Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/file.h>
  62#include <linux/tracehook.h>
  63#include <linux/psi.h>
  64#include <linux/seq_buf.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include "slab.h"
  69
  70#include <linux/uaccess.h>
  71
  72#include <trace/events/vmscan.h>
  73
  74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  75EXPORT_SYMBOL(memory_cgrp_subsys);
  76
  77struct mem_cgroup *root_mem_cgroup __read_mostly;
 
 
 
 
 
 
 
 
 
 
  78
  79/* Active memory cgroup to use from an interrupt context */
  80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  82
  83/* Socket memory accounting disabled? */
  84static bool cgroup_memory_nosocket __ro_after_init;
  85
  86/* Kernel memory accounting disabled? */
  87bool cgroup_memory_nokmem __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
  88
  89/* Whether the swap controller is active */
  90#ifdef CONFIG_MEMCG_SWAP
  91bool cgroup_memory_noswap __ro_after_init;
  92#else
  93#define cgroup_memory_noswap		1
  94#endif
  95
  96#ifdef CONFIG_CGROUP_WRITEBACK
  97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  98#endif
 
 
 
 
  99
 100/* Whether legacy memory+swap accounting is active */
 101static bool do_memsw_account(void)
 102{
 103	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 104}
 
 105
 
 
 
 
 
 
 
 
 
 
 
 
 106#define THRESHOLDS_EVENTS_TARGET 128
 107#define SOFTLIMIT_EVENTS_TARGET 1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109/*
 110 * Cgroups above their limits are maintained in a RB-Tree, independent of
 111 * their hierarchy representation
 112 */
 113
 114struct mem_cgroup_tree_per_node {
 115	struct rb_root rb_root;
 116	struct rb_node *rb_rightmost;
 117	spinlock_t lock;
 118};
 119
 
 
 
 
 120struct mem_cgroup_tree {
 121	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 122};
 123
 124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126/* for OOM */
 127struct mem_cgroup_eventfd_list {
 128	struct list_head list;
 129	struct eventfd_ctx *eventfd;
 130};
 131
 
 
 
 132/*
 133 * cgroup_event represents events which userspace want to receive.
 
 
 
 
 
 
 
 
 134 */
 135struct mem_cgroup_event {
 
 136	/*
 137	 * memcg which the event belongs to.
 138	 */
 139	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140	/*
 141	 * eventfd to signal userspace about the event.
 
 142	 */
 143	struct eventfd_ctx *eventfd;
 
 
 
 
 
 
 144	/*
 145	 * Each of these stored in a list by the cgroup.
 146	 */
 147	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148	/*
 149	 * register_event() callback will be used to add new userspace
 150	 * waiter for changes related to this event.  Use eventfd_signal()
 151	 * on eventfd to send notification to userspace.
 152	 */
 153	int (*register_event)(struct mem_cgroup *memcg,
 154			      struct eventfd_ctx *eventfd, const char *args);
 155	/*
 156	 * unregister_event() callback will be called when userspace closes
 157	 * the eventfd or on cgroup removing.  This callback must be set,
 158	 * if you want provide notification functionality.
 159	 */
 160	void (*unregister_event)(struct mem_cgroup *memcg,
 161				 struct eventfd_ctx *eventfd);
 162	/*
 163	 * All fields below needed to unregister event when
 164	 * userspace closes eventfd.
 165	 */
 166	poll_table pt;
 167	wait_queue_head_t *wqh;
 168	wait_queue_entry_t wait;
 169	struct work_struct remove;
 170};
 171
 172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 
 
 174
 175/* Stuffs for move charges at task migration. */
 176/*
 177 * Types of charges to be moved.
 
 178 */
 179#define MOVE_ANON	0x1U
 180#define MOVE_FILE	0x2U
 181#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 
 
 182
 183/* "mc" and its members are protected by cgroup_mutex */
 184static struct move_charge_struct {
 185	spinlock_t	  lock; /* for from, to */
 186	struct mm_struct  *mm;
 187	struct mem_cgroup *from;
 188	struct mem_cgroup *to;
 189	unsigned long flags;
 190	unsigned long precharge;
 191	unsigned long moved_charge;
 192	unsigned long moved_swap;
 193	struct task_struct *moving_task;	/* a task moving charges */
 194	wait_queue_head_t waitq;		/* a waitq for other context */
 195} mc = {
 196	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 197	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 198};
 199
 
 
 
 
 
 
 
 
 
 
 
 
 200/*
 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 202 * limit reclaim to prevent infinite loops, if they ever occur.
 203 */
 204#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 205#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 206
 207/* for encoding cft->private value on file */
 208enum res_type {
 209	_MEM,
 210	_MEMSWAP,
 211	_OOM_TYPE,
 212	_KMEM,
 213	_TCP,
 
 214};
 215
 
 
 
 
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219/* Used for OOM notifier */
 220#define OOM_CONTROL		(0)
 221
 222/*
 223 * Iteration constructs for visiting all cgroups (under a tree).  If
 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 225 * be used for reference counting.
 226 */
 227#define for_each_mem_cgroup_tree(iter, root)		\
 228	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 229	     iter != NULL;				\
 230	     iter = mem_cgroup_iter(root, iter, NULL))
 231
 232#define for_each_mem_cgroup(iter)			\
 233	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 234	     iter != NULL;				\
 235	     iter = mem_cgroup_iter(NULL, iter, NULL))
 236
 237static inline bool should_force_charge(void)
 238{
 239	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 240		(current->flags & PF_EXITING);
 241}
 242
 243/* Some nice accessors for the vmpressure. */
 244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 245{
 246	if (!memcg)
 247		memcg = root_mem_cgroup;
 248	return &memcg->vmpressure;
 249}
 250
 251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 252{
 253	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 254}
 255
 256#ifdef CONFIG_MEMCG_KMEM
 257extern spinlock_t css_set_lock;
 258
 259bool mem_cgroup_kmem_disabled(void)
 260{
 261	return cgroup_memory_nokmem;
 262}
 263
 264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 265				      unsigned int nr_pages);
 266
 267static void obj_cgroup_release(struct percpu_ref *ref)
 
 268{
 269	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 270	unsigned int nr_bytes;
 271	unsigned int nr_pages;
 272	unsigned long flags;
 273
 274	/*
 275	 * At this point all allocated objects are freed, and
 276	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 277	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 278	 *
 279	 * The following sequence can lead to it:
 280	 * 1) CPU0: objcg == stock->cached_objcg
 281	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 282	 *          PAGE_SIZE bytes are charged
 283	 * 3) CPU1: a process from another memcg is allocating something,
 284	 *          the stock if flushed,
 285	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 286	 * 5) CPU0: we do release this object,
 287	 *          92 bytes are added to stock->nr_bytes
 288	 * 6) CPU0: stock is flushed,
 289	 *          92 bytes are added to objcg->nr_charged_bytes
 290	 *
 291	 * In the result, nr_charged_bytes == PAGE_SIZE.
 292	 * This page will be uncharged in obj_cgroup_release().
 293	 */
 294	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 295	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 296	nr_pages = nr_bytes >> PAGE_SHIFT;
 297
 298	if (nr_pages)
 299		obj_cgroup_uncharge_pages(objcg, nr_pages);
 300
 301	spin_lock_irqsave(&css_set_lock, flags);
 302	list_del(&objcg->list);
 303	spin_unlock_irqrestore(&css_set_lock, flags);
 
 
 
 
 
 
 
 
 
 
 304
 305	percpu_ref_exit(ref);
 306	kfree_rcu(objcg, rcu);
 
 
 
 
 
 
 
 307}
 
 308
 309static struct obj_cgroup *obj_cgroup_alloc(void)
 310{
 311	struct obj_cgroup *objcg;
 312	int ret;
 313
 314	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 315	if (!objcg)
 316		return NULL;
 317
 318	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 319			      GFP_KERNEL);
 320	if (ret) {
 321		kfree(objcg);
 322		return NULL;
 323	}
 324	INIT_LIST_HEAD(&objcg->list);
 325	return objcg;
 326}
 327
 328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 329				  struct mem_cgroup *parent)
 330{
 331	struct obj_cgroup *objcg, *iter;
 332
 333	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 334
 335	spin_lock_irq(&css_set_lock);
 336
 337	/* 1) Ready to reparent active objcg. */
 338	list_add(&objcg->list, &memcg->objcg_list);
 339	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 340	list_for_each_entry(iter, &memcg->objcg_list, list)
 341		WRITE_ONCE(iter->memcg, parent);
 342	/* 3) Move already reparented objcgs to the parent's list */
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 
 
 
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 
 
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 401
 402/**
 403 * mem_cgroup_css_from_page - css of the memcg associated with a page
 404 * @page: page of interest
 405 *
 406 * If memcg is bound to the default hierarchy, css of the memcg associated
 407 * with @page is returned.  The returned css remains associated with @page
 408 * until it is released.
 409 *
 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 411 * is returned.
 412 */
 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 414{
 415	struct mem_cgroup *memcg;
 416
 417	memcg = page_memcg(page);
 418
 419	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 420		memcg = root_mem_cgroup;
 421
 422	return &memcg->css;
 423}
 424
 425/**
 426 * page_cgroup_ino - return inode number of the memcg a page is charged to
 427 * @page: the page
 428 *
 429 * Look up the closest online ancestor of the memory cgroup @page is charged to
 430 * and return its inode number or 0 if @page is not charged to any cgroup. It
 431 * is safe to call this function without holding a reference to @page.
 432 *
 433 * Note, this function is inherently racy, because there is nothing to prevent
 434 * the cgroup inode from getting torn down and potentially reallocated a moment
 435 * after page_cgroup_ino() returns, so it only should be used by callers that
 436 * do not care (such as procfs interfaces).
 437 */
 438ino_t page_cgroup_ino(struct page *page)
 439{
 440	struct mem_cgroup *memcg;
 441	unsigned long ino = 0;
 442
 443	rcu_read_lock();
 444	memcg = page_memcg_check(page);
 445
 446	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 447		memcg = parent_mem_cgroup(memcg);
 448	if (memcg)
 449		ino = cgroup_ino(memcg->css.cgroup);
 450	rcu_read_unlock();
 451	return ino;
 452}
 453
 454static struct mem_cgroup_per_node *
 455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 456{
 457	int nid = page_to_nid(page);
 
 458
 459	return memcg->nodeinfo[nid];
 460}
 461
 462static struct mem_cgroup_tree_per_node *
 463soft_limit_tree_node(int nid)
 464{
 465	return soft_limit_tree.rb_tree_per_node[nid];
 466}
 467
 468static struct mem_cgroup_tree_per_node *
 469soft_limit_tree_from_page(struct page *page)
 470{
 471	int nid = page_to_nid(page);
 
 472
 473	return soft_limit_tree.rb_tree_per_node[nid];
 474}
 475
 476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 477					 struct mem_cgroup_tree_per_node *mctz,
 478					 unsigned long new_usage_in_excess)
 
 
 479{
 480	struct rb_node **p = &mctz->rb_root.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct mem_cgroup_per_node *mz_node;
 483	bool rightmost = true;
 484
 485	if (mz->on_tree)
 486		return;
 487
 488	mz->usage_in_excess = new_usage_in_excess;
 489	if (!mz->usage_in_excess)
 490		return;
 491	while (*p) {
 492		parent = *p;
 493		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 494					tree_node);
 495		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 496			p = &(*p)->rb_left;
 497			rightmost = false;
 498		} else {
 
 
 
 499			p = &(*p)->rb_right;
 500		}
 501	}
 502
 503	if (rightmost)
 504		mctz->rb_rightmost = &mz->tree_node;
 505
 506	rb_link_node(&mz->tree_node, parent, p);
 507	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 508	mz->on_tree = true;
 509}
 510
 511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 512					 struct mem_cgroup_tree_per_node *mctz)
 
 
 513{
 514	if (!mz->on_tree)
 515		return;
 516
 517	if (&mz->tree_node == mctz->rb_rightmost)
 518		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 519
 520	rb_erase(&mz->tree_node, &mctz->rb_root);
 521	mz->on_tree = false;
 522}
 523
 524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 525				       struct mem_cgroup_tree_per_node *mctz)
 526{
 527	unsigned long flags;
 528
 529	spin_lock_irqsave(&mctz->lock, flags);
 530	__mem_cgroup_remove_exceeded(mz, mctz);
 531	spin_unlock_irqrestore(&mctz->lock, flags);
 532}
 533
 534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 535{
 536	unsigned long nr_pages = page_counter_read(&memcg->memory);
 537	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 538	unsigned long excess = 0;
 539
 540	if (nr_pages > soft_limit)
 541		excess = nr_pages - soft_limit;
 542
 543	return excess;
 544}
 545
 546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 547{
 548	unsigned long excess;
 549	struct mem_cgroup_per_node *mz;
 550	struct mem_cgroup_tree_per_node *mctz;
 551
 
 552	mctz = soft_limit_tree_from_page(page);
 553	if (!mctz)
 554		return;
 555	/*
 556	 * Necessary to update all ancestors when hierarchy is used.
 557	 * because their event counter is not touched.
 558	 */
 559	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 560		mz = mem_cgroup_page_nodeinfo(memcg, page);
 561		excess = soft_limit_excess(memcg);
 562		/*
 563		 * We have to update the tree if mz is on RB-tree or
 564		 * mem is over its softlimit.
 565		 */
 566		if (excess || mz->on_tree) {
 567			unsigned long flags;
 568
 569			spin_lock_irqsave(&mctz->lock, flags);
 570			/* if on-tree, remove it */
 571			if (mz->on_tree)
 572				__mem_cgroup_remove_exceeded(mz, mctz);
 573			/*
 574			 * Insert again. mz->usage_in_excess will be updated.
 575			 * If excess is 0, no tree ops.
 576			 */
 577			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 578			spin_unlock_irqrestore(&mctz->lock, flags);
 579		}
 580	}
 581}
 582
 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 584{
 585	struct mem_cgroup_tree_per_node *mctz;
 586	struct mem_cgroup_per_node *mz;
 587	int nid;
 588
 589	for_each_node(nid) {
 590		mz = memcg->nodeinfo[nid];
 591		mctz = soft_limit_tree_node(nid);
 592		if (mctz)
 593			mem_cgroup_remove_exceeded(mz, mctz);
 
 594	}
 595}
 596
 597static struct mem_cgroup_per_node *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 599{
 600	struct mem_cgroup_per_node *mz;
 
 601
 602retry:
 603	mz = NULL;
 604	if (!mctz->rb_rightmost)
 
 605		goto done;		/* Nothing to reclaim from */
 606
 607	mz = rb_entry(mctz->rb_rightmost,
 608		      struct mem_cgroup_per_node, tree_node);
 609	/*
 610	 * Remove the node now but someone else can add it back,
 611	 * we will to add it back at the end of reclaim to its correct
 612	 * position in the tree.
 613	 */
 614	__mem_cgroup_remove_exceeded(mz, mctz);
 615	if (!soft_limit_excess(mz->memcg) ||
 616	    !css_tryget(&mz->memcg->css))
 617		goto retry;
 618done:
 619	return mz;
 620}
 621
 622static struct mem_cgroup_per_node *
 623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 624{
 625	struct mem_cgroup_per_node *mz;
 626
 627	spin_lock_irq(&mctz->lock);
 628	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 629	spin_unlock_irq(&mctz->lock);
 630	return mz;
 631}
 632
 633/**
 634 * __mod_memcg_state - update cgroup memory statistics
 635 * @memcg: the memory cgroup
 636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 637 * @val: delta to add to the counter, can be negative
 
 
 
 
 
 
 
 
 
 
 
 
 
 638 */
 639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 
 640{
 641	if (mem_cgroup_disabled())
 642		return;
 643
 644	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 645	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 
 
 
 
 
 
 
 
 646}
 647
 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
 649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 650{
 651	long x = READ_ONCE(memcg->vmstats.state[idx]);
 652#ifdef CONFIG_SMP
 653	if (x < 0)
 654		x = 0;
 655#endif
 656	return x;
 657}
 658
 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
 660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 661{
 662	long x = 0;
 663	int cpu;
 664
 665	for_each_possible_cpu(cpu)
 666		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 667#ifdef CONFIG_SMP
 668	if (x < 0)
 669		x = 0;
 
 670#endif
 671	return x;
 672}
 673
 674static struct mem_cgroup_per_node *
 675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 676{
 677	struct mem_cgroup *parent;
 678
 679	parent = parent_mem_cgroup(pn->memcg);
 680	if (!parent)
 681		return NULL;
 682	return parent->nodeinfo[nid];
 683}
 684
 685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 686			      int val)
 687{
 688	struct mem_cgroup_per_node *pn;
 689	struct mem_cgroup *memcg;
 690	long x, threshold = MEMCG_CHARGE_BATCH;
 691
 692	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 693	memcg = pn->memcg;
 694
 695	/* Update memcg */
 696	__mod_memcg_state(memcg, idx, val);
 697
 698	/* Update lruvec */
 699	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 700
 701	if (vmstat_item_in_bytes(idx))
 702		threshold <<= PAGE_SHIFT;
 703
 704	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 705	if (unlikely(abs(x) > threshold)) {
 706		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 707		struct mem_cgroup_per_node *pi;
 708
 709		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 710			atomic_long_add(x, &pi->lruvec_stat[idx]);
 711		x = 0;
 
 
 
 712	}
 713	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 714}
 715
 716/**
 717 * __mod_lruvec_state - update lruvec memory statistics
 718 * @lruvec: the lruvec
 719 * @idx: the stat item
 720 * @val: delta to add to the counter, can be negative
 721 *
 722 * The lruvec is the intersection of the NUMA node and a cgroup. This
 723 * function updates the all three counters that are affected by a
 724 * change of state at this level: per-node, per-cgroup, per-lruvec.
 725 */
 726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 727			int val)
 728{
 729	/* Update node */
 730	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 731
 732	/* Update memcg and lruvec */
 733	if (!mem_cgroup_disabled())
 734		__mod_memcg_lruvec_state(lruvec, idx, val);
 735}
 736
 737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 738			     int val)
 739{
 740	struct page *head = compound_head(page); /* rmap on tail pages */
 741	struct mem_cgroup *memcg;
 742	pg_data_t *pgdat = page_pgdat(page);
 743	struct lruvec *lruvec;
 744
 745	rcu_read_lock();
 746	memcg = page_memcg(head);
 747	/* Untracked pages have no memcg, no lruvec. Update only the node */
 748	if (!memcg) {
 749		rcu_read_unlock();
 750		__mod_node_page_state(pgdat, idx, val);
 751		return;
 752	}
 753
 754	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 755	__mod_lruvec_state(lruvec, idx, val);
 756	rcu_read_unlock();
 757}
 758EXPORT_SYMBOL(__mod_lruvec_page_state);
 759
 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 
 
 761{
 762	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 763	struct mem_cgroup *memcg;
 764	struct lruvec *lruvec;
 765
 766	rcu_read_lock();
 767	memcg = mem_cgroup_from_obj(p);
 768
 769	/*
 770	 * Untracked pages have no memcg, no lruvec. Update only the
 771	 * node. If we reparent the slab objects to the root memcg,
 772	 * when we free the slab object, we need to update the per-memcg
 773	 * vmstats to keep it correct for the root memcg.
 774	 */
 775	if (!memcg) {
 776		__mod_node_page_state(pgdat, idx, val);
 777	} else {
 778		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 779		__mod_lruvec_state(lruvec, idx, val);
 780	}
 781	rcu_read_unlock();
 782}
 783
 784/*
 785 * mod_objcg_mlstate() may be called with irq enabled, so
 786 * mod_memcg_lruvec_state() should be used.
 787 */
 788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 789				     struct pglist_data *pgdat,
 790				     enum node_stat_item idx, int nr)
 791{
 792	struct mem_cgroup *memcg;
 793	struct lruvec *lruvec;
 794
 795	rcu_read_lock();
 796	memcg = obj_cgroup_memcg(objcg);
 797	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798	mod_memcg_lruvec_state(lruvec, idx, nr);
 799	rcu_read_unlock();
 800}
 801
 802/**
 803 * __count_memcg_events - account VM events in a cgroup
 804 * @memcg: the memory cgroup
 805 * @idx: the event item
 806 * @count: the number of events that occurred
 807 */
 808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 809			  unsigned long count)
 810{
 811	if (mem_cgroup_disabled())
 812		return;
 813
 814	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 815	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 816}
 817
 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 819{
 820	return READ_ONCE(memcg->vmstats.events[event]);
 821}
 
 
 
 
 
 
 822
 823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 824{
 825	long x = 0;
 826	int cpu;
 827
 828	for_each_possible_cpu(cpu)
 829		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 830	return x;
 831}
 832
 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 834					 struct page *page,
 835					 int nr_pages)
 836{
 837	/* pagein of a big page is an event. So, ignore page size */
 838	if (nr_pages > 0)
 839		__count_memcg_events(memcg, PGPGIN, 1);
 840	else {
 841		__count_memcg_events(memcg, PGPGOUT, 1);
 842		nr_pages = -nr_pages; /* for event */
 843	}
 844
 845	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 
 
 846}
 847
 848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 849				       enum mem_cgroup_events_target target)
 850{
 851	unsigned long val, next;
 852
 853	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 854	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 855	/* from time_after() in jiffies.h */
 856	if ((long)(next - val) < 0) {
 857		switch (target) {
 858		case MEM_CGROUP_TARGET_THRESH:
 859			next = val + THRESHOLDS_EVENTS_TARGET;
 860			break;
 861		case MEM_CGROUP_TARGET_SOFTLIMIT:
 862			next = val + SOFTLIMIT_EVENTS_TARGET;
 863			break;
 
 
 
 864		default:
 865			break;
 866		}
 867		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 868		return true;
 869	}
 870	return false;
 871}
 872
 873/*
 874 * Check events in order.
 875 *
 876 */
 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 878{
 
 879	/* threshold event is triggered in finer grain than soft limit */
 880	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 881						MEM_CGROUP_TARGET_THRESH))) {
 882		bool do_softlimit;
 
 883
 884		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 885						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 
 
 
 
 886		mem_cgroup_threshold(memcg);
 887		if (unlikely(do_softlimit))
 888			mem_cgroup_update_tree(memcg, page);
 889	}
 
 
 
 
 
 
 
 
 
 
 
 
 890}
 891
 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 893{
 894	/*
 895	 * mm_update_next_owner() may clear mm->owner to NULL
 896	 * if it races with swapoff, page migration, etc.
 897	 * So this can be called with p == NULL.
 898	 */
 899	if (unlikely(!p))
 900		return NULL;
 901
 902	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 
 903}
 904EXPORT_SYMBOL(mem_cgroup_from_task);
 905
 906static __always_inline struct mem_cgroup *active_memcg(void)
 907{
 908	if (in_interrupt())
 909		return this_cpu_read(int_active_memcg);
 910	else
 911		return current->active_memcg;
 912}
 913
 914/**
 915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 916 * @mm: mm from which memcg should be extracted. It can be NULL.
 917 *
 918 * Obtain a reference on mm->memcg and returns it if successful. If mm
 919 * is NULL, then the memcg is chosen as follows:
 920 * 1) The active memcg, if set.
 921 * 2) current->mm->memcg, if available
 922 * 3) root memcg
 923 * If mem_cgroup is disabled, NULL is returned.
 924 */
 925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 926{
 927	struct mem_cgroup *memcg;
 928
 929	if (mem_cgroup_disabled())
 930		return NULL;
 931
 932	/*
 933	 * Page cache insertions can happen without an
 934	 * actual mm context, e.g. during disk probing
 935	 * on boot, loopback IO, acct() writes etc.
 936	 *
 937	 * No need to css_get on root memcg as the reference
 938	 * counting is disabled on the root level in the
 939	 * cgroup core. See CSS_NO_REF.
 940	 */
 941	if (unlikely(!mm)) {
 942		memcg = active_memcg();
 943		if (unlikely(memcg)) {
 944			/* remote memcg must hold a ref */
 945			css_get(&memcg->css);
 946			return memcg;
 947		}
 948		mm = current->mm;
 949		if (unlikely(!mm))
 950			return root_mem_cgroup;
 951	}
 952
 953	rcu_read_lock();
 954	do {
 955		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 956		if (unlikely(!memcg))
 957			memcg = root_mem_cgroup;
 958	} while (!css_tryget(&memcg->css));
 959	rcu_read_unlock();
 960	return memcg;
 961}
 962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 963
 964static __always_inline bool memcg_kmem_bypass(void)
 965{
 966	/* Allow remote memcg charging from any context. */
 967	if (unlikely(active_memcg()))
 968		return false;
 969
 970	/* Memcg to charge can't be determined. */
 971	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 972		return true;
 973
 974	return false;
 975}
 976
 977/**
 978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 979 * @root: hierarchy root
 980 * @prev: previously returned memcg, NULL on first invocation
 981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 982 *
 983 * Returns references to children of the hierarchy below @root, or
 984 * @root itself, or %NULL after a full round-trip.
 985 *
 986 * Caller must pass the return value in @prev on subsequent
 987 * invocations for reference counting, or use mem_cgroup_iter_break()
 988 * to cancel a hierarchy walk before the round-trip is complete.
 989 *
 990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 991 * in the hierarchy among all concurrent reclaimers operating on the
 992 * same node.
 993 */
 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 995				   struct mem_cgroup *prev,
 996				   struct mem_cgroup_reclaim_cookie *reclaim)
 997{
 998	struct mem_cgroup_reclaim_iter *iter;
 999	struct cgroup_subsys_state *css = NULL;
1000	struct mem_cgroup *memcg = NULL;
1001	struct mem_cgroup *pos = NULL;
1002
1003	if (mem_cgroup_disabled())
1004		return NULL;
1005
1006	if (!root)
1007		root = root_mem_cgroup;
1008
1009	if (prev && !reclaim)
1010		pos = prev;
1011
1012	rcu_read_lock();
1013
1014	if (reclaim) {
1015		struct mem_cgroup_per_node *mz;
1016
1017		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018		iter = &mz->iter;
1019
1020		if (prev && reclaim->generation != iter->generation)
1021			goto out_unlock;
1022
1023		while (1) {
1024			pos = READ_ONCE(iter->position);
1025			if (!pos || css_tryget(&pos->css))
1026				break;
1027			/*
1028			 * css reference reached zero, so iter->position will
1029			 * be cleared by ->css_released. However, we should not
1030			 * rely on this happening soon, because ->css_released
1031			 * is called from a work queue, and by busy-waiting we
1032			 * might block it. So we clear iter->position right
1033			 * away.
1034			 */
1035			(void)cmpxchg(&iter->position, pos, NULL);
1036		}
1037	}
1038
1039	if (pos)
1040		css = &pos->css;
1041
1042	for (;;) {
1043		css = css_next_descendant_pre(css, &root->css);
1044		if (!css) {
1045			/*
1046			 * Reclaimers share the hierarchy walk, and a
1047			 * new one might jump in right at the end of
1048			 * the hierarchy - make sure they see at least
1049			 * one group and restart from the beginning.
1050			 */
1051			if (!prev)
1052				continue;
1053			break;
1054		}
1055
1056		/*
1057		 * Verify the css and acquire a reference.  The root
1058		 * is provided by the caller, so we know it's alive
1059		 * and kicking, and don't take an extra reference.
1060		 */
1061		memcg = mem_cgroup_from_css(css);
1062
1063		if (css == &root->css)
1064			break;
1065
1066		if (css_tryget(css))
1067			break;
1068
1069		memcg = NULL;
1070	}
1071
1072	if (reclaim) {
1073		/*
1074		 * The position could have already been updated by a competing
1075		 * thread, so check that the value hasn't changed since we read
1076		 * it to avoid reclaiming from the same cgroup twice.
1077		 */
1078		(void)cmpxchg(&iter->position, pos, memcg);
1079
1080		if (pos)
1081			css_put(&pos->css);
 
 
 
 
 
1082
1083		if (!memcg)
1084			iter->generation++;
1085		else if (!prev)
1086			reclaim->generation = iter->generation;
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
 
 
 
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgruop1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (last != root_mem_cgroup)
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			  int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164
1165	BUG_ON(memcg == root_mem_cgroup);
 
1166
1167	for_each_mem_cgroup_tree(iter, memcg) {
1168		struct css_task_iter it;
1169		struct task_struct *task;
 
1170
1171		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172		while (!ret && (task = css_task_iter_next(&it)))
1173			ret = fn(task, arg);
1174		css_task_iter_end(&it);
1175		if (ret) {
1176			mem_cgroup_iter_break(memcg, iter);
1177			break;
1178		}
 
1179	}
1180	return ret;
 
1181}
 
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
 
 
 
 
 
 
 
 
 
1185{
1186	struct mem_cgroup *memcg;
1187
1188	if (mem_cgroup_disabled())
1189		return;
1190
1191	memcg = page_memcg(page);
1192
1193	if (!memcg)
1194		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195	else
1196		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212	struct lruvec *lruvec;
1213
1214	lruvec = mem_cgroup_page_lruvec(page);
1215	spin_lock(&lruvec->lru_lock);
1216
1217	lruvec_memcg_debug(lruvec, page);
1218
1219	return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224	struct lruvec *lruvec;
1225
1226	lruvec = mem_cgroup_page_lruvec(page);
1227	spin_lock_irq(&lruvec->lru_lock);
1228
1229	lruvec_memcg_debug(lruvec, page);
1230
1231	return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236	struct lruvec *lruvec;
1237
1238	lruvec = mem_cgroup_page_lruvec(page);
1239	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241	lruvec_memcg_debug(lruvec, page);
 
 
 
 
 
 
 
 
 
 
1242
1243	return lruvec;
 
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258				int zid, int nr_pages)
1259{
1260	struct mem_cgroup_per_node *mz;
1261	unsigned long *lru_size;
1262	long size;
1263
1264	if (mem_cgroup_disabled())
1265		return;
1266
1267	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268	lru_size = &mz->lru_zone_size[zid][lru];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269
1270	if (nr_pages < 0)
1271		*lru_size += nr_pages;
 
 
 
1272
1273	size = *lru_size;
1274	if (WARN_ONCE(size < 0,
1275		"%s(%p, %d, %d): lru_size %ld\n",
1276		__func__, lruvec, lru, nr_pages, size)) {
1277		VM_BUG_ON(1);
1278		*lru_size = 0;
 
 
 
 
 
 
 
 
 
1279	}
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	if (nr_pages > 0)
1282		*lru_size += nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
 
 
 
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294	unsigned long margin = 0;
1295	unsigned long count;
1296	unsigned long limit;
1297
1298	count = page_counter_read(&memcg->memory);
1299	limit = READ_ONCE(memcg->memory.max);
1300	if (count < limit)
1301		margin = limit - count;
1302
1303	if (do_memsw_account()) {
1304		count = page_counter_read(&memcg->memsw);
1305		limit = READ_ONCE(memcg->memsw.max);
1306		if (count < limit)
1307			margin = min(margin, limit - count);
1308		else
1309			margin = 0;
1310	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311
1312	return margin;
 
 
 
 
 
 
 
 
 
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
 
 
 
 
1321 */
 
 
 
 
 
 
 
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324	struct mem_cgroup *from;
1325	struct mem_cgroup *to;
1326	bool ret = false;
1327	/*
1328	 * Unlike task_move routines, we access mc.to, mc.from not under
1329	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330	 */
1331	spin_lock(&mc.lock);
1332	from = mc.from;
1333	to = mc.to;
1334	if (!from)
1335		goto unlock;
1336
1337	ret = mem_cgroup_is_descendant(from, memcg) ||
1338		mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340	spin_unlock(&mc.lock);
1341	return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346	if (mc.moving_task && current != mc.moving_task) {
1347		if (mem_cgroup_under_move(memcg)) {
1348			DEFINE_WAIT(wait);
1349			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350			/* moving charge context might have finished. */
1351			if (mc.moving_task)
1352				schedule();
1353			finish_wait(&mc.waitq, &wait);
1354			return true;
1355		}
1356	}
1357	return false;
1358}
1359
1360struct memory_stat {
1361	const char *name;
1362	unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366	{ "anon",			NR_ANON_MAPPED			},
1367	{ "file",			NR_FILE_PAGES			},
1368	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369	{ "pagetables",			NR_PAGETABLE			},
1370	{ "percpu",			MEMCG_PERCPU_B			},
1371	{ "sock",			MEMCG_SOCK			},
1372	{ "shmem",			NR_SHMEM			},
1373	{ "file_mapped",		NR_FILE_MAPPED			},
1374	{ "file_dirty",			NR_FILE_DIRTY			},
1375	{ "file_writeback",		NR_WRITEBACK			},
1376#ifdef CONFIG_SWAP
1377	{ "swapcached",			NR_SWAPCACHE			},
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380	{ "anon_thp",			NR_ANON_THPS			},
1381	{ "file_thp",			NR_FILE_THPS			},
1382	{ "shmem_thp",			NR_SHMEM_THPS			},
1383#endif
1384	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385	{ "active_anon",		NR_ACTIVE_ANON			},
1386	{ "inactive_file",		NR_INACTIVE_FILE		},
1387	{ "active_file",		NR_ACTIVE_FILE			},
1388	{ "unevictable",		NR_UNEVICTABLE			},
1389	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391
1392	/* The memory events */
1393	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405	switch (item) {
1406	case MEMCG_PERCPU_B:
1407	case NR_SLAB_RECLAIMABLE_B:
1408	case NR_SLAB_UNRECLAIMABLE_B:
1409	case WORKINGSET_REFAULT_ANON:
1410	case WORKINGSET_REFAULT_FILE:
1411	case WORKINGSET_ACTIVATE_ANON:
1412	case WORKINGSET_ACTIVATE_FILE:
1413	case WORKINGSET_RESTORE_ANON:
1414	case WORKINGSET_RESTORE_FILE:
1415	case WORKINGSET_NODERECLAIM:
1416		return 1;
1417	case NR_KERNEL_STACK_KB:
1418		return SZ_1K;
1419	default:
1420		return PAGE_SIZE;
1421	}
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425						    int item)
1426{
1427	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
1431{
1432	struct seq_buf s;
1433	int i;
1434
1435	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436	if (!s.buffer)
1437		return NULL;
1438
1439	/*
1440	 * Provide statistics on the state of the memory subsystem as
1441	 * well as cumulative event counters that show past behavior.
1442	 *
1443	 * This list is ordered following a combination of these gradients:
1444	 * 1) generic big picture -> specifics and details
1445	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446	 *
1447	 * Current memory state:
1448	 */
1449	cgroup_rstat_flush(memcg->css.cgroup);
 
1450
1451	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452		u64 size;
1453
1454		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458			size += memcg_page_state_output(memcg,
1459							NR_SLAB_RECLAIMABLE_B);
1460			seq_buf_printf(&s, "slab %llu\n", size);
1461		}
 
 
 
 
 
1462	}
 
1463
1464	/* Accumulated memory events */
1465
1466	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467		       memcg_events(memcg, PGFAULT));
1468	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469		       memcg_events(memcg, PGMAJFAULT));
1470	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471		       memcg_events(memcg, PGREFILL));
1472	seq_buf_printf(&s, "pgscan %lu\n",
1473		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474		       memcg_events(memcg, PGSCAN_DIRECT));
1475	seq_buf_printf(&s, "pgsteal %lu\n",
1476		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477		       memcg_events(memcg, PGSTEAL_DIRECT));
1478	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479		       memcg_events(memcg, PGACTIVATE));
1480	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481		       memcg_events(memcg, PGDEACTIVATE));
1482	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483		       memcg_events(memcg, PGLAZYFREE));
1484	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485		       memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489		       memcg_events(memcg, THP_FAULT_ALLOC));
1490	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
1493
1494	/* The above should easily fit into one page */
1495	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
 
 
 
1496
1497	return s.buffer;
 
 
 
 
 
 
 
 
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512	rcu_read_lock();
 
1513
1514	if (memcg) {
1515		pr_cont(",oom_memcg=");
1516		pr_cont_cgroup_path(memcg->css.cgroup);
1517	} else
1518		pr_cont(",global_oom");
1519	if (p) {
1520		pr_cont(",task_memcg=");
1521		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522	}
1523	rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533	char *buf;
 
1534
1535	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536		K((u64)page_counter_read(&memcg->memory)),
1537		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540			K((u64)page_counter_read(&memcg->swap)),
1541			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542	else {
1543		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544			K((u64)page_counter_read(&memcg->memsw)),
1545			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547			K((u64)page_counter_read(&memcg->kmem)),
1548			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
1551	pr_info("Memory cgroup stats for ");
1552	pr_cont_cgroup_path(memcg->css.cgroup);
1553	pr_cont(":");
1554	buf = memory_stat_format(memcg);
1555	if (!buf)
1556		return;
1557	pr_info("%s", buf);
1558	kfree(buf);
1559}
 
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
 
 
 
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566	unsigned long max = READ_ONCE(memcg->memory.max);
 
 
 
 
 
 
 
 
1567
1568	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569		if (mem_cgroup_swappiness(memcg))
1570			max += min(READ_ONCE(memcg->swap.max),
1571				   (unsigned long)total_swap_pages);
1572	} else { /* v1 */
1573		if (mem_cgroup_swappiness(memcg)) {
1574			/* Calculate swap excess capacity from memsw limit */
1575			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577			max += min(swap, (unsigned long)total_swap_pages);
1578		}
 
 
1579	}
1580	return max;
 
 
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
1584{
1585	return page_counter_read(&memcg->memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589				     int order)
 
 
 
 
 
1590{
1591	struct oom_control oc = {
1592		.zonelist = NULL,
1593		.nodemask = NULL,
1594		.memcg = memcg,
1595		.gfp_mask = gfp_mask,
1596		.order = order,
1597	};
1598	bool ret = true;
1599
1600	if (mutex_lock_killable(&oom_lock))
1601		return true;
1602
1603	if (mem_cgroup_margin(memcg) >= (1 << order))
1604		goto unlock;
 
 
 
 
 
 
1605
 
 
 
 
1606	/*
1607	 * A few threads which were not waiting at mutex_lock_killable() can
1608	 * fail to bail out. Therefore, check again after holding oom_lock.
1609	 */
1610	ret = should_force_charge() || out_of_memory(&oc);
 
 
 
 
 
 
 
1611
1612unlock:
1613	mutex_unlock(&oom_lock);
1614	return ret;
 
 
 
 
 
 
1615}
 
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618				   pg_data_t *pgdat,
1619				   gfp_t gfp_mask,
1620				   unsigned long *total_scanned)
1621{
1622	struct mem_cgroup *victim = NULL;
1623	int total = 0;
1624	int loop = 0;
1625	unsigned long excess;
1626	unsigned long nr_scanned;
1627	struct mem_cgroup_reclaim_cookie reclaim = {
1628		.pgdat = pgdat,
 
1629	};
1630
1631	excess = soft_limit_excess(root_memcg);
1632
1633	while (1) {
1634		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635		if (!victim) {
1636			loop++;
1637			if (loop >= 2) {
1638				/*
1639				 * If we have not been able to reclaim
1640				 * anything, it might because there are
1641				 * no reclaimable pages under this hierarchy
1642				 */
1643				if (!total)
1644					break;
1645				/*
1646				 * We want to do more targeted reclaim.
1647				 * excess >> 2 is not to excessive so as to
1648				 * reclaim too much, nor too less that we keep
1649				 * coming back to reclaim from this cgroup
1650				 */
1651				if (total >= (excess >> 2) ||
1652					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653					break;
1654			}
1655			continue;
1656		}
1657		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658					pgdat, &nr_scanned);
 
 
1659		*total_scanned += nr_scanned;
1660		if (!soft_limit_excess(root_memcg))
1661			break;
1662	}
1663	mem_cgroup_iter_break(root_memcg, victim);
1664	return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669	.name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
 
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681	struct mem_cgroup *iter, *failed = NULL;
1682
1683	spin_lock(&memcg_oom_lock);
1684
1685	for_each_mem_cgroup_tree(iter, memcg) {
1686		if (iter->oom_lock) {
1687			/*
1688			 * this subtree of our hierarchy is already locked
1689			 * so we cannot give a lock.
1690			 */
1691			failed = iter;
1692			mem_cgroup_iter_break(memcg, iter);
1693			break;
1694		} else
1695			iter->oom_lock = true;
1696	}
1697
1698	if (failed) {
1699		/*
1700		 * OK, we failed to lock the whole subtree so we have
1701		 * to clean up what we set up to the failing subtree
1702		 */
1703		for_each_mem_cgroup_tree(iter, memcg) {
1704			if (iter == failed) {
1705				mem_cgroup_iter_break(memcg, iter);
1706				break;
1707			}
1708			iter->oom_lock = false;
1709		}
1710	} else
1711		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713	spin_unlock(&memcg_oom_lock);
1714
1715	return !failed;
 
 
 
 
 
 
 
 
 
 
 
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 
 
 
1719{
1720	struct mem_cgroup *iter;
1721
1722	spin_lock(&memcg_oom_lock);
1723	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724	for_each_mem_cgroup_tree(iter, memcg)
1725		iter->oom_lock = false;
1726	spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731	struct mem_cgroup *iter;
1732
1733	spin_lock(&memcg_oom_lock);
1734	for_each_mem_cgroup_tree(iter, memcg)
1735		iter->under_oom++;
1736	spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741	struct mem_cgroup *iter;
1742
1743	/*
1744	 * Be careful about under_oom underflows because a child memcg
1745	 * could have been added after mem_cgroup_mark_under_oom.
 
1746	 */
1747	spin_lock(&memcg_oom_lock);
1748	for_each_mem_cgroup_tree(iter, memcg)
1749		if (iter->under_oom > 0)
1750			iter->under_oom--;
1751	spin_unlock(&memcg_oom_lock);
1752}
1753
 
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757	struct mem_cgroup *memcg;
1758	wait_queue_entry_t	wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762	unsigned mode, int sync, void *arg)
1763{
1764	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765	struct mem_cgroup *oom_wait_memcg;
1766	struct oom_wait_info *oom_wait_info;
1767
1768	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769	oom_wait_memcg = oom_wait_info->memcg;
1770
1771	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 
 
 
 
1773		return 0;
1774	return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779	/*
1780	 * For the following lockless ->under_oom test, the only required
1781	 * guarantee is that it must see the state asserted by an OOM when
1782	 * this function is called as a result of userland actions
1783	 * triggered by the notification of the OOM.  This is trivially
1784	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785	 * triggering notification.
1786	 */
1787	if (memcg && memcg->under_oom)
1788		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792	OOM_SUCCESS,
1793	OOM_FAILED,
1794	OOM_ASYNC,
1795	OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800	enum oom_status ret;
1801	bool locked;
1802
1803	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804		return OOM_SKIPPED;
1805
1806	memcg_memory_event(memcg, MEMCG_OOM);
1807
1808	/*
1809	 * We are in the middle of the charge context here, so we
1810	 * don't want to block when potentially sitting on a callstack
1811	 * that holds all kinds of filesystem and mm locks.
1812	 *
1813	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814	 * handling until the charge can succeed; remember the context and put
1815	 * the task to sleep at the end of the page fault when all locks are
1816	 * released.
1817	 *
1818	 * On the other hand, in-kernel OOM killer allows for an async victim
1819	 * memory reclaim (oom_reaper) and that means that we are not solely
1820	 * relying on the oom victim to make a forward progress and we can
1821	 * invoke the oom killer here.
1822	 *
1823	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824	 * victim and then we have to bail out from the charge path.
1825	 */
1826	if (memcg->oom_kill_disable) {
1827		if (!current->in_user_fault)
1828			return OOM_SKIPPED;
1829		css_get(&memcg->css);
1830		current->memcg_in_oom = memcg;
1831		current->memcg_oom_gfp_mask = mask;
1832		current->memcg_oom_order = order;
1833
1834		return OOM_ASYNC;
1835	}
1836
1837	mem_cgroup_mark_under_oom(memcg);
1838
1839	locked = mem_cgroup_oom_trylock(memcg);
1840
1841	if (locked)
1842		mem_cgroup_oom_notify(memcg);
1843
1844	mem_cgroup_unmark_under_oom(memcg);
1845	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846		ret = OOM_SUCCESS;
1847	else
1848		ret = OOM_FAILED;
1849
1850	if (locked)
1851		mem_cgroup_oom_unlock(memcg);
1852
1853	return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation.  Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
 
1874{
1875	struct mem_cgroup *memcg = current->memcg_in_oom;
1876	struct oom_wait_info owait;
1877	bool locked;
1878
1879	/* OOM is global, do not handle */
1880	if (!memcg)
1881		return false;
1882
1883	if (!handle)
1884		goto cleanup;
1885
1886	owait.memcg = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.entry);
1891
1892	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893	mem_cgroup_mark_under_oom(memcg);
1894
1895	locked = mem_cgroup_oom_trylock(memcg);
1896
 
 
 
 
 
 
 
 
 
1897	if (locked)
1898		mem_cgroup_oom_notify(memcg);
 
1899
1900	if (locked && !memcg->oom_kill_disable) {
1901		mem_cgroup_unmark_under_oom(memcg);
1902		finish_wait(&memcg_oom_waitq, &owait.wait);
1903		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904					 current->memcg_oom_order);
1905	} else {
1906		schedule();
1907		mem_cgroup_unmark_under_oom(memcg);
1908		finish_wait(&memcg_oom_waitq, &owait.wait);
1909	}
1910
1911	if (locked) {
1912		mem_cgroup_oom_unlock(memcg);
1913		/*
1914		 * There is no guarantee that an OOM-lock contender
1915		 * sees the wakeups triggered by the OOM kill
1916		 * uncharges.  Wake any sleepers explicitly.
1917		 */
1918		memcg_oom_recover(memcg);
1919	}
1920cleanup:
1921	current->memcg_in_oom = NULL;
1922	css_put(&memcg->css);
1923	return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 
 
 
 
 
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
 
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 
 
 
 
 
 
 
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937					    struct mem_cgroup *oom_domain)
 
1938{
1939	struct mem_cgroup *oom_group = NULL;
1940	struct mem_cgroup *memcg;
 
1941
1942	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943		return NULL;
1944
1945	if (!oom_domain)
1946		oom_domain = root_mem_cgroup;
1947
1948	rcu_read_lock();
1949
1950	memcg = mem_cgroup_from_task(victim);
1951	if (memcg == root_mem_cgroup)
1952		goto out;
1953
1954	/*
1955	 * If the victim task has been asynchronously moved to a different
1956	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957	 * In this case it's better to ignore memory.group.oom.
1958	 */
1959	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960		goto out;
1961
1962	/*
1963	 * Traverse the memory cgroup hierarchy from the victim task's
1964	 * cgroup up to the OOMing cgroup (or root) to find the
1965	 * highest-level memory cgroup with oom.group set.
 
1966	 */
1967	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968		if (memcg->oom_group)
1969			oom_group = memcg;
1970
1971		if (memcg == oom_domain)
1972			break;
 
 
1973	}
1974
1975	if (oom_group)
1976		css_get(&oom_group->css);
1977out:
1978	rcu_read_unlock();
1979
1980	return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985	pr_info("Tasks in ");
1986	pr_cont_cgroup_path(memcg->css.cgroup);
1987	pr_cont(" are going to be killed due to memory.oom.group set\n");
 
 
 
 
 
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002	struct page *head = compound_head(page); /* rmap on tail pages */
2003	struct mem_cgroup *memcg;
2004	unsigned long flags;
2005
2006	/*
2007	 * The RCU lock is held throughout the transaction.  The fast
2008	 * path can get away without acquiring the memcg->move_lock
2009	 * because page moving starts with an RCU grace period.
2010         */
2011	rcu_read_lock();
2012
2013	if (mem_cgroup_disabled())
2014		return;
2015again:
2016	memcg = page_memcg(head);
2017	if (unlikely(!memcg))
2018		return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021	local_irq_save(flags);
2022	might_lock(&memcg->move_lock);
2023	local_irq_restore(flags);
2024#endif
2025
2026	if (atomic_read(&memcg->moving_account) <= 0)
 
2027		return;
2028
2029	spin_lock_irqsave(&memcg->move_lock, flags);
2030	if (memcg != page_memcg(head)) {
2031		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032		goto again;
2033	}
2034
2035	/*
2036	 * When charge migration first begins, we can have multiple
2037	 * critical sections holding the fast-path RCU lock and one
2038	 * holding the slowpath move_lock. Track the task who has the
2039	 * move_lock for unlock_page_memcg().
2040	 */
2041	memcg->move_lock_task = current;
2042	memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047{
2048	if (memcg && memcg->move_lock_task == current) {
2049		unsigned long flags = memcg->move_lock_flags;
2050
2051		memcg->move_lock_task = NULL;
2052		memcg->move_lock_flags = 0;
2053
2054		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055	}
2056
2057	rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066	struct page *head = compound_head(page);
2067
2068	__unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074	struct obj_cgroup *cached_objcg;
2075	struct pglist_data *cached_pgdat;
2076	unsigned int nr_bytes;
2077	int nr_slab_reclaimable_b;
2078	int nr_slab_unreclaimable_b;
2079#else
2080	int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085	struct mem_cgroup *cached; /* this never be root cgroup */
2086	unsigned int nr_pages;
2087	struct obj_stock task_obj;
2088	struct obj_stock irq_obj;
2089
2090	struct work_struct work;
2091	unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE	0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100				     struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107				     struct mem_cgroup *root_memcg)
2108{
2109	return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126	struct memcg_stock_pcp *stock;
 
2127
2128	if (likely(in_task())) {
2129		*pflags = 0UL;
2130		preempt_disable();
2131		stock = this_cpu_ptr(&memcg_stock);
2132		return &stock->task_obj;
2133	}
2134
2135	local_irq_save(*pflags);
2136	stock = this_cpu_ptr(&memcg_stock);
2137	return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142	if (likely(in_task()))
2143		preempt_enable();
2144	else
2145		local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock.  Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161	struct memcg_stock_pcp *stock;
2162	unsigned long flags;
2163	bool ret = false;
2164
2165	if (nr_pages > MEMCG_CHARGE_BATCH)
2166		return ret;
2167
2168	local_irq_save(flags);
2169
2170	stock = this_cpu_ptr(&memcg_stock);
2171	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172		stock->nr_pages -= nr_pages;
2173		ret = true;
2174	}
2175
2176	local_irq_restore(flags);
2177
2178	return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186	struct mem_cgroup *old = stock->cached;
2187
2188	if (!old)
2189		return;
2190
2191	if (stock->nr_pages) {
2192		page_counter_uncharge(&old->memory, stock->nr_pages);
2193		if (do_memsw_account())
2194			page_counter_uncharge(&old->memsw, stock->nr_pages);
 
 
2195		stock->nr_pages = 0;
2196	}
2197
2198	css_put(&old->css);
2199	stock->cached = NULL;
2200}
2201
 
 
 
 
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204	struct memcg_stock_pcp *stock;
2205	unsigned long flags;
2206
2207	/*
2208	 * The only protection from memory hotplug vs. drain_stock races is
2209	 * that we always operate on local CPU stock here with IRQ disabled
2210	 */
2211	local_irq_save(flags);
2212
2213	stock = this_cpu_ptr(&memcg_stock);
2214	drain_obj_stock(&stock->irq_obj);
2215	if (in_task())
2216		drain_obj_stock(&stock->task_obj);
2217	drain_stock(stock);
2218	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220	local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231
2232	local_irq_save(flags);
2233
2234	stock = this_cpu_ptr(&memcg_stock);
2235	if (stock->cached != memcg) { /* reset if necessary */
2236		drain_stock(stock);
2237		css_get(&memcg->css);
2238		stock->cached = memcg;
2239	}
2240	stock->nr_pages += nr_pages;
2241
2242	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243		drain_stock(stock);
2244
2245	local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
 
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254	int cpu, curcpu;
2255
2256	/* If someone's already draining, avoid adding running more workers. */
2257	if (!mutex_trylock(&percpu_charge_mutex))
2258		return;
2259	/*
2260	 * Notify other cpus that system-wide "drain" is running
2261	 * We do not care about races with the cpu hotplug because cpu down
2262	 * as well as workers from this path always operate on the local
2263	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264	 */
2265	curcpu = get_cpu();
2266	for_each_online_cpu(cpu) {
2267		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268		struct mem_cgroup *memcg;
2269		bool flush = false;
2270
2271		rcu_read_lock();
2272		memcg = stock->cached;
2273		if (memcg && stock->nr_pages &&
2274		    mem_cgroup_is_descendant(memcg, root_memcg))
2275			flush = true;
2276		if (obj_stock_flush_required(stock, root_memcg))
2277			flush = true;
2278		rcu_read_unlock();
2279
2280		if (flush &&
2281		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282			if (cpu == curcpu)
2283				drain_local_stock(&stock->work);
2284			else
2285				schedule_work_on(cpu, &stock->work);
2286		}
2287	}
2288	put_cpu();
2289	mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294	int nid;
2295
2296	for_each_node(nid) {
2297		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299		struct batched_lruvec_stat *lstatc;
2300		int i;
2301
2302		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304			stat[i] = lstatc->count[i];
2305			lstatc->count[i] = 0;
2306		}
2307
2308		do {
2309			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311		} while ((pn = parent_nodeinfo(pn, nid)));
2312	}
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317	struct memcg_stock_pcp *stock;
2318	struct mem_cgroup *memcg;
2319
2320	stock = &per_cpu(memcg_stock, cpu);
2321	drain_stock(stock);
2322
2323	for_each_mem_cgroup(memcg)
2324		memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326	return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330				  unsigned int nr_pages,
2331				  gfp_t gfp_mask)
2332{
2333	unsigned long nr_reclaimed = 0;
2334
2335	do {
2336		unsigned long pflags;
2337
2338		if (page_counter_read(&memcg->memory) <=
2339		    READ_ONCE(memcg->memory.high))
2340			continue;
2341
2342		memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344		psi_memstall_enter(&pflags);
2345		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346							     gfp_mask, true);
2347		psi_memstall_leave(&pflags);
2348	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349		 !mem_cgroup_is_root(memcg));
2350
2351	return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356	struct mem_cgroup *memcg;
2357
2358	memcg = container_of(work, struct mem_cgroup, high_work);
2359	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 *   overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 *   to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 *  +-------+------------------------+
2387 *  | usage | time to allocate in ms |
2388 *  +-------+------------------------+
2389 *  | 100M  |                      0 |
2390 *  | 101M  |                      6 |
2391 *  | 102M  |                     25 |
2392 *  | 103M  |                     57 |
2393 *  | 104M  |                    102 |
2394 *  | 105M  |                    159 |
2395 *  | 106M  |                    230 |
2396 *  | 107M  |                    313 |
2397 *  | 108M  |                    409 |
2398 *  | 109M  |                    518 |
2399 *  | 110M  |                    639 |
2400 *  | 111M  |                    774 |
2401 *  | 112M  |                    921 |
2402 *  | 113M  |                   1081 |
2403 *  | 114M  |                   1254 |
2404 *  | 115M  |                   1439 |
2405 *  | 116M  |                   1638 |
2406 *  | 117M  |                   1849 |
2407 *  | 118M  |                   2000 |
2408 *  | 119M  |                   2000 |
2409 *  | 120M  |                   2000 |
2410 *  +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417	u64 overage;
2418
2419	if (usage <= high)
2420		return 0;
2421
2422	/*
2423	 * Prevent division by 0 in overage calculation by acting as if
2424	 * it was a threshold of 1 page
2425	 */
2426	high = max(high, 1UL);
2427
2428	overage = usage - high;
2429	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430	return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435	u64 overage, max_overage = 0;
2436
2437	do {
2438		overage = calculate_overage(page_counter_read(&memcg->memory),
2439					    READ_ONCE(memcg->memory.high));
2440		max_overage = max(overage, max_overage);
2441	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442		 !mem_cgroup_is_root(memcg));
2443
2444	return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
 
2448{
2449	u64 overage, max_overage = 0;
2450
2451	do {
2452		overage = calculate_overage(page_counter_read(&memcg->swap),
2453					    READ_ONCE(memcg->swap.high));
2454		if (overage)
2455			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456		max_overage = max(overage, max_overage);
2457	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458		 !mem_cgroup_is_root(memcg));
2459
2460	return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468					  unsigned int nr_pages,
2469					  u64 max_overage)
2470{
2471	unsigned long penalty_jiffies;
2472
2473	if (!max_overage)
2474		return 0;
 
2475
2476	/*
2477	 * We use overage compared to memory.high to calculate the number of
2478	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479	 * fairly lenient on small overages, and increasingly harsh when the
2480	 * memcg in question makes it clear that it has no intention of stopping
2481	 * its crazy behaviour, so we exponentially increase the delay based on
2482	 * overage amount.
2483	 */
2484	penalty_jiffies = max_overage * max_overage * HZ;
2485	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488	/*
2489	 * Factor in the task's own contribution to the overage, such that four
2490	 * N-sized allocations are throttled approximately the same as one
2491	 * 4N-sized allocation.
2492	 *
2493	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494	 * larger the current charge patch is than that.
2495	 */
2496	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505	unsigned long penalty_jiffies;
2506	unsigned long pflags;
2507	unsigned long nr_reclaimed;
2508	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509	int nr_retries = MAX_RECLAIM_RETRIES;
2510	struct mem_cgroup *memcg;
2511	bool in_retry = false;
2512
2513	if (likely(!nr_pages))
2514		return;
2515
2516	memcg = get_mem_cgroup_from_mm(current->mm);
2517	current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520	/*
2521	 * The allocating task should reclaim at least the batch size, but for
2522	 * subsequent retries we only want to do what's necessary to prevent oom
2523	 * or breaching resource isolation.
2524	 *
2525	 * This is distinct from memory.max or page allocator behaviour because
2526	 * memory.high is currently batched, whereas memory.max and the page
2527	 * allocator run every time an allocation is made.
2528	 */
2529	nr_reclaimed = reclaim_high(memcg,
2530				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531				    GFP_KERNEL);
2532
2533	/*
2534	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535	 * allocators proactively to slow down excessive growth.
2536	 */
2537	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538					       mem_find_max_overage(memcg));
2539
2540	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541						swap_find_max_overage(memcg));
2542
2543	/*
2544	 * Clamp the max delay per usermode return so as to still keep the
2545	 * application moving forwards and also permit diagnostics, albeit
2546	 * extremely slowly.
2547	 */
2548	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550	/*
2551	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552	 * that it's not even worth doing, in an attempt to be nice to those who
2553	 * go only a small amount over their memory.high value and maybe haven't
2554	 * been aggressively reclaimed enough yet.
2555	 */
2556	if (penalty_jiffies <= HZ / 100)
2557		goto out;
2558
2559	/*
2560	 * If reclaim is making forward progress but we're still over
2561	 * memory.high, we want to encourage that rather than doing allocator
2562	 * throttling.
2563	 */
2564	if (nr_reclaimed || nr_retries--) {
2565		in_retry = true;
2566		goto retry_reclaim;
2567	}
2568
2569	/*
2570	 * If we exit early, we're guaranteed to die (since
2571	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572	 * need to account for any ill-begotten jiffies to pay them off later.
2573	 */
2574	psi_memstall_enter(&pflags);
2575	schedule_timeout_killable(penalty_jiffies);
2576	psi_memstall_leave(&pflags);
2577
2578out:
2579	css_put(&memcg->css);
2580}
 
 
 
 
 
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583			unsigned int nr_pages)
2584{
2585	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586	int nr_retries = MAX_RECLAIM_RETRIES;
2587	struct mem_cgroup *mem_over_limit;
2588	struct page_counter *counter;
2589	enum oom_status oom_status;
2590	unsigned long nr_reclaimed;
2591	bool may_swap = true;
2592	bool drained = false;
2593	unsigned long pflags;
2594
2595retry:
2596	if (consume_stock(memcg, nr_pages))
2597		return 0;
2598
2599	if (!do_memsw_account() ||
2600	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602			goto done_restock;
2603		if (do_memsw_account())
2604			page_counter_uncharge(&memcg->memsw, batch);
2605		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606	} else {
2607		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608		may_swap = false;
2609	}
2610
2611	if (batch > nr_pages) {
2612		batch = nr_pages;
2613		goto retry;
2614	}
2615
2616	/*
2617	 * Memcg doesn't have a dedicated reserve for atomic
2618	 * allocations. But like the global atomic pool, we need to
2619	 * put the burden of reclaim on regular allocation requests
2620	 * and let these go through as privileged allocations.
2621	 */
2622	if (gfp_mask & __GFP_ATOMIC)
2623		goto force;
2624
2625	/*
2626	 * Unlike in global OOM situations, memcg is not in a physical
2627	 * memory shortage.  Allow dying and OOM-killed tasks to
2628	 * bypass the last charges so that they can exit quickly and
2629	 * free their memory.
2630	 */
2631	if (unlikely(should_force_charge()))
2632		goto force;
2633
 
 
 
 
 
 
 
 
 
 
 
 
2634	/*
2635	 * Prevent unbounded recursion when reclaim operations need to
2636	 * allocate memory. This might exceed the limits temporarily,
2637	 * but we prefer facilitating memory reclaim and getting back
2638	 * under the limit over triggering OOM kills in these cases.
 
2639	 */
2640	if (unlikely(current->flags & PF_MEMALLOC))
2641		goto force;
2642
2643	if (unlikely(task_in_memcg_oom(current)))
2644		goto nomem;
2645
2646	if (!gfpflags_allow_blocking(gfp_mask))
2647		goto nomem;
2648
2649	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651	psi_memstall_enter(&pflags);
2652	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653						    gfp_mask, may_swap);
2654	psi_memstall_leave(&pflags);
2655
 
2656	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657		goto retry;
2658
2659	if (!drained) {
2660		drain_all_stock(mem_over_limit);
2661		drained = true;
2662		goto retry;
2663	}
2664
2665	if (gfp_mask & __GFP_NORETRY)
2666		goto nomem;
2667	/*
2668	 * Even though the limit is exceeded at this point, reclaim
2669	 * may have been able to free some pages.  Retry the charge
2670	 * before killing the task.
2671	 *
2672	 * Only for regular pages, though: huge pages are rather
2673	 * unlikely to succeed so close to the limit, and we fall back
2674	 * to regular pages anyway in case of failure.
2675	 */
2676	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677		goto retry;
 
2678	/*
2679	 * At task move, charge accounts can be doubly counted. So, it's
2680	 * better to wait until the end of task_move if something is going on.
2681	 */
2682	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683		goto retry;
2684
2685	if (nr_retries--)
2686		goto retry;
 
 
 
 
2687
2688	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689		goto nomem;
2690
2691	if (fatal_signal_pending(current))
2692		goto force;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2693
2694	/*
2695	 * keep retrying as long as the memcg oom killer is able to make
2696	 * a forward progress or bypass the charge if the oom killer
2697	 * couldn't make any progress.
2698	 */
2699	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700		       get_order(nr_pages * PAGE_SIZE));
2701	switch (oom_status) {
2702	case OOM_SUCCESS:
2703		nr_retries = MAX_RECLAIM_RETRIES;
2704		goto retry;
2705	case OOM_FAILED:
2706		goto force;
2707	default:
2708		goto nomem;
2709	}
2710nomem:
2711	if (!(gfp_mask & __GFP_NOFAIL))
2712		return -ENOMEM;
2713force:
2714	/*
2715	 * The allocation either can't fail or will lead to more memory
2716	 * being freed very soon.  Allow memory usage go over the limit
2717	 * temporarily by force charging it.
2718	 */
2719	page_counter_charge(&memcg->memory, nr_pages);
2720	if (do_memsw_account())
2721		page_counter_charge(&memcg->memsw, nr_pages);
2722
2723	return 0;
2724
2725done_restock:
2726	if (batch > nr_pages)
2727		refill_stock(memcg, batch - nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728
2729	/*
2730	 * If the hierarchy is above the normal consumption range, schedule
2731	 * reclaim on returning to userland.  We can perform reclaim here
2732	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734	 * not recorded as it most likely matches current's and won't
2735	 * change in the meantime.  As high limit is checked again before
2736	 * reclaim, the cost of mismatch is negligible.
2737	 */
2738	do {
2739		bool mem_high, swap_high;
2740
2741		mem_high = page_counter_read(&memcg->memory) >
2742			READ_ONCE(memcg->memory.high);
2743		swap_high = page_counter_read(&memcg->swap) >
2744			READ_ONCE(memcg->swap.high);
2745
2746		/* Don't bother a random interrupted task */
2747		if (in_interrupt()) {
2748			if (mem_high) {
2749				schedule_work(&memcg->high_work);
2750				break;
2751			}
2752			continue;
2753		}
2754
2755		if (mem_high || swap_high) {
2756			/*
2757			 * The allocating tasks in this cgroup will need to do
2758			 * reclaim or be throttled to prevent further growth
2759			 * of the memory or swap footprints.
2760			 *
2761			 * Target some best-effort fairness between the tasks,
2762			 * and distribute reclaim work and delay penalties
2763			 * based on how much each task is actually allocating.
2764			 */
2765			current->memcg_nr_pages_over_high += batch;
2766			set_notify_resume(current);
2767			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768		}
2769	} while ((memcg = parent_mem_cgroup(memcg)));
2770
 
 
 
 
 
2771	return 0;
 
 
 
 
 
 
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775			     unsigned int nr_pages)
 
 
 
 
 
2776{
2777	if (mem_cgroup_is_root(memcg))
2778		return 0;
2779
2780	return try_charge_memcg(memcg, gfp_mask, nr_pages);
 
 
 
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
2785{
 
 
2786	if (mem_cgroup_is_root(memcg))
2787		return;
2788
2789	page_counter_uncharge(&memcg->memory, nr_pages);
2790	if (do_memsw_account())
2791		page_counter_uncharge(&memcg->memsw, nr_pages);
 
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
 
 
 
 
 
 
2796{
2797	VM_BUG_ON_PAGE(page_memcg(page), page);
2798	/*
2799	 * Any of the following ensures page's memcg stability:
2800	 *
2801	 * - the page lock
2802	 * - LRU isolation
2803	 * - lock_page_memcg()
2804	 * - exclusive reference
2805	 */
2806	page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811	struct mem_cgroup *memcg;
 
 
 
2812
2813	rcu_read_lock();
2814retry:
2815	memcg = obj_cgroup_memcg(objcg);
2816	if (unlikely(!css_tryget(&memcg->css)))
2817		goto retry;
2818	rcu_read_unlock();
2819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2820	return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832				 gfp_t gfp, bool new_page)
2833{
2834	unsigned int objects = objs_per_slab_page(s, page);
2835	unsigned long memcg_data;
2836	void *vec;
 
 
2837
2838	gfp &= ~OBJCGS_CLEAR_MASK;
2839	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840			   page_to_nid(page));
2841	if (!vec)
2842		return -ENOMEM;
 
 
 
 
 
2843
2844	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845	if (new_page) {
2846		/*
2847		 * If the slab page is brand new and nobody can yet access
2848		 * it's memcg_data, no synchronization is required and
2849		 * memcg_data can be simply assigned.
2850		 */
2851		page->memcg_data = memcg_data;
2852	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853		/*
2854		 * If the slab page is already in use, somebody can allocate
2855		 * and assign obj_cgroups in parallel. In this case the existing
2856		 * objcg vector should be reused.
2857		 */
2858		kfree(vec);
2859		return 0;
2860	}
2861
2862	kmemleak_not_leak(vec);
2863	return 0;
2864}
 
 
 
 
 
 
 
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880	struct page *page;
2881
2882	if (mem_cgroup_disabled())
2883		return NULL;
 
 
2884
2885	page = virt_to_head_page(p);
 
2886
2887	/*
2888	 * Slab objects are accounted individually, not per-page.
2889	 * Memcg membership data for each individual object is saved in
2890	 * the page->obj_cgroups.
2891	 */
2892	if (page_objcgs_check(page)) {
2893		struct obj_cgroup *objcg;
2894		unsigned int off;
2895
2896		off = obj_to_index(page->slab_cache, page, p);
2897		objcg = page_objcgs(page)[off];
2898		if (objcg)
2899			return obj_cgroup_memcg(objcg);
2900
2901		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903
 
 
2904	/*
2905	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906	 * check above could fail because the object cgroups vector wasn't set
2907	 * at that moment, but it can be set concurrently.
2908	 * page_memcg_check(page) will guarantee that a proper memory
2909	 * cgroup pointer or NULL will be returned.
2910	 */
2911	return page_memcg_check(page);
2912}
 
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916	struct obj_cgroup *objcg = NULL;
2917	struct mem_cgroup *memcg;
2918
2919	if (memcg_kmem_bypass())
2920		return NULL;
 
2921
2922	rcu_read_lock();
2923	if (unlikely(active_memcg()))
2924		memcg = active_memcg();
2925	else
2926		memcg = mem_cgroup_from_task(current);
2927
2928	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929		objcg = rcu_dereference(memcg->objcg);
2930		if (objcg && obj_cgroup_tryget(objcg))
2931			break;
2932		objcg = NULL;
 
2933	}
2934	rcu_read_unlock();
2935
2936	return objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2937}
2938
2939static int memcg_alloc_cache_id(void)
 
 
 
 
 
 
 
2940{
2941	int id, size;
2942	int err;
 
 
2943
2944	id = ida_simple_get(&memcg_cache_ida,
2945			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946	if (id < 0)
2947		return id;
2948
2949	if (id < memcg_nr_cache_ids)
2950		return id;
 
 
 
2951
 
 
 
2952	/*
2953	 * There's no space for the new id in memcg_caches arrays,
2954	 * so we have to grow them.
2955	 */
2956	down_write(&memcg_cache_ids_sem);
 
2957
2958	size = 2 * (id + 1);
2959	if (size < MEMCG_CACHES_MIN_SIZE)
2960		size = MEMCG_CACHES_MIN_SIZE;
2961	else if (size > MEMCG_CACHES_MAX_SIZE)
2962		size = MEMCG_CACHES_MAX_SIZE;
 
 
2963
2964	err = memcg_update_all_list_lrus(size);
2965	if (!err)
2966		memcg_nr_cache_ids = size;
 
 
 
 
 
2967
2968	up_write(&memcg_cache_ids_sem);
 
 
 
 
 
 
 
 
 
 
 
 
2969
2970	if (err) {
2971		ida_simple_remove(&memcg_cache_ida, id);
2972		return err;
 
 
 
 
 
2973	}
2974	return id;
 
 
 
 
 
2975}
2976
2977static void memcg_free_cache_id(int id)
 
2978{
2979	ida_simple_remove(&memcg_cache_ida, id);
 
 
 
 
 
 
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988				      unsigned int nr_pages)
2989{
2990	struct mem_cgroup *memcg;
2991
2992	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
 
 
 
2993
2994	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995		page_counter_uncharge(&memcg->kmem, nr_pages);
2996	refill_stock(memcg, nr_pages);
 
2997
2998	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010				   unsigned int nr_pages)
3011{
3012	struct page_counter *counter;
3013	struct mem_cgroup *memcg;
3014	int ret;
3015
3016	memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019	if (ret)
3020		goto out;
3021
3022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025		/*
3026		 * Enforce __GFP_NOFAIL allocation because callers are not
3027		 * prepared to see failures and likely do not have any failure
3028		 * handling code.
3029		 */
3030		if (gfp & __GFP_NOFAIL) {
3031			page_counter_charge(&memcg->kmem, nr_pages);
3032			goto out;
3033		}
3034		cancel_charge(memcg, nr_pages);
3035		ret = -ENOMEM;
3036	}
3037out:
 
 
3038	css_put(&memcg->css);
3039
 
 
 
 
 
 
 
 
3040	return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053	struct obj_cgroup *objcg;
3054	int ret = 0;
 
 
 
3055
3056	objcg = get_obj_cgroup_from_current();
3057	if (objcg) {
3058		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059		if (!ret) {
3060			page->memcg_data = (unsigned long)objcg |
3061				MEMCG_DATA_KMEM;
3062			return 0;
3063		}
3064		obj_cgroup_put(objcg);
 
 
3065	}
3066	return ret;
 
 
 
 
 
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076	struct obj_cgroup *objcg;
3077	unsigned int nr_pages = 1 << order;
 
3078
3079	if (!PageMemcgKmem(page))
 
 
3080		return;
3081
3082	objcg = __page_objcg(page);
3083	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084	page->memcg_data = 0;
3085	obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089		     enum node_stat_item idx, int nr)
 
3090{
3091	unsigned long flags;
3092	struct obj_stock *stock = get_obj_stock(&flags);
3093	int *bytes;
 
 
 
3094
 
3095	/*
3096	 * Save vmstat data in stock and skip vmstat array update unless
3097	 * accumulating over a page of vmstat data or when pgdat or idx
3098	 * changes.
3099	 */
3100	if (stock->cached_objcg != objcg) {
3101		drain_obj_stock(stock);
3102		obj_cgroup_get(objcg);
3103		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105		stock->cached_objcg = objcg;
3106		stock->cached_pgdat = pgdat;
3107	} else if (stock->cached_pgdat != pgdat) {
3108		/* Flush the existing cached vmstat data */
3109		struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111		if (stock->nr_slab_reclaimable_b) {
3112			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113					  stock->nr_slab_reclaimable_b);
3114			stock->nr_slab_reclaimable_b = 0;
3115		}
3116		if (stock->nr_slab_unreclaimable_b) {
3117			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118					  stock->nr_slab_unreclaimable_b);
3119			stock->nr_slab_unreclaimable_b = 0;
3120		}
3121		stock->cached_pgdat = pgdat;
3122	}
3123
3124	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125					       : &stock->nr_slab_unreclaimable_b;
3126	/*
3127	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128	 * cached locally at least once before pushing it out.
3129	 */
3130	if (!*bytes) {
3131		*bytes = nr;
3132		nr = 0;
3133	} else {
3134		*bytes += nr;
3135		if (abs(*bytes) > PAGE_SIZE) {
3136			nr = *bytes;
3137			*bytes = 0;
3138		} else {
3139			nr = 0;
3140		}
3141	}
3142	if (nr)
3143		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145	put_obj_stock(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
 
 
 
 
3149{
3150	unsigned long flags;
3151	struct obj_stock *stock = get_obj_stock(&flags);
3152	bool ret = false;
 
3153
3154	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155		stock->nr_bytes -= nr_bytes;
3156		ret = true;
3157	}
3158
3159	put_obj_stock(flags);
 
3160
3161	return ret;
3162}
 
 
 
 
 
 
 
 
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166	struct obj_cgroup *old = stock->cached_objcg;
3167
3168	if (!old)
3169		return;
3170
3171	if (stock->nr_bytes) {
3172		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175		if (nr_pages)
3176			obj_cgroup_uncharge_pages(old, nr_pages);
3177
 
 
3178		/*
3179		 * The leftover is flushed to the centralized per-memcg value.
3180		 * On the next attempt to refill obj stock it will be moved
3181		 * to a per-cpu stock (probably, on an other CPU), see
3182		 * refill_obj_stock().
3183		 *
3184		 * How often it's flushed is a trade-off between the memory
3185		 * limit enforcement accuracy and potential CPU contention,
3186		 * so it might be changed in the future.
3187		 */
3188		atomic_add(nr_bytes, &old->nr_charged_bytes);
3189		stock->nr_bytes = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190	}
3191
 
 
 
3192	/*
3193	 * Flush the vmstat data in current stock
 
 
 
3194	 */
3195	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196		if (stock->nr_slab_reclaimable_b) {
3197			mod_objcg_mlstate(old, stock->cached_pgdat,
3198					  NR_SLAB_RECLAIMABLE_B,
3199					  stock->nr_slab_reclaimable_b);
3200			stock->nr_slab_reclaimable_b = 0;
3201		}
3202		if (stock->nr_slab_unreclaimable_b) {
3203			mod_objcg_mlstate(old, stock->cached_pgdat,
3204					  NR_SLAB_UNRECLAIMABLE_B,
3205					  stock->nr_slab_unreclaimable_b);
3206			stock->nr_slab_unreclaimable_b = 0;
3207		}
3208		stock->cached_pgdat = NULL;
3209	}
 
 
3210
3211	obj_cgroup_put(old);
3212	stock->cached_objcg = NULL;
 
 
 
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216				     struct mem_cgroup *root_memcg)
3217{
3218	struct mem_cgroup *memcg;
3219
3220	if (in_task() && stock->task_obj.cached_objcg) {
3221		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223			return true;
3224	}
3225	if (stock->irq_obj.cached_objcg) {
3226		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228			return true;
3229	}
3230
3231	return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235			     bool allow_uncharge)
3236{
3237	unsigned long flags;
3238	struct obj_stock *stock = get_obj_stock(&flags);
3239	unsigned int nr_pages = 0;
 
3240
3241	if (stock->cached_objcg != objcg) { /* reset if necessary */
3242		drain_obj_stock(stock);
3243		obj_cgroup_get(objcg);
3244		stock->cached_objcg = objcg;
3245		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3248	}
3249	stock->nr_bytes += nr_bytes;
3250
3251	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253		stock->nr_bytes &= (PAGE_SIZE - 1);
 
 
 
 
 
3254	}
3255
3256	put_obj_stock(flags);
3257
3258	if (nr_pages)
3259		obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264	unsigned int nr_pages, nr_bytes;
3265	int ret;
3266
3267	if (consume_obj_stock(objcg, size))
3268		return 0;
3269
3270	/*
3271	 * In theory, objcg->nr_charged_bytes can have enough
3272	 * pre-charged bytes to satisfy the allocation. However,
3273	 * flushing objcg->nr_charged_bytes requires two atomic
3274	 * operations, and objcg->nr_charged_bytes can't be big.
3275	 * The shared objcg->nr_charged_bytes can also become a
3276	 * performance bottleneck if all tasks of the same memcg are
3277	 * trying to update it. So it's better to ignore it and try
3278	 * grab some new pages. The stock's nr_bytes will be flushed to
3279	 * objcg->nr_charged_bytes later on when objcg changes.
3280	 *
3281	 * The stock's nr_bytes may contain enough pre-charged bytes
3282	 * to allow one less page from being charged, but we can't rely
3283	 * on the pre-charged bytes not being changed outside of
3284	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285	 * pre-charged bytes as well when charging pages. To avoid a
3286	 * page uncharge right after a page charge, we set the
3287	 * allow_uncharge flag to false when calling refill_obj_stock()
3288	 * to temporarily allow the pre-charged bytes to exceed the page
3289	 * size limit. The maximum reachable value of the pre-charged
3290	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291	 * race.
3292	 */
3293	nr_pages = size >> PAGE_SHIFT;
3294	nr_bytes = size & (PAGE_SIZE - 1);
3295
3296	if (nr_bytes)
3297		nr_pages += 1;
3298
3299	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300	if (!ret && nr_bytes)
3301		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
 
 
 
 
 
 
3307{
3308	refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
 
3312
 
 
 
 
 
 
 
 
 
 
 
 
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
 
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318	struct mem_cgroup *memcg = page_memcg(head);
3319	int i;
3320
3321	if (mem_cgroup_disabled() || !memcg)
3322		return;
3323
3324	for (i = 1; i < nr; i++)
3325		head[i].memcg_data = head->memcg_data;
3326
3327	if (PageMemcgKmem(head))
3328		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329	else
3330		css_get_many(&memcg->css, nr - 1);
 
 
 
 
 
 
 
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from:  mem_cgroup which the entry is moved from
3338 * @to:  mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349				struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351	unsigned short old_id, new_id;
3352
3353	old_id = mem_cgroup_id(from);
3354	new_id = mem_cgroup_id(to);
3355
3356	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357		mod_memcg_state(from, MEMCG_SWAP, -1);
3358		mod_memcg_state(to, MEMCG_SWAP, 1);
 
 
 
 
 
 
 
 
 
3359		return 0;
3360	}
3361	return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365				struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367	return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374				 unsigned long max, bool memsw)
3375{
3376	bool enlarge = false;
3377	bool drained = false;
3378	int ret;
3379	bool limits_invariant;
3380	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 
3381
3382	do {
 
 
 
 
 
 
 
 
 
 
3383		if (signal_pending(current)) {
3384			ret = -EINTR;
3385			break;
3386		}
3387
3388		mutex_lock(&memcg_max_mutex);
3389		/*
3390		 * Make sure that the new limit (memsw or memory limit) doesn't
3391		 * break our basic invariant rule memory.max <= memsw.max.
 
3392		 */
3393		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394					   max <= memcg->memsw.max;
3395		if (!limits_invariant) {
3396			mutex_unlock(&memcg_max_mutex);
3397			ret = -EINVAL;
 
3398			break;
3399		}
3400		if (max > counter->max)
3401			enlarge = true;
3402		ret = page_counter_set_max(counter, max);
3403		mutex_unlock(&memcg_max_mutex);
 
 
 
 
 
 
 
 
 
3404
3405		if (!ret)
3406			break;
3407
3408		if (!drained) {
3409			drain_all_stock(memcg);
3410			drained = true;
3411			continue;
3412		}
 
 
 
 
 
 
3413
3414		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415					GFP_KERNEL, !memsw)) {
3416			ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417			break;
3418		}
3419	} while (true);
 
 
 
 
 
 
 
 
 
 
 
 
 
3420
 
 
 
 
 
 
 
 
 
 
3421	if (!ret && enlarge)
3422		memcg_oom_recover(memcg);
3423
3424	return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428					    gfp_t gfp_mask,
3429					    unsigned long *total_scanned)
3430{
3431	unsigned long nr_reclaimed = 0;
3432	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433	unsigned long reclaimed;
3434	int loop = 0;
3435	struct mem_cgroup_tree_per_node *mctz;
3436	unsigned long excess;
3437	unsigned long nr_scanned;
3438
3439	if (order > 0)
3440		return 0;
3441
3442	mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444	/*
3445	 * Do not even bother to check the largest node if the root
3446	 * is empty. Do it lockless to prevent lock bouncing. Races
3447	 * are acceptable as soft limit is best effort anyway.
3448	 */
3449	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450		return 0;
3451
3452	/*
3453	 * This loop can run a while, specially if mem_cgroup's continuously
3454	 * keep exceeding their soft limit and putting the system under
3455	 * pressure
3456	 */
3457	do {
3458		if (next_mz)
3459			mz = next_mz;
3460		else
3461			mz = mem_cgroup_largest_soft_limit_node(mctz);
3462		if (!mz)
3463			break;
3464
3465		nr_scanned = 0;
3466		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467						    gfp_mask, &nr_scanned);
3468		nr_reclaimed += reclaimed;
3469		*total_scanned += nr_scanned;
3470		spin_lock_irq(&mctz->lock);
3471		__mem_cgroup_remove_exceeded(mz, mctz);
3472
3473		/*
3474		 * If we failed to reclaim anything from this memory cgroup
3475		 * it is time to move on to the next cgroup
3476		 */
3477		next_mz = NULL;
3478		if (!reclaimed)
3479			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481		excess = soft_limit_excess(mz->memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482		/*
3483		 * One school of thought says that we should not add
3484		 * back the node to the tree if reclaim returns 0.
3485		 * But our reclaim could return 0, simply because due
3486		 * to priority we are exposing a smaller subset of
3487		 * memory to reclaim from. Consider this as a longer
3488		 * term TODO.
3489		 */
3490		/* If excess == 0, no tree ops */
3491		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3492		spin_unlock_irq(&mctz->lock);
3493		css_put(&mz->memcg->css);
3494		loop++;
3495		/*
3496		 * Could not reclaim anything and there are no more
3497		 * mem cgroups to try or we seem to be looping without
3498		 * reclaiming anything.
3499		 */
3500		if (!nr_reclaimed &&
3501			(next_mz == NULL ||
3502			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503			break;
3504	} while (!nr_reclaimed);
3505	if (next_mz)
3506		css_put(&next_mz->memcg->css);
3507	return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 
3516{
3517	int nr_retries = MAX_RECLAIM_RETRIES;
 
 
 
 
 
3518
3519	/* we call try-to-free pages for make this cgroup empty */
3520	lru_add_drain_all();
 
 
 
 
 
 
 
 
 
3521
3522	drain_all_stock(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
3523
3524	/* try to free all pages in this cgroup */
3525	while (nr_retries && page_counter_read(&memcg->memory)) {
3526		int progress;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527
 
 
 
 
 
 
 
 
 
 
3528		if (signal_pending(current))
3529			return -EINTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530
3531		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532							GFP_KERNEL, true);
 
 
 
 
3533		if (!progress) {
3534			nr_retries--;
3535			/* maybe some writeback is necessary */
3536			congestion_wait(BLK_RW_ASYNC, HZ/10);
3537		}
3538
3539	}
3540
3541	return 0;
 
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545					    char *buf, size_t nbytes,
3546					    loff_t off)
3547{
3548	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550	if (mem_cgroup_is_root(memcg))
3551		return -EINVAL;
3552	return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556				     struct cftype *cft)
3557{
3558	return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562				      struct cftype *cft, u64 val)
3563{
3564	if (val == 1)
3565		return 0;
3566
3567	pr_warn_once("Non-hierarchical mode is deprecated. "
3568		     "Please report your usecase to linux-mm@kvack.org if you "
3569		     "depend on this functionality.\n");
3570
3571	return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 
3575{
3576	unsigned long val;
 
 
 
3577
3578	if (mem_cgroup_is_root(memcg)) {
3579		/* mem_cgroup_threshold() calls here from irqsafe context */
3580		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582			memcg_page_state(memcg, NR_ANON_MAPPED);
3583		if (swap)
3584			val += memcg_page_state(memcg, MEMCG_SWAP);
3585	} else {
3586		if (!swap)
3587			val = page_counter_read(&memcg->memory);
 
 
 
 
 
 
3588		else
3589			val = page_counter_read(&memcg->memsw);
3590	}
3591	return val;
 
 
 
3592}
3593
3594enum {
3595	RES_USAGE,
3596	RES_LIMIT,
3597	RES_MAX_USAGE,
3598	RES_FAILCNT,
3599	RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603			       struct cftype *cft)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606	struct page_counter *counter;
3607
3608	switch (MEMFILE_TYPE(cft->private)) {
3609	case _MEM:
3610		counter = &memcg->memory;
3611		break;
3612	case _MEMSWAP:
3613		counter = &memcg->memsw;
3614		break;
3615	case _KMEM:
3616		counter = &memcg->kmem;
3617		break;
3618	case _TCP:
3619		counter = &memcg->tcpmem;
3620		break;
3621	default:
3622		BUG();
3623	}
3624
3625	switch (MEMFILE_ATTR(cft->private)) {
3626	case RES_USAGE:
3627		if (counter == &memcg->memory)
3628			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629		if (counter == &memcg->memsw)
3630			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631		return (u64)page_counter_read(counter) * PAGE_SIZE;
3632	case RES_LIMIT:
3633		return (u64)counter->max * PAGE_SIZE;
3634	case RES_MAX_USAGE:
3635		return (u64)counter->watermark * PAGE_SIZE;
3636	case RES_FAILCNT:
3637		return counter->failcnt;
3638	case RES_SOFT_LIMIT:
3639		return (u64)memcg->soft_limit * PAGE_SIZE;
3640	default:
3641		BUG();
3642	}
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648	struct obj_cgroup *objcg;
3649	int memcg_id;
3650
3651	if (cgroup_memory_nokmem)
3652		return 0;
3653
3654	BUG_ON(memcg->kmemcg_id >= 0);
3655	BUG_ON(memcg->kmem_state);
3656
3657	memcg_id = memcg_alloc_cache_id();
3658	if (memcg_id < 0)
3659		return memcg_id;
3660
3661	objcg = obj_cgroup_alloc();
3662	if (!objcg) {
3663		memcg_free_cache_id(memcg_id);
3664		return -ENOMEM;
3665	}
3666	objcg->memcg = memcg;
3667	rcu_assign_pointer(memcg->objcg, objcg);
3668
3669	static_branch_enable(&memcg_kmem_enabled_key);
 
3670
3671	memcg->kmemcg_id = memcg_id;
3672	memcg->kmem_state = KMEM_ONLINE;
3673
3674	return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
 
 
3678{
3679	struct cgroup_subsys_state *css;
3680	struct mem_cgroup *parent, *child;
3681	int kmemcg_id;
3682
3683	if (memcg->kmem_state != KMEM_ONLINE)
3684		return;
3685
3686	memcg->kmem_state = KMEM_ALLOCATED;
 
3687
3688	parent = parent_mem_cgroup(memcg);
3689	if (!parent)
3690		parent = root_mem_cgroup;
3691
3692	memcg_reparent_objcgs(memcg, parent);
3693
3694	kmemcg_id = memcg->kmemcg_id;
3695	BUG_ON(kmemcg_id < 0);
3696
3697	/*
3698	 * Change kmemcg_id of this cgroup and all its descendants to the
3699	 * parent's id, and then move all entries from this cgroup's list_lrus
3700	 * to ones of the parent. After we have finished, all list_lrus
3701	 * corresponding to this cgroup are guaranteed to remain empty. The
3702	 * ordering is imposed by list_lru_node->lock taken by
3703	 * memcg_drain_all_list_lrus().
3704	 */
3705	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706	css_for_each_descendant_pre(css, &memcg->css) {
3707		child = mem_cgroup_from_css(css);
3708		BUG_ON(child->kmemcg_id != kmemcg_id);
3709		child->kmemcg_id = parent->kmemcg_id;
3710	}
3711	rcu_read_unlock();
3712
3713	memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715	memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720	/* css_alloc() failed, offlining didn't happen */
3721	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722		memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738				 unsigned long max)
3739{
3740	int ret;
3741
3742	mutex_lock(&memcg_max_mutex);
3743	ret = page_counter_set_max(&memcg->kmem, max);
3744	mutex_unlock(&memcg_max_mutex);
3745	return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750	int ret;
3751
3752	mutex_lock(&memcg_max_mutex);
3753
3754	ret = page_counter_set_max(&memcg->tcpmem, max);
3755	if (ret)
3756		goto out;
3757
3758	if (!memcg->tcpmem_active) {
3759		/*
3760		 * The active flag needs to be written after the static_key
3761		 * update. This is what guarantees that the socket activation
3762		 * function is the last one to run. See mem_cgroup_sk_alloc()
3763		 * for details, and note that we don't mark any socket as
3764		 * belonging to this memcg until that flag is up.
3765		 *
3766		 * We need to do this, because static_keys will span multiple
3767		 * sites, but we can't control their order. If we mark a socket
3768		 * as accounted, but the accounting functions are not patched in
3769		 * yet, we'll lose accounting.
3770		 *
3771		 * We never race with the readers in mem_cgroup_sk_alloc(),
3772		 * because when this value change, the code to process it is not
3773		 * patched in yet.
3774		 */
3775		static_branch_inc(&memcg_sockets_enabled_key);
3776		memcg->tcpmem_active = true;
3777	}
3778out:
3779	mutex_unlock(&memcg_max_mutex);
3780	return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788				char *buf, size_t nbytes, loff_t off)
3789{
3790	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791	unsigned long nr_pages;
 
3792	int ret;
3793
3794	buf = strstrip(buf);
3795	ret = page_counter_memparse(buf, "-1", &nr_pages);
3796	if (ret)
3797		return ret;
3798
3799	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 
 
 
3800	case RES_LIMIT:
3801		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802			ret = -EINVAL;
3803			break;
3804		}
3805		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806		case _MEM:
3807			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808			break;
3809		case _MEMSWAP:
3810			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811			break;
3812		case _KMEM:
3813			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814				     "Please report your usecase to linux-mm@kvack.org if you "
3815				     "depend on this functionality.\n");
3816			ret = memcg_update_kmem_max(memcg, nr_pages);
3817			break;
3818		case _TCP:
3819			ret = memcg_update_tcp_max(memcg, nr_pages);
3820			break;
3821		}
 
 
 
3822		break;
3823	case RES_SOFT_LIMIT:
3824		memcg->soft_limit = nr_pages;
3825		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3826		break;
3827	}
3828	return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832				size_t nbytes, loff_t off)
3833{
3834	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835	struct page_counter *counter;
3836
3837	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838	case _MEM:
3839		counter = &memcg->memory;
3840		break;
3841	case _MEMSWAP:
3842		counter = &memcg->memsw;
3843		break;
3844	case _KMEM:
3845		counter = &memcg->kmem;
3846		break;
3847	case _TCP:
3848		counter = &memcg->tcpmem;
3849		break;
3850	default:
3851		BUG();
3852	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3853
3854	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855	case RES_MAX_USAGE:
3856		page_counter_reset_watermark(counter);
 
 
 
3857		break;
3858	case RES_FAILCNT:
3859		counter->failcnt = 0;
 
 
 
3860		break;
3861	default:
3862		BUG();
3863	}
3864
3865	return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869					struct cftype *cft)
3870{
3871	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876					struct cftype *cft, u64 val)
3877{
3878	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880	if (val & ~MOVE_MASK)
3881		return -EINVAL;
3882
3883	/*
3884	 * No kind of locking is needed in here, because ->can_attach() will
3885	 * check this value once in the beginning of the process, and then carry
3886	 * on with stale data. This means that changes to this value will only
3887	 * affect task migrations starting after the change.
3888	 */
 
3889	memcg->move_charge_at_immigrate = val;
 
 
3890	return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894					struct cftype *cft, u64 val)
3895{
3896	return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907				int nid, unsigned int lru_mask, bool tree)
3908{
3909	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910	unsigned long nr = 0;
3911	enum lru_list lru;
3912
3913	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915	for_each_lru(lru) {
3916		if (!(BIT(lru) & lru_mask))
3917			continue;
3918		if (tree)
3919			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920		else
3921			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922	}
3923	return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927					     unsigned int lru_mask,
3928					     bool tree)
3929{
3930	unsigned long nr = 0;
3931	enum lru_list lru;
3932
3933	for_each_lru(lru) {
3934		if (!(BIT(lru) & lru_mask))
3935			continue;
3936		if (tree)
3937			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938		else
3939			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940	}
3941	return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946	struct numa_stat {
3947		const char *name;
3948		unsigned int lru_mask;
3949	};
3950
3951	static const struct numa_stat stats[] = {
3952		{ "total", LRU_ALL },
3953		{ "file", LRU_ALL_FILE },
3954		{ "anon", LRU_ALL_ANON },
3955		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3956	};
3957	const struct numa_stat *stat;
3958	int nid;
3959	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961	cgroup_rstat_flush(memcg->css.cgroup);
3962
3963	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964		seq_printf(m, "%s=%lu", stat->name,
3965			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966						   false));
3967		for_each_node_state(nid, N_MEMORY)
3968			seq_printf(m, " N%d=%lu", nid,
3969				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3970							stat->lru_mask, false));
3971		seq_putc(m, '\n');
3972	}
3973
3974	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978						   true));
3979		for_each_node_state(nid, N_MEMORY)
3980			seq_printf(m, " N%d=%lu", nid,
3981				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3982							stat->lru_mask, true));
3983		seq_putc(m, '\n');
 
 
 
 
 
 
 
 
 
 
 
3984	}
3985
3986	return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991	NR_FILE_PAGES,
3992	NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994	NR_ANON_THPS,
3995#endif
3996	NR_SHMEM,
3997	NR_FILE_MAPPED,
3998	NR_FILE_DIRTY,
3999	NR_WRITEBACK,
4000	MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004	"cache",
4005	"rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007	"rss_huge",
4008#endif
4009	"shmem",
4010	"mapped_file",
4011	"dirty",
4012	"writeback",
4013	"swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018	PGPGIN,
4019	PGPGOUT,
4020	PGFAULT,
4021	PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
 
4025{
4026	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027	unsigned long memory, memsw;
4028	struct mem_cgroup *mi;
4029	unsigned int i;
4030
4031	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033	cgroup_rstat_flush(memcg->css.cgroup);
4034
4035	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036		unsigned long nr;
4037
4038		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039			continue;
4040		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042	}
4043
4044	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046			   memcg_events_local(memcg, memcg1_events[i]));
4047
4048	for (i = 0; i < NR_LRU_LISTS; i++)
4049		seq_printf(m, "%s %lu\n", lru_list_name(i),
4050			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051			   PAGE_SIZE);
4052
4053	/* Hierarchical information */
4054	memory = memsw = PAGE_COUNTER_MAX;
4055	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056		memory = min(memory, READ_ONCE(mi->memory.max));
4057		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058	}
4059	seq_printf(m, "hierarchical_memory_limit %llu\n",
4060		   (u64)memory * PAGE_SIZE);
4061	if (do_memsw_account())
4062		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063			   (u64)memsw * PAGE_SIZE);
4064
4065	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066		unsigned long nr;
4067
4068		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069			continue;
4070		nr = memcg_page_state(memcg, memcg1_stats[i]);
4071		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072						(u64)nr * PAGE_SIZE);
4073	}
4074
4075	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
 
 
 
 
4076		seq_printf(m, "total_%s %llu\n",
4077			   vm_event_name(memcg1_events[i]),
4078			   (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080	for (i = 0; i < NR_LRU_LISTS; i++)
4081		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083			   PAGE_SIZE);
 
 
 
4084
4085#ifdef CONFIG_DEBUG_VM
4086	{
4087		pg_data_t *pgdat;
4088		struct mem_cgroup_per_node *mz;
4089		unsigned long anon_cost = 0;
4090		unsigned long file_cost = 0;
4091
4092		for_each_online_pgdat(pgdat) {
4093			mz = memcg->nodeinfo[pgdat->node_id];
4094
4095			anon_cost += mz->lruvec.anon_cost;
4096			file_cost += mz->lruvec.file_cost;
4097		}
4098		seq_printf(m, "anon_cost %lu\n", anon_cost);
4099		seq_printf(m, "file_cost %lu\n", file_cost);
 
 
 
 
 
 
 
4100	}
4101#endif
4102
4103	return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107				      struct cftype *cft)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115				       struct cftype *cft, u64 val)
4116{
4117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4118
4119	if (val > 100)
4120		return -EINVAL;
4121
4122	if (!mem_cgroup_is_root(memcg))
4123		memcg->swappiness = val;
4124	else
4125		vm_swappiness = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
4126
4127	return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132	struct mem_cgroup_threshold_ary *t;
4133	unsigned long usage;
4134	int i;
4135
4136	rcu_read_lock();
4137	if (!swap)
4138		t = rcu_dereference(memcg->thresholds.primary);
4139	else
4140		t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142	if (!t)
4143		goto unlock;
4144
4145	usage = mem_cgroup_usage(memcg, swap);
4146
4147	/*
4148	 * current_threshold points to threshold just below or equal to usage.
4149	 * If it's not true, a threshold was crossed after last
4150	 * call of __mem_cgroup_threshold().
4151	 */
4152	i = t->current_threshold;
4153
4154	/*
4155	 * Iterate backward over array of thresholds starting from
4156	 * current_threshold and check if a threshold is crossed.
4157	 * If none of thresholds below usage is crossed, we read
4158	 * only one element of the array here.
4159	 */
4160	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161		eventfd_signal(t->entries[i].eventfd, 1);
4162
4163	/* i = current_threshold + 1 */
4164	i++;
4165
4166	/*
4167	 * Iterate forward over array of thresholds starting from
4168	 * current_threshold+1 and check if a threshold is crossed.
4169	 * If none of thresholds above usage is crossed, we read
4170	 * only one element of the array here.
4171	 */
4172	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173		eventfd_signal(t->entries[i].eventfd, 1);
4174
4175	/* Update current_threshold */
4176	t->current_threshold = i - 1;
4177unlock:
4178	rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183	while (memcg) {
4184		__mem_cgroup_threshold(memcg, false);
4185		if (do_memsw_account())
4186			__mem_cgroup_threshold(memcg, true);
4187
4188		memcg = parent_mem_cgroup(memcg);
4189	}
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194	const struct mem_cgroup_threshold *_a = a;
4195	const struct mem_cgroup_threshold *_b = b;
4196
4197	if (_a->threshold > _b->threshold)
4198		return 1;
4199
4200	if (_a->threshold < _b->threshold)
4201		return -1;
4202
4203	return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208	struct mem_cgroup_eventfd_list *ev;
4209
4210	spin_lock(&memcg_oom_lock);
4211
4212	list_for_each_entry(ev, &memcg->oom_notify, list)
4213		eventfd_signal(ev->eventfd, 1);
4214
4215	spin_unlock(&memcg_oom_lock);
4216	return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, memcg)
4224		mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
 
4230	struct mem_cgroup_thresholds *thresholds;
4231	struct mem_cgroup_threshold_ary *new;
4232	unsigned long threshold;
4233	unsigned long usage;
4234	int i, size, ret;
4235
4236	ret = page_counter_memparse(args, "-1", &threshold);
4237	if (ret)
4238		return ret;
4239
4240	mutex_lock(&memcg->thresholds_lock);
4241
4242	if (type == _MEM) {
4243		thresholds = &memcg->thresholds;
4244		usage = mem_cgroup_usage(memcg, false);
4245	} else if (type == _MEMSWAP) {
4246		thresholds = &memcg->memsw_thresholds;
4247		usage = mem_cgroup_usage(memcg, true);
4248	} else
4249		BUG();
4250
 
 
4251	/* Check if a threshold crossed before adding a new one */
4252	if (thresholds->primary)
4253		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257	/* Allocate memory for new array of thresholds */
4258	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 
4259	if (!new) {
4260		ret = -ENOMEM;
4261		goto unlock;
4262	}
4263	new->size = size;
4264
4265	/* Copy thresholds (if any) to new array */
4266	if (thresholds->primary)
4267		memcpy(new->entries, thresholds->primary->entries,
4268		       flex_array_size(new, entries, size - 1));
 
4269
4270	/* Add new threshold */
4271	new->entries[size - 1].eventfd = eventfd;
4272	new->entries[size - 1].threshold = threshold;
4273
4274	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275	sort(new->entries, size, sizeof(*new->entries),
4276			compare_thresholds, NULL);
4277
4278	/* Find current threshold */
4279	new->current_threshold = -1;
4280	for (i = 0; i < size; i++) {
4281		if (new->entries[i].threshold <= usage) {
4282			/*
4283			 * new->current_threshold will not be used until
4284			 * rcu_assign_pointer(), so it's safe to increment
4285			 * it here.
4286			 */
4287			++new->current_threshold;
4288		} else
4289			break;
4290	}
4291
4292	/* Free old spare buffer and save old primary buffer as spare */
4293	kfree(thresholds->spare);
4294	thresholds->spare = thresholds->primary;
4295
4296	rcu_assign_pointer(thresholds->primary, new);
4297
4298	/* To be sure that nobody uses thresholds */
4299	synchronize_rcu();
4300
4301unlock:
4302	mutex_unlock(&memcg->thresholds_lock);
4303
4304	return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308	struct eventfd_ctx *eventfd, const char *args)
4309{
4310	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314	struct eventfd_ctx *eventfd, const char *args)
4315{
4316	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320	struct eventfd_ctx *eventfd, enum res_type type)
4321{
 
4322	struct mem_cgroup_thresholds *thresholds;
4323	struct mem_cgroup_threshold_ary *new;
4324	unsigned long usage;
4325	int i, j, size, entries;
 
4326
4327	mutex_lock(&memcg->thresholds_lock);
4328
4329	if (type == _MEM) {
4330		thresholds = &memcg->thresholds;
4331		usage = mem_cgroup_usage(memcg, false);
4332	} else if (type == _MEMSWAP) {
4333		thresholds = &memcg->memsw_thresholds;
4334		usage = mem_cgroup_usage(memcg, true);
4335	} else
4336		BUG();
4337
4338	if (!thresholds->primary)
4339		goto unlock;
4340
 
 
4341	/* Check if a threshold crossed before removing */
4342	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344	/* Calculate new number of threshold */
4345	size = entries = 0;
4346	for (i = 0; i < thresholds->primary->size; i++) {
4347		if (thresholds->primary->entries[i].eventfd != eventfd)
4348			size++;
4349		else
4350			entries++;
4351	}
4352
4353	new = thresholds->spare;
4354
4355	/* If no items related to eventfd have been cleared, nothing to do */
4356	if (!entries)
4357		goto unlock;
4358
4359	/* Set thresholds array to NULL if we don't have thresholds */
4360	if (!size) {
4361		kfree(new);
4362		new = NULL;
4363		goto swap_buffers;
4364	}
4365
4366	new->size = size;
4367
4368	/* Copy thresholds and find current threshold */
4369	new->current_threshold = -1;
4370	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371		if (thresholds->primary->entries[i].eventfd == eventfd)
4372			continue;
4373
4374		new->entries[j] = thresholds->primary->entries[i];
4375		if (new->entries[j].threshold <= usage) {
4376			/*
4377			 * new->current_threshold will not be used
4378			 * until rcu_assign_pointer(), so it's safe to increment
4379			 * it here.
4380			 */
4381			++new->current_threshold;
4382		}
4383		j++;
4384	}
4385
4386swap_buffers:
4387	/* Swap primary and spare array */
4388	thresholds->spare = thresholds->primary;
4389
4390	rcu_assign_pointer(thresholds->primary, new);
4391
4392	/* To be sure that nobody uses thresholds */
4393	synchronize_rcu();
4394
4395	/* If all events are unregistered, free the spare array */
4396	if (!new) {
4397		kfree(thresholds->spare);
4398		thresholds->spare = NULL;
4399	}
4400unlock:
4401	mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405	struct eventfd_ctx *eventfd)
4406{
4407	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411	struct eventfd_ctx *eventfd)
4412{
4413	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417	struct eventfd_ctx *eventfd, const char *args)
4418{
 
4419	struct mem_cgroup_eventfd_list *event;
 
4420
 
4421	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4422	if (!event)
4423		return -ENOMEM;
4424
4425	spin_lock(&memcg_oom_lock);
4426
4427	event->eventfd = eventfd;
4428	list_add(&event->list, &memcg->oom_notify);
4429
4430	/* already in OOM ? */
4431	if (memcg->under_oom)
4432		eventfd_signal(eventfd, 1);
4433	spin_unlock(&memcg_oom_lock);
4434
4435	return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439	struct eventfd_ctx *eventfd)
4440{
 
4441	struct mem_cgroup_eventfd_list *ev, *tmp;
 
 
 
4442
4443	spin_lock(&memcg_oom_lock);
4444
4445	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446		if (ev->eventfd == eventfd) {
4447			list_del(&ev->list);
4448			kfree(ev);
4449		}
4450	}
4451
4452	spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 
4456{
4457	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
 
 
4458
4459	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461	seq_printf(sf, "oom_kill %lu\n",
4462		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463	return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467	struct cftype *cft, u64 val)
4468{
4469	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4470
4471	/* cannot set to root cgroup and only 0 and 1 are allowed */
4472	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473		return -EINVAL;
4474
 
 
 
 
 
 
 
 
 
4475	memcg->oom_kill_disable = val;
4476	if (!val)
4477		memcg_oom_recover(memcg);
4478
4479	return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488	return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493	wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498	wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505	if (!memcg->css.parent)
4506		return NULL;
4507
4508	return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors.  Note that this doesn't consider the actual amount of
4526 * available memory in the system.  The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530			 unsigned long *pheadroom, unsigned long *pdirty,
4531			 unsigned long *pwriteback)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534	struct mem_cgroup *parent;
4535
4536	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541			memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543	*pheadroom = PAGE_COUNTER_MAX;
4544	while ((parent = parent_mem_cgroup(memcg))) {
4545		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546					    READ_ONCE(memcg->memory.high));
4547		unsigned long used = page_counter_read(&memcg->memory);
4548
4549		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550		memcg = parent;
4551	}
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback.  The former
4558 * tracks ownership per-page while the latter per-inode.  This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases.  For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode.  B owns the inode and
4568 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback.  A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction.  However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism.  When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599					     struct bdi_writeback *wb)
4600{
4601	struct mem_cgroup *memcg = page_memcg(page);
4602	struct memcg_cgwb_frn *frn;
4603	u64 now = get_jiffies_64();
4604	u64 oldest_at = now;
4605	int oldest = -1;
4606	int i;
4607
4608	trace_track_foreign_dirty(page, wb);
4609
4610	/*
4611	 * Pick the slot to use.  If there is already a slot for @wb, keep
4612	 * using it.  If not replace the oldest one which isn't being
4613	 * written out.
4614	 */
4615	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616		frn = &memcg->cgwb_frn[i];
4617		if (frn->bdi_id == wb->bdi->id &&
4618		    frn->memcg_id == wb->memcg_css->id)
4619			break;
4620		if (time_before64(frn->at, oldest_at) &&
4621		    atomic_read(&frn->done.cnt) == 1) {
4622			oldest = i;
4623			oldest_at = frn->at;
4624		}
4625	}
4626
4627	if (i < MEMCG_CGWB_FRN_CNT) {
4628		/*
4629		 * Re-using an existing one.  Update timestamp lazily to
4630		 * avoid making the cacheline hot.  We want them to be
4631		 * reasonably up-to-date and significantly shorter than
4632		 * dirty_expire_interval as that's what expires the record.
4633		 * Use the shorter of 1s and dirty_expire_interval / 8.
4634		 */
4635		unsigned long update_intv =
4636			min_t(unsigned long, HZ,
4637			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639		if (time_before64(frn->at, now - update_intv))
4640			frn->at = now;
4641	} else if (oldest >= 0) {
4642		/* replace the oldest free one */
4643		frn = &memcg->cgwb_frn[oldest];
4644		frn->bdi_id = wb->bdi->id;
4645		frn->memcg_id = wb->memcg_css->id;
4646		frn->at = now;
4647	}
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655	u64 now = jiffies_64;
4656	int i;
4657
4658	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661		/*
4662		 * If the record is older than dirty_expire_interval,
4663		 * writeback on it has already started.  No need to kick it
4664		 * off again.  Also, don't start a new one if there's
4665		 * already one in flight.
4666		 */
4667		if (time_after64(frn->at, now - intv) &&
4668		    atomic_read(&frn->done.cnt) == 1) {
4669			frn->at = 0;
4670			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672					       WB_REASON_FOREIGN_FLUSH,
4673					       &frn->done);
4674		}
4675	}
4676}
4677
4678#else	/* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682	return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif	/* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered.  It tries to support fully configurable
4701 * events for each user.  Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715	struct mem_cgroup_event *event =
4716		container_of(work, struct mem_cgroup_event, remove);
4717	struct mem_cgroup *memcg = event->memcg;
4718
4719	remove_wait_queue(event->wqh, &event->wait);
4720
4721	event->unregister_event(memcg, event->eventfd);
4722
4723	/* Notify userspace the event is going away. */
4724	eventfd_signal(event->eventfd, 1);
4725
4726	eventfd_ctx_put(event->eventfd);
4727	kfree(event);
4728	css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737			    int sync, void *key)
4738{
4739	struct mem_cgroup_event *event =
4740		container_of(wait, struct mem_cgroup_event, wait);
4741	struct mem_cgroup *memcg = event->memcg;
4742	__poll_t flags = key_to_poll(key);
4743
4744	if (flags & EPOLLHUP) {
4745		/*
4746		 * If the event has been detached at cgroup removal, we
4747		 * can simply return knowing the other side will cleanup
4748		 * for us.
4749		 *
4750		 * We can't race against event freeing since the other
4751		 * side will require wqh->lock via remove_wait_queue(),
4752		 * which we hold.
4753		 */
4754		spin_lock(&memcg->event_list_lock);
4755		if (!list_empty(&event->list)) {
4756			list_del_init(&event->list);
4757			/*
4758			 * We are in atomic context, but cgroup_event_remove()
4759			 * may sleep, so we have to call it in workqueue.
4760			 */
4761			schedule_work(&event->remove);
4762		}
4763		spin_unlock(&memcg->event_list_lock);
4764	}
4765
4766	return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770		wait_queue_head_t *wqh, poll_table *pt)
4771{
4772	struct mem_cgroup_event *event =
4773		container_of(pt, struct mem_cgroup_event, pt);
4774
4775	event->wqh = wqh;
4776	add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788					 char *buf, size_t nbytes, loff_t off)
4789{
4790	struct cgroup_subsys_state *css = of_css(of);
4791	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792	struct mem_cgroup_event *event;
4793	struct cgroup_subsys_state *cfile_css;
4794	unsigned int efd, cfd;
4795	struct fd efile;
4796	struct fd cfile;
4797	const char *name;
4798	char *endp;
4799	int ret;
4800
4801	buf = strstrip(buf);
4802
4803	efd = simple_strtoul(buf, &endp, 10);
4804	if (*endp != ' ')
4805		return -EINVAL;
4806	buf = endp + 1;
4807
4808	cfd = simple_strtoul(buf, &endp, 10);
4809	if ((*endp != ' ') && (*endp != '\0'))
4810		return -EINVAL;
4811	buf = endp + 1;
4812
4813	event = kzalloc(sizeof(*event), GFP_KERNEL);
4814	if (!event)
4815		return -ENOMEM;
4816
4817	event->memcg = memcg;
4818	INIT_LIST_HEAD(&event->list);
4819	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821	INIT_WORK(&event->remove, memcg_event_remove);
4822
4823	efile = fdget(efd);
4824	if (!efile.file) {
4825		ret = -EBADF;
4826		goto out_kfree;
4827	}
4828
4829	event->eventfd = eventfd_ctx_fileget(efile.file);
4830	if (IS_ERR(event->eventfd)) {
4831		ret = PTR_ERR(event->eventfd);
4832		goto out_put_efile;
4833	}
4834
4835	cfile = fdget(cfd);
4836	if (!cfile.file) {
4837		ret = -EBADF;
4838		goto out_put_eventfd;
4839	}
4840
4841	/* the process need read permission on control file */
4842	/* AV: shouldn't we check that it's been opened for read instead? */
4843	ret = file_permission(cfile.file, MAY_READ);
4844	if (ret < 0)
4845		goto out_put_cfile;
4846
4847	/*
4848	 * Determine the event callbacks and set them in @event.  This used
4849	 * to be done via struct cftype but cgroup core no longer knows
4850	 * about these events.  The following is crude but the whole thing
4851	 * is for compatibility anyway.
4852	 *
4853	 * DO NOT ADD NEW FILES.
4854	 */
4855	name = cfile.file->f_path.dentry->d_name.name;
4856
4857	if (!strcmp(name, "memory.usage_in_bytes")) {
4858		event->register_event = mem_cgroup_usage_register_event;
4859		event->unregister_event = mem_cgroup_usage_unregister_event;
4860	} else if (!strcmp(name, "memory.oom_control")) {
4861		event->register_event = mem_cgroup_oom_register_event;
4862		event->unregister_event = mem_cgroup_oom_unregister_event;
4863	} else if (!strcmp(name, "memory.pressure_level")) {
4864		event->register_event = vmpressure_register_event;
4865		event->unregister_event = vmpressure_unregister_event;
4866	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867		event->register_event = memsw_cgroup_usage_register_event;
4868		event->unregister_event = memsw_cgroup_usage_unregister_event;
4869	} else {
4870		ret = -EINVAL;
4871		goto out_put_cfile;
4872	}
4873
4874	/*
4875	 * Verify @cfile should belong to @css.  Also, remaining events are
4876	 * automatically removed on cgroup destruction but the removal is
4877	 * asynchronous, so take an extra ref on @css.
4878	 */
4879	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880					       &memory_cgrp_subsys);
4881	ret = -EINVAL;
4882	if (IS_ERR(cfile_css))
4883		goto out_put_cfile;
4884	if (cfile_css != css) {
4885		css_put(cfile_css);
4886		goto out_put_cfile;
4887	}
4888
4889	ret = event->register_event(memcg, event->eventfd, buf);
4890	if (ret)
4891		goto out_put_css;
4892
4893	vfs_poll(efile.file, &event->pt);
4894
4895	spin_lock(&memcg->event_list_lock);
4896	list_add(&event->list, &memcg->event_list);
4897	spin_unlock(&memcg->event_list_lock);
4898
4899	fdput(cfile);
4900	fdput(efile);
4901
4902	return nbytes;
4903
4904out_put_css:
4905	css_put(css);
4906out_put_cfile:
4907	fdput(cfile);
4908out_put_eventfd:
4909	eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911	fdput(efile);
4912out_kfree:
4913	kfree(event);
4914
4915	return ret;
4916}
 
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919	{
4920		.name = "usage_in_bytes",
4921		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922		.read_u64 = mem_cgroup_read_u64,
 
 
4923	},
4924	{
4925		.name = "max_usage_in_bytes",
4926		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927		.write = mem_cgroup_reset,
4928		.read_u64 = mem_cgroup_read_u64,
4929	},
4930	{
4931		.name = "limit_in_bytes",
4932		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933		.write = mem_cgroup_write,
4934		.read_u64 = mem_cgroup_read_u64,
4935	},
4936	{
4937		.name = "soft_limit_in_bytes",
4938		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939		.write = mem_cgroup_write,
4940		.read_u64 = mem_cgroup_read_u64,
4941	},
4942	{
4943		.name = "failcnt",
4944		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945		.write = mem_cgroup_reset,
4946		.read_u64 = mem_cgroup_read_u64,
4947	},
4948	{
4949		.name = "stat",
4950		.seq_show = memcg_stat_show,
4951	},
4952	{
4953		.name = "force_empty",
4954		.write = mem_cgroup_force_empty_write,
4955	},
4956	{
4957		.name = "use_hierarchy",
4958		.write_u64 = mem_cgroup_hierarchy_write,
4959		.read_u64 = mem_cgroup_hierarchy_read,
4960	},
4961	{
4962		.name = "cgroup.event_control",		/* XXX: for compat */
4963		.write = memcg_write_event_control,
4964		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965	},
4966	{
4967		.name = "swappiness",
4968		.read_u64 = mem_cgroup_swappiness_read,
4969		.write_u64 = mem_cgroup_swappiness_write,
4970	},
4971	{
4972		.name = "move_charge_at_immigrate",
4973		.read_u64 = mem_cgroup_move_charge_read,
4974		.write_u64 = mem_cgroup_move_charge_write,
4975	},
4976	{
4977		.name = "oom_control",
4978		.seq_show = mem_cgroup_oom_control_read,
4979		.write_u64 = mem_cgroup_oom_control_write,
 
 
4980		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981	},
4982	{
4983		.name = "pressure_level",
4984	},
4985#ifdef CONFIG_NUMA
4986	{
4987		.name = "numa_stat",
4988		.seq_show = memcg_numa_stat_show,
4989	},
4990#endif
 
4991	{
4992		.name = "kmem.limit_in_bytes",
4993		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994		.write = mem_cgroup_write,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "kmem.usage_in_bytes",
4999		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000		.read_u64 = mem_cgroup_read_u64,
5001	},
5002	{
5003		.name = "kmem.failcnt",
5004		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005		.write = mem_cgroup_reset,
5006		.read_u64 = mem_cgroup_read_u64,
5007	},
5008	{
5009		.name = "kmem.max_usage_in_bytes",
5010		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011		.write = mem_cgroup_reset,
5012		.read_u64 = mem_cgroup_read_u64,
5013	},
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016	{
5017		.name = "kmem.slabinfo",
5018		.seq_show = memcg_slab_show,
 
 
5019	},
5020#endif
5021	{
5022		.name = "kmem.tcp.limit_in_bytes",
5023		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024		.write = mem_cgroup_write,
5025		.read_u64 = mem_cgroup_read_u64,
5026	},
5027	{
5028		.name = "kmem.tcp.usage_in_bytes",
5029		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030		.read_u64 = mem_cgroup_read_u64,
5031	},
5032	{
5033		.name = "kmem.tcp.failcnt",
5034		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035		.write = mem_cgroup_reset,
5036		.read_u64 = mem_cgroup_read_u64,
5037	},
5038	{
5039		.name = "kmem.tcp.max_usage_in_bytes",
5040		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041		.write = mem_cgroup_reset,
5042		.read_u64 = mem_cgroup_read_u64,
5043	},
5044	{ },	/* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075	if (memcg->id.id > 0) {
5076		idr_remove(&mem_cgroup_idr, memcg->id.id);
5077		memcg->id.id = 0;
5078	}
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082						  unsigned int n)
5083{
5084	refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090		mem_cgroup_id_remove(memcg);
5091
5092		/* Memcg ID pins CSS */
5093		css_put(&memcg->css);
5094	}
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099	mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110	WARN_ON_ONCE(!rcu_read_lock_held());
5111	return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116	struct mem_cgroup_per_node *pn;
5117	int tmp = node;
 
5118	/*
5119	 * This routine is called against possible nodes.
5120	 * But it's BUG to call kmalloc() against offline node.
5121	 *
5122	 * TODO: this routine can waste much memory for nodes which will
5123	 *       never be onlined. It's better to use memory hotplug callback
5124	 *       function.
5125	 */
5126	if (!node_state(node, N_NORMAL_MEMORY))
5127		tmp = -1;
5128	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129	if (!pn)
5130		return 1;
5131
5132	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133						 GFP_KERNEL_ACCOUNT);
5134	if (!pn->lruvec_stat_local) {
5135		kfree(pn);
5136		return 1;
5137	}
5138
5139	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140					       GFP_KERNEL_ACCOUNT);
5141	if (!pn->lruvec_stat_cpu) {
5142		free_percpu(pn->lruvec_stat_local);
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	lruvec_init(&pn->lruvec);
5148	pn->usage_in_excess = 0;
5149	pn->on_tree = false;
5150	pn->memcg = memcg;
5151
5152	memcg->nodeinfo[node] = pn;
5153	return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160	if (!pn)
5161		return;
5162
5163	free_percpu(pn->lruvec_stat_cpu);
5164	free_percpu(pn->lruvec_stat_local);
5165	kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170	int node;
 
5171
5172	for_each_node(node)
5173		free_mem_cgroup_per_node_info(memcg, node);
5174	free_percpu(memcg->vmstats_percpu);
5175	kfree(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
 
 
 
 
 
5179{
5180	int cpu;
 
5181
5182	memcg_wb_domain_exit(memcg);
5183	/*
5184	 * Flush percpu lruvec stats to guarantee the value
5185	 * correctness on parent's and all ancestor levels.
5186	 */
5187	for_each_online_cpu(cpu)
5188		memcg_flush_lruvec_page_state(memcg, cpu);
5189	__mem_cgroup_free(memcg);
 
 
 
 
 
 
 
 
 
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194	struct mem_cgroup *memcg;
5195	unsigned int size;
5196	int node;
5197	int __maybe_unused i;
5198	long error = -ENOMEM;
5199
5200	size = sizeof(struct mem_cgroup);
5201	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
 
 
5202
5203	memcg = kzalloc(size, GFP_KERNEL);
5204	if (!memcg)
5205		return ERR_PTR(error);
 
 
 
 
 
 
 
5206
5207	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208				 1, MEM_CGROUP_ID_MAX,
5209				 GFP_KERNEL);
5210	if (memcg->id.id < 0) {
5211		error = memcg->id.id;
5212		goto fail;
5213	}
5214
5215	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216						 GFP_KERNEL_ACCOUNT);
5217	if (!memcg->vmstats_percpu)
5218		goto fail;
5219
5220	for_each_node(node)
5221		if (alloc_mem_cgroup_per_node_info(memcg, node))
5222			goto fail;
5223
5224	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225		goto fail;
5226
5227	INIT_WORK(&memcg->high_work, high_work_func);
5228	INIT_LIST_HEAD(&memcg->oom_notify);
5229	mutex_init(&memcg->thresholds_lock);
5230	spin_lock_init(&memcg->move_lock);
5231	vmpressure_init(&memcg->vmpressure);
5232	INIT_LIST_HEAD(&memcg->event_list);
5233	spin_lock_init(&memcg->event_list_lock);
5234	memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236	memcg->kmemcg_id = -1;
5237	INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240	INIT_LIST_HEAD(&memcg->cgwb_list);
5241	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242		memcg->cgwb_frn[i].done =
5243			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248	memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251	return memcg;
5252fail:
5253	mem_cgroup_id_remove(memcg);
5254	__mem_cgroup_free(memcg);
5255	return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262	struct mem_cgroup *memcg, *old_memcg;
5263	long error = -ENOMEM;
5264
5265	old_memcg = set_active_memcg(parent);
5266	memcg = mem_cgroup_alloc();
5267	set_active_memcg(old_memcg);
5268	if (IS_ERR(memcg))
5269		return ERR_CAST(memcg);
5270
5271	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272	memcg->soft_limit = PAGE_COUNTER_MAX;
5273	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274	if (parent) {
5275		memcg->swappiness = mem_cgroup_swappiness(parent);
5276		memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278		page_counter_init(&memcg->memory, &parent->memory);
5279		page_counter_init(&memcg->swap, &parent->swap);
5280		page_counter_init(&memcg->kmem, &parent->kmem);
5281		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282	} else {
5283		page_counter_init(&memcg->memory, NULL);
5284		page_counter_init(&memcg->swap, NULL);
5285		page_counter_init(&memcg->kmem, NULL);
5286		page_counter_init(&memcg->tcpmem, NULL);
5287
5288		root_mem_cgroup = memcg;
5289		return &memcg->css;
5290	}
5291
5292	/* The following stuff does not apply to the root */
5293	error = memcg_online_kmem(memcg);
5294	if (error)
5295		goto fail;
5296
5297	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298		static_branch_inc(&memcg_sockets_enabled_key);
5299
5300	return &memcg->css;
5301fail:
5302	mem_cgroup_id_remove(memcg);
5303	mem_cgroup_free(memcg);
5304	return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311	/*
5312	 * A memcg must be visible for expand_shrinker_info()
5313	 * by the time the maps are allocated. So, we allocate maps
5314	 * here, when for_each_mem_cgroup() can't skip it.
5315	 */
5316	if (alloc_shrinker_info(memcg)) {
5317		mem_cgroup_id_remove(memcg);
5318		return -ENOMEM;
5319	}
 
5320
5321	/* Online state pins memcg ID, memcg ID pins CSS */
5322	refcount_set(&memcg->id.ref, 1);
5323	css_get(css);
5324	return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 
 
 
5328{
5329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330	struct mem_cgroup_event *event, *tmp;
 
 
 
5331
5332	/*
5333	 * Unregister events and notify userspace.
5334	 * Notify userspace about cgroup removing only after rmdir of cgroup
5335	 * directory to avoid race between userspace and kernelspace.
5336	 */
5337	spin_lock(&memcg->event_list_lock);
5338	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339		list_del_init(&event->list);
5340		schedule_work(&event->remove);
5341	}
5342	spin_unlock(&memcg->event_list_lock);
5343
5344	page_counter_set_min(&memcg->memory, 0);
5345	page_counter_set_low(&memcg->memory, 0);
 
 
 
5346
5347	memcg_offline_kmem(memcg);
5348	reparent_shrinker_deferred(memcg);
5349	wb_memcg_offline(memcg);
 
 
 
 
5350
5351	drain_all_stock(memcg);
5352
5353	mem_cgroup_id_put(memcg);
5354}
 
 
 
 
 
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
 
 
 
5359
5360	invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366	int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373		static_branch_dec(&memcg_sockets_enabled_key);
5374
5375	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376		static_branch_dec(&memcg_sockets_enabled_key);
5377
5378	vmpressure_cleanup(&memcg->vmpressure);
5379	cancel_work_sync(&memcg->high_work);
5380	mem_cgroup_remove_from_trees(memcg);
5381	free_shrinker_info(memcg);
5382	memcg_free_kmem(memcg);
5383	mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css.  This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency.  The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407	page_counter_set_min(&memcg->memory, 0);
5408	page_counter_set_low(&memcg->memory, 0);
5409	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410	memcg->soft_limit = PAGE_COUNTER_MAX;
5411	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412	memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419	struct memcg_vmstats_percpu *statc;
5420	long delta, v;
5421	int i;
5422
5423	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424
5425	for (i = 0; i < MEMCG_NR_STAT; i++) {
 
 
5426		/*
5427		 * Collect the aggregated propagation counts of groups
5428		 * below us. We're in a per-cpu loop here and this is
5429		 * a global counter, so the first cycle will get them.
 
5430		 */
5431		delta = memcg->vmstats.state_pending[i];
5432		if (delta)
5433			memcg->vmstats.state_pending[i] = 0;
5434
5435		/* Add CPU changes on this level since the last flush */
5436		v = READ_ONCE(statc->state[i]);
5437		if (v != statc->state_prev[i]) {
5438			delta += v - statc->state_prev[i];
5439			statc->state_prev[i] = v;
5440		}
5441
5442		if (!delta)
5443			continue;
 
 
 
 
5444
5445		/* Aggregate counts on this level and propagate upwards */
5446		memcg->vmstats.state[i] += delta;
5447		if (parent)
5448			parent->vmstats.state_pending[i] += delta;
 
 
 
 
 
5449	}
 
 
 
 
 
5450
5451	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452		delta = memcg->vmstats.events_pending[i];
5453		if (delta)
5454			memcg->vmstats.events_pending[i] = 0;
5455
5456		v = READ_ONCE(statc->events[i]);
5457		if (v != statc->events_prev[i]) {
5458			delta += v - statc->events_prev[i];
5459			statc->events_prev[i] = v;
5460		}
5461
5462		if (!delta)
5463			continue;
 
5464
5465		memcg->vmstats.events[i] += delta;
5466		if (parent)
5467			parent->vmstats.events_pending[i] += delta;
5468	}
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
 
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475	int ret;
 
 
5476
5477	/* Try a single bulk charge without reclaim first, kswapd may wake */
5478	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479	if (!ret) {
5480		mc.precharge += count;
 
5481		return ret;
5482	}
5483
5484	/* Try charges one by one with reclaim, but do not retry */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5485	while (count--) {
5486		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
 
 
 
 
 
 
 
 
 
5487		if (ret)
 
5488			return ret;
5489		mc.precharge++;
5490		cond_resched();
5491	}
5492	return 0;
5493}
5494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5495union mc_target {
5496	struct page	*page;
5497	swp_entry_t	ent;
5498};
5499
5500enum mc_target_type {
5501	MC_TARGET_NONE = 0,
5502	MC_TARGET_PAGE,
5503	MC_TARGET_SWAP,
5504	MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508						unsigned long addr, pte_t ptent)
5509{
5510	struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512	if (!page || !page_mapped(page))
5513		return NULL;
5514	if (PageAnon(page)) {
5515		if (!(mc.flags & MOVE_ANON))
 
5516			return NULL;
5517	} else {
5518		if (!(mc.flags & MOVE_FILE))
5519			return NULL;
5520	}
5521	if (!get_page_unless_zero(page))
5522		return NULL;
5523
5524	return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529			pte_t ptent, swp_entry_t *entry)
5530{
5531	struct page *page = NULL;
5532	swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534	if (!(mc.flags & MOVE_ANON))
5535		return NULL;
5536
5537	/*
5538	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539	 * a device and because they are not accessible by CPU they are store
5540	 * as special swap entry in the CPU page table.
5541	 */
5542	if (is_device_private_entry(ent)) {
5543		page = pfn_swap_entry_to_page(ent);
5544		/*
5545		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546		 * a refcount of 1 when free (unlike normal page)
5547		 */
5548		if (!page_ref_add_unless(page, 1, 1))
5549			return NULL;
5550		return page;
5551	}
5552
5553	if (non_swap_entry(ent))
5554		return NULL;
5555
5556	/*
5557	 * Because lookup_swap_cache() updates some statistics counter,
5558	 * we call find_get_page() with swapper_space directly.
5559	 */
5560	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561	entry->val = ent.val;
 
5562
5563	return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567			pte_t ptent, swp_entry_t *entry)
5568{
5569	return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
 
 
 
 
5576	if (!vma->vm_file) /* anonymous vma */
5577		return NULL;
5578	if (!(mc.flags & MOVE_FILE))
5579		return NULL;
5580
5581	/* page is moved even if it's not RSS of this task(page-faulted). */
5582	/* shmem/tmpfs may report page out on swap: account for that too. */
5583	return find_get_incore_page(vma->vm_file->f_mapping,
5584			linear_page_index(vma, addr));
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to:	mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600				   bool compound,
5601				   struct mem_cgroup *from,
5602				   struct mem_cgroup *to)
5603{
5604	struct lruvec *from_vec, *to_vec;
5605	struct pglist_data *pgdat;
5606	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607	int ret;
5608
5609	VM_BUG_ON(from == to);
5610	VM_BUG_ON_PAGE(PageLRU(page), page);
5611	VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613	/*
5614	 * Prevent mem_cgroup_migrate() from looking at
5615	 * page's memory cgroup of its source page while we change it.
5616	 */
5617	ret = -EBUSY;
5618	if (!trylock_page(page))
5619		goto out;
5620
5621	ret = -EINVAL;
5622	if (page_memcg(page) != from)
5623		goto out_unlock;
5624
5625	pgdat = page_pgdat(page);
5626	from_vec = mem_cgroup_lruvec(from, pgdat);
5627	to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629	lock_page_memcg(page);
5630
5631	if (PageAnon(page)) {
5632		if (page_mapped(page)) {
5633			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635			if (PageTransHuge(page)) {
5636				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5637						   -nr_pages);
5638				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5639						   nr_pages);
5640			}
5641		}
5642	} else {
5643		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646		if (PageSwapBacked(page)) {
5647			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649		}
5650
5651		if (page_mapped(page)) {
5652			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654		}
5655
5656		if (PageDirty(page)) {
5657			struct address_space *mapping = page_mapping(page);
5658
5659			if (mapping_can_writeback(mapping)) {
5660				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661						   -nr_pages);
5662				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663						   nr_pages);
5664			}
5665		}
5666	}
5667
5668	if (PageWriteback(page)) {
5669		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
 
 
 
 
5671	}
5672
5673	/*
5674	 * All state has been migrated, let's switch to the new memcg.
5675	 *
5676	 * It is safe to change page's memcg here because the page
5677	 * is referenced, charged, isolated, and locked: we can't race
5678	 * with (un)charging, migration, LRU putback, or anything else
5679	 * that would rely on a stable page's memory cgroup.
5680	 *
5681	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682	 * to save space. As soon as we switch page's memory cgroup to a
5683	 * new memcg that isn't locked, the above state can change
5684	 * concurrently again. Make sure we're truly done with it.
5685	 */
5686	smp_mb();
5687
5688	css_get(&to->css);
5689	css_put(&from->css);
5690
5691	page->memcg_data = (unsigned long)to;
5692
5693	__unlock_page_memcg(from);
5694
5695	ret = 0;
5696
5697	local_irq_disable();
5698	mem_cgroup_charge_statistics(to, page, nr_pages);
5699	memcg_check_events(to, page);
5700	mem_cgroup_charge_statistics(from, page, -nr_pages);
5701	memcg_check_events(from, page);
5702	local_irq_enable();
5703out_unlock:
5704	unlock_page(page);
5705out:
5706	return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 *     move charge. if @target is not NULL, the page is stored in target->page
5720 *     with extra refcnt got(Callers should handle it).
5721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 *     target for charge migration. if @target is not NULL, the entry is stored
5723 *     in target->ent.
5724 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5725 *     (so ZONE_DEVICE page and thus not on the lru).
5726 *     For now we such page is charge like a regular page would be as for all
5727 *     intent and purposes it is just special memory taking the place of a
5728 *     regular page.
5729 *
5730 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736		unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738	struct page *page = NULL;
 
5739	enum mc_target_type ret = MC_TARGET_NONE;
5740	swp_entry_t ent = { .val = 0 };
5741
5742	if (pte_present(ptent))
5743		page = mc_handle_present_pte(vma, addr, ptent);
5744	else if (is_swap_pte(ptent))
5745		page = mc_handle_swap_pte(vma, ptent, &ent);
5746	else if (pte_none(ptent))
5747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749	if (!page && !ent.val)
5750		return ret;
5751	if (page) {
 
5752		/*
5753		 * Do only loose check w/o serialization.
5754		 * mem_cgroup_move_account() checks the page is valid or
5755		 * not under LRU exclusion.
5756		 */
5757		if (page_memcg(page) == mc.from) {
5758			ret = MC_TARGET_PAGE;
5759			if (is_device_private_page(page))
5760				ret = MC_TARGET_DEVICE;
5761			if (target)
5762				target->page = page;
5763		}
5764		if (!ret || !target)
5765			put_page(page);
5766	}
5767	/*
5768	 * There is a swap entry and a page doesn't exist or isn't charged.
5769	 * But we cannot move a tail-page in a THP.
5770	 */
5771	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773		ret = MC_TARGET_SWAP;
5774		if (target)
5775			target->ent = ent;
5776	}
5777	return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787		unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789	struct page *page = NULL;
 
5790	enum mc_target_type ret = MC_TARGET_NONE;
5791
5792	if (unlikely(is_swap_pmd(pmd))) {
5793		VM_BUG_ON(thp_migration_supported() &&
5794				  !is_pmd_migration_entry(pmd));
5795		return ret;
5796	}
5797	page = pmd_page(pmd);
5798	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799	if (!(mc.flags & MOVE_ANON))
5800		return ret;
5801	if (page_memcg(page) == mc.from) {
 
5802		ret = MC_TARGET_PAGE;
5803		if (target) {
5804			get_page(page);
5805			target->page = page;
5806		}
5807	}
5808	return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812		unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814	return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819					unsigned long addr, unsigned long end,
5820					struct mm_walk *walk)
5821{
5822	struct vm_area_struct *vma = walk->vma;
5823	pte_t *pte;
5824	spinlock_t *ptl;
5825
5826	ptl = pmd_trans_huge_lock(pmd, vma);
5827	if (ptl) {
5828		/*
5829		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831		 * this might change.
5832		 */
5833		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834			mc.precharge += HPAGE_PMD_NR;
5835		spin_unlock(ptl);
5836		return 0;
5837	}
5838
5839	if (pmd_trans_unstable(pmd))
5840		return 0;
5841	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842	for (; addr != end; pte++, addr += PAGE_SIZE)
5843		if (get_mctgt_type(vma, addr, *pte, NULL))
5844			mc.precharge++;	/* increment precharge temporarily */
5845	pte_unmap_unlock(pte - 1, ptl);
5846	cond_resched();
5847
5848	return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857	unsigned long precharge;
 
5858
5859	mmap_read_lock(mm);
5860	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861	mmap_read_unlock(mm);
 
 
 
 
 
 
 
 
 
 
5862
5863	precharge = mc.precharge;
5864	mc.precharge = 0;
5865
5866	return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871	unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873	VM_BUG_ON(mc.moving_task);
5874	mc.moving_task = current;
5875	return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881	struct mem_cgroup *from = mc.from;
5882	struct mem_cgroup *to = mc.to;
5883
5884	/* we must uncharge all the leftover precharges from mc.to */
5885	if (mc.precharge) {
5886		cancel_charge(mc.to, mc.precharge);
5887		mc.precharge = 0;
5888	}
5889	/*
5890	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891	 * we must uncharge here.
5892	 */
5893	if (mc.moved_charge) {
5894		cancel_charge(mc.from, mc.moved_charge);
5895		mc.moved_charge = 0;
5896	}
5897	/* we must fixup refcnts and charges */
5898	if (mc.moved_swap) {
5899		/* uncharge swap account from the old cgroup */
5900		if (!mem_cgroup_is_root(mc.from))
5901			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905		/*
5906		 * we charged both to->memory and to->memsw, so we
5907		 * should uncharge to->memory.
5908		 */
5909		if (!mem_cgroup_is_root(mc.to))
5910			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
 
 
 
 
 
 
 
 
 
5912		mc.moved_swap = 0;
5913	}
5914	memcg_oom_recover(from);
5915	memcg_oom_recover(to);
5916	wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921	struct mm_struct *mm = mc.mm;
5922
5923	/*
5924	 * we must clear moving_task before waking up waiters at the end of
5925	 * task migration.
5926	 */
5927	mc.moving_task = NULL;
5928	__mem_cgroup_clear_mc();
5929	spin_lock(&mc.lock);
5930	mc.from = NULL;
5931	mc.to = NULL;
5932	mc.mm = NULL;
5933	spin_unlock(&mc.lock);
5934
5935	mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
5939{
5940	struct cgroup_subsys_state *css;
5941	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942	struct mem_cgroup *from;
5943	struct task_struct *leader, *p;
5944	struct mm_struct *mm;
5945	unsigned long move_flags;
5946	int ret = 0;
 
5947
5948	/* charge immigration isn't supported on the default hierarchy */
5949	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950		return 0;
5951
5952	/*
5953	 * Multi-process migrations only happen on the default hierarchy
5954	 * where charge immigration is not used.  Perform charge
5955	 * immigration if @tset contains a leader and whine if there are
5956	 * multiple.
5957	 */
5958	p = NULL;
5959	cgroup_taskset_for_each_leader(leader, css, tset) {
5960		WARN_ON_ONCE(p);
5961		p = leader;
5962		memcg = mem_cgroup_from_css(css);
5963	}
5964	if (!p)
5965		return 0;
5966
5967	/*
5968	 * We are now committed to this value whatever it is. Changes in this
5969	 * tunable will only affect upcoming migrations, not the current one.
5970	 * So we need to save it, and keep it going.
5971	 */
5972	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973	if (!move_flags)
5974		return 0;
5975
5976	from = mem_cgroup_from_task(p);
5977
5978	VM_BUG_ON(from == memcg);
5979
5980	mm = get_task_mm(p);
5981	if (!mm)
5982		return 0;
5983	/* We move charges only when we move a owner of the mm */
5984	if (mm->owner == p) {
5985		VM_BUG_ON(mc.from);
5986		VM_BUG_ON(mc.to);
5987		VM_BUG_ON(mc.precharge);
5988		VM_BUG_ON(mc.moved_charge);
5989		VM_BUG_ON(mc.moved_swap);
5990
5991		spin_lock(&mc.lock);
5992		mc.mm = mm;
5993		mc.from = from;
5994		mc.to = memcg;
5995		mc.flags = move_flags;
5996		spin_unlock(&mc.lock);
5997		/* We set mc.moving_task later */
5998
5999		ret = mem_cgroup_precharge_mc(mm);
6000		if (ret)
6001			mem_cgroup_clear_mc();
6002	} else {
6003		mmput(mm);
6004	}
6005	return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
6009{
6010	if (mc.to)
6011		mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015				unsigned long addr, unsigned long end,
6016				struct mm_walk *walk)
6017{
6018	int ret = 0;
6019	struct vm_area_struct *vma = walk->vma;
6020	pte_t *pte;
6021	spinlock_t *ptl;
6022	enum mc_target_type target_type;
6023	union mc_target target;
6024	struct page *page;
 
6025
6026	ptl = pmd_trans_huge_lock(pmd, vma);
6027	if (ptl) {
 
 
 
 
 
 
 
 
 
6028		if (mc.precharge < HPAGE_PMD_NR) {
6029			spin_unlock(ptl);
6030			return 0;
6031		}
6032		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033		if (target_type == MC_TARGET_PAGE) {
6034			page = target.page;
6035			if (!isolate_lru_page(page)) {
6036				if (!mem_cgroup_move_account(page, true,
6037							     mc.from, mc.to)) {
 
6038					mc.precharge -= HPAGE_PMD_NR;
6039					mc.moved_charge += HPAGE_PMD_NR;
6040				}
6041				putback_lru_page(page);
6042			}
6043			put_page(page);
6044		} else if (target_type == MC_TARGET_DEVICE) {
6045			page = target.page;
6046			if (!mem_cgroup_move_account(page, true,
6047						     mc.from, mc.to)) {
6048				mc.precharge -= HPAGE_PMD_NR;
6049				mc.moved_charge += HPAGE_PMD_NR;
6050			}
6051			put_page(page);
6052		}
6053		spin_unlock(ptl);
6054		return 0;
6055	}
6056
6057	if (pmd_trans_unstable(pmd))
6058		return 0;
6059retry:
6060	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061	for (; addr != end; addr += PAGE_SIZE) {
6062		pte_t ptent = *(pte++);
6063		bool device = false;
6064		swp_entry_t ent;
6065
6066		if (!mc.precharge)
6067			break;
6068
6069		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070		case MC_TARGET_DEVICE:
6071			device = true;
6072			fallthrough;
6073		case MC_TARGET_PAGE:
6074			page = target.page;
6075			/*
6076			 * We can have a part of the split pmd here. Moving it
6077			 * can be done but it would be too convoluted so simply
6078			 * ignore such a partial THP and keep it in original
6079			 * memcg. There should be somebody mapping the head.
6080			 */
6081			if (PageTransCompound(page))
6082				goto put;
6083			if (!device && isolate_lru_page(page))
6084				goto put;
6085			if (!mem_cgroup_move_account(page, false,
6086						mc.from, mc.to)) {
 
6087				mc.precharge--;
6088				/* we uncharge from mc.from later. */
6089				mc.moved_charge++;
6090			}
6091			if (!device)
6092				putback_lru_page(page);
6093put:			/* get_mctgt_type() gets the page */
6094			put_page(page);
6095			break;
6096		case MC_TARGET_SWAP:
6097			ent = target.ent;
6098			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099				mc.precharge--;
6100				mem_cgroup_id_get_many(mc.to, 1);
6101				/* we fixup other refcnts and charges later. */
6102				mc.moved_swap++;
6103			}
6104			break;
6105		default:
6106			break;
6107		}
6108	}
6109	pte_unmap_unlock(pte - 1, ptl);
6110	cond_resched();
6111
6112	if (addr != end) {
6113		/*
6114		 * We have consumed all precharges we got in can_attach().
6115		 * We try charge one by one, but don't do any additional
6116		 * charges to mc.to if we have failed in charge once in attach()
6117		 * phase.
6118		 */
6119		ret = mem_cgroup_do_precharge(1);
6120		if (!ret)
6121			goto retry;
6122	}
6123
6124	return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
 
 
6133	lru_add_drain_all();
6134	/*
6135	 * Signal lock_page_memcg() to take the memcg's move_lock
6136	 * while we're moving its pages to another memcg. Then wait
6137	 * for already started RCU-only updates to finish.
6138	 */
6139	atomic_inc(&mc.from->moving_account);
6140	synchronize_rcu();
6141retry:
6142	if (unlikely(!mmap_read_trylock(mc.mm))) {
6143		/*
6144		 * Someone who are holding the mmap_lock might be waiting in
6145		 * waitq. So we cancel all extra charges, wake up all waiters,
6146		 * and retry. Because we cancel precharges, we might not be able
6147		 * to move enough charges, but moving charge is a best-effort
6148		 * feature anyway, so it wouldn't be a big problem.
6149		 */
6150		__mem_cgroup_clear_mc();
6151		cond_resched();
6152		goto retry;
6153	}
6154	/*
6155	 * When we have consumed all precharges and failed in doing
6156	 * additional charge, the page walk just aborts.
6157	 */
6158	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159			NULL);
6160
6161	mmap_read_unlock(mc.mm);
6162	atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167	if (mc.to) {
6168		mem_cgroup_move_charge();
6169		mem_cgroup_clear_mc();
6170	}
6171}
6172#else	/* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175	return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187	if (value == PAGE_COUNTER_MAX)
6188		seq_puts(m, "max\n");
6189	else
6190		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192	return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196			       struct cftype *cft)
6197{
6198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205	return seq_puts_memcg_tunable(m,
6206		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210				char *buf, size_t nbytes, loff_t off)
6211{
6212	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213	unsigned long min;
6214	int err;
6215
6216	buf = strstrip(buf);
6217	err = page_counter_memparse(buf, "max", &min);
6218	if (err)
6219		return err;
6220
6221	page_counter_set_min(&memcg->memory, min);
6222
6223	return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228	return seq_puts_memcg_tunable(m,
6229		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233				char *buf, size_t nbytes, loff_t off)
6234{
6235	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236	unsigned long low;
6237	int err;
6238
6239	buf = strstrip(buf);
6240	err = page_counter_memparse(buf, "max", &low);
6241	if (err)
6242		return err;
6243
6244	page_counter_set_low(&memcg->memory, low);
6245
6246	return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251	return seq_puts_memcg_tunable(m,
6252		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256				 char *buf, size_t nbytes, loff_t off)
6257{
6258	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260	bool drained = false;
6261	unsigned long high;
6262	int err;
6263
6264	buf = strstrip(buf);
6265	err = page_counter_memparse(buf, "max", &high);
6266	if (err)
6267		return err;
6268
6269	page_counter_set_high(&memcg->memory, high);
6270
6271	for (;;) {
6272		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273		unsigned long reclaimed;
6274
6275		if (nr_pages <= high)
6276			break;
6277
6278		if (signal_pending(current))
6279			break;
6280
6281		if (!drained) {
6282			drain_all_stock(memcg);
6283			drained = true;
6284			continue;
6285		}
6286
6287		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288							 GFP_KERNEL, true);
6289
6290		if (!reclaimed && !nr_retries--)
 
6291			break;
6292	}
6293
6294	memcg_wb_domain_size_changed(memcg);
6295	return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300	return seq_puts_memcg_tunable(m,
6301		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305				char *buf, size_t nbytes, loff_t off)
6306{
6307	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309	bool drained = false;
6310	unsigned long max;
6311	int err;
6312
6313	buf = strstrip(buf);
6314	err = page_counter_memparse(buf, "max", &max);
6315	if (err)
6316		return err;
6317
6318	xchg(&memcg->memory.max, max);
6319
6320	for (;;) {
6321		unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323		if (nr_pages <= max)
6324			break;
6325
6326		if (signal_pending(current))
6327			break;
6328
6329		if (!drained) {
6330			drain_all_stock(memcg);
6331			drained = true;
6332			continue;
6333		}
6334
6335		if (nr_reclaims) {
6336			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337							  GFP_KERNEL, true))
6338				nr_reclaims--;
6339			continue;
6340		}
6341
6342		memcg_memory_event(memcg, MEMCG_OOM);
6343		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344			break;
 
6345	}
6346
6347	memcg_wb_domain_size_changed(memcg);
6348	return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357	seq_printf(m, "oom_kill %lu\n",
6358		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365	__memory_events_show(m, memcg->memory_events);
6366	return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373	__memory_events_show(m, memcg->memory_events_local);
6374	return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380	char *buf;
6381
6382	buf = memory_stat_format(memcg);
6383	if (!buf)
6384		return -ENOMEM;
6385	seq_puts(m, buf);
6386	kfree(buf);
6387	return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392						     int item)
6393{
6394	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
 
6398{
6399	int i;
6400	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403		int nid;
6404
6405		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406			continue;
6407
6408		seq_printf(m, "%s", memory_stats[i].name);
6409		for_each_node_state(nid, N_MEMORY) {
6410			u64 size;
6411			struct lruvec *lruvec;
6412
6413			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414			size = lruvec_page_state_output(lruvec,
6415							memory_stats[i].idx);
6416			seq_printf(m, " N%d=%llu", nid, size);
6417		}
6418		seq_putc(m, '\n');
6419	}
6420
6421	return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429	seq_printf(m, "%d\n", memcg->oom_group);
6430
6431	return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435				      char *buf, size_t nbytes, loff_t off)
6436{
6437	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438	int ret, oom_group;
6439
6440	buf = strstrip(buf);
6441	if (!buf)
6442		return -EINVAL;
6443
6444	ret = kstrtoint(buf, 0, &oom_group);
6445	if (ret)
6446		return ret;
6447
6448	if (oom_group != 0 && oom_group != 1)
6449		return -EINVAL;
6450
6451	memcg->oom_group = oom_group;
6452
6453	return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457	{
6458		.name = "current",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.read_u64 = memory_current_read,
6461	},
6462	{
6463		.name = "min",
6464		.flags = CFTYPE_NOT_ON_ROOT,
6465		.seq_show = memory_min_show,
6466		.write = memory_min_write,
6467	},
6468	{
6469		.name = "low",
6470		.flags = CFTYPE_NOT_ON_ROOT,
6471		.seq_show = memory_low_show,
6472		.write = memory_low_write,
6473	},
6474	{
6475		.name = "high",
6476		.flags = CFTYPE_NOT_ON_ROOT,
6477		.seq_show = memory_high_show,
6478		.write = memory_high_write,
6479	},
6480	{
6481		.name = "max",
6482		.flags = CFTYPE_NOT_ON_ROOT,
6483		.seq_show = memory_max_show,
6484		.write = memory_max_write,
6485	},
6486	{
6487		.name = "events",
6488		.flags = CFTYPE_NOT_ON_ROOT,
6489		.file_offset = offsetof(struct mem_cgroup, events_file),
6490		.seq_show = memory_events_show,
6491	},
6492	{
6493		.name = "events.local",
6494		.flags = CFTYPE_NOT_ON_ROOT,
6495		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6496		.seq_show = memory_events_local_show,
6497	},
6498	{
6499		.name = "stat",
6500		.seq_show = memory_stat_show,
6501	},
6502#ifdef CONFIG_NUMA
6503	{
6504		.name = "numa_stat",
6505		.seq_show = memory_numa_stat_show,
6506	},
6507#endif
6508	{
6509		.name = "oom.group",
6510		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511		.seq_show = memory_oom_group_show,
6512		.write = memory_oom_group_write,
6513	},
6514	{ }	/* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518	.css_alloc = mem_cgroup_css_alloc,
6519	.css_online = mem_cgroup_css_online,
6520	.css_offline = mem_cgroup_css_offline,
6521	.css_released = mem_cgroup_css_released,
6522	.css_free = mem_cgroup_css_free,
6523	.css_reset = mem_cgroup_css_reset,
6524	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6525	.can_attach = mem_cgroup_can_attach,
6526	.cancel_attach = mem_cgroup_cancel_attach,
6527	.post_attach = mem_cgroup_move_task,
6528	.dfl_cftypes = memory_files,
6529	.legacy_cftypes = mem_cgroup_legacy_files,
6530	.early_init = 0,
 
 
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 *    the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 *    subsequent levels the effective protection is capped to the
6546 *    parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 *    user is allowed to overcommit the declared protection at a given
6550 *    level. If that is the case, the parent's effective protection is
6551 *    distributed to the children in proportion to how much protection
6552 *    they have declared and how much of it they are utilizing.
6553 *
6554 *    This makes distribution proportional, but also work-conserving:
6555 *    if one cgroup claims much more protection than it uses memory,
6556 *    the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 *    given level, the distribution of the larger parental protection
6560 *    budget is NOT proportional. A cgroup's protection from a sibling
6561 *    is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 *    without having to declare each individual cgroup's fixed share
6565 *    of the ancestor's claim to protection, any unutilized -
6566 *    "floating" - protection from up the tree is distributed in
6567 *    proportion to each cgroup's *usage*. This makes the protection
6568 *    neutral wrt sibling cgroups and lets them compete freely over
6569 *    the shared parental protection budget, but it protects the
6570 *    subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577					  unsigned long parent_usage,
6578					  unsigned long setting,
6579					  unsigned long parent_effective,
6580					  unsigned long siblings_protected)
6581{
6582	unsigned long protected;
6583	unsigned long ep;
6584
6585	protected = min(usage, setting);
6586	/*
6587	 * If all cgroups at this level combined claim and use more
6588	 * protection then what the parent affords them, distribute
6589	 * shares in proportion to utilization.
6590	 *
6591	 * We are using actual utilization rather than the statically
6592	 * claimed protection in order to be work-conserving: claimed
6593	 * but unused protection is available to siblings that would
6594	 * otherwise get a smaller chunk than what they claimed.
6595	 */
6596	if (siblings_protected > parent_effective)
6597		return protected * parent_effective / siblings_protected;
6598
6599	/*
6600	 * Ok, utilized protection of all children is within what the
6601	 * parent affords them, so we know whatever this child claims
6602	 * and utilizes is effectively protected.
6603	 *
6604	 * If there is unprotected usage beyond this value, reclaim
6605	 * will apply pressure in proportion to that amount.
6606	 *
6607	 * If there is unutilized protection, the cgroup will be fully
6608	 * shielded from reclaim, but we do return a smaller value for
6609	 * protection than what the group could enjoy in theory. This
6610	 * is okay. With the overcommit distribution above, effective
6611	 * protection is always dependent on how memory is actually
6612	 * consumed among the siblings anyway.
6613	 */
6614	ep = protected;
6615
6616	/*
6617	 * If the children aren't claiming (all of) the protection
6618	 * afforded to them by the parent, distribute the remainder in
6619	 * proportion to the (unprotected) memory of each cgroup. That
6620	 * way, cgroups that aren't explicitly prioritized wrt each
6621	 * other compete freely over the allowance, but they are
6622	 * collectively protected from neighboring trees.
6623	 *
6624	 * We're using unprotected memory for the weight so that if
6625	 * some cgroups DO claim explicit protection, we don't protect
6626	 * the same bytes twice.
6627	 *
6628	 * Check both usage and parent_usage against the respective
6629	 * protected values. One should imply the other, but they
6630	 * aren't read atomically - make sure the division is sane.
6631	 */
6632	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633		return ep;
6634	if (parent_effective > siblings_protected &&
6635	    parent_usage > siblings_protected &&
6636	    usage > protected) {
6637		unsigned long unclaimed;
6638
6639		unclaimed = parent_effective - siblings_protected;
6640		unclaimed *= usage - protected;
6641		unclaimed /= parent_usage - siblings_protected;
6642
6643		ep += unclaimed;
6644	}
6645
6646	return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 *          of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658				     struct mem_cgroup *memcg)
6659{
6660	unsigned long usage, parent_usage;
6661	struct mem_cgroup *parent;
6662
6663	if (mem_cgroup_disabled())
6664		return;
6665
6666	if (!root)
6667		root = root_mem_cgroup;
6668
6669	/*
6670	 * Effective values of the reclaim targets are ignored so they
6671	 * can be stale. Have a look at mem_cgroup_protection for more
6672	 * details.
6673	 * TODO: calculation should be more robust so that we do not need
6674	 * that special casing.
6675	 */
6676	if (memcg == root)
6677		return;
6678
6679	usage = page_counter_read(&memcg->memory);
6680	if (!usage)
6681		return;
6682
6683	parent = parent_mem_cgroup(memcg);
6684	/* No parent means a non-hierarchical mode on v1 memcg */
6685	if (!parent)
6686		return;
6687
6688	if (parent == root) {
6689		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691		return;
6692	}
6693
6694	parent_usage = page_counter_read(&parent->memory);
6695
6696	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697			READ_ONCE(memcg->memory.min),
6698			READ_ONCE(parent->memory.emin),
6699			atomic_long_read(&parent->memory.children_min_usage)));
6700
6701	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702			READ_ONCE(memcg->memory.low),
6703			READ_ONCE(parent->memory.elow),
6704			atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708			       gfp_t gfp)
6709{
6710	unsigned int nr_pages = thp_nr_pages(page);
6711	int ret;
6712
6713	ret = try_charge(memcg, gfp, nr_pages);
6714	if (ret)
6715		goto out;
6716
6717	css_get(&memcg->css);
6718	commit_charge(page, memcg);
6719
6720	local_irq_disable();
6721	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722	memcg_check_events(memcg, page);
6723	local_irq_enable();
6724out:
6725	return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744	struct mem_cgroup *memcg;
6745	int ret;
6746
6747	if (mem_cgroup_disabled())
6748		return 0;
6749
6750	memcg = get_mem_cgroup_from_mm(mm);
6751	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752	css_put(&memcg->css);
6753
6754	return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770				  gfp_t gfp, swp_entry_t entry)
6771{
6772	struct mem_cgroup *memcg;
6773	unsigned short id;
6774	int ret;
6775
6776	if (mem_cgroup_disabled())
6777		return 0;
6778
6779	id = lookup_swap_cgroup_id(entry);
6780	rcu_read_lock();
6781	memcg = mem_cgroup_from_id(id);
6782	if (!memcg || !css_tryget_online(&memcg->css))
6783		memcg = get_mem_cgroup_from_mm(mm);
6784	rcu_read_unlock();
6785
6786	ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788	css_put(&memcg->css);
6789	return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803	/*
6804	 * Cgroup1's unified memory+swap counter has been charged with the
6805	 * new swapcache page, finish the transfer by uncharging the swap
6806	 * slot. The swap slot would also get uncharged when it dies, but
6807	 * it can stick around indefinitely and we'd count the page twice
6808	 * the entire time.
6809	 *
6810	 * Cgroup2 has separate resource counters for memory and swap,
6811	 * so this is a non-issue here. Memory and swap charge lifetimes
6812	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813	 * page to memory here, and uncharge swap when the slot is freed.
6814	 */
6815	if (!mem_cgroup_disabled() && do_memsw_account()) {
6816		/*
6817		 * The swap entry might not get freed for a long time,
6818		 * let's not wait for it.  The page already received a
6819		 * memory+swap charge, drop the swap entry duplicate.
6820		 */
6821		mem_cgroup_uncharge_swap(entry, 1);
6822	}
6823}
6824
6825struct uncharge_gather {
6826	struct mem_cgroup *memcg;
6827	unsigned long nr_memory;
6828	unsigned long pgpgout;
6829	unsigned long nr_kmem;
6830	struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835	memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840	unsigned long flags;
6841
6842	if (ug->nr_memory) {
6843		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844		if (do_memsw_account())
6845			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848		memcg_oom_recover(ug->memcg);
6849	}
6850
6851	local_irq_save(flags);
6852	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854	memcg_check_events(ug->memcg, ug->dummy_page);
6855	local_irq_restore(flags);
6856
6857	/* drop reference from uncharge_page */
6858	css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863	unsigned long nr_pages;
6864	struct mem_cgroup *memcg;
6865	struct obj_cgroup *objcg;
6866	bool use_objcg = PageMemcgKmem(page);
6867
6868	VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870	/*
6871	 * Nobody should be changing or seriously looking at
6872	 * page memcg or objcg at this point, we have fully
6873	 * exclusive access to the page.
6874	 */
6875	if (use_objcg) {
6876		objcg = __page_objcg(page);
6877		/*
6878		 * This get matches the put at the end of the function and
6879		 * kmem pages do not hold memcg references anymore.
6880		 */
6881		memcg = get_mem_cgroup_from_objcg(objcg);
6882	} else {
6883		memcg = __page_memcg(page);
6884	}
6885
6886	if (!memcg)
6887		return;
6888
6889	if (ug->memcg != memcg) {
6890		if (ug->memcg) {
6891			uncharge_batch(ug);
6892			uncharge_gather_clear(ug);
6893		}
6894		ug->memcg = memcg;
6895		ug->dummy_page = page;
6896
6897		/* pairs with css_put in uncharge_batch */
6898		css_get(&memcg->css);
6899	}
6900
6901	nr_pages = compound_nr(page);
6902
6903	if (use_objcg) {
6904		ug->nr_memory += nr_pages;
6905		ug->nr_kmem += nr_pages;
6906
6907		page->memcg_data = 0;
6908		obj_cgroup_put(objcg);
6909	} else {
6910		/* LRU pages aren't accounted at the root level */
6911		if (!mem_cgroup_is_root(memcg))
6912			ug->nr_memory += nr_pages;
6913		ug->pgpgout++;
6914
6915		page->memcg_data = 0;
6916	}
6917
6918	css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929	struct uncharge_gather ug;
6930
6931	if (mem_cgroup_disabled())
6932		return;
6933
6934	/* Don't touch page->lru of any random page, pre-check: */
6935	if (!page_memcg(page))
6936		return;
6937
6938	uncharge_gather_clear(&ug);
6939	uncharge_page(page, &ug);
6940	uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952	struct uncharge_gather ug;
6953	struct page *page;
6954
6955	if (mem_cgroup_disabled())
6956		return;
6957
6958	uncharge_gather_clear(&ug);
6959	list_for_each_entry(page, page_list, lru)
6960		uncharge_page(page, &ug);
6961	if (ug.memcg)
6962		uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977	struct mem_cgroup *memcg;
6978	unsigned int nr_pages;
6979	unsigned long flags;
6980
6981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985		       newpage);
6986
6987	if (mem_cgroup_disabled())
6988		return;
6989
6990	/* Page cache replacement: new page already charged? */
6991	if (page_memcg(newpage))
6992		return;
6993
6994	memcg = page_memcg(oldpage);
6995	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996	if (!memcg)
6997		return;
6998
6999	/* Force-charge the new page. The old one will be freed soon */
7000	nr_pages = thp_nr_pages(newpage);
7001
7002	if (!mem_cgroup_is_root(memcg)) {
7003		page_counter_charge(&memcg->memory, nr_pages);
7004		if (do_memsw_account())
7005			page_counter_charge(&memcg->memsw, nr_pages);
7006	}
7007
7008	css_get(&memcg->css);
7009	commit_charge(newpage, memcg);
7010
7011	local_irq_save(flags);
7012	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013	memcg_check_events(memcg, newpage);
7014	local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022	struct mem_cgroup *memcg;
7023
7024	if (!mem_cgroup_sockets_enabled)
7025		return;
7026
7027	/* Do not associate the sock with unrelated interrupted task's memcg. */
7028	if (in_interrupt())
7029		return;
7030
7031	rcu_read_lock();
7032	memcg = mem_cgroup_from_task(current);
7033	if (memcg == root_mem_cgroup)
7034		goto out;
7035	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036		goto out;
7037	if (css_tryget(&memcg->css))
7038		sk->sk_memcg = memcg;
7039out:
7040	rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045	if (sk->sk_memcg)
7046		css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059	gfp_t gfp_mask = GFP_KERNEL;
7060
7061	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062		struct page_counter *fail;
7063
7064		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065			memcg->tcpmem_pressure = 0;
7066			return true;
7067		}
7068		page_counter_charge(&memcg->tcpmem, nr_pages);
7069		memcg->tcpmem_pressure = 1;
7070		return false;
7071	}
7072
7073	/* Don't block in the packet receive path */
7074	if (in_softirq())
7075		gfp_mask = GFP_NOWAIT;
7076
7077	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080		return true;
7081
7082	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083	return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095		return;
7096	}
7097
7098	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100	refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105	char *token;
7106
7107	while ((token = strsep(&s, ",")) != NULL) {
7108		if (!*token)
7109			continue;
7110		if (!strcmp(token, "nosocket"))
7111			cgroup_memory_nosocket = true;
7112		if (!strcmp(token, "nokmem"))
7113			cgroup_memory_nokmem = true;
7114	}
7115	return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129	int cpu, node;
7130
7131	/*
7132	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134	 * to work fine, we should make sure that the overfill threshold can't
7135	 * exceed S32_MAX / PAGE_SIZE.
7136	 */
7137	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140				  memcg_hotplug_cpu_dead);
7141
7142	for_each_possible_cpu(cpu)
7143		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144			  drain_local_stock);
7145
7146	for_each_node(node) {
7147		struct mem_cgroup_tree_per_node *rtpn;
7148
7149		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150				    node_online(node) ? node : NUMA_NO_NODE);
7151
7152		rtpn->rb_root = RB_ROOT;
7153		rtpn->rb_rightmost = NULL;
7154		spin_lock_init(&rtpn->lock);
7155		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156	}
7157
7158	return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166		/*
7167		 * The root cgroup cannot be destroyed, so it's refcount must
7168		 * always be >= 1.
7169		 */
7170		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171			VM_BUG_ON(1);
7172			break;
7173		}
7174		memcg = parent_mem_cgroup(memcg);
7175		if (!memcg)
7176			memcg = root_mem_cgroup;
7177	}
7178	return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190	struct mem_cgroup *memcg, *swap_memcg;
7191	unsigned int nr_entries;
7192	unsigned short oldid;
7193
7194	VM_BUG_ON_PAGE(PageLRU(page), page);
7195	VM_BUG_ON_PAGE(page_count(page), page);
7196
7197	if (mem_cgroup_disabled())
7198		return;
7199
7200	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201		return;
7202
7203	memcg = page_memcg(page);
7204
7205	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206	if (!memcg)
7207		return;
7208
7209	/*
7210	 * In case the memcg owning these pages has been offlined and doesn't
7211	 * have an ID allocated to it anymore, charge the closest online
7212	 * ancestor for the swap instead and transfer the memory+swap charge.
7213	 */
7214	swap_memcg = mem_cgroup_id_get_online(memcg);
7215	nr_entries = thp_nr_pages(page);
7216	/* Get references for the tail pages, too */
7217	if (nr_entries > 1)
7218		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220				   nr_entries);
7221	VM_BUG_ON_PAGE(oldid, page);
7222	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224	page->memcg_data = 0;
7225
7226	if (!mem_cgroup_is_root(memcg))
7227		page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230		if (!mem_cgroup_is_root(swap_memcg))
7231			page_counter_charge(&swap_memcg->memsw, nr_entries);
7232		page_counter_uncharge(&memcg->memsw, nr_entries);
7233	}
7234
7235	/*
7236	 * Interrupts should be disabled here because the caller holds the
7237	 * i_pages lock which is taken with interrupts-off. It is
7238	 * important here to have the interrupts disabled because it is the
7239	 * only synchronisation we have for updating the per-CPU variables.
7240	 */
7241	VM_BUG_ON(!irqs_disabled());
7242	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243	memcg_check_events(memcg, page);
7244
7245	css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259	unsigned int nr_pages = thp_nr_pages(page);
7260	struct page_counter *counter;
7261	struct mem_cgroup *memcg;
7262	unsigned short oldid;
7263
7264	if (mem_cgroup_disabled())
7265		return 0;
7266
7267	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268		return 0;
7269
7270	memcg = page_memcg(page);
7271
7272	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273	if (!memcg)
7274		return 0;
7275
7276	if (!entry.val) {
7277		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278		return 0;
7279	}
7280
7281	memcg = mem_cgroup_id_get_online(memcg);
7282
7283	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287		mem_cgroup_id_put(memcg);
7288		return -ENOMEM;
7289	}
7290
7291	/* Get references for the tail pages, too */
7292	if (nr_pages > 1)
7293		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295	VM_BUG_ON_PAGE(oldid, page);
7296	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298	return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308	struct mem_cgroup *memcg;
7309	unsigned short id;
7310
7311	id = swap_cgroup_record(entry, 0, nr_pages);
7312	rcu_read_lock();
7313	memcg = mem_cgroup_from_id(id);
7314	if (memcg) {
7315		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317				page_counter_uncharge(&memcg->swap, nr_pages);
7318			else
7319				page_counter_uncharge(&memcg->memsw, nr_pages);
7320		}
7321		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322		mem_cgroup_id_put_many(memcg, nr_pages);
7323	}
7324	rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329	long nr_swap_pages = get_nr_swap_pages();
7330
7331	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332		return nr_swap_pages;
7333	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334		nr_swap_pages = min_t(long, nr_swap_pages,
7335				      READ_ONCE(memcg->swap.max) -
7336				      page_counter_read(&memcg->swap));
7337	return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342	struct mem_cgroup *memcg;
7343
7344	VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346	if (vm_swap_full())
7347		return true;
7348	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349		return false;
7350
7351	memcg = page_memcg(page);
7352	if (!memcg)
7353		return false;
7354
7355	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356		unsigned long usage = page_counter_read(&memcg->swap);
7357
7358		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359		    usage * 2 >= READ_ONCE(memcg->swap.max))
7360			return true;
7361	}
7362
7363	return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
 
7368	if (!strcmp(s, "1"))
7369		cgroup_memory_noswap = false;
7370	else if (!strcmp(s, "0"))
7371		cgroup_memory_noswap = true;
7372	return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377			     struct cftype *cft)
7378{
7379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386	return seq_puts_memcg_tunable(m,
7387		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391			       char *buf, size_t nbytes, loff_t off)
7392{
7393	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394	unsigned long high;
7395	int err;
7396
7397	buf = strstrip(buf);
7398	err = page_counter_memparse(buf, "max", &high);
7399	if (err)
7400		return err;
7401
7402	page_counter_set_high(&memcg->swap, high);
7403
7404	return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409	return seq_puts_memcg_tunable(m,
7410		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414			      char *buf, size_t nbytes, loff_t off)
7415{
7416	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417	unsigned long max;
7418	int err;
7419
7420	buf = strstrip(buf);
7421	err = page_counter_memparse(buf, "max", &max);
7422	if (err)
7423		return err;
7424
7425	xchg(&memcg->swap.max, max);
7426
7427	return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434	seq_printf(m, "high %lu\n",
7435		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436	seq_printf(m, "max %lu\n",
7437		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438	seq_printf(m, "fail %lu\n",
7439		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441	return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445	{
7446		.name = "swap.current",
7447		.flags = CFTYPE_NOT_ON_ROOT,
7448		.read_u64 = swap_current_read,
7449	},
7450	{
7451		.name = "swap.high",
7452		.flags = CFTYPE_NOT_ON_ROOT,
7453		.seq_show = swap_high_show,
7454		.write = swap_high_write,
7455	},
7456	{
7457		.name = "swap.max",
7458		.flags = CFTYPE_NOT_ON_ROOT,
7459		.seq_show = swap_max_show,
7460		.write = swap_max_write,
7461	},
7462	{
7463		.name = "swap.events",
7464		.flags = CFTYPE_NOT_ON_ROOT,
7465		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466		.seq_show = swap_events_show,
7467	},
7468	{ }	/* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472	{
7473		.name = "memsw.usage_in_bytes",
7474		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475		.read_u64 = mem_cgroup_read_u64,
7476	},
7477	{
7478		.name = "memsw.max_usage_in_bytes",
7479		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480		.write = mem_cgroup_reset,
7481		.read_u64 = mem_cgroup_read_u64,
7482	},
7483	{
7484		.name = "memsw.limit_in_bytes",
7485		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486		.write = mem_cgroup_write,
7487		.read_u64 = mem_cgroup_read_u64,
7488	},
7489	{
7490		.name = "memsw.failcnt",
7491		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492		.write = mem_cgroup_reset,
7493		.read_u64 = mem_cgroup_read_u64,
7494	},
7495	{ },	/* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507	/* No memory control -> no swap control */
7508	if (mem_cgroup_disabled())
7509		cgroup_memory_noswap = true;
7510
7511	if (cgroup_memory_noswap)
7512		return 0;
7513
7514	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517	return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
v3.5.6
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
 
 
 
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
 
 
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
 
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
  36#include <linux/export.h>
  37#include <linux/mutex.h>
  38#include <linux/rbtree.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swapops.h>
  42#include <linux/spinlock.h>
  43#include <linux/eventfd.h>
 
  44#include <linux/sort.h>
  45#include <linux/fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/vmalloc.h>
  48#include <linux/mm_inline.h>
  49#include <linux/page_cgroup.h>
  50#include <linux/cpu.h>
  51#include <linux/oom.h>
 
 
 
 
 
  52#include "internal.h"
  53#include <net/sock.h>
  54#include <net/tcp_memcontrol.h>
 
  55
  56#include <asm/uaccess.h>
  57
  58#include <trace/events/vmscan.h>
  59
  60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  61#define MEM_CGROUP_RECLAIM_RETRIES	5
  62static struct mem_cgroup *root_mem_cgroup __read_mostly;
  63
  64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  66int do_swap_account __read_mostly;
  67
  68/* for remember boot option*/
  69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  70static int really_do_swap_account __initdata = 1;
  71#else
  72static int really_do_swap_account __initdata = 0;
  73#endif
  74
  75#else
  76#define do_swap_account		0
  77#endif
  78
 
 
  79
  80/*
  81 * Statistics for memory cgroup.
  82 */
  83enum mem_cgroup_stat_index {
  84	/*
  85	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  86	 */
  87	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
  88	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
  89	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  90	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  91	MEM_CGROUP_STAT_NSTATS,
  92};
  93
  94static const char * const mem_cgroup_stat_names[] = {
  95	"cache",
  96	"rss",
  97	"mapped_file",
  98	"swap",
  99};
 100
 101enum mem_cgroup_events_index {
 102	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
 103	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
 104	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
 105	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
 106	MEM_CGROUP_EVENTS_NSTATS,
 107};
 108
 109static const char * const mem_cgroup_events_names[] = {
 110	"pgpgin",
 111	"pgpgout",
 112	"pgfault",
 113	"pgmajfault",
 114};
 115
 116/*
 117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 118 * it will be incremated by the number of pages. This counter is used for
 119 * for trigger some periodic events. This is straightforward and better
 120 * than using jiffies etc. to handle periodic memcg event.
 121 */
 122enum mem_cgroup_events_target {
 123	MEM_CGROUP_TARGET_THRESH,
 124	MEM_CGROUP_TARGET_SOFTLIMIT,
 125	MEM_CGROUP_TARGET_NUMAINFO,
 126	MEM_CGROUP_NTARGETS,
 127};
 128#define THRESHOLDS_EVENTS_TARGET 128
 129#define SOFTLIMIT_EVENTS_TARGET 1024
 130#define NUMAINFO_EVENTS_TARGET	1024
 131
 132struct mem_cgroup_stat_cpu {
 133	long count[MEM_CGROUP_STAT_NSTATS];
 134	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 135	unsigned long nr_page_events;
 136	unsigned long targets[MEM_CGROUP_NTARGETS];
 137};
 138
 139struct mem_cgroup_reclaim_iter {
 140	/* css_id of the last scanned hierarchy member */
 141	int position;
 142	/* scan generation, increased every round-trip */
 143	unsigned int generation;
 144};
 145
 146/*
 147 * per-zone information in memory controller.
 148 */
 149struct mem_cgroup_per_zone {
 150	struct lruvec		lruvec;
 151	unsigned long		lru_size[NR_LRU_LISTS];
 152
 153	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
 154
 155	struct rb_node		tree_node;	/* RB tree node */
 156	unsigned long long	usage_in_excess;/* Set to the value by which */
 157						/* the soft limit is exceeded*/
 158	bool			on_tree;
 159	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
 160						/* use container_of	   */
 161};
 162
 163struct mem_cgroup_per_node {
 164	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 165};
 166
 167struct mem_cgroup_lru_info {
 168	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 169};
 170
 171/*
 172 * Cgroups above their limits are maintained in a RB-Tree, independent of
 173 * their hierarchy representation
 174 */
 175
 176struct mem_cgroup_tree_per_zone {
 177	struct rb_root rb_root;
 
 178	spinlock_t lock;
 179};
 180
 181struct mem_cgroup_tree_per_node {
 182	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 183};
 184
 185struct mem_cgroup_tree {
 186	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 187};
 188
 189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 190
 191struct mem_cgroup_threshold {
 192	struct eventfd_ctx *eventfd;
 193	u64 threshold;
 194};
 195
 196/* For threshold */
 197struct mem_cgroup_threshold_ary {
 198	/* An array index points to threshold just below or equal to usage. */
 199	int current_threshold;
 200	/* Size of entries[] */
 201	unsigned int size;
 202	/* Array of thresholds */
 203	struct mem_cgroup_threshold entries[0];
 204};
 205
 206struct mem_cgroup_thresholds {
 207	/* Primary thresholds array */
 208	struct mem_cgroup_threshold_ary *primary;
 209	/*
 210	 * Spare threshold array.
 211	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 212	 * It must be able to store at least primary->size - 1 entries.
 213	 */
 214	struct mem_cgroup_threshold_ary *spare;
 215};
 216
 217/* for OOM */
 218struct mem_cgroup_eventfd_list {
 219	struct list_head list;
 220	struct eventfd_ctx *eventfd;
 221};
 222
 223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 225
 226/*
 227 * The memory controller data structure. The memory controller controls both
 228 * page cache and RSS per cgroup. We would eventually like to provide
 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 230 * to help the administrator determine what knobs to tune.
 231 *
 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 233 * we hit the water mark. May be even add a low water mark, such that
 234 * no reclaim occurs from a cgroup at it's low water mark, this is
 235 * a feature that will be implemented much later in the future.
 236 */
 237struct mem_cgroup {
 238	struct cgroup_subsys_state css;
 239	/*
 240	 * the counter to account for memory usage
 241	 */
 242	struct res_counter res;
 243
 244	union {
 245		/*
 246		 * the counter to account for mem+swap usage.
 247		 */
 248		struct res_counter memsw;
 249
 250		/*
 251		 * rcu_freeing is used only when freeing struct mem_cgroup,
 252		 * so put it into a union to avoid wasting more memory.
 253		 * It must be disjoint from the css field.  It could be
 254		 * in a union with the res field, but res plays a much
 255		 * larger part in mem_cgroup life than memsw, and might
 256		 * be of interest, even at time of free, when debugging.
 257		 * So share rcu_head with the less interesting memsw.
 258		 */
 259		struct rcu_head rcu_freeing;
 260		/*
 261		 * We also need some space for a worker in deferred freeing.
 262		 * By the time we call it, rcu_freeing is no longer in use.
 263		 */
 264		struct work_struct work_freeing;
 265	};
 266
 267	/*
 268	 * Per cgroup active and inactive list, similar to the
 269	 * per zone LRU lists.
 270	 */
 271	struct mem_cgroup_lru_info info;
 272	int last_scanned_node;
 273#if MAX_NUMNODES > 1
 274	nodemask_t	scan_nodes;
 275	atomic_t	numainfo_events;
 276	atomic_t	numainfo_updating;
 277#endif
 278	/*
 279	 * Should the accounting and control be hierarchical, per subtree?
 280	 */
 281	bool use_hierarchy;
 282
 283	bool		oom_lock;
 284	atomic_t	under_oom;
 285
 286	atomic_t	refcnt;
 287
 288	int	swappiness;
 289	/* OOM-Killer disable */
 290	int		oom_kill_disable;
 291
 292	/* set when res.limit == memsw.limit */
 293	bool		memsw_is_minimum;
 294
 295	/* protect arrays of thresholds */
 296	struct mutex thresholds_lock;
 297
 298	/* thresholds for memory usage. RCU-protected */
 299	struct mem_cgroup_thresholds thresholds;
 300
 301	/* thresholds for mem+swap usage. RCU-protected */
 302	struct mem_cgroup_thresholds memsw_thresholds;
 303
 304	/* For oom notifier event fd */
 305	struct list_head oom_notify;
 306
 307	/*
 308	 * Should we move charges of a task when a task is moved into this
 309	 * mem_cgroup ? And what type of charges should we move ?
 310	 */
 311	unsigned long 	move_charge_at_immigrate;
 312	/*
 313	 * set > 0 if pages under this cgroup are moving to other cgroup.
 314	 */
 315	atomic_t	moving_account;
 316	/* taken only while moving_account > 0 */
 317	spinlock_t	move_lock;
 318	/*
 319	 * percpu counter.
 320	 */
 321	struct mem_cgroup_stat_cpu __percpu *stat;
 322	/*
 323	 * used when a cpu is offlined or other synchronizations
 324	 * See mem_cgroup_read_stat().
 325	 */
 326	struct mem_cgroup_stat_cpu nocpu_base;
 327	spinlock_t pcp_counter_lock;
 
 
 328
 329#ifdef CONFIG_INET
 330	struct tcp_memcontrol tcp_mem;
 331#endif
 332};
 333
 334/* Stuffs for move charges at task migration. */
 335/*
 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 337 * left-shifted bitmap of these types.
 338 */
 339enum move_type {
 340	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 341	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 342	NR_MOVE_TYPE,
 343};
 344
 345/* "mc" and its members are protected by cgroup_mutex */
 346static struct move_charge_struct {
 347	spinlock_t	  lock; /* for from, to */
 
 348	struct mem_cgroup *from;
 349	struct mem_cgroup *to;
 
 350	unsigned long precharge;
 351	unsigned long moved_charge;
 352	unsigned long moved_swap;
 353	struct task_struct *moving_task;	/* a task moving charges */
 354	wait_queue_head_t waitq;		/* a waitq for other context */
 355} mc = {
 356	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 357	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 358};
 359
 360static bool move_anon(void)
 361{
 362	return test_bit(MOVE_CHARGE_TYPE_ANON,
 363					&mc.to->move_charge_at_immigrate);
 364}
 365
 366static bool move_file(void)
 367{
 368	return test_bit(MOVE_CHARGE_TYPE_FILE,
 369					&mc.to->move_charge_at_immigrate);
 370}
 371
 372/*
 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 374 * limit reclaim to prevent infinite loops, if they ever occur.
 375 */
 376#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 377#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 378
 379enum charge_type {
 380	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 381	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 382	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 383	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 384	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 385	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 386	NR_CHARGE_TYPE,
 387};
 388
 389/* for encoding cft->private value on file */
 390#define _MEM			(0)
 391#define _MEMSWAP		(1)
 392#define _OOM_TYPE		(2)
 393#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 394#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 395#define MEMFILE_ATTR(val)	((val) & 0xffff)
 396/* Used for OOM nofiier */
 397#define OOM_CONTROL		(0)
 398
 399/*
 400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 
 
 401 */
 402#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 403#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 404#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 405#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 
 
 
 
 
 
 
 
 
 
 
 406
 407static void mem_cgroup_get(struct mem_cgroup *memcg);
 408static void mem_cgroup_put(struct mem_cgroup *memcg);
 
 
 
 
 
 
 
 
 
 
 409
 410/* Writing them here to avoid exposing memcg's inner layout */
 411#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 412#include <net/sock.h>
 413#include <net/ip.h>
 
 
 
 
 
 
 414
 415static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
 416void sock_update_memcg(struct sock *sk)
 417{
 418	if (mem_cgroup_sockets_enabled) {
 419		struct mem_cgroup *memcg;
 420		struct cg_proto *cg_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422		BUG_ON(!sk->sk_prot->proto_cgroup);
 
 423
 424		/* Socket cloning can throw us here with sk_cgrp already
 425		 * filled. It won't however, necessarily happen from
 426		 * process context. So the test for root memcg given
 427		 * the current task's memcg won't help us in this case.
 428		 *
 429		 * Respecting the original socket's memcg is a better
 430		 * decision in this case.
 431		 */
 432		if (sk->sk_cgrp) {
 433			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 434			mem_cgroup_get(sk->sk_cgrp->memcg);
 435			return;
 436		}
 437
 438		rcu_read_lock();
 439		memcg = mem_cgroup_from_task(current);
 440		cg_proto = sk->sk_prot->proto_cgroup(memcg);
 441		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
 442			mem_cgroup_get(memcg);
 443			sk->sk_cgrp = cg_proto;
 444		}
 445		rcu_read_unlock();
 446	}
 447}
 448EXPORT_SYMBOL(sock_update_memcg);
 449
 450void sock_release_memcg(struct sock *sk)
 451{
 452	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 453		struct mem_cgroup *memcg;
 454		WARN_ON(!sk->sk_cgrp->memcg);
 455		memcg = sk->sk_cgrp->memcg;
 456		mem_cgroup_put(memcg);
 
 
 
 
 
 
 
 457	}
 
 
 458}
 459
 460#ifdef CONFIG_INET
 461struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 462{
 463	if (!memcg || mem_cgroup_is_root(memcg))
 464		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466	return &memcg->tcp_mem.cg_proto;
 467}
 468EXPORT_SYMBOL(tcp_proto_cgroup);
 469#endif /* CONFIG_INET */
 470#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
 471
 472#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
 473static void disarm_sock_keys(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474{
 475	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
 476		return;
 477	static_key_slow_dec(&memcg_socket_limit_enabled);
 478}
 479#else
 480static void disarm_sock_keys(struct mem_cgroup *memcg)
 481{
 
 482}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483#endif
 484
 485static void drain_all_stock_async(struct mem_cgroup *memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487static struct mem_cgroup_per_zone *
 488mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
 489{
 490	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
 
 
 491}
 492
 493struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 494{
 495	return &memcg->css;
 
 
 
 
 
 
 
 
 
 
 
 496}
 497
 498static struct mem_cgroup_per_zone *
 499page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 500{
 501	int nid = page_to_nid(page);
 502	int zid = page_zonenum(page);
 503
 504	return mem_cgroup_zoneinfo(memcg, nid, zid);
 505}
 506
 507static struct mem_cgroup_tree_per_zone *
 508soft_limit_tree_node_zone(int nid, int zid)
 509{
 510	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 511}
 512
 513static struct mem_cgroup_tree_per_zone *
 514soft_limit_tree_from_page(struct page *page)
 515{
 516	int nid = page_to_nid(page);
 517	int zid = page_zonenum(page);
 518
 519	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 520}
 521
 522static void
 523__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
 524				struct mem_cgroup_per_zone *mz,
 525				struct mem_cgroup_tree_per_zone *mctz,
 526				unsigned long long new_usage_in_excess)
 527{
 528	struct rb_node **p = &mctz->rb_root.rb_node;
 529	struct rb_node *parent = NULL;
 530	struct mem_cgroup_per_zone *mz_node;
 
 531
 532	if (mz->on_tree)
 533		return;
 534
 535	mz->usage_in_excess = new_usage_in_excess;
 536	if (!mz->usage_in_excess)
 537		return;
 538	while (*p) {
 539		parent = *p;
 540		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 541					tree_node);
 542		if (mz->usage_in_excess < mz_node->usage_in_excess)
 543			p = &(*p)->rb_left;
 544		/*
 545		 * We can't avoid mem cgroups that are over their soft
 546		 * limit by the same amount
 547		 */
 548		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 549			p = &(*p)->rb_right;
 
 550	}
 
 
 
 
 551	rb_link_node(&mz->tree_node, parent, p);
 552	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 553	mz->on_tree = true;
 554}
 555
 556static void
 557__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 558				struct mem_cgroup_per_zone *mz,
 559				struct mem_cgroup_tree_per_zone *mctz)
 560{
 561	if (!mz->on_tree)
 562		return;
 
 
 
 
 563	rb_erase(&mz->tree_node, &mctz->rb_root);
 564	mz->on_tree = false;
 565}
 566
 567static void
 568mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 569				struct mem_cgroup_per_zone *mz,
 570				struct mem_cgroup_tree_per_zone *mctz)
 571{
 572	spin_lock(&mctz->lock);
 573	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
 574	spin_unlock(&mctz->lock);
 575}
 576
 
 
 
 
 
 
 
 
 
 
 
 577
 578static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 579{
 580	unsigned long long excess;
 581	struct mem_cgroup_per_zone *mz;
 582	struct mem_cgroup_tree_per_zone *mctz;
 583	int nid = page_to_nid(page);
 584	int zid = page_zonenum(page);
 585	mctz = soft_limit_tree_from_page(page);
 586
 
 587	/*
 588	 * Necessary to update all ancestors when hierarchy is used.
 589	 * because their event counter is not touched.
 590	 */
 591	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 592		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 593		excess = res_counter_soft_limit_excess(&memcg->res);
 594		/*
 595		 * We have to update the tree if mz is on RB-tree or
 596		 * mem is over its softlimit.
 597		 */
 598		if (excess || mz->on_tree) {
 599			spin_lock(&mctz->lock);
 
 
 600			/* if on-tree, remove it */
 601			if (mz->on_tree)
 602				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
 603			/*
 604			 * Insert again. mz->usage_in_excess will be updated.
 605			 * If excess is 0, no tree ops.
 606			 */
 607			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
 608			spin_unlock(&mctz->lock);
 609		}
 610	}
 611}
 612
 613static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 614{
 615	int node, zone;
 616	struct mem_cgroup_per_zone *mz;
 617	struct mem_cgroup_tree_per_zone *mctz;
 618
 619	for_each_node(node) {
 620		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 621			mz = mem_cgroup_zoneinfo(memcg, node, zone);
 622			mctz = soft_limit_tree_node_zone(node, zone);
 623			mem_cgroup_remove_exceeded(memcg, mz, mctz);
 624		}
 625	}
 626}
 627
 628static struct mem_cgroup_per_zone *
 629__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 630{
 631	struct rb_node *rightmost = NULL;
 632	struct mem_cgroup_per_zone *mz;
 633
 634retry:
 635	mz = NULL;
 636	rightmost = rb_last(&mctz->rb_root);
 637	if (!rightmost)
 638		goto done;		/* Nothing to reclaim from */
 639
 640	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 
 641	/*
 642	 * Remove the node now but someone else can add it back,
 643	 * we will to add it back at the end of reclaim to its correct
 644	 * position in the tree.
 645	 */
 646	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 647	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
 648		!css_tryget(&mz->memcg->css))
 649		goto retry;
 650done:
 651	return mz;
 652}
 653
 654static struct mem_cgroup_per_zone *
 655mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 656{
 657	struct mem_cgroup_per_zone *mz;
 658
 659	spin_lock(&mctz->lock);
 660	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 661	spin_unlock(&mctz->lock);
 662	return mz;
 663}
 664
 665/*
 666 * Implementation Note: reading percpu statistics for memcg.
 667 *
 668 * Both of vmstat[] and percpu_counter has threshold and do periodic
 669 * synchronization to implement "quick" read. There are trade-off between
 670 * reading cost and precision of value. Then, we may have a chance to implement
 671 * a periodic synchronizion of counter in memcg's counter.
 672 *
 673 * But this _read() function is used for user interface now. The user accounts
 674 * memory usage by memory cgroup and he _always_ requires exact value because
 675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 676 * have to visit all online cpus and make sum. So, for now, unnecessary
 677 * synchronization is not implemented. (just implemented for cpu hotplug)
 678 *
 679 * If there are kernel internal actions which can make use of some not-exact
 680 * value, and reading all cpu value can be performance bottleneck in some
 681 * common workload, threashold and synchonization as vmstat[] should be
 682 * implemented.
 683 */
 684static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 685				 enum mem_cgroup_stat_index idx)
 686{
 687	long val = 0;
 688	int cpu;
 689
 690	get_online_cpus();
 691	for_each_online_cpu(cpu)
 692		val += per_cpu(memcg->stat->count[idx], cpu);
 693#ifdef CONFIG_HOTPLUG_CPU
 694	spin_lock(&memcg->pcp_counter_lock);
 695	val += memcg->nocpu_base.count[idx];
 696	spin_unlock(&memcg->pcp_counter_lock);
 697#endif
 698	put_online_cpus();
 699	return val;
 700}
 701
 702static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 703					 bool charge)
 704{
 705	int val = (charge) ? 1 : -1;
 706	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 
 
 
 
 707}
 708
 709static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 710					    enum mem_cgroup_events_index idx)
 711{
 712	unsigned long val = 0;
 713	int cpu;
 714
 715	for_each_online_cpu(cpu)
 716		val += per_cpu(memcg->stat->events[idx], cpu);
 717#ifdef CONFIG_HOTPLUG_CPU
 718	spin_lock(&memcg->pcp_counter_lock);
 719	val += memcg->nocpu_base.events[idx];
 720	spin_unlock(&memcg->pcp_counter_lock);
 721#endif
 722	return val;
 
 
 
 
 
 
 
 
 
 
 
 723}
 724
 725static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 726					 bool anon, int nr_pages)
 727{
 728	preempt_disable();
 
 
 
 
 
 
 
 
 729
 730	/*
 731	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 732	 * counted as CACHE even if it's on ANON LRU.
 733	 */
 734	if (anon)
 735		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 736				nr_pages);
 737	else
 738		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 739				nr_pages);
 740
 741	/* pagein of a big page is an event. So, ignore page size */
 742	if (nr_pages > 0)
 743		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 744	else {
 745		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 746		nr_pages = -nr_pages; /* for event */
 747	}
 
 
 748
 749	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751	preempt_enable();
 
 
 752}
 753
 754unsigned long
 755mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 756{
 757	struct mem_cgroup_per_zone *mz;
 
 
 
 
 
 
 
 
 
 
 
 
 758
 759	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 760	return mz->lru_size[lru];
 
 761}
 
 762
 763static unsigned long
 764mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
 765			unsigned int lru_mask)
 766{
 767	struct mem_cgroup_per_zone *mz;
 768	enum lru_list lru;
 769	unsigned long ret = 0;
 770
 771	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 
 772
 773	for_each_lru(lru) {
 774		if (BIT(lru) & lru_mask)
 775			ret += mz->lru_size[lru];
 
 
 
 
 
 
 
 
 776	}
 777	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780static unsigned long
 781mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 782			int nid, unsigned int lru_mask)
 783{
 784	u64 total = 0;
 785	int zid;
 786
 787	for (zid = 0; zid < MAX_NR_ZONES; zid++)
 788		total += mem_cgroup_zone_nr_lru_pages(memcg,
 789						nid, zid, lru_mask);
 790
 791	return total;
 
 
 
 
 
 
 
 792}
 793
 794static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 795			unsigned int lru_mask)
 
 796{
 797	int nid;
 798	u64 total = 0;
 
 
 
 
 
 799
 800	for_each_node_state(nid, N_HIGH_MEMORY)
 801		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 802	return total;
 803}
 804
 805static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 806				       enum mem_cgroup_events_target target)
 807{
 808	unsigned long val, next;
 809
 810	val = __this_cpu_read(memcg->stat->nr_page_events);
 811	next = __this_cpu_read(memcg->stat->targets[target]);
 812	/* from time_after() in jiffies.h */
 813	if ((long)next - (long)val < 0) {
 814		switch (target) {
 815		case MEM_CGROUP_TARGET_THRESH:
 816			next = val + THRESHOLDS_EVENTS_TARGET;
 817			break;
 818		case MEM_CGROUP_TARGET_SOFTLIMIT:
 819			next = val + SOFTLIMIT_EVENTS_TARGET;
 820			break;
 821		case MEM_CGROUP_TARGET_NUMAINFO:
 822			next = val + NUMAINFO_EVENTS_TARGET;
 823			break;
 824		default:
 825			break;
 826		}
 827		__this_cpu_write(memcg->stat->targets[target], next);
 828		return true;
 829	}
 830	return false;
 831}
 832
 833/*
 834 * Check events in order.
 835 *
 836 */
 837static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 838{
 839	preempt_disable();
 840	/* threshold event is triggered in finer grain than soft limit */
 841	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 842						MEM_CGROUP_TARGET_THRESH))) {
 843		bool do_softlimit;
 844		bool do_numainfo __maybe_unused;
 845
 846		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 847						MEM_CGROUP_TARGET_SOFTLIMIT);
 848#if MAX_NUMNODES > 1
 849		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 850						MEM_CGROUP_TARGET_NUMAINFO);
 851#endif
 852		preempt_enable();
 853
 854		mem_cgroup_threshold(memcg);
 855		if (unlikely(do_softlimit))
 856			mem_cgroup_update_tree(memcg, page);
 857#if MAX_NUMNODES > 1
 858		if (unlikely(do_numainfo))
 859			atomic_inc(&memcg->numainfo_events);
 860#endif
 861	} else
 862		preempt_enable();
 863}
 864
 865struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 866{
 867	return container_of(cgroup_subsys_state(cont,
 868				mem_cgroup_subsys_id), struct mem_cgroup,
 869				css);
 870}
 871
 872struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 873{
 874	/*
 875	 * mm_update_next_owner() may clear mm->owner to NULL
 876	 * if it races with swapoff, page migration, etc.
 877	 * So this can be called with p == NULL.
 878	 */
 879	if (unlikely(!p))
 880		return NULL;
 881
 882	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 883				struct mem_cgroup, css);
 884}
 
 885
 886struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887{
 888	struct mem_cgroup *memcg = NULL;
 889
 890	if (!mm)
 891		return NULL;
 
 892	/*
 893	 * Because we have no locks, mm->owner's may be being moved to other
 894	 * cgroup. We use css_tryget() here even if this looks
 895	 * pessimistic (rather than adding locks here).
 896	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	rcu_read_lock();
 898	do {
 899		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 900		if (unlikely(!memcg))
 901			break;
 902	} while (!css_tryget(&memcg->css));
 903	rcu_read_unlock();
 904	return memcg;
 905}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906
 907/**
 908 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 909 * @root: hierarchy root
 910 * @prev: previously returned memcg, NULL on first invocation
 911 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 912 *
 913 * Returns references to children of the hierarchy below @root, or
 914 * @root itself, or %NULL after a full round-trip.
 915 *
 916 * Caller must pass the return value in @prev on subsequent
 917 * invocations for reference counting, or use mem_cgroup_iter_break()
 918 * to cancel a hierarchy walk before the round-trip is complete.
 919 *
 920 * Reclaimers can specify a zone and a priority level in @reclaim to
 921 * divide up the memcgs in the hierarchy among all concurrent
 922 * reclaimers operating on the same zone and priority.
 923 */
 924struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 925				   struct mem_cgroup *prev,
 926				   struct mem_cgroup_reclaim_cookie *reclaim)
 927{
 
 
 928	struct mem_cgroup *memcg = NULL;
 929	int id = 0;
 930
 931	if (mem_cgroup_disabled())
 932		return NULL;
 933
 934	if (!root)
 935		root = root_mem_cgroup;
 936
 937	if (prev && !reclaim)
 938		id = css_id(&prev->css);
 
 
 
 
 
 939
 940	if (prev && prev != root)
 941		css_put(&prev->css);
 
 
 
 942
 943	if (!root->use_hierarchy && root != root_mem_cgroup) {
 944		if (prev)
 945			return NULL;
 946		return root;
 
 
 
 
 
 
 
 
 
 
 947	}
 948
 949	while (!memcg) {
 950		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 951		struct cgroup_subsys_state *css;
 952
 953		if (reclaim) {
 954			int nid = zone_to_nid(reclaim->zone);
 955			int zid = zone_idx(reclaim->zone);
 956			struct mem_cgroup_per_zone *mz;
 957
 958			mz = mem_cgroup_zoneinfo(root, nid, zid);
 959			iter = &mz->reclaim_iter[reclaim->priority];
 960			if (prev && reclaim->generation != iter->generation)
 961				return NULL;
 962			id = iter->position;
 
 963		}
 964
 965		rcu_read_lock();
 966		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
 967		if (css) {
 968			if (css == &root->css || css_tryget(css))
 969				memcg = container_of(css,
 970						     struct mem_cgroup, css);
 971		} else
 972			id = 0;
 973		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975		if (reclaim) {
 976			iter->position = id;
 977			if (!css)
 978				iter->generation++;
 979			else if (!prev && memcg)
 980				reclaim->generation = iter->generation;
 981		}
 982
 983		if (prev && !css)
 984			return NULL;
 
 
 985	}
 
 
 
 
 
 
 986	return memcg;
 987}
 988
 989/**
 990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 991 * @root: hierarchy root
 992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 993 */
 994void mem_cgroup_iter_break(struct mem_cgroup *root,
 995			   struct mem_cgroup *prev)
 996{
 997	if (!root)
 998		root = root_mem_cgroup;
 999	if (prev && prev != root)
1000		css_put(&prev->css);
1001}
1002
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree).  If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root)		\
1009	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010	     iter != NULL;				\
1011	     iter = mem_cgroup_iter(root, iter, NULL))
1012
1013#define for_each_mem_cgroup(iter)			\
1014	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015	     iter != NULL;				\
1016	     iter = mem_cgroup_iter(NULL, iter, NULL))
 
 
1017
1018static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019{
1020	return (memcg == root_mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021}
1022
1023void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024{
1025	struct mem_cgroup *memcg;
 
1026
1027	if (!mm)
1028		return;
1029
1030	rcu_read_lock();
1031	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032	if (unlikely(!memcg))
1033		goto out;
1034
1035	switch (idx) {
1036	case PGFAULT:
1037		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1038		break;
1039	case PGMAJFAULT:
1040		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1041		break;
1042	default:
1043		BUG();
1044	}
1045out:
1046	rcu_read_unlock();
1047}
1048EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1049
1050/**
1051 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1052 * @zone: zone of the wanted lruvec
1053 * @memcg: memcg of the wanted lruvec
1054 *
1055 * Returns the lru list vector holding pages for the given @zone and
1056 * @mem.  This can be the global zone lruvec, if the memory controller
1057 * is disabled.
1058 */
1059struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1060				      struct mem_cgroup *memcg)
1061{
1062	struct mem_cgroup_per_zone *mz;
1063
1064	if (mem_cgroup_disabled())
1065		return &zone->lruvec;
 
 
1066
1067	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1068	return &mz->lruvec;
 
 
1069}
1070
1071/*
1072 * Following LRU functions are allowed to be used without PCG_LOCK.
1073 * Operations are called by routine of global LRU independently from memcg.
1074 * What we have to take care of here is validness of pc->mem_cgroup.
1075 *
1076 * Changes to pc->mem_cgroup happens when
1077 * 1. charge
1078 * 2. moving account
1079 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1080 * It is added to LRU before charge.
1081 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1082 * When moving account, the page is not on LRU. It's isolated.
1083 */
1084
1085/**
1086 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087 * @page: the page
1088 * @zone: zone of the page
 
 
 
 
 
1089 */
1090struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 
 
 
 
 
 
 
 
 
 
 
 
1091{
1092	struct mem_cgroup_per_zone *mz;
1093	struct mem_cgroup *memcg;
1094	struct page_cgroup *pc;
 
 
 
 
 
 
1095
1096	if (mem_cgroup_disabled())
1097		return &zone->lruvec;
 
1098
1099	pc = lookup_page_cgroup(page);
1100	memcg = pc->mem_cgroup;
1101
1102	/*
1103	 * Surreptitiously switch any uncharged offlist page to root:
1104	 * an uncharged page off lru does nothing to secure
1105	 * its former mem_cgroup from sudden removal.
1106	 *
1107	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1108	 * under page_cgroup lock: between them, they make all uses
1109	 * of pc->mem_cgroup safe.
1110	 */
1111	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1112		pc->mem_cgroup = memcg = root_mem_cgroup;
1113
1114	mz = page_cgroup_zoneinfo(memcg, page);
1115	return &mz->lruvec;
1116}
1117
1118/**
1119 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1120 * @lruvec: mem_cgroup per zone lru vector
1121 * @lru: index of lru list the page is sitting on
 
1122 * @nr_pages: positive when adding or negative when removing
1123 *
1124 * This function must be called when a page is added to or removed from an
1125 * lru list.
 
1126 */
1127void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1128				int nr_pages)
1129{
1130	struct mem_cgroup_per_zone *mz;
1131	unsigned long *lru_size;
 
1132
1133	if (mem_cgroup_disabled())
1134		return;
1135
1136	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1137	lru_size = mz->lru_size + lru;
1138	*lru_size += nr_pages;
1139	VM_BUG_ON((long)(*lru_size) < 0);
1140}
1141
1142/*
1143 * Checks whether given mem is same or in the root_mem_cgroup's
1144 * hierarchy subtree
1145 */
1146bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147				  struct mem_cgroup *memcg)
1148{
1149	if (root_memcg == memcg)
1150		return true;
1151	if (!root_memcg->use_hierarchy || !memcg)
1152		return false;
1153	return css_is_ancestor(&memcg->css, &root_memcg->css);
1154}
1155
1156static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157				       struct mem_cgroup *memcg)
1158{
1159	bool ret;
1160
1161	rcu_read_lock();
1162	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1163	rcu_read_unlock();
1164	return ret;
1165}
1166
1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168{
1169	int ret;
1170	struct mem_cgroup *curr = NULL;
1171	struct task_struct *p;
1172
1173	p = find_lock_task_mm(task);
1174	if (p) {
1175		curr = try_get_mem_cgroup_from_mm(p->mm);
1176		task_unlock(p);
1177	} else {
1178		/*
1179		 * All threads may have already detached their mm's, but the oom
1180		 * killer still needs to detect if they have already been oom
1181		 * killed to prevent needlessly killing additional tasks.
1182		 */
1183		task_lock(task);
1184		curr = mem_cgroup_from_task(task);
1185		if (curr)
1186			css_get(&curr->css);
1187		task_unlock(task);
1188	}
1189	if (!curr)
1190		return 0;
1191	/*
1192	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193	 * use_hierarchy of "curr" here make this function true if hierarchy is
1194	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196	 */
1197	ret = mem_cgroup_same_or_subtree(memcg, curr);
1198	css_put(&curr->css);
1199	return ret;
1200}
1201
1202int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203{
1204	unsigned long inactive_ratio;
1205	unsigned long inactive;
1206	unsigned long active;
1207	unsigned long gb;
1208
1209	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1210	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211
1212	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213	if (gb)
1214		inactive_ratio = int_sqrt(10 * gb);
1215	else
1216		inactive_ratio = 1;
1217
1218	return inactive * inactive_ratio < active;
1219}
1220
1221int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222{
1223	unsigned long active;
1224	unsigned long inactive;
1225
1226	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1227	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228
1229	return (active > inactive);
1230}
1231
1232#define mem_cgroup_from_res_counter(counter, member)	\
1233	container_of(counter, struct mem_cgroup, member)
1234
1235/**
1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237 * @memcg: the memory cgroup
1238 *
1239 * Returns the maximum amount of memory @mem can be charged with, in
1240 * pages.
1241 */
1242static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243{
1244	unsigned long long margin;
1245
1246	margin = res_counter_margin(&memcg->res);
1247	if (do_swap_account)
1248		margin = min(margin, res_counter_margin(&memcg->memsw));
1249	return margin >> PAGE_SHIFT;
1250}
1251
1252int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1253{
1254	struct cgroup *cgrp = memcg->css.cgroup;
1255
1256	/* root ? */
1257	if (cgrp->parent == NULL)
1258		return vm_swappiness;
1259
1260	return memcg->swappiness;
1261}
1262
1263/*
1264 * memcg->moving_account is used for checking possibility that some thread is
1265 * calling move_account(). When a thread on CPU-A starts moving pages under
1266 * a memcg, other threads should check memcg->moving_account under
1267 * rcu_read_lock(), like this:
1268 *
1269 *         CPU-A                                    CPU-B
1270 *                                              rcu_read_lock()
1271 *         memcg->moving_account+1              if (memcg->mocing_account)
1272 *                                                   take heavy locks.
1273 *         synchronize_rcu()                    update something.
1274 *                                              rcu_read_unlock()
1275 *         start move here.
1276 */
1277
1278/* for quick checking without looking up memcg */
1279atomic_t memcg_moving __read_mostly;
1280
1281static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282{
1283	atomic_inc(&memcg_moving);
1284	atomic_inc(&memcg->moving_account);
1285	synchronize_rcu();
1286}
1287
1288static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1289{
1290	/*
1291	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1292	 * We check NULL in callee rather than caller.
1293	 */
1294	if (memcg) {
1295		atomic_dec(&memcg_moving);
1296		atomic_dec(&memcg->moving_account);
1297	}
1298}
1299
1300/*
1301 * 2 routines for checking "mem" is under move_account() or not.
1302 *
1303 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1304 *			  is used for avoiding races in accounting.  If true,
1305 *			  pc->mem_cgroup may be overwritten.
1306 *
1307 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1308 *			  under hierarchy of moving cgroups. This is for
1309 *			  waiting at hith-memory prressure caused by "move".
1310 */
1311
1312static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313{
1314	VM_BUG_ON(!rcu_read_lock_held());
1315	return atomic_read(&memcg->moving_account) > 0;
1316}
1317
1318static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319{
1320	struct mem_cgroup *from;
1321	struct mem_cgroup *to;
1322	bool ret = false;
1323	/*
1324	 * Unlike task_move routines, we access mc.to, mc.from not under
1325	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326	 */
1327	spin_lock(&mc.lock);
1328	from = mc.from;
1329	to = mc.to;
1330	if (!from)
1331		goto unlock;
1332
1333	ret = mem_cgroup_same_or_subtree(memcg, from)
1334		|| mem_cgroup_same_or_subtree(memcg, to);
1335unlock:
1336	spin_unlock(&mc.lock);
1337	return ret;
1338}
1339
1340static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341{
1342	if (mc.moving_task && current != mc.moving_task) {
1343		if (mem_cgroup_under_move(memcg)) {
1344			DEFINE_WAIT(wait);
1345			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1346			/* moving charge context might have finished. */
1347			if (mc.moving_task)
1348				schedule();
1349			finish_wait(&mc.waitq, &wait);
1350			return true;
1351		}
1352	}
1353	return false;
1354}
1355
1356/*
1357 * Take this lock when
1358 * - a code tries to modify page's memcg while it's USED.
1359 * - a code tries to modify page state accounting in a memcg.
1360 * see mem_cgroup_stolen(), too.
1361 */
1362static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1363				  unsigned long *flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364{
1365	spin_lock_irqsave(&memcg->move_lock, *flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366}
1367
1368static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1369				unsigned long *flags)
1370{
1371	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1372}
1373
1374/**
1375 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376 * @memcg: The memory cgroup that went over limit
1377 * @p: Task that is going to be killed
1378 *
1379 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1380 * enabled
1381 */
1382void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383{
1384	struct cgroup *task_cgrp;
1385	struct cgroup *mem_cgrp;
 
 
 
 
 
1386	/*
1387	 * Need a buffer in BSS, can't rely on allocations. The code relies
1388	 * on the assumption that OOM is serialized for memory controller.
1389	 * If this assumption is broken, revisit this code.
 
 
 
 
 
1390	 */
1391	static char memcg_name[PATH_MAX];
1392	int ret;
1393
1394	if (!memcg || !p)
1395		return;
1396
1397	rcu_read_lock();
1398
1399	mem_cgrp = memcg->css.cgroup;
1400	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401
1402	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403	if (ret < 0) {
1404		/*
1405		 * Unfortunately, we are unable to convert to a useful name
1406		 * But we'll still print out the usage information
1407		 */
1408		rcu_read_unlock();
1409		goto done;
1410	}
1411	rcu_read_unlock();
1412
1413	printk(KERN_INFO "Task in %s killed", memcg_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
1415	rcu_read_lock();
1416	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417	if (ret < 0) {
1418		rcu_read_unlock();
1419		goto done;
1420	}
1421	rcu_read_unlock();
1422
1423	/*
1424	 * Continues from above, so we don't need an KERN_ level
1425	 */
1426	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427done:
1428
1429	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434		"failcnt %llu\n",
1435		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438}
1439
1440/*
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
 
 
 
 
 
 
1443 */
1444static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445{
1446	int num = 0;
1447	struct mem_cgroup *iter;
1448
1449	for_each_mem_cgroup_tree(iter, memcg)
1450		num++;
1451	return num;
 
 
 
 
 
 
 
1452}
1453
1454/*
1455 * Return the memory (and swap, if configured) limit for a memcg.
 
 
1456 */
1457u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458{
1459	u64 limit;
1460	u64 memsw;
1461
1462	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463	limit += total_swap_pages << PAGE_SHIFT;
1464
1465	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466	/*
1467	 * If memsw is finite and limits the amount of swap space available
1468	 * to this memcg, return that limit.
1469	 */
1470	return min(limit, memsw);
1471}
1472
1473static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474					gfp_t gfp_mask,
1475					unsigned long flags)
1476{
1477	unsigned long total = 0;
1478	bool noswap = false;
1479	int loop;
1480
1481	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482		noswap = true;
1483	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484		noswap = true;
1485
1486	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487		if (loop)
1488			drain_all_stock_async(memcg);
1489		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490		/*
1491		 * Allow limit shrinkers, which are triggered directly
1492		 * by userspace, to catch signals and stop reclaim
1493		 * after minimal progress, regardless of the margin.
1494		 */
1495		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496			break;
1497		if (mem_cgroup_margin(memcg))
1498			break;
1499		/*
1500		 * If nothing was reclaimed after two attempts, there
1501		 * may be no reclaimable pages in this hierarchy.
1502		 */
1503		if (loop && !total)
1504			break;
1505	}
1506	return total;
1507}
1508
1509/**
1510 * test_mem_cgroup_node_reclaimable
1511 * @memcg: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1514 *
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1518 */
1519static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520		int nid, bool noswap)
1521{
1522	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523		return true;
1524	if (noswap || !total_swap_pages)
1525		return false;
1526	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527		return true;
1528	return false;
1529
 
 
 
 
 
 
 
 
1530}
1531#if MAX_NUMNODES > 1
1532
1533/*
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537 *
1538 */
1539static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540{
1541	int nid;
1542	/*
1543	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544	 * pagein/pageout changes since the last update.
1545	 */
1546	if (!atomic_read(&memcg->numainfo_events))
1547		return;
1548	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549		return;
1550
1551	/* make a nodemask where this memcg uses memory from */
1552	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
 
 
 
 
 
 
1553
1554	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
1556		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557			node_clear(nid, memcg->scan_nodes);
1558	}
1559
1560	atomic_set(&memcg->numainfo_events, 0);
1561	atomic_set(&memcg->numainfo_updating, 0);
1562}
1563
1564/*
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1568 *
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1573 *
1574 * Now, we use round-robin. Better algorithm is welcomed.
1575 */
1576int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577{
1578	int node;
1579
1580	mem_cgroup_may_update_nodemask(memcg);
1581	node = memcg->last_scanned_node;
1582
1583	node = next_node(node, memcg->scan_nodes);
1584	if (node == MAX_NUMNODES)
1585		node = first_node(memcg->scan_nodes);
1586	/*
1587	 * We call this when we hit limit, not when pages are added to LRU.
1588	 * No LRU may hold pages because all pages are UNEVICTABLE or
1589	 * memcg is too small and all pages are not on LRU. In that case,
1590	 * we use curret node.
1591	 */
1592	if (unlikely(node == MAX_NUMNODES))
1593		node = numa_node_id();
1594
1595	memcg->last_scanned_node = node;
1596	return node;
1597}
1598
1599/*
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1604 */
1605static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606{
1607	int nid;
 
 
 
 
 
 
 
 
 
 
1608
1609	/*
1610	 * quick check...making use of scan_node.
1611	 * We can skip unused nodes.
1612	 */
1613	if (!nodes_empty(memcg->scan_nodes)) {
1614		for (nid = first_node(memcg->scan_nodes);
1615		     nid < MAX_NUMNODES;
1616		     nid = next_node(nid, memcg->scan_nodes)) {
1617
1618			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619				return true;
1620		}
1621	}
1622	/*
1623	 * Check rest of nodes.
 
1624	 */
1625	for_each_node_state(nid, N_HIGH_MEMORY) {
1626		if (node_isset(nid, memcg->scan_nodes))
1627			continue;
1628		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629			return true;
1630	}
1631	return false;
1632}
1633
1634#else
1635int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636{
1637	return 0;
1638}
1639
1640static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641{
1642	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643}
1644#endif
1645
1646static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647				   struct zone *zone,
1648				   gfp_t gfp_mask,
1649				   unsigned long *total_scanned)
1650{
1651	struct mem_cgroup *victim = NULL;
1652	int total = 0;
1653	int loop = 0;
1654	unsigned long excess;
1655	unsigned long nr_scanned;
1656	struct mem_cgroup_reclaim_cookie reclaim = {
1657		.zone = zone,
1658		.priority = 0,
1659	};
1660
1661	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1662
1663	while (1) {
1664		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665		if (!victim) {
1666			loop++;
1667			if (loop >= 2) {
1668				/*
1669				 * If we have not been able to reclaim
1670				 * anything, it might because there are
1671				 * no reclaimable pages under this hierarchy
1672				 */
1673				if (!total)
1674					break;
1675				/*
1676				 * We want to do more targeted reclaim.
1677				 * excess >> 2 is not to excessive so as to
1678				 * reclaim too much, nor too less that we keep
1679				 * coming back to reclaim from this cgroup
1680				 */
1681				if (total >= (excess >> 2) ||
1682					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683					break;
1684			}
1685			continue;
1686		}
1687		if (!mem_cgroup_reclaimable(victim, false))
1688			continue;
1689		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690						     zone, &nr_scanned);
1691		*total_scanned += nr_scanned;
1692		if (!res_counter_soft_limit_excess(&root_memcg->res))
1693			break;
1694	}
1695	mem_cgroup_iter_break(root_memcg, victim);
1696	return total;
1697}
1698
 
 
 
 
 
 
 
 
1699/*
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1703 */
1704static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1705{
1706	struct mem_cgroup *iter, *failed = NULL;
1707
 
 
1708	for_each_mem_cgroup_tree(iter, memcg) {
1709		if (iter->oom_lock) {
1710			/*
1711			 * this subtree of our hierarchy is already locked
1712			 * so we cannot give a lock.
1713			 */
1714			failed = iter;
1715			mem_cgroup_iter_break(memcg, iter);
1716			break;
1717		} else
1718			iter->oom_lock = true;
1719	}
1720
1721	if (!failed)
1722		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724	/*
1725	 * OK, we failed to lock the whole subtree so we have to clean up
1726	 * what we set up to the failing subtree
1727	 */
1728	for_each_mem_cgroup_tree(iter, memcg) {
1729		if (iter == failed) {
1730			mem_cgroup_iter_break(memcg, iter);
1731			break;
1732		}
1733		iter->oom_lock = false;
1734	}
1735	return false;
1736}
1737
1738/*
1739 * Has to be called with memcg_oom_lock
1740 */
1741static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742{
1743	struct mem_cgroup *iter;
1744
 
 
1745	for_each_mem_cgroup_tree(iter, memcg)
1746		iter->oom_lock = false;
1747	return 0;
1748}
1749
1750static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751{
1752	struct mem_cgroup *iter;
1753
 
1754	for_each_mem_cgroup_tree(iter, memcg)
1755		atomic_inc(&iter->under_oom);
 
1756}
1757
1758static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759{
1760	struct mem_cgroup *iter;
1761
1762	/*
1763	 * When a new child is created while the hierarchy is under oom,
1764	 * mem_cgroup_oom_lock() may not be called. We have to use
1765	 * atomic_add_unless() here.
1766	 */
 
1767	for_each_mem_cgroup_tree(iter, memcg)
1768		atomic_add_unless(&iter->under_oom, -1, 0);
 
 
1769}
1770
1771static DEFINE_SPINLOCK(memcg_oom_lock);
1772static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773
1774struct oom_wait_info {
1775	struct mem_cgroup *memcg;
1776	wait_queue_t	wait;
1777};
1778
1779static int memcg_oom_wake_function(wait_queue_t *wait,
1780	unsigned mode, int sync, void *arg)
1781{
1782	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1783	struct mem_cgroup *oom_wait_memcg;
1784	struct oom_wait_info *oom_wait_info;
1785
1786	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787	oom_wait_memcg = oom_wait_info->memcg;
1788
1789	/*
1790	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1791	 * Then we can use css_is_ancestor without taking care of RCU.
1792	 */
1793	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795		return 0;
1796	return autoremove_wake_function(wait, mode, sync, arg);
1797}
1798
1799static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1800{
1801	/* for filtering, pass "memcg" as argument. */
1802	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1803}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804
1805static void memcg_oom_recover(struct mem_cgroup *memcg)
1806{
1807	if (memcg && atomic_read(&memcg->under_oom))
1808		memcg_wakeup_oom(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809}
1810
1811/*
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813 */
1814static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1815				  int order)
1816{
 
1817	struct oom_wait_info owait;
1818	bool locked, need_to_kill;
 
 
 
 
 
 
 
1819
1820	owait.memcg = memcg;
1821	owait.wait.flags = 0;
1822	owait.wait.func = memcg_oom_wake_function;
1823	owait.wait.private = current;
1824	INIT_LIST_HEAD(&owait.wait.task_list);
1825	need_to_kill = true;
 
1826	mem_cgroup_mark_under_oom(memcg);
1827
1828	/* At first, try to OOM lock hierarchy under memcg.*/
1829	spin_lock(&memcg_oom_lock);
1830	locked = mem_cgroup_oom_lock(memcg);
1831	/*
1832	 * Even if signal_pending(), we can't quit charge() loop without
1833	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834	 * under OOM is always welcomed, use TASK_KILLABLE here.
1835	 */
1836	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837	if (!locked || memcg->oom_kill_disable)
1838		need_to_kill = false;
1839	if (locked)
1840		mem_cgroup_oom_notify(memcg);
1841	spin_unlock(&memcg_oom_lock);
1842
1843	if (need_to_kill) {
 
1844		finish_wait(&memcg_oom_waitq, &owait.wait);
1845		mem_cgroup_out_of_memory(memcg, mask, order);
 
1846	} else {
1847		schedule();
 
1848		finish_wait(&memcg_oom_waitq, &owait.wait);
1849	}
1850	spin_lock(&memcg_oom_lock);
1851	if (locked)
1852		mem_cgroup_oom_unlock(memcg);
1853	memcg_wakeup_oom(memcg);
1854	spin_unlock(&memcg_oom_lock);
1855
1856	mem_cgroup_unmark_under_oom(memcg);
1857
1858	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1859		return false;
1860	/* Give chance to dying process */
1861	schedule_timeout_uninterruptible(1);
 
1862	return true;
1863}
1864
1865/*
1866 * Currently used to update mapped file statistics, but the routine can be
1867 * generalized to update other statistics as well.
1868 *
1869 * Notes: Race condition
1870 *
1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872 * it tends to be costly. But considering some conditions, we doesn't need
1873 * to do so _always_.
1874 *
1875 * Considering "charge", lock_page_cgroup() is not required because all
1876 * file-stat operations happen after a page is attached to radix-tree. There
1877 * are no race with "charge".
1878 *
1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881 * if there are race with "uncharge". Statistics itself is properly handled
1882 * by flags.
1883 *
1884 * Considering "move", this is an only case we see a race. To make the race
1885 * small, we check mm->moving_account and detect there are possibility of race
1886 * If there is, we take a lock.
1887 */
1888
1889void __mem_cgroup_begin_update_page_stat(struct page *page,
1890				bool *locked, unsigned long *flags)
1891{
 
1892	struct mem_cgroup *memcg;
1893	struct page_cgroup *pc;
1894
1895	pc = lookup_page_cgroup(page);
1896again:
1897	memcg = pc->mem_cgroup;
1898	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1899		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900	/*
1901	 * If this memory cgroup is not under account moving, we don't
1902	 * need to take move_lock_page_cgroup(). Because we already hold
1903	 * rcu_read_lock(), any calls to move_account will be delayed until
1904	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1905	 */
1906	if (!mem_cgroup_stolen(memcg))
1907		return;
 
1908
1909	move_lock_mem_cgroup(memcg, flags);
1910	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1911		move_unlock_mem_cgroup(memcg, flags);
1912		goto again;
1913	}
1914	*locked = true;
 
 
 
 
 
 
1915}
1916
1917void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1918{
1919	struct page_cgroup *pc = lookup_page_cgroup(page);
1920
1921	/*
1922	 * It's guaranteed that pc->mem_cgroup never changes while
1923	 * lock is held because a routine modifies pc->mem_cgroup
1924	 * should take move_lock_page_cgroup().
1925	 */
1926	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1927}
1928
1929void mem_cgroup_update_page_stat(struct page *page,
1930				 enum mem_cgroup_page_stat_item idx, int val)
 
 
 
 
 
 
 
 
 
1931{
 
1932	struct mem_cgroup *memcg;
1933	struct page_cgroup *pc = lookup_page_cgroup(page);
1934	unsigned long uninitialized_var(flags);
 
 
 
 
 
 
1935
1936	if (mem_cgroup_disabled())
1937		return;
 
 
 
 
 
 
 
 
 
 
1938
1939	memcg = pc->mem_cgroup;
1940	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1941		return;
1942
1943	switch (idx) {
1944	case MEMCG_NR_FILE_MAPPED:
1945		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1946		break;
1947	default:
1948		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949	}
1950
1951	this_cpu_add(memcg->stat->count[idx], val);
1952}
1953
1954/*
1955 * size of first charge trial. "32" comes from vmscan.c's magic value.
1956 * TODO: maybe necessary to use big numbers in big irons.
1957 */
1958#define CHARGE_BATCH	32U
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959struct memcg_stock_pcp {
1960	struct mem_cgroup *cached; /* this never be root cgroup */
1961	unsigned int nr_pages;
 
 
 
1962	struct work_struct work;
1963	unsigned long flags;
1964#define FLUSHING_CACHED_CHARGE	0
1965};
1966static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1967static DEFINE_MUTEX(percpu_charge_mutex);
1968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969/*
1970 * Try to consume stocked charge on this cpu. If success, one page is consumed
1971 * from local stock and true is returned. If the stock is 0 or charges from a
1972 * cgroup which is not current target, returns false. This stock will be
1973 * refilled.
 
 
 
 
 
1974 */
1975static bool consume_stock(struct mem_cgroup *memcg)
1976{
1977	struct memcg_stock_pcp *stock;
1978	bool ret = true;
1979
1980	stock = &get_cpu_var(memcg_stock);
1981	if (memcg == stock->cached && stock->nr_pages)
1982		stock->nr_pages--;
1983	else /* need to call res_counter_charge */
1984		ret = false;
1985	put_cpu_var(memcg_stock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986	return ret;
1987}
1988
1989/*
1990 * Returns stocks cached in percpu to res_counter and reset cached information.
1991 */
1992static void drain_stock(struct memcg_stock_pcp *stock)
1993{
1994	struct mem_cgroup *old = stock->cached;
1995
 
 
 
1996	if (stock->nr_pages) {
1997		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1998
1999		res_counter_uncharge(&old->res, bytes);
2000		if (do_swap_account)
2001			res_counter_uncharge(&old->memsw, bytes);
2002		stock->nr_pages = 0;
2003	}
 
 
2004	stock->cached = NULL;
2005}
2006
2007/*
2008 * This must be called under preempt disabled or must be called by
2009 * a thread which is pinned to local cpu.
2010 */
2011static void drain_local_stock(struct work_struct *dummy)
2012{
2013	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 
 
 
 
 
 
 
 
 
 
 
 
2014	drain_stock(stock);
2015	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 
 
2016}
2017
2018/*
2019 * Cache charges(val) which is from res_counter, to local per_cpu area.
2020 * This will be consumed by consume_stock() function, later.
2021 */
2022static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2023{
2024	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 
 
 
2025
 
2026	if (stock->cached != memcg) { /* reset if necessary */
2027		drain_stock(stock);
 
2028		stock->cached = memcg;
2029	}
2030	stock->nr_pages += nr_pages;
2031	put_cpu_var(memcg_stock);
 
 
 
 
2032}
2033
2034/*
2035 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036 * of the hierarchy under it. sync flag says whether we should block
2037 * until the work is done.
2038 */
2039static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2040{
2041	int cpu, curcpu;
2042
2043	/* Notify other cpus that system-wide "drain" is running */
2044	get_online_cpus();
 
 
 
 
 
 
 
2045	curcpu = get_cpu();
2046	for_each_online_cpu(cpu) {
2047		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048		struct mem_cgroup *memcg;
 
2049
 
2050		memcg = stock->cached;
2051		if (!memcg || !stock->nr_pages)
2052			continue;
2053		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2054			continue;
2055		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
 
2056			if (cpu == curcpu)
2057				drain_local_stock(&stock->work);
2058			else
2059				schedule_work_on(cpu, &stock->work);
2060		}
2061	}
2062	put_cpu();
 
 
2063
2064	if (!sync)
2065		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	for_each_online_cpu(cpu) {
2068		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2070			flush_work(&stock->work);
2071	}
2072out:
2073 	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074}
2075
2076/*
2077 * Tries to drain stocked charges in other cpus. This function is asynchronous
2078 * and just put a work per cpu for draining localy on each cpu. Caller can
2079 * expects some charges will be back to res_counter later but cannot wait for
2080 * it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081 */
2082static void drain_all_stock_async(struct mem_cgroup *root_memcg)
 
 
 
2083{
 
 
 
 
 
2084	/*
2085	 * If someone calls draining, avoid adding more kworker runs.
 
2086	 */
2087	if (!mutex_trylock(&percpu_charge_mutex))
2088		return;
2089	drain_all_stock(root_memcg, false);
2090	mutex_unlock(&percpu_charge_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091}
2092
2093/* This is a synchronous drain interface. */
2094static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2095{
2096	/* called when force_empty is called */
2097	mutex_lock(&percpu_charge_mutex);
2098	drain_all_stock(root_memcg, true);
2099	mutex_unlock(&percpu_charge_mutex);
 
 
 
 
 
 
 
 
2100}
2101
2102/*
2103 * This function drains percpu counter value from DEAD cpu and
2104 * move it to local cpu. Note that this function can be preempted.
2105 */
2106static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
 
 
2107{
2108	int i;
2109
2110	spin_lock(&memcg->pcp_counter_lock);
2111	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2112		long x = per_cpu(memcg->stat->count[i], cpu);
2113
2114		per_cpu(memcg->stat->count[i], cpu) = 0;
2115		memcg->nocpu_base.count[i] += x;
2116	}
2117	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2118		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
 
 
 
 
 
 
2119
2120		per_cpu(memcg->stat->events[i], cpu) = 0;
2121		memcg->nocpu_base.events[i] += x;
2122	}
2123	spin_unlock(&memcg->pcp_counter_lock);
 
 
 
 
 
2124}
2125
2126static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2127					unsigned long action,
2128					void *hcpu)
 
 
2129{
2130	int cpu = (unsigned long)hcpu;
2131	struct memcg_stock_pcp *stock;
2132	struct mem_cgroup *iter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133
2134	if (action == CPU_ONLINE)
2135		return NOTIFY_OK;
2136
2137	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2138		return NOTIFY_OK;
 
 
 
 
2139
2140	for_each_mem_cgroup(iter)
2141		mem_cgroup_drain_pcp_counter(iter, cpu);
 
 
 
 
 
 
2142
2143	stock = &per_cpu(memcg_stock, cpu);
2144	drain_stock(stock);
2145	return NOTIFY_OK;
2146}
 
 
 
 
 
2147
 
 
 
 
 
 
 
 
2148
2149/* See __mem_cgroup_try_charge() for details */
2150enum {
2151	CHARGE_OK,		/* success */
2152	CHARGE_RETRY,		/* need to retry but retry is not bad */
2153	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2154	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2155	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2156};
2157
2158static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2159				unsigned int nr_pages, bool oom_check)
2160{
2161	unsigned long csize = nr_pages * PAGE_SIZE;
 
2162	struct mem_cgroup *mem_over_limit;
2163	struct res_counter *fail_res;
2164	unsigned long flags = 0;
2165	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166
2167	ret = res_counter_charge(&memcg->res, csize, &fail_res);
 
 
 
 
 
 
 
2168
2169	if (likely(!ret)) {
2170		if (!do_swap_account)
2171			return CHARGE_OK;
2172		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2173		if (likely(!ret))
2174			return CHARGE_OK;
2175
2176		res_counter_uncharge(&memcg->res, csize);
2177		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2178		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2179	} else
2180		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2181	/*
2182	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2183	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2184	 *
2185	 * Never reclaim on behalf of optional batching, retry with a
2186	 * single page instead.
2187	 */
2188	if (nr_pages == CHARGE_BATCH)
2189		return CHARGE_RETRY;
 
 
 
2190
2191	if (!(gfp_mask & __GFP_WAIT))
2192		return CHARGE_WOULDBLOCK;
 
 
 
 
 
 
 
2193
2194	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2195	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2196		return CHARGE_RETRY;
 
 
 
 
 
 
 
 
 
2197	/*
2198	 * Even though the limit is exceeded at this point, reclaim
2199	 * may have been able to free some pages.  Retry the charge
2200	 * before killing the task.
2201	 *
2202	 * Only for regular pages, though: huge pages are rather
2203	 * unlikely to succeed so close to the limit, and we fall back
2204	 * to regular pages anyway in case of failure.
2205	 */
2206	if (nr_pages == 1 && ret)
2207		return CHARGE_RETRY;
2208
2209	/*
2210	 * At task move, charge accounts can be doubly counted. So, it's
2211	 * better to wait until the end of task_move if something is going on.
2212	 */
2213	if (mem_cgroup_wait_acct_move(mem_over_limit))
2214		return CHARGE_RETRY;
2215
2216	/* If we don't need to call oom-killer at el, return immediately */
2217	if (!oom_check)
2218		return CHARGE_NOMEM;
2219	/* check OOM */
2220	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2221		return CHARGE_OOM_DIE;
2222
2223	return CHARGE_RETRY;
2224}
2225
2226/*
2227 * __mem_cgroup_try_charge() does
2228 * 1. detect memcg to be charged against from passed *mm and *ptr,
2229 * 2. update res_counter
2230 * 3. call memory reclaim if necessary.
2231 *
2232 * In some special case, if the task is fatal, fatal_signal_pending() or
2233 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2234 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2235 * as possible without any hazards. 2: all pages should have a valid
2236 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2237 * pointer, that is treated as a charge to root_mem_cgroup.
2238 *
2239 * So __mem_cgroup_try_charge() will return
2240 *  0       ...  on success, filling *ptr with a valid memcg pointer.
2241 *  -ENOMEM ...  charge failure because of resource limits.
2242 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2243 *
2244 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2245 * the oom-killer can be invoked.
2246 */
2247static int __mem_cgroup_try_charge(struct mm_struct *mm,
2248				   gfp_t gfp_mask,
2249				   unsigned int nr_pages,
2250				   struct mem_cgroup **ptr,
2251				   bool oom)
2252{
2253	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2254	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2255	struct mem_cgroup *memcg = NULL;
2256	int ret;
2257
2258	/*
2259	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2260	 * in system level. So, allow to go ahead dying process in addition to
2261	 * MEMDIE process.
2262	 */
2263	if (unlikely(test_thread_flag(TIF_MEMDIE)
2264		     || fatal_signal_pending(current)))
2265		goto bypass;
2266
2267	/*
2268	 * We always charge the cgroup the mm_struct belongs to.
2269	 * The mm_struct's mem_cgroup changes on task migration if the
2270	 * thread group leader migrates. It's possible that mm is not
2271	 * set, if so charge the init_mm (happens for pagecache usage).
2272	 */
2273	if (!*ptr && !mm)
2274		*ptr = root_mem_cgroup;
2275again:
2276	if (*ptr) { /* css should be a valid one */
2277		memcg = *ptr;
2278		VM_BUG_ON(css_is_removed(&memcg->css));
2279		if (mem_cgroup_is_root(memcg))
2280			goto done;
2281		if (nr_pages == 1 && consume_stock(memcg))
2282			goto done;
2283		css_get(&memcg->css);
2284	} else {
2285		struct task_struct *p;
 
 
2286
2287		rcu_read_lock();
2288		p = rcu_dereference(mm->owner);
2289		/*
2290		 * Because we don't have task_lock(), "p" can exit.
2291		 * In that case, "memcg" can point to root or p can be NULL with
2292		 * race with swapoff. Then, we have small risk of mis-accouning.
2293		 * But such kind of mis-account by race always happens because
2294		 * we don't have cgroup_mutex(). It's overkill and we allo that
2295		 * small race, here.
2296		 * (*) swapoff at el will charge against mm-struct not against
2297		 * task-struct. So, mm->owner can be NULL.
2298		 */
2299		memcg = mem_cgroup_from_task(p);
2300		if (!memcg)
2301			memcg = root_mem_cgroup;
2302		if (mem_cgroup_is_root(memcg)) {
2303			rcu_read_unlock();
2304			goto done;
2305		}
2306		if (nr_pages == 1 && consume_stock(memcg)) {
2307			/*
2308			 * It seems dagerous to access memcg without css_get().
2309			 * But considering how consume_stok works, it's not
2310			 * necessary. If consume_stock success, some charges
2311			 * from this memcg are cached on this cpu. So, we
2312			 * don't need to call css_get()/css_tryget() before
2313			 * calling consume_stock().
2314			 */
2315			rcu_read_unlock();
2316			goto done;
2317		}
2318		/* after here, we may be blocked. we need to get refcnt */
2319		if (!css_tryget(&memcg->css)) {
2320			rcu_read_unlock();
2321			goto again;
2322		}
2323		rcu_read_unlock();
2324	}
2325
 
 
 
 
 
 
 
 
 
2326	do {
2327		bool oom_check;
2328
2329		/* If killed, bypass charge */
2330		if (fatal_signal_pending(current)) {
2331			css_put(&memcg->css);
2332			goto bypass;
 
 
 
 
 
 
 
 
2333		}
2334
2335		oom_check = false;
2336		if (oom && !nr_oom_retries) {
2337			oom_check = true;
2338			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339		}
2340
2341		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2342		switch (ret) {
2343		case CHARGE_OK:
 
 
 
2344			break;
2345		case CHARGE_RETRY: /* not in OOM situation but retry */
2346			batch = nr_pages;
2347			css_put(&memcg->css);
2348			memcg = NULL;
2349			goto again;
2350		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2351			css_put(&memcg->css);
2352			goto nomem;
2353		case CHARGE_NOMEM: /* OOM routine works */
2354			if (!oom) {
2355				css_put(&memcg->css);
2356				goto nomem;
2357			}
2358			/* If oom, we never return -ENOMEM */
2359			nr_oom_retries--;
2360			break;
2361		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2362			css_put(&memcg->css);
2363			goto bypass;
2364		}
2365	} while (ret != CHARGE_OK);
2366
2367	if (batch > nr_pages)
2368		refill_stock(memcg, batch - nr_pages);
2369	css_put(&memcg->css);
2370done:
2371	*ptr = memcg;
2372	return 0;
2373nomem:
2374	*ptr = NULL;
2375	return -ENOMEM;
2376bypass:
2377	*ptr = root_mem_cgroup;
2378	return -EINTR;
2379}
2380
2381/*
2382 * Somemtimes we have to undo a charge we got by try_charge().
2383 * This function is for that and do uncharge, put css's refcnt.
2384 * gotten by try_charge().
2385 */
2386static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2387				       unsigned int nr_pages)
2388{
2389	if (!mem_cgroup_is_root(memcg)) {
2390		unsigned long bytes = nr_pages * PAGE_SIZE;
2391
2392		res_counter_uncharge(&memcg->res, bytes);
2393		if (do_swap_account)
2394			res_counter_uncharge(&memcg->memsw, bytes);
2395	}
2396}
2397
2398/*
2399 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2400 * This is useful when moving usage to parent cgroup.
2401 */
2402static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2403					unsigned int nr_pages)
2404{
2405	unsigned long bytes = nr_pages * PAGE_SIZE;
2406
2407	if (mem_cgroup_is_root(memcg))
2408		return;
2409
2410	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2411	if (do_swap_account)
2412		res_counter_uncharge_until(&memcg->memsw,
2413						memcg->memsw.parent, bytes);
2414}
 
2415
2416/*
2417 * A helper function to get mem_cgroup from ID. must be called under
2418 * rcu_read_lock(). The caller must check css_is_removed() or some if
2419 * it's concern. (dropping refcnt from swap can be called against removed
2420 * memcg.)
2421 */
2422static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2423{
2424	struct cgroup_subsys_state *css;
2425
2426	/* ID 0 is unused ID */
2427	if (!id)
2428		return NULL;
2429	css = css_lookup(&mem_cgroup_subsys, id);
2430	if (!css)
2431		return NULL;
2432	return container_of(css, struct mem_cgroup, css);
 
2433}
2434
2435struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436{
2437	struct mem_cgroup *memcg = NULL;
2438	struct page_cgroup *pc;
2439	unsigned short id;
2440	swp_entry_t ent;
2441
2442	VM_BUG_ON(!PageLocked(page));
 
 
 
 
 
2443
2444	pc = lookup_page_cgroup(page);
2445	lock_page_cgroup(pc);
2446	if (PageCgroupUsed(pc)) {
2447		memcg = pc->mem_cgroup;
2448		if (memcg && !css_tryget(&memcg->css))
2449			memcg = NULL;
2450	} else if (PageSwapCache(page)) {
2451		ent.val = page_private(page);
2452		id = lookup_swap_cgroup_id(ent);
2453		rcu_read_lock();
2454		memcg = mem_cgroup_lookup(id);
2455		if (memcg && !css_tryget(&memcg->css))
2456			memcg = NULL;
2457		rcu_read_unlock();
2458	}
2459	unlock_page_cgroup(pc);
2460	return memcg;
2461}
2462
2463static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464				       struct page *page,
2465				       unsigned int nr_pages,
2466				       enum charge_type ctype,
2467				       bool lrucare)
 
 
 
 
 
2468{
2469	struct page_cgroup *pc = lookup_page_cgroup(page);
2470	struct zone *uninitialized_var(zone);
2471	struct lruvec *lruvec;
2472	bool was_on_lru = false;
2473	bool anon;
2474
2475	lock_page_cgroup(pc);
2476	if (unlikely(PageCgroupUsed(pc))) {
2477		unlock_page_cgroup(pc);
2478		__mem_cgroup_cancel_charge(memcg, nr_pages);
2479		return;
2480	}
2481	/*
2482	 * we don't need page_cgroup_lock about tail pages, becase they are not
2483	 * accessed by any other context at this point.
2484	 */
2485
2486	/*
2487	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2488	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2489	 */
2490	if (lrucare) {
2491		zone = page_zone(page);
2492		spin_lock_irq(&zone->lru_lock);
2493		if (PageLRU(page)) {
2494			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2495			ClearPageLRU(page);
2496			del_page_from_lru_list(page, lruvec, page_lru(page));
2497			was_on_lru = true;
2498		}
 
 
 
2499	}
2500
2501	pc->mem_cgroup = memcg;
2502	/*
2503	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2504	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2505	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2506	 * before USED bit, we need memory barrier here.
2507	 * See mem_cgroup_add_lru_list(), etc.
2508 	 */
2509	smp_wmb();
2510	SetPageCgroupUsed(pc);
2511
2512	if (lrucare) {
2513		if (was_on_lru) {
2514			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2515			VM_BUG_ON(PageLRU(page));
2516			SetPageLRU(page);
2517			add_page_to_lru_list(page, lruvec, page_lru(page));
2518		}
2519		spin_unlock_irq(&zone->lru_lock);
2520	}
 
 
 
 
 
 
2521
2522	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2523		anon = true;
2524	else
2525		anon = false;
2526
2527	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2528	unlock_page_cgroup(pc);
2529
2530	/*
2531	 * "charge_statistics" updated event counter. Then, check it.
2532	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2533	 * if they exceeds softlimit.
2534	 */
2535	memcg_check_events(memcg, page);
2536}
 
2537
2538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
 
 
2539
2540#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547void mem_cgroup_split_huge_fixup(struct page *head)
2548{
2549	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550	struct page_cgroup *pc;
2551	int i;
2552
2553	if (mem_cgroup_disabled())
2554		return;
2555	for (i = 1; i < HPAGE_PMD_NR; i++) {
2556		pc = head_pc + i;
2557		pc->mem_cgroup = head_pc->mem_cgroup;
2558		smp_wmb();/* see __commit_charge() */
2559		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2560	}
2561}
2562#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2563
2564/**
2565 * mem_cgroup_move_account - move account of the page
2566 * @page: the page
2567 * @nr_pages: number of regular pages (>1 for huge pages)
2568 * @pc:	page_cgroup of the page.
2569 * @from: mem_cgroup which the page is moved from.
2570 * @to:	mem_cgroup which the page is moved to. @from != @to.
2571 *
2572 * The caller must confirm following.
2573 * - page is not on LRU (isolate_page() is useful.)
2574 * - compound_lock is held when nr_pages > 1
2575 *
2576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2577 * from old cgroup.
2578 */
2579static int mem_cgroup_move_account(struct page *page,
2580				   unsigned int nr_pages,
2581				   struct page_cgroup *pc,
2582				   struct mem_cgroup *from,
2583				   struct mem_cgroup *to)
2584{
2585	unsigned long flags;
2586	int ret;
2587	bool anon = PageAnon(page);
2588
2589	VM_BUG_ON(from == to);
2590	VM_BUG_ON(PageLRU(page));
2591	/*
2592	 * The page is isolated from LRU. So, collapse function
2593	 * will not handle this page. But page splitting can happen.
2594	 * Do this check under compound_page_lock(). The caller should
2595	 * hold it.
 
2596	 */
2597	ret = -EBUSY;
2598	if (nr_pages > 1 && !PageTransHuge(page))
2599		goto out;
2600
2601	lock_page_cgroup(pc);
 
 
 
2602
2603	ret = -EINVAL;
2604	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2605		goto unlock;
2606
2607	move_lock_mem_cgroup(from, &flags);
 
 
 
 
2608
2609	if (!anon && page_mapped(page)) {
2610		/* Update mapped_file data for mem_cgroup */
2611		preempt_disable();
2612		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2614		preempt_enable();
2615	}
2616	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2617
2618	/* caller should have done css_get */
2619	pc->mem_cgroup = to;
2620	mem_cgroup_charge_statistics(to, anon, nr_pages);
2621	/*
2622	 * We charges against "to" which may not have any tasks. Then, "to"
2623	 * can be under rmdir(). But in current implementation, caller of
2624	 * this function is just force_empty() and move charge, so it's
2625	 * guaranteed that "to" is never removed. So, we don't check rmdir
2626	 * status here.
2627	 */
2628	move_unlock_mem_cgroup(from, &flags);
2629	ret = 0;
2630unlock:
2631	unlock_page_cgroup(pc);
2632	/*
2633	 * check events
2634	 */
2635	memcg_check_events(to, page);
2636	memcg_check_events(from, page);
2637out:
2638	return ret;
2639}
2640
2641/*
2642 * move charges to its parent.
2643 */
2644
2645static int mem_cgroup_move_parent(struct page *page,
2646				  struct page_cgroup *pc,
2647				  struct mem_cgroup *child,
2648				  gfp_t gfp_mask)
2649{
2650	struct mem_cgroup *parent;
2651	unsigned int nr_pages;
2652	unsigned long uninitialized_var(flags);
2653	int ret;
2654
2655	/* Is ROOT ? */
2656	if (mem_cgroup_is_root(child))
2657		return -EINVAL;
 
2658
2659	ret = -EBUSY;
2660	if (!get_page_unless_zero(page))
2661		goto out;
2662	if (isolate_lru_page(page))
2663		goto put;
2664
2665	nr_pages = hpage_nr_pages(page);
2666
2667	parent = parent_mem_cgroup(child);
2668	/*
2669	 * If no parent, move charges to root cgroup.
 
2670	 */
2671	if (!parent)
2672		parent = root_mem_cgroup;
2673
2674	if (nr_pages > 1)
2675		flags = compound_lock_irqsave(page);
2676
2677	ret = mem_cgroup_move_account(page, nr_pages,
2678				pc, child, parent);
2679	if (!ret)
2680		__mem_cgroup_cancel_local_charge(child, nr_pages);
2681
2682	if (nr_pages > 1)
2683		compound_unlock_irqrestore(page, flags);
2684	putback_lru_page(page);
2685put:
2686	put_page(page);
2687out:
2688	return ret;
2689}
2690
2691/*
2692 * Charge the memory controller for page usage.
2693 * Return
2694 * 0 if the charge was successful
2695 * < 0 if the cgroup is over its limit
2696 */
2697static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2698				gfp_t gfp_mask, enum charge_type ctype)
2699{
2700	struct mem_cgroup *memcg = NULL;
2701	unsigned int nr_pages = 1;
2702	bool oom = true;
2703	int ret;
2704
2705	if (PageTransHuge(page)) {
2706		nr_pages <<= compound_order(page);
2707		VM_BUG_ON(!PageTransHuge(page));
2708		/*
2709		 * Never OOM-kill a process for a huge page.  The
2710		 * fault handler will fall back to regular pages.
2711		 */
2712		oom = false;
2713	}
2714
2715	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716	if (ret == -ENOMEM)
2717		return ret;
2718	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2719	return 0;
2720}
2721
2722int mem_cgroup_newpage_charge(struct page *page,
2723			      struct mm_struct *mm, gfp_t gfp_mask)
2724{
2725	if (mem_cgroup_disabled())
2726		return 0;
2727	VM_BUG_ON(page_mapped(page));
2728	VM_BUG_ON(page->mapping && !PageAnon(page));
2729	VM_BUG_ON(!mm);
2730	return mem_cgroup_charge_common(page, mm, gfp_mask,
2731					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2732}
2733
2734static void
2735__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2736					enum charge_type ctype);
 
 
 
 
 
 
2737
2738int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2739				gfp_t gfp_mask)
2740{
2741	struct mem_cgroup *memcg = NULL;
2742	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2743	int ret;
2744
2745	if (mem_cgroup_disabled())
2746		return 0;
2747	if (PageCompound(page))
2748		return 0;
2749
2750	if (unlikely(!mm))
2751		mm = &init_mm;
2752	if (!page_is_file_cache(page))
2753		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2754
2755	if (!PageSwapCache(page))
2756		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2757	else { /* page is swapcache/shmem */
2758		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2759		if (!ret)
2760			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2761	}
2762	return ret;
2763}
2764
2765/*
2766 * While swap-in, try_charge -> commit or cancel, the page is locked.
2767 * And when try_charge() successfully returns, one refcnt to memcg without
2768 * struct page_cgroup is acquired. This refcnt will be consumed by
2769 * "commit()" or removed by "cancel()"
2770 */
2771int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2772				 struct page *page,
2773				 gfp_t mask, struct mem_cgroup **memcgp)
 
2774{
 
2775	struct mem_cgroup *memcg;
2776	int ret;
2777
2778	*memcgp = NULL;
2779
2780	if (mem_cgroup_disabled())
2781		return 0;
 
 
 
 
2782
2783	if (!do_swap_account)
2784		goto charge_cur_mm;
2785	/*
2786	 * A racing thread's fault, or swapoff, may have already updated
2787	 * the pte, and even removed page from swap cache: in those cases
2788	 * do_swap_page()'s pte_same() test will fail; but there's also a
2789	 * KSM case which does need to charge the page.
2790	 */
2791	if (!PageSwapCache(page))
2792		goto charge_cur_mm;
2793	memcg = try_get_mem_cgroup_from_page(page);
2794	if (!memcg)
2795		goto charge_cur_mm;
2796	*memcgp = memcg;
2797	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2798	css_put(&memcg->css);
2799	if (ret == -EINTR)
2800		ret = 0;
2801	return ret;
2802charge_cur_mm:
2803	if (unlikely(!mm))
2804		mm = &init_mm;
2805	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2806	if (ret == -EINTR)
2807		ret = 0;
2808	return ret;
2809}
2810
2811static void
2812__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2813					enum charge_type ctype)
 
 
 
 
 
 
2814{
2815	if (mem_cgroup_disabled())
2816		return;
2817	if (!memcg)
2818		return;
2819	cgroup_exclude_rmdir(&memcg->css);
2820
2821	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2822	/*
2823	 * Now swap is on-memory. This means this page may be
2824	 * counted both as mem and swap....double count.
2825	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2826	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2827	 * may call delete_from_swap_cache() before reach here.
2828	 */
2829	if (do_swap_account && PageSwapCache(page)) {
2830		swp_entry_t ent = {.val = page_private(page)};
2831		mem_cgroup_uncharge_swap(ent);
2832	}
2833	/*
2834	 * At swapin, we may charge account against cgroup which has no tasks.
2835	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2836	 * In that case, we need to call pre_destroy() again. check it here.
2837	 */
2838	cgroup_release_and_wakeup_rmdir(&memcg->css);
2839}
2840
2841void mem_cgroup_commit_charge_swapin(struct page *page,
2842				     struct mem_cgroup *memcg)
 
 
 
 
2843{
2844	__mem_cgroup_commit_charge_swapin(page, memcg,
2845					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2846}
2847
2848void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2849{
2850	if (mem_cgroup_disabled())
2851		return;
2852	if (!memcg)
2853		return;
2854	__mem_cgroup_cancel_charge(memcg, 1);
 
 
2855}
2856
2857static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2858				   unsigned int nr_pages,
2859				   const enum charge_type ctype)
2860{
2861	struct memcg_batch_info *batch = NULL;
2862	bool uncharge_memsw = true;
2863
2864	/* If swapout, usage of swap doesn't decrease */
2865	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2866		uncharge_memsw = false;
2867
2868	batch = &current->memcg_batch;
2869	/*
2870	 * In usual, we do css_get() when we remember memcg pointer.
2871	 * But in this case, we keep res->usage until end of a series of
2872	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2873	 */
2874	if (!batch->memcg)
2875		batch->memcg = memcg;
2876	/*
2877	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2878	 * In those cases, all pages freed continuously can be expected to be in
2879	 * the same cgroup and we have chance to coalesce uncharges.
2880	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2881	 * because we want to do uncharge as soon as possible.
2882	 */
2883
2884	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2885		goto direct_uncharge;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2886
2887	if (nr_pages > 1)
2888		goto direct_uncharge;
2889
2890	/*
2891	 * In typical case, batch->memcg == mem. This means we can
2892	 * merge a series of uncharges to an uncharge of res_counter.
2893	 * If not, we uncharge res_counter ony by one.
2894	 */
2895	if (batch->memcg != memcg)
2896		goto direct_uncharge;
2897	/* remember freed charge and uncharge it later */
2898	batch->nr_pages++;
2899	if (uncharge_memsw)
2900		batch->memsw_nr_pages++;
2901	return;
2902direct_uncharge:
2903	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2904	if (uncharge_memsw)
2905		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2906	if (unlikely(batch->memcg != memcg))
2907		memcg_oom_recover(memcg);
2908}
2909
2910/*
2911 * uncharge if !page_mapped(page)
2912 */
2913static struct mem_cgroup *
2914__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2915{
2916	struct mem_cgroup *memcg = NULL;
2917	unsigned int nr_pages = 1;
2918	struct page_cgroup *pc;
2919	bool anon;
2920
2921	if (mem_cgroup_disabled())
2922		return NULL;
 
 
2923
2924	if (PageSwapCache(page))
2925		return NULL;
2926
2927	if (PageTransHuge(page)) {
2928		nr_pages <<= compound_order(page);
2929		VM_BUG_ON(!PageTransHuge(page));
2930	}
2931	/*
2932	 * Check if our page_cgroup is valid
2933	 */
2934	pc = lookup_page_cgroup(page);
2935	if (unlikely(!PageCgroupUsed(pc)))
2936		return NULL;
2937
2938	lock_page_cgroup(pc);
 
 
2939
2940	memcg = pc->mem_cgroup;
 
2941
2942	if (!PageCgroupUsed(pc))
2943		goto unlock_out;
 
2944
2945	anon = PageAnon(page);
 
2946
2947	switch (ctype) {
2948	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2949		/*
2950		 * Generally PageAnon tells if it's the anon statistics to be
2951		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2952		 * used before page reached the stage of being marked PageAnon.
 
 
 
 
 
2953		 */
2954		anon = true;
2955		/* fallthrough */
2956	case MEM_CGROUP_CHARGE_TYPE_DROP:
2957		/* See mem_cgroup_prepare_migration() */
2958		if (page_mapped(page) || PageCgroupMigration(pc))
2959			goto unlock_out;
2960		break;
2961	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962		if (!PageAnon(page)) {	/* Shared memory */
2963			if (page->mapping && !page_is_file_cache(page))
2964				goto unlock_out;
2965		} else if (page_mapped(page)) /* Anon */
2966				goto unlock_out;
2967		break;
2968	default:
2969		break;
2970	}
2971
2972	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2973
2974	ClearPageCgroupUsed(pc);
2975	/*
2976	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977	 * freed from LRU. This is safe because uncharged page is expected not
2978	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979	 * special functions.
2980	 */
2981
2982	unlock_page_cgroup(pc);
2983	/*
2984	 * even after unlock, we have memcg->res.usage here and this memcg
2985	 * will never be freed.
2986	 */
2987	memcg_check_events(memcg, page);
2988	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989		mem_cgroup_swap_statistics(memcg, true);
2990		mem_cgroup_get(memcg);
 
 
 
 
2991	}
2992	if (!mem_cgroup_is_root(memcg))
2993		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994
2995	return memcg;
2996
2997unlock_out:
2998	unlock_page_cgroup(pc);
2999	return NULL;
3000}
3001
3002void mem_cgroup_uncharge_page(struct page *page)
 
3003{
3004	/* early check. */
3005	if (page_mapped(page))
3006		return;
3007	VM_BUG_ON(page->mapping && !PageAnon(page));
3008	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 
 
 
 
 
 
 
 
 
3009}
3010
3011void mem_cgroup_uncharge_cache_page(struct page *page)
 
3012{
3013	VM_BUG_ON(page_mapped(page));
3014	VM_BUG_ON(page->mapping);
3015	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016}
3017
3018/*
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3024 */
 
 
3025
3026void mem_cgroup_uncharge_start(void)
3027{
3028	current->memcg_batch.do_batch++;
3029	/* We can do nest. */
3030	if (current->memcg_batch.do_batch == 1) {
3031		current->memcg_batch.memcg = NULL;
3032		current->memcg_batch.nr_pages = 0;
3033		current->memcg_batch.memsw_nr_pages = 0;
3034	}
 
 
 
 
 
3035}
3036
3037void mem_cgroup_uncharge_end(void)
3038{
3039	struct memcg_batch_info *batch = &current->memcg_batch;
 
3040
3041	if (!batch->do_batch)
3042		return;
3043
3044	batch->do_batch--;
3045	if (batch->do_batch) /* If stacked, do nothing. */
3046		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3047
3048	if (!batch->memcg)
3049		return;
3050	/*
3051	 * This "batch->memcg" is valid without any css_get/put etc...
3052	 * bacause we hide charges behind us.
3053	 */
3054	if (batch->nr_pages)
3055		res_counter_uncharge(&batch->memcg->res,
3056				     batch->nr_pages * PAGE_SIZE);
3057	if (batch->memsw_nr_pages)
3058		res_counter_uncharge(&batch->memcg->memsw,
3059				     batch->memsw_nr_pages * PAGE_SIZE);
3060	memcg_oom_recover(batch->memcg);
3061	/* forget this pointer (for sanity check) */
3062	batch->memcg = NULL;
3063}
3064
3065#ifdef CONFIG_SWAP
3066/*
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3069 */
3070void
3071mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072{
3073	struct mem_cgroup *memcg;
3074	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075
3076	if (!swapout) /* this was a swap cache but the swap is unused ! */
3077		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078
3079	memcg = __mem_cgroup_uncharge_common(page, ctype);
3080
3081	/*
3082	 * record memcg information,  if swapout && memcg != NULL,
3083	 * mem_cgroup_get() was called in uncharge().
3084	 */
3085	if (do_swap_account && swapout && memcg)
3086		swap_cgroup_record(ent, css_id(&memcg->css));
3087}
3088#endif
3089
3090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091/*
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3094 */
3095void mem_cgroup_uncharge_swap(swp_entry_t ent)
3096{
3097	struct mem_cgroup *memcg;
3098	unsigned short id;
3099
3100	if (!do_swap_account)
3101		return;
3102
3103	id = swap_cgroup_record(ent, 0);
3104	rcu_read_lock();
3105	memcg = mem_cgroup_lookup(id);
3106	if (memcg) {
3107		/*
3108		 * We uncharge this because swap is freed.
3109		 * This memcg can be obsolete one. We avoid calling css_tryget
3110		 */
3111		if (!mem_cgroup_is_root(memcg))
3112			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113		mem_cgroup_swap_statistics(memcg, false);
3114		mem_cgroup_put(memcg);
3115	}
3116	rcu_read_unlock();
3117}
3118
 
3119/**
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from:  mem_cgroup which the entry is moved from
3123 * @to:  mem_cgroup which the entry is moved to
3124 *
3125 * It succeeds only when the swap_cgroup's record for this entry is the same
3126 * as the mem_cgroup's id of @from.
3127 *
3128 * Returns 0 on success, -EINVAL on failure.
3129 *
3130 * The caller must have charged to @to, IOW, called res_counter_charge() about
3131 * both res and memsw, and called css_get().
3132 */
3133static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134				struct mem_cgroup *from, struct mem_cgroup *to)
3135{
3136	unsigned short old_id, new_id;
3137
3138	old_id = css_id(&from->css);
3139	new_id = css_id(&to->css);
3140
3141	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3142		mem_cgroup_swap_statistics(from, false);
3143		mem_cgroup_swap_statistics(to, true);
3144		/*
3145		 * This function is only called from task migration context now.
3146		 * It postpones res_counter and refcount handling till the end
3147		 * of task migration(mem_cgroup_clear_mc()) for performance
3148		 * improvement. But we cannot postpone mem_cgroup_get(to)
3149		 * because if the process that has been moved to @to does
3150		 * swap-in, the refcount of @to might be decreased to 0.
3151		 */
3152		mem_cgroup_get(to);
3153		return 0;
3154	}
3155	return -EINVAL;
3156}
3157#else
3158static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159				struct mem_cgroup *from, struct mem_cgroup *to)
3160{
3161	return -EINVAL;
3162}
3163#endif
3164
3165/*
3166 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3167 * page belongs to.
3168 */
3169int mem_cgroup_prepare_migration(struct page *page,
3170	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171{
3172	struct mem_cgroup *memcg = NULL;
3173	struct page_cgroup *pc;
3174	enum charge_type ctype;
3175	int ret = 0;
3176
3177	*memcgp = NULL;
3178
3179	VM_BUG_ON(PageTransHuge(page));
3180	if (mem_cgroup_disabled())
3181		return 0;
3182
3183	pc = lookup_page_cgroup(page);
3184	lock_page_cgroup(pc);
3185	if (PageCgroupUsed(pc)) {
3186		memcg = pc->mem_cgroup;
3187		css_get(&memcg->css);
3188		/*
3189		 * At migrating an anonymous page, its mapcount goes down
3190		 * to 0 and uncharge() will be called. But, even if it's fully
3191		 * unmapped, migration may fail and this page has to be
3192		 * charged again. We set MIGRATION flag here and delay uncharge
3193		 * until end_migration() is called
3194		 *
3195		 * Corner Case Thinking
3196		 * A)
3197		 * When the old page was mapped as Anon and it's unmap-and-freed
3198		 * while migration was ongoing.
3199		 * If unmap finds the old page, uncharge() of it will be delayed
3200		 * until end_migration(). If unmap finds a new page, it's
3201		 * uncharged when it make mapcount to be 1->0. If unmap code
3202		 * finds swap_migration_entry, the new page will not be mapped
3203		 * and end_migration() will find it(mapcount==0).
3204		 *
3205		 * B)
3206		 * When the old page was mapped but migraion fails, the kernel
3207		 * remaps it. A charge for it is kept by MIGRATION flag even
3208		 * if mapcount goes down to 0. We can do remap successfully
3209		 * without charging it again.
3210		 *
3211		 * C)
3212		 * The "old" page is under lock_page() until the end of
3213		 * migration, so, the old page itself will not be swapped-out.
3214		 * If the new page is swapped out before end_migraton, our
3215		 * hook to usual swap-out path will catch the event.
3216		 */
3217		if (PageAnon(page))
3218			SetPageCgroupMigration(pc);
3219	}
3220	unlock_page_cgroup(pc);
3221	/*
3222	 * If the page is not charged at this point,
3223	 * we return here.
3224	 */
3225	if (!memcg)
3226		return 0;
3227
3228	*memcgp = memcg;
3229	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230	css_put(&memcg->css);/* drop extra refcnt */
3231	if (ret) {
3232		if (PageAnon(page)) {
3233			lock_page_cgroup(pc);
3234			ClearPageCgroupMigration(pc);
3235			unlock_page_cgroup(pc);
3236			/*
3237			 * The old page may be fully unmapped while we kept it.
3238			 */
3239			mem_cgroup_uncharge_page(page);
3240		}
3241		/* we'll need to revisit this error code (we have -EINTR) */
3242		return -ENOMEM;
3243	}
3244	/*
3245	 * We charge new page before it's used/mapped. So, even if unlock_page()
3246	 * is called before end_migration, we can catch all events on this new
3247	 * page. In the case new page is migrated but not remapped, new page's
3248	 * mapcount will be finally 0 and we call uncharge in end_migration().
3249	 */
3250	if (PageAnon(page))
3251		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3252	else if (page_is_file_cache(page))
3253		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3254	else
3255		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3257	return ret;
3258}
3259
3260/* remove redundant charge if migration failed*/
3261void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262	struct page *oldpage, struct page *newpage, bool migration_ok)
3263{
3264	struct page *used, *unused;
3265	struct page_cgroup *pc;
3266	bool anon;
3267
3268	if (!memcg)
3269		return;
3270	/* blocks rmdir() */
3271	cgroup_exclude_rmdir(&memcg->css);
3272	if (!migration_ok) {
3273		used = oldpage;
3274		unused = newpage;
3275	} else {
3276		used = newpage;
3277		unused = oldpage;
3278	}
3279	/*
3280	 * We disallowed uncharge of pages under migration because mapcount
3281	 * of the page goes down to zero, temporarly.
3282	 * Clear the flag and check the page should be charged.
3283	 */
3284	pc = lookup_page_cgroup(oldpage);
3285	lock_page_cgroup(pc);
3286	ClearPageCgroupMigration(pc);
3287	unlock_page_cgroup(pc);
3288	anon = PageAnon(used);
3289	__mem_cgroup_uncharge_common(unused,
3290		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3291		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3292
3293	/*
3294	 * If a page is a file cache, radix-tree replacement is very atomic
3295	 * and we can skip this check. When it was an Anon page, its mapcount
3296	 * goes down to 0. But because we added MIGRATION flage, it's not
3297	 * uncharged yet. There are several case but page->mapcount check
3298	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3299	 * check. (see prepare_charge() also)
3300	 */
3301	if (anon)
3302		mem_cgroup_uncharge_page(used);
3303	/*
3304	 * At migration, we may charge account against cgroup which has no
3305	 * tasks.
3306	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3307	 * In that case, we need to call pre_destroy() again. check it here.
3308	 */
3309	cgroup_release_and_wakeup_rmdir(&memcg->css);
3310}
3311
3312/*
3313 * At replace page cache, newpage is not under any memcg but it's on
3314 * LRU. So, this function doesn't touch res_counter but handles LRU
3315 * in correct way. Both pages are locked so we cannot race with uncharge.
3316 */
3317void mem_cgroup_replace_page_cache(struct page *oldpage,
3318				  struct page *newpage)
3319{
3320	struct mem_cgroup *memcg = NULL;
3321	struct page_cgroup *pc;
3322	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323
3324	if (mem_cgroup_disabled())
3325		return;
3326
3327	pc = lookup_page_cgroup(oldpage);
3328	/* fix accounting on old pages */
3329	lock_page_cgroup(pc);
3330	if (PageCgroupUsed(pc)) {
3331		memcg = pc->mem_cgroup;
3332		mem_cgroup_charge_statistics(memcg, false, -1);
3333		ClearPageCgroupUsed(pc);
3334	}
3335	unlock_page_cgroup(pc);
3336
3337	/*
3338	 * When called from shmem_replace_page(), in some cases the
3339	 * oldpage has already been charged, and in some cases not.
3340	 */
3341	if (!memcg)
3342		return;
3343
3344	if (PageSwapBacked(oldpage))
3345		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346
3347	/*
3348	 * Even if newpage->mapping was NULL before starting replacement,
3349	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3350	 * LRU while we overwrite pc->mem_cgroup.
3351	 */
3352	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3353}
3354
3355#ifdef CONFIG_DEBUG_VM
3356static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3357{
3358	struct page_cgroup *pc;
3359
3360	pc = lookup_page_cgroup(page);
3361	/*
3362	 * Can be NULL while feeding pages into the page allocator for
3363	 * the first time, i.e. during boot or memory hotplug;
3364	 * or when mem_cgroup_disabled().
3365	 */
3366	if (likely(pc) && PageCgroupUsed(pc))
3367		return pc;
3368	return NULL;
3369}
3370
3371bool mem_cgroup_bad_page_check(struct page *page)
3372{
3373	if (mem_cgroup_disabled())
3374		return false;
3375
3376	return lookup_page_cgroup_used(page) != NULL;
3377}
3378
3379void mem_cgroup_print_bad_page(struct page *page)
3380{
3381	struct page_cgroup *pc;
3382
3383	pc = lookup_page_cgroup_used(page);
3384	if (pc) {
3385		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386		       pc, pc->flags, pc->mem_cgroup);
3387	}
3388}
3389#endif
3390
3391static DEFINE_MUTEX(set_limit_mutex);
3392
3393static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3394				unsigned long long val)
3395{
3396	int retry_count;
3397	u64 memswlimit, memlimit;
3398	int ret = 0;
3399	int children = mem_cgroup_count_children(memcg);
3400	u64 curusage, oldusage;
3401	int enlarge;
3402
3403	/*
3404	 * For keeping hierarchical_reclaim simple, how long we should retry
3405	 * is depends on callers. We set our retry-count to be function
3406	 * of # of children which we should visit in this loop.
3407	 */
3408	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3409
3410	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3411
3412	enlarge = 0;
3413	while (retry_count) {
3414		if (signal_pending(current)) {
3415			ret = -EINTR;
3416			break;
3417		}
 
 
3418		/*
3419		 * Rather than hide all in some function, I do this in
3420		 * open coded manner. You see what this really does.
3421		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3422		 */
3423		mutex_lock(&set_limit_mutex);
3424		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3425		if (memswlimit < val) {
 
3426			ret = -EINVAL;
3427			mutex_unlock(&set_limit_mutex);
3428			break;
3429		}
3430
3431		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3432		if (memlimit < val)
3433			enlarge = 1;
3434
3435		ret = res_counter_set_limit(&memcg->res, val);
3436		if (!ret) {
3437			if (memswlimit == val)
3438				memcg->memsw_is_minimum = true;
3439			else
3440				memcg->memsw_is_minimum = false;
3441		}
3442		mutex_unlock(&set_limit_mutex);
3443
3444		if (!ret)
3445			break;
3446
3447		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3448				   MEM_CGROUP_RECLAIM_SHRINK);
3449		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3450		/* Usage is reduced ? */
3451  		if (curusage >= oldusage)
3452			retry_count--;
3453		else
3454			oldusage = curusage;
3455	}
3456	if (!ret && enlarge)
3457		memcg_oom_recover(memcg);
3458
3459	return ret;
3460}
3461
3462static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3463					unsigned long long val)
3464{
3465	int retry_count;
3466	u64 memlimit, memswlimit, oldusage, curusage;
3467	int children = mem_cgroup_count_children(memcg);
3468	int ret = -EBUSY;
3469	int enlarge = 0;
3470
3471	/* see mem_cgroup_resize_res_limit */
3472 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3473	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474	while (retry_count) {
3475		if (signal_pending(current)) {
3476			ret = -EINTR;
3477			break;
3478		}
3479		/*
3480		 * Rather than hide all in some function, I do this in
3481		 * open coded manner. You see what this really does.
3482		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3483		 */
3484		mutex_lock(&set_limit_mutex);
3485		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486		if (memlimit > val) {
3487			ret = -EINVAL;
3488			mutex_unlock(&set_limit_mutex);
3489			break;
3490		}
3491		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492		if (memswlimit < val)
3493			enlarge = 1;
3494		ret = res_counter_set_limit(&memcg->memsw, val);
3495		if (!ret) {
3496			if (memlimit == val)
3497				memcg->memsw_is_minimum = true;
3498			else
3499				memcg->memsw_is_minimum = false;
3500		}
3501		mutex_unlock(&set_limit_mutex);
3502
3503		if (!ret)
3504			break;
3505
3506		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3507				   MEM_CGROUP_RECLAIM_NOSWAP |
3508				   MEM_CGROUP_RECLAIM_SHRINK);
3509		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3510		/* Usage is reduced ? */
3511		if (curusage >= oldusage)
3512			retry_count--;
3513		else
3514			oldusage = curusage;
3515	}
3516	if (!ret && enlarge)
3517		memcg_oom_recover(memcg);
 
3518	return ret;
3519}
3520
3521unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3522					    gfp_t gfp_mask,
3523					    unsigned long *total_scanned)
3524{
3525	unsigned long nr_reclaimed = 0;
3526	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3527	unsigned long reclaimed;
3528	int loop = 0;
3529	struct mem_cgroup_tree_per_zone *mctz;
3530	unsigned long long excess;
3531	unsigned long nr_scanned;
3532
3533	if (order > 0)
3534		return 0;
3535
3536	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 
 
 
 
 
 
 
 
 
3537	/*
3538	 * This loop can run a while, specially if mem_cgroup's continuously
3539	 * keep exceeding their soft limit and putting the system under
3540	 * pressure
3541	 */
3542	do {
3543		if (next_mz)
3544			mz = next_mz;
3545		else
3546			mz = mem_cgroup_largest_soft_limit_node(mctz);
3547		if (!mz)
3548			break;
3549
3550		nr_scanned = 0;
3551		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3552						    gfp_mask, &nr_scanned);
3553		nr_reclaimed += reclaimed;
3554		*total_scanned += nr_scanned;
3555		spin_lock(&mctz->lock);
 
3556
3557		/*
3558		 * If we failed to reclaim anything from this memory cgroup
3559		 * it is time to move on to the next cgroup
3560		 */
3561		next_mz = NULL;
3562		if (!reclaimed) {
3563			do {
3564				/*
3565				 * Loop until we find yet another one.
3566				 *
3567				 * By the time we get the soft_limit lock
3568				 * again, someone might have aded the
3569				 * group back on the RB tree. Iterate to
3570				 * make sure we get a different mem.
3571				 * mem_cgroup_largest_soft_limit_node returns
3572				 * NULL if no other cgroup is present on
3573				 * the tree
3574				 */
3575				next_mz =
3576				__mem_cgroup_largest_soft_limit_node(mctz);
3577				if (next_mz == mz)
3578					css_put(&next_mz->memcg->css);
3579				else /* next_mz == NULL or other memcg */
3580					break;
3581			} while (1);
3582		}
3583		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3584		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3585		/*
3586		 * One school of thought says that we should not add
3587		 * back the node to the tree if reclaim returns 0.
3588		 * But our reclaim could return 0, simply because due
3589		 * to priority we are exposing a smaller subset of
3590		 * memory to reclaim from. Consider this as a longer
3591		 * term TODO.
3592		 */
3593		/* If excess == 0, no tree ops */
3594		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3595		spin_unlock(&mctz->lock);
3596		css_put(&mz->memcg->css);
3597		loop++;
3598		/*
3599		 * Could not reclaim anything and there are no more
3600		 * mem cgroups to try or we seem to be looping without
3601		 * reclaiming anything.
3602		 */
3603		if (!nr_reclaimed &&
3604			(next_mz == NULL ||
3605			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3606			break;
3607	} while (!nr_reclaimed);
3608	if (next_mz)
3609		css_put(&next_mz->memcg->css);
3610	return nr_reclaimed;
3611}
3612
3613/*
3614 * This routine traverse page_cgroup in given list and drop them all.
3615 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 
3616 */
3617static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3618				int node, int zid, enum lru_list lru)
3619{
3620	struct mem_cgroup_per_zone *mz;
3621	unsigned long flags, loop;
3622	struct list_head *list;
3623	struct page *busy;
3624	struct zone *zone;
3625	int ret = 0;
3626
3627	zone = &NODE_DATA(node)->node_zones[zid];
3628	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3629	list = &mz->lruvec.lists[lru];
3630
3631	loop = mz->lru_size[lru];
3632	/* give some margin against EBUSY etc...*/
3633	loop += 256;
3634	busy = NULL;
3635	while (loop--) {
3636		struct page_cgroup *pc;
3637		struct page *page;
3638
3639		ret = 0;
3640		spin_lock_irqsave(&zone->lru_lock, flags);
3641		if (list_empty(list)) {
3642			spin_unlock_irqrestore(&zone->lru_lock, flags);
3643			break;
3644		}
3645		page = list_entry(list->prev, struct page, lru);
3646		if (busy == page) {
3647			list_move(&page->lru, list);
3648			busy = NULL;
3649			spin_unlock_irqrestore(&zone->lru_lock, flags);
3650			continue;
3651		}
3652		spin_unlock_irqrestore(&zone->lru_lock, flags);
3653
3654		pc = lookup_page_cgroup(page);
3655
3656		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3657		if (ret == -ENOMEM || ret == -EINTR)
3658			break;
3659
3660		if (ret == -EBUSY || ret == -EINVAL) {
3661			/* found lock contention or "pc" is obsolete. */
3662			busy = page;
3663			cond_resched();
3664		} else
3665			busy = NULL;
3666	}
3667
3668	if (!ret && !list_empty(list))
3669		return -EBUSY;
3670	return ret;
3671}
3672
3673/*
3674 * make mem_cgroup's charge to be 0 if there is no task.
3675 * This enables deleting this mem_cgroup.
3676 */
3677static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3678{
3679	int ret;
3680	int node, zid, shrink;
3681	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3682	struct cgroup *cgrp = memcg->css.cgroup;
3683
3684	css_get(&memcg->css);
3685
3686	shrink = 0;
3687	/* should free all ? */
3688	if (free_all)
3689		goto try_to_free;
3690move_account:
3691	do {
3692		ret = -EBUSY;
3693		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3694			goto out;
3695		ret = -EINTR;
3696		if (signal_pending(current))
3697			goto out;
3698		/* This is for making all *used* pages to be on LRU. */
3699		lru_add_drain_all();
3700		drain_all_stock_sync(memcg);
3701		ret = 0;
3702		mem_cgroup_start_move(memcg);
3703		for_each_node_state(node, N_HIGH_MEMORY) {
3704			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3705				enum lru_list lru;
3706				for_each_lru(lru) {
3707					ret = mem_cgroup_force_empty_list(memcg,
3708							node, zid, lru);
3709					if (ret)
3710						break;
3711				}
3712			}
3713			if (ret)
3714				break;
3715		}
3716		mem_cgroup_end_move(memcg);
3717		memcg_oom_recover(memcg);
3718		/* it seems parent cgroup doesn't have enough mem */
3719		if (ret == -ENOMEM)
3720			goto try_to_free;
3721		cond_resched();
3722	/* "ret" should also be checked to ensure all lists are empty. */
3723	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3724out:
3725	css_put(&memcg->css);
3726	return ret;
3727
3728try_to_free:
3729	/* returns EBUSY if there is a task or if we come here twice. */
3730	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3731		ret = -EBUSY;
3732		goto out;
3733	}
3734	/* we call try-to-free pages for make this cgroup empty */
3735	lru_add_drain_all();
3736	/* try to free all pages in this cgroup */
3737	shrink = 1;
3738	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3739		int progress;
3740
3741		if (signal_pending(current)) {
3742			ret = -EINTR;
3743			goto out;
3744		}
3745		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3746						false);
3747		if (!progress) {
3748			nr_retries--;
3749			/* maybe some writeback is necessary */
3750			congestion_wait(BLK_RW_ASYNC, HZ/10);
3751		}
3752
3753	}
3754	lru_add_drain();
3755	/* try move_account...there may be some *locked* pages. */
3756	goto move_account;
3757}
3758
3759static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 
 
3760{
3761	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
 
 
 
 
3762}
3763
 
 
 
 
 
3764
3765static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 
3766{
3767	return mem_cgroup_from_cont(cont)->use_hierarchy;
 
 
 
 
 
 
 
3768}
3769
3770static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3771					u64 val)
3772{
3773	int retval = 0;
3774	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3775	struct cgroup *parent = cont->parent;
3776	struct mem_cgroup *parent_memcg = NULL;
3777
3778	if (parent)
3779		parent_memcg = mem_cgroup_from_cont(parent);
3780
3781	cgroup_lock();
3782	/*
3783	 * If parent's use_hierarchy is set, we can't make any modifications
3784	 * in the child subtrees. If it is unset, then the change can
3785	 * occur, provided the current cgroup has no children.
3786	 *
3787	 * For the root cgroup, parent_mem is NULL, we allow value to be
3788	 * set if there are no children.
3789	 */
3790	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3791				(val == 1 || val == 0)) {
3792		if (list_empty(&cont->children))
3793			memcg->use_hierarchy = val;
3794		else
3795			retval = -EBUSY;
3796	} else
3797		retval = -EINVAL;
3798	cgroup_unlock();
3799
3800	return retval;
3801}
3802
 
 
 
 
 
 
 
3803
3804static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3805					       enum mem_cgroup_stat_index idx)
3806{
3807	struct mem_cgroup *iter;
3808	long val = 0;
3809
3810	/* Per-cpu values can be negative, use a signed accumulator */
3811	for_each_mem_cgroup_tree(iter, memcg)
3812		val += mem_cgroup_read_stat(iter, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
3813
3814	if (val < 0) /* race ? */
3815		val = 0;
3816	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3817}
3818
3819static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 
3820{
3821	u64 val;
 
 
 
 
 
 
 
3822
3823	if (!mem_cgroup_is_root(memcg)) {
3824		if (!swap)
3825			return res_counter_read_u64(&memcg->res, RES_USAGE);
3826		else
3827			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
 
 
 
3828	}
 
 
3829
3830	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3831	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3832
3833	if (swap)
3834		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3835
3836	return val << PAGE_SHIFT;
3837}
3838
3839static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3840			       struct file *file, char __user *buf,
3841			       size_t nbytes, loff_t *ppos)
3842{
3843	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844	char str[64];
3845	u64 val;
3846	int type, name, len;
 
 
3847
3848	type = MEMFILE_TYPE(cft->private);
3849	name = MEMFILE_ATTR(cft->private);
3850
3851	if (!do_swap_account && type == _MEMSWAP)
3852		return -EOPNOTSUPP;
 
3853
3854	switch (type) {
3855	case _MEM:
3856		if (name == RES_USAGE)
3857			val = mem_cgroup_usage(memcg, false);
3858		else
3859			val = res_counter_read_u64(&memcg->res, name);
3860		break;
3861	case _MEMSWAP:
3862		if (name == RES_USAGE)
3863			val = mem_cgroup_usage(memcg, true);
3864		else
3865			val = res_counter_read_u64(&memcg->memsw, name);
3866		break;
3867	default:
3868		BUG();
 
 
 
3869	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3870
3871	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3872	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
 
 
3873}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3874/*
3875 * The user of this function is...
3876 * RES_LIMIT.
3877 */
3878static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3879			    const char *buffer)
3880{
3881	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882	int type, name;
3883	unsigned long long val;
3884	int ret;
3885
3886	type = MEMFILE_TYPE(cft->private);
3887	name = MEMFILE_ATTR(cft->private);
 
 
3888
3889	if (!do_swap_account && type == _MEMSWAP)
3890		return -EOPNOTSUPP;
3891
3892	switch (name) {
3893	case RES_LIMIT:
3894		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3895			ret = -EINVAL;
3896			break;
3897		}
3898		/* This function does all necessary parse...reuse it */
3899		ret = res_counter_memparse_write_strategy(buffer, &val);
3900		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
3901			break;
3902		if (type == _MEM)
3903			ret = mem_cgroup_resize_limit(memcg, val);
3904		else
3905			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3906		break;
3907	case RES_SOFT_LIMIT:
3908		ret = res_counter_memparse_write_strategy(buffer, &val);
3909		if (ret)
3910			break;
3911		/*
3912		 * For memsw, soft limits are hard to implement in terms
3913		 * of semantics, for now, we support soft limits for
3914		 * control without swap
3915		 */
3916		if (type == _MEM)
3917			ret = res_counter_set_soft_limit(&memcg->res, val);
3918		else
3919			ret = -EINVAL;
3920		break;
3921	default:
3922		ret = -EINVAL; /* should be BUG() ? */
3923		break;
3924	}
3925	return ret;
3926}
3927
3928static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3929		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3930{
3931	struct cgroup *cgroup;
3932	unsigned long long min_limit, min_memsw_limit, tmp;
3933
3934	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3936	cgroup = memcg->css.cgroup;
3937	if (!memcg->use_hierarchy)
3938		goto out;
3939
3940	while (cgroup->parent) {
3941		cgroup = cgroup->parent;
3942		memcg = mem_cgroup_from_cont(cgroup);
3943		if (!memcg->use_hierarchy)
3944			break;
3945		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3946		min_limit = min(min_limit, tmp);
3947		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3948		min_memsw_limit = min(min_memsw_limit, tmp);
3949	}
3950out:
3951	*mem_limit = min_limit;
3952	*memsw_limit = min_memsw_limit;
3953}
3954
3955static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3956{
3957	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958	int type, name;
3959
3960	type = MEMFILE_TYPE(event);
3961	name = MEMFILE_ATTR(event);
3962
3963	if (!do_swap_account && type == _MEMSWAP)
3964		return -EOPNOTSUPP;
3965
3966	switch (name) {
3967	case RES_MAX_USAGE:
3968		if (type == _MEM)
3969			res_counter_reset_max(&memcg->res);
3970		else
3971			res_counter_reset_max(&memcg->memsw);
3972		break;
3973	case RES_FAILCNT:
3974		if (type == _MEM)
3975			res_counter_reset_failcnt(&memcg->res);
3976		else
3977			res_counter_reset_failcnt(&memcg->memsw);
3978		break;
 
 
3979	}
3980
3981	return 0;
3982}
3983
3984static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3985					struct cftype *cft)
3986{
3987	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3988}
3989
3990#ifdef CONFIG_MMU
3991static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3992					struct cftype *cft, u64 val)
3993{
3994	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3995
3996	if (val >= (1 << NR_MOVE_TYPE))
3997		return -EINVAL;
 
3998	/*
3999	 * We check this value several times in both in can_attach() and
4000	 * attach(), so we need cgroup lock to prevent this value from being
4001	 * inconsistent.
 
4002	 */
4003	cgroup_lock();
4004	memcg->move_charge_at_immigrate = val;
4005	cgroup_unlock();
4006
4007	return 0;
4008}
4009#else
4010static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4011					struct cftype *cft, u64 val)
4012{
4013	return -ENOSYS;
4014}
4015#endif
4016
4017#ifdef CONFIG_NUMA
4018static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4019				      struct seq_file *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4020{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021	int nid;
4022	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4023	unsigned long node_nr;
4024	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4025
4026	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4027	seq_printf(m, "total=%lu", total_nr);
4028	for_each_node_state(nid, N_HIGH_MEMORY) {
4029		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4030		seq_printf(m, " N%d=%lu", nid, node_nr);
4031	}
4032	seq_putc(m, '\n');
4033
4034	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4035	seq_printf(m, "file=%lu", file_nr);
4036	for_each_node_state(nid, N_HIGH_MEMORY) {
4037		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038				LRU_ALL_FILE);
4039		seq_printf(m, " N%d=%lu", nid, node_nr);
4040	}
4041	seq_putc(m, '\n');
4042
4043	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4044	seq_printf(m, "anon=%lu", anon_nr);
4045	for_each_node_state(nid, N_HIGH_MEMORY) {
4046		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047				LRU_ALL_ANON);
4048		seq_printf(m, " N%d=%lu", nid, node_nr);
4049	}
4050	seq_putc(m, '\n');
4051
4052	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4053	seq_printf(m, "unevictable=%lu", unevictable_nr);
4054	for_each_node_state(nid, N_HIGH_MEMORY) {
4055		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4056				BIT(LRU_UNEVICTABLE));
4057		seq_printf(m, " N%d=%lu", nid, node_nr);
4058	}
4059	seq_putc(m, '\n');
4060	return 0;
4061}
4062#endif /* CONFIG_NUMA */
4063
4064static const char * const mem_cgroup_lru_names[] = {
4065	"inactive_anon",
4066	"active_anon",
4067	"inactive_file",
4068	"active_file",
4069	"unevictable",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4070};
4071
4072static inline void mem_cgroup_lru_names_not_uptodate(void)
4073{
4074	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4075}
 
 
 
4076
4077static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4078				 struct seq_file *m)
4079{
4080	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 
4081	struct mem_cgroup *mi;
4082	unsigned int i;
4083
4084	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4085		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
 
 
 
 
 
 
4086			continue;
4087		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4088			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4089	}
4090
4091	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4092		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4093			   mem_cgroup_read_events(memcg, i));
4094
4095	for (i = 0; i < NR_LRU_LISTS; i++)
4096		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4097			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 
4098
4099	/* Hierarchical information */
4100	{
4101		unsigned long long limit, memsw_limit;
4102		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4103		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4104		if (do_swap_account)
4105			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4106				   memsw_limit);
4107	}
 
 
4108
4109	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4110		long long val = 0;
4111
4112		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4113			continue;
4114		for_each_mem_cgroup_tree(mi, memcg)
4115			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4116		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4117	}
4118
4119	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4120		unsigned long long val = 0;
4121
4122		for_each_mem_cgroup_tree(mi, memcg)
4123			val += mem_cgroup_read_events(mi, i);
4124		seq_printf(m, "total_%s %llu\n",
4125			   mem_cgroup_events_names[i], val);
4126	}
4127
4128	for (i = 0; i < NR_LRU_LISTS; i++) {
4129		unsigned long long val = 0;
4130
4131		for_each_mem_cgroup_tree(mi, memcg)
4132			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4133		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4134	}
4135
4136#ifdef CONFIG_DEBUG_VM
4137	{
4138		int nid, zid;
4139		struct mem_cgroup_per_zone *mz;
4140		struct zone_reclaim_stat *rstat;
4141		unsigned long recent_rotated[2] = {0, 0};
4142		unsigned long recent_scanned[2] = {0, 0};
4143
4144		for_each_online_node(nid)
4145			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4146				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4147				rstat = &mz->lruvec.reclaim_stat;
4148
4149				recent_rotated[0] += rstat->recent_rotated[0];
4150				recent_rotated[1] += rstat->recent_rotated[1];
4151				recent_scanned[0] += rstat->recent_scanned[0];
4152				recent_scanned[1] += rstat->recent_scanned[1];
4153			}
4154		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4155		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4156		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4157		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4158	}
4159#endif
4160
4161	return 0;
4162}
4163
4164static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 
4165{
4166	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4167
4168	return mem_cgroup_swappiness(memcg);
4169}
4170
4171static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4172				       u64 val)
4173{
4174	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4175	struct mem_cgroup *parent;
4176
4177	if (val > 100)
4178		return -EINVAL;
4179
4180	if (cgrp->parent == NULL)
4181		return -EINVAL;
4182
4183	parent = mem_cgroup_from_cont(cgrp->parent);
4184
4185	cgroup_lock();
4186
4187	/* If under hierarchy, only empty-root can set this value */
4188	if ((parent->use_hierarchy) ||
4189	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4190		cgroup_unlock();
4191		return -EINVAL;
4192	}
4193
4194	memcg->swappiness = val;
4195
4196	cgroup_unlock();
4197
4198	return 0;
4199}
4200
4201static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4202{
4203	struct mem_cgroup_threshold_ary *t;
4204	u64 usage;
4205	int i;
4206
4207	rcu_read_lock();
4208	if (!swap)
4209		t = rcu_dereference(memcg->thresholds.primary);
4210	else
4211		t = rcu_dereference(memcg->memsw_thresholds.primary);
4212
4213	if (!t)
4214		goto unlock;
4215
4216	usage = mem_cgroup_usage(memcg, swap);
4217
4218	/*
4219	 * current_threshold points to threshold just below or equal to usage.
4220	 * If it's not true, a threshold was crossed after last
4221	 * call of __mem_cgroup_threshold().
4222	 */
4223	i = t->current_threshold;
4224
4225	/*
4226	 * Iterate backward over array of thresholds starting from
4227	 * current_threshold and check if a threshold is crossed.
4228	 * If none of thresholds below usage is crossed, we read
4229	 * only one element of the array here.
4230	 */
4231	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4232		eventfd_signal(t->entries[i].eventfd, 1);
4233
4234	/* i = current_threshold + 1 */
4235	i++;
4236
4237	/*
4238	 * Iterate forward over array of thresholds starting from
4239	 * current_threshold+1 and check if a threshold is crossed.
4240	 * If none of thresholds above usage is crossed, we read
4241	 * only one element of the array here.
4242	 */
4243	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4244		eventfd_signal(t->entries[i].eventfd, 1);
4245
4246	/* Update current_threshold */
4247	t->current_threshold = i - 1;
4248unlock:
4249	rcu_read_unlock();
4250}
4251
4252static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4253{
4254	while (memcg) {
4255		__mem_cgroup_threshold(memcg, false);
4256		if (do_swap_account)
4257			__mem_cgroup_threshold(memcg, true);
4258
4259		memcg = parent_mem_cgroup(memcg);
4260	}
4261}
4262
4263static int compare_thresholds(const void *a, const void *b)
4264{
4265	const struct mem_cgroup_threshold *_a = a;
4266	const struct mem_cgroup_threshold *_b = b;
4267
4268	return _a->threshold - _b->threshold;
 
 
 
 
 
 
4269}
4270
4271static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4272{
4273	struct mem_cgroup_eventfd_list *ev;
4274
 
 
4275	list_for_each_entry(ev, &memcg->oom_notify, list)
4276		eventfd_signal(ev->eventfd, 1);
 
 
4277	return 0;
4278}
4279
4280static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4281{
4282	struct mem_cgroup *iter;
4283
4284	for_each_mem_cgroup_tree(iter, memcg)
4285		mem_cgroup_oom_notify_cb(iter);
4286}
4287
4288static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4289	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4290{
4291	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4292	struct mem_cgroup_thresholds *thresholds;
4293	struct mem_cgroup_threshold_ary *new;
4294	int type = MEMFILE_TYPE(cft->private);
4295	u64 threshold, usage;
4296	int i, size, ret;
4297
4298	ret = res_counter_memparse_write_strategy(args, &threshold);
4299	if (ret)
4300		return ret;
4301
4302	mutex_lock(&memcg->thresholds_lock);
4303
4304	if (type == _MEM)
4305		thresholds = &memcg->thresholds;
4306	else if (type == _MEMSWAP)
 
4307		thresholds = &memcg->memsw_thresholds;
4308	else
 
4309		BUG();
4310
4311	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4312
4313	/* Check if a threshold crossed before adding a new one */
4314	if (thresholds->primary)
4315		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316
4317	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318
4319	/* Allocate memory for new array of thresholds */
4320	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4321			GFP_KERNEL);
4322	if (!new) {
4323		ret = -ENOMEM;
4324		goto unlock;
4325	}
4326	new->size = size;
4327
4328	/* Copy thresholds (if any) to new array */
4329	if (thresholds->primary) {
4330		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4331				sizeof(struct mem_cgroup_threshold));
4332	}
4333
4334	/* Add new threshold */
4335	new->entries[size - 1].eventfd = eventfd;
4336	new->entries[size - 1].threshold = threshold;
4337
4338	/* Sort thresholds. Registering of new threshold isn't time-critical */
4339	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4340			compare_thresholds, NULL);
4341
4342	/* Find current threshold */
4343	new->current_threshold = -1;
4344	for (i = 0; i < size; i++) {
4345		if (new->entries[i].threshold <= usage) {
4346			/*
4347			 * new->current_threshold will not be used until
4348			 * rcu_assign_pointer(), so it's safe to increment
4349			 * it here.
4350			 */
4351			++new->current_threshold;
4352		} else
4353			break;
4354	}
4355
4356	/* Free old spare buffer and save old primary buffer as spare */
4357	kfree(thresholds->spare);
4358	thresholds->spare = thresholds->primary;
4359
4360	rcu_assign_pointer(thresholds->primary, new);
4361
4362	/* To be sure that nobody uses thresholds */
4363	synchronize_rcu();
4364
4365unlock:
4366	mutex_unlock(&memcg->thresholds_lock);
4367
4368	return ret;
4369}
4370
4371static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4372	struct cftype *cft, struct eventfd_ctx *eventfd)
 
 
 
 
 
 
 
 
 
 
 
 
4373{
4374	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375	struct mem_cgroup_thresholds *thresholds;
4376	struct mem_cgroup_threshold_ary *new;
4377	int type = MEMFILE_TYPE(cft->private);
4378	u64 usage;
4379	int i, j, size;
4380
4381	mutex_lock(&memcg->thresholds_lock);
4382	if (type == _MEM)
 
4383		thresholds = &memcg->thresholds;
4384	else if (type == _MEMSWAP)
 
4385		thresholds = &memcg->memsw_thresholds;
4386	else
 
4387		BUG();
4388
4389	if (!thresholds->primary)
4390		goto unlock;
4391
4392	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393
4394	/* Check if a threshold crossed before removing */
4395	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4396
4397	/* Calculate new number of threshold */
4398	size = 0;
4399	for (i = 0; i < thresholds->primary->size; i++) {
4400		if (thresholds->primary->entries[i].eventfd != eventfd)
4401			size++;
 
 
4402	}
4403
4404	new = thresholds->spare;
4405
 
 
 
 
4406	/* Set thresholds array to NULL if we don't have thresholds */
4407	if (!size) {
4408		kfree(new);
4409		new = NULL;
4410		goto swap_buffers;
4411	}
4412
4413	new->size = size;
4414
4415	/* Copy thresholds and find current threshold */
4416	new->current_threshold = -1;
4417	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418		if (thresholds->primary->entries[i].eventfd == eventfd)
4419			continue;
4420
4421		new->entries[j] = thresholds->primary->entries[i];
4422		if (new->entries[j].threshold <= usage) {
4423			/*
4424			 * new->current_threshold will not be used
4425			 * until rcu_assign_pointer(), so it's safe to increment
4426			 * it here.
4427			 */
4428			++new->current_threshold;
4429		}
4430		j++;
4431	}
4432
4433swap_buffers:
4434	/* Swap primary and spare array */
4435	thresholds->spare = thresholds->primary;
 
 
 
 
 
 
4436	/* If all events are unregistered, free the spare array */
4437	if (!new) {
4438		kfree(thresholds->spare);
4439		thresholds->spare = NULL;
4440	}
 
 
 
4441
4442	rcu_assign_pointer(thresholds->primary, new);
 
 
 
 
4443
4444	/* To be sure that nobody uses thresholds */
4445	synchronize_rcu();
4446unlock:
4447	mutex_unlock(&memcg->thresholds_lock);
4448}
4449
4450static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4451	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4452{
4453	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4454	struct mem_cgroup_eventfd_list *event;
4455	int type = MEMFILE_TYPE(cft->private);
4456
4457	BUG_ON(type != _OOM_TYPE);
4458	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4459	if (!event)
4460		return -ENOMEM;
4461
4462	spin_lock(&memcg_oom_lock);
4463
4464	event->eventfd = eventfd;
4465	list_add(&event->list, &memcg->oom_notify);
4466
4467	/* already in OOM ? */
4468	if (atomic_read(&memcg->under_oom))
4469		eventfd_signal(eventfd, 1);
4470	spin_unlock(&memcg_oom_lock);
4471
4472	return 0;
4473}
4474
4475static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4476	struct cftype *cft, struct eventfd_ctx *eventfd)
4477{
4478	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4479	struct mem_cgroup_eventfd_list *ev, *tmp;
4480	int type = MEMFILE_TYPE(cft->private);
4481
4482	BUG_ON(type != _OOM_TYPE);
4483
4484	spin_lock(&memcg_oom_lock);
4485
4486	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4487		if (ev->eventfd == eventfd) {
4488			list_del(&ev->list);
4489			kfree(ev);
4490		}
4491	}
4492
4493	spin_unlock(&memcg_oom_lock);
4494}
4495
4496static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4497	struct cftype *cft,  struct cgroup_map_cb *cb)
4498{
4499	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500
4501	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4502
4503	if (atomic_read(&memcg->under_oom))
4504		cb->fill(cb, "under_oom", 1);
4505	else
4506		cb->fill(cb, "under_oom", 0);
4507	return 0;
4508}
4509
4510static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4511	struct cftype *cft, u64 val)
4512{
4513	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514	struct mem_cgroup *parent;
4515
4516	/* cannot set to root cgroup and only 0 and 1 are allowed */
4517	if (!cgrp->parent || !((val == 0) || (val == 1)))
4518		return -EINVAL;
4519
4520	parent = mem_cgroup_from_cont(cgrp->parent);
4521
4522	cgroup_lock();
4523	/* oom-kill-disable is a flag for subhierarchy. */
4524	if ((parent->use_hierarchy) ||
4525	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4526		cgroup_unlock();
4527		return -EINVAL;
4528	}
4529	memcg->oom_kill_disable = val;
4530	if (!val)
4531		memcg_oom_recover(memcg);
4532	cgroup_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4533	return 0;
4534}
4535
4536#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 
 
 
4538{
4539	return mem_cgroup_sockets_init(memcg, ss);
4540};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4541
4542static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
 
 
 
 
 
4543{
4544	mem_cgroup_sockets_destroy(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
4545}
4546#else
4547static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 
 
 
 
 
 
4548{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4549	return 0;
4550}
4551
4552static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
 
4553{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4554}
4555#endif
4556
4557static struct cftype mem_cgroup_files[] = {
4558	{
4559		.name = "usage_in_bytes",
4560		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4561		.read = mem_cgroup_read,
4562		.register_event = mem_cgroup_usage_register_event,
4563		.unregister_event = mem_cgroup_usage_unregister_event,
4564	},
4565	{
4566		.name = "max_usage_in_bytes",
4567		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4568		.trigger = mem_cgroup_reset,
4569		.read = mem_cgroup_read,
4570	},
4571	{
4572		.name = "limit_in_bytes",
4573		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4574		.write_string = mem_cgroup_write,
4575		.read = mem_cgroup_read,
4576	},
4577	{
4578		.name = "soft_limit_in_bytes",
4579		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4580		.write_string = mem_cgroup_write,
4581		.read = mem_cgroup_read,
4582	},
4583	{
4584		.name = "failcnt",
4585		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4586		.trigger = mem_cgroup_reset,
4587		.read = mem_cgroup_read,
4588	},
4589	{
4590		.name = "stat",
4591		.read_seq_string = mem_control_stat_show,
4592	},
4593	{
4594		.name = "force_empty",
4595		.trigger = mem_cgroup_force_empty_write,
4596	},
4597	{
4598		.name = "use_hierarchy",
4599		.write_u64 = mem_cgroup_hierarchy_write,
4600		.read_u64 = mem_cgroup_hierarchy_read,
4601	},
4602	{
 
 
 
 
 
4603		.name = "swappiness",
4604		.read_u64 = mem_cgroup_swappiness_read,
4605		.write_u64 = mem_cgroup_swappiness_write,
4606	},
4607	{
4608		.name = "move_charge_at_immigrate",
4609		.read_u64 = mem_cgroup_move_charge_read,
4610		.write_u64 = mem_cgroup_move_charge_write,
4611	},
4612	{
4613		.name = "oom_control",
4614		.read_map = mem_cgroup_oom_control_read,
4615		.write_u64 = mem_cgroup_oom_control_write,
4616		.register_event = mem_cgroup_oom_register_event,
4617		.unregister_event = mem_cgroup_oom_unregister_event,
4618		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4619	},
 
 
 
4620#ifdef CONFIG_NUMA
4621	{
4622		.name = "numa_stat",
4623		.read_seq_string = mem_control_numa_stat_show,
4624	},
4625#endif
4626#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4627	{
4628		.name = "memsw.usage_in_bytes",
4629		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4630		.read = mem_cgroup_read,
4631		.register_event = mem_cgroup_usage_register_event,
4632		.unregister_event = mem_cgroup_usage_unregister_event,
 
 
 
 
4633	},
4634	{
4635		.name = "memsw.max_usage_in_bytes",
4636		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4637		.trigger = mem_cgroup_reset,
4638		.read = mem_cgroup_read,
4639	},
4640	{
4641		.name = "memsw.limit_in_bytes",
4642		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4643		.write_string = mem_cgroup_write,
4644		.read = mem_cgroup_read,
4645	},
 
 
4646	{
4647		.name = "memsw.failcnt",
4648		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4649		.trigger = mem_cgroup_reset,
4650		.read = mem_cgroup_read,
4651	},
4652#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4653	{ },	/* terminate */
4654};
4655
4656static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4657{
4658	struct mem_cgroup_per_node *pn;
4659	struct mem_cgroup_per_zone *mz;
4660	int zone, tmp = node;
4661	/*
4662	 * This routine is called against possible nodes.
4663	 * But it's BUG to call kmalloc() against offline node.
4664	 *
4665	 * TODO: this routine can waste much memory for nodes which will
4666	 *       never be onlined. It's better to use memory hotplug callback
4667	 *       function.
4668	 */
4669	if (!node_state(node, N_NORMAL_MEMORY))
4670		tmp = -1;
4671	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4672	if (!pn)
4673		return 1;
4674
4675	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4676		mz = &pn->zoneinfo[zone];
4677		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4678		mz->usage_in_excess = 0;
4679		mz->on_tree = false;
4680		mz->memcg = memcg;
 
 
 
 
 
 
 
4681	}
4682	memcg->info.nodeinfo[node] = pn;
 
 
 
 
 
 
4683	return 0;
4684}
4685
4686static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4687{
4688	kfree(memcg->info.nodeinfo[node]);
 
 
 
 
 
 
 
4689}
4690
4691static struct mem_cgroup *mem_cgroup_alloc(void)
4692{
4693	struct mem_cgroup *memcg;
4694	int size = sizeof(struct mem_cgroup);
4695
4696	/* Can be very big if MAX_NUMNODES is very big */
4697	if (size < PAGE_SIZE)
4698		memcg = kzalloc(size, GFP_KERNEL);
4699	else
4700		memcg = vzalloc(size);
4701
4702	if (!memcg)
4703		return NULL;
4704
4705	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4706	if (!memcg->stat)
4707		goto out_free;
4708	spin_lock_init(&memcg->pcp_counter_lock);
4709	return memcg;
4710
4711out_free:
4712	if (size < PAGE_SIZE)
4713		kfree(memcg);
4714	else
4715		vfree(memcg);
4716	return NULL;
4717}
4718
4719/*
4720 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721 * but in process context.  The work_freeing structure is overlaid
4722 * on the rcu_freeing structure, which itself is overlaid on memsw.
4723 */
4724static void free_work(struct work_struct *work)
4725{
4726	struct mem_cgroup *memcg;
4727	int size = sizeof(struct mem_cgroup);
4728
4729	memcg = container_of(work, struct mem_cgroup, work_freeing);
4730	/*
4731	 * We need to make sure that (at least for now), the jump label
4732	 * destruction code runs outside of the cgroup lock. This is because
4733	 * get_online_cpus(), which is called from the static_branch update,
4734	 * can't be called inside the cgroup_lock. cpusets are the ones
4735	 * enforcing this dependency, so if they ever change, we might as well.
4736	 *
4737	 * schedule_work() will guarantee this happens. Be careful if you need
4738	 * to move this code around, and make sure it is outside
4739	 * the cgroup_lock.
4740	 */
4741	disarm_sock_keys(memcg);
4742	if (size < PAGE_SIZE)
4743		kfree(memcg);
4744	else
4745		vfree(memcg);
4746}
4747
4748static void free_rcu(struct rcu_head *rcu_head)
4749{
4750	struct mem_cgroup *memcg;
 
 
 
 
4751
4752	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4753	INIT_WORK(&memcg->work_freeing, free_work);
4754	schedule_work(&memcg->work_freeing);
4755}
4756
4757/*
4758 * At destroying mem_cgroup, references from swap_cgroup can remain.
4759 * (scanning all at force_empty is too costly...)
4760 *
4761 * Instead of clearing all references at force_empty, we remember
4762 * the number of reference from swap_cgroup and free mem_cgroup when
4763 * it goes down to 0.
4764 *
4765 * Removal of cgroup itself succeeds regardless of refs from swap.
4766 */
4767
4768static void __mem_cgroup_free(struct mem_cgroup *memcg)
4769{
4770	int node;
 
 
 
 
4771
4772	mem_cgroup_remove_from_trees(memcg);
4773	free_css_id(&mem_cgroup_subsys, &memcg->css);
 
 
4774
4775	for_each_node(node)
4776		free_mem_cgroup_per_zone_info(memcg, node);
 
 
 
 
4777
4778	free_percpu(memcg->stat);
4779	call_rcu(&memcg->rcu_freeing, free_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4780}
4781
4782static void mem_cgroup_get(struct mem_cgroup *memcg)
 
4783{
4784	atomic_inc(&memcg->refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4785}
4786
4787static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4788{
4789	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4790		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4791		__mem_cgroup_free(memcg);
4792		if (parent)
4793			mem_cgroup_put(parent);
 
 
 
 
 
4794	}
4795}
4796
4797static void mem_cgroup_put(struct mem_cgroup *memcg)
4798{
4799	__mem_cgroup_put(memcg, 1);
 
4800}
4801
4802/*
4803 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4804 */
4805struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4806{
4807	if (!memcg->res.parent)
4808		return NULL;
4809	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4810}
4811EXPORT_SYMBOL(parent_mem_cgroup);
4812
4813#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814static void __init enable_swap_cgroup(void)
4815{
4816	if (!mem_cgroup_disabled() && really_do_swap_account)
4817		do_swap_account = 1;
4818}
4819#else
4820static void __init enable_swap_cgroup(void)
4821{
4822}
4823#endif
4824
4825static int mem_cgroup_soft_limit_tree_init(void)
4826{
4827	struct mem_cgroup_tree_per_node *rtpn;
4828	struct mem_cgroup_tree_per_zone *rtpz;
4829	int tmp, node, zone;
4830
4831	for_each_node(node) {
4832		tmp = node;
4833		if (!node_state(node, N_NORMAL_MEMORY))
4834			tmp = -1;
4835		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836		if (!rtpn)
4837			goto err_cleanup;
4838
4839		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840
4841		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842			rtpz = &rtpn->rb_tree_per_zone[zone];
4843			rtpz->rb_root = RB_ROOT;
4844			spin_lock_init(&rtpz->lock);
4845		}
4846	}
4847	return 0;
4848
4849err_cleanup:
4850	for_each_node(node) {
4851		if (!soft_limit_tree.rb_tree_per_node[node])
4852			break;
4853		kfree(soft_limit_tree.rb_tree_per_node[node]);
4854		soft_limit_tree.rb_tree_per_node[node] = NULL;
4855	}
4856	return 1;
4857
 
4858}
4859
4860static struct cgroup_subsys_state * __ref
4861mem_cgroup_create(struct cgroup *cont)
4862{
4863	struct mem_cgroup *memcg, *parent;
4864	long error = -ENOMEM;
4865	int node;
 
 
 
 
 
 
 
 
 
4866
4867	memcg = mem_cgroup_alloc();
4868	if (!memcg)
4869		return ERR_PTR(error);
 
 
 
 
4870
4871	for_each_node(node)
4872		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4873			goto free_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4874
4875	/* root ? */
4876	if (cont->parent == NULL) {
4877		int cpu;
4878		enable_swap_cgroup();
4879		parent = NULL;
4880		if (mem_cgroup_soft_limit_tree_init())
4881			goto free_out;
4882		root_mem_cgroup = memcg;
4883		for_each_possible_cpu(cpu) {
4884			struct memcg_stock_pcp *stock =
4885						&per_cpu(memcg_stock, cpu);
4886			INIT_WORK(&stock->work, drain_local_stock);
4887		}
4888		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4889	} else {
4890		parent = mem_cgroup_from_cont(cont->parent);
4891		memcg->use_hierarchy = parent->use_hierarchy;
4892		memcg->oom_kill_disable = parent->oom_kill_disable;
4893	}
4894
4895	if (parent && parent->use_hierarchy) {
4896		res_counter_init(&memcg->res, &parent->res);
4897		res_counter_init(&memcg->memsw, &parent->memsw);
4898		/*
4899		 * We increment refcnt of the parent to ensure that we can
4900		 * safely access it on res_counter_charge/uncharge.
4901		 * This refcnt will be decremented when freeing this
4902		 * mem_cgroup(see mem_cgroup_put).
4903		 */
4904		mem_cgroup_get(parent);
4905	} else {
4906		res_counter_init(&memcg->res, NULL);
4907		res_counter_init(&memcg->memsw, NULL);
4908	}
4909	memcg->last_scanned_node = MAX_NUMNODES;
4910	INIT_LIST_HEAD(&memcg->oom_notify);
 
 
 
4911
4912	if (parent)
4913		memcg->swappiness = mem_cgroup_swappiness(parent);
4914	atomic_set(&memcg->refcnt, 1);
4915	memcg->move_charge_at_immigrate = 0;
4916	mutex_init(&memcg->thresholds_lock);
4917	spin_lock_init(&memcg->move_lock);
4918
4919	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4920	if (error) {
4921		/*
4922		 * We call put now because our (and parent's) refcnts
4923		 * are already in place. mem_cgroup_put() will internally
4924		 * call __mem_cgroup_free, so return directly
4925		 */
4926		mem_cgroup_put(memcg);
4927		return ERR_PTR(error);
4928	}
4929	return &memcg->css;
4930free_out:
4931	__mem_cgroup_free(memcg);
4932	return ERR_PTR(error);
4933}
4934
4935static int mem_cgroup_pre_destroy(struct cgroup *cont)
4936{
4937	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 
4938
4939	return mem_cgroup_force_empty(memcg, false);
4940}
 
 
 
4941
4942static void mem_cgroup_destroy(struct cgroup *cont)
4943{
4944	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945
4946	kmem_cgroup_destroy(memcg);
4947
4948	mem_cgroup_put(memcg);
 
4949}
4950
4951#ifdef CONFIG_MMU
4952/* Handlers for move charge at task migration. */
4953#define PRECHARGE_COUNT_AT_ONCE	256
4954static int mem_cgroup_do_precharge(unsigned long count)
4955{
4956	int ret = 0;
4957	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4958	struct mem_cgroup *memcg = mc.to;
4959
4960	if (mem_cgroup_is_root(memcg)) {
 
 
4961		mc.precharge += count;
4962		/* we don't need css_get for root */
4963		return ret;
4964	}
4965	/* try to charge at once */
4966	if (count > 1) {
4967		struct res_counter *dummy;
4968		/*
4969		 * "memcg" cannot be under rmdir() because we've already checked
4970		 * by cgroup_lock_live_cgroup() that it is not removed and we
4971		 * are still under the same cgroup_mutex. So we can postpone
4972		 * css_get().
4973		 */
4974		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4975			goto one_by_one;
4976		if (do_swap_account && res_counter_charge(&memcg->memsw,
4977						PAGE_SIZE * count, &dummy)) {
4978			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4979			goto one_by_one;
4980		}
4981		mc.precharge += count;
4982		return ret;
4983	}
4984one_by_one:
4985	/* fall back to one by one charge */
4986	while (count--) {
4987		if (signal_pending(current)) {
4988			ret = -EINTR;
4989			break;
4990		}
4991		if (!batch_count--) {
4992			batch_count = PRECHARGE_COUNT_AT_ONCE;
4993			cond_resched();
4994		}
4995		ret = __mem_cgroup_try_charge(NULL,
4996					GFP_KERNEL, 1, &memcg, false);
4997		if (ret)
4998			/* mem_cgroup_clear_mc() will do uncharge later */
4999			return ret;
5000		mc.precharge++;
 
5001	}
5002	return ret;
5003}
5004
5005/**
5006 * get_mctgt_type - get target type of moving charge
5007 * @vma: the vma the pte to be checked belongs
5008 * @addr: the address corresponding to the pte to be checked
5009 * @ptent: the pte to be checked
5010 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5011 *
5012 * Returns
5013 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5014 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5015 *     move charge. if @target is not NULL, the page is stored in target->page
5016 *     with extra refcnt got(Callers should handle it).
5017 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5018 *     target for charge migration. if @target is not NULL, the entry is stored
5019 *     in target->ent.
5020 *
5021 * Called with pte lock held.
5022 */
5023union mc_target {
5024	struct page	*page;
5025	swp_entry_t	ent;
5026};
5027
5028enum mc_target_type {
5029	MC_TARGET_NONE = 0,
5030	MC_TARGET_PAGE,
5031	MC_TARGET_SWAP,
 
5032};
5033
5034static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5035						unsigned long addr, pte_t ptent)
5036{
5037	struct page *page = vm_normal_page(vma, addr, ptent);
5038
5039	if (!page || !page_mapped(page))
5040		return NULL;
5041	if (PageAnon(page)) {
5042		/* we don't move shared anon */
5043		if (!move_anon())
5044			return NULL;
5045	} else if (!move_file())
5046		/* we ignore mapcount for file pages */
5047		return NULL;
 
5048	if (!get_page_unless_zero(page))
5049		return NULL;
5050
5051	return page;
5052}
5053
5054#ifdef CONFIG_SWAP
5055static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5056			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5057{
5058	struct page *page = NULL;
5059	swp_entry_t ent = pte_to_swp_entry(ptent);
5060
5061	if (!move_anon() || non_swap_entry(ent))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5062		return NULL;
 
5063	/*
5064	 * Because lookup_swap_cache() updates some statistics counter,
5065	 * we call find_get_page() with swapper_space directly.
5066	 */
5067	page = find_get_page(&swapper_space, ent.val);
5068	if (do_swap_account)
5069		entry->val = ent.val;
5070
5071	return page;
5072}
5073#else
5074static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5075			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5076{
5077	return NULL;
5078}
5079#endif
5080
5081static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5082			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5083{
5084	struct page *page = NULL;
5085	struct address_space *mapping;
5086	pgoff_t pgoff;
5087
5088	if (!vma->vm_file) /* anonymous vma */
5089		return NULL;
5090	if (!move_file())
5091		return NULL;
5092
5093	mapping = vma->vm_file->f_mapping;
5094	if (pte_none(ptent))
5095		pgoff = linear_page_index(vma, addr);
5096	else /* pte_file(ptent) is true */
5097		pgoff = pte_to_pgoff(ptent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5098
5099	/* page is moved even if it's not RSS of this task(page-faulted). */
5100	page = find_get_page(mapping, pgoff);
 
 
 
 
 
 
5101
5102#ifdef CONFIG_SWAP
5103	/* shmem/tmpfs may report page out on swap: account for that too. */
5104	if (radix_tree_exceptional_entry(page)) {
5105		swp_entry_t swap = radix_to_swp_entry(page);
5106		if (do_swap_account)
5107			*entry = swap;
5108		page = find_get_page(&swapper_space, swap.val);
5109	}
5110#endif
5111	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5112}
5113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5114static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5115		unsigned long addr, pte_t ptent, union mc_target *target)
5116{
5117	struct page *page = NULL;
5118	struct page_cgroup *pc;
5119	enum mc_target_type ret = MC_TARGET_NONE;
5120	swp_entry_t ent = { .val = 0 };
5121
5122	if (pte_present(ptent))
5123		page = mc_handle_present_pte(vma, addr, ptent);
5124	else if (is_swap_pte(ptent))
5125		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5126	else if (pte_none(ptent) || pte_file(ptent))
5127		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5128
5129	if (!page && !ent.val)
5130		return ret;
5131	if (page) {
5132		pc = lookup_page_cgroup(page);
5133		/*
5134		 * Do only loose check w/o page_cgroup lock.
5135		 * mem_cgroup_move_account() checks the pc is valid or not under
5136		 * the lock.
5137		 */
5138		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5139			ret = MC_TARGET_PAGE;
 
 
5140			if (target)
5141				target->page = page;
5142		}
5143		if (!ret || !target)
5144			put_page(page);
5145	}
5146	/* There is a swap entry and a page doesn't exist or isn't charged */
5147	if (ent.val && !ret &&
5148			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
 
 
 
5149		ret = MC_TARGET_SWAP;
5150		if (target)
5151			target->ent = ent;
5152	}
5153	return ret;
5154}
5155
5156#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5157/*
5158 * We don't consider swapping or file mapped pages because THP does not
5159 * support them for now.
5160 * Caller should make sure that pmd_trans_huge(pmd) is true.
5161 */
5162static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5163		unsigned long addr, pmd_t pmd, union mc_target *target)
5164{
5165	struct page *page = NULL;
5166	struct page_cgroup *pc;
5167	enum mc_target_type ret = MC_TARGET_NONE;
5168
 
 
 
 
 
5169	page = pmd_page(pmd);
5170	VM_BUG_ON(!page || !PageHead(page));
5171	if (!move_anon())
5172		return ret;
5173	pc = lookup_page_cgroup(page);
5174	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5175		ret = MC_TARGET_PAGE;
5176		if (target) {
5177			get_page(page);
5178			target->page = page;
5179		}
5180	}
5181	return ret;
5182}
5183#else
5184static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5185		unsigned long addr, pmd_t pmd, union mc_target *target)
5186{
5187	return MC_TARGET_NONE;
5188}
5189#endif
5190
5191static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5192					unsigned long addr, unsigned long end,
5193					struct mm_walk *walk)
5194{
5195	struct vm_area_struct *vma = walk->private;
5196	pte_t *pte;
5197	spinlock_t *ptl;
5198
5199	if (pmd_trans_huge_lock(pmd, vma) == 1) {
 
 
 
 
 
 
5200		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5201			mc.precharge += HPAGE_PMD_NR;
5202		spin_unlock(&vma->vm_mm->page_table_lock);
5203		return 0;
5204	}
5205
5206	if (pmd_trans_unstable(pmd))
5207		return 0;
5208	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5209	for (; addr != end; pte++, addr += PAGE_SIZE)
5210		if (get_mctgt_type(vma, addr, *pte, NULL))
5211			mc.precharge++;	/* increment precharge temporarily */
5212	pte_unmap_unlock(pte - 1, ptl);
5213	cond_resched();
5214
5215	return 0;
5216}
5217
 
 
 
 
5218static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5219{
5220	unsigned long precharge;
5221	struct vm_area_struct *vma;
5222
5223	down_read(&mm->mmap_sem);
5224	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5225		struct mm_walk mem_cgroup_count_precharge_walk = {
5226			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5227			.mm = mm,
5228			.private = vma,
5229		};
5230		if (is_vm_hugetlb_page(vma))
5231			continue;
5232		walk_page_range(vma->vm_start, vma->vm_end,
5233					&mem_cgroup_count_precharge_walk);
5234	}
5235	up_read(&mm->mmap_sem);
5236
5237	precharge = mc.precharge;
5238	mc.precharge = 0;
5239
5240	return precharge;
5241}
5242
5243static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5244{
5245	unsigned long precharge = mem_cgroup_count_precharge(mm);
5246
5247	VM_BUG_ON(mc.moving_task);
5248	mc.moving_task = current;
5249	return mem_cgroup_do_precharge(precharge);
5250}
5251
5252/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5253static void __mem_cgroup_clear_mc(void)
5254{
5255	struct mem_cgroup *from = mc.from;
5256	struct mem_cgroup *to = mc.to;
5257
5258	/* we must uncharge all the leftover precharges from mc.to */
5259	if (mc.precharge) {
5260		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5261		mc.precharge = 0;
5262	}
5263	/*
5264	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5265	 * we must uncharge here.
5266	 */
5267	if (mc.moved_charge) {
5268		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5269		mc.moved_charge = 0;
5270	}
5271	/* we must fixup refcnts and charges */
5272	if (mc.moved_swap) {
5273		/* uncharge swap account from the old cgroup */
5274		if (!mem_cgroup_is_root(mc.from))
5275			res_counter_uncharge(&mc.from->memsw,
5276						PAGE_SIZE * mc.moved_swap);
5277		__mem_cgroup_put(mc.from, mc.moved_swap);
 
 
 
 
 
 
 
5278
5279		if (!mem_cgroup_is_root(mc.to)) {
5280			/*
5281			 * we charged both to->res and to->memsw, so we should
5282			 * uncharge to->res.
5283			 */
5284			res_counter_uncharge(&mc.to->res,
5285						PAGE_SIZE * mc.moved_swap);
5286		}
5287		/* we've already done mem_cgroup_get(mc.to) */
5288		mc.moved_swap = 0;
5289	}
5290	memcg_oom_recover(from);
5291	memcg_oom_recover(to);
5292	wake_up_all(&mc.waitq);
5293}
5294
5295static void mem_cgroup_clear_mc(void)
5296{
5297	struct mem_cgroup *from = mc.from;
5298
5299	/*
5300	 * we must clear moving_task before waking up waiters at the end of
5301	 * task migration.
5302	 */
5303	mc.moving_task = NULL;
5304	__mem_cgroup_clear_mc();
5305	spin_lock(&mc.lock);
5306	mc.from = NULL;
5307	mc.to = NULL;
 
5308	spin_unlock(&mc.lock);
5309	mem_cgroup_end_move(from);
 
5310}
5311
5312static int mem_cgroup_can_attach(struct cgroup *cgroup,
5313				 struct cgroup_taskset *tset)
5314{
5315	struct task_struct *p = cgroup_taskset_first(tset);
 
 
 
 
 
5316	int ret = 0;
5317	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5318
5319	if (memcg->move_charge_at_immigrate) {
5320		struct mm_struct *mm;
5321		struct mem_cgroup *from = mem_cgroup_from_task(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5322
5323		VM_BUG_ON(from == memcg);
5324
5325		mm = get_task_mm(p);
5326		if (!mm)
5327			return 0;
5328		/* We move charges only when we move a owner of the mm */
5329		if (mm->owner == p) {
5330			VM_BUG_ON(mc.from);
5331			VM_BUG_ON(mc.to);
5332			VM_BUG_ON(mc.precharge);
5333			VM_BUG_ON(mc.moved_charge);
5334			VM_BUG_ON(mc.moved_swap);
5335			mem_cgroup_start_move(from);
5336			spin_lock(&mc.lock);
5337			mc.from = from;
5338			mc.to = memcg;
5339			spin_unlock(&mc.lock);
5340			/* We set mc.moving_task later */
5341
5342			ret = mem_cgroup_precharge_mc(mm);
5343			if (ret)
5344				mem_cgroup_clear_mc();
5345		}
 
 
 
 
5346		mmput(mm);
5347	}
5348	return ret;
5349}
5350
5351static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5352				     struct cgroup_taskset *tset)
5353{
5354	mem_cgroup_clear_mc();
 
5355}
5356
5357static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5358				unsigned long addr, unsigned long end,
5359				struct mm_walk *walk)
5360{
5361	int ret = 0;
5362	struct vm_area_struct *vma = walk->private;
5363	pte_t *pte;
5364	spinlock_t *ptl;
5365	enum mc_target_type target_type;
5366	union mc_target target;
5367	struct page *page;
5368	struct page_cgroup *pc;
5369
5370	/*
5371	 * We don't take compound_lock() here but no race with splitting thp
5372	 * happens because:
5373	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5374	 *    under splitting, which means there's no concurrent thp split,
5375	 *  - if another thread runs into split_huge_page() just after we
5376	 *    entered this if-block, the thread must wait for page table lock
5377	 *    to be unlocked in __split_huge_page_splitting(), where the main
5378	 *    part of thp split is not executed yet.
5379	 */
5380	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5381		if (mc.precharge < HPAGE_PMD_NR) {
5382			spin_unlock(&vma->vm_mm->page_table_lock);
5383			return 0;
5384		}
5385		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5386		if (target_type == MC_TARGET_PAGE) {
5387			page = target.page;
5388			if (!isolate_lru_page(page)) {
5389				pc = lookup_page_cgroup(page);
5390				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5391							pc, mc.from, mc.to)) {
5392					mc.precharge -= HPAGE_PMD_NR;
5393					mc.moved_charge += HPAGE_PMD_NR;
5394				}
5395				putback_lru_page(page);
5396			}
5397			put_page(page);
 
 
 
 
 
 
 
 
5398		}
5399		spin_unlock(&vma->vm_mm->page_table_lock);
5400		return 0;
5401	}
5402
5403	if (pmd_trans_unstable(pmd))
5404		return 0;
5405retry:
5406	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5407	for (; addr != end; addr += PAGE_SIZE) {
5408		pte_t ptent = *(pte++);
 
5409		swp_entry_t ent;
5410
5411		if (!mc.precharge)
5412			break;
5413
5414		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 
 
 
5415		case MC_TARGET_PAGE:
5416			page = target.page;
5417			if (isolate_lru_page(page))
 
 
 
 
 
 
 
 
5418				goto put;
5419			pc = lookup_page_cgroup(page);
5420			if (!mem_cgroup_move_account(page, 1, pc,
5421						     mc.from, mc.to)) {
5422				mc.precharge--;
5423				/* we uncharge from mc.from later. */
5424				mc.moved_charge++;
5425			}
5426			putback_lru_page(page);
 
5427put:			/* get_mctgt_type() gets the page */
5428			put_page(page);
5429			break;
5430		case MC_TARGET_SWAP:
5431			ent = target.ent;
5432			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5433				mc.precharge--;
5434				/* we fixup refcnts and charges later. */
 
5435				mc.moved_swap++;
5436			}
5437			break;
5438		default:
5439			break;
5440		}
5441	}
5442	pte_unmap_unlock(pte - 1, ptl);
5443	cond_resched();
5444
5445	if (addr != end) {
5446		/*
5447		 * We have consumed all precharges we got in can_attach().
5448		 * We try charge one by one, but don't do any additional
5449		 * charges to mc.to if we have failed in charge once in attach()
5450		 * phase.
5451		 */
5452		ret = mem_cgroup_do_precharge(1);
5453		if (!ret)
5454			goto retry;
5455	}
5456
5457	return ret;
5458}
5459
5460static void mem_cgroup_move_charge(struct mm_struct *mm)
 
 
 
 
5461{
5462	struct vm_area_struct *vma;
5463
5464	lru_add_drain_all();
 
 
 
 
 
 
 
5465retry:
5466	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5467		/*
5468		 * Someone who are holding the mmap_sem might be waiting in
5469		 * waitq. So we cancel all extra charges, wake up all waiters,
5470		 * and retry. Because we cancel precharges, we might not be able
5471		 * to move enough charges, but moving charge is a best-effort
5472		 * feature anyway, so it wouldn't be a big problem.
5473		 */
5474		__mem_cgroup_clear_mc();
5475		cond_resched();
5476		goto retry;
5477	}
5478	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5479		int ret;
5480		struct mm_walk mem_cgroup_move_charge_walk = {
5481			.pmd_entry = mem_cgroup_move_charge_pte_range,
5482			.mm = mm,
5483			.private = vma,
5484		};
5485		if (is_vm_hugetlb_page(vma))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5486			continue;
5487		ret = walk_page_range(vma->vm_start, vma->vm_end,
5488						&mem_cgroup_move_charge_walk);
5489		if (ret)
5490			/*
5491			 * means we have consumed all precharges and failed in
5492			 * doing additional charge. Just abandon here.
5493			 */
5494			break;
5495	}
5496	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
5497}
5498
5499static void mem_cgroup_move_task(struct cgroup *cont,
5500				 struct cgroup_taskset *tset)
5501{
5502	struct task_struct *p = cgroup_taskset_first(tset);
5503	struct mm_struct *mm = get_task_mm(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5504
5505	if (mm) {
5506		if (mc.to)
5507			mem_cgroup_move_charge(mm);
5508		mmput(mm);
5509	}
5510	if (mc.to)
5511		mem_cgroup_clear_mc();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5512}
5513#else	/* !CONFIG_MMU */
5514static int mem_cgroup_can_attach(struct cgroup *cgroup,
5515				 struct cgroup_taskset *tset)
5516{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5517	return 0;
5518}
5519static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5520				     struct cgroup_taskset *tset)
 
5521{
 
 
 
 
 
5522}
5523static void mem_cgroup_move_task(struct cgroup *cont,
5524				 struct cgroup_taskset *tset)
 
5525{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5526}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5527#endif
 
 
 
 
 
 
 
 
5528
5529struct cgroup_subsys mem_cgroup_subsys = {
5530	.name = "memory",
5531	.subsys_id = mem_cgroup_subsys_id,
5532	.create = mem_cgroup_create,
5533	.pre_destroy = mem_cgroup_pre_destroy,
5534	.destroy = mem_cgroup_destroy,
 
 
5535	.can_attach = mem_cgroup_can_attach,
5536	.cancel_attach = mem_cgroup_cancel_attach,
5537	.attach = mem_cgroup_move_task,
5538	.base_cftypes = mem_cgroup_files,
 
5539	.early_init = 0,
5540	.use_id = 1,
5541	.__DEPRECATED_clear_css_refs = true,
5542};
5543
5544#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545static int __init enable_swap_account(char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5546{
5547	/* consider enabled if no parameter or 1 is given */
5548	if (!strcmp(s, "1"))
5549		really_do_swap_account = 1;
5550	else if (!strcmp(s, "0"))
5551		really_do_swap_account = 0;
5552	return 1;
5553}
5554__setup("swapaccount=", enable_swap_account);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555
5556#endif