Loading...
1/*
2 * linux/mm/page_io.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11 */
12
13#include <linux/mm.h>
14#include <linux/kernel_stat.h>
15#include <linux/gfp.h>
16#include <linux/pagemap.h>
17#include <linux/swap.h>
18#include <linux/bio.h>
19#include <linux/swapops.h>
20#include <linux/buffer_head.h>
21#include <linux/writeback.h>
22#include <linux/frontswap.h>
23#include <linux/blkdev.h>
24#include <linux/uio.h>
25#include <asm/pgtable.h>
26
27static struct bio *get_swap_bio(gfp_t gfp_flags,
28 struct page *page, bio_end_io_t end_io)
29{
30 struct bio *bio;
31
32 bio = bio_alloc(gfp_flags, 1);
33 if (bio) {
34 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 bio->bi_end_io = end_io;
37
38 bio_add_page(bio, page, PAGE_SIZE, 0);
39 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 }
41 return bio;
42}
43
44void end_swap_bio_write(struct bio *bio)
45{
46 struct page *page = bio->bi_io_vec[0].bv_page;
47
48 if (bio->bi_error) {
49 SetPageError(page);
50 /*
51 * We failed to write the page out to swap-space.
52 * Re-dirty the page in order to avoid it being reclaimed.
53 * Also print a dire warning that things will go BAD (tm)
54 * very quickly.
55 *
56 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 */
58 set_page_dirty(page);
59 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 imajor(bio->bi_bdev->bd_inode),
61 iminor(bio->bi_bdev->bd_inode),
62 (unsigned long long)bio->bi_iter.bi_sector);
63 ClearPageReclaim(page);
64 }
65 end_page_writeback(page);
66 bio_put(bio);
67}
68
69static void swap_slot_free_notify(struct page *page)
70{
71 struct swap_info_struct *sis;
72 struct gendisk *disk;
73
74 /*
75 * There is no guarantee that the page is in swap cache - the software
76 * suspend code (at least) uses end_swap_bio_read() against a non-
77 * swapcache page. So we must check PG_swapcache before proceeding with
78 * this optimization.
79 */
80 if (unlikely(!PageSwapCache(page)))
81 return;
82
83 sis = page_swap_info(page);
84 if (!(sis->flags & SWP_BLKDEV))
85 return;
86
87 /*
88 * The swap subsystem performs lazy swap slot freeing,
89 * expecting that the page will be swapped out again.
90 * So we can avoid an unnecessary write if the page
91 * isn't redirtied.
92 * This is good for real swap storage because we can
93 * reduce unnecessary I/O and enhance wear-leveling
94 * if an SSD is used as the as swap device.
95 * But if in-memory swap device (eg zram) is used,
96 * this causes a duplicated copy between uncompressed
97 * data in VM-owned memory and compressed data in
98 * zram-owned memory. So let's free zram-owned memory
99 * and make the VM-owned decompressed page *dirty*,
100 * so the page should be swapped out somewhere again if
101 * we again wish to reclaim it.
102 */
103 disk = sis->bdev->bd_disk;
104 if (disk->fops->swap_slot_free_notify) {
105 swp_entry_t entry;
106 unsigned long offset;
107
108 entry.val = page_private(page);
109 offset = swp_offset(entry);
110
111 SetPageDirty(page);
112 disk->fops->swap_slot_free_notify(sis->bdev,
113 offset);
114 }
115}
116
117static void end_swap_bio_read(struct bio *bio)
118{
119 struct page *page = bio->bi_io_vec[0].bv_page;
120
121 if (bio->bi_error) {
122 SetPageError(page);
123 ClearPageUptodate(page);
124 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125 imajor(bio->bi_bdev->bd_inode),
126 iminor(bio->bi_bdev->bd_inode),
127 (unsigned long long)bio->bi_iter.bi_sector);
128 goto out;
129 }
130
131 SetPageUptodate(page);
132 swap_slot_free_notify(page);
133out:
134 unlock_page(page);
135 bio_put(bio);
136}
137
138int generic_swapfile_activate(struct swap_info_struct *sis,
139 struct file *swap_file,
140 sector_t *span)
141{
142 struct address_space *mapping = swap_file->f_mapping;
143 struct inode *inode = mapping->host;
144 unsigned blocks_per_page;
145 unsigned long page_no;
146 unsigned blkbits;
147 sector_t probe_block;
148 sector_t last_block;
149 sector_t lowest_block = -1;
150 sector_t highest_block = 0;
151 int nr_extents = 0;
152 int ret;
153
154 blkbits = inode->i_blkbits;
155 blocks_per_page = PAGE_SIZE >> blkbits;
156
157 /*
158 * Map all the blocks into the extent list. This code doesn't try
159 * to be very smart.
160 */
161 probe_block = 0;
162 page_no = 0;
163 last_block = i_size_read(inode) >> blkbits;
164 while ((probe_block + blocks_per_page) <= last_block &&
165 page_no < sis->max) {
166 unsigned block_in_page;
167 sector_t first_block;
168
169 first_block = bmap(inode, probe_block);
170 if (first_block == 0)
171 goto bad_bmap;
172
173 /*
174 * It must be PAGE_SIZE aligned on-disk
175 */
176 if (first_block & (blocks_per_page - 1)) {
177 probe_block++;
178 goto reprobe;
179 }
180
181 for (block_in_page = 1; block_in_page < blocks_per_page;
182 block_in_page++) {
183 sector_t block;
184
185 block = bmap(inode, probe_block + block_in_page);
186 if (block == 0)
187 goto bad_bmap;
188 if (block != first_block + block_in_page) {
189 /* Discontiguity */
190 probe_block++;
191 goto reprobe;
192 }
193 }
194
195 first_block >>= (PAGE_SHIFT - blkbits);
196 if (page_no) { /* exclude the header page */
197 if (first_block < lowest_block)
198 lowest_block = first_block;
199 if (first_block > highest_block)
200 highest_block = first_block;
201 }
202
203 /*
204 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205 */
206 ret = add_swap_extent(sis, page_no, 1, first_block);
207 if (ret < 0)
208 goto out;
209 nr_extents += ret;
210 page_no++;
211 probe_block += blocks_per_page;
212reprobe:
213 continue;
214 }
215 ret = nr_extents;
216 *span = 1 + highest_block - lowest_block;
217 if (page_no == 0)
218 page_no = 1; /* force Empty message */
219 sis->max = page_no;
220 sis->pages = page_no - 1;
221 sis->highest_bit = page_no - 1;
222out:
223 return ret;
224bad_bmap:
225 pr_err("swapon: swapfile has holes\n");
226 ret = -EINVAL;
227 goto out;
228}
229
230/*
231 * We may have stale swap cache pages in memory: notice
232 * them here and get rid of the unnecessary final write.
233 */
234int swap_writepage(struct page *page, struct writeback_control *wbc)
235{
236 int ret = 0;
237
238 if (try_to_free_swap(page)) {
239 unlock_page(page);
240 goto out;
241 }
242 if (frontswap_store(page) == 0) {
243 set_page_writeback(page);
244 unlock_page(page);
245 end_page_writeback(page);
246 goto out;
247 }
248 ret = __swap_writepage(page, wbc, end_swap_bio_write);
249out:
250 return ret;
251}
252
253static sector_t swap_page_sector(struct page *page)
254{
255 return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
256}
257
258int __swap_writepage(struct page *page, struct writeback_control *wbc,
259 bio_end_io_t end_write_func)
260{
261 struct bio *bio;
262 int ret, rw = WRITE;
263 struct swap_info_struct *sis = page_swap_info(page);
264
265 if (sis->flags & SWP_FILE) {
266 struct kiocb kiocb;
267 struct file *swap_file = sis->swap_file;
268 struct address_space *mapping = swap_file->f_mapping;
269 struct bio_vec bv = {
270 .bv_page = page,
271 .bv_len = PAGE_SIZE,
272 .bv_offset = 0
273 };
274 struct iov_iter from;
275
276 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277 init_sync_kiocb(&kiocb, swap_file);
278 kiocb.ki_pos = page_file_offset(page);
279
280 set_page_writeback(page);
281 unlock_page(page);
282 ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
283 if (ret == PAGE_SIZE) {
284 count_vm_event(PSWPOUT);
285 ret = 0;
286 } else {
287 /*
288 * In the case of swap-over-nfs, this can be a
289 * temporary failure if the system has limited
290 * memory for allocating transmit buffers.
291 * Mark the page dirty and avoid
292 * rotate_reclaimable_page but rate-limit the
293 * messages but do not flag PageError like
294 * the normal direct-to-bio case as it could
295 * be temporary.
296 */
297 set_page_dirty(page);
298 ClearPageReclaim(page);
299 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300 page_file_offset(page));
301 }
302 end_page_writeback(page);
303 return ret;
304 }
305
306 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307 if (!ret) {
308 count_vm_event(PSWPOUT);
309 return 0;
310 }
311
312 ret = 0;
313 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314 if (bio == NULL) {
315 set_page_dirty(page);
316 unlock_page(page);
317 ret = -ENOMEM;
318 goto out;
319 }
320 if (wbc->sync_mode == WB_SYNC_ALL)
321 rw |= REQ_SYNC;
322 count_vm_event(PSWPOUT);
323 set_page_writeback(page);
324 unlock_page(page);
325 submit_bio(rw, bio);
326out:
327 return ret;
328}
329
330int swap_readpage(struct page *page)
331{
332 struct bio *bio;
333 int ret = 0;
334 struct swap_info_struct *sis = page_swap_info(page);
335
336 VM_BUG_ON_PAGE(!PageLocked(page), page);
337 VM_BUG_ON_PAGE(PageUptodate(page), page);
338 if (frontswap_load(page) == 0) {
339 SetPageUptodate(page);
340 unlock_page(page);
341 goto out;
342 }
343
344 if (sis->flags & SWP_FILE) {
345 struct file *swap_file = sis->swap_file;
346 struct address_space *mapping = swap_file->f_mapping;
347
348 ret = mapping->a_ops->readpage(swap_file, page);
349 if (!ret)
350 count_vm_event(PSWPIN);
351 return ret;
352 }
353
354 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355 if (!ret) {
356 if (trylock_page(page)) {
357 swap_slot_free_notify(page);
358 unlock_page(page);
359 }
360
361 count_vm_event(PSWPIN);
362 return 0;
363 }
364
365 ret = 0;
366 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367 if (bio == NULL) {
368 unlock_page(page);
369 ret = -ENOMEM;
370 goto out;
371 }
372 count_vm_event(PSWPIN);
373 submit_bio(READ, bio);
374out:
375 return ret;
376}
377
378int swap_set_page_dirty(struct page *page)
379{
380 struct swap_info_struct *sis = page_swap_info(page);
381
382 if (sis->flags & SWP_FILE) {
383 struct address_space *mapping = sis->swap_file->f_mapping;
384 return mapping->a_ops->set_page_dirty(page);
385 } else {
386 return __set_page_dirty_no_writeback(page);
387 }
388}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/page_io.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95,
8 * Asynchronous swapping added 30.12.95. Stephen Tweedie
9 * Removed race in async swapping. 14.4.1996. Bruno Haible
10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12 */
13
14#include <linux/mm.h>
15#include <linux/kernel_stat.h>
16#include <linux/gfp.h>
17#include <linux/pagemap.h>
18#include <linux/swap.h>
19#include <linux/bio.h>
20#include <linux/swapops.h>
21#include <linux/buffer_head.h>
22#include <linux/writeback.h>
23#include <linux/frontswap.h>
24#include <linux/blkdev.h>
25#include <linux/psi.h>
26#include <linux/uio.h>
27#include <linux/sched/task.h>
28
29static struct bio *get_swap_bio(gfp_t gfp_flags,
30 struct page *page, bio_end_io_t end_io)
31{
32 struct bio *bio;
33
34 bio = bio_alloc(gfp_flags, 1);
35 if (bio) {
36 struct block_device *bdev;
37
38 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39 bio_set_dev(bio, bdev);
40 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41 bio->bi_end_io = end_io;
42
43 bio_add_page(bio, page, thp_size(page), 0);
44 }
45 return bio;
46}
47
48void end_swap_bio_write(struct bio *bio)
49{
50 struct page *page = bio_first_page_all(bio);
51
52 if (bio->bi_status) {
53 SetPageError(page);
54 /*
55 * We failed to write the page out to swap-space.
56 * Re-dirty the page in order to avoid it being reclaimed.
57 * Also print a dire warning that things will go BAD (tm)
58 * very quickly.
59 *
60 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61 */
62 set_page_dirty(page);
63 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 (unsigned long long)bio->bi_iter.bi_sector);
66 ClearPageReclaim(page);
67 }
68 end_page_writeback(page);
69 bio_put(bio);
70}
71
72static void swap_slot_free_notify(struct page *page)
73{
74 struct swap_info_struct *sis;
75 struct gendisk *disk;
76 swp_entry_t entry;
77
78 /*
79 * There is no guarantee that the page is in swap cache - the software
80 * suspend code (at least) uses end_swap_bio_read() against a non-
81 * swapcache page. So we must check PG_swapcache before proceeding with
82 * this optimization.
83 */
84 if (unlikely(!PageSwapCache(page)))
85 return;
86
87 sis = page_swap_info(page);
88 if (data_race(!(sis->flags & SWP_BLKDEV)))
89 return;
90
91 /*
92 * The swap subsystem performs lazy swap slot freeing,
93 * expecting that the page will be swapped out again.
94 * So we can avoid an unnecessary write if the page
95 * isn't redirtied.
96 * This is good for real swap storage because we can
97 * reduce unnecessary I/O and enhance wear-leveling
98 * if an SSD is used as the as swap device.
99 * But if in-memory swap device (eg zram) is used,
100 * this causes a duplicated copy between uncompressed
101 * data in VM-owned memory and compressed data in
102 * zram-owned memory. So let's free zram-owned memory
103 * and make the VM-owned decompressed page *dirty*,
104 * so the page should be swapped out somewhere again if
105 * we again wish to reclaim it.
106 */
107 disk = sis->bdev->bd_disk;
108 entry.val = page_private(page);
109 if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110 unsigned long offset;
111
112 offset = swp_offset(entry);
113
114 SetPageDirty(page);
115 disk->fops->swap_slot_free_notify(sis->bdev,
116 offset);
117 }
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122 struct page *page = bio_first_page_all(bio);
123 struct task_struct *waiter = bio->bi_private;
124
125 if (bio->bi_status) {
126 SetPageError(page);
127 ClearPageUptodate(page);
128 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130 (unsigned long long)bio->bi_iter.bi_sector);
131 goto out;
132 }
133
134 SetPageUptodate(page);
135 swap_slot_free_notify(page);
136out:
137 unlock_page(page);
138 WRITE_ONCE(bio->bi_private, NULL);
139 bio_put(bio);
140 if (waiter) {
141 blk_wake_io_task(waiter);
142 put_task_struct(waiter);
143 }
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147 struct file *swap_file,
148 sector_t *span)
149{
150 struct address_space *mapping = swap_file->f_mapping;
151 struct inode *inode = mapping->host;
152 unsigned blocks_per_page;
153 unsigned long page_no;
154 unsigned blkbits;
155 sector_t probe_block;
156 sector_t last_block;
157 sector_t lowest_block = -1;
158 sector_t highest_block = 0;
159 int nr_extents = 0;
160 int ret;
161
162 blkbits = inode->i_blkbits;
163 blocks_per_page = PAGE_SIZE >> blkbits;
164
165 /*
166 * Map all the blocks into the extent tree. This code doesn't try
167 * to be very smart.
168 */
169 probe_block = 0;
170 page_no = 0;
171 last_block = i_size_read(inode) >> blkbits;
172 while ((probe_block + blocks_per_page) <= last_block &&
173 page_no < sis->max) {
174 unsigned block_in_page;
175 sector_t first_block;
176
177 cond_resched();
178
179 first_block = probe_block;
180 ret = bmap(inode, &first_block);
181 if (ret || !first_block)
182 goto bad_bmap;
183
184 /*
185 * It must be PAGE_SIZE aligned on-disk
186 */
187 if (first_block & (blocks_per_page - 1)) {
188 probe_block++;
189 goto reprobe;
190 }
191
192 for (block_in_page = 1; block_in_page < blocks_per_page;
193 block_in_page++) {
194 sector_t block;
195
196 block = probe_block + block_in_page;
197 ret = bmap(inode, &block);
198 if (ret || !block)
199 goto bad_bmap;
200
201 if (block != first_block + block_in_page) {
202 /* Discontiguity */
203 probe_block++;
204 goto reprobe;
205 }
206 }
207
208 first_block >>= (PAGE_SHIFT - blkbits);
209 if (page_no) { /* exclude the header page */
210 if (first_block < lowest_block)
211 lowest_block = first_block;
212 if (first_block > highest_block)
213 highest_block = first_block;
214 }
215
216 /*
217 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
218 */
219 ret = add_swap_extent(sis, page_no, 1, first_block);
220 if (ret < 0)
221 goto out;
222 nr_extents += ret;
223 page_no++;
224 probe_block += blocks_per_page;
225reprobe:
226 continue;
227 }
228 ret = nr_extents;
229 *span = 1 + highest_block - lowest_block;
230 if (page_no == 0)
231 page_no = 1; /* force Empty message */
232 sis->max = page_no;
233 sis->pages = page_no - 1;
234 sis->highest_bit = page_no - 1;
235out:
236 return ret;
237bad_bmap:
238 pr_err("swapon: swapfile has holes\n");
239 ret = -EINVAL;
240 goto out;
241}
242
243/*
244 * We may have stale swap cache pages in memory: notice
245 * them here and get rid of the unnecessary final write.
246 */
247int swap_writepage(struct page *page, struct writeback_control *wbc)
248{
249 int ret = 0;
250
251 if (try_to_free_swap(page)) {
252 unlock_page(page);
253 goto out;
254 }
255 if (frontswap_store(page) == 0) {
256 set_page_writeback(page);
257 unlock_page(page);
258 end_page_writeback(page);
259 goto out;
260 }
261 ret = __swap_writepage(page, wbc, end_swap_bio_write);
262out:
263 return ret;
264}
265
266static sector_t swap_page_sector(struct page *page)
267{
268 return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
269}
270
271static inline void count_swpout_vm_event(struct page *page)
272{
273#ifdef CONFIG_TRANSPARENT_HUGEPAGE
274 if (unlikely(PageTransHuge(page)))
275 count_vm_event(THP_SWPOUT);
276#endif
277 count_vm_events(PSWPOUT, thp_nr_pages(page));
278}
279
280#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
281static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
282{
283 struct cgroup_subsys_state *css;
284
285 if (!page->mem_cgroup)
286 return;
287
288 rcu_read_lock();
289 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
290 bio_associate_blkg_from_css(bio, css);
291 rcu_read_unlock();
292}
293#else
294#define bio_associate_blkg_from_page(bio, page) do { } while (0)
295#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
296
297int __swap_writepage(struct page *page, struct writeback_control *wbc,
298 bio_end_io_t end_write_func)
299{
300 struct bio *bio;
301 int ret;
302 struct swap_info_struct *sis = page_swap_info(page);
303
304 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
305 if (data_race(sis->flags & SWP_FS)) {
306 struct kiocb kiocb;
307 struct file *swap_file = sis->swap_file;
308 struct address_space *mapping = swap_file->f_mapping;
309 struct bio_vec bv = {
310 .bv_page = page,
311 .bv_len = PAGE_SIZE,
312 .bv_offset = 0
313 };
314 struct iov_iter from;
315
316 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
317 init_sync_kiocb(&kiocb, swap_file);
318 kiocb.ki_pos = page_file_offset(page);
319
320 set_page_writeback(page);
321 unlock_page(page);
322 ret = mapping->a_ops->direct_IO(&kiocb, &from);
323 if (ret == PAGE_SIZE) {
324 count_vm_event(PSWPOUT);
325 ret = 0;
326 } else {
327 /*
328 * In the case of swap-over-nfs, this can be a
329 * temporary failure if the system has limited
330 * memory for allocating transmit buffers.
331 * Mark the page dirty and avoid
332 * rotate_reclaimable_page but rate-limit the
333 * messages but do not flag PageError like
334 * the normal direct-to-bio case as it could
335 * be temporary.
336 */
337 set_page_dirty(page);
338 ClearPageReclaim(page);
339 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
340 page_file_offset(page));
341 }
342 end_page_writeback(page);
343 return ret;
344 }
345
346 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
347 if (!ret) {
348 count_swpout_vm_event(page);
349 return 0;
350 }
351
352 ret = 0;
353 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
354 if (bio == NULL) {
355 set_page_dirty(page);
356 unlock_page(page);
357 ret = -ENOMEM;
358 goto out;
359 }
360 bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
361 bio_associate_blkg_from_page(bio, page);
362 count_swpout_vm_event(page);
363 set_page_writeback(page);
364 unlock_page(page);
365 submit_bio(bio);
366out:
367 return ret;
368}
369
370int swap_readpage(struct page *page, bool synchronous)
371{
372 struct bio *bio;
373 int ret = 0;
374 struct swap_info_struct *sis = page_swap_info(page);
375 blk_qc_t qc;
376 struct gendisk *disk;
377 unsigned long pflags;
378
379 VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
380 VM_BUG_ON_PAGE(!PageLocked(page), page);
381 VM_BUG_ON_PAGE(PageUptodate(page), page);
382
383 /*
384 * Count submission time as memory stall. When the device is congested,
385 * or the submitting cgroup IO-throttled, submission can be a
386 * significant part of overall IO time.
387 */
388 psi_memstall_enter(&pflags);
389
390 if (frontswap_load(page) == 0) {
391 SetPageUptodate(page);
392 unlock_page(page);
393 goto out;
394 }
395
396 if (data_race(sis->flags & SWP_FS)) {
397 struct file *swap_file = sis->swap_file;
398 struct address_space *mapping = swap_file->f_mapping;
399
400 ret = mapping->a_ops->readpage(swap_file, page);
401 if (!ret)
402 count_vm_event(PSWPIN);
403 goto out;
404 }
405
406 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
407 if (!ret) {
408 if (trylock_page(page)) {
409 swap_slot_free_notify(page);
410 unlock_page(page);
411 }
412
413 count_vm_event(PSWPIN);
414 goto out;
415 }
416
417 ret = 0;
418 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
419 if (bio == NULL) {
420 unlock_page(page);
421 ret = -ENOMEM;
422 goto out;
423 }
424 disk = bio->bi_disk;
425 /*
426 * Keep this task valid during swap readpage because the oom killer may
427 * attempt to access it in the page fault retry time check.
428 */
429 bio_set_op_attrs(bio, REQ_OP_READ, 0);
430 if (synchronous) {
431 bio->bi_opf |= REQ_HIPRI;
432 get_task_struct(current);
433 bio->bi_private = current;
434 }
435 count_vm_event(PSWPIN);
436 bio_get(bio);
437 qc = submit_bio(bio);
438 while (synchronous) {
439 set_current_state(TASK_UNINTERRUPTIBLE);
440 if (!READ_ONCE(bio->bi_private))
441 break;
442
443 if (!blk_poll(disk->queue, qc, true))
444 blk_io_schedule();
445 }
446 __set_current_state(TASK_RUNNING);
447 bio_put(bio);
448
449out:
450 psi_memstall_leave(&pflags);
451 return ret;
452}
453
454int swap_set_page_dirty(struct page *page)
455{
456 struct swap_info_struct *sis = page_swap_info(page);
457
458 if (data_race(sis->flags & SWP_FS)) {
459 struct address_space *mapping = sis->swap_file->f_mapping;
460
461 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
462 return mapping->a_ops->set_page_dirty(page);
463 } else {
464 return __set_page_dirty_no_writeback(page);
465 }
466}