -1.
915 */
916int cpu_to_chip_id(int cpu)
917{
918	struct device_node *np;
919	int ret = -1, idx;
920
921	idx = cpu / threads_per_core;
922	if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
923		return chip_id_lookup_table[idx];
924
925	np = of_get_cpu_node(cpu, NULL);
926	if (np) {
927		ret = of_get_ibm_chip_id(np);
928		of_node_put(np);
929
930		if (chip_id_lookup_table)
931			chip_id_lookup_table[idx] = ret;
932	}
933
934	return ret;
 
935}
936EXPORT_SYMBOL(cpu_to_chip_id);
937
938bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
939{
940#ifdef CONFIG_SMP
941	/*
942	 * Early firmware scanning must use this rather than
943	 * get_hard_smp_processor_id because we don't have pacas allocated
944	 * until memory topology is discovered.
945	 */
946	if (cpu_to_phys_id != NULL)
947		return (int)phys_id == cpu_to_phys_id[cpu];
948#endif
949
950	return (int)phys_id == get_hard_smp_processor_id(cpu);
951}
v4.10.11
 
  1/*
  2 * Procedures for creating, accessing and interpreting the device tree.
  3 *
  4 * Paul Mackerras	August 1996.
  5 * Copyright (C) 1996-2005 Paul Mackerras.
  6 * 
  7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8 *    {engebret|bergner}@us.ibm.com 
  9 *
 10 *      This program is free software; you can redistribute it and/or
 11 *      modify it under the terms of the GNU General Public License
 12 *      as published by the Free Software Foundation; either version
 13 *      2 of the License, or (at your option) any later version.
 14 */
 15
 16#undef DEBUG
 17
 18#include <stdarg.h>
 19#include <linux/kernel.h>
 20#include <linux/string.h>
 21#include <linux/init.h>
 22#include <linux/threads.h>
 23#include <linux/spinlock.h>
 24#include <linux/types.h>
 25#include <linux/pci.h>
 26#include <linux/stringify.h>
 27#include <linux/delay.h>
 28#include <linux/initrd.h>
 29#include <linux/bitops.h>
 30#include <linux/export.h>
 31#include <linux/kexec.h>
 32#include <linux/irq.h>
 33#include <linux/memblock.h>
 34#include <linux/of.h>
 35#include <linux/of_fdt.h>
 36#include <linux/libfdt.h>
 37#include <linux/cpu.h>
 
 38
 39#include <asm/prom.h>
 40#include <asm/rtas.h>
 41#include <asm/page.h>
 42#include <asm/processor.h>
 43#include <asm/irq.h>
 44#include <asm/io.h>
 45#include <asm/kdump.h>
 46#include <asm/smp.h>
 47#include <asm/mmu.h>
 48#include <asm/paca.h>
 49#include <asm/pgtable.h>
 50#include <asm/iommu.h>
 51#include <asm/btext.h>
 52#include <asm/sections.h>
 53#include <asm/machdep.h>
 54#include <asm/pci-bridge.h>
 55#include <asm/kexec.h>
 56#include <asm/opal.h>
 57#include <asm/fadump.h>
 58#include <asm/debug.h>
 59#include <asm/epapr_hcalls.h>
 60#include <asm/firmware.h>
 
 
 
 61
 62#include <mm/mmu_decl.h>
 63
 64#ifdef DEBUG
 65#define DBG(fmt...) printk(KERN_ERR fmt)
 66#else
 67#define DBG(fmt...)
 68#endif
 69
 
 
 70#ifdef CONFIG_PPC64
 71int __initdata iommu_is_off;
 72int __initdata iommu_force_on;
 73unsigned long tce_alloc_start, tce_alloc_end;
 74u64 ppc64_rma_size;
 75#endif
 76static phys_addr_t first_memblock_size;
 77static int __initdata boot_cpu_count;
 78
 79static int __init early_parse_mem(char *p)
 80{
 81	if (!p)
 82		return 1;
 83
 84	memory_limit = PAGE_ALIGN(memparse(p, &p));
 85	DBG("memory limit = 0x%llx\n", memory_limit);
 86
 87	return 0;
 88}
 89early_param("mem", early_parse_mem);
 90
 91/*
 92 * overlaps_initrd - check for overlap with page aligned extension of
 93 * initrd.
 94 */
 95static inline int overlaps_initrd(unsigned long start, unsigned long size)
 96{
 97#ifdef CONFIG_BLK_DEV_INITRD
 98	if (!initrd_start)
 99		return 0;
100
101	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
102			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
103#else
104	return 0;
105#endif
106}
107
108/**
109 * move_device_tree - move tree to an unused area, if needed.
110 *
111 * The device tree may be allocated beyond our memory limit, or inside the
112 * crash kernel region for kdump, or within the page aligned range of initrd.
113 * If so, move it out of the way.
114 */
115static void __init move_device_tree(void)
116{
117	unsigned long start, size;
118	void *p;
119
120	DBG("-> move_device_tree\n");
121
122	start = __pa(initial_boot_params);
123	size = fdt_totalsize(initial_boot_params);
124
125	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
126			overlaps_crashkernel(start, size) ||
127			overlaps_initrd(start, size)) {
128		p = __va(memblock_alloc(size, PAGE_SIZE));
 
 
 
129		memcpy(p, initial_boot_params, size);
130		initial_boot_params = p;
131		DBG("Moved device tree to 0x%p\n", p);
132	}
133
134	DBG("<- move_device_tree\n");
135}
136
137/*
138 * ibm,pa-features is a per-cpu property that contains a string of
139 * attribute descriptors, each of which has a 2 byte header plus up
140 * to 254 bytes worth of processor attribute bits.  First header
141 * byte specifies the number of bytes following the header.
142 * Second header byte is an "attribute-specifier" type, of which
143 * zero is the only currently-defined value.
144 * Implementation:  Pass in the byte and bit offset for the feature
145 * that we are interested in.  The function will return -1 if the
146 * pa-features property is missing, or a 1/0 to indicate if the feature
147 * is supported/not supported.  Note that the bit numbers are
148 * big-endian to match the definition in PAPR.
149 */
150static struct ibm_pa_feature {
151	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
152	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
153	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
154	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
155	unsigned char	pabyte;		/* byte number in ibm,pa-features */
156	unsigned char	pabit;		/* bit number (big-endian) */
157	unsigned char	invert;		/* if 1, pa bit set => clear feature */
158} ibm_pa_features[] __initdata = {
159	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
160	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
161	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
162	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
163	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
164	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX },
165	{ .pabyte = 1,  .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
 
166	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
167				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
168	/*
169	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
170	 * we don't want to turn on TM here, so we use the *_COMP versions
171	 * which are 0 if the kernel doesn't support TM.
172	 */
173	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
174	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
 
 
175};
176
177static void __init scan_features(unsigned long node, const unsigned char *ftrs,
178				 unsigned long tablelen,
179				 struct ibm_pa_feature *fp,
180				 unsigned long ft_size)
181{
182	unsigned long i, len, bit;
183
184	/* find descriptor with type == 0 */
185	for (;;) {
186		if (tablelen < 3)
187			return;
188		len = 2 + ftrs[0];
189		if (tablelen < len)
190			return;		/* descriptor 0 not found */
191		if (ftrs[1] == 0)
192			break;
193		tablelen -= len;
194		ftrs += len;
195	}
196
197	/* loop over bits we know about */
198	for (i = 0; i < ft_size; ++i, ++fp) {
199		if (fp->pabyte >= ftrs[0])
200			continue;
201		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
202		if (bit ^ fp->invert) {
203			cur_cpu_spec->cpu_features |= fp->cpu_features;
204			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
205			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
206			cur_cpu_spec->mmu_features |= fp->mmu_features;
207		} else {
208			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
209			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
210			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
211			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
212		}
213	}
214}
215
216static void __init check_cpu_pa_features(unsigned long node)
217{
218	const unsigned char *pa_ftrs;
219	int tablelen;
220
221	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
222	if (pa_ftrs == NULL)
223		return;
224
225	scan_features(node, pa_ftrs, tablelen,
226		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
227}
228
229#ifdef CONFIG_PPC_STD_MMU_64
230static void __init init_mmu_slb_size(unsigned long node)
231{
232	const __be32 *slb_size_ptr;
233
234	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
235			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
236
237	if (slb_size_ptr)
238		mmu_slb_size = be32_to_cpup(slb_size_ptr);
239}
240#else
241#define init_mmu_slb_size(node) do { } while(0)
242#endif
243
244static struct feature_property {
245	const char *name;
246	u32 min_value;
247	unsigned long cpu_feature;
248	unsigned long cpu_user_ftr;
249} feature_properties[] __initdata = {
250#ifdef CONFIG_ALTIVEC
251	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
252	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
253#endif /* CONFIG_ALTIVEC */
254#ifdef CONFIG_VSX
255	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
256	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
257#endif /* CONFIG_VSX */
258#ifdef CONFIG_PPC64
259	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
260	{"ibm,purr", 1, CPU_FTR_PURR, 0},
261	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
262#endif /* CONFIG_PPC64 */
263};
264
265#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
266static inline void identical_pvr_fixup(unsigned long node)
267{
268	unsigned int pvr;
269	const char *model = of_get_flat_dt_prop(node, "model", NULL);
270
271	/*
272	 * Since 440GR(x)/440EP(x) processors have the same pvr,
273	 * we check the node path and set bit 28 in the cur_cpu_spec
274	 * pvr for EP(x) processor version. This bit is always 0 in
275	 * the "real" pvr. Then we call identify_cpu again with
276	 * the new logical pvr to enable FPU support.
277	 */
278	if (model && strstr(model, "440EP")) {
279		pvr = cur_cpu_spec->pvr_value | 0x8;
280		identify_cpu(0, pvr);
281		DBG("Using logical pvr %x for %s\n", pvr, model);
282	}
283}
284#else
285#define identical_pvr_fixup(node) do { } while(0)
286#endif
287
288static void __init check_cpu_feature_properties(unsigned long node)
289{
290	unsigned long i;
291	struct feature_property *fp = feature_properties;
292	const __be32 *prop;
293
294	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
295		prop = of_get_flat_dt_prop(node, fp->name, NULL);
296		if (prop && be32_to_cpup(prop) >= fp->min_value) {
297			cur_cpu_spec->cpu_features |= fp->cpu_feature;
298			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
299		}
300	}
301}
302
303static int __init early_init_dt_scan_cpus(unsigned long node,
304					  const char *uname, int depth,
305					  void *data)
306{
307	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
308	const __be32 *prop;
309	const __be32 *intserv;
310	int i, nthreads;
311	int len;
312	int found = -1;
313	int found_thread = 0;
314
315	/* We are scanning "cpu" nodes only */
316	if (type == NULL || strcmp(type, "cpu") != 0)
317		return 0;
318
319	/* Get physical cpuid */
320	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
321	if (!intserv)
322		intserv = of_get_flat_dt_prop(node, "reg", &len);
323
324	nthreads = len / sizeof(int);
325
326	/*
327	 * Now see if any of these threads match our boot cpu.
328	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
329	 */
330	for (i = 0; i < nthreads; i++) {
331		/*
332		 * version 2 of the kexec param format adds the phys cpuid of
333		 * booted proc.
334		 */
335		if (fdt_version(initial_boot_params) >= 2) {
336			if (be32_to_cpu(intserv[i]) ==
337			    fdt_boot_cpuid_phys(initial_boot_params)) {
338				found = boot_cpu_count;
339				found_thread = i;
340			}
341		} else {
342			/*
343			 * Check if it's the boot-cpu, set it's hw index now,
344			 * unfortunately this format did not support booting
345			 * off secondary threads.
346			 */
347			if (of_get_flat_dt_prop(node,
348					"linux,boot-cpu", NULL) != NULL)
349				found = boot_cpu_count;
350		}
351#ifdef CONFIG_SMP
352		/* logical cpu id is always 0 on UP kernels */
353		boot_cpu_count++;
354#endif
355	}
356
357	/* Not the boot CPU */
358	if (found < 0)
359		return 0;
360
361	DBG("boot cpu: logical %d physical %d\n", found,
362	    be32_to_cpu(intserv[found_thread]));
363	boot_cpuid = found;
364	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
365
366	/*
367	 * PAPR defines "logical" PVR values for cpus that
368	 * meet various levels of the architecture:
369	 * 0x0f000001	Architecture version 2.04
370	 * 0x0f000002	Architecture version 2.05
371	 * If the cpu-version property in the cpu node contains
372	 * such a value, we call identify_cpu again with the
373	 * logical PVR value in order to use the cpu feature
374	 * bits appropriate for the architecture level.
375	 *
376	 * A POWER6 partition in "POWER6 architected" mode
377	 * uses the 0x0f000002 PVR value; in POWER5+ mode
378	 * it uses 0x0f000001.
379	 */
380	prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
381	if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
382		identify_cpu(0, be32_to_cpup(prop));
 
 
 
 
 
 
 
 
 
 
383
384	identical_pvr_fixup(node);
385
386	check_cpu_feature_properties(node);
387	check_cpu_pa_features(node);
388	init_mmu_slb_size(node);
389
390#ifdef CONFIG_PPC64
391	if (nthreads > 1)
 
 
392		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
393	else
394		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
395#endif
 
 
396	return 0;
397}
398
399static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
400						const char *uname,
401						int depth, void *data)
402{
403	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
404
405	/* Use common scan routine to determine if this is the chosen node */
406	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
407		return 0;
408
409#ifdef CONFIG_PPC64
410	/* check if iommu is forced on or off */
411	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
412		iommu_is_off = 1;
413	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
414		iommu_force_on = 1;
415#endif
416
417	/* mem=x on the command line is the preferred mechanism */
418	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
419	if (lprop)
420		memory_limit = *lprop;
421
422#ifdef CONFIG_PPC64
423	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
424	if (lprop)
425		tce_alloc_start = *lprop;
426	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
427	if (lprop)
428		tce_alloc_end = *lprop;
429#endif
430
431#ifdef CONFIG_KEXEC_CORE
432	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
433	if (lprop)
434		crashk_res.start = *lprop;
435
436	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
437	if (lprop)
438		crashk_res.end = crashk_res.start + *lprop - 1;
439#endif
440
441	/* break now */
442	return 1;
443}
444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445#ifdef CONFIG_PPC_PSERIES
446/*
447 * Interpret the ibm,dynamic-memory property in the
448 * /ibm,dynamic-reconfiguration-memory node.
449 * This contains a list of memory blocks along with NUMA affinity
450 * information.
451 */
452static int __init early_init_dt_scan_drconf_memory(unsigned long node)
453{
454	const __be32 *dm, *ls, *usm;
455	int l;
456	unsigned long n, flags;
457	u64 base, size, memblock_size;
458	unsigned int is_kexec_kdump = 0, rngs;
 
 
 
459
460	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
461	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
 
 
 
 
462		return 0;
463	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
464
465	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
466	if (dm == NULL || l < sizeof(__be32))
467		return 0;
468
469	n = of_read_number(dm++, 1);	/* number of entries */
470	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
471		return 0;
 
 
 
 
 
 
 
 
 
472
473	/* check if this is a kexec/kdump kernel. */
474	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
475						 &l);
476	if (usm != NULL)
477		is_kexec_kdump = 1;
478
479	for (; n != 0; --n) {
480		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
481		flags = of_read_number(&dm[3], 1);
482		/* skip DRC index, pad, assoc. list index, flags */
483		dm += 4;
484		/* skip this block if the reserved bit is set in flags
485		   or if the block is not assigned to this partition */
486		if ((flags & DRCONF_MEM_RESERVED) ||
487				!(flags & DRCONF_MEM_ASSIGNED))
488			continue;
489		size = memblock_size;
490		rngs = 1;
491		if (is_kexec_kdump) {
492			/*
493			 * For each memblock in ibm,dynamic-memory, a corresponding
494			 * entry in linux,drconf-usable-memory property contains
495			 * a counter 'p' followed by 'p' (base, size) duple.
496			 * Now read the counter from
497			 * linux,drconf-usable-memory property
498			 */
499			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
500			if (!rngs) /* there are no (base, size) duple */
501				continue;
 
 
502		}
503		do {
504			if (is_kexec_kdump) {
505				base = dt_mem_next_cell(dt_root_addr_cells,
506							 &usm);
507				size = dt_mem_next_cell(dt_root_size_cells,
508							 &usm);
509			}
510			if (iommu_is_off) {
511				if (base >= 0x80000000ul)
512					continue;
513				if ((base + size) > 0x80000000ul)
514					size = 0x80000000ul - base;
515			}
516			memblock_add(base, size);
517		} while (--rngs);
518	}
519	memblock_dump_all();
520	return 0;
521}
522#else
523#define early_init_dt_scan_drconf_memory(node)	0
524#endif /* CONFIG_PPC_PSERIES */
525
526static int __init early_init_dt_scan_memory_ppc(unsigned long node,
527						const char *uname,
528						int depth, void *data)
529{
 
530	if (depth == 1 &&
531	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
532		return early_init_dt_scan_drconf_memory(node);
 
 
 
533	
534	return early_init_dt_scan_memory(node, uname, depth, data);
535}
536
537/*
538 * For a relocatable kernel, we need to get the memstart_addr first,
539 * then use it to calculate the virtual kernel start address. This has
540 * to happen at a very early stage (before machine_init). In this case,
541 * we just want to get the memstart_address and would not like to mess the
542 * memblock at this stage. So introduce a variable to skip the memblock_add()
543 * for this reason.
544 */
545#ifdef CONFIG_RELOCATABLE
546static int add_mem_to_memblock = 1;
547#else
548#define add_mem_to_memblock 1
549#endif
550
551void __init early_init_dt_add_memory_arch(u64 base, u64 size)
552{
553#ifdef CONFIG_PPC64
554	if (iommu_is_off) {
555		if (base >= 0x80000000ul)
556			return;
557		if ((base + size) > 0x80000000ul)
558			size = 0x80000000ul - base;
559	}
560#endif
561	/* Keep track of the beginning of memory -and- the size of
562	 * the very first block in the device-tree as it represents
563	 * the RMA on ppc64 server
564	 */
565	if (base < memstart_addr) {
566		memstart_addr = base;
567		first_memblock_size = size;
568	}
569
570	/* Add the chunk to the MEMBLOCK list */
571	if (add_mem_to_memblock)
572		memblock_add(base, size);
 
 
573}
574
575static void __init early_reserve_mem_dt(void)
576{
577	unsigned long i, dt_root;
578	int len;
579	const __be32 *prop;
580
581	early_init_fdt_reserve_self();
582	early_init_fdt_scan_reserved_mem();
583
584	dt_root = of_get_flat_dt_root();
585
586	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
587
588	if (!prop)
589		return;
590
591	DBG("Found new-style reserved-ranges\n");
592
593	/* Each reserved range is an (address,size) pair, 2 cells each,
594	 * totalling 4 cells per range. */
595	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
596		u64 base, size;
597
598		base = of_read_number(prop + (i * 4) + 0, 2);
599		size = of_read_number(prop + (i * 4) + 2, 2);
600
601		if (size) {
602			DBG("reserving: %llx -> %llx\n", base, size);
603			memblock_reserve(base, size);
604		}
605	}
606}
607
608static void __init early_reserve_mem(void)
609{
610	__be64 *reserve_map;
611
612	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
613			fdt_off_mem_rsvmap(initial_boot_params));
614
615	/* Look for the new "reserved-regions" property in the DT */
616	early_reserve_mem_dt();
617
618#ifdef CONFIG_BLK_DEV_INITRD
619	/* Then reserve the initrd, if any */
620	if (initrd_start && (initrd_end > initrd_start)) {
621		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
622			_ALIGN_UP(initrd_end, PAGE_SIZE) -
623			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
624	}
625#endif /* CONFIG_BLK_DEV_INITRD */
626
627#ifdef CONFIG_PPC32
628	/* 
629	 * Handle the case where we might be booting from an old kexec
630	 * image that setup the mem_rsvmap as pairs of 32-bit values
631	 */
632	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
633		u32 base_32, size_32;
634		__be32 *reserve_map_32 = (__be32 *)reserve_map;
635
636		DBG("Found old 32-bit reserve map\n");
637
638		while (1) {
639			base_32 = be32_to_cpup(reserve_map_32++);
640			size_32 = be32_to_cpup(reserve_map_32++);
641			if (size_32 == 0)
642				break;
643			DBG("reserving: %x -> %x\n", base_32, size_32);
644			memblock_reserve(base_32, size_32);
645		}
646		return;
647	}
648#endif
649}
650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651void __init early_init_devtree(void *params)
652{
653	phys_addr_t limit;
654
655	DBG(" -> early_init_devtree(%p)\n", params);
656
657	/* Too early to BUG_ON(), do it by hand */
658	if (!early_init_dt_verify(params))
659		panic("BUG: Failed verifying flat device tree, bad version?");
660
661#ifdef CONFIG_PPC_RTAS
662	/* Some machines might need RTAS info for debugging, grab it now. */
663	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
664#endif
665
666#ifdef CONFIG_PPC_POWERNV
667	/* Some machines might need OPAL info for debugging, grab it now. */
668	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
 
 
 
669#endif
670
671#ifdef CONFIG_FA_DUMP
672	/* scan tree to see if dump is active during last boot */
673	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
674#endif
675
676	/* Retrieve various informations from the /chosen node of the
677	 * device-tree, including the platform type, initrd location and
678	 * size, TCE reserve, and more ...
679	 */
680	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
681
682	/* Scan memory nodes and rebuild MEMBLOCKs */
683	of_scan_flat_dt(early_init_dt_scan_root, NULL);
684	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
685
686	parse_early_param();
687
688	/* make sure we've parsed cmdline for mem= before this */
689	if (memory_limit)
690		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
691	setup_initial_memory_limit(memstart_addr, first_memblock_size);
692	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
693	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
694	/* If relocatable, reserve first 32k for interrupt vectors etc. */
695	if (PHYSICAL_START > MEMORY_START)
696		memblock_reserve(MEMORY_START, 0x8000);
697	reserve_kdump_trampoline();
698#ifdef CONFIG_FA_DUMP
699	/*
700	 * If we fail to reserve memory for firmware-assisted dump then
701	 * fallback to kexec based kdump.
702	 */
703	if (fadump_reserve_mem() == 0)
704#endif
705		reserve_crashkernel();
706	early_reserve_mem();
707
708	/* Ensure that total memory size is page-aligned. */
709	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
710	memblock_enforce_memory_limit(limit);
711
 
 
 
 
 
712	memblock_allow_resize();
713	memblock_dump_all();
714
715	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
716
717	/* We may need to relocate the flat tree, do it now.
718	 * FIXME .. and the initrd too? */
719	move_device_tree();
720
721	allocate_pacas();
722
723	DBG("Scanning CPUs ...\n");
724
 
 
725	/* Retrieve CPU related informations from the flat tree
726	 * (altivec support, boot CPU ID, ...)
727	 */
728	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
729	if (boot_cpuid < 0) {
730		printk("Failed to identify boot CPU !\n");
731		BUG();
732	}
733
 
 
734#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
735	/* We'll later wait for secondaries to check in; there are
736	 * NCPUS-1 non-boot CPUs  :-)
737	 */
738	spinning_secondaries = boot_cpu_count - 1;
739#endif
740
741	mmu_early_init_devtree();
742
743#ifdef CONFIG_PPC_POWERNV
744	/* Scan and build the list of machine check recoverable ranges */
745	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
746#endif
747	epapr_paravirt_early_init();
748
749	/* Now try to figure out if we are running on LPAR and so on */
750	pseries_probe_fw_features();
751
 
 
 
 
 
752#ifdef CONFIG_PPC_PS3
753	/* Identify PS3 firmware */
754	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
755		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
756#endif
757
 
 
758	DBG(" <- early_init_devtree()\n");
759}
760
761#ifdef CONFIG_RELOCATABLE
762/*
763 * This function run before early_init_devtree, so we have to init
764 * initial_boot_params.
765 */
766void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
767{
768	/* Setup flat device-tree pointer */
769	initial_boot_params = params;
770
771	/*
772	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
773	 * mess the memblock.
774	 */
775	add_mem_to_memblock = 0;
776	of_scan_flat_dt(early_init_dt_scan_root, NULL);
777	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
778	add_mem_to_memblock = 1;
779
780	if (size)
781		*size = first_memblock_size;
782}
783#endif
784
785/*******
786 *
787 * New implementation of the OF "find" APIs, return a refcounted
788 * object, call of_node_put() when done.  The device tree and list
789 * are protected by a rw_lock.
790 *
791 * Note that property management will need some locking as well,
792 * this isn't dealt with yet.
793 *
794 *******/
795
796/**
797 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
798 * @np: device node of the device
799 *
800 * This looks for a property "ibm,chip-id" in the node or any
801 * of its parents and returns its content, or -1 if it cannot
802 * be found.
803 */
804int of_get_ibm_chip_id(struct device_node *np)
805{
806	of_node_get(np);
807	while (np) {
808		u32 chip_id;
809
810		/*
811		 * Skiboot may produce memory nodes that contain more than one
812		 * cell in chip-id, we only read the first one here.
813		 */
814		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
815			of_node_put(np);
816			return chip_id;
817		}
818
819		np = of_get_next_parent(np);
820	}
821	return -1;
822}
823EXPORT_SYMBOL(of_get_ibm_chip_id);
824
825/**
826 * cpu_to_chip_id - Return the cpus chip-id
827 * @cpu: The logical cpu number.
828 *
829 * Return the value of the ibm,chip-id property corresponding to the given
830 * logical cpu number. If the chip-id can not be found, returns -1.
831 */
832int cpu_to_chip_id(int cpu)
833{
834	struct device_node *np;
 
 
 
 
 
835
836	np = of_get_cpu_node(cpu, NULL);
837	if (!np)
838		return -1;
 
 
 
 
 
839
840	of_node_put(np);
841	return of_get_ibm_chip_id(np);
842}
843EXPORT_SYMBOL(cpu_to_chip_id);
844
845bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
846{
 
 
 
 
 
 
 
 
 
 
847	return (int)phys_id == get_hard_smp_processor_id(cpu);
848}