Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/buffer_head.h>
 21#include <linux/writeback.h>
 22#include <linux/frontswap.h>
 
 23#include <linux/blkdev.h>
 24#include <linux/uio.h>
 25#include <asm/pgtable.h>
 26
 27static struct bio *get_swap_bio(gfp_t gfp_flags,
 28				struct page *page, bio_end_io_t end_io)
 29{
 30	struct bio *bio;
 31
 32	bio = bio_alloc(gfp_flags, 1);
 33	if (bio) {
 34		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
 35		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 
 
 
 
 
 36		bio->bi_end_io = end_io;
 37
 38		bio_add_page(bio, page, PAGE_SIZE, 0);
 39		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
 40	}
 41	return bio;
 42}
 43
 44void end_swap_bio_write(struct bio *bio)
 45{
 
 46	struct page *page = bio->bi_io_vec[0].bv_page;
 47
 48	if (bio->bi_error) {
 49		SetPageError(page);
 50		/*
 51		 * We failed to write the page out to swap-space.
 52		 * Re-dirty the page in order to avoid it being reclaimed.
 53		 * Also print a dire warning that things will go BAD (tm)
 54		 * very quickly.
 55		 *
 56		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 57		 */
 58		set_page_dirty(page);
 59		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 60			 imajor(bio->bi_bdev->bd_inode),
 61			 iminor(bio->bi_bdev->bd_inode),
 62			 (unsigned long long)bio->bi_iter.bi_sector);
 63		ClearPageReclaim(page);
 64	}
 65	end_page_writeback(page);
 66	bio_put(bio);
 67}
 68
 69static void swap_slot_free_notify(struct page *page)
 70{
 71	struct swap_info_struct *sis;
 72	struct gendisk *disk;
 
 
 
 
 
 
 
 
 
 
 
 
 73
 74	/*
 75	 * There is no guarantee that the page is in swap cache - the software
 76	 * suspend code (at least) uses end_swap_bio_read() against a non-
 77	 * swapcache page.  So we must check PG_swapcache before proceeding with
 78	 * this optimization.
 79	 */
 80	if (unlikely(!PageSwapCache(page)))
 81		return;
 82
 83	sis = page_swap_info(page);
 84	if (!(sis->flags & SWP_BLKDEV))
 85		return;
 86
 87	/*
 88	 * The swap subsystem performs lazy swap slot freeing,
 89	 * expecting that the page will be swapped out again.
 90	 * So we can avoid an unnecessary write if the page
 91	 * isn't redirtied.
 92	 * This is good for real swap storage because we can
 93	 * reduce unnecessary I/O and enhance wear-leveling
 94	 * if an SSD is used as the as swap device.
 95	 * But if in-memory swap device (eg zram) is used,
 96	 * this causes a duplicated copy between uncompressed
 97	 * data in VM-owned memory and compressed data in
 98	 * zram-owned memory.  So let's free zram-owned memory
 99	 * and make the VM-owned decompressed page *dirty*,
100	 * so the page should be swapped out somewhere again if
101	 * we again wish to reclaim it.
102	 */
103	disk = sis->bdev->bd_disk;
104	if (disk->fops->swap_slot_free_notify) {
105		swp_entry_t entry;
106		unsigned long offset;
107
108		entry.val = page_private(page);
109		offset = swp_offset(entry);
110
111		SetPageDirty(page);
112		disk->fops->swap_slot_free_notify(sis->bdev,
113				offset);
114	}
115}
116
117static void end_swap_bio_read(struct bio *bio)
118{
119	struct page *page = bio->bi_io_vec[0].bv_page;
120
121	if (bio->bi_error) {
122		SetPageError(page);
123		ClearPageUptodate(page);
124		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125			 imajor(bio->bi_bdev->bd_inode),
126			 iminor(bio->bi_bdev->bd_inode),
127			 (unsigned long long)bio->bi_iter.bi_sector);
128		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129	}
130
131	SetPageUptodate(page);
132	swap_slot_free_notify(page);
133out:
134	unlock_page(page);
135	bio_put(bio);
136}
137
138int generic_swapfile_activate(struct swap_info_struct *sis,
139				struct file *swap_file,
140				sector_t *span)
141{
142	struct address_space *mapping = swap_file->f_mapping;
143	struct inode *inode = mapping->host;
144	unsigned blocks_per_page;
145	unsigned long page_no;
146	unsigned blkbits;
147	sector_t probe_block;
148	sector_t last_block;
149	sector_t lowest_block = -1;
150	sector_t highest_block = 0;
151	int nr_extents = 0;
152	int ret;
153
154	blkbits = inode->i_blkbits;
155	blocks_per_page = PAGE_SIZE >> blkbits;
156
157	/*
158	 * Map all the blocks into the extent list.  This code doesn't try
159	 * to be very smart.
160	 */
161	probe_block = 0;
162	page_no = 0;
163	last_block = i_size_read(inode) >> blkbits;
164	while ((probe_block + blocks_per_page) <= last_block &&
165			page_no < sis->max) {
166		unsigned block_in_page;
167		sector_t first_block;
168
169		first_block = bmap(inode, probe_block);
170		if (first_block == 0)
171			goto bad_bmap;
172
173		/*
174		 * It must be PAGE_SIZE aligned on-disk
175		 */
176		if (first_block & (blocks_per_page - 1)) {
177			probe_block++;
178			goto reprobe;
179		}
180
181		for (block_in_page = 1; block_in_page < blocks_per_page;
182					block_in_page++) {
183			sector_t block;
184
185			block = bmap(inode, probe_block + block_in_page);
186			if (block == 0)
187				goto bad_bmap;
188			if (block != first_block + block_in_page) {
189				/* Discontiguity */
190				probe_block++;
191				goto reprobe;
192			}
193		}
194
195		first_block >>= (PAGE_SHIFT - blkbits);
196		if (page_no) {	/* exclude the header page */
197			if (first_block < lowest_block)
198				lowest_block = first_block;
199			if (first_block > highest_block)
200				highest_block = first_block;
201		}
202
203		/*
204		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205		 */
206		ret = add_swap_extent(sis, page_no, 1, first_block);
207		if (ret < 0)
208			goto out;
209		nr_extents += ret;
210		page_no++;
211		probe_block += blocks_per_page;
212reprobe:
213		continue;
214	}
215	ret = nr_extents;
216	*span = 1 + highest_block - lowest_block;
217	if (page_no == 0)
218		page_no = 1;	/* force Empty message */
219	sis->max = page_no;
220	sis->pages = page_no - 1;
221	sis->highest_bit = page_no - 1;
222out:
223	return ret;
224bad_bmap:
225	pr_err("swapon: swapfile has holes\n");
226	ret = -EINVAL;
227	goto out;
228}
229
230/*
231 * We may have stale swap cache pages in memory: notice
232 * them here and get rid of the unnecessary final write.
233 */
234int swap_writepage(struct page *page, struct writeback_control *wbc)
235{
236	int ret = 0;
237
238	if (try_to_free_swap(page)) {
239		unlock_page(page);
240		goto out;
241	}
242	if (frontswap_store(page) == 0) {
243		set_page_writeback(page);
244		unlock_page(page);
245		end_page_writeback(page);
246		goto out;
247	}
248	ret = __swap_writepage(page, wbc, end_swap_bio_write);
249out:
250	return ret;
251}
252
253static sector_t swap_page_sector(struct page *page)
254{
255	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
256}
257
258int __swap_writepage(struct page *page, struct writeback_control *wbc,
259		bio_end_io_t end_write_func)
260{
261	struct bio *bio;
262	int ret, rw = WRITE;
263	struct swap_info_struct *sis = page_swap_info(page);
264
265	if (sis->flags & SWP_FILE) {
266		struct kiocb kiocb;
267		struct file *swap_file = sis->swap_file;
268		struct address_space *mapping = swap_file->f_mapping;
269		struct bio_vec bv = {
270			.bv_page = page,
271			.bv_len  = PAGE_SIZE,
272			.bv_offset = 0
273		};
274		struct iov_iter from;
275
276		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277		init_sync_kiocb(&kiocb, swap_file);
278		kiocb.ki_pos = page_file_offset(page);
 
279
280		set_page_writeback(page);
281		unlock_page(page);
282		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
 
 
 
283		if (ret == PAGE_SIZE) {
284			count_vm_event(PSWPOUT);
285			ret = 0;
286		} else {
287			/*
288			 * In the case of swap-over-nfs, this can be a
289			 * temporary failure if the system has limited
290			 * memory for allocating transmit buffers.
291			 * Mark the page dirty and avoid
292			 * rotate_reclaimable_page but rate-limit the
293			 * messages but do not flag PageError like
294			 * the normal direct-to-bio case as it could
295			 * be temporary.
296			 */
297			set_page_dirty(page);
298			ClearPageReclaim(page);
299			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300					   page_file_offset(page));
301		}
302		end_page_writeback(page);
303		return ret;
304	}
305
306	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307	if (!ret) {
308		count_vm_event(PSWPOUT);
309		return 0;
310	}
311
312	ret = 0;
313	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314	if (bio == NULL) {
315		set_page_dirty(page);
316		unlock_page(page);
317		ret = -ENOMEM;
318		goto out;
319	}
320	if (wbc->sync_mode == WB_SYNC_ALL)
321		rw |= REQ_SYNC;
322	count_vm_event(PSWPOUT);
323	set_page_writeback(page);
324	unlock_page(page);
325	submit_bio(rw, bio);
326out:
327	return ret;
328}
329
330int swap_readpage(struct page *page)
331{
332	struct bio *bio;
333	int ret = 0;
334	struct swap_info_struct *sis = page_swap_info(page);
335
336	VM_BUG_ON_PAGE(!PageLocked(page), page);
337	VM_BUG_ON_PAGE(PageUptodate(page), page);
338	if (frontswap_load(page) == 0) {
339		SetPageUptodate(page);
340		unlock_page(page);
341		goto out;
342	}
343
344	if (sis->flags & SWP_FILE) {
345		struct file *swap_file = sis->swap_file;
346		struct address_space *mapping = swap_file->f_mapping;
347
348		ret = mapping->a_ops->readpage(swap_file, page);
349		if (!ret)
350			count_vm_event(PSWPIN);
351		return ret;
352	}
353
354	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355	if (!ret) {
356		if (trylock_page(page)) {
357			swap_slot_free_notify(page);
358			unlock_page(page);
359		}
360
361		count_vm_event(PSWPIN);
362		return 0;
363	}
364
365	ret = 0;
366	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367	if (bio == NULL) {
368		unlock_page(page);
369		ret = -ENOMEM;
370		goto out;
371	}
372	count_vm_event(PSWPIN);
373	submit_bio(READ, bio);
374out:
375	return ret;
376}
377
378int swap_set_page_dirty(struct page *page)
379{
380	struct swap_info_struct *sis = page_swap_info(page);
381
382	if (sis->flags & SWP_FILE) {
383		struct address_space *mapping = sis->swap_file->f_mapping;
384		return mapping->a_ops->set_page_dirty(page);
385	} else {
386		return __set_page_dirty_no_writeback(page);
387	}
388}
v3.15
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/buffer_head.h>
 21#include <linux/writeback.h>
 22#include <linux/frontswap.h>
 23#include <linux/aio.h>
 24#include <linux/blkdev.h>
 
 25#include <asm/pgtable.h>
 26
 27static struct bio *get_swap_bio(gfp_t gfp_flags,
 28				struct page *page, bio_end_io_t end_io)
 29{
 30	struct bio *bio;
 31
 32	bio = bio_alloc(gfp_flags, 1);
 33	if (bio) {
 34		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
 35		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 36		bio->bi_io_vec[0].bv_page = page;
 37		bio->bi_io_vec[0].bv_len = PAGE_SIZE;
 38		bio->bi_io_vec[0].bv_offset = 0;
 39		bio->bi_vcnt = 1;
 40		bio->bi_iter.bi_size = PAGE_SIZE;
 41		bio->bi_end_io = end_io;
 
 
 
 42	}
 43	return bio;
 44}
 45
 46void end_swap_bio_write(struct bio *bio, int err)
 47{
 48	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 49	struct page *page = bio->bi_io_vec[0].bv_page;
 50
 51	if (!uptodate) {
 52		SetPageError(page);
 53		/*
 54		 * We failed to write the page out to swap-space.
 55		 * Re-dirty the page in order to avoid it being reclaimed.
 56		 * Also print a dire warning that things will go BAD (tm)
 57		 * very quickly.
 58		 *
 59		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 60		 */
 61		set_page_dirty(page);
 62		printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
 63				imajor(bio->bi_bdev->bd_inode),
 64				iminor(bio->bi_bdev->bd_inode),
 65				(unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72void end_swap_bio_read(struct bio *bio, int err)
 73{
 74	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 75	struct page *page = bio->bi_io_vec[0].bv_page;
 76
 77	if (!uptodate) {
 78		SetPageError(page);
 79		ClearPageUptodate(page);
 80		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
 81				imajor(bio->bi_bdev->bd_inode),
 82				iminor(bio->bi_bdev->bd_inode),
 83				(unsigned long long)bio->bi_iter.bi_sector);
 84		goto out;
 85	}
 86
 87	SetPageUptodate(page);
 88
 89	/*
 90	 * There is no guarantee that the page is in swap cache - the software
 91	 * suspend code (at least) uses end_swap_bio_read() against a non-
 92	 * swapcache page.  So we must check PG_swapcache before proceeding with
 93	 * this optimization.
 94	 */
 95	if (likely(PageSwapCache(page))) {
 96		struct swap_info_struct *sis;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98		sis = page_swap_info(page);
 99		if (sis->flags & SWP_BLKDEV) {
100			/*
101			 * The swap subsystem performs lazy swap slot freeing,
102			 * expecting that the page will be swapped out again.
103			 * So we can avoid an unnecessary write if the page
104			 * isn't redirtied.
105			 * This is good for real swap storage because we can
106			 * reduce unnecessary I/O and enhance wear-leveling
107			 * if an SSD is used as the as swap device.
108			 * But if in-memory swap device (eg zram) is used,
109			 * this causes a duplicated copy between uncompressed
110			 * data in VM-owned memory and compressed data in
111			 * zram-owned memory.  So let's free zram-owned memory
112			 * and make the VM-owned decompressed page *dirty*,
113			 * so the page should be swapped out somewhere again if
114			 * we again wish to reclaim it.
115			 */
116			struct gendisk *disk = sis->bdev->bd_disk;
117			if (disk->fops->swap_slot_free_notify) {
118				swp_entry_t entry;
119				unsigned long offset;
120
121				entry.val = page_private(page);
122				offset = swp_offset(entry);
123
124				SetPageDirty(page);
125				disk->fops->swap_slot_free_notify(sis->bdev,
126						offset);
127			}
128		}
129	}
130
 
 
131out:
132	unlock_page(page);
133	bio_put(bio);
134}
135
136int generic_swapfile_activate(struct swap_info_struct *sis,
137				struct file *swap_file,
138				sector_t *span)
139{
140	struct address_space *mapping = swap_file->f_mapping;
141	struct inode *inode = mapping->host;
142	unsigned blocks_per_page;
143	unsigned long page_no;
144	unsigned blkbits;
145	sector_t probe_block;
146	sector_t last_block;
147	sector_t lowest_block = -1;
148	sector_t highest_block = 0;
149	int nr_extents = 0;
150	int ret;
151
152	blkbits = inode->i_blkbits;
153	blocks_per_page = PAGE_SIZE >> blkbits;
154
155	/*
156	 * Map all the blocks into the extent list.  This code doesn't try
157	 * to be very smart.
158	 */
159	probe_block = 0;
160	page_no = 0;
161	last_block = i_size_read(inode) >> blkbits;
162	while ((probe_block + blocks_per_page) <= last_block &&
163			page_no < sis->max) {
164		unsigned block_in_page;
165		sector_t first_block;
166
167		first_block = bmap(inode, probe_block);
168		if (first_block == 0)
169			goto bad_bmap;
170
171		/*
172		 * It must be PAGE_SIZE aligned on-disk
173		 */
174		if (first_block & (blocks_per_page - 1)) {
175			probe_block++;
176			goto reprobe;
177		}
178
179		for (block_in_page = 1; block_in_page < blocks_per_page;
180					block_in_page++) {
181			sector_t block;
182
183			block = bmap(inode, probe_block + block_in_page);
184			if (block == 0)
185				goto bad_bmap;
186			if (block != first_block + block_in_page) {
187				/* Discontiguity */
188				probe_block++;
189				goto reprobe;
190			}
191		}
192
193		first_block >>= (PAGE_SHIFT - blkbits);
194		if (page_no) {	/* exclude the header page */
195			if (first_block < lowest_block)
196				lowest_block = first_block;
197			if (first_block > highest_block)
198				highest_block = first_block;
199		}
200
201		/*
202		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
203		 */
204		ret = add_swap_extent(sis, page_no, 1, first_block);
205		if (ret < 0)
206			goto out;
207		nr_extents += ret;
208		page_no++;
209		probe_block += blocks_per_page;
210reprobe:
211		continue;
212	}
213	ret = nr_extents;
214	*span = 1 + highest_block - lowest_block;
215	if (page_no == 0)
216		page_no = 1;	/* force Empty message */
217	sis->max = page_no;
218	sis->pages = page_no - 1;
219	sis->highest_bit = page_no - 1;
220out:
221	return ret;
222bad_bmap:
223	printk(KERN_ERR "swapon: swapfile has holes\n");
224	ret = -EINVAL;
225	goto out;
226}
227
228/*
229 * We may have stale swap cache pages in memory: notice
230 * them here and get rid of the unnecessary final write.
231 */
232int swap_writepage(struct page *page, struct writeback_control *wbc)
233{
234	int ret = 0;
235
236	if (try_to_free_swap(page)) {
237		unlock_page(page);
238		goto out;
239	}
240	if (frontswap_store(page) == 0) {
241		set_page_writeback(page);
242		unlock_page(page);
243		end_page_writeback(page);
244		goto out;
245	}
246	ret = __swap_writepage(page, wbc, end_swap_bio_write);
247out:
248	return ret;
249}
250
 
 
 
 
 
251int __swap_writepage(struct page *page, struct writeback_control *wbc,
252	void (*end_write_func)(struct bio *, int))
253{
254	struct bio *bio;
255	int ret = 0, rw = WRITE;
256	struct swap_info_struct *sis = page_swap_info(page);
257
258	if (sis->flags & SWP_FILE) {
259		struct kiocb kiocb;
260		struct file *swap_file = sis->swap_file;
261		struct address_space *mapping = swap_file->f_mapping;
262		struct iovec iov = {
263			.iov_base = kmap(page),
264			.iov_len  = PAGE_SIZE,
 
265		};
 
266
 
267		init_sync_kiocb(&kiocb, swap_file);
268		kiocb.ki_pos = page_file_offset(page);
269		kiocb.ki_nbytes = PAGE_SIZE;
270
271		set_page_writeback(page);
272		unlock_page(page);
273		ret = mapping->a_ops->direct_IO(KERNEL_WRITE,
274						&kiocb, &iov,
275						kiocb.ki_pos, 1);
276		kunmap(page);
277		if (ret == PAGE_SIZE) {
278			count_vm_event(PSWPOUT);
279			ret = 0;
280		} else {
281			/*
282			 * In the case of swap-over-nfs, this can be a
283			 * temporary failure if the system has limited
284			 * memory for allocating transmit buffers.
285			 * Mark the page dirty and avoid
286			 * rotate_reclaimable_page but rate-limit the
287			 * messages but do not flag PageError like
288			 * the normal direct-to-bio case as it could
289			 * be temporary.
290			 */
291			set_page_dirty(page);
292			ClearPageReclaim(page);
293			pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
294				page_file_offset(page));
295		}
296		end_page_writeback(page);
297		return ret;
298	}
299
 
 
 
 
 
 
 
300	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
301	if (bio == NULL) {
302		set_page_dirty(page);
303		unlock_page(page);
304		ret = -ENOMEM;
305		goto out;
306	}
307	if (wbc->sync_mode == WB_SYNC_ALL)
308		rw |= REQ_SYNC;
309	count_vm_event(PSWPOUT);
310	set_page_writeback(page);
311	unlock_page(page);
312	submit_bio(rw, bio);
313out:
314	return ret;
315}
316
317int swap_readpage(struct page *page)
318{
319	struct bio *bio;
320	int ret = 0;
321	struct swap_info_struct *sis = page_swap_info(page);
322
323	VM_BUG_ON_PAGE(!PageLocked(page), page);
324	VM_BUG_ON_PAGE(PageUptodate(page), page);
325	if (frontswap_load(page) == 0) {
326		SetPageUptodate(page);
327		unlock_page(page);
328		goto out;
329	}
330
331	if (sis->flags & SWP_FILE) {
332		struct file *swap_file = sis->swap_file;
333		struct address_space *mapping = swap_file->f_mapping;
334
335		ret = mapping->a_ops->readpage(swap_file, page);
336		if (!ret)
337			count_vm_event(PSWPIN);
338		return ret;
339	}
340
 
 
 
 
 
 
 
 
 
 
 
 
341	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
342	if (bio == NULL) {
343		unlock_page(page);
344		ret = -ENOMEM;
345		goto out;
346	}
347	count_vm_event(PSWPIN);
348	submit_bio(READ, bio);
349out:
350	return ret;
351}
352
353int swap_set_page_dirty(struct page *page)
354{
355	struct swap_info_struct *sis = page_swap_info(page);
356
357	if (sis->flags & SWP_FILE) {
358		struct address_space *mapping = sis->swap_file->f_mapping;
359		return mapping->a_ops->set_page_dirty(page);
360	} else {
361		return __set_page_dirty_no_writeback(page);
362	}
363}