Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket __ro_after_init;
85
86/* Kernel memory accounting disabled? */
87bool cgroup_memory_nokmem __ro_after_init;
88
89/* Whether the swap controller is active */
90#ifdef CONFIG_MEMCG_SWAP
91bool cgroup_memory_noswap __ro_after_init;
92#else
93#define cgroup_memory_noswap 1
94#endif
95
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104}
105
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
108
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118};
119
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
131
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
135struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170};
171
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175/* Stuffs for move charges at task migration. */
176/*
177 * Types of charges to be moved.
178 */
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
199
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207/* for encoding cft->private value on file */
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219/* Used for OOM notifier */
220#define OOM_CONTROL (0)
221
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
256#ifdef CONFIG_MEMCG_KMEM
257extern spinlock_t css_set_lock;
258
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423}
424
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456{
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460}
461
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
464{
465 return soft_limit_tree.rb_tree_per_node[nid];
466}
467
468static struct mem_cgroup_tree_per_node *
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474}
475
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513{
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526{
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532}
533
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595}
596
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599{
600 struct mem_cgroup_per_node *mz;
601
602retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618done:
619 return mz;
620}
621
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624{
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631}
632
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
641 if (mem_cgroup_disabled())
642 return;
643
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646}
647
648/* idx can be of type enum memcg_stat_item or node_stat_item. */
649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650{
651 long x = READ_ONCE(memcg->vmstats.state[idx]);
652#ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655#endif
656 return x;
657}
658
659/* idx can be of type enum memcg_stat_item or node_stat_item. */
660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661{
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667#ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670#endif
671 return x;
672}
673
674static struct mem_cgroup_per_node *
675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676{
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
682 return parent->nodeinfo[nid];
683}
684
685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
687{
688 struct mem_cgroup_per_node *pn;
689 struct mem_cgroup *memcg;
690 long x, threshold = MEMCG_CHARGE_BATCH;
691
692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 memcg = pn->memcg;
694
695 /* Update memcg */
696 __mod_memcg_state(memcg, idx, val);
697
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 if (unlikely(abs(x) > threshold)) {
706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 struct mem_cgroup_per_node *pi;
708
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714}
715
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735}
736
737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739{
740 struct page *head = compound_head(page); /* rmap on tail pages */
741 struct mem_cgroup *memcg;
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
745 rcu_read_lock();
746 memcg = page_memcg(head);
747 /* Untracked pages have no memcg, no lruvec. Update only the node */
748 if (!memcg) {
749 rcu_read_unlock();
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 __mod_lruvec_state(lruvec, idx, val);
756 rcu_read_unlock();
757}
758EXPORT_SYMBOL(__mod_lruvec_page_state);
759
760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761{
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782}
783
784/*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
791{
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 mod_memcg_lruvec_state(lruvec, idx, nr);
799 rcu_read_unlock();
800}
801
802/**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
806 * @count: the number of events that occurred
807 */
808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810{
811 if (mem_cgroup_disabled())
812 return;
813
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816}
817
818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819{
820 return READ_ONCE(memcg->vmstats.events[event]);
821}
822
823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824{
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 return x;
831}
832
833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 struct page *page,
835 int nr_pages)
836{
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846}
847
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850{
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 default:
865 break;
866 }
867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 return true;
869 }
870 return false;
871}
872
873/*
874 * Check events in order.
875 *
876 */
877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878{
879 /* threshold event is triggered in finer grain than soft limit */
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
882 bool do_softlimit;
883
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 }
890}
891
892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893{
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903}
904EXPORT_SYMBOL(mem_cgroup_from_task);
905
906static __always_inline struct mem_cgroup *active_memcg(void)
907{
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912}
913
914/**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
924 */
925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926{
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
952
953 rcu_read_lock();
954 do {
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
957 memcg = root_mem_cgroup;
958 } while (!css_tryget(&memcg->css));
959 rcu_read_unlock();
960 return memcg;
961}
962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
964static __always_inline bool memcg_kmem_bypass(void)
965{
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975}
976
977/**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
993 */
994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 struct mem_cgroup *prev,
996 struct mem_cgroup_reclaim_cookie *reclaim)
997{
998 struct mem_cgroup_reclaim_iter *iter;
999 struct cgroup_subsys_state *css = NULL;
1000 struct mem_cgroup *memcg = NULL;
1001 struct mem_cgroup *pos = NULL;
1002
1003 if (mem_cgroup_disabled())
1004 return NULL;
1005
1006 if (!root)
1007 root = root_mem_cgroup;
1008
1009 if (prev && !reclaim)
1010 pos = prev;
1011
1012 rcu_read_lock();
1013
1014 if (reclaim) {
1015 struct mem_cgroup_per_node *mz;
1016
1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 iter = &mz->iter;
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
1023 while (1) {
1024 pos = READ_ONCE(iter->position);
1025 if (!pos || css_tryget(&pos->css))
1026 break;
1027 /*
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
1034 */
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
1054 }
1055
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
1062
1063 if (css == &root->css)
1064 break;
1065
1066 if (css_tryget(css))
1067 break;
1068
1069 memcg = NULL;
1070 }
1071
1072 if (reclaim) {
1073 /*
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
1077 */
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212 struct lruvec *lruvec;
1213
1214 lruvec = mem_cgroup_page_lruvec(page);
1215 spin_lock(&lruvec->lru_lock);
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224 struct lruvec *lruvec;
1225
1226 lruvec = mem_cgroup_page_lruvec(page);
1227 spin_lock_irq(&lruvec->lru_lock);
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236 struct lruvec *lruvec;
1237
1238 lruvec = mem_cgroup_page_lruvec(page);
1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259{
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283}
1284
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
1360struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383#endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 cgroup_rstat_flush(memcg->css.cgroup);
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590{
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1611
1612unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615}
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763{
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002 struct page *head = compound_head(page); /* rmap on tail pages */
2003 struct mem_cgroup *memcg;
2004 unsigned long flags;
2005
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
2010 */
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return;
2015again:
2016 memcg = page_memcg(head);
2017 if (unlikely(!memcg))
2018 return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024#endif
2025
2026 if (atomic_read(&memcg->moving_account) <= 0)
2027 return;
2028
2029 spin_lock_irqsave(&memcg->move_lock, flags);
2030 if (memcg != page_memcg(head)) {
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 goto again;
2033 }
2034
2035 /*
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047{
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
2056
2057 rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066 struct page *head = compound_head(page);
2067
2068 __unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
2075 struct pglist_data *cached_pgdat;
2076 unsigned int nr_bytes;
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
2079#else
2080 int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
2089
2090 struct work_struct work;
2091 unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE 0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108{
2109 return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_irq_restore(flags);
2177
2178 return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (stock->cached != memcg) { /* reset if necessary */
2236 drain_stock(stock);
2237 css_get(&memcg->css);
2238 stock->cached = memcg;
2239 }
2240 stock->nr_pages += nr_pages;
2241
2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 drain_stock(stock);
2244
2245 local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254 int cpu, curcpu;
2255
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
2265 curcpu = get_cpu();
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 struct mem_cgroup *memcg;
2269 bool flush = false;
2270
2271 rcu_read_lock();
2272 memcg = stock->cached;
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 }
2288 put_cpu();
2289 mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294 int nid;
2295
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
2300 int i;
2301
2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
2307
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326 return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
2332{
2333 unsigned long nr_reclaimed = 0;
2334
2335 do {
2336 unsigned long pflags;
2337
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
2340 continue;
2341
2342 memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344 psi_memstall_enter(&pflags);
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
2347 psi_memstall_leave(&pflags);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417 u64 overage;
2418
2419 if (usage <= high)
2420 return 0;
2421
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
2427
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435 u64 overage, max_overage = 0;
2436
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
2439 READ_ONCE(memcg->memory.high));
2440 max_overage = max(overage, max_overage);
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
2444 return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470{
2471 unsigned long penalty_jiffies;
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
2507 unsigned long nr_reclaimed;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 int nr_retries = MAX_RECLAIM_RETRIES;
2510 struct mem_cgroup *memcg;
2511 bool in_retry = false;
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
2517 current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
2539
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
2584{
2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 int nr_retries = MAX_RECLAIM_RETRIES;
2587 struct mem_cgroup *mem_over_limit;
2588 struct page_counter *counter;
2589 enum oom_status oom_status;
2590 unsigned long nr_reclaimed;
2591 bool may_swap = true;
2592 bool drained = false;
2593 unsigned long pflags;
2594
2595retry:
2596 if (consume_stock(memcg, nr_pages))
2597 return 0;
2598
2599 if (!do_memsw_account() ||
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 goto done_restock;
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 } else {
2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 may_swap = false;
2609 }
2610
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
2615
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
2631 if (unlikely(should_force_charge()))
2632 goto force;
2633
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
2646 if (!gfpflags_allow_blocking(gfp_mask))
2647 goto nomem;
2648
2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651 psi_memstall_enter(&pflags);
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
2654 psi_memstall_leave(&pflags);
2655
2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 goto retry;
2658
2659 if (!drained) {
2660 drain_all_stock(mem_over_limit);
2661 drained = true;
2662 goto retry;
2663 }
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
2685 if (nr_retries--)
2686 goto retry;
2687
2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 goto nomem;
2690
2691 if (fatal_signal_pending(current))
2692 goto force;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
2710nomem:
2711 if (!(gfp_mask & __GFP_NOFAIL))
2712 return -ENOMEM;
2713force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
2720 if (do_memsw_account())
2721 page_counter_charge(&memcg->memsw, nr_pages);
2722
2723 return 0;
2724
2725done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
2728
2729 /*
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
2737 */
2738 do {
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
2765 current->memcg_nr_pages_over_high += batch;
2766 set_notify_resume(current);
2767 break;
2768 }
2769 } while ((memcg = parent_mem_cgroup(memcg)));
2770
2771 return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776{
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
2789 page_counter_uncharge(&memcg->memory, nr_pages);
2790 if (do_memsw_account())
2791 page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797 VM_BUG_ON_PAGE(page_memcg(page), page);
2798 /*
2799 * Any of the following ensures page's memcg stability:
2800 *
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
2805 */
2806 page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 gfp_t gfp, bool new_page)
2833{
2834 unsigned int objects = objs_per_slab_page(s, page);
2835 unsigned long memcg_data;
2836 void *vec;
2837
2838 gfp &= ~OBJCGS_CLEAR_MASK;
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
2858 kfree(vec);
2859 return 0;
2860 }
2861
2862 kmemleak_not_leak(vec);
2863 return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
2891 */
2892 if (page_objcgs_check(page)) {
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
2897 objcg = page_objcgs(page)[off];
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
2939static int memcg_alloc_cache_id(void)
2940{
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979 ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011{
3012 struct page_counter *counter;
3013 struct mem_cgroup *memcg;
3014 int ret;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 if (ret)
3020 goto out;
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
3032 goto out;
3033 }
3034 cancel_charge(memcg, nr_pages);
3035 ret = -ENOMEM;
3036 }
3037out:
3038 css_put(&memcg->css);
3039
3040 return ret;
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053 struct obj_cgroup *objcg;
3054 int ret = 0;
3055
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 if (!ret) {
3060 page->memcg_data = (unsigned long)objcg |
3061 MEMCG_DATA_KMEM;
3062 return 0;
3063 }
3064 obj_cgroup_put(objcg);
3065 }
3066 return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076 struct obj_cgroup *objcg;
3077 unsigned int nr_pages = 1 << order;
3078
3079 if (!PageMemcgKmem(page))
3080 return;
3081
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 page->memcg_data = 0;
3085 obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090{
3091 unsigned long flags;
3092 struct obj_stock *stock = get_obj_stock(&flags);
3093 int *bytes;
3094
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111 if (stock->nr_slab_reclaimable_b) {
3112 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113 stock->nr_slab_reclaimable_b);
3114 stock->nr_slab_reclaimable_b = 0;
3115 }
3116 if (stock->nr_slab_unreclaimable_b) {
3117 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118 stock->nr_slab_unreclaimable_b);
3119 stock->nr_slab_unreclaimable_b = 0;
3120 }
3121 stock->cached_pgdat = pgdat;
3122 }
3123
3124 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125 : &stock->nr_slab_unreclaimable_b;
3126 /*
3127 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128 * cached locally at least once before pushing it out.
3129 */
3130 if (!*bytes) {
3131 *bytes = nr;
3132 nr = 0;
3133 } else {
3134 *bytes += nr;
3135 if (abs(*bytes) > PAGE_SIZE) {
3136 nr = *bytes;
3137 *bytes = 0;
3138 } else {
3139 nr = 0;
3140 }
3141 }
3142 if (nr)
3143 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145 put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3149{
3150 unsigned long flags;
3151 struct obj_stock *stock = get_obj_stock(&flags);
3152 bool ret = false;
3153
3154 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155 stock->nr_bytes -= nr_bytes;
3156 ret = true;
3157 }
3158
3159 put_obj_stock(flags);
3160
3161 return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
3165{
3166 struct obj_cgroup *old = stock->cached_objcg;
3167
3168 if (!old)
3169 return;
3170
3171 if (stock->nr_bytes) {
3172 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175 if (nr_pages)
3176 obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178 /*
3179 * The leftover is flushed to the centralized per-memcg value.
3180 * On the next attempt to refill obj stock it will be moved
3181 * to a per-cpu stock (probably, on an other CPU), see
3182 * refill_obj_stock().
3183 *
3184 * How often it's flushed is a trade-off between the memory
3185 * limit enforcement accuracy and potential CPU contention,
3186 * so it might be changed in the future.
3187 */
3188 atomic_add(nr_bytes, &old->nr_charged_bytes);
3189 stock->nr_bytes = 0;
3190 }
3191
3192 /*
3193 * Flush the vmstat data in current stock
3194 */
3195 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196 if (stock->nr_slab_reclaimable_b) {
3197 mod_objcg_mlstate(old, stock->cached_pgdat,
3198 NR_SLAB_RECLAIMABLE_B,
3199 stock->nr_slab_reclaimable_b);
3200 stock->nr_slab_reclaimable_b = 0;
3201 }
3202 if (stock->nr_slab_unreclaimable_b) {
3203 mod_objcg_mlstate(old, stock->cached_pgdat,
3204 NR_SLAB_UNRECLAIMABLE_B,
3205 stock->nr_slab_unreclaimable_b);
3206 stock->nr_slab_unreclaimable_b = 0;
3207 }
3208 stock->cached_pgdat = NULL;
3209 }
3210
3211 obj_cgroup_put(old);
3212 stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216 struct mem_cgroup *root_memcg)
3217{
3218 struct mem_cgroup *memcg;
3219
3220 if (in_task() && stock->task_obj.cached_objcg) {
3221 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223 return true;
3224 }
3225 if (stock->irq_obj.cached_objcg) {
3226 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228 return true;
3229 }
3230
3231 return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235 bool allow_uncharge)
3236{
3237 unsigned long flags;
3238 struct obj_stock *stock = get_obj_stock(&flags);
3239 unsigned int nr_pages = 0;
3240
3241 if (stock->cached_objcg != objcg) { /* reset if necessary */
3242 drain_obj_stock(stock);
3243 obj_cgroup_get(objcg);
3244 stock->cached_objcg = objcg;
3245 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247 allow_uncharge = true; /* Allow uncharge when objcg changes */
3248 }
3249 stock->nr_bytes += nr_bytes;
3250
3251 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253 stock->nr_bytes &= (PAGE_SIZE - 1);
3254 }
3255
3256 put_obj_stock(flags);
3257
3258 if (nr_pages)
3259 obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264 unsigned int nr_pages, nr_bytes;
3265 int ret;
3266
3267 if (consume_obj_stock(objcg, size))
3268 return 0;
3269
3270 /*
3271 * In theory, objcg->nr_charged_bytes can have enough
3272 * pre-charged bytes to satisfy the allocation. However,
3273 * flushing objcg->nr_charged_bytes requires two atomic
3274 * operations, and objcg->nr_charged_bytes can't be big.
3275 * The shared objcg->nr_charged_bytes can also become a
3276 * performance bottleneck if all tasks of the same memcg are
3277 * trying to update it. So it's better to ignore it and try
3278 * grab some new pages. The stock's nr_bytes will be flushed to
3279 * objcg->nr_charged_bytes later on when objcg changes.
3280 *
3281 * The stock's nr_bytes may contain enough pre-charged bytes
3282 * to allow one less page from being charged, but we can't rely
3283 * on the pre-charged bytes not being changed outside of
3284 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285 * pre-charged bytes as well when charging pages. To avoid a
3286 * page uncharge right after a page charge, we set the
3287 * allow_uncharge flag to false when calling refill_obj_stock()
3288 * to temporarily allow the pre-charged bytes to exceed the page
3289 * size limit. The maximum reachable value of the pre-charged
3290 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291 * race.
3292 */
3293 nr_pages = size >> PAGE_SHIFT;
3294 nr_bytes = size & (PAGE_SIZE - 1);
3295
3296 if (nr_bytes)
3297 nr_pages += 1;
3298
3299 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300 if (!ret && nr_bytes)
3301 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303 return ret;
3304}
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308 refill_obj_stock(objcg, size, true);
3309}
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318 struct mem_cgroup *memcg = page_memcg(head);
3319 int i;
3320
3321 if (mem_cgroup_disabled() || !memcg)
3322 return;
3323
3324 for (i = 1; i < nr; i++)
3325 head[i].memcg_data = head->memcg_data;
3326
3327 if (PageMemcgKmem(head))
3328 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329 else
3330 css_get_many(&memcg->css, nr - 1);
3331}
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from: mem_cgroup which the entry is moved from
3338 * @to: mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349 struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351 unsigned short old_id, new_id;
3352
3353 old_id = mem_cgroup_id(from);
3354 new_id = mem_cgroup_id(to);
3355
3356 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357 mod_memcg_state(from, MEMCG_SWAP, -1);
3358 mod_memcg_state(to, MEMCG_SWAP, 1);
3359 return 0;
3360 }
3361 return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365 struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367 return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374 unsigned long max, bool memsw)
3375{
3376 bool enlarge = false;
3377 bool drained = false;
3378 int ret;
3379 bool limits_invariant;
3380 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382 do {
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 break;
3386 }
3387
3388 mutex_lock(&memcg_max_mutex);
3389 /*
3390 * Make sure that the new limit (memsw or memory limit) doesn't
3391 * break our basic invariant rule memory.max <= memsw.max.
3392 */
3393 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394 max <= memcg->memsw.max;
3395 if (!limits_invariant) {
3396 mutex_unlock(&memcg_max_mutex);
3397 ret = -EINVAL;
3398 break;
3399 }
3400 if (max > counter->max)
3401 enlarge = true;
3402 ret = page_counter_set_max(counter, max);
3403 mutex_unlock(&memcg_max_mutex);
3404
3405 if (!ret)
3406 break;
3407
3408 if (!drained) {
3409 drain_all_stock(memcg);
3410 drained = true;
3411 continue;
3412 }
3413
3414 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415 GFP_KERNEL, !memsw)) {
3416 ret = -EBUSY;
3417 break;
3418 }
3419 } while (true);
3420
3421 if (!ret && enlarge)
3422 memcg_oom_recover(memcg);
3423
3424 return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 gfp_t gfp_mask,
3429 unsigned long *total_scanned)
3430{
3431 unsigned long nr_reclaimed = 0;
3432 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433 unsigned long reclaimed;
3434 int loop = 0;
3435 struct mem_cgroup_tree_per_node *mctz;
3436 unsigned long excess;
3437 unsigned long nr_scanned;
3438
3439 if (order > 0)
3440 return 0;
3441
3442 mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444 /*
3445 * Do not even bother to check the largest node if the root
3446 * is empty. Do it lockless to prevent lock bouncing. Races
3447 * are acceptable as soft limit is best effort anyway.
3448 */
3449 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450 return 0;
3451
3452 /*
3453 * This loop can run a while, specially if mem_cgroup's continuously
3454 * keep exceeding their soft limit and putting the system under
3455 * pressure
3456 */
3457 do {
3458 if (next_mz)
3459 mz = next_mz;
3460 else
3461 mz = mem_cgroup_largest_soft_limit_node(mctz);
3462 if (!mz)
3463 break;
3464
3465 nr_scanned = 0;
3466 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467 gfp_mask, &nr_scanned);
3468 nr_reclaimed += reclaimed;
3469 *total_scanned += nr_scanned;
3470 spin_lock_irq(&mctz->lock);
3471 __mem_cgroup_remove_exceeded(mz, mctz);
3472
3473 /*
3474 * If we failed to reclaim anything from this memory cgroup
3475 * it is time to move on to the next cgroup
3476 */
3477 next_mz = NULL;
3478 if (!reclaimed)
3479 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481 excess = soft_limit_excess(mz->memcg);
3482 /*
3483 * One school of thought says that we should not add
3484 * back the node to the tree if reclaim returns 0.
3485 * But our reclaim could return 0, simply because due
3486 * to priority we are exposing a smaller subset of
3487 * memory to reclaim from. Consider this as a longer
3488 * term TODO.
3489 */
3490 /* If excess == 0, no tree ops */
3491 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3492 spin_unlock_irq(&mctz->lock);
3493 css_put(&mz->memcg->css);
3494 loop++;
3495 /*
3496 * Could not reclaim anything and there are no more
3497 * mem cgroups to try or we seem to be looping without
3498 * reclaiming anything.
3499 */
3500 if (!nr_reclaimed &&
3501 (next_mz == NULL ||
3502 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 break;
3504 } while (!nr_reclaimed);
3505 if (next_mz)
3506 css_put(&next_mz->memcg->css);
3507 return nr_reclaimed;
3508}
3509
3510/*
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517 int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519 /* we call try-to-free pages for make this cgroup empty */
3520 lru_add_drain_all();
3521
3522 drain_all_stock(memcg);
3523
3524 /* try to free all pages in this cgroup */
3525 while (nr_retries && page_counter_read(&memcg->memory)) {
3526 int progress;
3527
3528 if (signal_pending(current))
3529 return -EINTR;
3530
3531 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532 GFP_KERNEL, true);
3533 if (!progress) {
3534 nr_retries--;
3535 /* maybe some writeback is necessary */
3536 congestion_wait(BLK_RW_ASYNC, HZ/10);
3537 }
3538
3539 }
3540
3541 return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545 char *buf, size_t nbytes,
3546 loff_t off)
3547{
3548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550 if (mem_cgroup_is_root(memcg))
3551 return -EINVAL;
3552 return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556 struct cftype *cft)
3557{
3558 return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562 struct cftype *cft, u64 val)
3563{
3564 if (val == 1)
3565 return 0;
3566
3567 pr_warn_once("Non-hierarchical mode is deprecated. "
3568 "Please report your usecase to linux-mm@kvack.org if you "
3569 "depend on this functionality.\n");
3570
3571 return -EINVAL;
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576 unsigned long val;
3577
3578 if (mem_cgroup_is_root(memcg)) {
3579 /* mem_cgroup_threshold() calls here from irqsafe context */
3580 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582 memcg_page_state(memcg, NR_ANON_MAPPED);
3583 if (swap)
3584 val += memcg_page_state(memcg, MEMCG_SWAP);
3585 } else {
3586 if (!swap)
3587 val = page_counter_read(&memcg->memory);
3588 else
3589 val = page_counter_read(&memcg->memsw);
3590 }
3591 return val;
3592}
3593
3594enum {
3595 RES_USAGE,
3596 RES_LIMIT,
3597 RES_MAX_USAGE,
3598 RES_FAILCNT,
3599 RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603 struct cftype *cft)
3604{
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(cft->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(cft->private)) {
3626 case RES_USAGE:
3627 if (counter == &memcg->memory)
3628 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629 if (counter == &memcg->memsw)
3630 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631 return (u64)page_counter_read(counter) * PAGE_SIZE;
3632 case RES_LIMIT:
3633 return (u64)counter->max * PAGE_SIZE;
3634 case RES_MAX_USAGE:
3635 return (u64)counter->watermark * PAGE_SIZE;
3636 case RES_FAILCNT:
3637 return counter->failcnt;
3638 case RES_SOFT_LIMIT:
3639 return (u64)memcg->soft_limit * PAGE_SIZE;
3640 default:
3641 BUG();
3642 }
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648 struct obj_cgroup *objcg;
3649 int memcg_id;
3650
3651 if (cgroup_memory_nokmem)
3652 return 0;
3653
3654 BUG_ON(memcg->kmemcg_id >= 0);
3655 BUG_ON(memcg->kmem_state);
3656
3657 memcg_id = memcg_alloc_cache_id();
3658 if (memcg_id < 0)
3659 return memcg_id;
3660
3661 objcg = obj_cgroup_alloc();
3662 if (!objcg) {
3663 memcg_free_cache_id(memcg_id);
3664 return -ENOMEM;
3665 }
3666 objcg->memcg = memcg;
3667 rcu_assign_pointer(memcg->objcg, objcg);
3668
3669 static_branch_enable(&memcg_kmem_enabled_key);
3670
3671 memcg->kmemcg_id = memcg_id;
3672 memcg->kmem_state = KMEM_ONLINE;
3673
3674 return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679 struct cgroup_subsys_state *css;
3680 struct mem_cgroup *parent, *child;
3681 int kmemcg_id;
3682
3683 if (memcg->kmem_state != KMEM_ONLINE)
3684 return;
3685
3686 memcg->kmem_state = KMEM_ALLOCATED;
3687
3688 parent = parent_mem_cgroup(memcg);
3689 if (!parent)
3690 parent = root_mem_cgroup;
3691
3692 memcg_reparent_objcgs(memcg, parent);
3693
3694 kmemcg_id = memcg->kmemcg_id;
3695 BUG_ON(kmemcg_id < 0);
3696
3697 /*
3698 * Change kmemcg_id of this cgroup and all its descendants to the
3699 * parent's id, and then move all entries from this cgroup's list_lrus
3700 * to ones of the parent. After we have finished, all list_lrus
3701 * corresponding to this cgroup are guaranteed to remain empty. The
3702 * ordering is imposed by list_lru_node->lock taken by
3703 * memcg_drain_all_list_lrus().
3704 */
3705 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706 css_for_each_descendant_pre(css, &memcg->css) {
3707 child = mem_cgroup_from_css(css);
3708 BUG_ON(child->kmemcg_id != kmemcg_id);
3709 child->kmemcg_id = parent->kmemcg_id;
3710 }
3711 rcu_read_unlock();
3712
3713 memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715 memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720 /* css_alloc() failed, offlining didn't happen */
3721 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722 memcg_offline_kmem(memcg);
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738 unsigned long max)
3739{
3740 int ret;
3741
3742 mutex_lock(&memcg_max_mutex);
3743 ret = page_counter_set_max(&memcg->kmem, max);
3744 mutex_unlock(&memcg_max_mutex);
3745 return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750 int ret;
3751
3752 mutex_lock(&memcg_max_mutex);
3753
3754 ret = page_counter_set_max(&memcg->tcpmem, max);
3755 if (ret)
3756 goto out;
3757
3758 if (!memcg->tcpmem_active) {
3759 /*
3760 * The active flag needs to be written after the static_key
3761 * update. This is what guarantees that the socket activation
3762 * function is the last one to run. See mem_cgroup_sk_alloc()
3763 * for details, and note that we don't mark any socket as
3764 * belonging to this memcg until that flag is up.
3765 *
3766 * We need to do this, because static_keys will span multiple
3767 * sites, but we can't control their order. If we mark a socket
3768 * as accounted, but the accounting functions are not patched in
3769 * yet, we'll lose accounting.
3770 *
3771 * We never race with the readers in mem_cgroup_sk_alloc(),
3772 * because when this value change, the code to process it is not
3773 * patched in yet.
3774 */
3775 static_branch_inc(&memcg_sockets_enabled_key);
3776 memcg->tcpmem_active = true;
3777 }
3778out:
3779 mutex_unlock(&memcg_max_mutex);
3780 return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788 char *buf, size_t nbytes, loff_t off)
3789{
3790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791 unsigned long nr_pages;
3792 int ret;
3793
3794 buf = strstrip(buf);
3795 ret = page_counter_memparse(buf, "-1", &nr_pages);
3796 if (ret)
3797 return ret;
3798
3799 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800 case RES_LIMIT:
3801 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802 ret = -EINVAL;
3803 break;
3804 }
3805 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806 case _MEM:
3807 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808 break;
3809 case _MEMSWAP:
3810 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811 break;
3812 case _KMEM:
3813 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814 "Please report your usecase to linux-mm@kvack.org if you "
3815 "depend on this functionality.\n");
3816 ret = memcg_update_kmem_max(memcg, nr_pages);
3817 break;
3818 case _TCP:
3819 ret = memcg_update_tcp_max(memcg, nr_pages);
3820 break;
3821 }
3822 break;
3823 case RES_SOFT_LIMIT:
3824 memcg->soft_limit = nr_pages;
3825 ret = 0;
3826 break;
3827 }
3828 return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832 size_t nbytes, loff_t off)
3833{
3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835 struct page_counter *counter;
3836
3837 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838 case _MEM:
3839 counter = &memcg->memory;
3840 break;
3841 case _MEMSWAP:
3842 counter = &memcg->memsw;
3843 break;
3844 case _KMEM:
3845 counter = &memcg->kmem;
3846 break;
3847 case _TCP:
3848 counter = &memcg->tcpmem;
3849 break;
3850 default:
3851 BUG();
3852 }
3853
3854 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855 case RES_MAX_USAGE:
3856 page_counter_reset_watermark(counter);
3857 break;
3858 case RES_FAILCNT:
3859 counter->failcnt = 0;
3860 break;
3861 default:
3862 BUG();
3863 }
3864
3865 return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869 struct cftype *cft)
3870{
3871 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876 struct cftype *cft, u64 val)
3877{
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (val & ~MOVE_MASK)
3881 return -EINVAL;
3882
3883 /*
3884 * No kind of locking is needed in here, because ->can_attach() will
3885 * check this value once in the beginning of the process, and then carry
3886 * on with stale data. This means that changes to this value will only
3887 * affect task migrations starting after the change.
3888 */
3889 memcg->move_charge_at_immigrate = val;
3890 return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895{
3896 return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907 int nid, unsigned int lru_mask, bool tree)
3908{
3909 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910 unsigned long nr = 0;
3911 enum lru_list lru;
3912
3913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915 for_each_lru(lru) {
3916 if (!(BIT(lru) & lru_mask))
3917 continue;
3918 if (tree)
3919 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920 else
3921 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922 }
3923 return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927 unsigned int lru_mask,
3928 bool tree)
3929{
3930 unsigned long nr = 0;
3931 enum lru_list lru;
3932
3933 for_each_lru(lru) {
3934 if (!(BIT(lru) & lru_mask))
3935 continue;
3936 if (tree)
3937 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938 else
3939 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940 }
3941 return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946 struct numa_stat {
3947 const char *name;
3948 unsigned int lru_mask;
3949 };
3950
3951 static const struct numa_stat stats[] = {
3952 { "total", LRU_ALL },
3953 { "file", LRU_ALL_FILE },
3954 { "anon", LRU_ALL_ANON },
3955 { "unevictable", BIT(LRU_UNEVICTABLE) },
3956 };
3957 const struct numa_stat *stat;
3958 int nid;
3959 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961 cgroup_rstat_flush(memcg->css.cgroup);
3962
3963 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964 seq_printf(m, "%s=%lu", stat->name,
3965 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966 false));
3967 for_each_node_state(nid, N_MEMORY)
3968 seq_printf(m, " N%d=%lu", nid,
3969 mem_cgroup_node_nr_lru_pages(memcg, nid,
3970 stat->lru_mask, false));
3971 seq_putc(m, '\n');
3972 }
3973
3974 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3975
3976 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 true));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, true));
3983 seq_putc(m, '\n');
3984 }
3985
3986 return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991 NR_FILE_PAGES,
3992 NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994 NR_ANON_THPS,
3995#endif
3996 NR_SHMEM,
3997 NR_FILE_MAPPED,
3998 NR_FILE_DIRTY,
3999 NR_WRITEBACK,
4000 MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004 "cache",
4005 "rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007 "rss_huge",
4008#endif
4009 "shmem",
4010 "mapped_file",
4011 "dirty",
4012 "writeback",
4013 "swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018 PGPGIN,
4019 PGPGOUT,
4020 PGFAULT,
4021 PGMAJFAULT,
4022};
4023
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027 unsigned long memory, memsw;
4028 struct mem_cgroup *mi;
4029 unsigned int i;
4030
4031 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033 cgroup_rstat_flush(memcg->css.cgroup);
4034
4035 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036 unsigned long nr;
4037
4038 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039 continue;
4040 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4042 }
4043
4044 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046 memcg_events_local(memcg, memcg1_events[i]));
4047
4048 for (i = 0; i < NR_LRU_LISTS; i++)
4049 seq_printf(m, "%s %lu\n", lru_list_name(i),
4050 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051 PAGE_SIZE);
4052
4053 /* Hierarchical information */
4054 memory = memsw = PAGE_COUNTER_MAX;
4055 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056 memory = min(memory, READ_ONCE(mi->memory.max));
4057 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058 }
4059 seq_printf(m, "hierarchical_memory_limit %llu\n",
4060 (u64)memory * PAGE_SIZE);
4061 if (do_memsw_account())
4062 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063 (u64)memsw * PAGE_SIZE);
4064
4065 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066 unsigned long nr;
4067
4068 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069 continue;
4070 nr = memcg_page_state(memcg, memcg1_stats[i]);
4071 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072 (u64)nr * PAGE_SIZE);
4073 }
4074
4075 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076 seq_printf(m, "total_%s %llu\n",
4077 vm_event_name(memcg1_events[i]),
4078 (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083 PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086 {
4087 pg_data_t *pgdat;
4088 struct mem_cgroup_per_node *mz;
4089 unsigned long anon_cost = 0;
4090 unsigned long file_cost = 0;
4091
4092 for_each_online_pgdat(pgdat) {
4093 mz = memcg->nodeinfo[pgdat->node_id];
4094
4095 anon_cost += mz->lruvec.anon_cost;
4096 file_cost += mz->lruvec.file_cost;
4097 }
4098 seq_printf(m, "anon_cost %lu\n", anon_cost);
4099 seq_printf(m, "file_cost %lu\n", file_cost);
4100 }
4101#endif
4102
4103 return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107 struct cftype *cft)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115 struct cftype *cft, u64 val)
4116{
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119 if (val > 100)
4120 return -EINVAL;
4121
4122 if (!mem_cgroup_is_root(memcg))
4123 memcg->swappiness = val;
4124 else
4125 vm_swappiness = val;
4126
4127 return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132 struct mem_cgroup_threshold_ary *t;
4133 unsigned long usage;
4134 int i;
4135
4136 rcu_read_lock();
4137 if (!swap)
4138 t = rcu_dereference(memcg->thresholds.primary);
4139 else
4140 t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142 if (!t)
4143 goto unlock;
4144
4145 usage = mem_cgroup_usage(memcg, swap);
4146
4147 /*
4148 * current_threshold points to threshold just below or equal to usage.
4149 * If it's not true, a threshold was crossed after last
4150 * call of __mem_cgroup_threshold().
4151 */
4152 i = t->current_threshold;
4153
4154 /*
4155 * Iterate backward over array of thresholds starting from
4156 * current_threshold and check if a threshold is crossed.
4157 * If none of thresholds below usage is crossed, we read
4158 * only one element of the array here.
4159 */
4160 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161 eventfd_signal(t->entries[i].eventfd, 1);
4162
4163 /* i = current_threshold + 1 */
4164 i++;
4165
4166 /*
4167 * Iterate forward over array of thresholds starting from
4168 * current_threshold+1 and check if a threshold is crossed.
4169 * If none of thresholds above usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* Update current_threshold */
4176 t->current_threshold = i - 1;
4177unlock:
4178 rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183 while (memcg) {
4184 __mem_cgroup_threshold(memcg, false);
4185 if (do_memsw_account())
4186 __mem_cgroup_threshold(memcg, true);
4187
4188 memcg = parent_mem_cgroup(memcg);
4189 }
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194 const struct mem_cgroup_threshold *_a = a;
4195 const struct mem_cgroup_threshold *_b = b;
4196
4197 if (_a->threshold > _b->threshold)
4198 return 1;
4199
4200 if (_a->threshold < _b->threshold)
4201 return -1;
4202
4203 return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208 struct mem_cgroup_eventfd_list *ev;
4209
4210 spin_lock(&memcg_oom_lock);
4211
4212 list_for_each_entry(ev, &memcg->oom_notify, list)
4213 eventfd_signal(ev->eventfd, 1);
4214
4215 spin_unlock(&memcg_oom_lock);
4216 return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, memcg)
4224 mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230 struct mem_cgroup_thresholds *thresholds;
4231 struct mem_cgroup_threshold_ary *new;
4232 unsigned long threshold;
4233 unsigned long usage;
4234 int i, size, ret;
4235
4236 ret = page_counter_memparse(args, "-1", &threshold);
4237 if (ret)
4238 return ret;
4239
4240 mutex_lock(&memcg->thresholds_lock);
4241
4242 if (type == _MEM) {
4243 thresholds = &memcg->thresholds;
4244 usage = mem_cgroup_usage(memcg, false);
4245 } else if (type == _MEMSWAP) {
4246 thresholds = &memcg->memsw_thresholds;
4247 usage = mem_cgroup_usage(memcg, true);
4248 } else
4249 BUG();
4250
4251 /* Check if a threshold crossed before adding a new one */
4252 if (thresholds->primary)
4253 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257 /* Allocate memory for new array of thresholds */
4258 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4259 if (!new) {
4260 ret = -ENOMEM;
4261 goto unlock;
4262 }
4263 new->size = size;
4264
4265 /* Copy thresholds (if any) to new array */
4266 if (thresholds->primary)
4267 memcpy(new->entries, thresholds->primary->entries,
4268 flex_array_size(new, entries, size - 1));
4269
4270 /* Add new threshold */
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
4275 sort(new->entries, size, sizeof(*new->entries),
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0; i < size; i++) {
4281 if (new->entries[i].threshold <= usage) {
4282 /*
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
4285 * it here.
4286 */
4287 ++new->current_threshold;
4288 } else
4289 break;
4290 }
4291
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
4297
4298 /* To be sure that nobody uses thresholds */
4299 synchronize_rcu();
4300
4301unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308 struct eventfd_ctx *eventfd, const char *args)
4309{
4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314 struct eventfd_ctx *eventfd, const char *args)
4315{
4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320 struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
4324 unsigned long usage;
4325 int i, j, size, entries;
4326
4327 mutex_lock(&memcg->thresholds_lock);
4328
4329 if (type == _MEM) {
4330 thresholds = &memcg->thresholds;
4331 usage = mem_cgroup_usage(memcg, false);
4332 } else if (type == _MEMSWAP) {
4333 thresholds = &memcg->memsw_thresholds;
4334 usage = mem_cgroup_usage(memcg, true);
4335 } else
4336 BUG();
4337
4338 if (!thresholds->primary)
4339 goto unlock;
4340
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
4345 size = entries = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
4348 size++;
4349 else
4350 entries++;
4351 }
4352
4353 new = thresholds->spare;
4354
4355 /* If no items related to eventfd have been cleared, nothing to do */
4356 if (!entries)
4357 goto unlock;
4358
4359 /* Set thresholds array to NULL if we don't have thresholds */
4360 if (!size) {
4361 kfree(new);
4362 new = NULL;
4363 goto swap_buffers;
4364 }
4365
4366 new->size = size;
4367
4368 /* Copy thresholds and find current threshold */
4369 new->current_threshold = -1;
4370 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371 if (thresholds->primary->entries[i].eventfd == eventfd)
4372 continue;
4373
4374 new->entries[j] = thresholds->primary->entries[i];
4375 if (new->entries[j].threshold <= usage) {
4376 /*
4377 * new->current_threshold will not be used
4378 * until rcu_assign_pointer(), so it's safe to increment
4379 * it here.
4380 */
4381 ++new->current_threshold;
4382 }
4383 j++;
4384 }
4385
4386swap_buffers:
4387 /* Swap primary and spare array */
4388 thresholds->spare = thresholds->primary;
4389
4390 rcu_assign_pointer(thresholds->primary, new);
4391
4392 /* To be sure that nobody uses thresholds */
4393 synchronize_rcu();
4394
4395 /* If all events are unregistered, free the spare array */
4396 if (!new) {
4397 kfree(thresholds->spare);
4398 thresholds->spare = NULL;
4399 }
4400unlock:
4401 mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405 struct eventfd_ctx *eventfd)
4406{
4407 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411 struct eventfd_ctx *eventfd)
4412{
4413 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd, const char *args)
4418{
4419 struct mem_cgroup_eventfd_list *event;
4420
4421 event = kmalloc(sizeof(*event), GFP_KERNEL);
4422 if (!event)
4423 return -ENOMEM;
4424
4425 spin_lock(&memcg_oom_lock);
4426
4427 event->eventfd = eventfd;
4428 list_add(&event->list, &memcg->oom_notify);
4429
4430 /* already in OOM ? */
4431 if (memcg->under_oom)
4432 eventfd_signal(eventfd, 1);
4433 spin_unlock(&memcg_oom_lock);
4434
4435 return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439 struct eventfd_ctx *eventfd)
4440{
4441 struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443 spin_lock(&memcg_oom_lock);
4444
4445 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446 if (ev->eventfd == eventfd) {
4447 list_del(&ev->list);
4448 kfree(ev);
4449 }
4450 }
4451
4452 spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461 seq_printf(sf, "oom_kill %lu\n",
4462 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463 return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467 struct cftype *cft, u64 val)
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471 /* cannot set to root cgroup and only 0 and 1 are allowed */
4472 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473 return -EINVAL;
4474
4475 memcg->oom_kill_disable = val;
4476 if (!val)
4477 memcg_oom_recover(memcg);
4478
4479 return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488 return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493 wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498 wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505 if (!memcg->css.parent)
4506 return NULL;
4507
4508 return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors. Note that this doesn't consider the actual amount of
4526 * available memory in the system. The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530 unsigned long *pheadroom, unsigned long *pdirty,
4531 unsigned long *pwriteback)
4532{
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534 struct mem_cgroup *parent;
4535
4536 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541 memcg_page_state(memcg, NR_ACTIVE_FILE);
4542
4543 *pheadroom = PAGE_COUNTER_MAX;
4544 while ((parent = parent_mem_cgroup(memcg))) {
4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546 READ_ONCE(memcg->memory.high));
4547 unsigned long used = page_counter_read(&memcg->memory);
4548
4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550 memcg = parent;
4551 }
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback. The former
4558 * tracks ownership per-page while the latter per-inode. This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases. For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode. B owns the inode and
4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback. A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction. However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism. When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired. Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599 struct bdi_writeback *wb)
4600{
4601 struct mem_cgroup *memcg = page_memcg(page);
4602 struct memcg_cgwb_frn *frn;
4603 u64 now = get_jiffies_64();
4604 u64 oldest_at = now;
4605 int oldest = -1;
4606 int i;
4607
4608 trace_track_foreign_dirty(page, wb);
4609
4610 /*
4611 * Pick the slot to use. If there is already a slot for @wb, keep
4612 * using it. If not replace the oldest one which isn't being
4613 * written out.
4614 */
4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616 frn = &memcg->cgwb_frn[i];
4617 if (frn->bdi_id == wb->bdi->id &&
4618 frn->memcg_id == wb->memcg_css->id)
4619 break;
4620 if (time_before64(frn->at, oldest_at) &&
4621 atomic_read(&frn->done.cnt) == 1) {
4622 oldest = i;
4623 oldest_at = frn->at;
4624 }
4625 }
4626
4627 if (i < MEMCG_CGWB_FRN_CNT) {
4628 /*
4629 * Re-using an existing one. Update timestamp lazily to
4630 * avoid making the cacheline hot. We want them to be
4631 * reasonably up-to-date and significantly shorter than
4632 * dirty_expire_interval as that's what expires the record.
4633 * Use the shorter of 1s and dirty_expire_interval / 8.
4634 */
4635 unsigned long update_intv =
4636 min_t(unsigned long, HZ,
4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639 if (time_before64(frn->at, now - update_intv))
4640 frn->at = now;
4641 } else if (oldest >= 0) {
4642 /* replace the oldest free one */
4643 frn = &memcg->cgwb_frn[oldest];
4644 frn->bdi_id = wb->bdi->id;
4645 frn->memcg_id = wb->memcg_css->id;
4646 frn->at = now;
4647 }
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655 u64 now = jiffies_64;
4656 int i;
4657
4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661 /*
4662 * If the record is older than dirty_expire_interval,
4663 * writeback on it has already started. No need to kick it
4664 * off again. Also, don't start a new one if there's
4665 * already one in flight.
4666 */
4667 if (time_after64(frn->at, now - intv) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 frn->at = 0;
4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672 WB_REASON_FOREIGN_FLUSH,
4673 &frn->done);
4674 }
4675 }
4676}
4677
4678#else /* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682 return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif /* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered. It tries to support fully configurable
4701 * events for each user. Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715 struct mem_cgroup_event *event =
4716 container_of(work, struct mem_cgroup_event, remove);
4717 struct mem_cgroup *memcg = event->memcg;
4718
4719 remove_wait_queue(event->wqh, &event->wait);
4720
4721 event->unregister_event(memcg, event->eventfd);
4722
4723 /* Notify userspace the event is going away. */
4724 eventfd_signal(event->eventfd, 1);
4725
4726 eventfd_ctx_put(event->eventfd);
4727 kfree(event);
4728 css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737 int sync, void *key)
4738{
4739 struct mem_cgroup_event *event =
4740 container_of(wait, struct mem_cgroup_event, wait);
4741 struct mem_cgroup *memcg = event->memcg;
4742 __poll_t flags = key_to_poll(key);
4743
4744 if (flags & EPOLLHUP) {
4745 /*
4746 * If the event has been detached at cgroup removal, we
4747 * can simply return knowing the other side will cleanup
4748 * for us.
4749 *
4750 * We can't race against event freeing since the other
4751 * side will require wqh->lock via remove_wait_queue(),
4752 * which we hold.
4753 */
4754 spin_lock(&memcg->event_list_lock);
4755 if (!list_empty(&event->list)) {
4756 list_del_init(&event->list);
4757 /*
4758 * We are in atomic context, but cgroup_event_remove()
4759 * may sleep, so we have to call it in workqueue.
4760 */
4761 schedule_work(&event->remove);
4762 }
4763 spin_unlock(&memcg->event_list_lock);
4764 }
4765
4766 return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770 wait_queue_head_t *wqh, poll_table *pt)
4771{
4772 struct mem_cgroup_event *event =
4773 container_of(pt, struct mem_cgroup_event, pt);
4774
4775 event->wqh = wqh;
4776 add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788 char *buf, size_t nbytes, loff_t off)
4789{
4790 struct cgroup_subsys_state *css = of_css(of);
4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792 struct mem_cgroup_event *event;
4793 struct cgroup_subsys_state *cfile_css;
4794 unsigned int efd, cfd;
4795 struct fd efile;
4796 struct fd cfile;
4797 const char *name;
4798 char *endp;
4799 int ret;
4800
4801 buf = strstrip(buf);
4802
4803 efd = simple_strtoul(buf, &endp, 10);
4804 if (*endp != ' ')
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 cfd = simple_strtoul(buf, &endp, 10);
4809 if ((*endp != ' ') && (*endp != '\0'))
4810 return -EINVAL;
4811 buf = endp + 1;
4812
4813 event = kzalloc(sizeof(*event), GFP_KERNEL);
4814 if (!event)
4815 return -ENOMEM;
4816
4817 event->memcg = memcg;
4818 INIT_LIST_HEAD(&event->list);
4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821 INIT_WORK(&event->remove, memcg_event_remove);
4822
4823 efile = fdget(efd);
4824 if (!efile.file) {
4825 ret = -EBADF;
4826 goto out_kfree;
4827 }
4828
4829 event->eventfd = eventfd_ctx_fileget(efile.file);
4830 if (IS_ERR(event->eventfd)) {
4831 ret = PTR_ERR(event->eventfd);
4832 goto out_put_efile;
4833 }
4834
4835 cfile = fdget(cfd);
4836 if (!cfile.file) {
4837 ret = -EBADF;
4838 goto out_put_eventfd;
4839 }
4840
4841 /* the process need read permission on control file */
4842 /* AV: shouldn't we check that it's been opened for read instead? */
4843 ret = file_permission(cfile.file, MAY_READ);
4844 if (ret < 0)
4845 goto out_put_cfile;
4846
4847 /*
4848 * Determine the event callbacks and set them in @event. This used
4849 * to be done via struct cftype but cgroup core no longer knows
4850 * about these events. The following is crude but the whole thing
4851 * is for compatibility anyway.
4852 *
4853 * DO NOT ADD NEW FILES.
4854 */
4855 name = cfile.file->f_path.dentry->d_name.name;
4856
4857 if (!strcmp(name, "memory.usage_in_bytes")) {
4858 event->register_event = mem_cgroup_usage_register_event;
4859 event->unregister_event = mem_cgroup_usage_unregister_event;
4860 } else if (!strcmp(name, "memory.oom_control")) {
4861 event->register_event = mem_cgroup_oom_register_event;
4862 event->unregister_event = mem_cgroup_oom_unregister_event;
4863 } else if (!strcmp(name, "memory.pressure_level")) {
4864 event->register_event = vmpressure_register_event;
4865 event->unregister_event = vmpressure_unregister_event;
4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867 event->register_event = memsw_cgroup_usage_register_event;
4868 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869 } else {
4870 ret = -EINVAL;
4871 goto out_put_cfile;
4872 }
4873
4874 /*
4875 * Verify @cfile should belong to @css. Also, remaining events are
4876 * automatically removed on cgroup destruction but the removal is
4877 * asynchronous, so take an extra ref on @css.
4878 */
4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880 &memory_cgrp_subsys);
4881 ret = -EINVAL;
4882 if (IS_ERR(cfile_css))
4883 goto out_put_cfile;
4884 if (cfile_css != css) {
4885 css_put(cfile_css);
4886 goto out_put_cfile;
4887 }
4888
4889 ret = event->register_event(memcg, event->eventfd, buf);
4890 if (ret)
4891 goto out_put_css;
4892
4893 vfs_poll(efile.file, &event->pt);
4894
4895 spin_lock(&memcg->event_list_lock);
4896 list_add(&event->list, &memcg->event_list);
4897 spin_unlock(&memcg->event_list_lock);
4898
4899 fdput(cfile);
4900 fdput(efile);
4901
4902 return nbytes;
4903
4904out_put_css:
4905 css_put(css);
4906out_put_cfile:
4907 fdput(cfile);
4908out_put_eventfd:
4909 eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911 fdput(efile);
4912out_kfree:
4913 kfree(event);
4914
4915 return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919 {
4920 .name = "usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930 {
4931 .name = "limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "soft_limit_in_bytes",
4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939 .write = mem_cgroup_write,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "failcnt",
4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "stat",
4950 .seq_show = memcg_stat_show,
4951 },
4952 {
4953 .name = "force_empty",
4954 .write = mem_cgroup_force_empty_write,
4955 },
4956 {
4957 .name = "use_hierarchy",
4958 .write_u64 = mem_cgroup_hierarchy_write,
4959 .read_u64 = mem_cgroup_hierarchy_read,
4960 },
4961 {
4962 .name = "cgroup.event_control", /* XXX: for compat */
4963 .write = memcg_write_event_control,
4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965 },
4966 {
4967 .name = "swappiness",
4968 .read_u64 = mem_cgroup_swappiness_read,
4969 .write_u64 = mem_cgroup_swappiness_write,
4970 },
4971 {
4972 .name = "move_charge_at_immigrate",
4973 .read_u64 = mem_cgroup_move_charge_read,
4974 .write_u64 = mem_cgroup_move_charge_write,
4975 },
4976 {
4977 .name = "oom_control",
4978 .seq_show = mem_cgroup_oom_control_read,
4979 .write_u64 = mem_cgroup_oom_control_write,
4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981 },
4982 {
4983 .name = "pressure_level",
4984 },
4985#ifdef CONFIG_NUMA
4986 {
4987 .name = "numa_stat",
4988 .seq_show = memcg_numa_stat_show,
4989 },
4990#endif
4991 {
4992 .name = "kmem.limit_in_bytes",
4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994 .write = mem_cgroup_write,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.usage_in_bytes",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "kmem.failcnt",
5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005 .write = mem_cgroup_reset,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "kmem.max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016 {
5017 .name = "kmem.slabinfo",
5018 .seq_show = memcg_slab_show,
5019 },
5020#endif
5021 {
5022 .name = "kmem.tcp.limit_in_bytes",
5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024 .write = mem_cgroup_write,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "kmem.tcp.failcnt",
5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "kmem.tcp.max_usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 { }, /* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075 if (memcg->id.id > 0) {
5076 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077 memcg->id.id = 0;
5078 }
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082 unsigned int n)
5083{
5084 refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090 mem_cgroup_id_remove(memcg);
5091
5092 /* Memcg ID pins CSS */
5093 css_put(&memcg->css);
5094 }
5095}
5096
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099 mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110 WARN_ON_ONCE(!rcu_read_lock_held());
5111 return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116 struct mem_cgroup_per_node *pn;
5117 int tmp = node;
5118 /*
5119 * This routine is called against possible nodes.
5120 * But it's BUG to call kmalloc() against offline node.
5121 *
5122 * TODO: this routine can waste much memory for nodes which will
5123 * never be onlined. It's better to use memory hotplug callback
5124 * function.
5125 */
5126 if (!node_state(node, N_NORMAL_MEMORY))
5127 tmp = -1;
5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129 if (!pn)
5130 return 1;
5131
5132 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133 GFP_KERNEL_ACCOUNT);
5134 if (!pn->lruvec_stat_local) {
5135 kfree(pn);
5136 return 1;
5137 }
5138
5139 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140 GFP_KERNEL_ACCOUNT);
5141 if (!pn->lruvec_stat_cpu) {
5142 free_percpu(pn->lruvec_stat_local);
5143 kfree(pn);
5144 return 1;
5145 }
5146
5147 lruvec_init(&pn->lruvec);
5148 pn->usage_in_excess = 0;
5149 pn->on_tree = false;
5150 pn->memcg = memcg;
5151
5152 memcg->nodeinfo[node] = pn;
5153 return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160 if (!pn)
5161 return;
5162
5163 free_percpu(pn->lruvec_stat_cpu);
5164 free_percpu(pn->lruvec_stat_local);
5165 kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170 int node;
5171
5172 for_each_node(node)
5173 free_mem_cgroup_per_node_info(memcg, node);
5174 free_percpu(memcg->vmstats_percpu);
5175 kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180 int cpu;
5181
5182 memcg_wb_domain_exit(memcg);
5183 /*
5184 * Flush percpu lruvec stats to guarantee the value
5185 * correctness on parent's and all ancestor levels.
5186 */
5187 for_each_online_cpu(cpu)
5188 memcg_flush_lruvec_page_state(memcg, cpu);
5189 __mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194 struct mem_cgroup *memcg;
5195 unsigned int size;
5196 int node;
5197 int __maybe_unused i;
5198 long error = -ENOMEM;
5199
5200 size = sizeof(struct mem_cgroup);
5201 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203 memcg = kzalloc(size, GFP_KERNEL);
5204 if (!memcg)
5205 return ERR_PTR(error);
5206
5207 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208 1, MEM_CGROUP_ID_MAX,
5209 GFP_KERNEL);
5210 if (memcg->id.id < 0) {
5211 error = memcg->id.id;
5212 goto fail;
5213 }
5214
5215 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216 GFP_KERNEL_ACCOUNT);
5217 if (!memcg->vmstats_percpu)
5218 goto fail;
5219
5220 for_each_node(node)
5221 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222 goto fail;
5223
5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225 goto fail;
5226
5227 INIT_WORK(&memcg->high_work, high_work_func);
5228 INIT_LIST_HEAD(&memcg->oom_notify);
5229 mutex_init(&memcg->thresholds_lock);
5230 spin_lock_init(&memcg->move_lock);
5231 vmpressure_init(&memcg->vmpressure);
5232 INIT_LIST_HEAD(&memcg->event_list);
5233 spin_lock_init(&memcg->event_list_lock);
5234 memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236 memcg->kmemcg_id = -1;
5237 INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240 INIT_LIST_HEAD(&memcg->cgwb_list);
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 memcg->cgwb_frn[i].done =
5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248 memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251 return memcg;
5252fail:
5253 mem_cgroup_id_remove(memcg);
5254 __mem_cgroup_free(memcg);
5255 return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262 struct mem_cgroup *memcg, *old_memcg;
5263 long error = -ENOMEM;
5264
5265 old_memcg = set_active_memcg(parent);
5266 memcg = mem_cgroup_alloc();
5267 set_active_memcg(old_memcg);
5268 if (IS_ERR(memcg))
5269 return ERR_CAST(memcg);
5270
5271 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272 memcg->soft_limit = PAGE_COUNTER_MAX;
5273 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274 if (parent) {
5275 memcg->swappiness = mem_cgroup_swappiness(parent);
5276 memcg->oom_kill_disable = parent->oom_kill_disable;
5277
5278 page_counter_init(&memcg->memory, &parent->memory);
5279 page_counter_init(&memcg->swap, &parent->swap);
5280 page_counter_init(&memcg->kmem, &parent->kmem);
5281 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282 } else {
5283 page_counter_init(&memcg->memory, NULL);
5284 page_counter_init(&memcg->swap, NULL);
5285 page_counter_init(&memcg->kmem, NULL);
5286 page_counter_init(&memcg->tcpmem, NULL);
5287
5288 root_mem_cgroup = memcg;
5289 return &memcg->css;
5290 }
5291
5292 /* The following stuff does not apply to the root */
5293 error = memcg_online_kmem(memcg);
5294 if (error)
5295 goto fail;
5296
5297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298 static_branch_inc(&memcg_sockets_enabled_key);
5299
5300 return &memcg->css;
5301fail:
5302 mem_cgroup_id_remove(memcg);
5303 mem_cgroup_free(memcg);
5304 return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311 /*
5312 * A memcg must be visible for expand_shrinker_info()
5313 * by the time the maps are allocated. So, we allocate maps
5314 * here, when for_each_mem_cgroup() can't skip it.
5315 */
5316 if (alloc_shrinker_info(memcg)) {
5317 mem_cgroup_id_remove(memcg);
5318 return -ENOMEM;
5319 }
5320
5321 /* Online state pins memcg ID, memcg ID pins CSS */
5322 refcount_set(&memcg->id.ref, 1);
5323 css_get(css);
5324 return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 struct mem_cgroup_event *event, *tmp;
5331
5332 /*
5333 * Unregister events and notify userspace.
5334 * Notify userspace about cgroup removing only after rmdir of cgroup
5335 * directory to avoid race between userspace and kernelspace.
5336 */
5337 spin_lock(&memcg->event_list_lock);
5338 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339 list_del_init(&event->list);
5340 schedule_work(&event->remove);
5341 }
5342 spin_unlock(&memcg->event_list_lock);
5343
5344 page_counter_set_min(&memcg->memory, 0);
5345 page_counter_set_low(&memcg->memory, 0);
5346
5347 memcg_offline_kmem(memcg);
5348 reparent_shrinker_deferred(memcg);
5349 wb_memcg_offline(memcg);
5350
5351 drain_all_stock(memcg);
5352
5353 mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360 invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366 int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373 static_branch_dec(&memcg_sockets_enabled_key);
5374
5375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376 static_branch_dec(&memcg_sockets_enabled_key);
5377
5378 vmpressure_cleanup(&memcg->vmpressure);
5379 cancel_work_sync(&memcg->high_work);
5380 mem_cgroup_remove_from_trees(memcg);
5381 free_shrinker_info(memcg);
5382 memcg_free_kmem(memcg);
5383 mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css. This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency. The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5409 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410 memcg->soft_limit = PAGE_COUNTER_MAX;
5411 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412 memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419 struct memcg_vmstats_percpu *statc;
5420 long delta, v;
5421 int i;
5422
5423 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425 for (i = 0; i < MEMCG_NR_STAT; i++) {
5426 /*
5427 * Collect the aggregated propagation counts of groups
5428 * below us. We're in a per-cpu loop here and this is
5429 * a global counter, so the first cycle will get them.
5430 */
5431 delta = memcg->vmstats.state_pending[i];
5432 if (delta)
5433 memcg->vmstats.state_pending[i] = 0;
5434
5435 /* Add CPU changes on this level since the last flush */
5436 v = READ_ONCE(statc->state[i]);
5437 if (v != statc->state_prev[i]) {
5438 delta += v - statc->state_prev[i];
5439 statc->state_prev[i] = v;
5440 }
5441
5442 if (!delta)
5443 continue;
5444
5445 /* Aggregate counts on this level and propagate upwards */
5446 memcg->vmstats.state[i] += delta;
5447 if (parent)
5448 parent->vmstats.state_pending[i] += delta;
5449 }
5450
5451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452 delta = memcg->vmstats.events_pending[i];
5453 if (delta)
5454 memcg->vmstats.events_pending[i] = 0;
5455
5456 v = READ_ONCE(statc->events[i]);
5457 if (v != statc->events_prev[i]) {
5458 delta += v - statc->events_prev[i];
5459 statc->events_prev[i] = v;
5460 }
5461
5462 if (!delta)
5463 continue;
5464
5465 memcg->vmstats.events[i] += delta;
5466 if (parent)
5467 parent->vmstats.events_pending[i] += delta;
5468 }
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475 int ret;
5476
5477 /* Try a single bulk charge without reclaim first, kswapd may wake */
5478 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479 if (!ret) {
5480 mc.precharge += count;
5481 return ret;
5482 }
5483
5484 /* Try charges one by one with reclaim, but do not retry */
5485 while (count--) {
5486 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487 if (ret)
5488 return ret;
5489 mc.precharge++;
5490 cond_resched();
5491 }
5492 return 0;
5493}
5494
5495union mc_target {
5496 struct page *page;
5497 swp_entry_t ent;
5498};
5499
5500enum mc_target_type {
5501 MC_TARGET_NONE = 0,
5502 MC_TARGET_PAGE,
5503 MC_TARGET_SWAP,
5504 MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508 unsigned long addr, pte_t ptent)
5509{
5510 struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512 if (!page || !page_mapped(page))
5513 return NULL;
5514 if (PageAnon(page)) {
5515 if (!(mc.flags & MOVE_ANON))
5516 return NULL;
5517 } else {
5518 if (!(mc.flags & MOVE_FILE))
5519 return NULL;
5520 }
5521 if (!get_page_unless_zero(page))
5522 return NULL;
5523
5524 return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529 pte_t ptent, swp_entry_t *entry)
5530{
5531 struct page *page = NULL;
5532 swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534 if (!(mc.flags & MOVE_ANON))
5535 return NULL;
5536
5537 /*
5538 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539 * a device and because they are not accessible by CPU they are store
5540 * as special swap entry in the CPU page table.
5541 */
5542 if (is_device_private_entry(ent)) {
5543 page = pfn_swap_entry_to_page(ent);
5544 /*
5545 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546 * a refcount of 1 when free (unlike normal page)
5547 */
5548 if (!page_ref_add_unless(page, 1, 1))
5549 return NULL;
5550 return page;
5551 }
5552
5553 if (non_swap_entry(ent))
5554 return NULL;
5555
5556 /*
5557 * Because lookup_swap_cache() updates some statistics counter,
5558 * we call find_get_page() with swapper_space directly.
5559 */
5560 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561 entry->val = ent.val;
5562
5563 return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567 pte_t ptent, swp_entry_t *entry)
5568{
5569 return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
5576 if (!vma->vm_file) /* anonymous vma */
5577 return NULL;
5578 if (!(mc.flags & MOVE_FILE))
5579 return NULL;
5580
5581 /* page is moved even if it's not RSS of this task(page-faulted). */
5582 /* shmem/tmpfs may report page out on swap: account for that too. */
5583 return find_get_incore_page(vma->vm_file->f_mapping,
5584 linear_page_index(vma, addr));
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to: mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600 bool compound,
5601 struct mem_cgroup *from,
5602 struct mem_cgroup *to)
5603{
5604 struct lruvec *from_vec, *to_vec;
5605 struct pglist_data *pgdat;
5606 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607 int ret;
5608
5609 VM_BUG_ON(from == to);
5610 VM_BUG_ON_PAGE(PageLRU(page), page);
5611 VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613 /*
5614 * Prevent mem_cgroup_migrate() from looking at
5615 * page's memory cgroup of its source page while we change it.
5616 */
5617 ret = -EBUSY;
5618 if (!trylock_page(page))
5619 goto out;
5620
5621 ret = -EINVAL;
5622 if (page_memcg(page) != from)
5623 goto out_unlock;
5624
5625 pgdat = page_pgdat(page);
5626 from_vec = mem_cgroup_lruvec(from, pgdat);
5627 to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629 lock_page_memcg(page);
5630
5631 if (PageAnon(page)) {
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635 if (PageTransHuge(page)) {
5636 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5637 -nr_pages);
5638 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5639 nr_pages);
5640 }
5641 }
5642 } else {
5643 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646 if (PageSwapBacked(page)) {
5647 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649 }
5650
5651 if (page_mapped(page)) {
5652 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654 }
5655
5656 if (PageDirty(page)) {
5657 struct address_space *mapping = page_mapping(page);
5658
5659 if (mapping_can_writeback(mapping)) {
5660 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661 -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663 nr_pages);
5664 }
5665 }
5666 }
5667
5668 if (PageWriteback(page)) {
5669 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671 }
5672
5673 /*
5674 * All state has been migrated, let's switch to the new memcg.
5675 *
5676 * It is safe to change page's memcg here because the page
5677 * is referenced, charged, isolated, and locked: we can't race
5678 * with (un)charging, migration, LRU putback, or anything else
5679 * that would rely on a stable page's memory cgroup.
5680 *
5681 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682 * to save space. As soon as we switch page's memory cgroup to a
5683 * new memcg that isn't locked, the above state can change
5684 * concurrently again. Make sure we're truly done with it.
5685 */
5686 smp_mb();
5687
5688 css_get(&to->css);
5689 css_put(&from->css);
5690
5691 page->memcg_data = (unsigned long)to;
5692
5693 __unlock_page_memcg(from);
5694
5695 ret = 0;
5696
5697 local_irq_disable();
5698 mem_cgroup_charge_statistics(to, page, nr_pages);
5699 memcg_check_events(to, page);
5700 mem_cgroup_charge_statistics(from, page, -nr_pages);
5701 memcg_check_events(from, page);
5702 local_irq_enable();
5703out_unlock:
5704 unlock_page(page);
5705out:
5706 return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 * move charge. if @target is not NULL, the page is stored in target->page
5720 * with extra refcnt got(Callers should handle it).
5721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 * target for charge migration. if @target is not NULL, the entry is stored
5723 * in target->ent.
5724 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5725 * (so ZONE_DEVICE page and thus not on the lru).
5726 * For now we such page is charge like a regular page would be as for all
5727 * intent and purposes it is just special memory taking the place of a
5728 * regular page.
5729 *
5730 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736 unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738 struct page *page = NULL;
5739 enum mc_target_type ret = MC_TARGET_NONE;
5740 swp_entry_t ent = { .val = 0 };
5741
5742 if (pte_present(ptent))
5743 page = mc_handle_present_pte(vma, addr, ptent);
5744 else if (is_swap_pte(ptent))
5745 page = mc_handle_swap_pte(vma, ptent, &ent);
5746 else if (pte_none(ptent))
5747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749 if (!page && !ent.val)
5750 return ret;
5751 if (page) {
5752 /*
5753 * Do only loose check w/o serialization.
5754 * mem_cgroup_move_account() checks the page is valid or
5755 * not under LRU exclusion.
5756 */
5757 if (page_memcg(page) == mc.from) {
5758 ret = MC_TARGET_PAGE;
5759 if (is_device_private_page(page))
5760 ret = MC_TARGET_DEVICE;
5761 if (target)
5762 target->page = page;
5763 }
5764 if (!ret || !target)
5765 put_page(page);
5766 }
5767 /*
5768 * There is a swap entry and a page doesn't exist or isn't charged.
5769 * But we cannot move a tail-page in a THP.
5770 */
5771 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773 ret = MC_TARGET_SWAP;
5774 if (target)
5775 target->ent = ent;
5776 }
5777 return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787 unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789 struct page *page = NULL;
5790 enum mc_target_type ret = MC_TARGET_NONE;
5791
5792 if (unlikely(is_swap_pmd(pmd))) {
5793 VM_BUG_ON(thp_migration_supported() &&
5794 !is_pmd_migration_entry(pmd));
5795 return ret;
5796 }
5797 page = pmd_page(pmd);
5798 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799 if (!(mc.flags & MOVE_ANON))
5800 return ret;
5801 if (page_memcg(page) == mc.from) {
5802 ret = MC_TARGET_PAGE;
5803 if (target) {
5804 get_page(page);
5805 target->page = page;
5806 }
5807 }
5808 return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812 unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814 return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819 unsigned long addr, unsigned long end,
5820 struct mm_walk *walk)
5821{
5822 struct vm_area_struct *vma = walk->vma;
5823 pte_t *pte;
5824 spinlock_t *ptl;
5825
5826 ptl = pmd_trans_huge_lock(pmd, vma);
5827 if (ptl) {
5828 /*
5829 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831 * this might change.
5832 */
5833 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834 mc.precharge += HPAGE_PMD_NR;
5835 spin_unlock(ptl);
5836 return 0;
5837 }
5838
5839 if (pmd_trans_unstable(pmd))
5840 return 0;
5841 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842 for (; addr != end; pte++, addr += PAGE_SIZE)
5843 if (get_mctgt_type(vma, addr, *pte, NULL))
5844 mc.precharge++; /* increment precharge temporarily */
5845 pte_unmap_unlock(pte - 1, ptl);
5846 cond_resched();
5847
5848 return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857 unsigned long precharge;
5858
5859 mmap_read_lock(mm);
5860 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861 mmap_read_unlock(mm);
5862
5863 precharge = mc.precharge;
5864 mc.precharge = 0;
5865
5866 return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871 unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873 VM_BUG_ON(mc.moving_task);
5874 mc.moving_task = current;
5875 return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881 struct mem_cgroup *from = mc.from;
5882 struct mem_cgroup *to = mc.to;
5883
5884 /* we must uncharge all the leftover precharges from mc.to */
5885 if (mc.precharge) {
5886 cancel_charge(mc.to, mc.precharge);
5887 mc.precharge = 0;
5888 }
5889 /*
5890 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891 * we must uncharge here.
5892 */
5893 if (mc.moved_charge) {
5894 cancel_charge(mc.from, mc.moved_charge);
5895 mc.moved_charge = 0;
5896 }
5897 /* we must fixup refcnts and charges */
5898 if (mc.moved_swap) {
5899 /* uncharge swap account from the old cgroup */
5900 if (!mem_cgroup_is_root(mc.from))
5901 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905 /*
5906 * we charged both to->memory and to->memsw, so we
5907 * should uncharge to->memory.
5908 */
5909 if (!mem_cgroup_is_root(mc.to))
5910 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912 mc.moved_swap = 0;
5913 }
5914 memcg_oom_recover(from);
5915 memcg_oom_recover(to);
5916 wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921 struct mm_struct *mm = mc.mm;
5922
5923 /*
5924 * we must clear moving_task before waking up waiters at the end of
5925 * task migration.
5926 */
5927 mc.moving_task = NULL;
5928 __mem_cgroup_clear_mc();
5929 spin_lock(&mc.lock);
5930 mc.from = NULL;
5931 mc.to = NULL;
5932 mc.mm = NULL;
5933 spin_unlock(&mc.lock);
5934
5935 mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940 struct cgroup_subsys_state *css;
5941 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942 struct mem_cgroup *from;
5943 struct task_struct *leader, *p;
5944 struct mm_struct *mm;
5945 unsigned long move_flags;
5946 int ret = 0;
5947
5948 /* charge immigration isn't supported on the default hierarchy */
5949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950 return 0;
5951
5952 /*
5953 * Multi-process migrations only happen on the default hierarchy
5954 * where charge immigration is not used. Perform charge
5955 * immigration if @tset contains a leader and whine if there are
5956 * multiple.
5957 */
5958 p = NULL;
5959 cgroup_taskset_for_each_leader(leader, css, tset) {
5960 WARN_ON_ONCE(p);
5961 p = leader;
5962 memcg = mem_cgroup_from_css(css);
5963 }
5964 if (!p)
5965 return 0;
5966
5967 /*
5968 * We are now committed to this value whatever it is. Changes in this
5969 * tunable will only affect upcoming migrations, not the current one.
5970 * So we need to save it, and keep it going.
5971 */
5972 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973 if (!move_flags)
5974 return 0;
5975
5976 from = mem_cgroup_from_task(p);
5977
5978 VM_BUG_ON(from == memcg);
5979
5980 mm = get_task_mm(p);
5981 if (!mm)
5982 return 0;
5983 /* We move charges only when we move a owner of the mm */
5984 if (mm->owner == p) {
5985 VM_BUG_ON(mc.from);
5986 VM_BUG_ON(mc.to);
5987 VM_BUG_ON(mc.precharge);
5988 VM_BUG_ON(mc.moved_charge);
5989 VM_BUG_ON(mc.moved_swap);
5990
5991 spin_lock(&mc.lock);
5992 mc.mm = mm;
5993 mc.from = from;
5994 mc.to = memcg;
5995 mc.flags = move_flags;
5996 spin_unlock(&mc.lock);
5997 /* We set mc.moving_task later */
5998
5999 ret = mem_cgroup_precharge_mc(mm);
6000 if (ret)
6001 mem_cgroup_clear_mc();
6002 } else {
6003 mmput(mm);
6004 }
6005 return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010 if (mc.to)
6011 mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015 unsigned long addr, unsigned long end,
6016 struct mm_walk *walk)
6017{
6018 int ret = 0;
6019 struct vm_area_struct *vma = walk->vma;
6020 pte_t *pte;
6021 spinlock_t *ptl;
6022 enum mc_target_type target_type;
6023 union mc_target target;
6024 struct page *page;
6025
6026 ptl = pmd_trans_huge_lock(pmd, vma);
6027 if (ptl) {
6028 if (mc.precharge < HPAGE_PMD_NR) {
6029 spin_unlock(ptl);
6030 return 0;
6031 }
6032 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033 if (target_type == MC_TARGET_PAGE) {
6034 page = target.page;
6035 if (!isolate_lru_page(page)) {
6036 if (!mem_cgroup_move_account(page, true,
6037 mc.from, mc.to)) {
6038 mc.precharge -= HPAGE_PMD_NR;
6039 mc.moved_charge += HPAGE_PMD_NR;
6040 }
6041 putback_lru_page(page);
6042 }
6043 put_page(page);
6044 } else if (target_type == MC_TARGET_DEVICE) {
6045 page = target.page;
6046 if (!mem_cgroup_move_account(page, true,
6047 mc.from, mc.to)) {
6048 mc.precharge -= HPAGE_PMD_NR;
6049 mc.moved_charge += HPAGE_PMD_NR;
6050 }
6051 put_page(page);
6052 }
6053 spin_unlock(ptl);
6054 return 0;
6055 }
6056
6057 if (pmd_trans_unstable(pmd))
6058 return 0;
6059retry:
6060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061 for (; addr != end; addr += PAGE_SIZE) {
6062 pte_t ptent = *(pte++);
6063 bool device = false;
6064 swp_entry_t ent;
6065
6066 if (!mc.precharge)
6067 break;
6068
6069 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070 case MC_TARGET_DEVICE:
6071 device = true;
6072 fallthrough;
6073 case MC_TARGET_PAGE:
6074 page = target.page;
6075 /*
6076 * We can have a part of the split pmd here. Moving it
6077 * can be done but it would be too convoluted so simply
6078 * ignore such a partial THP and keep it in original
6079 * memcg. There should be somebody mapping the head.
6080 */
6081 if (PageTransCompound(page))
6082 goto put;
6083 if (!device && isolate_lru_page(page))
6084 goto put;
6085 if (!mem_cgroup_move_account(page, false,
6086 mc.from, mc.to)) {
6087 mc.precharge--;
6088 /* we uncharge from mc.from later. */
6089 mc.moved_charge++;
6090 }
6091 if (!device)
6092 putback_lru_page(page);
6093put: /* get_mctgt_type() gets the page */
6094 put_page(page);
6095 break;
6096 case MC_TARGET_SWAP:
6097 ent = target.ent;
6098 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099 mc.precharge--;
6100 mem_cgroup_id_get_many(mc.to, 1);
6101 /* we fixup other refcnts and charges later. */
6102 mc.moved_swap++;
6103 }
6104 break;
6105 default:
6106 break;
6107 }
6108 }
6109 pte_unmap_unlock(pte - 1, ptl);
6110 cond_resched();
6111
6112 if (addr != end) {
6113 /*
6114 * We have consumed all precharges we got in can_attach().
6115 * We try charge one by one, but don't do any additional
6116 * charges to mc.to if we have failed in charge once in attach()
6117 * phase.
6118 */
6119 ret = mem_cgroup_do_precharge(1);
6120 if (!ret)
6121 goto retry;
6122 }
6123
6124 return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128 .pmd_entry = mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
6133 lru_add_drain_all();
6134 /*
6135 * Signal lock_page_memcg() to take the memcg's move_lock
6136 * while we're moving its pages to another memcg. Then wait
6137 * for already started RCU-only updates to finish.
6138 */
6139 atomic_inc(&mc.from->moving_account);
6140 synchronize_rcu();
6141retry:
6142 if (unlikely(!mmap_read_trylock(mc.mm))) {
6143 /*
6144 * Someone who are holding the mmap_lock might be waiting in
6145 * waitq. So we cancel all extra charges, wake up all waiters,
6146 * and retry. Because we cancel precharges, we might not be able
6147 * to move enough charges, but moving charge is a best-effort
6148 * feature anyway, so it wouldn't be a big problem.
6149 */
6150 __mem_cgroup_clear_mc();
6151 cond_resched();
6152 goto retry;
6153 }
6154 /*
6155 * When we have consumed all precharges and failed in doing
6156 * additional charge, the page walk just aborts.
6157 */
6158 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159 NULL);
6160
6161 mmap_read_unlock(mc.mm);
6162 atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167 if (mc.to) {
6168 mem_cgroup_move_charge();
6169 mem_cgroup_clear_mc();
6170 }
6171}
6172#else /* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175 return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186{
6187 if (value == PAGE_COUNTER_MAX)
6188 seq_puts(m, "max\n");
6189 else
6190 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192 return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196 struct cftype *cft)
6197{
6198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205 return seq_puts_memcg_tunable(m,
6206 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210 char *buf, size_t nbytes, loff_t off)
6211{
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213 unsigned long min;
6214 int err;
6215
6216 buf = strstrip(buf);
6217 err = page_counter_memparse(buf, "max", &min);
6218 if (err)
6219 return err;
6220
6221 page_counter_set_min(&memcg->memory, min);
6222
6223 return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228 return seq_puts_memcg_tunable(m,
6229 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233 char *buf, size_t nbytes, loff_t off)
6234{
6235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236 unsigned long low;
6237 int err;
6238
6239 buf = strstrip(buf);
6240 err = page_counter_memparse(buf, "max", &low);
6241 if (err)
6242 return err;
6243
6244 page_counter_set_low(&memcg->memory, low);
6245
6246 return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260 bool drained = false;
6261 unsigned long high;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &high);
6266 if (err)
6267 return err;
6268
6269 page_counter_set_high(&memcg->memory, high);
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273 unsigned long reclaimed;
6274
6275 if (nr_pages <= high)
6276 break;
6277
6278 if (signal_pending(current))
6279 break;
6280
6281 if (!drained) {
6282 drain_all_stock(memcg);
6283 drained = true;
6284 continue;
6285 }
6286
6287 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288 GFP_KERNEL, true);
6289
6290 if (!reclaimed && !nr_retries--)
6291 break;
6292 }
6293
6294 memcg_wb_domain_size_changed(memcg);
6295 return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300 return seq_puts_memcg_tunable(m,
6301 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305 char *buf, size_t nbytes, loff_t off)
6306{
6307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309 bool drained = false;
6310 unsigned long max;
6311 int err;
6312
6313 buf = strstrip(buf);
6314 err = page_counter_memparse(buf, "max", &max);
6315 if (err)
6316 return err;
6317
6318 xchg(&memcg->memory.max, max);
6319
6320 for (;;) {
6321 unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323 if (nr_pages <= max)
6324 break;
6325
6326 if (signal_pending(current))
6327 break;
6328
6329 if (!drained) {
6330 drain_all_stock(memcg);
6331 drained = true;
6332 continue;
6333 }
6334
6335 if (nr_reclaims) {
6336 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337 GFP_KERNEL, true))
6338 nr_reclaims--;
6339 continue;
6340 }
6341
6342 memcg_memory_event(memcg, MEMCG_OOM);
6343 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344 break;
6345 }
6346
6347 memcg_wb_domain_size_changed(memcg);
6348 return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357 seq_printf(m, "oom_kill %lu\n",
6358 atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365 __memory_events_show(m, memcg->memory_events);
6366 return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373 __memory_events_show(m, memcg->memory_events_local);
6374 return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 char *buf;
6381
6382 buf = memory_stat_format(memcg);
6383 if (!buf)
6384 return -ENOMEM;
6385 seq_puts(m, buf);
6386 kfree(buf);
6387 return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392 int item)
6393{
6394 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399 int i;
6400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403 int nid;
6404
6405 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406 continue;
6407
6408 seq_printf(m, "%s", memory_stats[i].name);
6409 for_each_node_state(nid, N_MEMORY) {
6410 u64 size;
6411 struct lruvec *lruvec;
6412
6413 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414 size = lruvec_page_state_output(lruvec,
6415 memory_stats[i].idx);
6416 seq_printf(m, " N%d=%llu", nid, size);
6417 }
6418 seq_putc(m, '\n');
6419 }
6420
6421 return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429 seq_printf(m, "%d\n", memcg->oom_group);
6430
6431 return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435 char *buf, size_t nbytes, loff_t off)
6436{
6437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438 int ret, oom_group;
6439
6440 buf = strstrip(buf);
6441 if (!buf)
6442 return -EINVAL;
6443
6444 ret = kstrtoint(buf, 0, &oom_group);
6445 if (ret)
6446 return ret;
6447
6448 if (oom_group != 0 && oom_group != 1)
6449 return -EINVAL;
6450
6451 memcg->oom_group = oom_group;
6452
6453 return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457 {
6458 .name = "current",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .read_u64 = memory_current_read,
6461 },
6462 {
6463 .name = "min",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .seq_show = memory_min_show,
6466 .write = memory_min_write,
6467 },
6468 {
6469 .name = "low",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_low_show,
6472 .write = memory_low_write,
6473 },
6474 {
6475 .name = "high",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_high_show,
6478 .write = memory_high_write,
6479 },
6480 {
6481 .name = "max",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_max_show,
6484 .write = memory_max_write,
6485 },
6486 {
6487 .name = "events",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .file_offset = offsetof(struct mem_cgroup, events_file),
6490 .seq_show = memory_events_show,
6491 },
6492 {
6493 .name = "events.local",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6496 .seq_show = memory_events_local_show,
6497 },
6498 {
6499 .name = "stat",
6500 .seq_show = memory_stat_show,
6501 },
6502#ifdef CONFIG_NUMA
6503 {
6504 .name = "numa_stat",
6505 .seq_show = memory_numa_stat_show,
6506 },
6507#endif
6508 {
6509 .name = "oom.group",
6510 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511 .seq_show = memory_oom_group_show,
6512 .write = memory_oom_group_write,
6513 },
6514 { } /* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518 .css_alloc = mem_cgroup_css_alloc,
6519 .css_online = mem_cgroup_css_online,
6520 .css_offline = mem_cgroup_css_offline,
6521 .css_released = mem_cgroup_css_released,
6522 .css_free = mem_cgroup_css_free,
6523 .css_reset = mem_cgroup_css_reset,
6524 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6525 .can_attach = mem_cgroup_can_attach,
6526 .cancel_attach = mem_cgroup_cancel_attach,
6527 .post_attach = mem_cgroup_move_task,
6528 .dfl_cftypes = memory_files,
6529 .legacy_cftypes = mem_cgroup_legacy_files,
6530 .early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 * the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 * subsequent levels the effective protection is capped to the
6546 * parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 * user is allowed to overcommit the declared protection at a given
6550 * level. If that is the case, the parent's effective protection is
6551 * distributed to the children in proportion to how much protection
6552 * they have declared and how much of it they are utilizing.
6553 *
6554 * This makes distribution proportional, but also work-conserving:
6555 * if one cgroup claims much more protection than it uses memory,
6556 * the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 * given level, the distribution of the larger parental protection
6560 * budget is NOT proportional. A cgroup's protection from a sibling
6561 * is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 * without having to declare each individual cgroup's fixed share
6565 * of the ancestor's claim to protection, any unutilized -
6566 * "floating" - protection from up the tree is distributed in
6567 * proportion to each cgroup's *usage*. This makes the protection
6568 * neutral wrt sibling cgroups and lets them compete freely over
6569 * the shared parental protection budget, but it protects the
6570 * subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577 unsigned long parent_usage,
6578 unsigned long setting,
6579 unsigned long parent_effective,
6580 unsigned long siblings_protected)
6581{
6582 unsigned long protected;
6583 unsigned long ep;
6584
6585 protected = min(usage, setting);
6586 /*
6587 * If all cgroups at this level combined claim and use more
6588 * protection then what the parent affords them, distribute
6589 * shares in proportion to utilization.
6590 *
6591 * We are using actual utilization rather than the statically
6592 * claimed protection in order to be work-conserving: claimed
6593 * but unused protection is available to siblings that would
6594 * otherwise get a smaller chunk than what they claimed.
6595 */
6596 if (siblings_protected > parent_effective)
6597 return protected * parent_effective / siblings_protected;
6598
6599 /*
6600 * Ok, utilized protection of all children is within what the
6601 * parent affords them, so we know whatever this child claims
6602 * and utilizes is effectively protected.
6603 *
6604 * If there is unprotected usage beyond this value, reclaim
6605 * will apply pressure in proportion to that amount.
6606 *
6607 * If there is unutilized protection, the cgroup will be fully
6608 * shielded from reclaim, but we do return a smaller value for
6609 * protection than what the group could enjoy in theory. This
6610 * is okay. With the overcommit distribution above, effective
6611 * protection is always dependent on how memory is actually
6612 * consumed among the siblings anyway.
6613 */
6614 ep = protected;
6615
6616 /*
6617 * If the children aren't claiming (all of) the protection
6618 * afforded to them by the parent, distribute the remainder in
6619 * proportion to the (unprotected) memory of each cgroup. That
6620 * way, cgroups that aren't explicitly prioritized wrt each
6621 * other compete freely over the allowance, but they are
6622 * collectively protected from neighboring trees.
6623 *
6624 * We're using unprotected memory for the weight so that if
6625 * some cgroups DO claim explicit protection, we don't protect
6626 * the same bytes twice.
6627 *
6628 * Check both usage and parent_usage against the respective
6629 * protected values. One should imply the other, but they
6630 * aren't read atomically - make sure the division is sane.
6631 */
6632 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633 return ep;
6634 if (parent_effective > siblings_protected &&
6635 parent_usage > siblings_protected &&
6636 usage > protected) {
6637 unsigned long unclaimed;
6638
6639 unclaimed = parent_effective - siblings_protected;
6640 unclaimed *= usage - protected;
6641 unclaimed /= parent_usage - siblings_protected;
6642
6643 ep += unclaimed;
6644 }
6645
6646 return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 * of a top-down tree iteration, not for isolated queries.
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658 struct mem_cgroup *memcg)
6659{
6660 unsigned long usage, parent_usage;
6661 struct mem_cgroup *parent;
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 if (!root)
6667 root = root_mem_cgroup;
6668
6669 /*
6670 * Effective values of the reclaim targets are ignored so they
6671 * can be stale. Have a look at mem_cgroup_protection for more
6672 * details.
6673 * TODO: calculation should be more robust so that we do not need
6674 * that special casing.
6675 */
6676 if (memcg == root)
6677 return;
6678
6679 usage = page_counter_read(&memcg->memory);
6680 if (!usage)
6681 return;
6682
6683 parent = parent_mem_cgroup(memcg);
6684 /* No parent means a non-hierarchical mode on v1 memcg */
6685 if (!parent)
6686 return;
6687
6688 if (parent == root) {
6689 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691 return;
6692 }
6693
6694 parent_usage = page_counter_read(&parent->memory);
6695
6696 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697 READ_ONCE(memcg->memory.min),
6698 READ_ONCE(parent->memory.emin),
6699 atomic_long_read(&parent->memory.children_min_usage)));
6700
6701 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.low),
6703 READ_ONCE(parent->memory.elow),
6704 atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708 gfp_t gfp)
6709{
6710 unsigned int nr_pages = thp_nr_pages(page);
6711 int ret;
6712
6713 ret = try_charge(memcg, gfp, nr_pages);
6714 if (ret)
6715 goto out;
6716
6717 css_get(&memcg->css);
6718 commit_charge(page, memcg);
6719
6720 local_irq_disable();
6721 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722 memcg_check_events(memcg, page);
6723 local_irq_enable();
6724out:
6725 return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6743{
6744 struct mem_cgroup *memcg;
6745 int ret;
6746
6747 if (mem_cgroup_disabled())
6748 return 0;
6749
6750 memcg = get_mem_cgroup_from_mm(mm);
6751 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752 css_put(&memcg->css);
6753
6754 return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770 gfp_t gfp, swp_entry_t entry)
6771{
6772 struct mem_cgroup *memcg;
6773 unsigned short id;
6774 int ret;
6775
6776 if (mem_cgroup_disabled())
6777 return 0;
6778
6779 id = lookup_swap_cgroup_id(entry);
6780 rcu_read_lock();
6781 memcg = mem_cgroup_from_id(id);
6782 if (!memcg || !css_tryget_online(&memcg->css))
6783 memcg = get_mem_cgroup_from_mm(mm);
6784 rcu_read_unlock();
6785
6786 ret = __mem_cgroup_charge(page, memcg, gfp);
6787
6788 css_put(&memcg->css);
6789 return ret;
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6802{
6803 /*
6804 * Cgroup1's unified memory+swap counter has been charged with the
6805 * new swapcache page, finish the transfer by uncharging the swap
6806 * slot. The swap slot would also get uncharged when it dies, but
6807 * it can stick around indefinitely and we'd count the page twice
6808 * the entire time.
6809 *
6810 * Cgroup2 has separate resource counters for memory and swap,
6811 * so this is a non-issue here. Memory and swap charge lifetimes
6812 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813 * page to memory here, and uncharge swap when the slot is freed.
6814 */
6815 if (!mem_cgroup_disabled() && do_memsw_account()) {
6816 /*
6817 * The swap entry might not get freed for a long time,
6818 * let's not wait for it. The page already received a
6819 * memory+swap charge, drop the swap entry duplicate.
6820 */
6821 mem_cgroup_uncharge_swap(entry, 1);
6822 }
6823}
6824
6825struct uncharge_gather {
6826 struct mem_cgroup *memcg;
6827 unsigned long nr_memory;
6828 unsigned long pgpgout;
6829 unsigned long nr_kmem;
6830 struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835 memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
6840 unsigned long flags;
6841
6842 if (ug->nr_memory) {
6843 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844 if (do_memsw_account())
6845 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848 memcg_oom_recover(ug->memcg);
6849 }
6850
6851 local_irq_save(flags);
6852 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854 memcg_check_events(ug->memcg, ug->dummy_page);
6855 local_irq_restore(flags);
6856
6857 /* drop reference from uncharge_page */
6858 css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863 unsigned long nr_pages;
6864 struct mem_cgroup *memcg;
6865 struct obj_cgroup *objcg;
6866 bool use_objcg = PageMemcgKmem(page);
6867
6868 VM_BUG_ON_PAGE(PageLRU(page), page);
6869
6870 /*
6871 * Nobody should be changing or seriously looking at
6872 * page memcg or objcg at this point, we have fully
6873 * exclusive access to the page.
6874 */
6875 if (use_objcg) {
6876 objcg = __page_objcg(page);
6877 /*
6878 * This get matches the put at the end of the function and
6879 * kmem pages do not hold memcg references anymore.
6880 */
6881 memcg = get_mem_cgroup_from_objcg(objcg);
6882 } else {
6883 memcg = __page_memcg(page);
6884 }
6885
6886 if (!memcg)
6887 return;
6888
6889 if (ug->memcg != memcg) {
6890 if (ug->memcg) {
6891 uncharge_batch(ug);
6892 uncharge_gather_clear(ug);
6893 }
6894 ug->memcg = memcg;
6895 ug->dummy_page = page;
6896
6897 /* pairs with css_put in uncharge_batch */
6898 css_get(&memcg->css);
6899 }
6900
6901 nr_pages = compound_nr(page);
6902
6903 if (use_objcg) {
6904 ug->nr_memory += nr_pages;
6905 ug->nr_kmem += nr_pages;
6906
6907 page->memcg_data = 0;
6908 obj_cgroup_put(objcg);
6909 } else {
6910 /* LRU pages aren't accounted at the root level */
6911 if (!mem_cgroup_is_root(memcg))
6912 ug->nr_memory += nr_pages;
6913 ug->pgpgout++;
6914
6915 page->memcg_data = 0;
6916 }
6917
6918 css_put(&memcg->css);
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929 struct uncharge_gather ug;
6930
6931 if (mem_cgroup_disabled())
6932 return;
6933
6934 /* Don't touch page->lru of any random page, pre-check: */
6935 if (!page_memcg(page))
6936 return;
6937
6938 uncharge_gather_clear(&ug);
6939 uncharge_page(page, &ug);
6940 uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952 struct uncharge_gather ug;
6953 struct page *page;
6954
6955 if (mem_cgroup_disabled())
6956 return;
6957
6958 uncharge_gather_clear(&ug);
6959 list_for_each_entry(page, page_list, lru)
6960 uncharge_page(page, &ug);
6961 if (ug.memcg)
6962 uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977 struct mem_cgroup *memcg;
6978 unsigned int nr_pages;
6979 unsigned long flags;
6980
6981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985 newpage);
6986
6987 if (mem_cgroup_disabled())
6988 return;
6989
6990 /* Page cache replacement: new page already charged? */
6991 if (page_memcg(newpage))
6992 return;
6993
6994 memcg = page_memcg(oldpage);
6995 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996 if (!memcg)
6997 return;
6998
6999 /* Force-charge the new page. The old one will be freed soon */
7000 nr_pages = thp_nr_pages(newpage);
7001
7002 if (!mem_cgroup_is_root(memcg)) {
7003 page_counter_charge(&memcg->memory, nr_pages);
7004 if (do_memsw_account())
7005 page_counter_charge(&memcg->memsw, nr_pages);
7006 }
7007
7008 css_get(&memcg->css);
7009 commit_charge(newpage, memcg);
7010
7011 local_irq_save(flags);
7012 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013 memcg_check_events(memcg, newpage);
7014 local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022 struct mem_cgroup *memcg;
7023
7024 if (!mem_cgroup_sockets_enabled)
7025 return;
7026
7027 /* Do not associate the sock with unrelated interrupted task's memcg. */
7028 if (in_interrupt())
7029 return;
7030
7031 rcu_read_lock();
7032 memcg = mem_cgroup_from_task(current);
7033 if (memcg == root_mem_cgroup)
7034 goto out;
7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036 goto out;
7037 if (css_tryget(&memcg->css))
7038 sk->sk_memcg = memcg;
7039out:
7040 rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045 if (sk->sk_memcg)
7046 css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059 gfp_t gfp_mask = GFP_KERNEL;
7060
7061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062 struct page_counter *fail;
7063
7064 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065 memcg->tcpmem_pressure = 0;
7066 return true;
7067 }
7068 page_counter_charge(&memcg->tcpmem, nr_pages);
7069 memcg->tcpmem_pressure = 1;
7070 return false;
7071 }
7072
7073 /* Don't block in the packet receive path */
7074 if (in_softirq())
7075 gfp_mask = GFP_NOWAIT;
7076
7077 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080 return true;
7081
7082 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083 return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095 return;
7096 }
7097
7098 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100 refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105 char *token;
7106
7107 while ((token = strsep(&s, ",")) != NULL) {
7108 if (!*token)
7109 continue;
7110 if (!strcmp(token, "nosocket"))
7111 cgroup_memory_nosocket = true;
7112 if (!strcmp(token, "nokmem"))
7113 cgroup_memory_nokmem = true;
7114 }
7115 return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129 int cpu, node;
7130
7131 /*
7132 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134 * to work fine, we should make sure that the overfill threshold can't
7135 * exceed S32_MAX / PAGE_SIZE.
7136 */
7137 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7138
7139 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140 memcg_hotplug_cpu_dead);
7141
7142 for_each_possible_cpu(cpu)
7143 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144 drain_local_stock);
7145
7146 for_each_node(node) {
7147 struct mem_cgroup_tree_per_node *rtpn;
7148
7149 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150 node_online(node) ? node : NUMA_NO_NODE);
7151
7152 rtpn->rb_root = RB_ROOT;
7153 rtpn->rb_rightmost = NULL;
7154 spin_lock_init(&rtpn->lock);
7155 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156 }
7157
7158 return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166 /*
7167 * The root cgroup cannot be destroyed, so it's refcount must
7168 * always be >= 1.
7169 */
7170 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171 VM_BUG_ON(1);
7172 break;
7173 }
7174 memcg = parent_mem_cgroup(memcg);
7175 if (!memcg)
7176 memcg = root_mem_cgroup;
7177 }
7178 return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190 struct mem_cgroup *memcg, *swap_memcg;
7191 unsigned int nr_entries;
7192 unsigned short oldid;
7193
7194 VM_BUG_ON_PAGE(PageLRU(page), page);
7195 VM_BUG_ON_PAGE(page_count(page), page);
7196
7197 if (mem_cgroup_disabled())
7198 return;
7199
7200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 return;
7202
7203 memcg = page_memcg(page);
7204
7205 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 if (!memcg)
7207 return;
7208
7209 /*
7210 * In case the memcg owning these pages has been offlined and doesn't
7211 * have an ID allocated to it anymore, charge the closest online
7212 * ancestor for the swap instead and transfer the memory+swap charge.
7213 */
7214 swap_memcg = mem_cgroup_id_get_online(memcg);
7215 nr_entries = thp_nr_pages(page);
7216 /* Get references for the tail pages, too */
7217 if (nr_entries > 1)
7218 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220 nr_entries);
7221 VM_BUG_ON_PAGE(oldid, page);
7222 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224 page->memcg_data = 0;
7225
7226 if (!mem_cgroup_is_root(memcg))
7227 page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230 if (!mem_cgroup_is_root(swap_memcg))
7231 page_counter_charge(&swap_memcg->memsw, nr_entries);
7232 page_counter_uncharge(&memcg->memsw, nr_entries);
7233 }
7234
7235 /*
7236 * Interrupts should be disabled here because the caller holds the
7237 * i_pages lock which is taken with interrupts-off. It is
7238 * important here to have the interrupts disabled because it is the
7239 * only synchronisation we have for updating the per-CPU variables.
7240 */
7241 VM_BUG_ON(!irqs_disabled());
7242 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7243 memcg_check_events(memcg, page);
7244
7245 css_put(&memcg->css);
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259 unsigned int nr_pages = thp_nr_pages(page);
7260 struct page_counter *counter;
7261 struct mem_cgroup *memcg;
7262 unsigned short oldid;
7263
7264 if (mem_cgroup_disabled())
7265 return 0;
7266
7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268 return 0;
7269
7270 memcg = page_memcg(page);
7271
7272 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273 if (!memcg)
7274 return 0;
7275
7276 if (!entry.val) {
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 return 0;
7279 }
7280
7281 memcg = mem_cgroup_id_get_online(memcg);
7282
7283 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287 mem_cgroup_id_put(memcg);
7288 return -ENOMEM;
7289 }
7290
7291 /* Get references for the tail pages, too */
7292 if (nr_pages > 1)
7293 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295 VM_BUG_ON_PAGE(oldid, page);
7296 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298 return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308 struct mem_cgroup *memcg;
7309 unsigned short id;
7310
7311 id = swap_cgroup_record(entry, 0, nr_pages);
7312 rcu_read_lock();
7313 memcg = mem_cgroup_from_id(id);
7314 if (memcg) {
7315 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 page_counter_uncharge(&memcg->swap, nr_pages);
7318 else
7319 page_counter_uncharge(&memcg->memsw, nr_pages);
7320 }
7321 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322 mem_cgroup_id_put_many(memcg, nr_pages);
7323 }
7324 rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329 long nr_swap_pages = get_nr_swap_pages();
7330
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return nr_swap_pages;
7333 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334 nr_swap_pages = min_t(long, nr_swap_pages,
7335 READ_ONCE(memcg->swap.max) -
7336 page_counter_read(&memcg->swap));
7337 return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342 struct mem_cgroup *memcg;
7343
7344 VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346 if (vm_swap_full())
7347 return true;
7348 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349 return false;
7350
7351 memcg = page_memcg(page);
7352 if (!memcg)
7353 return false;
7354
7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356 unsigned long usage = page_counter_read(&memcg->swap);
7357
7358 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359 usage * 2 >= READ_ONCE(memcg->swap.max))
7360 return true;
7361 }
7362
7363 return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
7367{
7368 if (!strcmp(s, "1"))
7369 cgroup_memory_noswap = false;
7370 else if (!strcmp(s, "0"))
7371 cgroup_memory_noswap = true;
7372 return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
7378{
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386 return seq_puts_memcg_tunable(m,
7387 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes, loff_t off)
7392{
7393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394 unsigned long high;
7395 int err;
7396
7397 buf = strstrip(buf);
7398 err = page_counter_memparse(buf, "max", &high);
7399 if (err)
7400 return err;
7401
7402 page_counter_set_high(&memcg->swap, high);
7403
7404 return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409 return seq_puts_memcg_tunable(m,
7410 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414 char *buf, size_t nbytes, loff_t off)
7415{
7416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417 unsigned long max;
7418 int err;
7419
7420 buf = strstrip(buf);
7421 err = page_counter_memparse(buf, "max", &max);
7422 if (err)
7423 return err;
7424
7425 xchg(&memcg->swap.max, max);
7426
7427 return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434 seq_printf(m, "high %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436 seq_printf(m, "max %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438 seq_printf(m, "fail %lu\n",
7439 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441 return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445 {
7446 .name = "swap.current",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .read_u64 = swap_current_read,
7449 },
7450 {
7451 .name = "swap.high",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .seq_show = swap_high_show,
7454 .write = swap_high_write,
7455 },
7456 {
7457 .name = "swap.max",
7458 .flags = CFTYPE_NOT_ON_ROOT,
7459 .seq_show = swap_max_show,
7460 .write = swap_max_write,
7461 },
7462 {
7463 .name = "swap.events",
7464 .flags = CFTYPE_NOT_ON_ROOT,
7465 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466 .seq_show = swap_events_show,
7467 },
7468 { } /* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472 {
7473 .name = "memsw.usage_in_bytes",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.max_usage_in_bytes",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 {
7484 .name = "memsw.limit_in_bytes",
7485 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486 .write = mem_cgroup_write,
7487 .read_u64 = mem_cgroup_read_u64,
7488 },
7489 {
7490 .name = "memsw.failcnt",
7491 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492 .write = mem_cgroup_reset,
7493 .read_u64 = mem_cgroup_read_u64,
7494 },
7495 { }, /* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507 /* No memory control -> no swap control */
7508 if (mem_cgroup_disabled())
7509 cgroup_memory_noswap = true;
7510
7511 if (cgroup_memory_noswap)
7512 return 0;
7513
7514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517 return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account 0
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107};
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127};
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
131
132struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137};
138
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
146/*
147 * per-zone information in memory controller.
148 */
149struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161};
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
196/* For threshold */
197struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
222
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277#endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
332};
333
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343};
344
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
359
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
386 NR_CHARGE_TYPE,
387};
388
389/* for encoding cft->private value on file */
390#define _MEM (0)
391#define _MEMSWAP (1)
392#define _OOM_TYPE (2)
393#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
395#define MEMFILE_ATTR(val) ((val) & 0xffff)
396/* Used for OOM nofiier */
397#define OOM_CONTROL (0)
398
399/*
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 */
402#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406
407static void mem_cgroup_get(struct mem_cgroup *memcg);
408static void mem_cgroup_put(struct mem_cgroup *memcg);
409
410/* Writing them here to avoid exposing memcg's inner layout */
411#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412#include <net/sock.h>
413#include <net/ip.h>
414
415static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416void sock_update_memcg(struct sock *sk)
417{
418 if (mem_cgroup_sockets_enabled) {
419 struct mem_cgroup *memcg;
420 struct cg_proto *cg_proto;
421
422 BUG_ON(!sk->sk_prot->proto_cgroup);
423
424 /* Socket cloning can throw us here with sk_cgrp already
425 * filled. It won't however, necessarily happen from
426 * process context. So the test for root memcg given
427 * the current task's memcg won't help us in this case.
428 *
429 * Respecting the original socket's memcg is a better
430 * decision in this case.
431 */
432 if (sk->sk_cgrp) {
433 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
434 mem_cgroup_get(sk->sk_cgrp->memcg);
435 return;
436 }
437
438 rcu_read_lock();
439 memcg = mem_cgroup_from_task(current);
440 cg_proto = sk->sk_prot->proto_cgroup(memcg);
441 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
442 mem_cgroup_get(memcg);
443 sk->sk_cgrp = cg_proto;
444 }
445 rcu_read_unlock();
446 }
447}
448EXPORT_SYMBOL(sock_update_memcg);
449
450void sock_release_memcg(struct sock *sk)
451{
452 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
453 struct mem_cgroup *memcg;
454 WARN_ON(!sk->sk_cgrp->memcg);
455 memcg = sk->sk_cgrp->memcg;
456 mem_cgroup_put(memcg);
457 }
458}
459
460#ifdef CONFIG_INET
461struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
462{
463 if (!memcg || mem_cgroup_is_root(memcg))
464 return NULL;
465
466 return &memcg->tcp_mem.cg_proto;
467}
468EXPORT_SYMBOL(tcp_proto_cgroup);
469#endif /* CONFIG_INET */
470#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
471
472#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
473static void disarm_sock_keys(struct mem_cgroup *memcg)
474{
475 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
476 return;
477 static_key_slow_dec(&memcg_socket_limit_enabled);
478}
479#else
480static void disarm_sock_keys(struct mem_cgroup *memcg)
481{
482}
483#endif
484
485static void drain_all_stock_async(struct mem_cgroup *memcg);
486
487static struct mem_cgroup_per_zone *
488mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
489{
490 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
491}
492
493struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
494{
495 return &memcg->css;
496}
497
498static struct mem_cgroup_per_zone *
499page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
500{
501 int nid = page_to_nid(page);
502 int zid = page_zonenum(page);
503
504 return mem_cgroup_zoneinfo(memcg, nid, zid);
505}
506
507static struct mem_cgroup_tree_per_zone *
508soft_limit_tree_node_zone(int nid, int zid)
509{
510 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
511}
512
513static struct mem_cgroup_tree_per_zone *
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
517 int zid = page_zonenum(page);
518
519 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
520}
521
522static void
523__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
524 struct mem_cgroup_per_zone *mz,
525 struct mem_cgroup_tree_per_zone *mctz,
526 unsigned long long new_usage_in_excess)
527{
528 struct rb_node **p = &mctz->rb_root.rb_node;
529 struct rb_node *parent = NULL;
530 struct mem_cgroup_per_zone *mz_node;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess)
543 p = &(*p)->rb_left;
544 /*
545 * We can't avoid mem cgroups that are over their soft
546 * limit by the same amount
547 */
548 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
549 p = &(*p)->rb_right;
550 }
551 rb_link_node(&mz->tree_node, parent, p);
552 rb_insert_color(&mz->tree_node, &mctz->rb_root);
553 mz->on_tree = true;
554}
555
556static void
557__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
558 struct mem_cgroup_per_zone *mz,
559 struct mem_cgroup_tree_per_zone *mctz)
560{
561 if (!mz->on_tree)
562 return;
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
567static void
568mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
569 struct mem_cgroup_per_zone *mz,
570 struct mem_cgroup_tree_per_zone *mctz)
571{
572 spin_lock(&mctz->lock);
573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 spin_unlock(&mctz->lock);
575}
576
577
578static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
579{
580 unsigned long long excess;
581 struct mem_cgroup_per_zone *mz;
582 struct mem_cgroup_tree_per_zone *mctz;
583 int nid = page_to_nid(page);
584 int zid = page_zonenum(page);
585 mctz = soft_limit_tree_from_page(page);
586
587 /*
588 * Necessary to update all ancestors when hierarchy is used.
589 * because their event counter is not touched.
590 */
591 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
592 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
593 excess = res_counter_soft_limit_excess(&memcg->res);
594 /*
595 * We have to update the tree if mz is on RB-tree or
596 * mem is over its softlimit.
597 */
598 if (excess || mz->on_tree) {
599 spin_lock(&mctz->lock);
600 /* if on-tree, remove it */
601 if (mz->on_tree)
602 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
603 /*
604 * Insert again. mz->usage_in_excess will be updated.
605 * If excess is 0, no tree ops.
606 */
607 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
608 spin_unlock(&mctz->lock);
609 }
610 }
611}
612
613static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
614{
615 int node, zone;
616 struct mem_cgroup_per_zone *mz;
617 struct mem_cgroup_tree_per_zone *mctz;
618
619 for_each_node(node) {
620 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
621 mz = mem_cgroup_zoneinfo(memcg, node, zone);
622 mctz = soft_limit_tree_node_zone(node, zone);
623 mem_cgroup_remove_exceeded(memcg, mz, mctz);
624 }
625 }
626}
627
628static struct mem_cgroup_per_zone *
629__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
630{
631 struct rb_node *rightmost = NULL;
632 struct mem_cgroup_per_zone *mz;
633
634retry:
635 mz = NULL;
636 rightmost = rb_last(&mctz->rb_root);
637 if (!rightmost)
638 goto done; /* Nothing to reclaim from */
639
640 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
641 /*
642 * Remove the node now but someone else can add it back,
643 * we will to add it back at the end of reclaim to its correct
644 * position in the tree.
645 */
646 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
647 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
648 !css_tryget(&mz->memcg->css))
649 goto retry;
650done:
651 return mz;
652}
653
654static struct mem_cgroup_per_zone *
655mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
656{
657 struct mem_cgroup_per_zone *mz;
658
659 spin_lock(&mctz->lock);
660 mz = __mem_cgroup_largest_soft_limit_node(mctz);
661 spin_unlock(&mctz->lock);
662 return mz;
663}
664
665/*
666 * Implementation Note: reading percpu statistics for memcg.
667 *
668 * Both of vmstat[] and percpu_counter has threshold and do periodic
669 * synchronization to implement "quick" read. There are trade-off between
670 * reading cost and precision of value. Then, we may have a chance to implement
671 * a periodic synchronizion of counter in memcg's counter.
672 *
673 * But this _read() function is used for user interface now. The user accounts
674 * memory usage by memory cgroup and he _always_ requires exact value because
675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676 * have to visit all online cpus and make sum. So, for now, unnecessary
677 * synchronization is not implemented. (just implemented for cpu hotplug)
678 *
679 * If there are kernel internal actions which can make use of some not-exact
680 * value, and reading all cpu value can be performance bottleneck in some
681 * common workload, threashold and synchonization as vmstat[] should be
682 * implemented.
683 */
684static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
685 enum mem_cgroup_stat_index idx)
686{
687 long val = 0;
688 int cpu;
689
690 get_online_cpus();
691 for_each_online_cpu(cpu)
692 val += per_cpu(memcg->stat->count[idx], cpu);
693#ifdef CONFIG_HOTPLUG_CPU
694 spin_lock(&memcg->pcp_counter_lock);
695 val += memcg->nocpu_base.count[idx];
696 spin_unlock(&memcg->pcp_counter_lock);
697#endif
698 put_online_cpus();
699 return val;
700}
701
702static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
703 bool charge)
704{
705 int val = (charge) ? 1 : -1;
706 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
707}
708
709static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
710 enum mem_cgroup_events_index idx)
711{
712 unsigned long val = 0;
713 int cpu;
714
715 for_each_online_cpu(cpu)
716 val += per_cpu(memcg->stat->events[idx], cpu);
717#ifdef CONFIG_HOTPLUG_CPU
718 spin_lock(&memcg->pcp_counter_lock);
719 val += memcg->nocpu_base.events[idx];
720 spin_unlock(&memcg->pcp_counter_lock);
721#endif
722 return val;
723}
724
725static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
726 bool anon, int nr_pages)
727{
728 preempt_disable();
729
730 /*
731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 * counted as CACHE even if it's on ANON LRU.
733 */
734 if (anon)
735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736 nr_pages);
737 else
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739 nr_pages);
740
741 /* pagein of a big page is an event. So, ignore page size */
742 if (nr_pages > 0)
743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
744 else {
745 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
746 nr_pages = -nr_pages; /* for event */
747 }
748
749 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
750
751 preempt_enable();
752}
753
754unsigned long
755mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
756{
757 struct mem_cgroup_per_zone *mz;
758
759 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
760 return mz->lru_size[lru];
761}
762
763static unsigned long
764mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
765 unsigned int lru_mask)
766{
767 struct mem_cgroup_per_zone *mz;
768 enum lru_list lru;
769 unsigned long ret = 0;
770
771 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
772
773 for_each_lru(lru) {
774 if (BIT(lru) & lru_mask)
775 ret += mz->lru_size[lru];
776 }
777 return ret;
778}
779
780static unsigned long
781mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
782 int nid, unsigned int lru_mask)
783{
784 u64 total = 0;
785 int zid;
786
787 for (zid = 0; zid < MAX_NR_ZONES; zid++)
788 total += mem_cgroup_zone_nr_lru_pages(memcg,
789 nid, zid, lru_mask);
790
791 return total;
792}
793
794static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
795 unsigned int lru_mask)
796{
797 int nid;
798 u64 total = 0;
799
800 for_each_node_state(nid, N_HIGH_MEMORY)
801 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
802 return total;
803}
804
805static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
806 enum mem_cgroup_events_target target)
807{
808 unsigned long val, next;
809
810 val = __this_cpu_read(memcg->stat->nr_page_events);
811 next = __this_cpu_read(memcg->stat->targets[target]);
812 /* from time_after() in jiffies.h */
813 if ((long)next - (long)val < 0) {
814 switch (target) {
815 case MEM_CGROUP_TARGET_THRESH:
816 next = val + THRESHOLDS_EVENTS_TARGET;
817 break;
818 case MEM_CGROUP_TARGET_SOFTLIMIT:
819 next = val + SOFTLIMIT_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_NUMAINFO:
822 next = val + NUMAINFO_EVENTS_TARGET;
823 break;
824 default:
825 break;
826 }
827 __this_cpu_write(memcg->stat->targets[target], next);
828 return true;
829 }
830 return false;
831}
832
833/*
834 * Check events in order.
835 *
836 */
837static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
838{
839 preempt_disable();
840 /* threshold event is triggered in finer grain than soft limit */
841 if (unlikely(mem_cgroup_event_ratelimit(memcg,
842 MEM_CGROUP_TARGET_THRESH))) {
843 bool do_softlimit;
844 bool do_numainfo __maybe_unused;
845
846 do_softlimit = mem_cgroup_event_ratelimit(memcg,
847 MEM_CGROUP_TARGET_SOFTLIMIT);
848#if MAX_NUMNODES > 1
849 do_numainfo = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_NUMAINFO);
851#endif
852 preempt_enable();
853
854 mem_cgroup_threshold(memcg);
855 if (unlikely(do_softlimit))
856 mem_cgroup_update_tree(memcg, page);
857#if MAX_NUMNODES > 1
858 if (unlikely(do_numainfo))
859 atomic_inc(&memcg->numainfo_events);
860#endif
861 } else
862 preempt_enable();
863}
864
865struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
866{
867 return container_of(cgroup_subsys_state(cont,
868 mem_cgroup_subsys_id), struct mem_cgroup,
869 css);
870}
871
872struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
873{
874 /*
875 * mm_update_next_owner() may clear mm->owner to NULL
876 * if it races with swapoff, page migration, etc.
877 * So this can be called with p == NULL.
878 */
879 if (unlikely(!p))
880 return NULL;
881
882 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
883 struct mem_cgroup, css);
884}
885
886struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
887{
888 struct mem_cgroup *memcg = NULL;
889
890 if (!mm)
891 return NULL;
892 /*
893 * Because we have no locks, mm->owner's may be being moved to other
894 * cgroup. We use css_tryget() here even if this looks
895 * pessimistic (rather than adding locks here).
896 */
897 rcu_read_lock();
898 do {
899 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
900 if (unlikely(!memcg))
901 break;
902 } while (!css_tryget(&memcg->css));
903 rcu_read_unlock();
904 return memcg;
905}
906
907/**
908 * mem_cgroup_iter - iterate over memory cgroup hierarchy
909 * @root: hierarchy root
910 * @prev: previously returned memcg, NULL on first invocation
911 * @reclaim: cookie for shared reclaim walks, NULL for full walks
912 *
913 * Returns references to children of the hierarchy below @root, or
914 * @root itself, or %NULL after a full round-trip.
915 *
916 * Caller must pass the return value in @prev on subsequent
917 * invocations for reference counting, or use mem_cgroup_iter_break()
918 * to cancel a hierarchy walk before the round-trip is complete.
919 *
920 * Reclaimers can specify a zone and a priority level in @reclaim to
921 * divide up the memcgs in the hierarchy among all concurrent
922 * reclaimers operating on the same zone and priority.
923 */
924struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
925 struct mem_cgroup *prev,
926 struct mem_cgroup_reclaim_cookie *reclaim)
927{
928 struct mem_cgroup *memcg = NULL;
929 int id = 0;
930
931 if (mem_cgroup_disabled())
932 return NULL;
933
934 if (!root)
935 root = root_mem_cgroup;
936
937 if (prev && !reclaim)
938 id = css_id(&prev->css);
939
940 if (prev && prev != root)
941 css_put(&prev->css);
942
943 if (!root->use_hierarchy && root != root_mem_cgroup) {
944 if (prev)
945 return NULL;
946 return root;
947 }
948
949 while (!memcg) {
950 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
951 struct cgroup_subsys_state *css;
952
953 if (reclaim) {
954 int nid = zone_to_nid(reclaim->zone);
955 int zid = zone_idx(reclaim->zone);
956 struct mem_cgroup_per_zone *mz;
957
958 mz = mem_cgroup_zoneinfo(root, nid, zid);
959 iter = &mz->reclaim_iter[reclaim->priority];
960 if (prev && reclaim->generation != iter->generation)
961 return NULL;
962 id = iter->position;
963 }
964
965 rcu_read_lock();
966 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
967 if (css) {
968 if (css == &root->css || css_tryget(css))
969 memcg = container_of(css,
970 struct mem_cgroup, css);
971 } else
972 id = 0;
973 rcu_read_unlock();
974
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
987}
988
989/**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
996{
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001}
1002
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter != NULL; \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1012
1013#define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter != NULL; \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1017
1018static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019{
1020 return (memcg == root_mem_cgroup);
1021}
1022
1023void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1024{
1025 struct mem_cgroup *memcg;
1026
1027 if (!mm)
1028 return;
1029
1030 rcu_read_lock();
1031 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032 if (unlikely(!memcg))
1033 goto out;
1034
1035 switch (idx) {
1036 case PGFAULT:
1037 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1038 break;
1039 case PGMAJFAULT:
1040 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1041 break;
1042 default:
1043 BUG();
1044 }
1045out:
1046 rcu_read_unlock();
1047}
1048EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1049
1050/**
1051 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1052 * @zone: zone of the wanted lruvec
1053 * @memcg: memcg of the wanted lruvec
1054 *
1055 * Returns the lru list vector holding pages for the given @zone and
1056 * @mem. This can be the global zone lruvec, if the memory controller
1057 * is disabled.
1058 */
1059struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1060 struct mem_cgroup *memcg)
1061{
1062 struct mem_cgroup_per_zone *mz;
1063
1064 if (mem_cgroup_disabled())
1065 return &zone->lruvec;
1066
1067 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1068 return &mz->lruvec;
1069}
1070
1071/*
1072 * Following LRU functions are allowed to be used without PCG_LOCK.
1073 * Operations are called by routine of global LRU independently from memcg.
1074 * What we have to take care of here is validness of pc->mem_cgroup.
1075 *
1076 * Changes to pc->mem_cgroup happens when
1077 * 1. charge
1078 * 2. moving account
1079 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1080 * It is added to LRU before charge.
1081 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1082 * When moving account, the page is not on LRU. It's isolated.
1083 */
1084
1085/**
1086 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087 * @page: the page
1088 * @zone: zone of the page
1089 */
1090struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1091{
1092 struct mem_cgroup_per_zone *mz;
1093 struct mem_cgroup *memcg;
1094 struct page_cgroup *pc;
1095
1096 if (mem_cgroup_disabled())
1097 return &zone->lruvec;
1098
1099 pc = lookup_page_cgroup(page);
1100 memcg = pc->mem_cgroup;
1101
1102 /*
1103 * Surreptitiously switch any uncharged offlist page to root:
1104 * an uncharged page off lru does nothing to secure
1105 * its former mem_cgroup from sudden removal.
1106 *
1107 * Our caller holds lru_lock, and PageCgroupUsed is updated
1108 * under page_cgroup lock: between them, they make all uses
1109 * of pc->mem_cgroup safe.
1110 */
1111 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1112 pc->mem_cgroup = memcg = root_mem_cgroup;
1113
1114 mz = page_cgroup_zoneinfo(memcg, page);
1115 return &mz->lruvec;
1116}
1117
1118/**
1119 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1120 * @lruvec: mem_cgroup per zone lru vector
1121 * @lru: index of lru list the page is sitting on
1122 * @nr_pages: positive when adding or negative when removing
1123 *
1124 * This function must be called when a page is added to or removed from an
1125 * lru list.
1126 */
1127void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1128 int nr_pages)
1129{
1130 struct mem_cgroup_per_zone *mz;
1131 unsigned long *lru_size;
1132
1133 if (mem_cgroup_disabled())
1134 return;
1135
1136 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1137 lru_size = mz->lru_size + lru;
1138 *lru_size += nr_pages;
1139 VM_BUG_ON((long)(*lru_size) < 0);
1140}
1141
1142/*
1143 * Checks whether given mem is same or in the root_mem_cgroup's
1144 * hierarchy subtree
1145 */
1146bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147 struct mem_cgroup *memcg)
1148{
1149 if (root_memcg == memcg)
1150 return true;
1151 if (!root_memcg->use_hierarchy || !memcg)
1152 return false;
1153 return css_is_ancestor(&memcg->css, &root_memcg->css);
1154}
1155
1156static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157 struct mem_cgroup *memcg)
1158{
1159 bool ret;
1160
1161 rcu_read_lock();
1162 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1163 rcu_read_unlock();
1164 return ret;
1165}
1166
1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168{
1169 int ret;
1170 struct mem_cgroup *curr = NULL;
1171 struct task_struct *p;
1172
1173 p = find_lock_task_mm(task);
1174 if (p) {
1175 curr = try_get_mem_cgroup_from_mm(p->mm);
1176 task_unlock(p);
1177 } else {
1178 /*
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1182 */
1183 task_lock(task);
1184 curr = mem_cgroup_from_task(task);
1185 if (curr)
1186 css_get(&curr->css);
1187 task_unlock(task);
1188 }
1189 if (!curr)
1190 return 0;
1191 /*
1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196 */
1197 ret = mem_cgroup_same_or_subtree(memcg, curr);
1198 css_put(&curr->css);
1199 return ret;
1200}
1201
1202int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203{
1204 unsigned long inactive_ratio;
1205 unsigned long inactive;
1206 unsigned long active;
1207 unsigned long gb;
1208
1209 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1210 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
1218 return inactive * inactive_ratio < active;
1219}
1220
1221int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222{
1223 unsigned long active;
1224 unsigned long inactive;
1225
1226 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1227 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228
1229 return (active > inactive);
1230}
1231
1232#define mem_cgroup_from_res_counter(counter, member) \
1233 container_of(counter, struct mem_cgroup, member)
1234
1235/**
1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237 * @memcg: the memory cgroup
1238 *
1239 * Returns the maximum amount of memory @mem can be charged with, in
1240 * pages.
1241 */
1242static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243{
1244 unsigned long long margin;
1245
1246 margin = res_counter_margin(&memcg->res);
1247 if (do_swap_account)
1248 margin = min(margin, res_counter_margin(&memcg->memsw));
1249 return margin >> PAGE_SHIFT;
1250}
1251
1252int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1253{
1254 struct cgroup *cgrp = memcg->css.cgroup;
1255
1256 /* root ? */
1257 if (cgrp->parent == NULL)
1258 return vm_swappiness;
1259
1260 return memcg->swappiness;
1261}
1262
1263/*
1264 * memcg->moving_account is used for checking possibility that some thread is
1265 * calling move_account(). When a thread on CPU-A starts moving pages under
1266 * a memcg, other threads should check memcg->moving_account under
1267 * rcu_read_lock(), like this:
1268 *
1269 * CPU-A CPU-B
1270 * rcu_read_lock()
1271 * memcg->moving_account+1 if (memcg->mocing_account)
1272 * take heavy locks.
1273 * synchronize_rcu() update something.
1274 * rcu_read_unlock()
1275 * start move here.
1276 */
1277
1278/* for quick checking without looking up memcg */
1279atomic_t memcg_moving __read_mostly;
1280
1281static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282{
1283 atomic_inc(&memcg_moving);
1284 atomic_inc(&memcg->moving_account);
1285 synchronize_rcu();
1286}
1287
1288static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1289{
1290 /*
1291 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1292 * We check NULL in callee rather than caller.
1293 */
1294 if (memcg) {
1295 atomic_dec(&memcg_moving);
1296 atomic_dec(&memcg->moving_account);
1297 }
1298}
1299
1300/*
1301 * 2 routines for checking "mem" is under move_account() or not.
1302 *
1303 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1304 * is used for avoiding races in accounting. If true,
1305 * pc->mem_cgroup may be overwritten.
1306 *
1307 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1308 * under hierarchy of moving cgroups. This is for
1309 * waiting at hith-memory prressure caused by "move".
1310 */
1311
1312static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313{
1314 VM_BUG_ON(!rcu_read_lock_held());
1315 return atomic_read(&memcg->moving_account) > 0;
1316}
1317
1318static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319{
1320 struct mem_cgroup *from;
1321 struct mem_cgroup *to;
1322 bool ret = false;
1323 /*
1324 * Unlike task_move routines, we access mc.to, mc.from not under
1325 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 */
1327 spin_lock(&mc.lock);
1328 from = mc.from;
1329 to = mc.to;
1330 if (!from)
1331 goto unlock;
1332
1333 ret = mem_cgroup_same_or_subtree(memcg, from)
1334 || mem_cgroup_same_or_subtree(memcg, to);
1335unlock:
1336 spin_unlock(&mc.lock);
1337 return ret;
1338}
1339
1340static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341{
1342 if (mc.moving_task && current != mc.moving_task) {
1343 if (mem_cgroup_under_move(memcg)) {
1344 DEFINE_WAIT(wait);
1345 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1346 /* moving charge context might have finished. */
1347 if (mc.moving_task)
1348 schedule();
1349 finish_wait(&mc.waitq, &wait);
1350 return true;
1351 }
1352 }
1353 return false;
1354}
1355
1356/*
1357 * Take this lock when
1358 * - a code tries to modify page's memcg while it's USED.
1359 * - a code tries to modify page state accounting in a memcg.
1360 * see mem_cgroup_stolen(), too.
1361 */
1362static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1363 unsigned long *flags)
1364{
1365 spin_lock_irqsave(&memcg->move_lock, *flags);
1366}
1367
1368static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1369 unsigned long *flags)
1370{
1371 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1372}
1373
1374/**
1375 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376 * @memcg: The memory cgroup that went over limit
1377 * @p: Task that is going to be killed
1378 *
1379 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1380 * enabled
1381 */
1382void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383{
1384 struct cgroup *task_cgrp;
1385 struct cgroup *mem_cgrp;
1386 /*
1387 * Need a buffer in BSS, can't rely on allocations. The code relies
1388 * on the assumption that OOM is serialized for memory controller.
1389 * If this assumption is broken, revisit this code.
1390 */
1391 static char memcg_name[PATH_MAX];
1392 int ret;
1393
1394 if (!memcg || !p)
1395 return;
1396
1397 rcu_read_lock();
1398
1399 mem_cgrp = memcg->css.cgroup;
1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401
1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 if (ret < 0) {
1404 /*
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1407 */
1408 rcu_read_unlock();
1409 goto done;
1410 }
1411 rcu_read_unlock();
1412
1413 printk(KERN_INFO "Task in %s killed", memcg_name);
1414
1415 rcu_read_lock();
1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 if (ret < 0) {
1418 rcu_read_unlock();
1419 goto done;
1420 }
1421 rcu_read_unlock();
1422
1423 /*
1424 * Continues from above, so we don't need an KERN_ level
1425 */
1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427done:
1428
1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 "failcnt %llu\n",
1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438}
1439
1440/*
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1443 */
1444static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445{
1446 int num = 0;
1447 struct mem_cgroup *iter;
1448
1449 for_each_mem_cgroup_tree(iter, memcg)
1450 num++;
1451 return num;
1452}
1453
1454/*
1455 * Return the memory (and swap, if configured) limit for a memcg.
1456 */
1457u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458{
1459 u64 limit;
1460 u64 memsw;
1461
1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 limit += total_swap_pages << PAGE_SHIFT;
1464
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 /*
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1469 */
1470 return min(limit, memsw);
1471}
1472
1473static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474 gfp_t gfp_mask,
1475 unsigned long flags)
1476{
1477 unsigned long total = 0;
1478 bool noswap = false;
1479 int loop;
1480
1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482 noswap = true;
1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484 noswap = true;
1485
1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487 if (loop)
1488 drain_all_stock_async(memcg);
1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490 /*
1491 * Allow limit shrinkers, which are triggered directly
1492 * by userspace, to catch signals and stop reclaim
1493 * after minimal progress, regardless of the margin.
1494 */
1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496 break;
1497 if (mem_cgroup_margin(memcg))
1498 break;
1499 /*
1500 * If nothing was reclaimed after two attempts, there
1501 * may be no reclaimable pages in this hierarchy.
1502 */
1503 if (loop && !total)
1504 break;
1505 }
1506 return total;
1507}
1508
1509/**
1510 * test_mem_cgroup_node_reclaimable
1511 * @memcg: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1514 *
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1518 */
1519static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520 int nid, bool noswap)
1521{
1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523 return true;
1524 if (noswap || !total_swap_pages)
1525 return false;
1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527 return true;
1528 return false;
1529
1530}
1531#if MAX_NUMNODES > 1
1532
1533/*
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537 *
1538 */
1539static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540{
1541 int nid;
1542 /*
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1545 */
1546 if (!atomic_read(&memcg->numainfo_events))
1547 return;
1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549 return;
1550
1551 /* make a nodemask where this memcg uses memory from */
1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553
1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557 node_clear(nid, memcg->scan_nodes);
1558 }
1559
1560 atomic_set(&memcg->numainfo_events, 0);
1561 atomic_set(&memcg->numainfo_updating, 0);
1562}
1563
1564/*
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1568 *
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1573 *
1574 * Now, we use round-robin. Better algorithm is welcomed.
1575 */
1576int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577{
1578 int node;
1579
1580 mem_cgroup_may_update_nodemask(memcg);
1581 node = memcg->last_scanned_node;
1582
1583 node = next_node(node, memcg->scan_nodes);
1584 if (node == MAX_NUMNODES)
1585 node = first_node(memcg->scan_nodes);
1586 /*
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1591 */
1592 if (unlikely(node == MAX_NUMNODES))
1593 node = numa_node_id();
1594
1595 memcg->last_scanned_node = node;
1596 return node;
1597}
1598
1599/*
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1604 */
1605static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606{
1607 int nid;
1608
1609 /*
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1612 */
1613 if (!nodes_empty(memcg->scan_nodes)) {
1614 for (nid = first_node(memcg->scan_nodes);
1615 nid < MAX_NUMNODES;
1616 nid = next_node(nid, memcg->scan_nodes)) {
1617
1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619 return true;
1620 }
1621 }
1622 /*
1623 * Check rest of nodes.
1624 */
1625 for_each_node_state(nid, N_HIGH_MEMORY) {
1626 if (node_isset(nid, memcg->scan_nodes))
1627 continue;
1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629 return true;
1630 }
1631 return false;
1632}
1633
1634#else
1635int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636{
1637 return 0;
1638}
1639
1640static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641{
1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643}
1644#endif
1645
1646static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647 struct zone *zone,
1648 gfp_t gfp_mask,
1649 unsigned long *total_scanned)
1650{
1651 struct mem_cgroup *victim = NULL;
1652 int total = 0;
1653 int loop = 0;
1654 unsigned long excess;
1655 unsigned long nr_scanned;
1656 struct mem_cgroup_reclaim_cookie reclaim = {
1657 .zone = zone,
1658 .priority = 0,
1659 };
1660
1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1662
1663 while (1) {
1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665 if (!victim) {
1666 loop++;
1667 if (loop >= 2) {
1668 /*
1669 * If we have not been able to reclaim
1670 * anything, it might because there are
1671 * no reclaimable pages under this hierarchy
1672 */
1673 if (!total)
1674 break;
1675 /*
1676 * We want to do more targeted reclaim.
1677 * excess >> 2 is not to excessive so as to
1678 * reclaim too much, nor too less that we keep
1679 * coming back to reclaim from this cgroup
1680 */
1681 if (total >= (excess >> 2) ||
1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683 break;
1684 }
1685 continue;
1686 }
1687 if (!mem_cgroup_reclaimable(victim, false))
1688 continue;
1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690 zone, &nr_scanned);
1691 *total_scanned += nr_scanned;
1692 if (!res_counter_soft_limit_excess(&root_memcg->res))
1693 break;
1694 }
1695 mem_cgroup_iter_break(root_memcg, victim);
1696 return total;
1697}
1698
1699/*
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1703 */
1704static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1705{
1706 struct mem_cgroup *iter, *failed = NULL;
1707
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 if (iter->oom_lock) {
1710 /*
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1713 */
1714 failed = iter;
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
1717 } else
1718 iter->oom_lock = true;
1719 }
1720
1721 if (!failed)
1722 return true;
1723
1724 /*
1725 * OK, we failed to lock the whole subtree so we have to clean up
1726 * what we set up to the failing subtree
1727 */
1728 for_each_mem_cgroup_tree(iter, memcg) {
1729 if (iter == failed) {
1730 mem_cgroup_iter_break(memcg, iter);
1731 break;
1732 }
1733 iter->oom_lock = false;
1734 }
1735 return false;
1736}
1737
1738/*
1739 * Has to be called with memcg_oom_lock
1740 */
1741static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742{
1743 struct mem_cgroup *iter;
1744
1745 for_each_mem_cgroup_tree(iter, memcg)
1746 iter->oom_lock = false;
1747 return 0;
1748}
1749
1750static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751{
1752 struct mem_cgroup *iter;
1753
1754 for_each_mem_cgroup_tree(iter, memcg)
1755 atomic_inc(&iter->under_oom);
1756}
1757
1758static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759{
1760 struct mem_cgroup *iter;
1761
1762 /*
1763 * When a new child is created while the hierarchy is under oom,
1764 * mem_cgroup_oom_lock() may not be called. We have to use
1765 * atomic_add_unless() here.
1766 */
1767 for_each_mem_cgroup_tree(iter, memcg)
1768 atomic_add_unless(&iter->under_oom, -1, 0);
1769}
1770
1771static DEFINE_SPINLOCK(memcg_oom_lock);
1772static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773
1774struct oom_wait_info {
1775 struct mem_cgroup *memcg;
1776 wait_queue_t wait;
1777};
1778
1779static int memcg_oom_wake_function(wait_queue_t *wait,
1780 unsigned mode, int sync, void *arg)
1781{
1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1783 struct mem_cgroup *oom_wait_memcg;
1784 struct oom_wait_info *oom_wait_info;
1785
1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787 oom_wait_memcg = oom_wait_info->memcg;
1788
1789 /*
1790 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1791 * Then we can use css_is_ancestor without taking care of RCU.
1792 */
1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795 return 0;
1796 return autoremove_wake_function(wait, mode, sync, arg);
1797}
1798
1799static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1800{
1801 /* for filtering, pass "memcg" as argument. */
1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1803}
1804
1805static void memcg_oom_recover(struct mem_cgroup *memcg)
1806{
1807 if (memcg && atomic_read(&memcg->under_oom))
1808 memcg_wakeup_oom(memcg);
1809}
1810
1811/*
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1813 */
1814static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1815 int order)
1816{
1817 struct oom_wait_info owait;
1818 bool locked, need_to_kill;
1819
1820 owait.memcg = memcg;
1821 owait.wait.flags = 0;
1822 owait.wait.func = memcg_oom_wake_function;
1823 owait.wait.private = current;
1824 INIT_LIST_HEAD(&owait.wait.task_list);
1825 need_to_kill = true;
1826 mem_cgroup_mark_under_oom(memcg);
1827
1828 /* At first, try to OOM lock hierarchy under memcg.*/
1829 spin_lock(&memcg_oom_lock);
1830 locked = mem_cgroup_oom_lock(memcg);
1831 /*
1832 * Even if signal_pending(), we can't quit charge() loop without
1833 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834 * under OOM is always welcomed, use TASK_KILLABLE here.
1835 */
1836 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837 if (!locked || memcg->oom_kill_disable)
1838 need_to_kill = false;
1839 if (locked)
1840 mem_cgroup_oom_notify(memcg);
1841 spin_unlock(&memcg_oom_lock);
1842
1843 if (need_to_kill) {
1844 finish_wait(&memcg_oom_waitq, &owait.wait);
1845 mem_cgroup_out_of_memory(memcg, mask, order);
1846 } else {
1847 schedule();
1848 finish_wait(&memcg_oom_waitq, &owait.wait);
1849 }
1850 spin_lock(&memcg_oom_lock);
1851 if (locked)
1852 mem_cgroup_oom_unlock(memcg);
1853 memcg_wakeup_oom(memcg);
1854 spin_unlock(&memcg_oom_lock);
1855
1856 mem_cgroup_unmark_under_oom(memcg);
1857
1858 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1859 return false;
1860 /* Give chance to dying process */
1861 schedule_timeout_uninterruptible(1);
1862 return true;
1863}
1864
1865/*
1866 * Currently used to update mapped file statistics, but the routine can be
1867 * generalized to update other statistics as well.
1868 *
1869 * Notes: Race condition
1870 *
1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872 * it tends to be costly. But considering some conditions, we doesn't need
1873 * to do so _always_.
1874 *
1875 * Considering "charge", lock_page_cgroup() is not required because all
1876 * file-stat operations happen after a page is attached to radix-tree. There
1877 * are no race with "charge".
1878 *
1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881 * if there are race with "uncharge". Statistics itself is properly handled
1882 * by flags.
1883 *
1884 * Considering "move", this is an only case we see a race. To make the race
1885 * small, we check mm->moving_account and detect there are possibility of race
1886 * If there is, we take a lock.
1887 */
1888
1889void __mem_cgroup_begin_update_page_stat(struct page *page,
1890 bool *locked, unsigned long *flags)
1891{
1892 struct mem_cgroup *memcg;
1893 struct page_cgroup *pc;
1894
1895 pc = lookup_page_cgroup(page);
1896again:
1897 memcg = pc->mem_cgroup;
1898 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1899 return;
1900 /*
1901 * If this memory cgroup is not under account moving, we don't
1902 * need to take move_lock_page_cgroup(). Because we already hold
1903 * rcu_read_lock(), any calls to move_account will be delayed until
1904 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1905 */
1906 if (!mem_cgroup_stolen(memcg))
1907 return;
1908
1909 move_lock_mem_cgroup(memcg, flags);
1910 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1911 move_unlock_mem_cgroup(memcg, flags);
1912 goto again;
1913 }
1914 *locked = true;
1915}
1916
1917void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1918{
1919 struct page_cgroup *pc = lookup_page_cgroup(page);
1920
1921 /*
1922 * It's guaranteed that pc->mem_cgroup never changes while
1923 * lock is held because a routine modifies pc->mem_cgroup
1924 * should take move_lock_page_cgroup().
1925 */
1926 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1927}
1928
1929void mem_cgroup_update_page_stat(struct page *page,
1930 enum mem_cgroup_page_stat_item idx, int val)
1931{
1932 struct mem_cgroup *memcg;
1933 struct page_cgroup *pc = lookup_page_cgroup(page);
1934 unsigned long uninitialized_var(flags);
1935
1936 if (mem_cgroup_disabled())
1937 return;
1938
1939 memcg = pc->mem_cgroup;
1940 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1941 return;
1942
1943 switch (idx) {
1944 case MEMCG_NR_FILE_MAPPED:
1945 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1946 break;
1947 default:
1948 BUG();
1949 }
1950
1951 this_cpu_add(memcg->stat->count[idx], val);
1952}
1953
1954/*
1955 * size of first charge trial. "32" comes from vmscan.c's magic value.
1956 * TODO: maybe necessary to use big numbers in big irons.
1957 */
1958#define CHARGE_BATCH 32U
1959struct memcg_stock_pcp {
1960 struct mem_cgroup *cached; /* this never be root cgroup */
1961 unsigned int nr_pages;
1962 struct work_struct work;
1963 unsigned long flags;
1964#define FLUSHING_CACHED_CHARGE 0
1965};
1966static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1967static DEFINE_MUTEX(percpu_charge_mutex);
1968
1969/*
1970 * Try to consume stocked charge on this cpu. If success, one page is consumed
1971 * from local stock and true is returned. If the stock is 0 or charges from a
1972 * cgroup which is not current target, returns false. This stock will be
1973 * refilled.
1974 */
1975static bool consume_stock(struct mem_cgroup *memcg)
1976{
1977 struct memcg_stock_pcp *stock;
1978 bool ret = true;
1979
1980 stock = &get_cpu_var(memcg_stock);
1981 if (memcg == stock->cached && stock->nr_pages)
1982 stock->nr_pages--;
1983 else /* need to call res_counter_charge */
1984 ret = false;
1985 put_cpu_var(memcg_stock);
1986 return ret;
1987}
1988
1989/*
1990 * Returns stocks cached in percpu to res_counter and reset cached information.
1991 */
1992static void drain_stock(struct memcg_stock_pcp *stock)
1993{
1994 struct mem_cgroup *old = stock->cached;
1995
1996 if (stock->nr_pages) {
1997 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1998
1999 res_counter_uncharge(&old->res, bytes);
2000 if (do_swap_account)
2001 res_counter_uncharge(&old->memsw, bytes);
2002 stock->nr_pages = 0;
2003 }
2004 stock->cached = NULL;
2005}
2006
2007/*
2008 * This must be called under preempt disabled or must be called by
2009 * a thread which is pinned to local cpu.
2010 */
2011static void drain_local_stock(struct work_struct *dummy)
2012{
2013 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2014 drain_stock(stock);
2015 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2016}
2017
2018/*
2019 * Cache charges(val) which is from res_counter, to local per_cpu area.
2020 * This will be consumed by consume_stock() function, later.
2021 */
2022static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2023{
2024 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2025
2026 if (stock->cached != memcg) { /* reset if necessary */
2027 drain_stock(stock);
2028 stock->cached = memcg;
2029 }
2030 stock->nr_pages += nr_pages;
2031 put_cpu_var(memcg_stock);
2032}
2033
2034/*
2035 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036 * of the hierarchy under it. sync flag says whether we should block
2037 * until the work is done.
2038 */
2039static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2040{
2041 int cpu, curcpu;
2042
2043 /* Notify other cpus that system-wide "drain" is running */
2044 get_online_cpus();
2045 curcpu = get_cpu();
2046 for_each_online_cpu(cpu) {
2047 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048 struct mem_cgroup *memcg;
2049
2050 memcg = stock->cached;
2051 if (!memcg || !stock->nr_pages)
2052 continue;
2053 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2054 continue;
2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2056 if (cpu == curcpu)
2057 drain_local_stock(&stock->work);
2058 else
2059 schedule_work_on(cpu, &stock->work);
2060 }
2061 }
2062 put_cpu();
2063
2064 if (!sync)
2065 goto out;
2066
2067 for_each_online_cpu(cpu) {
2068 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2070 flush_work(&stock->work);
2071 }
2072out:
2073 put_online_cpus();
2074}
2075
2076/*
2077 * Tries to drain stocked charges in other cpus. This function is asynchronous
2078 * and just put a work per cpu for draining localy on each cpu. Caller can
2079 * expects some charges will be back to res_counter later but cannot wait for
2080 * it.
2081 */
2082static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2083{
2084 /*
2085 * If someone calls draining, avoid adding more kworker runs.
2086 */
2087 if (!mutex_trylock(&percpu_charge_mutex))
2088 return;
2089 drain_all_stock(root_memcg, false);
2090 mutex_unlock(&percpu_charge_mutex);
2091}
2092
2093/* This is a synchronous drain interface. */
2094static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2095{
2096 /* called when force_empty is called */
2097 mutex_lock(&percpu_charge_mutex);
2098 drain_all_stock(root_memcg, true);
2099 mutex_unlock(&percpu_charge_mutex);
2100}
2101
2102/*
2103 * This function drains percpu counter value from DEAD cpu and
2104 * move it to local cpu. Note that this function can be preempted.
2105 */
2106static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2107{
2108 int i;
2109
2110 spin_lock(&memcg->pcp_counter_lock);
2111 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2112 long x = per_cpu(memcg->stat->count[i], cpu);
2113
2114 per_cpu(memcg->stat->count[i], cpu) = 0;
2115 memcg->nocpu_base.count[i] += x;
2116 }
2117 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2118 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2119
2120 per_cpu(memcg->stat->events[i], cpu) = 0;
2121 memcg->nocpu_base.events[i] += x;
2122 }
2123 spin_unlock(&memcg->pcp_counter_lock);
2124}
2125
2126static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2127 unsigned long action,
2128 void *hcpu)
2129{
2130 int cpu = (unsigned long)hcpu;
2131 struct memcg_stock_pcp *stock;
2132 struct mem_cgroup *iter;
2133
2134 if (action == CPU_ONLINE)
2135 return NOTIFY_OK;
2136
2137 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2138 return NOTIFY_OK;
2139
2140 for_each_mem_cgroup(iter)
2141 mem_cgroup_drain_pcp_counter(iter, cpu);
2142
2143 stock = &per_cpu(memcg_stock, cpu);
2144 drain_stock(stock);
2145 return NOTIFY_OK;
2146}
2147
2148
2149/* See __mem_cgroup_try_charge() for details */
2150enum {
2151 CHARGE_OK, /* success */
2152 CHARGE_RETRY, /* need to retry but retry is not bad */
2153 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2154 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2155 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2156};
2157
2158static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2159 unsigned int nr_pages, bool oom_check)
2160{
2161 unsigned long csize = nr_pages * PAGE_SIZE;
2162 struct mem_cgroup *mem_over_limit;
2163 struct res_counter *fail_res;
2164 unsigned long flags = 0;
2165 int ret;
2166
2167 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2168
2169 if (likely(!ret)) {
2170 if (!do_swap_account)
2171 return CHARGE_OK;
2172 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2173 if (likely(!ret))
2174 return CHARGE_OK;
2175
2176 res_counter_uncharge(&memcg->res, csize);
2177 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2178 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2179 } else
2180 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2181 /*
2182 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2183 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2184 *
2185 * Never reclaim on behalf of optional batching, retry with a
2186 * single page instead.
2187 */
2188 if (nr_pages == CHARGE_BATCH)
2189 return CHARGE_RETRY;
2190
2191 if (!(gfp_mask & __GFP_WAIT))
2192 return CHARGE_WOULDBLOCK;
2193
2194 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2195 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2196 return CHARGE_RETRY;
2197 /*
2198 * Even though the limit is exceeded at this point, reclaim
2199 * may have been able to free some pages. Retry the charge
2200 * before killing the task.
2201 *
2202 * Only for regular pages, though: huge pages are rather
2203 * unlikely to succeed so close to the limit, and we fall back
2204 * to regular pages anyway in case of failure.
2205 */
2206 if (nr_pages == 1 && ret)
2207 return CHARGE_RETRY;
2208
2209 /*
2210 * At task move, charge accounts can be doubly counted. So, it's
2211 * better to wait until the end of task_move if something is going on.
2212 */
2213 if (mem_cgroup_wait_acct_move(mem_over_limit))
2214 return CHARGE_RETRY;
2215
2216 /* If we don't need to call oom-killer at el, return immediately */
2217 if (!oom_check)
2218 return CHARGE_NOMEM;
2219 /* check OOM */
2220 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2221 return CHARGE_OOM_DIE;
2222
2223 return CHARGE_RETRY;
2224}
2225
2226/*
2227 * __mem_cgroup_try_charge() does
2228 * 1. detect memcg to be charged against from passed *mm and *ptr,
2229 * 2. update res_counter
2230 * 3. call memory reclaim if necessary.
2231 *
2232 * In some special case, if the task is fatal, fatal_signal_pending() or
2233 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2234 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2235 * as possible without any hazards. 2: all pages should have a valid
2236 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2237 * pointer, that is treated as a charge to root_mem_cgroup.
2238 *
2239 * So __mem_cgroup_try_charge() will return
2240 * 0 ... on success, filling *ptr with a valid memcg pointer.
2241 * -ENOMEM ... charge failure because of resource limits.
2242 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2243 *
2244 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2245 * the oom-killer can be invoked.
2246 */
2247static int __mem_cgroup_try_charge(struct mm_struct *mm,
2248 gfp_t gfp_mask,
2249 unsigned int nr_pages,
2250 struct mem_cgroup **ptr,
2251 bool oom)
2252{
2253 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2254 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2255 struct mem_cgroup *memcg = NULL;
2256 int ret;
2257
2258 /*
2259 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2260 * in system level. So, allow to go ahead dying process in addition to
2261 * MEMDIE process.
2262 */
2263 if (unlikely(test_thread_flag(TIF_MEMDIE)
2264 || fatal_signal_pending(current)))
2265 goto bypass;
2266
2267 /*
2268 * We always charge the cgroup the mm_struct belongs to.
2269 * The mm_struct's mem_cgroup changes on task migration if the
2270 * thread group leader migrates. It's possible that mm is not
2271 * set, if so charge the init_mm (happens for pagecache usage).
2272 */
2273 if (!*ptr && !mm)
2274 *ptr = root_mem_cgroup;
2275again:
2276 if (*ptr) { /* css should be a valid one */
2277 memcg = *ptr;
2278 VM_BUG_ON(css_is_removed(&memcg->css));
2279 if (mem_cgroup_is_root(memcg))
2280 goto done;
2281 if (nr_pages == 1 && consume_stock(memcg))
2282 goto done;
2283 css_get(&memcg->css);
2284 } else {
2285 struct task_struct *p;
2286
2287 rcu_read_lock();
2288 p = rcu_dereference(mm->owner);
2289 /*
2290 * Because we don't have task_lock(), "p" can exit.
2291 * In that case, "memcg" can point to root or p can be NULL with
2292 * race with swapoff. Then, we have small risk of mis-accouning.
2293 * But such kind of mis-account by race always happens because
2294 * we don't have cgroup_mutex(). It's overkill and we allo that
2295 * small race, here.
2296 * (*) swapoff at el will charge against mm-struct not against
2297 * task-struct. So, mm->owner can be NULL.
2298 */
2299 memcg = mem_cgroup_from_task(p);
2300 if (!memcg)
2301 memcg = root_mem_cgroup;
2302 if (mem_cgroup_is_root(memcg)) {
2303 rcu_read_unlock();
2304 goto done;
2305 }
2306 if (nr_pages == 1 && consume_stock(memcg)) {
2307 /*
2308 * It seems dagerous to access memcg without css_get().
2309 * But considering how consume_stok works, it's not
2310 * necessary. If consume_stock success, some charges
2311 * from this memcg are cached on this cpu. So, we
2312 * don't need to call css_get()/css_tryget() before
2313 * calling consume_stock().
2314 */
2315 rcu_read_unlock();
2316 goto done;
2317 }
2318 /* after here, we may be blocked. we need to get refcnt */
2319 if (!css_tryget(&memcg->css)) {
2320 rcu_read_unlock();
2321 goto again;
2322 }
2323 rcu_read_unlock();
2324 }
2325
2326 do {
2327 bool oom_check;
2328
2329 /* If killed, bypass charge */
2330 if (fatal_signal_pending(current)) {
2331 css_put(&memcg->css);
2332 goto bypass;
2333 }
2334
2335 oom_check = false;
2336 if (oom && !nr_oom_retries) {
2337 oom_check = true;
2338 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339 }
2340
2341 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2342 switch (ret) {
2343 case CHARGE_OK:
2344 break;
2345 case CHARGE_RETRY: /* not in OOM situation but retry */
2346 batch = nr_pages;
2347 css_put(&memcg->css);
2348 memcg = NULL;
2349 goto again;
2350 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2351 css_put(&memcg->css);
2352 goto nomem;
2353 case CHARGE_NOMEM: /* OOM routine works */
2354 if (!oom) {
2355 css_put(&memcg->css);
2356 goto nomem;
2357 }
2358 /* If oom, we never return -ENOMEM */
2359 nr_oom_retries--;
2360 break;
2361 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2362 css_put(&memcg->css);
2363 goto bypass;
2364 }
2365 } while (ret != CHARGE_OK);
2366
2367 if (batch > nr_pages)
2368 refill_stock(memcg, batch - nr_pages);
2369 css_put(&memcg->css);
2370done:
2371 *ptr = memcg;
2372 return 0;
2373nomem:
2374 *ptr = NULL;
2375 return -ENOMEM;
2376bypass:
2377 *ptr = root_mem_cgroup;
2378 return -EINTR;
2379}
2380
2381/*
2382 * Somemtimes we have to undo a charge we got by try_charge().
2383 * This function is for that and do uncharge, put css's refcnt.
2384 * gotten by try_charge().
2385 */
2386static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2387 unsigned int nr_pages)
2388{
2389 if (!mem_cgroup_is_root(memcg)) {
2390 unsigned long bytes = nr_pages * PAGE_SIZE;
2391
2392 res_counter_uncharge(&memcg->res, bytes);
2393 if (do_swap_account)
2394 res_counter_uncharge(&memcg->memsw, bytes);
2395 }
2396}
2397
2398/*
2399 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2400 * This is useful when moving usage to parent cgroup.
2401 */
2402static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2403 unsigned int nr_pages)
2404{
2405 unsigned long bytes = nr_pages * PAGE_SIZE;
2406
2407 if (mem_cgroup_is_root(memcg))
2408 return;
2409
2410 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2411 if (do_swap_account)
2412 res_counter_uncharge_until(&memcg->memsw,
2413 memcg->memsw.parent, bytes);
2414}
2415
2416/*
2417 * A helper function to get mem_cgroup from ID. must be called under
2418 * rcu_read_lock(). The caller must check css_is_removed() or some if
2419 * it's concern. (dropping refcnt from swap can be called against removed
2420 * memcg.)
2421 */
2422static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2423{
2424 struct cgroup_subsys_state *css;
2425
2426 /* ID 0 is unused ID */
2427 if (!id)
2428 return NULL;
2429 css = css_lookup(&mem_cgroup_subsys, id);
2430 if (!css)
2431 return NULL;
2432 return container_of(css, struct mem_cgroup, css);
2433}
2434
2435struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436{
2437 struct mem_cgroup *memcg = NULL;
2438 struct page_cgroup *pc;
2439 unsigned short id;
2440 swp_entry_t ent;
2441
2442 VM_BUG_ON(!PageLocked(page));
2443
2444 pc = lookup_page_cgroup(page);
2445 lock_page_cgroup(pc);
2446 if (PageCgroupUsed(pc)) {
2447 memcg = pc->mem_cgroup;
2448 if (memcg && !css_tryget(&memcg->css))
2449 memcg = NULL;
2450 } else if (PageSwapCache(page)) {
2451 ent.val = page_private(page);
2452 id = lookup_swap_cgroup_id(ent);
2453 rcu_read_lock();
2454 memcg = mem_cgroup_lookup(id);
2455 if (memcg && !css_tryget(&memcg->css))
2456 memcg = NULL;
2457 rcu_read_unlock();
2458 }
2459 unlock_page_cgroup(pc);
2460 return memcg;
2461}
2462
2463static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464 struct page *page,
2465 unsigned int nr_pages,
2466 enum charge_type ctype,
2467 bool lrucare)
2468{
2469 struct page_cgroup *pc = lookup_page_cgroup(page);
2470 struct zone *uninitialized_var(zone);
2471 struct lruvec *lruvec;
2472 bool was_on_lru = false;
2473 bool anon;
2474
2475 lock_page_cgroup(pc);
2476 if (unlikely(PageCgroupUsed(pc))) {
2477 unlock_page_cgroup(pc);
2478 __mem_cgroup_cancel_charge(memcg, nr_pages);
2479 return;
2480 }
2481 /*
2482 * we don't need page_cgroup_lock about tail pages, becase they are not
2483 * accessed by any other context at this point.
2484 */
2485
2486 /*
2487 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2488 * may already be on some other mem_cgroup's LRU. Take care of it.
2489 */
2490 if (lrucare) {
2491 zone = page_zone(page);
2492 spin_lock_irq(&zone->lru_lock);
2493 if (PageLRU(page)) {
2494 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2495 ClearPageLRU(page);
2496 del_page_from_lru_list(page, lruvec, page_lru(page));
2497 was_on_lru = true;
2498 }
2499 }
2500
2501 pc->mem_cgroup = memcg;
2502 /*
2503 * We access a page_cgroup asynchronously without lock_page_cgroup().
2504 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2505 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2506 * before USED bit, we need memory barrier here.
2507 * See mem_cgroup_add_lru_list(), etc.
2508 */
2509 smp_wmb();
2510 SetPageCgroupUsed(pc);
2511
2512 if (lrucare) {
2513 if (was_on_lru) {
2514 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2515 VM_BUG_ON(PageLRU(page));
2516 SetPageLRU(page);
2517 add_page_to_lru_list(page, lruvec, page_lru(page));
2518 }
2519 spin_unlock_irq(&zone->lru_lock);
2520 }
2521
2522 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2523 anon = true;
2524 else
2525 anon = false;
2526
2527 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2528 unlock_page_cgroup(pc);
2529
2530 /*
2531 * "charge_statistics" updated event counter. Then, check it.
2532 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2533 * if they exceeds softlimit.
2534 */
2535 memcg_check_events(memcg, page);
2536}
2537
2538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2539
2540#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547void mem_cgroup_split_huge_fixup(struct page *head)
2548{
2549 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 struct page_cgroup *pc;
2551 int i;
2552
2553 if (mem_cgroup_disabled())
2554 return;
2555 for (i = 1; i < HPAGE_PMD_NR; i++) {
2556 pc = head_pc + i;
2557 pc->mem_cgroup = head_pc->mem_cgroup;
2558 smp_wmb();/* see __commit_charge() */
2559 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2560 }
2561}
2562#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2563
2564/**
2565 * mem_cgroup_move_account - move account of the page
2566 * @page: the page
2567 * @nr_pages: number of regular pages (>1 for huge pages)
2568 * @pc: page_cgroup of the page.
2569 * @from: mem_cgroup which the page is moved from.
2570 * @to: mem_cgroup which the page is moved to. @from != @to.
2571 *
2572 * The caller must confirm following.
2573 * - page is not on LRU (isolate_page() is useful.)
2574 * - compound_lock is held when nr_pages > 1
2575 *
2576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2577 * from old cgroup.
2578 */
2579static int mem_cgroup_move_account(struct page *page,
2580 unsigned int nr_pages,
2581 struct page_cgroup *pc,
2582 struct mem_cgroup *from,
2583 struct mem_cgroup *to)
2584{
2585 unsigned long flags;
2586 int ret;
2587 bool anon = PageAnon(page);
2588
2589 VM_BUG_ON(from == to);
2590 VM_BUG_ON(PageLRU(page));
2591 /*
2592 * The page is isolated from LRU. So, collapse function
2593 * will not handle this page. But page splitting can happen.
2594 * Do this check under compound_page_lock(). The caller should
2595 * hold it.
2596 */
2597 ret = -EBUSY;
2598 if (nr_pages > 1 && !PageTransHuge(page))
2599 goto out;
2600
2601 lock_page_cgroup(pc);
2602
2603 ret = -EINVAL;
2604 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2605 goto unlock;
2606
2607 move_lock_mem_cgroup(from, &flags);
2608
2609 if (!anon && page_mapped(page)) {
2610 /* Update mapped_file data for mem_cgroup */
2611 preempt_disable();
2612 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2614 preempt_enable();
2615 }
2616 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2617
2618 /* caller should have done css_get */
2619 pc->mem_cgroup = to;
2620 mem_cgroup_charge_statistics(to, anon, nr_pages);
2621 /*
2622 * We charges against "to" which may not have any tasks. Then, "to"
2623 * can be under rmdir(). But in current implementation, caller of
2624 * this function is just force_empty() and move charge, so it's
2625 * guaranteed that "to" is never removed. So, we don't check rmdir
2626 * status here.
2627 */
2628 move_unlock_mem_cgroup(from, &flags);
2629 ret = 0;
2630unlock:
2631 unlock_page_cgroup(pc);
2632 /*
2633 * check events
2634 */
2635 memcg_check_events(to, page);
2636 memcg_check_events(from, page);
2637out:
2638 return ret;
2639}
2640
2641/*
2642 * move charges to its parent.
2643 */
2644
2645static int mem_cgroup_move_parent(struct page *page,
2646 struct page_cgroup *pc,
2647 struct mem_cgroup *child,
2648 gfp_t gfp_mask)
2649{
2650 struct mem_cgroup *parent;
2651 unsigned int nr_pages;
2652 unsigned long uninitialized_var(flags);
2653 int ret;
2654
2655 /* Is ROOT ? */
2656 if (mem_cgroup_is_root(child))
2657 return -EINVAL;
2658
2659 ret = -EBUSY;
2660 if (!get_page_unless_zero(page))
2661 goto out;
2662 if (isolate_lru_page(page))
2663 goto put;
2664
2665 nr_pages = hpage_nr_pages(page);
2666
2667 parent = parent_mem_cgroup(child);
2668 /*
2669 * If no parent, move charges to root cgroup.
2670 */
2671 if (!parent)
2672 parent = root_mem_cgroup;
2673
2674 if (nr_pages > 1)
2675 flags = compound_lock_irqsave(page);
2676
2677 ret = mem_cgroup_move_account(page, nr_pages,
2678 pc, child, parent);
2679 if (!ret)
2680 __mem_cgroup_cancel_local_charge(child, nr_pages);
2681
2682 if (nr_pages > 1)
2683 compound_unlock_irqrestore(page, flags);
2684 putback_lru_page(page);
2685put:
2686 put_page(page);
2687out:
2688 return ret;
2689}
2690
2691/*
2692 * Charge the memory controller for page usage.
2693 * Return
2694 * 0 if the charge was successful
2695 * < 0 if the cgroup is over its limit
2696 */
2697static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2698 gfp_t gfp_mask, enum charge_type ctype)
2699{
2700 struct mem_cgroup *memcg = NULL;
2701 unsigned int nr_pages = 1;
2702 bool oom = true;
2703 int ret;
2704
2705 if (PageTransHuge(page)) {
2706 nr_pages <<= compound_order(page);
2707 VM_BUG_ON(!PageTransHuge(page));
2708 /*
2709 * Never OOM-kill a process for a huge page. The
2710 * fault handler will fall back to regular pages.
2711 */
2712 oom = false;
2713 }
2714
2715 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716 if (ret == -ENOMEM)
2717 return ret;
2718 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2719 return 0;
2720}
2721
2722int mem_cgroup_newpage_charge(struct page *page,
2723 struct mm_struct *mm, gfp_t gfp_mask)
2724{
2725 if (mem_cgroup_disabled())
2726 return 0;
2727 VM_BUG_ON(page_mapped(page));
2728 VM_BUG_ON(page->mapping && !PageAnon(page));
2729 VM_BUG_ON(!mm);
2730 return mem_cgroup_charge_common(page, mm, gfp_mask,
2731 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2732}
2733
2734static void
2735__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2736 enum charge_type ctype);
2737
2738int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2739 gfp_t gfp_mask)
2740{
2741 struct mem_cgroup *memcg = NULL;
2742 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2743 int ret;
2744
2745 if (mem_cgroup_disabled())
2746 return 0;
2747 if (PageCompound(page))
2748 return 0;
2749
2750 if (unlikely(!mm))
2751 mm = &init_mm;
2752 if (!page_is_file_cache(page))
2753 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2754
2755 if (!PageSwapCache(page))
2756 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2757 else { /* page is swapcache/shmem */
2758 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2759 if (!ret)
2760 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2761 }
2762 return ret;
2763}
2764
2765/*
2766 * While swap-in, try_charge -> commit or cancel, the page is locked.
2767 * And when try_charge() successfully returns, one refcnt to memcg without
2768 * struct page_cgroup is acquired. This refcnt will be consumed by
2769 * "commit()" or removed by "cancel()"
2770 */
2771int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2772 struct page *page,
2773 gfp_t mask, struct mem_cgroup **memcgp)
2774{
2775 struct mem_cgroup *memcg;
2776 int ret;
2777
2778 *memcgp = NULL;
2779
2780 if (mem_cgroup_disabled())
2781 return 0;
2782
2783 if (!do_swap_account)
2784 goto charge_cur_mm;
2785 /*
2786 * A racing thread's fault, or swapoff, may have already updated
2787 * the pte, and even removed page from swap cache: in those cases
2788 * do_swap_page()'s pte_same() test will fail; but there's also a
2789 * KSM case which does need to charge the page.
2790 */
2791 if (!PageSwapCache(page))
2792 goto charge_cur_mm;
2793 memcg = try_get_mem_cgroup_from_page(page);
2794 if (!memcg)
2795 goto charge_cur_mm;
2796 *memcgp = memcg;
2797 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2798 css_put(&memcg->css);
2799 if (ret == -EINTR)
2800 ret = 0;
2801 return ret;
2802charge_cur_mm:
2803 if (unlikely(!mm))
2804 mm = &init_mm;
2805 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2806 if (ret == -EINTR)
2807 ret = 0;
2808 return ret;
2809}
2810
2811static void
2812__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2813 enum charge_type ctype)
2814{
2815 if (mem_cgroup_disabled())
2816 return;
2817 if (!memcg)
2818 return;
2819 cgroup_exclude_rmdir(&memcg->css);
2820
2821 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2822 /*
2823 * Now swap is on-memory. This means this page may be
2824 * counted both as mem and swap....double count.
2825 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2826 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2827 * may call delete_from_swap_cache() before reach here.
2828 */
2829 if (do_swap_account && PageSwapCache(page)) {
2830 swp_entry_t ent = {.val = page_private(page)};
2831 mem_cgroup_uncharge_swap(ent);
2832 }
2833 /*
2834 * At swapin, we may charge account against cgroup which has no tasks.
2835 * So, rmdir()->pre_destroy() can be called while we do this charge.
2836 * In that case, we need to call pre_destroy() again. check it here.
2837 */
2838 cgroup_release_and_wakeup_rmdir(&memcg->css);
2839}
2840
2841void mem_cgroup_commit_charge_swapin(struct page *page,
2842 struct mem_cgroup *memcg)
2843{
2844 __mem_cgroup_commit_charge_swapin(page, memcg,
2845 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2846}
2847
2848void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2849{
2850 if (mem_cgroup_disabled())
2851 return;
2852 if (!memcg)
2853 return;
2854 __mem_cgroup_cancel_charge(memcg, 1);
2855}
2856
2857static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2858 unsigned int nr_pages,
2859 const enum charge_type ctype)
2860{
2861 struct memcg_batch_info *batch = NULL;
2862 bool uncharge_memsw = true;
2863
2864 /* If swapout, usage of swap doesn't decrease */
2865 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2866 uncharge_memsw = false;
2867
2868 batch = ¤t->memcg_batch;
2869 /*
2870 * In usual, we do css_get() when we remember memcg pointer.
2871 * But in this case, we keep res->usage until end of a series of
2872 * uncharges. Then, it's ok to ignore memcg's refcnt.
2873 */
2874 if (!batch->memcg)
2875 batch->memcg = memcg;
2876 /*
2877 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2878 * In those cases, all pages freed continuously can be expected to be in
2879 * the same cgroup and we have chance to coalesce uncharges.
2880 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2881 * because we want to do uncharge as soon as possible.
2882 */
2883
2884 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2885 goto direct_uncharge;
2886
2887 if (nr_pages > 1)
2888 goto direct_uncharge;
2889
2890 /*
2891 * In typical case, batch->memcg == mem. This means we can
2892 * merge a series of uncharges to an uncharge of res_counter.
2893 * If not, we uncharge res_counter ony by one.
2894 */
2895 if (batch->memcg != memcg)
2896 goto direct_uncharge;
2897 /* remember freed charge and uncharge it later */
2898 batch->nr_pages++;
2899 if (uncharge_memsw)
2900 batch->memsw_nr_pages++;
2901 return;
2902direct_uncharge:
2903 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2904 if (uncharge_memsw)
2905 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2906 if (unlikely(batch->memcg != memcg))
2907 memcg_oom_recover(memcg);
2908}
2909
2910/*
2911 * uncharge if !page_mapped(page)
2912 */
2913static struct mem_cgroup *
2914__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2915{
2916 struct mem_cgroup *memcg = NULL;
2917 unsigned int nr_pages = 1;
2918 struct page_cgroup *pc;
2919 bool anon;
2920
2921 if (mem_cgroup_disabled())
2922 return NULL;
2923
2924 if (PageSwapCache(page))
2925 return NULL;
2926
2927 if (PageTransHuge(page)) {
2928 nr_pages <<= compound_order(page);
2929 VM_BUG_ON(!PageTransHuge(page));
2930 }
2931 /*
2932 * Check if our page_cgroup is valid
2933 */
2934 pc = lookup_page_cgroup(page);
2935 if (unlikely(!PageCgroupUsed(pc)))
2936 return NULL;
2937
2938 lock_page_cgroup(pc);
2939
2940 memcg = pc->mem_cgroup;
2941
2942 if (!PageCgroupUsed(pc))
2943 goto unlock_out;
2944
2945 anon = PageAnon(page);
2946
2947 switch (ctype) {
2948 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2949 /*
2950 * Generally PageAnon tells if it's the anon statistics to be
2951 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2952 * used before page reached the stage of being marked PageAnon.
2953 */
2954 anon = true;
2955 /* fallthrough */
2956 case MEM_CGROUP_CHARGE_TYPE_DROP:
2957 /* See mem_cgroup_prepare_migration() */
2958 if (page_mapped(page) || PageCgroupMigration(pc))
2959 goto unlock_out;
2960 break;
2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962 if (!PageAnon(page)) { /* Shared memory */
2963 if (page->mapping && !page_is_file_cache(page))
2964 goto unlock_out;
2965 } else if (page_mapped(page)) /* Anon */
2966 goto unlock_out;
2967 break;
2968 default:
2969 break;
2970 }
2971
2972 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2973
2974 ClearPageCgroupUsed(pc);
2975 /*
2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 * freed from LRU. This is safe because uncharged page is expected not
2978 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 * special functions.
2980 */
2981
2982 unlock_page_cgroup(pc);
2983 /*
2984 * even after unlock, we have memcg->res.usage here and this memcg
2985 * will never be freed.
2986 */
2987 memcg_check_events(memcg, page);
2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989 mem_cgroup_swap_statistics(memcg, true);
2990 mem_cgroup_get(memcg);
2991 }
2992 if (!mem_cgroup_is_root(memcg))
2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994
2995 return memcg;
2996
2997unlock_out:
2998 unlock_page_cgroup(pc);
2999 return NULL;
3000}
3001
3002void mem_cgroup_uncharge_page(struct page *page)
3003{
3004 /* early check. */
3005 if (page_mapped(page))
3006 return;
3007 VM_BUG_ON(page->mapping && !PageAnon(page));
3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3009}
3010
3011void mem_cgroup_uncharge_cache_page(struct page *page)
3012{
3013 VM_BUG_ON(page_mapped(page));
3014 VM_BUG_ON(page->mapping);
3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016}
3017
3018/*
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3024 */
3025
3026void mem_cgroup_uncharge_start(void)
3027{
3028 current->memcg_batch.do_batch++;
3029 /* We can do nest. */
3030 if (current->memcg_batch.do_batch == 1) {
3031 current->memcg_batch.memcg = NULL;
3032 current->memcg_batch.nr_pages = 0;
3033 current->memcg_batch.memsw_nr_pages = 0;
3034 }
3035}
3036
3037void mem_cgroup_uncharge_end(void)
3038{
3039 struct memcg_batch_info *batch = ¤t->memcg_batch;
3040
3041 if (!batch->do_batch)
3042 return;
3043
3044 batch->do_batch--;
3045 if (batch->do_batch) /* If stacked, do nothing. */
3046 return;
3047
3048 if (!batch->memcg)
3049 return;
3050 /*
3051 * This "batch->memcg" is valid without any css_get/put etc...
3052 * bacause we hide charges behind us.
3053 */
3054 if (batch->nr_pages)
3055 res_counter_uncharge(&batch->memcg->res,
3056 batch->nr_pages * PAGE_SIZE);
3057 if (batch->memsw_nr_pages)
3058 res_counter_uncharge(&batch->memcg->memsw,
3059 batch->memsw_nr_pages * PAGE_SIZE);
3060 memcg_oom_recover(batch->memcg);
3061 /* forget this pointer (for sanity check) */
3062 batch->memcg = NULL;
3063}
3064
3065#ifdef CONFIG_SWAP
3066/*
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3069 */
3070void
3071mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072{
3073 struct mem_cgroup *memcg;
3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075
3076 if (!swapout) /* this was a swap cache but the swap is unused ! */
3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078
3079 memcg = __mem_cgroup_uncharge_common(page, ctype);
3080
3081 /*
3082 * record memcg information, if swapout && memcg != NULL,
3083 * mem_cgroup_get() was called in uncharge().
3084 */
3085 if (do_swap_account && swapout && memcg)
3086 swap_cgroup_record(ent, css_id(&memcg->css));
3087}
3088#endif
3089
3090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091/*
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3094 */
3095void mem_cgroup_uncharge_swap(swp_entry_t ent)
3096{
3097 struct mem_cgroup *memcg;
3098 unsigned short id;
3099
3100 if (!do_swap_account)
3101 return;
3102
3103 id = swap_cgroup_record(ent, 0);
3104 rcu_read_lock();
3105 memcg = mem_cgroup_lookup(id);
3106 if (memcg) {
3107 /*
3108 * We uncharge this because swap is freed.
3109 * This memcg can be obsolete one. We avoid calling css_tryget
3110 */
3111 if (!mem_cgroup_is_root(memcg))
3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113 mem_cgroup_swap_statistics(memcg, false);
3114 mem_cgroup_put(memcg);
3115 }
3116 rcu_read_unlock();
3117}
3118
3119/**
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from: mem_cgroup which the entry is moved from
3123 * @to: mem_cgroup which the entry is moved to
3124 *
3125 * It succeeds only when the swap_cgroup's record for this entry is the same
3126 * as the mem_cgroup's id of @from.
3127 *
3128 * Returns 0 on success, -EINVAL on failure.
3129 *
3130 * The caller must have charged to @to, IOW, called res_counter_charge() about
3131 * both res and memsw, and called css_get().
3132 */
3133static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134 struct mem_cgroup *from, struct mem_cgroup *to)
3135{
3136 unsigned short old_id, new_id;
3137
3138 old_id = css_id(&from->css);
3139 new_id = css_id(&to->css);
3140
3141 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3142 mem_cgroup_swap_statistics(from, false);
3143 mem_cgroup_swap_statistics(to, true);
3144 /*
3145 * This function is only called from task migration context now.
3146 * It postpones res_counter and refcount handling till the end
3147 * of task migration(mem_cgroup_clear_mc()) for performance
3148 * improvement. But we cannot postpone mem_cgroup_get(to)
3149 * because if the process that has been moved to @to does
3150 * swap-in, the refcount of @to might be decreased to 0.
3151 */
3152 mem_cgroup_get(to);
3153 return 0;
3154 }
3155 return -EINVAL;
3156}
3157#else
3158static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 struct mem_cgroup *from, struct mem_cgroup *to)
3160{
3161 return -EINVAL;
3162}
3163#endif
3164
3165/*
3166 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3167 * page belongs to.
3168 */
3169int mem_cgroup_prepare_migration(struct page *page,
3170 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171{
3172 struct mem_cgroup *memcg = NULL;
3173 struct page_cgroup *pc;
3174 enum charge_type ctype;
3175 int ret = 0;
3176
3177 *memcgp = NULL;
3178
3179 VM_BUG_ON(PageTransHuge(page));
3180 if (mem_cgroup_disabled())
3181 return 0;
3182
3183 pc = lookup_page_cgroup(page);
3184 lock_page_cgroup(pc);
3185 if (PageCgroupUsed(pc)) {
3186 memcg = pc->mem_cgroup;
3187 css_get(&memcg->css);
3188 /*
3189 * At migrating an anonymous page, its mapcount goes down
3190 * to 0 and uncharge() will be called. But, even if it's fully
3191 * unmapped, migration may fail and this page has to be
3192 * charged again. We set MIGRATION flag here and delay uncharge
3193 * until end_migration() is called
3194 *
3195 * Corner Case Thinking
3196 * A)
3197 * When the old page was mapped as Anon and it's unmap-and-freed
3198 * while migration was ongoing.
3199 * If unmap finds the old page, uncharge() of it will be delayed
3200 * until end_migration(). If unmap finds a new page, it's
3201 * uncharged when it make mapcount to be 1->0. If unmap code
3202 * finds swap_migration_entry, the new page will not be mapped
3203 * and end_migration() will find it(mapcount==0).
3204 *
3205 * B)
3206 * When the old page was mapped but migraion fails, the kernel
3207 * remaps it. A charge for it is kept by MIGRATION flag even
3208 * if mapcount goes down to 0. We can do remap successfully
3209 * without charging it again.
3210 *
3211 * C)
3212 * The "old" page is under lock_page() until the end of
3213 * migration, so, the old page itself will not be swapped-out.
3214 * If the new page is swapped out before end_migraton, our
3215 * hook to usual swap-out path will catch the event.
3216 */
3217 if (PageAnon(page))
3218 SetPageCgroupMigration(pc);
3219 }
3220 unlock_page_cgroup(pc);
3221 /*
3222 * If the page is not charged at this point,
3223 * we return here.
3224 */
3225 if (!memcg)
3226 return 0;
3227
3228 *memcgp = memcg;
3229 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230 css_put(&memcg->css);/* drop extra refcnt */
3231 if (ret) {
3232 if (PageAnon(page)) {
3233 lock_page_cgroup(pc);
3234 ClearPageCgroupMigration(pc);
3235 unlock_page_cgroup(pc);
3236 /*
3237 * The old page may be fully unmapped while we kept it.
3238 */
3239 mem_cgroup_uncharge_page(page);
3240 }
3241 /* we'll need to revisit this error code (we have -EINTR) */
3242 return -ENOMEM;
3243 }
3244 /*
3245 * We charge new page before it's used/mapped. So, even if unlock_page()
3246 * is called before end_migration, we can catch all events on this new
3247 * page. In the case new page is migrated but not remapped, new page's
3248 * mapcount will be finally 0 and we call uncharge in end_migration().
3249 */
3250 if (PageAnon(page))
3251 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3252 else if (page_is_file_cache(page))
3253 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3254 else
3255 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3257 return ret;
3258}
3259
3260/* remove redundant charge if migration failed*/
3261void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262 struct page *oldpage, struct page *newpage, bool migration_ok)
3263{
3264 struct page *used, *unused;
3265 struct page_cgroup *pc;
3266 bool anon;
3267
3268 if (!memcg)
3269 return;
3270 /* blocks rmdir() */
3271 cgroup_exclude_rmdir(&memcg->css);
3272 if (!migration_ok) {
3273 used = oldpage;
3274 unused = newpage;
3275 } else {
3276 used = newpage;
3277 unused = oldpage;
3278 }
3279 /*
3280 * We disallowed uncharge of pages under migration because mapcount
3281 * of the page goes down to zero, temporarly.
3282 * Clear the flag and check the page should be charged.
3283 */
3284 pc = lookup_page_cgroup(oldpage);
3285 lock_page_cgroup(pc);
3286 ClearPageCgroupMigration(pc);
3287 unlock_page_cgroup(pc);
3288 anon = PageAnon(used);
3289 __mem_cgroup_uncharge_common(unused,
3290 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3291 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3292
3293 /*
3294 * If a page is a file cache, radix-tree replacement is very atomic
3295 * and we can skip this check. When it was an Anon page, its mapcount
3296 * goes down to 0. But because we added MIGRATION flage, it's not
3297 * uncharged yet. There are several case but page->mapcount check
3298 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3299 * check. (see prepare_charge() also)
3300 */
3301 if (anon)
3302 mem_cgroup_uncharge_page(used);
3303 /*
3304 * At migration, we may charge account against cgroup which has no
3305 * tasks.
3306 * So, rmdir()->pre_destroy() can be called while we do this charge.
3307 * In that case, we need to call pre_destroy() again. check it here.
3308 */
3309 cgroup_release_and_wakeup_rmdir(&memcg->css);
3310}
3311
3312/*
3313 * At replace page cache, newpage is not under any memcg but it's on
3314 * LRU. So, this function doesn't touch res_counter but handles LRU
3315 * in correct way. Both pages are locked so we cannot race with uncharge.
3316 */
3317void mem_cgroup_replace_page_cache(struct page *oldpage,
3318 struct page *newpage)
3319{
3320 struct mem_cgroup *memcg = NULL;
3321 struct page_cgroup *pc;
3322 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323
3324 if (mem_cgroup_disabled())
3325 return;
3326
3327 pc = lookup_page_cgroup(oldpage);
3328 /* fix accounting on old pages */
3329 lock_page_cgroup(pc);
3330 if (PageCgroupUsed(pc)) {
3331 memcg = pc->mem_cgroup;
3332 mem_cgroup_charge_statistics(memcg, false, -1);
3333 ClearPageCgroupUsed(pc);
3334 }
3335 unlock_page_cgroup(pc);
3336
3337 /*
3338 * When called from shmem_replace_page(), in some cases the
3339 * oldpage has already been charged, and in some cases not.
3340 */
3341 if (!memcg)
3342 return;
3343
3344 if (PageSwapBacked(oldpage))
3345 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346
3347 /*
3348 * Even if newpage->mapping was NULL before starting replacement,
3349 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3350 * LRU while we overwrite pc->mem_cgroup.
3351 */
3352 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3353}
3354
3355#ifdef CONFIG_DEBUG_VM
3356static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3357{
3358 struct page_cgroup *pc;
3359
3360 pc = lookup_page_cgroup(page);
3361 /*
3362 * Can be NULL while feeding pages into the page allocator for
3363 * the first time, i.e. during boot or memory hotplug;
3364 * or when mem_cgroup_disabled().
3365 */
3366 if (likely(pc) && PageCgroupUsed(pc))
3367 return pc;
3368 return NULL;
3369}
3370
3371bool mem_cgroup_bad_page_check(struct page *page)
3372{
3373 if (mem_cgroup_disabled())
3374 return false;
3375
3376 return lookup_page_cgroup_used(page) != NULL;
3377}
3378
3379void mem_cgroup_print_bad_page(struct page *page)
3380{
3381 struct page_cgroup *pc;
3382
3383 pc = lookup_page_cgroup_used(page);
3384 if (pc) {
3385 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386 pc, pc->flags, pc->mem_cgroup);
3387 }
3388}
3389#endif
3390
3391static DEFINE_MUTEX(set_limit_mutex);
3392
3393static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3394 unsigned long long val)
3395{
3396 int retry_count;
3397 u64 memswlimit, memlimit;
3398 int ret = 0;
3399 int children = mem_cgroup_count_children(memcg);
3400 u64 curusage, oldusage;
3401 int enlarge;
3402
3403 /*
3404 * For keeping hierarchical_reclaim simple, how long we should retry
3405 * is depends on callers. We set our retry-count to be function
3406 * of # of children which we should visit in this loop.
3407 */
3408 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3409
3410 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3411
3412 enlarge = 0;
3413 while (retry_count) {
3414 if (signal_pending(current)) {
3415 ret = -EINTR;
3416 break;
3417 }
3418 /*
3419 * Rather than hide all in some function, I do this in
3420 * open coded manner. You see what this really does.
3421 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3422 */
3423 mutex_lock(&set_limit_mutex);
3424 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3425 if (memswlimit < val) {
3426 ret = -EINVAL;
3427 mutex_unlock(&set_limit_mutex);
3428 break;
3429 }
3430
3431 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3432 if (memlimit < val)
3433 enlarge = 1;
3434
3435 ret = res_counter_set_limit(&memcg->res, val);
3436 if (!ret) {
3437 if (memswlimit == val)
3438 memcg->memsw_is_minimum = true;
3439 else
3440 memcg->memsw_is_minimum = false;
3441 }
3442 mutex_unlock(&set_limit_mutex);
3443
3444 if (!ret)
3445 break;
3446
3447 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3448 MEM_CGROUP_RECLAIM_SHRINK);
3449 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3450 /* Usage is reduced ? */
3451 if (curusage >= oldusage)
3452 retry_count--;
3453 else
3454 oldusage = curusage;
3455 }
3456 if (!ret && enlarge)
3457 memcg_oom_recover(memcg);
3458
3459 return ret;
3460}
3461
3462static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3463 unsigned long long val)
3464{
3465 int retry_count;
3466 u64 memlimit, memswlimit, oldusage, curusage;
3467 int children = mem_cgroup_count_children(memcg);
3468 int ret = -EBUSY;
3469 int enlarge = 0;
3470
3471 /* see mem_cgroup_resize_res_limit */
3472 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3473 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474 while (retry_count) {
3475 if (signal_pending(current)) {
3476 ret = -EINTR;
3477 break;
3478 }
3479 /*
3480 * Rather than hide all in some function, I do this in
3481 * open coded manner. You see what this really does.
3482 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3483 */
3484 mutex_lock(&set_limit_mutex);
3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 if (memlimit > val) {
3487 ret = -EINVAL;
3488 mutex_unlock(&set_limit_mutex);
3489 break;
3490 }
3491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492 if (memswlimit < val)
3493 enlarge = 1;
3494 ret = res_counter_set_limit(&memcg->memsw, val);
3495 if (!ret) {
3496 if (memlimit == val)
3497 memcg->memsw_is_minimum = true;
3498 else
3499 memcg->memsw_is_minimum = false;
3500 }
3501 mutex_unlock(&set_limit_mutex);
3502
3503 if (!ret)
3504 break;
3505
3506 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3507 MEM_CGROUP_RECLAIM_NOSWAP |
3508 MEM_CGROUP_RECLAIM_SHRINK);
3509 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3510 /* Usage is reduced ? */
3511 if (curusage >= oldusage)
3512 retry_count--;
3513 else
3514 oldusage = curusage;
3515 }
3516 if (!ret && enlarge)
3517 memcg_oom_recover(memcg);
3518 return ret;
3519}
3520
3521unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3522 gfp_t gfp_mask,
3523 unsigned long *total_scanned)
3524{
3525 unsigned long nr_reclaimed = 0;
3526 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3527 unsigned long reclaimed;
3528 int loop = 0;
3529 struct mem_cgroup_tree_per_zone *mctz;
3530 unsigned long long excess;
3531 unsigned long nr_scanned;
3532
3533 if (order > 0)
3534 return 0;
3535
3536 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3537 /*
3538 * This loop can run a while, specially if mem_cgroup's continuously
3539 * keep exceeding their soft limit and putting the system under
3540 * pressure
3541 */
3542 do {
3543 if (next_mz)
3544 mz = next_mz;
3545 else
3546 mz = mem_cgroup_largest_soft_limit_node(mctz);
3547 if (!mz)
3548 break;
3549
3550 nr_scanned = 0;
3551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3552 gfp_mask, &nr_scanned);
3553 nr_reclaimed += reclaimed;
3554 *total_scanned += nr_scanned;
3555 spin_lock(&mctz->lock);
3556
3557 /*
3558 * If we failed to reclaim anything from this memory cgroup
3559 * it is time to move on to the next cgroup
3560 */
3561 next_mz = NULL;
3562 if (!reclaimed) {
3563 do {
3564 /*
3565 * Loop until we find yet another one.
3566 *
3567 * By the time we get the soft_limit lock
3568 * again, someone might have aded the
3569 * group back on the RB tree. Iterate to
3570 * make sure we get a different mem.
3571 * mem_cgroup_largest_soft_limit_node returns
3572 * NULL if no other cgroup is present on
3573 * the tree
3574 */
3575 next_mz =
3576 __mem_cgroup_largest_soft_limit_node(mctz);
3577 if (next_mz == mz)
3578 css_put(&next_mz->memcg->css);
3579 else /* next_mz == NULL or other memcg */
3580 break;
3581 } while (1);
3582 }
3583 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3584 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3585 /*
3586 * One school of thought says that we should not add
3587 * back the node to the tree if reclaim returns 0.
3588 * But our reclaim could return 0, simply because due
3589 * to priority we are exposing a smaller subset of
3590 * memory to reclaim from. Consider this as a longer
3591 * term TODO.
3592 */
3593 /* If excess == 0, no tree ops */
3594 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3595 spin_unlock(&mctz->lock);
3596 css_put(&mz->memcg->css);
3597 loop++;
3598 /*
3599 * Could not reclaim anything and there are no more
3600 * mem cgroups to try or we seem to be looping without
3601 * reclaiming anything.
3602 */
3603 if (!nr_reclaimed &&
3604 (next_mz == NULL ||
3605 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3606 break;
3607 } while (!nr_reclaimed);
3608 if (next_mz)
3609 css_put(&next_mz->memcg->css);
3610 return nr_reclaimed;
3611}
3612
3613/*
3614 * This routine traverse page_cgroup in given list and drop them all.
3615 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3616 */
3617static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3618 int node, int zid, enum lru_list lru)
3619{
3620 struct mem_cgroup_per_zone *mz;
3621 unsigned long flags, loop;
3622 struct list_head *list;
3623 struct page *busy;
3624 struct zone *zone;
3625 int ret = 0;
3626
3627 zone = &NODE_DATA(node)->node_zones[zid];
3628 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3629 list = &mz->lruvec.lists[lru];
3630
3631 loop = mz->lru_size[lru];
3632 /* give some margin against EBUSY etc...*/
3633 loop += 256;
3634 busy = NULL;
3635 while (loop--) {
3636 struct page_cgroup *pc;
3637 struct page *page;
3638
3639 ret = 0;
3640 spin_lock_irqsave(&zone->lru_lock, flags);
3641 if (list_empty(list)) {
3642 spin_unlock_irqrestore(&zone->lru_lock, flags);
3643 break;
3644 }
3645 page = list_entry(list->prev, struct page, lru);
3646 if (busy == page) {
3647 list_move(&page->lru, list);
3648 busy = NULL;
3649 spin_unlock_irqrestore(&zone->lru_lock, flags);
3650 continue;
3651 }
3652 spin_unlock_irqrestore(&zone->lru_lock, flags);
3653
3654 pc = lookup_page_cgroup(page);
3655
3656 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3657 if (ret == -ENOMEM || ret == -EINTR)
3658 break;
3659
3660 if (ret == -EBUSY || ret == -EINVAL) {
3661 /* found lock contention or "pc" is obsolete. */
3662 busy = page;
3663 cond_resched();
3664 } else
3665 busy = NULL;
3666 }
3667
3668 if (!ret && !list_empty(list))
3669 return -EBUSY;
3670 return ret;
3671}
3672
3673/*
3674 * make mem_cgroup's charge to be 0 if there is no task.
3675 * This enables deleting this mem_cgroup.
3676 */
3677static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3678{
3679 int ret;
3680 int node, zid, shrink;
3681 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3682 struct cgroup *cgrp = memcg->css.cgroup;
3683
3684 css_get(&memcg->css);
3685
3686 shrink = 0;
3687 /* should free all ? */
3688 if (free_all)
3689 goto try_to_free;
3690move_account:
3691 do {
3692 ret = -EBUSY;
3693 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3694 goto out;
3695 ret = -EINTR;
3696 if (signal_pending(current))
3697 goto out;
3698 /* This is for making all *used* pages to be on LRU. */
3699 lru_add_drain_all();
3700 drain_all_stock_sync(memcg);
3701 ret = 0;
3702 mem_cgroup_start_move(memcg);
3703 for_each_node_state(node, N_HIGH_MEMORY) {
3704 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3705 enum lru_list lru;
3706 for_each_lru(lru) {
3707 ret = mem_cgroup_force_empty_list(memcg,
3708 node, zid, lru);
3709 if (ret)
3710 break;
3711 }
3712 }
3713 if (ret)
3714 break;
3715 }
3716 mem_cgroup_end_move(memcg);
3717 memcg_oom_recover(memcg);
3718 /* it seems parent cgroup doesn't have enough mem */
3719 if (ret == -ENOMEM)
3720 goto try_to_free;
3721 cond_resched();
3722 /* "ret" should also be checked to ensure all lists are empty. */
3723 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3724out:
3725 css_put(&memcg->css);
3726 return ret;
3727
3728try_to_free:
3729 /* returns EBUSY if there is a task or if we come here twice. */
3730 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3731 ret = -EBUSY;
3732 goto out;
3733 }
3734 /* we call try-to-free pages for make this cgroup empty */
3735 lru_add_drain_all();
3736 /* try to free all pages in this cgroup */
3737 shrink = 1;
3738 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3739 int progress;
3740
3741 if (signal_pending(current)) {
3742 ret = -EINTR;
3743 goto out;
3744 }
3745 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3746 false);
3747 if (!progress) {
3748 nr_retries--;
3749 /* maybe some writeback is necessary */
3750 congestion_wait(BLK_RW_ASYNC, HZ/10);
3751 }
3752
3753 }
3754 lru_add_drain();
3755 /* try move_account...there may be some *locked* pages. */
3756 goto move_account;
3757}
3758
3759static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3760{
3761 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3762}
3763
3764
3765static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3766{
3767 return mem_cgroup_from_cont(cont)->use_hierarchy;
3768}
3769
3770static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3771 u64 val)
3772{
3773 int retval = 0;
3774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3775 struct cgroup *parent = cont->parent;
3776 struct mem_cgroup *parent_memcg = NULL;
3777
3778 if (parent)
3779 parent_memcg = mem_cgroup_from_cont(parent);
3780
3781 cgroup_lock();
3782 /*
3783 * If parent's use_hierarchy is set, we can't make any modifications
3784 * in the child subtrees. If it is unset, then the change can
3785 * occur, provided the current cgroup has no children.
3786 *
3787 * For the root cgroup, parent_mem is NULL, we allow value to be
3788 * set if there are no children.
3789 */
3790 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3791 (val == 1 || val == 0)) {
3792 if (list_empty(&cont->children))
3793 memcg->use_hierarchy = val;
3794 else
3795 retval = -EBUSY;
3796 } else
3797 retval = -EINVAL;
3798 cgroup_unlock();
3799
3800 return retval;
3801}
3802
3803
3804static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3805 enum mem_cgroup_stat_index idx)
3806{
3807 struct mem_cgroup *iter;
3808 long val = 0;
3809
3810 /* Per-cpu values can be negative, use a signed accumulator */
3811 for_each_mem_cgroup_tree(iter, memcg)
3812 val += mem_cgroup_read_stat(iter, idx);
3813
3814 if (val < 0) /* race ? */
3815 val = 0;
3816 return val;
3817}
3818
3819static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3820{
3821 u64 val;
3822
3823 if (!mem_cgroup_is_root(memcg)) {
3824 if (!swap)
3825 return res_counter_read_u64(&memcg->res, RES_USAGE);
3826 else
3827 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3828 }
3829
3830 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3831 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3832
3833 if (swap)
3834 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3835
3836 return val << PAGE_SHIFT;
3837}
3838
3839static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3840 struct file *file, char __user *buf,
3841 size_t nbytes, loff_t *ppos)
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844 char str[64];
3845 u64 val;
3846 int type, name, len;
3847
3848 type = MEMFILE_TYPE(cft->private);
3849 name = MEMFILE_ATTR(cft->private);
3850
3851 if (!do_swap_account && type == _MEMSWAP)
3852 return -EOPNOTSUPP;
3853
3854 switch (type) {
3855 case _MEM:
3856 if (name == RES_USAGE)
3857 val = mem_cgroup_usage(memcg, false);
3858 else
3859 val = res_counter_read_u64(&memcg->res, name);
3860 break;
3861 case _MEMSWAP:
3862 if (name == RES_USAGE)
3863 val = mem_cgroup_usage(memcg, true);
3864 else
3865 val = res_counter_read_u64(&memcg->memsw, name);
3866 break;
3867 default:
3868 BUG();
3869 }
3870
3871 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3872 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3873}
3874/*
3875 * The user of this function is...
3876 * RES_LIMIT.
3877 */
3878static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3879 const char *buffer)
3880{
3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882 int type, name;
3883 unsigned long long val;
3884 int ret;
3885
3886 type = MEMFILE_TYPE(cft->private);
3887 name = MEMFILE_ATTR(cft->private);
3888
3889 if (!do_swap_account && type == _MEMSWAP)
3890 return -EOPNOTSUPP;
3891
3892 switch (name) {
3893 case RES_LIMIT:
3894 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3895 ret = -EINVAL;
3896 break;
3897 }
3898 /* This function does all necessary parse...reuse it */
3899 ret = res_counter_memparse_write_strategy(buffer, &val);
3900 if (ret)
3901 break;
3902 if (type == _MEM)
3903 ret = mem_cgroup_resize_limit(memcg, val);
3904 else
3905 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3906 break;
3907 case RES_SOFT_LIMIT:
3908 ret = res_counter_memparse_write_strategy(buffer, &val);
3909 if (ret)
3910 break;
3911 /*
3912 * For memsw, soft limits are hard to implement in terms
3913 * of semantics, for now, we support soft limits for
3914 * control without swap
3915 */
3916 if (type == _MEM)
3917 ret = res_counter_set_soft_limit(&memcg->res, val);
3918 else
3919 ret = -EINVAL;
3920 break;
3921 default:
3922 ret = -EINVAL; /* should be BUG() ? */
3923 break;
3924 }
3925 return ret;
3926}
3927
3928static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3929 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3930{
3931 struct cgroup *cgroup;
3932 unsigned long long min_limit, min_memsw_limit, tmp;
3933
3934 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3936 cgroup = memcg->css.cgroup;
3937 if (!memcg->use_hierarchy)
3938 goto out;
3939
3940 while (cgroup->parent) {
3941 cgroup = cgroup->parent;
3942 memcg = mem_cgroup_from_cont(cgroup);
3943 if (!memcg->use_hierarchy)
3944 break;
3945 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3946 min_limit = min(min_limit, tmp);
3947 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3948 min_memsw_limit = min(min_memsw_limit, tmp);
3949 }
3950out:
3951 *mem_limit = min_limit;
3952 *memsw_limit = min_memsw_limit;
3953}
3954
3955static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3956{
3957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958 int type, name;
3959
3960 type = MEMFILE_TYPE(event);
3961 name = MEMFILE_ATTR(event);
3962
3963 if (!do_swap_account && type == _MEMSWAP)
3964 return -EOPNOTSUPP;
3965
3966 switch (name) {
3967 case RES_MAX_USAGE:
3968 if (type == _MEM)
3969 res_counter_reset_max(&memcg->res);
3970 else
3971 res_counter_reset_max(&memcg->memsw);
3972 break;
3973 case RES_FAILCNT:
3974 if (type == _MEM)
3975 res_counter_reset_failcnt(&memcg->res);
3976 else
3977 res_counter_reset_failcnt(&memcg->memsw);
3978 break;
3979 }
3980
3981 return 0;
3982}
3983
3984static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3985 struct cftype *cft)
3986{
3987 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3988}
3989
3990#ifdef CONFIG_MMU
3991static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3992 struct cftype *cft, u64 val)
3993{
3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3995
3996 if (val >= (1 << NR_MOVE_TYPE))
3997 return -EINVAL;
3998 /*
3999 * We check this value several times in both in can_attach() and
4000 * attach(), so we need cgroup lock to prevent this value from being
4001 * inconsistent.
4002 */
4003 cgroup_lock();
4004 memcg->move_charge_at_immigrate = val;
4005 cgroup_unlock();
4006
4007 return 0;
4008}
4009#else
4010static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4011 struct cftype *cft, u64 val)
4012{
4013 return -ENOSYS;
4014}
4015#endif
4016
4017#ifdef CONFIG_NUMA
4018static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4019 struct seq_file *m)
4020{
4021 int nid;
4022 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4023 unsigned long node_nr;
4024 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4025
4026 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4027 seq_printf(m, "total=%lu", total_nr);
4028 for_each_node_state(nid, N_HIGH_MEMORY) {
4029 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4030 seq_printf(m, " N%d=%lu", nid, node_nr);
4031 }
4032 seq_putc(m, '\n');
4033
4034 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4035 seq_printf(m, "file=%lu", file_nr);
4036 for_each_node_state(nid, N_HIGH_MEMORY) {
4037 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 LRU_ALL_FILE);
4039 seq_printf(m, " N%d=%lu", nid, node_nr);
4040 }
4041 seq_putc(m, '\n');
4042
4043 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4044 seq_printf(m, "anon=%lu", anon_nr);
4045 for_each_node_state(nid, N_HIGH_MEMORY) {
4046 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047 LRU_ALL_ANON);
4048 seq_printf(m, " N%d=%lu", nid, node_nr);
4049 }
4050 seq_putc(m, '\n');
4051
4052 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4053 seq_printf(m, "unevictable=%lu", unevictable_nr);
4054 for_each_node_state(nid, N_HIGH_MEMORY) {
4055 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4056 BIT(LRU_UNEVICTABLE));
4057 seq_printf(m, " N%d=%lu", nid, node_nr);
4058 }
4059 seq_putc(m, '\n');
4060 return 0;
4061}
4062#endif /* CONFIG_NUMA */
4063
4064static const char * const mem_cgroup_lru_names[] = {
4065 "inactive_anon",
4066 "active_anon",
4067 "inactive_file",
4068 "active_file",
4069 "unevictable",
4070};
4071
4072static inline void mem_cgroup_lru_names_not_uptodate(void)
4073{
4074 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4075}
4076
4077static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4078 struct seq_file *m)
4079{
4080 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4081 struct mem_cgroup *mi;
4082 unsigned int i;
4083
4084 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4085 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4086 continue;
4087 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4088 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4089 }
4090
4091 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4092 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4093 mem_cgroup_read_events(memcg, i));
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
4096 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4097 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4098
4099 /* Hierarchical information */
4100 {
4101 unsigned long long limit, memsw_limit;
4102 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4103 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4104 if (do_swap_account)
4105 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4106 memsw_limit);
4107 }
4108
4109 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4110 long long val = 0;
4111
4112 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4113 continue;
4114 for_each_mem_cgroup_tree(mi, memcg)
4115 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4116 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4117 }
4118
4119 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4120 unsigned long long val = 0;
4121
4122 for_each_mem_cgroup_tree(mi, memcg)
4123 val += mem_cgroup_read_events(mi, i);
4124 seq_printf(m, "total_%s %llu\n",
4125 mem_cgroup_events_names[i], val);
4126 }
4127
4128 for (i = 0; i < NR_LRU_LISTS; i++) {
4129 unsigned long long val = 0;
4130
4131 for_each_mem_cgroup_tree(mi, memcg)
4132 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4133 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4134 }
4135
4136#ifdef CONFIG_DEBUG_VM
4137 {
4138 int nid, zid;
4139 struct mem_cgroup_per_zone *mz;
4140 struct zone_reclaim_stat *rstat;
4141 unsigned long recent_rotated[2] = {0, 0};
4142 unsigned long recent_scanned[2] = {0, 0};
4143
4144 for_each_online_node(nid)
4145 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4146 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4147 rstat = &mz->lruvec.reclaim_stat;
4148
4149 recent_rotated[0] += rstat->recent_rotated[0];
4150 recent_rotated[1] += rstat->recent_rotated[1];
4151 recent_scanned[0] += rstat->recent_scanned[0];
4152 recent_scanned[1] += rstat->recent_scanned[1];
4153 }
4154 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4155 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4156 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4157 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4158 }
4159#endif
4160
4161 return 0;
4162}
4163
4164static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4165{
4166 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4167
4168 return mem_cgroup_swappiness(memcg);
4169}
4170
4171static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4172 u64 val)
4173{
4174 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4175 struct mem_cgroup *parent;
4176
4177 if (val > 100)
4178 return -EINVAL;
4179
4180 if (cgrp->parent == NULL)
4181 return -EINVAL;
4182
4183 parent = mem_cgroup_from_cont(cgrp->parent);
4184
4185 cgroup_lock();
4186
4187 /* If under hierarchy, only empty-root can set this value */
4188 if ((parent->use_hierarchy) ||
4189 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4190 cgroup_unlock();
4191 return -EINVAL;
4192 }
4193
4194 memcg->swappiness = val;
4195
4196 cgroup_unlock();
4197
4198 return 0;
4199}
4200
4201static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4202{
4203 struct mem_cgroup_threshold_ary *t;
4204 u64 usage;
4205 int i;
4206
4207 rcu_read_lock();
4208 if (!swap)
4209 t = rcu_dereference(memcg->thresholds.primary);
4210 else
4211 t = rcu_dereference(memcg->memsw_thresholds.primary);
4212
4213 if (!t)
4214 goto unlock;
4215
4216 usage = mem_cgroup_usage(memcg, swap);
4217
4218 /*
4219 * current_threshold points to threshold just below or equal to usage.
4220 * If it's not true, a threshold was crossed after last
4221 * call of __mem_cgroup_threshold().
4222 */
4223 i = t->current_threshold;
4224
4225 /*
4226 * Iterate backward over array of thresholds starting from
4227 * current_threshold and check if a threshold is crossed.
4228 * If none of thresholds below usage is crossed, we read
4229 * only one element of the array here.
4230 */
4231 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4232 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234 /* i = current_threshold + 1 */
4235 i++;
4236
4237 /*
4238 * Iterate forward over array of thresholds starting from
4239 * current_threshold+1 and check if a threshold is crossed.
4240 * If none of thresholds above usage is crossed, we read
4241 * only one element of the array here.
4242 */
4243 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4244 eventfd_signal(t->entries[i].eventfd, 1);
4245
4246 /* Update current_threshold */
4247 t->current_threshold = i - 1;
4248unlock:
4249 rcu_read_unlock();
4250}
4251
4252static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4253{
4254 while (memcg) {
4255 __mem_cgroup_threshold(memcg, false);
4256 if (do_swap_account)
4257 __mem_cgroup_threshold(memcg, true);
4258
4259 memcg = parent_mem_cgroup(memcg);
4260 }
4261}
4262
4263static int compare_thresholds(const void *a, const void *b)
4264{
4265 const struct mem_cgroup_threshold *_a = a;
4266 const struct mem_cgroup_threshold *_b = b;
4267
4268 return _a->threshold - _b->threshold;
4269}
4270
4271static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4272{
4273 struct mem_cgroup_eventfd_list *ev;
4274
4275 list_for_each_entry(ev, &memcg->oom_notify, list)
4276 eventfd_signal(ev->eventfd, 1);
4277 return 0;
4278}
4279
4280static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4281{
4282 struct mem_cgroup *iter;
4283
4284 for_each_mem_cgroup_tree(iter, memcg)
4285 mem_cgroup_oom_notify_cb(iter);
4286}
4287
4288static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4289 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4290{
4291 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4292 struct mem_cgroup_thresholds *thresholds;
4293 struct mem_cgroup_threshold_ary *new;
4294 int type = MEMFILE_TYPE(cft->private);
4295 u64 threshold, usage;
4296 int i, size, ret;
4297
4298 ret = res_counter_memparse_write_strategy(args, &threshold);
4299 if (ret)
4300 return ret;
4301
4302 mutex_lock(&memcg->thresholds_lock);
4303
4304 if (type == _MEM)
4305 thresholds = &memcg->thresholds;
4306 else if (type == _MEMSWAP)
4307 thresholds = &memcg->memsw_thresholds;
4308 else
4309 BUG();
4310
4311 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4312
4313 /* Check if a threshold crossed before adding a new one */
4314 if (thresholds->primary)
4315 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316
4317 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318
4319 /* Allocate memory for new array of thresholds */
4320 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4321 GFP_KERNEL);
4322 if (!new) {
4323 ret = -ENOMEM;
4324 goto unlock;
4325 }
4326 new->size = size;
4327
4328 /* Copy thresholds (if any) to new array */
4329 if (thresholds->primary) {
4330 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4331 sizeof(struct mem_cgroup_threshold));
4332 }
4333
4334 /* Add new threshold */
4335 new->entries[size - 1].eventfd = eventfd;
4336 new->entries[size - 1].threshold = threshold;
4337
4338 /* Sort thresholds. Registering of new threshold isn't time-critical */
4339 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4340 compare_thresholds, NULL);
4341
4342 /* Find current threshold */
4343 new->current_threshold = -1;
4344 for (i = 0; i < size; i++) {
4345 if (new->entries[i].threshold <= usage) {
4346 /*
4347 * new->current_threshold will not be used until
4348 * rcu_assign_pointer(), so it's safe to increment
4349 * it here.
4350 */
4351 ++new->current_threshold;
4352 } else
4353 break;
4354 }
4355
4356 /* Free old spare buffer and save old primary buffer as spare */
4357 kfree(thresholds->spare);
4358 thresholds->spare = thresholds->primary;
4359
4360 rcu_assign_pointer(thresholds->primary, new);
4361
4362 /* To be sure that nobody uses thresholds */
4363 synchronize_rcu();
4364
4365unlock:
4366 mutex_unlock(&memcg->thresholds_lock);
4367
4368 return ret;
4369}
4370
4371static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4372 struct cftype *cft, struct eventfd_ctx *eventfd)
4373{
4374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 struct mem_cgroup_thresholds *thresholds;
4376 struct mem_cgroup_threshold_ary *new;
4377 int type = MEMFILE_TYPE(cft->private);
4378 u64 usage;
4379 int i, j, size;
4380
4381 mutex_lock(&memcg->thresholds_lock);
4382 if (type == _MEM)
4383 thresholds = &memcg->thresholds;
4384 else if (type == _MEMSWAP)
4385 thresholds = &memcg->memsw_thresholds;
4386 else
4387 BUG();
4388
4389 if (!thresholds->primary)
4390 goto unlock;
4391
4392 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393
4394 /* Check if a threshold crossed before removing */
4395 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4396
4397 /* Calculate new number of threshold */
4398 size = 0;
4399 for (i = 0; i < thresholds->primary->size; i++) {
4400 if (thresholds->primary->entries[i].eventfd != eventfd)
4401 size++;
4402 }
4403
4404 new = thresholds->spare;
4405
4406 /* Set thresholds array to NULL if we don't have thresholds */
4407 if (!size) {
4408 kfree(new);
4409 new = NULL;
4410 goto swap_buffers;
4411 }
4412
4413 new->size = size;
4414
4415 /* Copy thresholds and find current threshold */
4416 new->current_threshold = -1;
4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418 if (thresholds->primary->entries[i].eventfd == eventfd)
4419 continue;
4420
4421 new->entries[j] = thresholds->primary->entries[i];
4422 if (new->entries[j].threshold <= usage) {
4423 /*
4424 * new->current_threshold will not be used
4425 * until rcu_assign_pointer(), so it's safe to increment
4426 * it here.
4427 */
4428 ++new->current_threshold;
4429 }
4430 j++;
4431 }
4432
4433swap_buffers:
4434 /* Swap primary and spare array */
4435 thresholds->spare = thresholds->primary;
4436 /* If all events are unregistered, free the spare array */
4437 if (!new) {
4438 kfree(thresholds->spare);
4439 thresholds->spare = NULL;
4440 }
4441
4442 rcu_assign_pointer(thresholds->primary, new);
4443
4444 /* To be sure that nobody uses thresholds */
4445 synchronize_rcu();
4446unlock:
4447 mutex_unlock(&memcg->thresholds_lock);
4448}
4449
4450static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4451 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4452{
4453 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4454 struct mem_cgroup_eventfd_list *event;
4455 int type = MEMFILE_TYPE(cft->private);
4456
4457 BUG_ON(type != _OOM_TYPE);
4458 event = kmalloc(sizeof(*event), GFP_KERNEL);
4459 if (!event)
4460 return -ENOMEM;
4461
4462 spin_lock(&memcg_oom_lock);
4463
4464 event->eventfd = eventfd;
4465 list_add(&event->list, &memcg->oom_notify);
4466
4467 /* already in OOM ? */
4468 if (atomic_read(&memcg->under_oom))
4469 eventfd_signal(eventfd, 1);
4470 spin_unlock(&memcg_oom_lock);
4471
4472 return 0;
4473}
4474
4475static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4476 struct cftype *cft, struct eventfd_ctx *eventfd)
4477{
4478 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4479 struct mem_cgroup_eventfd_list *ev, *tmp;
4480 int type = MEMFILE_TYPE(cft->private);
4481
4482 BUG_ON(type != _OOM_TYPE);
4483
4484 spin_lock(&memcg_oom_lock);
4485
4486 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4487 if (ev->eventfd == eventfd) {
4488 list_del(&ev->list);
4489 kfree(ev);
4490 }
4491 }
4492
4493 spin_unlock(&memcg_oom_lock);
4494}
4495
4496static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4497 struct cftype *cft, struct cgroup_map_cb *cb)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500
4501 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4502
4503 if (atomic_read(&memcg->under_oom))
4504 cb->fill(cb, "under_oom", 1);
4505 else
4506 cb->fill(cb, "under_oom", 0);
4507 return 0;
4508}
4509
4510static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4511 struct cftype *cft, u64 val)
4512{
4513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514 struct mem_cgroup *parent;
4515
4516 /* cannot set to root cgroup and only 0 and 1 are allowed */
4517 if (!cgrp->parent || !((val == 0) || (val == 1)))
4518 return -EINVAL;
4519
4520 parent = mem_cgroup_from_cont(cgrp->parent);
4521
4522 cgroup_lock();
4523 /* oom-kill-disable is a flag for subhierarchy. */
4524 if ((parent->use_hierarchy) ||
4525 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4526 cgroup_unlock();
4527 return -EINVAL;
4528 }
4529 memcg->oom_kill_disable = val;
4530 if (!val)
4531 memcg_oom_recover(memcg);
4532 cgroup_unlock();
4533 return 0;
4534}
4535
4536#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4538{
4539 return mem_cgroup_sockets_init(memcg, ss);
4540};
4541
4542static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4543{
4544 mem_cgroup_sockets_destroy(memcg);
4545}
4546#else
4547static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4548{
4549 return 0;
4550}
4551
4552static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4553{
4554}
4555#endif
4556
4557static struct cftype mem_cgroup_files[] = {
4558 {
4559 .name = "usage_in_bytes",
4560 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4561 .read = mem_cgroup_read,
4562 .register_event = mem_cgroup_usage_register_event,
4563 .unregister_event = mem_cgroup_usage_unregister_event,
4564 },
4565 {
4566 .name = "max_usage_in_bytes",
4567 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4568 .trigger = mem_cgroup_reset,
4569 .read = mem_cgroup_read,
4570 },
4571 {
4572 .name = "limit_in_bytes",
4573 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4574 .write_string = mem_cgroup_write,
4575 .read = mem_cgroup_read,
4576 },
4577 {
4578 .name = "soft_limit_in_bytes",
4579 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4580 .write_string = mem_cgroup_write,
4581 .read = mem_cgroup_read,
4582 },
4583 {
4584 .name = "failcnt",
4585 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4586 .trigger = mem_cgroup_reset,
4587 .read = mem_cgroup_read,
4588 },
4589 {
4590 .name = "stat",
4591 .read_seq_string = mem_control_stat_show,
4592 },
4593 {
4594 .name = "force_empty",
4595 .trigger = mem_cgroup_force_empty_write,
4596 },
4597 {
4598 .name = "use_hierarchy",
4599 .write_u64 = mem_cgroup_hierarchy_write,
4600 .read_u64 = mem_cgroup_hierarchy_read,
4601 },
4602 {
4603 .name = "swappiness",
4604 .read_u64 = mem_cgroup_swappiness_read,
4605 .write_u64 = mem_cgroup_swappiness_write,
4606 },
4607 {
4608 .name = "move_charge_at_immigrate",
4609 .read_u64 = mem_cgroup_move_charge_read,
4610 .write_u64 = mem_cgroup_move_charge_write,
4611 },
4612 {
4613 .name = "oom_control",
4614 .read_map = mem_cgroup_oom_control_read,
4615 .write_u64 = mem_cgroup_oom_control_write,
4616 .register_event = mem_cgroup_oom_register_event,
4617 .unregister_event = mem_cgroup_oom_unregister_event,
4618 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4619 },
4620#ifdef CONFIG_NUMA
4621 {
4622 .name = "numa_stat",
4623 .read_seq_string = mem_control_numa_stat_show,
4624 },
4625#endif
4626#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4627 {
4628 .name = "memsw.usage_in_bytes",
4629 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4630 .read = mem_cgroup_read,
4631 .register_event = mem_cgroup_usage_register_event,
4632 .unregister_event = mem_cgroup_usage_unregister_event,
4633 },
4634 {
4635 .name = "memsw.max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4637 .trigger = mem_cgroup_reset,
4638 .read = mem_cgroup_read,
4639 },
4640 {
4641 .name = "memsw.limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4643 .write_string = mem_cgroup_write,
4644 .read = mem_cgroup_read,
4645 },
4646 {
4647 .name = "memsw.failcnt",
4648 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4649 .trigger = mem_cgroup_reset,
4650 .read = mem_cgroup_read,
4651 },
4652#endif
4653 { }, /* terminate */
4654};
4655
4656static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4657{
4658 struct mem_cgroup_per_node *pn;
4659 struct mem_cgroup_per_zone *mz;
4660 int zone, tmp = node;
4661 /*
4662 * This routine is called against possible nodes.
4663 * But it's BUG to call kmalloc() against offline node.
4664 *
4665 * TODO: this routine can waste much memory for nodes which will
4666 * never be onlined. It's better to use memory hotplug callback
4667 * function.
4668 */
4669 if (!node_state(node, N_NORMAL_MEMORY))
4670 tmp = -1;
4671 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4672 if (!pn)
4673 return 1;
4674
4675 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4676 mz = &pn->zoneinfo[zone];
4677 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4678 mz->usage_in_excess = 0;
4679 mz->on_tree = false;
4680 mz->memcg = memcg;
4681 }
4682 memcg->info.nodeinfo[node] = pn;
4683 return 0;
4684}
4685
4686static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4687{
4688 kfree(memcg->info.nodeinfo[node]);
4689}
4690
4691static struct mem_cgroup *mem_cgroup_alloc(void)
4692{
4693 struct mem_cgroup *memcg;
4694 int size = sizeof(struct mem_cgroup);
4695
4696 /* Can be very big if MAX_NUMNODES is very big */
4697 if (size < PAGE_SIZE)
4698 memcg = kzalloc(size, GFP_KERNEL);
4699 else
4700 memcg = vzalloc(size);
4701
4702 if (!memcg)
4703 return NULL;
4704
4705 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4706 if (!memcg->stat)
4707 goto out_free;
4708 spin_lock_init(&memcg->pcp_counter_lock);
4709 return memcg;
4710
4711out_free:
4712 if (size < PAGE_SIZE)
4713 kfree(memcg);
4714 else
4715 vfree(memcg);
4716 return NULL;
4717}
4718
4719/*
4720 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721 * but in process context. The work_freeing structure is overlaid
4722 * on the rcu_freeing structure, which itself is overlaid on memsw.
4723 */
4724static void free_work(struct work_struct *work)
4725{
4726 struct mem_cgroup *memcg;
4727 int size = sizeof(struct mem_cgroup);
4728
4729 memcg = container_of(work, struct mem_cgroup, work_freeing);
4730 /*
4731 * We need to make sure that (at least for now), the jump label
4732 * destruction code runs outside of the cgroup lock. This is because
4733 * get_online_cpus(), which is called from the static_branch update,
4734 * can't be called inside the cgroup_lock. cpusets are the ones
4735 * enforcing this dependency, so if they ever change, we might as well.
4736 *
4737 * schedule_work() will guarantee this happens. Be careful if you need
4738 * to move this code around, and make sure it is outside
4739 * the cgroup_lock.
4740 */
4741 disarm_sock_keys(memcg);
4742 if (size < PAGE_SIZE)
4743 kfree(memcg);
4744 else
4745 vfree(memcg);
4746}
4747
4748static void free_rcu(struct rcu_head *rcu_head)
4749{
4750 struct mem_cgroup *memcg;
4751
4752 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4753 INIT_WORK(&memcg->work_freeing, free_work);
4754 schedule_work(&memcg->work_freeing);
4755}
4756
4757/*
4758 * At destroying mem_cgroup, references from swap_cgroup can remain.
4759 * (scanning all at force_empty is too costly...)
4760 *
4761 * Instead of clearing all references at force_empty, we remember
4762 * the number of reference from swap_cgroup and free mem_cgroup when
4763 * it goes down to 0.
4764 *
4765 * Removal of cgroup itself succeeds regardless of refs from swap.
4766 */
4767
4768static void __mem_cgroup_free(struct mem_cgroup *memcg)
4769{
4770 int node;
4771
4772 mem_cgroup_remove_from_trees(memcg);
4773 free_css_id(&mem_cgroup_subsys, &memcg->css);
4774
4775 for_each_node(node)
4776 free_mem_cgroup_per_zone_info(memcg, node);
4777
4778 free_percpu(memcg->stat);
4779 call_rcu(&memcg->rcu_freeing, free_rcu);
4780}
4781
4782static void mem_cgroup_get(struct mem_cgroup *memcg)
4783{
4784 atomic_inc(&memcg->refcnt);
4785}
4786
4787static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4788{
4789 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4790 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4791 __mem_cgroup_free(memcg);
4792 if (parent)
4793 mem_cgroup_put(parent);
4794 }
4795}
4796
4797static void mem_cgroup_put(struct mem_cgroup *memcg)
4798{
4799 __mem_cgroup_put(memcg, 1);
4800}
4801
4802/*
4803 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4804 */
4805struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4806{
4807 if (!memcg->res.parent)
4808 return NULL;
4809 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4810}
4811EXPORT_SYMBOL(parent_mem_cgroup);
4812
4813#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814static void __init enable_swap_cgroup(void)
4815{
4816 if (!mem_cgroup_disabled() && really_do_swap_account)
4817 do_swap_account = 1;
4818}
4819#else
4820static void __init enable_swap_cgroup(void)
4821{
4822}
4823#endif
4824
4825static int mem_cgroup_soft_limit_tree_init(void)
4826{
4827 struct mem_cgroup_tree_per_node *rtpn;
4828 struct mem_cgroup_tree_per_zone *rtpz;
4829 int tmp, node, zone;
4830
4831 for_each_node(node) {
4832 tmp = node;
4833 if (!node_state(node, N_NORMAL_MEMORY))
4834 tmp = -1;
4835 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836 if (!rtpn)
4837 goto err_cleanup;
4838
4839 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840
4841 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842 rtpz = &rtpn->rb_tree_per_zone[zone];
4843 rtpz->rb_root = RB_ROOT;
4844 spin_lock_init(&rtpz->lock);
4845 }
4846 }
4847 return 0;
4848
4849err_cleanup:
4850 for_each_node(node) {
4851 if (!soft_limit_tree.rb_tree_per_node[node])
4852 break;
4853 kfree(soft_limit_tree.rb_tree_per_node[node]);
4854 soft_limit_tree.rb_tree_per_node[node] = NULL;
4855 }
4856 return 1;
4857
4858}
4859
4860static struct cgroup_subsys_state * __ref
4861mem_cgroup_create(struct cgroup *cont)
4862{
4863 struct mem_cgroup *memcg, *parent;
4864 long error = -ENOMEM;
4865 int node;
4866
4867 memcg = mem_cgroup_alloc();
4868 if (!memcg)
4869 return ERR_PTR(error);
4870
4871 for_each_node(node)
4872 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4873 goto free_out;
4874
4875 /* root ? */
4876 if (cont->parent == NULL) {
4877 int cpu;
4878 enable_swap_cgroup();
4879 parent = NULL;
4880 if (mem_cgroup_soft_limit_tree_init())
4881 goto free_out;
4882 root_mem_cgroup = memcg;
4883 for_each_possible_cpu(cpu) {
4884 struct memcg_stock_pcp *stock =
4885 &per_cpu(memcg_stock, cpu);
4886 INIT_WORK(&stock->work, drain_local_stock);
4887 }
4888 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4889 } else {
4890 parent = mem_cgroup_from_cont(cont->parent);
4891 memcg->use_hierarchy = parent->use_hierarchy;
4892 memcg->oom_kill_disable = parent->oom_kill_disable;
4893 }
4894
4895 if (parent && parent->use_hierarchy) {
4896 res_counter_init(&memcg->res, &parent->res);
4897 res_counter_init(&memcg->memsw, &parent->memsw);
4898 /*
4899 * We increment refcnt of the parent to ensure that we can
4900 * safely access it on res_counter_charge/uncharge.
4901 * This refcnt will be decremented when freeing this
4902 * mem_cgroup(see mem_cgroup_put).
4903 */
4904 mem_cgroup_get(parent);
4905 } else {
4906 res_counter_init(&memcg->res, NULL);
4907 res_counter_init(&memcg->memsw, NULL);
4908 }
4909 memcg->last_scanned_node = MAX_NUMNODES;
4910 INIT_LIST_HEAD(&memcg->oom_notify);
4911
4912 if (parent)
4913 memcg->swappiness = mem_cgroup_swappiness(parent);
4914 atomic_set(&memcg->refcnt, 1);
4915 memcg->move_charge_at_immigrate = 0;
4916 mutex_init(&memcg->thresholds_lock);
4917 spin_lock_init(&memcg->move_lock);
4918
4919 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4920 if (error) {
4921 /*
4922 * We call put now because our (and parent's) refcnts
4923 * are already in place. mem_cgroup_put() will internally
4924 * call __mem_cgroup_free, so return directly
4925 */
4926 mem_cgroup_put(memcg);
4927 return ERR_PTR(error);
4928 }
4929 return &memcg->css;
4930free_out:
4931 __mem_cgroup_free(memcg);
4932 return ERR_PTR(error);
4933}
4934
4935static int mem_cgroup_pre_destroy(struct cgroup *cont)
4936{
4937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4938
4939 return mem_cgroup_force_empty(memcg, false);
4940}
4941
4942static void mem_cgroup_destroy(struct cgroup *cont)
4943{
4944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945
4946 kmem_cgroup_destroy(memcg);
4947
4948 mem_cgroup_put(memcg);
4949}
4950
4951#ifdef CONFIG_MMU
4952/* Handlers for move charge at task migration. */
4953#define PRECHARGE_COUNT_AT_ONCE 256
4954static int mem_cgroup_do_precharge(unsigned long count)
4955{
4956 int ret = 0;
4957 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4958 struct mem_cgroup *memcg = mc.to;
4959
4960 if (mem_cgroup_is_root(memcg)) {
4961 mc.precharge += count;
4962 /* we don't need css_get for root */
4963 return ret;
4964 }
4965 /* try to charge at once */
4966 if (count > 1) {
4967 struct res_counter *dummy;
4968 /*
4969 * "memcg" cannot be under rmdir() because we've already checked
4970 * by cgroup_lock_live_cgroup() that it is not removed and we
4971 * are still under the same cgroup_mutex. So we can postpone
4972 * css_get().
4973 */
4974 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4975 goto one_by_one;
4976 if (do_swap_account && res_counter_charge(&memcg->memsw,
4977 PAGE_SIZE * count, &dummy)) {
4978 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4979 goto one_by_one;
4980 }
4981 mc.precharge += count;
4982 return ret;
4983 }
4984one_by_one:
4985 /* fall back to one by one charge */
4986 while (count--) {
4987 if (signal_pending(current)) {
4988 ret = -EINTR;
4989 break;
4990 }
4991 if (!batch_count--) {
4992 batch_count = PRECHARGE_COUNT_AT_ONCE;
4993 cond_resched();
4994 }
4995 ret = __mem_cgroup_try_charge(NULL,
4996 GFP_KERNEL, 1, &memcg, false);
4997 if (ret)
4998 /* mem_cgroup_clear_mc() will do uncharge later */
4999 return ret;
5000 mc.precharge++;
5001 }
5002 return ret;
5003}
5004
5005/**
5006 * get_mctgt_type - get target type of moving charge
5007 * @vma: the vma the pte to be checked belongs
5008 * @addr: the address corresponding to the pte to be checked
5009 * @ptent: the pte to be checked
5010 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5011 *
5012 * Returns
5013 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5014 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5015 * move charge. if @target is not NULL, the page is stored in target->page
5016 * with extra refcnt got(Callers should handle it).
5017 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5018 * target for charge migration. if @target is not NULL, the entry is stored
5019 * in target->ent.
5020 *
5021 * Called with pte lock held.
5022 */
5023union mc_target {
5024 struct page *page;
5025 swp_entry_t ent;
5026};
5027
5028enum mc_target_type {
5029 MC_TARGET_NONE = 0,
5030 MC_TARGET_PAGE,
5031 MC_TARGET_SWAP,
5032};
5033
5034static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5035 unsigned long addr, pte_t ptent)
5036{
5037 struct page *page = vm_normal_page(vma, addr, ptent);
5038
5039 if (!page || !page_mapped(page))
5040 return NULL;
5041 if (PageAnon(page)) {
5042 /* we don't move shared anon */
5043 if (!move_anon())
5044 return NULL;
5045 } else if (!move_file())
5046 /* we ignore mapcount for file pages */
5047 return NULL;
5048 if (!get_page_unless_zero(page))
5049 return NULL;
5050
5051 return page;
5052}
5053
5054#ifdef CONFIG_SWAP
5055static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5056 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5057{
5058 struct page *page = NULL;
5059 swp_entry_t ent = pte_to_swp_entry(ptent);
5060
5061 if (!move_anon() || non_swap_entry(ent))
5062 return NULL;
5063 /*
5064 * Because lookup_swap_cache() updates some statistics counter,
5065 * we call find_get_page() with swapper_space directly.
5066 */
5067 page = find_get_page(&swapper_space, ent.val);
5068 if (do_swap_account)
5069 entry->val = ent.val;
5070
5071 return page;
5072}
5073#else
5074static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5075 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5076{
5077 return NULL;
5078}
5079#endif
5080
5081static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5082 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5083{
5084 struct page *page = NULL;
5085 struct address_space *mapping;
5086 pgoff_t pgoff;
5087
5088 if (!vma->vm_file) /* anonymous vma */
5089 return NULL;
5090 if (!move_file())
5091 return NULL;
5092
5093 mapping = vma->vm_file->f_mapping;
5094 if (pte_none(ptent))
5095 pgoff = linear_page_index(vma, addr);
5096 else /* pte_file(ptent) is true */
5097 pgoff = pte_to_pgoff(ptent);
5098
5099 /* page is moved even if it's not RSS of this task(page-faulted). */
5100 page = find_get_page(mapping, pgoff);
5101
5102#ifdef CONFIG_SWAP
5103 /* shmem/tmpfs may report page out on swap: account for that too. */
5104 if (radix_tree_exceptional_entry(page)) {
5105 swp_entry_t swap = radix_to_swp_entry(page);
5106 if (do_swap_account)
5107 *entry = swap;
5108 page = find_get_page(&swapper_space, swap.val);
5109 }
5110#endif
5111 return page;
5112}
5113
5114static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5115 unsigned long addr, pte_t ptent, union mc_target *target)
5116{
5117 struct page *page = NULL;
5118 struct page_cgroup *pc;
5119 enum mc_target_type ret = MC_TARGET_NONE;
5120 swp_entry_t ent = { .val = 0 };
5121
5122 if (pte_present(ptent))
5123 page = mc_handle_present_pte(vma, addr, ptent);
5124 else if (is_swap_pte(ptent))
5125 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5126 else if (pte_none(ptent) || pte_file(ptent))
5127 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5128
5129 if (!page && !ent.val)
5130 return ret;
5131 if (page) {
5132 pc = lookup_page_cgroup(page);
5133 /*
5134 * Do only loose check w/o page_cgroup lock.
5135 * mem_cgroup_move_account() checks the pc is valid or not under
5136 * the lock.
5137 */
5138 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5139 ret = MC_TARGET_PAGE;
5140 if (target)
5141 target->page = page;
5142 }
5143 if (!ret || !target)
5144 put_page(page);
5145 }
5146 /* There is a swap entry and a page doesn't exist or isn't charged */
5147 if (ent.val && !ret &&
5148 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5149 ret = MC_TARGET_SWAP;
5150 if (target)
5151 target->ent = ent;
5152 }
5153 return ret;
5154}
5155
5156#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5157/*
5158 * We don't consider swapping or file mapped pages because THP does not
5159 * support them for now.
5160 * Caller should make sure that pmd_trans_huge(pmd) is true.
5161 */
5162static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5163 unsigned long addr, pmd_t pmd, union mc_target *target)
5164{
5165 struct page *page = NULL;
5166 struct page_cgroup *pc;
5167 enum mc_target_type ret = MC_TARGET_NONE;
5168
5169 page = pmd_page(pmd);
5170 VM_BUG_ON(!page || !PageHead(page));
5171 if (!move_anon())
5172 return ret;
5173 pc = lookup_page_cgroup(page);
5174 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5175 ret = MC_TARGET_PAGE;
5176 if (target) {
5177 get_page(page);
5178 target->page = page;
5179 }
5180 }
5181 return ret;
5182}
5183#else
5184static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5185 unsigned long addr, pmd_t pmd, union mc_target *target)
5186{
5187 return MC_TARGET_NONE;
5188}
5189#endif
5190
5191static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5192 unsigned long addr, unsigned long end,
5193 struct mm_walk *walk)
5194{
5195 struct vm_area_struct *vma = walk->private;
5196 pte_t *pte;
5197 spinlock_t *ptl;
5198
5199 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5200 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5201 mc.precharge += HPAGE_PMD_NR;
5202 spin_unlock(&vma->vm_mm->page_table_lock);
5203 return 0;
5204 }
5205
5206 if (pmd_trans_unstable(pmd))
5207 return 0;
5208 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5209 for (; addr != end; pte++, addr += PAGE_SIZE)
5210 if (get_mctgt_type(vma, addr, *pte, NULL))
5211 mc.precharge++; /* increment precharge temporarily */
5212 pte_unmap_unlock(pte - 1, ptl);
5213 cond_resched();
5214
5215 return 0;
5216}
5217
5218static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5219{
5220 unsigned long precharge;
5221 struct vm_area_struct *vma;
5222
5223 down_read(&mm->mmap_sem);
5224 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5225 struct mm_walk mem_cgroup_count_precharge_walk = {
5226 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5227 .mm = mm,
5228 .private = vma,
5229 };
5230 if (is_vm_hugetlb_page(vma))
5231 continue;
5232 walk_page_range(vma->vm_start, vma->vm_end,
5233 &mem_cgroup_count_precharge_walk);
5234 }
5235 up_read(&mm->mmap_sem);
5236
5237 precharge = mc.precharge;
5238 mc.precharge = 0;
5239
5240 return precharge;
5241}
5242
5243static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5244{
5245 unsigned long precharge = mem_cgroup_count_precharge(mm);
5246
5247 VM_BUG_ON(mc.moving_task);
5248 mc.moving_task = current;
5249 return mem_cgroup_do_precharge(precharge);
5250}
5251
5252/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5253static void __mem_cgroup_clear_mc(void)
5254{
5255 struct mem_cgroup *from = mc.from;
5256 struct mem_cgroup *to = mc.to;
5257
5258 /* we must uncharge all the leftover precharges from mc.to */
5259 if (mc.precharge) {
5260 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5261 mc.precharge = 0;
5262 }
5263 /*
5264 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5265 * we must uncharge here.
5266 */
5267 if (mc.moved_charge) {
5268 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5269 mc.moved_charge = 0;
5270 }
5271 /* we must fixup refcnts and charges */
5272 if (mc.moved_swap) {
5273 /* uncharge swap account from the old cgroup */
5274 if (!mem_cgroup_is_root(mc.from))
5275 res_counter_uncharge(&mc.from->memsw,
5276 PAGE_SIZE * mc.moved_swap);
5277 __mem_cgroup_put(mc.from, mc.moved_swap);
5278
5279 if (!mem_cgroup_is_root(mc.to)) {
5280 /*
5281 * we charged both to->res and to->memsw, so we should
5282 * uncharge to->res.
5283 */
5284 res_counter_uncharge(&mc.to->res,
5285 PAGE_SIZE * mc.moved_swap);
5286 }
5287 /* we've already done mem_cgroup_get(mc.to) */
5288 mc.moved_swap = 0;
5289 }
5290 memcg_oom_recover(from);
5291 memcg_oom_recover(to);
5292 wake_up_all(&mc.waitq);
5293}
5294
5295static void mem_cgroup_clear_mc(void)
5296{
5297 struct mem_cgroup *from = mc.from;
5298
5299 /*
5300 * we must clear moving_task before waking up waiters at the end of
5301 * task migration.
5302 */
5303 mc.moving_task = NULL;
5304 __mem_cgroup_clear_mc();
5305 spin_lock(&mc.lock);
5306 mc.from = NULL;
5307 mc.to = NULL;
5308 spin_unlock(&mc.lock);
5309 mem_cgroup_end_move(from);
5310}
5311
5312static int mem_cgroup_can_attach(struct cgroup *cgroup,
5313 struct cgroup_taskset *tset)
5314{
5315 struct task_struct *p = cgroup_taskset_first(tset);
5316 int ret = 0;
5317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5318
5319 if (memcg->move_charge_at_immigrate) {
5320 struct mm_struct *mm;
5321 struct mem_cgroup *from = mem_cgroup_from_task(p);
5322
5323 VM_BUG_ON(from == memcg);
5324
5325 mm = get_task_mm(p);
5326 if (!mm)
5327 return 0;
5328 /* We move charges only when we move a owner of the mm */
5329 if (mm->owner == p) {
5330 VM_BUG_ON(mc.from);
5331 VM_BUG_ON(mc.to);
5332 VM_BUG_ON(mc.precharge);
5333 VM_BUG_ON(mc.moved_charge);
5334 VM_BUG_ON(mc.moved_swap);
5335 mem_cgroup_start_move(from);
5336 spin_lock(&mc.lock);
5337 mc.from = from;
5338 mc.to = memcg;
5339 spin_unlock(&mc.lock);
5340 /* We set mc.moving_task later */
5341
5342 ret = mem_cgroup_precharge_mc(mm);
5343 if (ret)
5344 mem_cgroup_clear_mc();
5345 }
5346 mmput(mm);
5347 }
5348 return ret;
5349}
5350
5351static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5352 struct cgroup_taskset *tset)
5353{
5354 mem_cgroup_clear_mc();
5355}
5356
5357static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5358 unsigned long addr, unsigned long end,
5359 struct mm_walk *walk)
5360{
5361 int ret = 0;
5362 struct vm_area_struct *vma = walk->private;
5363 pte_t *pte;
5364 spinlock_t *ptl;
5365 enum mc_target_type target_type;
5366 union mc_target target;
5367 struct page *page;
5368 struct page_cgroup *pc;
5369
5370 /*
5371 * We don't take compound_lock() here but no race with splitting thp
5372 * happens because:
5373 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5374 * under splitting, which means there's no concurrent thp split,
5375 * - if another thread runs into split_huge_page() just after we
5376 * entered this if-block, the thread must wait for page table lock
5377 * to be unlocked in __split_huge_page_splitting(), where the main
5378 * part of thp split is not executed yet.
5379 */
5380 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5381 if (mc.precharge < HPAGE_PMD_NR) {
5382 spin_unlock(&vma->vm_mm->page_table_lock);
5383 return 0;
5384 }
5385 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5386 if (target_type == MC_TARGET_PAGE) {
5387 page = target.page;
5388 if (!isolate_lru_page(page)) {
5389 pc = lookup_page_cgroup(page);
5390 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5391 pc, mc.from, mc.to)) {
5392 mc.precharge -= HPAGE_PMD_NR;
5393 mc.moved_charge += HPAGE_PMD_NR;
5394 }
5395 putback_lru_page(page);
5396 }
5397 put_page(page);
5398 }
5399 spin_unlock(&vma->vm_mm->page_table_lock);
5400 return 0;
5401 }
5402
5403 if (pmd_trans_unstable(pmd))
5404 return 0;
5405retry:
5406 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5407 for (; addr != end; addr += PAGE_SIZE) {
5408 pte_t ptent = *(pte++);
5409 swp_entry_t ent;
5410
5411 if (!mc.precharge)
5412 break;
5413
5414 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5415 case MC_TARGET_PAGE:
5416 page = target.page;
5417 if (isolate_lru_page(page))
5418 goto put;
5419 pc = lookup_page_cgroup(page);
5420 if (!mem_cgroup_move_account(page, 1, pc,
5421 mc.from, mc.to)) {
5422 mc.precharge--;
5423 /* we uncharge from mc.from later. */
5424 mc.moved_charge++;
5425 }
5426 putback_lru_page(page);
5427put: /* get_mctgt_type() gets the page */
5428 put_page(page);
5429 break;
5430 case MC_TARGET_SWAP:
5431 ent = target.ent;
5432 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5433 mc.precharge--;
5434 /* we fixup refcnts and charges later. */
5435 mc.moved_swap++;
5436 }
5437 break;
5438 default:
5439 break;
5440 }
5441 }
5442 pte_unmap_unlock(pte - 1, ptl);
5443 cond_resched();
5444
5445 if (addr != end) {
5446 /*
5447 * We have consumed all precharges we got in can_attach().
5448 * We try charge one by one, but don't do any additional
5449 * charges to mc.to if we have failed in charge once in attach()
5450 * phase.
5451 */
5452 ret = mem_cgroup_do_precharge(1);
5453 if (!ret)
5454 goto retry;
5455 }
5456
5457 return ret;
5458}
5459
5460static void mem_cgroup_move_charge(struct mm_struct *mm)
5461{
5462 struct vm_area_struct *vma;
5463
5464 lru_add_drain_all();
5465retry:
5466 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5467 /*
5468 * Someone who are holding the mmap_sem might be waiting in
5469 * waitq. So we cancel all extra charges, wake up all waiters,
5470 * and retry. Because we cancel precharges, we might not be able
5471 * to move enough charges, but moving charge is a best-effort
5472 * feature anyway, so it wouldn't be a big problem.
5473 */
5474 __mem_cgroup_clear_mc();
5475 cond_resched();
5476 goto retry;
5477 }
5478 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5479 int ret;
5480 struct mm_walk mem_cgroup_move_charge_walk = {
5481 .pmd_entry = mem_cgroup_move_charge_pte_range,
5482 .mm = mm,
5483 .private = vma,
5484 };
5485 if (is_vm_hugetlb_page(vma))
5486 continue;
5487 ret = walk_page_range(vma->vm_start, vma->vm_end,
5488 &mem_cgroup_move_charge_walk);
5489 if (ret)
5490 /*
5491 * means we have consumed all precharges and failed in
5492 * doing additional charge. Just abandon here.
5493 */
5494 break;
5495 }
5496 up_read(&mm->mmap_sem);
5497}
5498
5499static void mem_cgroup_move_task(struct cgroup *cont,
5500 struct cgroup_taskset *tset)
5501{
5502 struct task_struct *p = cgroup_taskset_first(tset);
5503 struct mm_struct *mm = get_task_mm(p);
5504
5505 if (mm) {
5506 if (mc.to)
5507 mem_cgroup_move_charge(mm);
5508 mmput(mm);
5509 }
5510 if (mc.to)
5511 mem_cgroup_clear_mc();
5512}
5513#else /* !CONFIG_MMU */
5514static int mem_cgroup_can_attach(struct cgroup *cgroup,
5515 struct cgroup_taskset *tset)
5516{
5517 return 0;
5518}
5519static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5520 struct cgroup_taskset *tset)
5521{
5522}
5523static void mem_cgroup_move_task(struct cgroup *cont,
5524 struct cgroup_taskset *tset)
5525{
5526}
5527#endif
5528
5529struct cgroup_subsys mem_cgroup_subsys = {
5530 .name = "memory",
5531 .subsys_id = mem_cgroup_subsys_id,
5532 .create = mem_cgroup_create,
5533 .pre_destroy = mem_cgroup_pre_destroy,
5534 .destroy = mem_cgroup_destroy,
5535 .can_attach = mem_cgroup_can_attach,
5536 .cancel_attach = mem_cgroup_cancel_attach,
5537 .attach = mem_cgroup_move_task,
5538 .base_cftypes = mem_cgroup_files,
5539 .early_init = 0,
5540 .use_id = 1,
5541 .__DEPRECATED_clear_css_refs = true,
5542};
5543
5544#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545static int __init enable_swap_account(char *s)
5546{
5547 /* consider enabled if no parameter or 1 is given */
5548 if (!strcmp(s, "1"))
5549 really_do_swap_account = 1;
5550 else if (!strcmp(s, "0"))
5551 really_do_swap_account = 0;
5552 return 1;
5553}
5554__setup("swapaccount=", enable_swap_account);
5555
5556#endif