Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/buffer_head.h>
 21#include <linux/writeback.h>
 22#include <linux/frontswap.h>
 23#include <linux/blkdev.h>
 
 24#include <linux/uio.h>
 25#include <asm/pgtable.h>
 
 
 
 26
 27static struct bio *get_swap_bio(gfp_t gfp_flags,
 28				struct page *page, bio_end_io_t end_io)
 29{
 30	struct bio *bio;
 31
 32	bio = bio_alloc(gfp_flags, 1);
 33	if (bio) {
 34		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
 35		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 36		bio->bi_end_io = end_io;
 37
 38		bio_add_page(bio, page, PAGE_SIZE, 0);
 39		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
 40	}
 41	return bio;
 42}
 43
 44void end_swap_bio_write(struct bio *bio)
 45{
 46	struct page *page = bio->bi_io_vec[0].bv_page;
 47
 48	if (bio->bi_error) {
 49		SetPageError(page);
 50		/*
 51		 * We failed to write the page out to swap-space.
 52		 * Re-dirty the page in order to avoid it being reclaimed.
 53		 * Also print a dire warning that things will go BAD (tm)
 54		 * very quickly.
 55		 *
 56		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 57		 */
 58		set_page_dirty(page);
 59		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 60			 imajor(bio->bi_bdev->bd_inode),
 61			 iminor(bio->bi_bdev->bd_inode),
 62			 (unsigned long long)bio->bi_iter.bi_sector);
 63		ClearPageReclaim(page);
 64	}
 65	end_page_writeback(page);
 66	bio_put(bio);
 67}
 68
 69static void swap_slot_free_notify(struct page *page)
 70{
 71	struct swap_info_struct *sis;
 72	struct gendisk *disk;
 73
 74	/*
 75	 * There is no guarantee that the page is in swap cache - the software
 76	 * suspend code (at least) uses end_swap_bio_read() against a non-
 77	 * swapcache page.  So we must check PG_swapcache before proceeding with
 78	 * this optimization.
 79	 */
 80	if (unlikely(!PageSwapCache(page)))
 81		return;
 82
 83	sis = page_swap_info(page);
 84	if (!(sis->flags & SWP_BLKDEV))
 85		return;
 86
 87	/*
 88	 * The swap subsystem performs lazy swap slot freeing,
 89	 * expecting that the page will be swapped out again.
 90	 * So we can avoid an unnecessary write if the page
 91	 * isn't redirtied.
 92	 * This is good for real swap storage because we can
 93	 * reduce unnecessary I/O and enhance wear-leveling
 94	 * if an SSD is used as the as swap device.
 95	 * But if in-memory swap device (eg zram) is used,
 96	 * this causes a duplicated copy between uncompressed
 97	 * data in VM-owned memory and compressed data in
 98	 * zram-owned memory.  So let's free zram-owned memory
 99	 * and make the VM-owned decompressed page *dirty*,
100	 * so the page should be swapped out somewhere again if
101	 * we again wish to reclaim it.
102	 */
103	disk = sis->bdev->bd_disk;
104	if (disk->fops->swap_slot_free_notify) {
105		swp_entry_t entry;
106		unsigned long offset;
107
108		entry.val = page_private(page);
109		offset = swp_offset(entry);
110
111		SetPageDirty(page);
112		disk->fops->swap_slot_free_notify(sis->bdev,
113				offset);
114	}
 
115}
116
117static void end_swap_bio_read(struct bio *bio)
118{
119	struct page *page = bio->bi_io_vec[0].bv_page;
120
121	if (bio->bi_error) {
122		SetPageError(page);
123		ClearPageUptodate(page);
124		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125			 imajor(bio->bi_bdev->bd_inode),
126			 iminor(bio->bi_bdev->bd_inode),
127			 (unsigned long long)bio->bi_iter.bi_sector);
128		goto out;
129	}
130
131	SetPageUptodate(page);
132	swap_slot_free_notify(page);
133out:
134	unlock_page(page);
135	bio_put(bio);
136}
137
138int generic_swapfile_activate(struct swap_info_struct *sis,
139				struct file *swap_file,
140				sector_t *span)
141{
142	struct address_space *mapping = swap_file->f_mapping;
143	struct inode *inode = mapping->host;
144	unsigned blocks_per_page;
145	unsigned long page_no;
146	unsigned blkbits;
147	sector_t probe_block;
148	sector_t last_block;
149	sector_t lowest_block = -1;
150	sector_t highest_block = 0;
151	int nr_extents = 0;
152	int ret;
153
154	blkbits = inode->i_blkbits;
155	blocks_per_page = PAGE_SIZE >> blkbits;
156
157	/*
158	 * Map all the blocks into the extent list.  This code doesn't try
159	 * to be very smart.
160	 */
161	probe_block = 0;
162	page_no = 0;
163	last_block = i_size_read(inode) >> blkbits;
164	while ((probe_block + blocks_per_page) <= last_block &&
165			page_no < sis->max) {
166		unsigned block_in_page;
167		sector_t first_block;
168
169		first_block = bmap(inode, probe_block);
170		if (first_block == 0)
 
 
 
171			goto bad_bmap;
172
173		/*
174		 * It must be PAGE_SIZE aligned on-disk
175		 */
176		if (first_block & (blocks_per_page - 1)) {
177			probe_block++;
178			goto reprobe;
179		}
180
181		for (block_in_page = 1; block_in_page < blocks_per_page;
182					block_in_page++) {
183			sector_t block;
184
185			block = bmap(inode, probe_block + block_in_page);
186			if (block == 0)
 
187				goto bad_bmap;
 
188			if (block != first_block + block_in_page) {
189				/* Discontiguity */
190				probe_block++;
191				goto reprobe;
192			}
193		}
194
195		first_block >>= (PAGE_SHIFT - blkbits);
196		if (page_no) {	/* exclude the header page */
197			if (first_block < lowest_block)
198				lowest_block = first_block;
199			if (first_block > highest_block)
200				highest_block = first_block;
201		}
202
203		/*
204		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205		 */
206		ret = add_swap_extent(sis, page_no, 1, first_block);
207		if (ret < 0)
208			goto out;
209		nr_extents += ret;
210		page_no++;
211		probe_block += blocks_per_page;
212reprobe:
213		continue;
214	}
215	ret = nr_extents;
216	*span = 1 + highest_block - lowest_block;
217	if (page_no == 0)
218		page_no = 1;	/* force Empty message */
219	sis->max = page_no;
220	sis->pages = page_no - 1;
221	sis->highest_bit = page_no - 1;
222out:
223	return ret;
224bad_bmap:
225	pr_err("swapon: swapfile has holes\n");
226	ret = -EINVAL;
227	goto out;
228}
229
230/*
231 * We may have stale swap cache pages in memory: notice
232 * them here and get rid of the unnecessary final write.
233 */
234int swap_writepage(struct page *page, struct writeback_control *wbc)
235{
236	int ret = 0;
 
237
238	if (try_to_free_swap(page)) {
239		unlock_page(page);
240		goto out;
241	}
242	if (frontswap_store(page) == 0) {
243		set_page_writeback(page);
244		unlock_page(page);
245		end_page_writeback(page);
246		goto out;
247	}
248	ret = __swap_writepage(page, wbc, end_swap_bio_write);
249out:
250	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251}
252
253static sector_t swap_page_sector(struct page *page)
254{
255	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 
 
 
 
 
 
256}
257
258int __swap_writepage(struct page *page, struct writeback_control *wbc,
259		bio_end_io_t end_write_func)
260{
261	struct bio *bio;
262	int ret, rw = WRITE;
263	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
265	if (sis->flags & SWP_FILE) {
266		struct kiocb kiocb;
267		struct file *swap_file = sis->swap_file;
268		struct address_space *mapping = swap_file->f_mapping;
269		struct bio_vec bv = {
270			.bv_page = page,
271			.bv_len  = PAGE_SIZE,
272			.bv_offset = 0
273		};
274		struct iov_iter from;
275
276		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277		init_sync_kiocb(&kiocb, swap_file);
278		kiocb.ki_pos = page_file_offset(page);
279
280		set_page_writeback(page);
281		unlock_page(page);
282		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
283		if (ret == PAGE_SIZE) {
284			count_vm_event(PSWPOUT);
285			ret = 0;
286		} else {
287			/*
288			 * In the case of swap-over-nfs, this can be a
289			 * temporary failure if the system has limited
290			 * memory for allocating transmit buffers.
291			 * Mark the page dirty and avoid
292			 * rotate_reclaimable_page but rate-limit the
293			 * messages but do not flag PageError like
294			 * the normal direct-to-bio case as it could
295			 * be temporary.
296			 */
 
 
297			set_page_dirty(page);
298			ClearPageReclaim(page);
299			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300					   page_file_offset(page));
301		}
302		end_page_writeback(page);
303		return ret;
304	}
305
306	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307	if (!ret) {
308		count_vm_event(PSWPOUT);
309		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
312	ret = 0;
313	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314	if (bio == NULL) {
315		set_page_dirty(page);
316		unlock_page(page);
317		ret = -ENOMEM;
318		goto out;
319	}
320	if (wbc->sync_mode == WB_SYNC_ALL)
321		rw |= REQ_SYNC;
322	count_vm_event(PSWPOUT);
323	set_page_writeback(page);
324	unlock_page(page);
325	submit_bio(rw, bio);
326out:
327	return ret;
 
 
 
328}
329
330int swap_readpage(struct page *page)
 
331{
332	struct bio *bio;
333	int ret = 0;
334	struct swap_info_struct *sis = page_swap_info(page);
335
336	VM_BUG_ON_PAGE(!PageLocked(page), page);
337	VM_BUG_ON_PAGE(PageUptodate(page), page);
338	if (frontswap_load(page) == 0) {
339		SetPageUptodate(page);
340		unlock_page(page);
341		goto out;
342	}
343
344	if (sis->flags & SWP_FILE) {
345		struct file *swap_file = sis->swap_file;
346		struct address_space *mapping = swap_file->f_mapping;
347
348		ret = mapping->a_ops->readpage(swap_file, page);
349		if (!ret)
350			count_vm_event(PSWPIN);
351		return ret;
352	}
353
354	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355	if (!ret) {
356		if (trylock_page(page)) {
357			swap_slot_free_notify(page);
358			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359		}
 
 
 
 
360
361		count_vm_event(PSWPIN);
362		return 0;
 
363	}
 
 
364
365	ret = 0;
366	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367	if (bio == NULL) {
368		unlock_page(page);
369		ret = -ENOMEM;
370		goto out;
 
 
 
 
 
 
 
 
371	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372	count_vm_event(PSWPIN);
373	submit_bio(READ, bio);
374out:
375	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
376}
377
378int swap_set_page_dirty(struct page *page)
 
379{
380	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
 
 
 
 
381
382	if (sis->flags & SWP_FILE) {
383		struct address_space *mapping = sis->swap_file->f_mapping;
384		return mapping->a_ops->set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385	} else {
386		return __set_page_dirty_no_writeback(page);
387	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 
 21#include <linux/writeback.h>
 
 22#include <linux/blkdev.h>
 23#include <linux/psi.h>
 24#include <linux/uio.h>
 25#include <linux/sched/task.h>
 26#include <linux/delayacct.h>
 27#include <linux/zswap.h>
 28#include "swap.h"
 29
 30static void __end_swap_bio_write(struct bio *bio)
 
 31{
 32	struct folio *folio = bio_first_folio_all(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	if (bio->bi_status) {
 
 35		/*
 36		 * We failed to write the page out to swap-space.
 37		 * Re-dirty the page in order to avoid it being reclaimed.
 38		 * Also print a dire warning that things will go BAD (tm)
 39		 * very quickly.
 40		 *
 41		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 42		 */
 43		folio_mark_dirty(folio);
 44		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 45				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 46				     (unsigned long long)bio->bi_iter.bi_sector);
 47		folio_clear_reclaim(folio);
 
 48	}
 49	folio_end_writeback(folio);
 
 50}
 51
 52static void end_swap_bio_write(struct bio *bio)
 53{
 54	__end_swap_bio_write(bio);
 55	bio_put(bio);
 56}
 
 
 
 
 
 
 
 
 57
 58static void __end_swap_bio_read(struct bio *bio)
 59{
 60	struct folio *folio = bio_first_folio_all(bio);
 61
 62	if (bio->bi_status) {
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 66	} else {
 67		folio_mark_uptodate(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	}
 69	folio_unlock(folio);
 70}
 71
 72static void end_swap_bio_read(struct bio *bio)
 73{
 74	__end_swap_bio_read(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75	bio_put(bio);
 76}
 77
 78int generic_swapfile_activate(struct swap_info_struct *sis,
 79				struct file *swap_file,
 80				sector_t *span)
 81{
 82	struct address_space *mapping = swap_file->f_mapping;
 83	struct inode *inode = mapping->host;
 84	unsigned blocks_per_page;
 85	unsigned long page_no;
 86	unsigned blkbits;
 87	sector_t probe_block;
 88	sector_t last_block;
 89	sector_t lowest_block = -1;
 90	sector_t highest_block = 0;
 91	int nr_extents = 0;
 92	int ret;
 93
 94	blkbits = inode->i_blkbits;
 95	blocks_per_page = PAGE_SIZE >> blkbits;
 96
 97	/*
 98	 * Map all the blocks into the extent tree.  This code doesn't try
 99	 * to be very smart.
100	 */
101	probe_block = 0;
102	page_no = 0;
103	last_block = i_size_read(inode) >> blkbits;
104	while ((probe_block + blocks_per_page) <= last_block &&
105			page_no < sis->max) {
106		unsigned block_in_page;
107		sector_t first_block;
108
109		cond_resched();
110
111		first_block = probe_block;
112		ret = bmap(inode, &first_block);
113		if (ret || !first_block)
114			goto bad_bmap;
115
116		/*
117		 * It must be PAGE_SIZE aligned on-disk
118		 */
119		if (first_block & (blocks_per_page - 1)) {
120			probe_block++;
121			goto reprobe;
122		}
123
124		for (block_in_page = 1; block_in_page < blocks_per_page;
125					block_in_page++) {
126			sector_t block;
127
128			block = probe_block + block_in_page;
129			ret = bmap(inode, &block);
130			if (ret || !block)
131				goto bad_bmap;
132
133			if (block != first_block + block_in_page) {
134				/* Discontiguity */
135				probe_block++;
136				goto reprobe;
137			}
138		}
139
140		first_block >>= (PAGE_SHIFT - blkbits);
141		if (page_no) {	/* exclude the header page */
142			if (first_block < lowest_block)
143				lowest_block = first_block;
144			if (first_block > highest_block)
145				highest_block = first_block;
146		}
147
148		/*
149		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150		 */
151		ret = add_swap_extent(sis, page_no, 1, first_block);
152		if (ret < 0)
153			goto out;
154		nr_extents += ret;
155		page_no++;
156		probe_block += blocks_per_page;
157reprobe:
158		continue;
159	}
160	ret = nr_extents;
161	*span = 1 + highest_block - lowest_block;
162	if (page_no == 0)
163		page_no = 1;	/* force Empty message */
164	sis->max = page_no;
165	sis->pages = page_no - 1;
166	sis->highest_bit = page_no - 1;
167out:
168	return ret;
169bad_bmap:
170	pr_err("swapon: swapfile has holes\n");
171	ret = -EINVAL;
172	goto out;
173}
174
175/*
176 * We may have stale swap cache pages in memory: notice
177 * them here and get rid of the unnecessary final write.
178 */
179int swap_writepage(struct page *page, struct writeback_control *wbc)
180{
181	struct folio *folio = page_folio(page);
182	int ret;
183
184	if (folio_free_swap(folio)) {
185		folio_unlock(folio);
186		return 0;
 
 
 
 
 
 
187	}
188	/*
189	 * Arch code may have to preserve more data than just the page
190	 * contents, e.g. memory tags.
191	 */
192	ret = arch_prepare_to_swap(&folio->page);
193	if (ret) {
194		folio_mark_dirty(folio);
195		folio_unlock(folio);
196		return ret;
197	}
198	if (zswap_store(folio)) {
199		folio_start_writeback(folio);
200		folio_unlock(folio);
201		folio_end_writeback(folio);
202		return 0;
203	}
204	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
205		folio_mark_dirty(folio);
206		return AOP_WRITEPAGE_ACTIVATE;
207	}
208
209	__swap_writepage(folio, wbc);
210	return 0;
211}
212
213static inline void count_swpout_vm_event(struct folio *folio)
214{
215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
216	if (unlikely(folio_test_pmd_mappable(folio))) {
217		count_memcg_folio_events(folio, THP_SWPOUT, 1);
218		count_vm_event(THP_SWPOUT);
219	}
220#endif
221	count_vm_events(PSWPOUT, folio_nr_pages(folio));
222}
223
224#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
225static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
226{
227	struct cgroup_subsys_state *css;
228	struct mem_cgroup *memcg;
229
230	memcg = folio_memcg(folio);
231	if (!memcg)
232		return;
233
234	rcu_read_lock();
235	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
236	bio_associate_blkg_from_css(bio, css);
237	rcu_read_unlock();
238}
239#else
240#define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
241#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
242
243struct swap_iocb {
244	struct kiocb		iocb;
245	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
246	int			pages;
247	int			len;
248};
249static mempool_t *sio_pool;
250
251int sio_pool_init(void)
252{
253	if (!sio_pool) {
254		mempool_t *pool = mempool_create_kmalloc_pool(
255			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
256		if (cmpxchg(&sio_pool, NULL, pool))
257			mempool_destroy(pool);
258	}
259	if (!sio_pool)
260		return -ENOMEM;
261	return 0;
262}
263
264static void sio_write_complete(struct kiocb *iocb, long ret)
265{
266	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
267	struct page *page = sio->bvec[0].bv_page;
268	int p;
269
270	if (ret != sio->len) {
271		/*
272		 * In the case of swap-over-nfs, this can be a
273		 * temporary failure if the system has limited
274		 * memory for allocating transmit buffers.
275		 * Mark the page dirty and avoid
276		 * folio_rotate_reclaimable but rate-limit the
277		 * messages but do not flag PageError like
278		 * the normal direct-to-bio case as it could
279		 * be temporary.
280		 */
281		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
282				   ret, page_file_offset(page));
283		for (p = 0; p < sio->pages; p++) {
284			page = sio->bvec[p].bv_page;
285			set_page_dirty(page);
286			ClearPageReclaim(page);
 
 
287		}
 
 
288	}
289
290	for (p = 0; p < sio->pages; p++)
291		end_page_writeback(sio->bvec[p].bv_page);
292
293	mempool_free(sio, sio_pool);
294}
295
296static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
297{
298	struct swap_iocb *sio = NULL;
299	struct swap_info_struct *sis = swp_swap_info(folio->swap);
300	struct file *swap_file = sis->swap_file;
301	loff_t pos = folio_file_pos(folio);
302
303	count_swpout_vm_event(folio);
304	folio_start_writeback(folio);
305	folio_unlock(folio);
306	if (wbc->swap_plug)
307		sio = *wbc->swap_plug;
308	if (sio) {
309		if (sio->iocb.ki_filp != swap_file ||
310		    sio->iocb.ki_pos + sio->len != pos) {
311			swap_write_unplug(sio);
312			sio = NULL;
313		}
314	}
315	if (!sio) {
316		sio = mempool_alloc(sio_pool, GFP_NOIO);
317		init_sync_kiocb(&sio->iocb, swap_file);
318		sio->iocb.ki_complete = sio_write_complete;
319		sio->iocb.ki_pos = pos;
320		sio->pages = 0;
321		sio->len = 0;
322	}
323	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
324	sio->len += folio_size(folio);
325	sio->pages += 1;
326	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
327		swap_write_unplug(sio);
328		sio = NULL;
329	}
330	if (wbc->swap_plug)
331		*wbc->swap_plug = sio;
332}
333
334static void swap_writepage_bdev_sync(struct folio *folio,
335		struct writeback_control *wbc, struct swap_info_struct *sis)
336{
337	struct bio_vec bv;
338	struct bio bio;
339
340	bio_init(&bio, sis->bdev, &bv, 1,
341		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
342	bio.bi_iter.bi_sector = swap_folio_sector(folio);
343	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
344
345	bio_associate_blkg_from_page(&bio, folio);
346	count_swpout_vm_event(folio);
347
348	folio_start_writeback(folio);
349	folio_unlock(folio);
350
351	submit_bio_wait(&bio);
352	__end_swap_bio_write(&bio);
353}
354
355static void swap_writepage_bdev_async(struct folio *folio,
356		struct writeback_control *wbc, struct swap_info_struct *sis)
357{
358	struct bio *bio;
 
 
359
360	bio = bio_alloc(sis->bdev, 1,
361			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
362			GFP_NOIO);
363	bio->bi_iter.bi_sector = swap_folio_sector(folio);
364	bio->bi_end_io = end_swap_bio_write;
365	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
366
367	bio_associate_blkg_from_page(bio, folio);
368	count_swpout_vm_event(folio);
369	folio_start_writeback(folio);
370	folio_unlock(folio);
371	submit_bio(bio);
372}
373
374void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
375{
376	struct swap_info_struct *sis = swp_swap_info(folio->swap);
377
378	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
379	/*
380	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
381	 * but that will never affect SWP_FS_OPS, so the data_race
382	 * is safe.
383	 */
384	if (data_race(sis->flags & SWP_FS_OPS))
385		swap_writepage_fs(folio, wbc);
386	else if (sis->flags & SWP_SYNCHRONOUS_IO)
387		swap_writepage_bdev_sync(folio, wbc, sis);
388	else
389		swap_writepage_bdev_async(folio, wbc, sis);
390}
391
392void swap_write_unplug(struct swap_iocb *sio)
393{
394	struct iov_iter from;
395	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
396	int ret;
397
398	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
399	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
400	if (ret != -EIOCBQUEUED)
401		sio_write_complete(&sio->iocb, ret);
402}
403
404static void sio_read_complete(struct kiocb *iocb, long ret)
405{
406	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
407	int p;
408
409	if (ret == sio->len) {
410		for (p = 0; p < sio->pages; p++) {
411			struct folio *folio = page_folio(sio->bvec[p].bv_page);
412
413			folio_mark_uptodate(folio);
414			folio_unlock(folio);
415		}
416		count_vm_events(PSWPIN, sio->pages);
417	} else {
418		for (p = 0; p < sio->pages; p++) {
419			struct folio *folio = page_folio(sio->bvec[p].bv_page);
420
421			folio_unlock(folio);
422		}
423		pr_alert_ratelimited("Read-error on swap-device\n");
424	}
425	mempool_free(sio, sio_pool);
426}
427
428static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
429{
430	struct swap_info_struct *sis = swp_swap_info(folio->swap);
431	struct swap_iocb *sio = NULL;
432	loff_t pos = folio_file_pos(folio);
433
434	if (plug)
435		sio = *plug;
436	if (sio) {
437		if (sio->iocb.ki_filp != sis->swap_file ||
438		    sio->iocb.ki_pos + sio->len != pos) {
439			swap_read_unplug(sio);
440			sio = NULL;
441		}
442	}
443	if (!sio) {
444		sio = mempool_alloc(sio_pool, GFP_KERNEL);
445		init_sync_kiocb(&sio->iocb, sis->swap_file);
446		sio->iocb.ki_pos = pos;
447		sio->iocb.ki_complete = sio_read_complete;
448		sio->pages = 0;
449		sio->len = 0;
450	}
451	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
452	sio->len += folio_size(folio);
453	sio->pages += 1;
454	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
455		swap_read_unplug(sio);
456		sio = NULL;
457	}
458	if (plug)
459		*plug = sio;
460}
461
462static void swap_read_folio_bdev_sync(struct folio *folio,
463		struct swap_info_struct *sis)
464{
465	struct bio_vec bv;
466	struct bio bio;
467
468	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
469	bio.bi_iter.bi_sector = swap_folio_sector(folio);
470	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
471	/*
472	 * Keep this task valid during swap readpage because the oom killer may
473	 * attempt to access it in the page fault retry time check.
474	 */
475	get_task_struct(current);
476	count_vm_event(PSWPIN);
477	submit_bio_wait(&bio);
478	__end_swap_bio_read(&bio);
479	put_task_struct(current);
480}
481
482static void swap_read_folio_bdev_async(struct folio *folio,
483		struct swap_info_struct *sis)
484{
485	struct bio *bio;
486
487	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
488	bio->bi_iter.bi_sector = swap_folio_sector(folio);
489	bio->bi_end_io = end_swap_bio_read;
490	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
491	count_vm_event(PSWPIN);
492	submit_bio(bio);
493}
494
495void swap_read_folio(struct folio *folio, bool synchronous,
496		struct swap_iocb **plug)
497{
498	struct swap_info_struct *sis = swp_swap_info(folio->swap);
499	bool workingset = folio_test_workingset(folio);
500	unsigned long pflags;
501	bool in_thrashing;
502
503	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
504	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
505	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
506
507	/*
508	 * Count submission time as memory stall and delay. When the device
509	 * is congested, or the submitting cgroup IO-throttled, submission
510	 * can be a significant part of overall IO time.
511	 */
512	if (workingset) {
513		delayacct_thrashing_start(&in_thrashing);
514		psi_memstall_enter(&pflags);
515	}
516	delayacct_swapin_start();
517
518	if (zswap_load(folio)) {
519		folio_mark_uptodate(folio);
520		folio_unlock(folio);
521	} else if (data_race(sis->flags & SWP_FS_OPS)) {
522		swap_read_folio_fs(folio, plug);
523	} else if (synchronous || (sis->flags & SWP_SYNCHRONOUS_IO)) {
524		swap_read_folio_bdev_sync(folio, sis);
525	} else {
526		swap_read_folio_bdev_async(folio, sis);
527	}
528
529	if (workingset) {
530		delayacct_thrashing_end(&in_thrashing);
531		psi_memstall_leave(&pflags);
532	}
533	delayacct_swapin_end();
534}
535
536void __swap_read_unplug(struct swap_iocb *sio)
537{
538	struct iov_iter from;
539	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
540	int ret;
541
542	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
543	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
544	if (ret != -EIOCBQUEUED)
545		sio_read_complete(&sio->iocb, ret);
546}