Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/buffer_head.h>
 21#include <linux/writeback.h>
 22#include <linux/frontswap.h>
 23#include <linux/blkdev.h>
 
 24#include <linux/uio.h>
 25#include <asm/pgtable.h>
 26
 27static struct bio *get_swap_bio(gfp_t gfp_flags,
 28				struct page *page, bio_end_io_t end_io)
 29{
 30	struct bio *bio;
 31
 32	bio = bio_alloc(gfp_flags, 1);
 33	if (bio) {
 34		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
 
 
 
 35		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 36		bio->bi_end_io = end_io;
 37
 38		bio_add_page(bio, page, PAGE_SIZE, 0);
 39		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
 40	}
 41	return bio;
 42}
 43
 44void end_swap_bio_write(struct bio *bio)
 45{
 46	struct page *page = bio->bi_io_vec[0].bv_page;
 47
 48	if (bio->bi_error) {
 49		SetPageError(page);
 50		/*
 51		 * We failed to write the page out to swap-space.
 52		 * Re-dirty the page in order to avoid it being reclaimed.
 53		 * Also print a dire warning that things will go BAD (tm)
 54		 * very quickly.
 55		 *
 56		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 57		 */
 58		set_page_dirty(page);
 59		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 60			 imajor(bio->bi_bdev->bd_inode),
 61			 iminor(bio->bi_bdev->bd_inode),
 62			 (unsigned long long)bio->bi_iter.bi_sector);
 63		ClearPageReclaim(page);
 64	}
 65	end_page_writeback(page);
 66	bio_put(bio);
 67}
 68
 69static void swap_slot_free_notify(struct page *page)
 70{
 71	struct swap_info_struct *sis;
 72	struct gendisk *disk;
 
 73
 74	/*
 75	 * There is no guarantee that the page is in swap cache - the software
 76	 * suspend code (at least) uses end_swap_bio_read() against a non-
 77	 * swapcache page.  So we must check PG_swapcache before proceeding with
 78	 * this optimization.
 79	 */
 80	if (unlikely(!PageSwapCache(page)))
 81		return;
 82
 83	sis = page_swap_info(page);
 84	if (!(sis->flags & SWP_BLKDEV))
 85		return;
 86
 87	/*
 88	 * The swap subsystem performs lazy swap slot freeing,
 89	 * expecting that the page will be swapped out again.
 90	 * So we can avoid an unnecessary write if the page
 91	 * isn't redirtied.
 92	 * This is good for real swap storage because we can
 93	 * reduce unnecessary I/O and enhance wear-leveling
 94	 * if an SSD is used as the as swap device.
 95	 * But if in-memory swap device (eg zram) is used,
 96	 * this causes a duplicated copy between uncompressed
 97	 * data in VM-owned memory and compressed data in
 98	 * zram-owned memory.  So let's free zram-owned memory
 99	 * and make the VM-owned decompressed page *dirty*,
100	 * so the page should be swapped out somewhere again if
101	 * we again wish to reclaim it.
102	 */
103	disk = sis->bdev->bd_disk;
104	if (disk->fops->swap_slot_free_notify) {
105		swp_entry_t entry;
106		unsigned long offset;
107
108		entry.val = page_private(page);
109		offset = swp_offset(entry);
110
111		SetPageDirty(page);
112		disk->fops->swap_slot_free_notify(sis->bdev,
113				offset);
114	}
115}
116
117static void end_swap_bio_read(struct bio *bio)
118{
119	struct page *page = bio->bi_io_vec[0].bv_page;
 
120
121	if (bio->bi_error) {
122		SetPageError(page);
123		ClearPageUptodate(page);
124		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125			 imajor(bio->bi_bdev->bd_inode),
126			 iminor(bio->bi_bdev->bd_inode),
127			 (unsigned long long)bio->bi_iter.bi_sector);
128		goto out;
129	}
130
131	SetPageUptodate(page);
132	swap_slot_free_notify(page);
133out:
134	unlock_page(page);
 
135	bio_put(bio);
 
 
 
 
136}
137
138int generic_swapfile_activate(struct swap_info_struct *sis,
139				struct file *swap_file,
140				sector_t *span)
141{
142	struct address_space *mapping = swap_file->f_mapping;
143	struct inode *inode = mapping->host;
144	unsigned blocks_per_page;
145	unsigned long page_no;
146	unsigned blkbits;
147	sector_t probe_block;
148	sector_t last_block;
149	sector_t lowest_block = -1;
150	sector_t highest_block = 0;
151	int nr_extents = 0;
152	int ret;
153
154	blkbits = inode->i_blkbits;
155	blocks_per_page = PAGE_SIZE >> blkbits;
156
157	/*
158	 * Map all the blocks into the extent list.  This code doesn't try
159	 * to be very smart.
160	 */
161	probe_block = 0;
162	page_no = 0;
163	last_block = i_size_read(inode) >> blkbits;
164	while ((probe_block + blocks_per_page) <= last_block &&
165			page_no < sis->max) {
166		unsigned block_in_page;
167		sector_t first_block;
168
169		first_block = bmap(inode, probe_block);
170		if (first_block == 0)
 
 
 
171			goto bad_bmap;
172
173		/*
174		 * It must be PAGE_SIZE aligned on-disk
175		 */
176		if (first_block & (blocks_per_page - 1)) {
177			probe_block++;
178			goto reprobe;
179		}
180
181		for (block_in_page = 1; block_in_page < blocks_per_page;
182					block_in_page++) {
183			sector_t block;
184
185			block = bmap(inode, probe_block + block_in_page);
186			if (block == 0)
 
187				goto bad_bmap;
 
188			if (block != first_block + block_in_page) {
189				/* Discontiguity */
190				probe_block++;
191				goto reprobe;
192			}
193		}
194
195		first_block >>= (PAGE_SHIFT - blkbits);
196		if (page_no) {	/* exclude the header page */
197			if (first_block < lowest_block)
198				lowest_block = first_block;
199			if (first_block > highest_block)
200				highest_block = first_block;
201		}
202
203		/*
204		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205		 */
206		ret = add_swap_extent(sis, page_no, 1, first_block);
207		if (ret < 0)
208			goto out;
209		nr_extents += ret;
210		page_no++;
211		probe_block += blocks_per_page;
212reprobe:
213		continue;
214	}
215	ret = nr_extents;
216	*span = 1 + highest_block - lowest_block;
217	if (page_no == 0)
218		page_no = 1;	/* force Empty message */
219	sis->max = page_no;
220	sis->pages = page_no - 1;
221	sis->highest_bit = page_no - 1;
222out:
223	return ret;
224bad_bmap:
225	pr_err("swapon: swapfile has holes\n");
226	ret = -EINVAL;
227	goto out;
228}
229
230/*
231 * We may have stale swap cache pages in memory: notice
232 * them here and get rid of the unnecessary final write.
233 */
234int swap_writepage(struct page *page, struct writeback_control *wbc)
235{
236	int ret = 0;
237
238	if (try_to_free_swap(page)) {
239		unlock_page(page);
240		goto out;
241	}
242	if (frontswap_store(page) == 0) {
243		set_page_writeback(page);
244		unlock_page(page);
245		end_page_writeback(page);
246		goto out;
247	}
248	ret = __swap_writepage(page, wbc, end_swap_bio_write);
249out:
250	return ret;
251}
252
253static sector_t swap_page_sector(struct page *page)
254{
255	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
256}
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258int __swap_writepage(struct page *page, struct writeback_control *wbc,
259		bio_end_io_t end_write_func)
260{
261	struct bio *bio;
262	int ret, rw = WRITE;
263	struct swap_info_struct *sis = page_swap_info(page);
264
265	if (sis->flags & SWP_FILE) {
 
266		struct kiocb kiocb;
267		struct file *swap_file = sis->swap_file;
268		struct address_space *mapping = swap_file->f_mapping;
269		struct bio_vec bv = {
270			.bv_page = page,
271			.bv_len  = PAGE_SIZE,
272			.bv_offset = 0
273		};
274		struct iov_iter from;
275
276		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277		init_sync_kiocb(&kiocb, swap_file);
278		kiocb.ki_pos = page_file_offset(page);
279
280		set_page_writeback(page);
281		unlock_page(page);
282		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
283		if (ret == PAGE_SIZE) {
284			count_vm_event(PSWPOUT);
285			ret = 0;
286		} else {
287			/*
288			 * In the case of swap-over-nfs, this can be a
289			 * temporary failure if the system has limited
290			 * memory for allocating transmit buffers.
291			 * Mark the page dirty and avoid
292			 * rotate_reclaimable_page but rate-limit the
293			 * messages but do not flag PageError like
294			 * the normal direct-to-bio case as it could
295			 * be temporary.
296			 */
297			set_page_dirty(page);
298			ClearPageReclaim(page);
299			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300					   page_file_offset(page));
301		}
302		end_page_writeback(page);
303		return ret;
304	}
305
306	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307	if (!ret) {
308		count_vm_event(PSWPOUT);
309		return 0;
310	}
311
312	ret = 0;
313	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314	if (bio == NULL) {
315		set_page_dirty(page);
316		unlock_page(page);
317		ret = -ENOMEM;
318		goto out;
319	}
320	if (wbc->sync_mode == WB_SYNC_ALL)
321		rw |= REQ_SYNC;
322	count_vm_event(PSWPOUT);
323	set_page_writeback(page);
324	unlock_page(page);
325	submit_bio(rw, bio);
326out:
327	return ret;
328}
329
330int swap_readpage(struct page *page)
331{
332	struct bio *bio;
333	int ret = 0;
334	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
335
 
336	VM_BUG_ON_PAGE(!PageLocked(page), page);
337	VM_BUG_ON_PAGE(PageUptodate(page), page);
 
 
 
 
 
 
 
 
338	if (frontswap_load(page) == 0) {
339		SetPageUptodate(page);
340		unlock_page(page);
341		goto out;
342	}
343
344	if (sis->flags & SWP_FILE) {
345		struct file *swap_file = sis->swap_file;
346		struct address_space *mapping = swap_file->f_mapping;
347
348		ret = mapping->a_ops->readpage(swap_file, page);
349		if (!ret)
350			count_vm_event(PSWPIN);
351		return ret;
352	}
353
354	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355	if (!ret) {
356		if (trylock_page(page)) {
357			swap_slot_free_notify(page);
358			unlock_page(page);
359		}
360
361		count_vm_event(PSWPIN);
362		return 0;
363	}
364
365	ret = 0;
366	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367	if (bio == NULL) {
368		unlock_page(page);
369		ret = -ENOMEM;
370		goto out;
371	}
 
 
 
 
 
 
 
 
 
 
 
372	count_vm_event(PSWPIN);
373	submit_bio(READ, bio);
 
 
 
 
 
 
 
 
 
 
 
 
374out:
 
375	return ret;
376}
377
378int swap_set_page_dirty(struct page *page)
379{
380	struct swap_info_struct *sis = page_swap_info(page);
381
382	if (sis->flags & SWP_FILE) {
383		struct address_space *mapping = sis->swap_file->f_mapping;
 
 
384		return mapping->a_ops->set_page_dirty(page);
385	} else {
386		return __set_page_dirty_no_writeback(page);
387	}
388}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/psi.h>
 26#include <linux/uio.h>
 27#include <linux/sched/task.h>
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	struct bio *bio;
 33
 34	bio = bio_alloc(gfp_flags, 1);
 35	if (bio) {
 36		struct block_device *bdev;
 37
 38		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 39		bio_set_dev(bio, bdev);
 40		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 41		bio->bi_end_io = end_io;
 42
 43		bio_add_page(bio, page, thp_size(page), 0);
 
 44	}
 45	return bio;
 46}
 47
 48void end_swap_bio_write(struct bio *bio)
 49{
 50	struct page *page = bio_first_page_all(bio);
 51
 52	if (bio->bi_status) {
 53		SetPageError(page);
 54		/*
 55		 * We failed to write the page out to swap-space.
 56		 * Re-dirty the page in order to avoid it being reclaimed.
 57		 * Also print a dire warning that things will go BAD (tm)
 58		 * very quickly.
 59		 *
 60		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 61		 */
 62		set_page_dirty(page);
 63		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 64			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 
 65			 (unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72static void swap_slot_free_notify(struct page *page)
 73{
 74	struct swap_info_struct *sis;
 75	struct gendisk *disk;
 76	swp_entry_t entry;
 77
 78	/*
 79	 * There is no guarantee that the page is in swap cache - the software
 80	 * suspend code (at least) uses end_swap_bio_read() against a non-
 81	 * swapcache page.  So we must check PG_swapcache before proceeding with
 82	 * this optimization.
 83	 */
 84	if (unlikely(!PageSwapCache(page)))
 85		return;
 86
 87	sis = page_swap_info(page);
 88	if (data_race(!(sis->flags & SWP_BLKDEV)))
 89		return;
 90
 91	/*
 92	 * The swap subsystem performs lazy swap slot freeing,
 93	 * expecting that the page will be swapped out again.
 94	 * So we can avoid an unnecessary write if the page
 95	 * isn't redirtied.
 96	 * This is good for real swap storage because we can
 97	 * reduce unnecessary I/O and enhance wear-leveling
 98	 * if an SSD is used as the as swap device.
 99	 * But if in-memory swap device (eg zram) is used,
100	 * this causes a duplicated copy between uncompressed
101	 * data in VM-owned memory and compressed data in
102	 * zram-owned memory.  So let's free zram-owned memory
103	 * and make the VM-owned decompressed page *dirty*,
104	 * so the page should be swapped out somewhere again if
105	 * we again wish to reclaim it.
106	 */
107	disk = sis->bdev->bd_disk;
108	entry.val = page_private(page);
109	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110		unsigned long offset;
111
 
112		offset = swp_offset(entry);
113
114		SetPageDirty(page);
115		disk->fops->swap_slot_free_notify(sis->bdev,
116				offset);
117	}
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122	struct page *page = bio_first_page_all(bio);
123	struct task_struct *waiter = bio->bi_private;
124
125	if (bio->bi_status) {
126		SetPageError(page);
127		ClearPageUptodate(page);
128		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 
130			 (unsigned long long)bio->bi_iter.bi_sector);
131		goto out;
132	}
133
134	SetPageUptodate(page);
135	swap_slot_free_notify(page);
136out:
137	unlock_page(page);
138	WRITE_ONCE(bio->bi_private, NULL);
139	bio_put(bio);
140	if (waiter) {
141		blk_wake_io_task(waiter);
142		put_task_struct(waiter);
143	}
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147				struct file *swap_file,
148				sector_t *span)
149{
150	struct address_space *mapping = swap_file->f_mapping;
151	struct inode *inode = mapping->host;
152	unsigned blocks_per_page;
153	unsigned long page_no;
154	unsigned blkbits;
155	sector_t probe_block;
156	sector_t last_block;
157	sector_t lowest_block = -1;
158	sector_t highest_block = 0;
159	int nr_extents = 0;
160	int ret;
161
162	blkbits = inode->i_blkbits;
163	blocks_per_page = PAGE_SIZE >> blkbits;
164
165	/*
166	 * Map all the blocks into the extent tree.  This code doesn't try
167	 * to be very smart.
168	 */
169	probe_block = 0;
170	page_no = 0;
171	last_block = i_size_read(inode) >> blkbits;
172	while ((probe_block + blocks_per_page) <= last_block &&
173			page_no < sis->max) {
174		unsigned block_in_page;
175		sector_t first_block;
176
177		cond_resched();
178
179		first_block = probe_block;
180		ret = bmap(inode, &first_block);
181		if (ret || !first_block)
182			goto bad_bmap;
183
184		/*
185		 * It must be PAGE_SIZE aligned on-disk
186		 */
187		if (first_block & (blocks_per_page - 1)) {
188			probe_block++;
189			goto reprobe;
190		}
191
192		for (block_in_page = 1; block_in_page < blocks_per_page;
193					block_in_page++) {
194			sector_t block;
195
196			block = probe_block + block_in_page;
197			ret = bmap(inode, &block);
198			if (ret || !block)
199				goto bad_bmap;
200
201			if (block != first_block + block_in_page) {
202				/* Discontiguity */
203				probe_block++;
204				goto reprobe;
205			}
206		}
207
208		first_block >>= (PAGE_SHIFT - blkbits);
209		if (page_no) {	/* exclude the header page */
210			if (first_block < lowest_block)
211				lowest_block = first_block;
212			if (first_block > highest_block)
213				highest_block = first_block;
214		}
215
216		/*
217		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
218		 */
219		ret = add_swap_extent(sis, page_no, 1, first_block);
220		if (ret < 0)
221			goto out;
222		nr_extents += ret;
223		page_no++;
224		probe_block += blocks_per_page;
225reprobe:
226		continue;
227	}
228	ret = nr_extents;
229	*span = 1 + highest_block - lowest_block;
230	if (page_no == 0)
231		page_no = 1;	/* force Empty message */
232	sis->max = page_no;
233	sis->pages = page_no - 1;
234	sis->highest_bit = page_no - 1;
235out:
236	return ret;
237bad_bmap:
238	pr_err("swapon: swapfile has holes\n");
239	ret = -EINVAL;
240	goto out;
241}
242
243/*
244 * We may have stale swap cache pages in memory: notice
245 * them here and get rid of the unnecessary final write.
246 */
247int swap_writepage(struct page *page, struct writeback_control *wbc)
248{
249	int ret = 0;
250
251	if (try_to_free_swap(page)) {
252		unlock_page(page);
253		goto out;
254	}
255	if (frontswap_store(page) == 0) {
256		set_page_writeback(page);
257		unlock_page(page);
258		end_page_writeback(page);
259		goto out;
260	}
261	ret = __swap_writepage(page, wbc, end_swap_bio_write);
262out:
263	return ret;
264}
265
266static sector_t swap_page_sector(struct page *page)
267{
268	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
269}
270
271static inline void count_swpout_vm_event(struct page *page)
272{
273#ifdef CONFIG_TRANSPARENT_HUGEPAGE
274	if (unlikely(PageTransHuge(page)))
275		count_vm_event(THP_SWPOUT);
276#endif
277	count_vm_events(PSWPOUT, thp_nr_pages(page));
278}
279
280#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
281static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
282{
283	struct cgroup_subsys_state *css;
284
285	if (!page->mem_cgroup)
286		return;
287
288	rcu_read_lock();
289	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
290	bio_associate_blkg_from_css(bio, css);
291	rcu_read_unlock();
292}
293#else
294#define bio_associate_blkg_from_page(bio, page)		do { } while (0)
295#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
296
297int __swap_writepage(struct page *page, struct writeback_control *wbc,
298		bio_end_io_t end_write_func)
299{
300	struct bio *bio;
301	int ret;
302	struct swap_info_struct *sis = page_swap_info(page);
303
304	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
305	if (data_race(sis->flags & SWP_FS)) {
306		struct kiocb kiocb;
307		struct file *swap_file = sis->swap_file;
308		struct address_space *mapping = swap_file->f_mapping;
309		struct bio_vec bv = {
310			.bv_page = page,
311			.bv_len  = PAGE_SIZE,
312			.bv_offset = 0
313		};
314		struct iov_iter from;
315
316		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
317		init_sync_kiocb(&kiocb, swap_file);
318		kiocb.ki_pos = page_file_offset(page);
319
320		set_page_writeback(page);
321		unlock_page(page);
322		ret = mapping->a_ops->direct_IO(&kiocb, &from);
323		if (ret == PAGE_SIZE) {
324			count_vm_event(PSWPOUT);
325			ret = 0;
326		} else {
327			/*
328			 * In the case of swap-over-nfs, this can be a
329			 * temporary failure if the system has limited
330			 * memory for allocating transmit buffers.
331			 * Mark the page dirty and avoid
332			 * rotate_reclaimable_page but rate-limit the
333			 * messages but do not flag PageError like
334			 * the normal direct-to-bio case as it could
335			 * be temporary.
336			 */
337			set_page_dirty(page);
338			ClearPageReclaim(page);
339			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
340					   page_file_offset(page));
341		}
342		end_page_writeback(page);
343		return ret;
344	}
345
346	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
347	if (!ret) {
348		count_swpout_vm_event(page);
349		return 0;
350	}
351
352	ret = 0;
353	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
354	if (bio == NULL) {
355		set_page_dirty(page);
356		unlock_page(page);
357		ret = -ENOMEM;
358		goto out;
359	}
360	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
361	bio_associate_blkg_from_page(bio, page);
362	count_swpout_vm_event(page);
363	set_page_writeback(page);
364	unlock_page(page);
365	submit_bio(bio);
366out:
367	return ret;
368}
369
370int swap_readpage(struct page *page, bool synchronous)
371{
372	struct bio *bio;
373	int ret = 0;
374	struct swap_info_struct *sis = page_swap_info(page);
375	blk_qc_t qc;
376	struct gendisk *disk;
377	unsigned long pflags;
378
379	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
380	VM_BUG_ON_PAGE(!PageLocked(page), page);
381	VM_BUG_ON_PAGE(PageUptodate(page), page);
382
383	/*
384	 * Count submission time as memory stall. When the device is congested,
385	 * or the submitting cgroup IO-throttled, submission can be a
386	 * significant part of overall IO time.
387	 */
388	psi_memstall_enter(&pflags);
389
390	if (frontswap_load(page) == 0) {
391		SetPageUptodate(page);
392		unlock_page(page);
393		goto out;
394	}
395
396	if (data_race(sis->flags & SWP_FS)) {
397		struct file *swap_file = sis->swap_file;
398		struct address_space *mapping = swap_file->f_mapping;
399
400		ret = mapping->a_ops->readpage(swap_file, page);
401		if (!ret)
402			count_vm_event(PSWPIN);
403		goto out;
404	}
405
406	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
407	if (!ret) {
408		if (trylock_page(page)) {
409			swap_slot_free_notify(page);
410			unlock_page(page);
411		}
412
413		count_vm_event(PSWPIN);
414		goto out;
415	}
416
417	ret = 0;
418	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
419	if (bio == NULL) {
420		unlock_page(page);
421		ret = -ENOMEM;
422		goto out;
423	}
424	disk = bio->bi_disk;
425	/*
426	 * Keep this task valid during swap readpage because the oom killer may
427	 * attempt to access it in the page fault retry time check.
428	 */
429	bio_set_op_attrs(bio, REQ_OP_READ, 0);
430	if (synchronous) {
431		bio->bi_opf |= REQ_HIPRI;
432		get_task_struct(current);
433		bio->bi_private = current;
434	}
435	count_vm_event(PSWPIN);
436	bio_get(bio);
437	qc = submit_bio(bio);
438	while (synchronous) {
439		set_current_state(TASK_UNINTERRUPTIBLE);
440		if (!READ_ONCE(bio->bi_private))
441			break;
442
443		if (!blk_poll(disk->queue, qc, true))
444			blk_io_schedule();
445	}
446	__set_current_state(TASK_RUNNING);
447	bio_put(bio);
448
449out:
450	psi_memstall_leave(&pflags);
451	return ret;
452}
453
454int swap_set_page_dirty(struct page *page)
455{
456	struct swap_info_struct *sis = page_swap_info(page);
457
458	if (data_race(sis->flags & SWP_FS)) {
459		struct address_space *mapping = sis->swap_file->f_mapping;
460
461		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
462		return mapping->a_ops->set_page_dirty(page);
463	} else {
464		return __set_page_dirty_no_writeback(page);
465	}
466}