Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.6
 
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/buffer_head.h>
 21#include <linux/writeback.h>
 22#include <linux/frontswap.h>
 23#include <linux/blkdev.h>
 
 24#include <linux/uio.h>
 25#include <asm/pgtable.h>
 
 
 26
 27static struct bio *get_swap_bio(gfp_t gfp_flags,
 28				struct page *page, bio_end_io_t end_io)
 29{
 30	struct bio *bio;
 31
 32	bio = bio_alloc(gfp_flags, 1);
 33	if (bio) {
 34		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
 35		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 36		bio->bi_end_io = end_io;
 37
 38		bio_add_page(bio, page, PAGE_SIZE, 0);
 39		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
 40	}
 41	return bio;
 42}
 43
 44void end_swap_bio_write(struct bio *bio)
 45{
 46	struct page *page = bio->bi_io_vec[0].bv_page;
 47
 48	if (bio->bi_error) {
 49		SetPageError(page);
 50		/*
 51		 * We failed to write the page out to swap-space.
 52		 * Re-dirty the page in order to avoid it being reclaimed.
 53		 * Also print a dire warning that things will go BAD (tm)
 54		 * very quickly.
 55		 *
 56		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 57		 */
 58		set_page_dirty(page);
 59		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 60			 imajor(bio->bi_bdev->bd_inode),
 61			 iminor(bio->bi_bdev->bd_inode),
 62			 (unsigned long long)bio->bi_iter.bi_sector);
 63		ClearPageReclaim(page);
 64	}
 65	end_page_writeback(page);
 66	bio_put(bio);
 67}
 68
 69static void swap_slot_free_notify(struct page *page)
 70{
 71	struct swap_info_struct *sis;
 72	struct gendisk *disk;
 73
 74	/*
 75	 * There is no guarantee that the page is in swap cache - the software
 76	 * suspend code (at least) uses end_swap_bio_read() against a non-
 77	 * swapcache page.  So we must check PG_swapcache before proceeding with
 78	 * this optimization.
 79	 */
 80	if (unlikely(!PageSwapCache(page)))
 81		return;
 82
 83	sis = page_swap_info(page);
 84	if (!(sis->flags & SWP_BLKDEV))
 85		return;
 86
 87	/*
 88	 * The swap subsystem performs lazy swap slot freeing,
 89	 * expecting that the page will be swapped out again.
 90	 * So we can avoid an unnecessary write if the page
 91	 * isn't redirtied.
 92	 * This is good for real swap storage because we can
 93	 * reduce unnecessary I/O and enhance wear-leveling
 94	 * if an SSD is used as the as swap device.
 95	 * But if in-memory swap device (eg zram) is used,
 96	 * this causes a duplicated copy between uncompressed
 97	 * data in VM-owned memory and compressed data in
 98	 * zram-owned memory.  So let's free zram-owned memory
 99	 * and make the VM-owned decompressed page *dirty*,
100	 * so the page should be swapped out somewhere again if
101	 * we again wish to reclaim it.
102	 */
103	disk = sis->bdev->bd_disk;
104	if (disk->fops->swap_slot_free_notify) {
105		swp_entry_t entry;
106		unsigned long offset;
107
108		entry.val = page_private(page);
109		offset = swp_offset(entry);
110
111		SetPageDirty(page);
112		disk->fops->swap_slot_free_notify(sis->bdev,
113				offset);
114	}
115}
116
117static void end_swap_bio_read(struct bio *bio)
118{
119	struct page *page = bio->bi_io_vec[0].bv_page;
 
120
121	if (bio->bi_error) {
122		SetPageError(page);
123		ClearPageUptodate(page);
124		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125			 imajor(bio->bi_bdev->bd_inode),
126			 iminor(bio->bi_bdev->bd_inode),
127			 (unsigned long long)bio->bi_iter.bi_sector);
128		goto out;
129	}
130
131	SetPageUptodate(page);
132	swap_slot_free_notify(page);
133out:
134	unlock_page(page);
 
135	bio_put(bio);
 
 
 
 
136}
137
138int generic_swapfile_activate(struct swap_info_struct *sis,
139				struct file *swap_file,
140				sector_t *span)
141{
142	struct address_space *mapping = swap_file->f_mapping;
143	struct inode *inode = mapping->host;
144	unsigned blocks_per_page;
145	unsigned long page_no;
146	unsigned blkbits;
147	sector_t probe_block;
148	sector_t last_block;
149	sector_t lowest_block = -1;
150	sector_t highest_block = 0;
151	int nr_extents = 0;
152	int ret;
153
154	blkbits = inode->i_blkbits;
155	blocks_per_page = PAGE_SIZE >> blkbits;
156
157	/*
158	 * Map all the blocks into the extent list.  This code doesn't try
159	 * to be very smart.
160	 */
161	probe_block = 0;
162	page_no = 0;
163	last_block = i_size_read(inode) >> blkbits;
164	while ((probe_block + blocks_per_page) <= last_block &&
165			page_no < sis->max) {
166		unsigned block_in_page;
167		sector_t first_block;
168
169		first_block = bmap(inode, probe_block);
170		if (first_block == 0)
 
 
 
171			goto bad_bmap;
172
173		/*
174		 * It must be PAGE_SIZE aligned on-disk
175		 */
176		if (first_block & (blocks_per_page - 1)) {
177			probe_block++;
178			goto reprobe;
179		}
180
181		for (block_in_page = 1; block_in_page < blocks_per_page;
182					block_in_page++) {
183			sector_t block;
184
185			block = bmap(inode, probe_block + block_in_page);
186			if (block == 0)
 
187				goto bad_bmap;
 
188			if (block != first_block + block_in_page) {
189				/* Discontiguity */
190				probe_block++;
191				goto reprobe;
192			}
193		}
194
195		first_block >>= (PAGE_SHIFT - blkbits);
196		if (page_no) {	/* exclude the header page */
197			if (first_block < lowest_block)
198				lowest_block = first_block;
199			if (first_block > highest_block)
200				highest_block = first_block;
201		}
202
203		/*
204		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205		 */
206		ret = add_swap_extent(sis, page_no, 1, first_block);
207		if (ret < 0)
208			goto out;
209		nr_extents += ret;
210		page_no++;
211		probe_block += blocks_per_page;
212reprobe:
213		continue;
214	}
215	ret = nr_extents;
216	*span = 1 + highest_block - lowest_block;
217	if (page_no == 0)
218		page_no = 1;	/* force Empty message */
219	sis->max = page_no;
220	sis->pages = page_no - 1;
221	sis->highest_bit = page_no - 1;
222out:
223	return ret;
224bad_bmap:
225	pr_err("swapon: swapfile has holes\n");
226	ret = -EINVAL;
227	goto out;
228}
229
230/*
231 * We may have stale swap cache pages in memory: notice
232 * them here and get rid of the unnecessary final write.
233 */
234int swap_writepage(struct page *page, struct writeback_control *wbc)
235{
 
236	int ret = 0;
237
238	if (try_to_free_swap(page)) {
239		unlock_page(page);
240		goto out;
241	}
242	if (frontswap_store(page) == 0) {
243		set_page_writeback(page);
244		unlock_page(page);
245		end_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
246		goto out;
247	}
248	ret = __swap_writepage(page, wbc, end_swap_bio_write);
249out:
250	return ret;
251}
252
253static sector_t swap_page_sector(struct page *page)
254{
255	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 
 
 
 
256}
257
258int __swap_writepage(struct page *page, struct writeback_control *wbc,
259		bio_end_io_t end_write_func)
260{
261	struct bio *bio;
262	int ret, rw = WRITE;
263	struct swap_info_struct *sis = page_swap_info(page);
264
265	if (sis->flags & SWP_FILE) {
266		struct kiocb kiocb;
267		struct file *swap_file = sis->swap_file;
268		struct address_space *mapping = swap_file->f_mapping;
269		struct bio_vec bv = {
270			.bv_page = page,
271			.bv_len  = PAGE_SIZE,
272			.bv_offset = 0
273		};
274		struct iov_iter from;
275
276		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277		init_sync_kiocb(&kiocb, swap_file);
278		kiocb.ki_pos = page_file_offset(page);
279
280		set_page_writeback(page);
281		unlock_page(page);
282		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
283		if (ret == PAGE_SIZE) {
284			count_vm_event(PSWPOUT);
285			ret = 0;
286		} else {
287			/*
288			 * In the case of swap-over-nfs, this can be a
289			 * temporary failure if the system has limited
290			 * memory for allocating transmit buffers.
291			 * Mark the page dirty and avoid
292			 * rotate_reclaimable_page but rate-limit the
293			 * messages but do not flag PageError like
294			 * the normal direct-to-bio case as it could
295			 * be temporary.
296			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297			set_page_dirty(page);
298			ClearPageReclaim(page);
299			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300					   page_file_offset(page));
301		}
302		end_page_writeback(page);
303		return ret;
 
304	}
305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307	if (!ret) {
308		count_vm_event(PSWPOUT);
309		return 0;
310	}
311
312	ret = 0;
313	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314	if (bio == NULL) {
315		set_page_dirty(page);
316		unlock_page(page);
317		ret = -ENOMEM;
318		goto out;
319	}
320	if (wbc->sync_mode == WB_SYNC_ALL)
321		rw |= REQ_SYNC;
322	count_vm_event(PSWPOUT);
323	set_page_writeback(page);
324	unlock_page(page);
325	submit_bio(rw, bio);
326out:
327	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
328}
329
330int swap_readpage(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331{
332	struct bio *bio;
333	int ret = 0;
334	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
335
 
336	VM_BUG_ON_PAGE(!PageLocked(page), page);
337	VM_BUG_ON_PAGE(PageUptodate(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
338	if (frontswap_load(page) == 0) {
339		SetPageUptodate(page);
340		unlock_page(page);
341		goto out;
342	}
343
344	if (sis->flags & SWP_FILE) {
345		struct file *swap_file = sis->swap_file;
346		struct address_space *mapping = swap_file->f_mapping;
347
348		ret = mapping->a_ops->readpage(swap_file, page);
349		if (!ret)
350			count_vm_event(PSWPIN);
351		return ret;
352	}
353
354	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355	if (!ret) {
356		if (trylock_page(page)) {
357			swap_slot_free_notify(page);
358			unlock_page(page);
359		}
360
361		count_vm_event(PSWPIN);
362		return 0;
363	}
364
365	ret = 0;
366	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367	if (bio == NULL) {
368		unlock_page(page);
369		ret = -ENOMEM;
370		goto out;
 
 
 
 
 
 
371	}
372	count_vm_event(PSWPIN);
373	submit_bio(READ, bio);
 
 
 
 
 
 
 
 
 
 
 
374out:
 
 
 
 
 
375	return ret;
376}
377
378int swap_set_page_dirty(struct page *page)
379{
380	struct swap_info_struct *sis = page_swap_info(page);
 
 
381
382	if (sis->flags & SWP_FILE) {
383		struct address_space *mapping = sis->swap_file->f_mapping;
384		return mapping->a_ops->set_page_dirty(page);
385	} else {
386		return __set_page_dirty_no_writeback(page);
387	}
388}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/psi.h>
 26#include <linux/uio.h>
 27#include <linux/sched/task.h>
 28#include <linux/delayacct.h>
 29#include "swap.h"
 30
 31static void end_swap_bio_write(struct bio *bio)
 
 32{
 33	struct page *page = bio_first_page_all(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35	if (bio->bi_status) {
 36		SetPageError(page);
 37		/*
 38		 * We failed to write the page out to swap-space.
 39		 * Re-dirty the page in order to avoid it being reclaimed.
 40		 * Also print a dire warning that things will go BAD (tm)
 41		 * very quickly.
 42		 *
 43		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 44		 */
 45		set_page_dirty(page);
 46		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 47				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 48				     (unsigned long long)bio->bi_iter.bi_sector);
 
 49		ClearPageReclaim(page);
 50	}
 51	end_page_writeback(page);
 52	bio_put(bio);
 53}
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static void end_swap_bio_read(struct bio *bio)
 56{
 57	struct page *page = bio_first_page_all(bio);
 58	struct task_struct *waiter = bio->bi_private;
 59
 60	if (bio->bi_status) {
 61		SetPageError(page);
 62		ClearPageUptodate(page);
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 
 66		goto out;
 67	}
 68
 69	SetPageUptodate(page);
 
 70out:
 71	unlock_page(page);
 72	WRITE_ONCE(bio->bi_private, NULL);
 73	bio_put(bio);
 74	if (waiter) {
 75		blk_wake_io_task(waiter);
 76		put_task_struct(waiter);
 77	}
 78}
 79
 80int generic_swapfile_activate(struct swap_info_struct *sis,
 81				struct file *swap_file,
 82				sector_t *span)
 83{
 84	struct address_space *mapping = swap_file->f_mapping;
 85	struct inode *inode = mapping->host;
 86	unsigned blocks_per_page;
 87	unsigned long page_no;
 88	unsigned blkbits;
 89	sector_t probe_block;
 90	sector_t last_block;
 91	sector_t lowest_block = -1;
 92	sector_t highest_block = 0;
 93	int nr_extents = 0;
 94	int ret;
 95
 96	blkbits = inode->i_blkbits;
 97	blocks_per_page = PAGE_SIZE >> blkbits;
 98
 99	/*
100	 * Map all the blocks into the extent tree.  This code doesn't try
101	 * to be very smart.
102	 */
103	probe_block = 0;
104	page_no = 0;
105	last_block = i_size_read(inode) >> blkbits;
106	while ((probe_block + blocks_per_page) <= last_block &&
107			page_no < sis->max) {
108		unsigned block_in_page;
109		sector_t first_block;
110
111		cond_resched();
112
113		first_block = probe_block;
114		ret = bmap(inode, &first_block);
115		if (ret || !first_block)
116			goto bad_bmap;
117
118		/*
119		 * It must be PAGE_SIZE aligned on-disk
120		 */
121		if (first_block & (blocks_per_page - 1)) {
122			probe_block++;
123			goto reprobe;
124		}
125
126		for (block_in_page = 1; block_in_page < blocks_per_page;
127					block_in_page++) {
128			sector_t block;
129
130			block = probe_block + block_in_page;
131			ret = bmap(inode, &block);
132			if (ret || !block)
133				goto bad_bmap;
134
135			if (block != first_block + block_in_page) {
136				/* Discontiguity */
137				probe_block++;
138				goto reprobe;
139			}
140		}
141
142		first_block >>= (PAGE_SHIFT - blkbits);
143		if (page_no) {	/* exclude the header page */
144			if (first_block < lowest_block)
145				lowest_block = first_block;
146			if (first_block > highest_block)
147				highest_block = first_block;
148		}
149
150		/*
151		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
152		 */
153		ret = add_swap_extent(sis, page_no, 1, first_block);
154		if (ret < 0)
155			goto out;
156		nr_extents += ret;
157		page_no++;
158		probe_block += blocks_per_page;
159reprobe:
160		continue;
161	}
162	ret = nr_extents;
163	*span = 1 + highest_block - lowest_block;
164	if (page_no == 0)
165		page_no = 1;	/* force Empty message */
166	sis->max = page_no;
167	sis->pages = page_no - 1;
168	sis->highest_bit = page_no - 1;
169out:
170	return ret;
171bad_bmap:
172	pr_err("swapon: swapfile has holes\n");
173	ret = -EINVAL;
174	goto out;
175}
176
177/*
178 * We may have stale swap cache pages in memory: notice
179 * them here and get rid of the unnecessary final write.
180 */
181int swap_writepage(struct page *page, struct writeback_control *wbc)
182{
183	struct folio *folio = page_folio(page);
184	int ret = 0;
185
186	if (folio_free_swap(folio)) {
187		folio_unlock(folio);
188		goto out;
189	}
190	/*
191	 * Arch code may have to preserve more data than just the page
192	 * contents, e.g. memory tags.
193	 */
194	ret = arch_prepare_to_swap(&folio->page);
195	if (ret) {
196		folio_mark_dirty(folio);
197		folio_unlock(folio);
198		goto out;
199	}
200	if (frontswap_store(&folio->page) == 0) {
201		folio_start_writeback(folio);
202		folio_unlock(folio);
203		folio_end_writeback(folio);
204		goto out;
205	}
206	ret = __swap_writepage(&folio->page, wbc);
207out:
208	return ret;
209}
210
211static inline void count_swpout_vm_event(struct page *page)
212{
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214	if (unlikely(PageTransHuge(page)))
215		count_vm_event(THP_SWPOUT);
216#endif
217	count_vm_events(PSWPOUT, thp_nr_pages(page));
218}
219
220#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
221static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
222{
223	struct cgroup_subsys_state *css;
224	struct mem_cgroup *memcg;
 
225
226	memcg = page_memcg(page);
227	if (!memcg)
228		return;
 
 
 
 
 
 
 
 
 
 
 
229
230	rcu_read_lock();
231	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
232	bio_associate_blkg_from_css(bio, css);
233	rcu_read_unlock();
234}
235#else
236#define bio_associate_blkg_from_page(bio, page)		do { } while (0)
237#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
238
239struct swap_iocb {
240	struct kiocb		iocb;
241	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
242	int			pages;
243	int			len;
244};
245static mempool_t *sio_pool;
246
247int sio_pool_init(void)
248{
249	if (!sio_pool) {
250		mempool_t *pool = mempool_create_kmalloc_pool(
251			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
252		if (cmpxchg(&sio_pool, NULL, pool))
253			mempool_destroy(pool);
254	}
255	if (!sio_pool)
256		return -ENOMEM;
257	return 0;
258}
259
260static void sio_write_complete(struct kiocb *iocb, long ret)
261{
262	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
263	struct page *page = sio->bvec[0].bv_page;
264	int p;
265
266	if (ret != sio->len) {
267		/*
268		 * In the case of swap-over-nfs, this can be a
269		 * temporary failure if the system has limited
270		 * memory for allocating transmit buffers.
271		 * Mark the page dirty and avoid
272		 * folio_rotate_reclaimable but rate-limit the
273		 * messages but do not flag PageError like
274		 * the normal direct-to-bio case as it could
275		 * be temporary.
276		 */
277		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
278				   ret, page_file_offset(page));
279		for (p = 0; p < sio->pages; p++) {
280			page = sio->bvec[p].bv_page;
281			set_page_dirty(page);
282			ClearPageReclaim(page);
 
 
283		}
284	} else {
285		for (p = 0; p < sio->pages; p++)
286			count_swpout_vm_event(sio->bvec[p].bv_page);
287	}
288
289	for (p = 0; p < sio->pages; p++)
290		end_page_writeback(sio->bvec[p].bv_page);
291
292	mempool_free(sio, sio_pool);
293}
294
295static int swap_writepage_fs(struct page *page, struct writeback_control *wbc)
296{
297	struct swap_iocb *sio = NULL;
298	struct swap_info_struct *sis = page_swap_info(page);
299	struct file *swap_file = sis->swap_file;
300	loff_t pos = page_file_offset(page);
301
302	set_page_writeback(page);
303	unlock_page(page);
304	if (wbc->swap_plug)
305		sio = *wbc->swap_plug;
306	if (sio) {
307		if (sio->iocb.ki_filp != swap_file ||
308		    sio->iocb.ki_pos + sio->len != pos) {
309			swap_write_unplug(sio);
310			sio = NULL;
311		}
312	}
313	if (!sio) {
314		sio = mempool_alloc(sio_pool, GFP_NOIO);
315		init_sync_kiocb(&sio->iocb, swap_file);
316		sio->iocb.ki_complete = sio_write_complete;
317		sio->iocb.ki_pos = pos;
318		sio->pages = 0;
319		sio->len = 0;
320	}
321	sio->bvec[sio->pages].bv_page = page;
322	sio->bvec[sio->pages].bv_len = thp_size(page);
323	sio->bvec[sio->pages].bv_offset = 0;
324	sio->len += thp_size(page);
325	sio->pages += 1;
326	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
327		swap_write_unplug(sio);
328		sio = NULL;
329	}
330	if (wbc->swap_plug)
331		*wbc->swap_plug = sio;
332
333	return 0;
334}
335
336int __swap_writepage(struct page *page, struct writeback_control *wbc)
337{
338	struct bio *bio;
339	int ret;
340	struct swap_info_struct *sis = page_swap_info(page);
341
342	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
343	/*
344	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
345	 * but that will never affect SWP_FS_OPS, so the data_race
346	 * is safe.
347	 */
348	if (data_race(sis->flags & SWP_FS_OPS))
349		return swap_writepage_fs(page, wbc);
350
351	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
352	if (!ret) {
353		count_swpout_vm_event(page);
354		return 0;
355	}
356
357	bio = bio_alloc(sis->bdev, 1,
358			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
359			GFP_NOIO);
360	bio->bi_iter.bi_sector = swap_page_sector(page);
361	bio->bi_end_io = end_swap_bio_write;
362	bio_add_page(bio, page, thp_size(page), 0);
363
364	bio_associate_blkg_from_page(bio, page);
365	count_swpout_vm_event(page);
 
 
366	set_page_writeback(page);
367	unlock_page(page);
368	submit_bio(bio);
369
370	return 0;
371}
372
373void swap_write_unplug(struct swap_iocb *sio)
374{
375	struct iov_iter from;
376	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
377	int ret;
378
379	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
380	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
381	if (ret != -EIOCBQUEUED)
382		sio_write_complete(&sio->iocb, ret);
383}
384
385static void sio_read_complete(struct kiocb *iocb, long ret)
386{
387	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
388	int p;
389
390	if (ret == sio->len) {
391		for (p = 0; p < sio->pages; p++) {
392			struct page *page = sio->bvec[p].bv_page;
393
394			SetPageUptodate(page);
395			unlock_page(page);
396		}
397		count_vm_events(PSWPIN, sio->pages);
398	} else {
399		for (p = 0; p < sio->pages; p++) {
400			struct page *page = sio->bvec[p].bv_page;
401
402			SetPageError(page);
403			ClearPageUptodate(page);
404			unlock_page(page);
405		}
406		pr_alert_ratelimited("Read-error on swap-device\n");
407	}
408	mempool_free(sio, sio_pool);
409}
410
411static void swap_readpage_fs(struct page *page,
412			     struct swap_iocb **plug)
413{
414	struct swap_info_struct *sis = page_swap_info(page);
415	struct swap_iocb *sio = NULL;
416	loff_t pos = page_file_offset(page);
417
418	if (plug)
419		sio = *plug;
420	if (sio) {
421		if (sio->iocb.ki_filp != sis->swap_file ||
422		    sio->iocb.ki_pos + sio->len != pos) {
423			swap_read_unplug(sio);
424			sio = NULL;
425		}
426	}
427	if (!sio) {
428		sio = mempool_alloc(sio_pool, GFP_KERNEL);
429		init_sync_kiocb(&sio->iocb, sis->swap_file);
430		sio->iocb.ki_pos = pos;
431		sio->iocb.ki_complete = sio_read_complete;
432		sio->pages = 0;
433		sio->len = 0;
434	}
435	sio->bvec[sio->pages].bv_page = page;
436	sio->bvec[sio->pages].bv_len = thp_size(page);
437	sio->bvec[sio->pages].bv_offset = 0;
438	sio->len += thp_size(page);
439	sio->pages += 1;
440	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
441		swap_read_unplug(sio);
442		sio = NULL;
443	}
444	if (plug)
445		*plug = sio;
446}
447
448int swap_readpage(struct page *page, bool synchronous,
449		  struct swap_iocb **plug)
450{
451	struct bio *bio;
452	int ret = 0;
453	struct swap_info_struct *sis = page_swap_info(page);
454	bool workingset = PageWorkingset(page);
455	unsigned long pflags;
456	bool in_thrashing;
457
458	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
459	VM_BUG_ON_PAGE(!PageLocked(page), page);
460	VM_BUG_ON_PAGE(PageUptodate(page), page);
461
462	/*
463	 * Count submission time as memory stall and delay. When the device
464	 * is congested, or the submitting cgroup IO-throttled, submission
465	 * can be a significant part of overall IO time.
466	 */
467	if (workingset) {
468		delayacct_thrashing_start(&in_thrashing);
469		psi_memstall_enter(&pflags);
470	}
471	delayacct_swapin_start();
472
473	if (frontswap_load(page) == 0) {
474		SetPageUptodate(page);
475		unlock_page(page);
476		goto out;
477	}
478
479	if (data_race(sis->flags & SWP_FS_OPS)) {
480		swap_readpage_fs(page, plug);
481		goto out;
 
 
 
 
 
482	}
483
484	if (sis->flags & SWP_SYNCHRONOUS_IO) {
485		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
486		if (!ret) {
487			count_vm_event(PSWPIN);
488			goto out;
489		}
 
 
 
490	}
491
492	ret = 0;
493	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
494	bio->bi_iter.bi_sector = swap_page_sector(page);
495	bio->bi_end_io = end_swap_bio_read;
496	bio_add_page(bio, page, thp_size(page), 0);
497	/*
498	 * Keep this task valid during swap readpage because the oom killer may
499	 * attempt to access it in the page fault retry time check.
500	 */
501	if (synchronous) {
502		get_task_struct(current);
503		bio->bi_private = current;
504	}
505	count_vm_event(PSWPIN);
506	bio_get(bio);
507	submit_bio(bio);
508	while (synchronous) {
509		set_current_state(TASK_UNINTERRUPTIBLE);
510		if (!READ_ONCE(bio->bi_private))
511			break;
512
513		blk_io_schedule();
514	}
515	__set_current_state(TASK_RUNNING);
516	bio_put(bio);
517
518out:
519	if (workingset) {
520		delayacct_thrashing_end(&in_thrashing);
521		psi_memstall_leave(&pflags);
522	}
523	delayacct_swapin_end();
524	return ret;
525}
526
527void __swap_read_unplug(struct swap_iocb *sio)
528{
529	struct iov_iter from;
530	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
531	int ret;
532
533	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
534	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
535	if (ret != -EIOCBQUEUED)
536		sio_read_complete(&sio->iocb, ret);
 
 
537}