Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
 
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
 
 
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
 
 
 
 
 
 
 
 
 
 
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
 
 
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
 
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static void page_cache_tree_delete(struct address_space *mapping,
 114				   struct page *page, void *shadow)
 
 
 
 
 
 
 
 
 
 115{
 116	struct radix_tree_node *node;
 117	unsigned long index;
 118	unsigned int offset;
 119	unsigned int tag;
 120	void **slot;
 121
 122	VM_BUG_ON(!PageLocked(page));
 123
 124	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 
 125
 126	if (shadow) {
 127		mapping->nrexceptional++;
 128		/*
 129		 * Make sure the nrexceptional update is committed before
 130		 * the nrpages update so that final truncate racing
 131		 * with reclaim does not see both counters 0 at the
 132		 * same time and miss a shadow entry.
 133		 */
 134		smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135	}
 136	mapping->nrpages--;
 137
 138	if (!node) {
 139		/* Clear direct pointer tags in root node */
 140		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 141		radix_tree_replace_slot(slot, shadow);
 142		return;
 143	}
 144
 145	/* Clear tree tags for the removed page */
 146	index = page->index;
 147	offset = index & RADIX_TREE_MAP_MASK;
 148	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 149		if (test_bit(offset, node->tags[tag]))
 150			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 151	}
 152
 153	/* Delete page, swap shadow entry */
 154	radix_tree_replace_slot(slot, shadow);
 155	workingset_node_pages_dec(node);
 156	if (shadow)
 157		workingset_node_shadows_inc(node);
 158	else
 159		if (__radix_tree_delete_node(&mapping->page_tree, node))
 160			return;
 
 161
 162	/*
 163	 * Track node that only contains shadow entries.
 
 
 164	 *
 165	 * Avoid acquiring the list_lru lock if already tracked.  The
 166	 * list_empty() test is safe as node->private_list is
 167	 * protected by mapping->tree_lock.
 168	 */
 169	if (!workingset_node_pages(node) &&
 170	    list_empty(&node->private_list)) {
 171		node->private_data = mapping;
 172		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 173	}
 
 
 
 174}
 175
 176/*
 177 * Delete a page from the page cache and free it. Caller has to make
 178 * sure the page is locked and that nobody else uses it - or that usage
 179 * is safe.  The caller must hold the mapping's tree_lock.
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow)
 182{
 183	struct address_space *mapping = page->mapping;
 184
 185	trace_mm_filemap_delete_from_page_cache(page);
 186	/*
 187	 * if we're uptodate, flush out into the cleancache, otherwise
 188	 * invalidate any existing cleancache entries.  We can't leave
 189	 * stale data around in the cleancache once our page is gone
 190	 */
 191	if (PageUptodate(page) && PageMappedToDisk(page))
 192		cleancache_put_page(page);
 193	else
 194		cleancache_invalidate_page(mapping, page);
 195
 196	VM_BUG_ON_PAGE(page_mapped(page), page);
 197	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 198		int mapcount;
 
 199
 200		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 201			 current->comm, page_to_pfn(page));
 202		dump_page(page, "still mapped when deleted");
 203		dump_stack();
 204		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 205
 206		mapcount = page_mapcount(page);
 207		if (mapping_exiting(mapping) &&
 208		    page_count(page) >= mapcount + 2) {
 209			/*
 210			 * All vmas have already been torn down, so it's
 211			 * a good bet that actually the page is unmapped,
 212			 * and we'd prefer not to leak it: if we're wrong,
 213			 * some other bad page check should catch it later.
 214			 */
 215			page_mapcount_reset(page);
 216			atomic_sub(mapcount, &page->_count);
 217		}
 218	}
 219
 220	page_cache_tree_delete(mapping, page, shadow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221
 222	page->mapping = NULL;
 223	/* Leave page->index set: truncation lookup relies upon it */
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (!PageHuge(page))
 227		__dec_zone_page_state(page, NR_FILE_PAGES);
 228	if (PageSwapBacked(page))
 229		__dec_zone_page_state(page, NR_SHMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	/*
 232	 * At this point page must be either written or cleaned by truncate.
 233	 * Dirty page here signals a bug and loss of unwritten data.
 234	 *
 235	 * This fixes dirty accounting after removing the page entirely but
 236	 * leaves PageDirty set: it has no effect for truncated page and
 237	 * anyway will be cleared before returning page into buddy allocator.
 238	 */
 239	if (WARN_ON_ONCE(PageDirty(page)))
 240		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 243/**
 244 * delete_from_page_cache - delete page from page cache
 245 * @page: the page which the kernel is trying to remove from page cache
 246 *
 247 * This must be called only on pages that have been verified to be in the page
 248 * cache and locked.  It will never put the page into the free list, the caller
 249 * has a reference on the page.
 250 */
 251void delete_from_page_cache(struct page *page)
 252{
 253	struct address_space *mapping = page->mapping;
 254	unsigned long flags;
 255
 256	void (*freepage)(struct page *);
 257
 258	BUG_ON(!PageLocked(page));
 259
 260	freepage = mapping->a_ops->freepage;
 
 
 
 261
 262	spin_lock_irqsave(&mapping->tree_lock, flags);
 263	__delete_from_page_cache(page, NULL);
 264	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
 265
 266	if (freepage)
 267		freepage(page);
 268	put_page(page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272static int filemap_check_errors(struct address_space *mapping)
 273{
 274	int ret = 0;
 275	/* Check for outstanding write errors */
 276	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 277	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 278		ret = -ENOSPC;
 279	if (test_bit(AS_EIO, &mapping->flags) &&
 280	    test_and_clear_bit(AS_EIO, &mapping->flags))
 281		ret = -EIO;
 282	return ret;
 283}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285/**
 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 287 * @mapping:	address space structure to write
 288 * @start:	offset in bytes where the range starts
 289 * @end:	offset in bytes where the range ends (inclusive)
 290 * @sync_mode:	enable synchronous operation
 291 *
 292 * Start writeback against all of a mapping's dirty pages that lie
 293 * within the byte offsets <start, end> inclusive.
 294 *
 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 296 * opposed to a regular memory cleansing writeback.  The difference between
 297 * these two operations is that if a dirty page/buffer is encountered, it must
 298 * be waited upon, and not just skipped over.
 
 
 299 */
 300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 301				loff_t end, int sync_mode)
 302{
 303	int ret;
 304	struct writeback_control wbc = {
 305		.sync_mode = sync_mode,
 306		.nr_to_write = LONG_MAX,
 307		.range_start = start,
 308		.range_end = end,
 309	};
 310
 311	if (!mapping_cap_writeback_dirty(mapping))
 312		return 0;
 313
 314	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 315	ret = do_writepages(mapping, &wbc);
 316	wbc_detach_inode(&wbc);
 317	return ret;
 318}
 319
 320static inline int __filemap_fdatawrite(struct address_space *mapping,
 321	int sync_mode)
 322{
 323	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 324}
 325
 326int filemap_fdatawrite(struct address_space *mapping)
 327{
 328	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 329}
 330EXPORT_SYMBOL(filemap_fdatawrite);
 331
 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 333				loff_t end)
 334{
 335	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 336}
 337EXPORT_SYMBOL(filemap_fdatawrite_range);
 338
 339/**
 340 * filemap_flush - mostly a non-blocking flush
 341 * @mapping:	target address_space
 342 *
 343 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 344 * purposes - I/O may not be started against all dirty pages.
 
 
 345 */
 346int filemap_flush(struct address_space *mapping)
 347{
 348	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 349}
 350EXPORT_SYMBOL(filemap_flush);
 351
 352static int __filemap_fdatawait_range(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353				     loff_t start_byte, loff_t end_byte)
 354{
 355	pgoff_t index = start_byte >> PAGE_SHIFT;
 356	pgoff_t end = end_byte >> PAGE_SHIFT;
 357	struct pagevec pvec;
 358	int nr_pages;
 359	int ret = 0;
 360
 361	if (end_byte < start_byte)
 362		goto out;
 363
 364	pagevec_init(&pvec, 0);
 365	while ((index <= end) &&
 366			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 367			PAGECACHE_TAG_WRITEBACK,
 368			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 369		unsigned i;
 370
 371		for (i = 0; i < nr_pages; i++) {
 372			struct page *page = pvec.pages[i];
 373
 374			/* until radix tree lookup accepts end_index */
 375			if (page->index > end)
 376				continue;
 
 
 377
 378			wait_on_page_writeback(page);
 379			if (TestClearPageError(page))
 380				ret = -EIO;
 381		}
 382		pagevec_release(&pvec);
 383		cond_resched();
 384	}
 385out:
 386	return ret;
 387}
 388
 389/**
 390 * filemap_fdatawait_range - wait for writeback to complete
 391 * @mapping:		address space structure to wait for
 392 * @start_byte:		offset in bytes where the range starts
 393 * @end_byte:		offset in bytes where the range ends (inclusive)
 394 *
 395 * Walk the list of under-writeback pages of the given address space
 396 * in the given range and wait for all of them.  Check error status of
 397 * the address space and return it.
 398 *
 399 * Since the error status of the address space is cleared by this function,
 400 * callers are responsible for checking the return value and handling and/or
 401 * reporting the error.
 
 
 402 */
 403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 404			    loff_t end_byte)
 405{
 406	int ret, ret2;
 407
 408	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 409	ret2 = filemap_check_errors(mapping);
 410	if (!ret)
 411		ret = ret2;
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL(filemap_fdatawait_range);
 416
 417/**
 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 419 * @mapping: address space structure to wait for
 
 
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 423 * does not clear error status of the address space.
 424 *
 425 * Use this function if callers don't handle errors themselves.  Expected
 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 427 * fsfreeze(8)
 428 */
 429void filemap_fdatawait_keep_errors(struct address_space *mapping)
 
 430{
 431	loff_t i_size = i_size_read(mapping->host);
 
 
 
 432
 433	if (i_size == 0)
 434		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 437}
 
 438
 439/**
 440 * filemap_fdatawait - wait for all under-writeback pages to complete
 441 * @mapping: address space structure to wait for
 442 *
 443 * Walk the list of under-writeback pages of the given address space
 444 * and wait for all of them.  Check error status of the address space
 445 * and return it.
 446 *
 447 * Since the error status of the address space is cleared by this function,
 448 * callers are responsible for checking the return value and handling and/or
 449 * reporting the error.
 
 
 450 */
 451int filemap_fdatawait(struct address_space *mapping)
 452{
 453	loff_t i_size = i_size_read(mapping->host);
 454
 455	if (i_size == 0)
 456		return 0;
 457
 458	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 
 
 459}
 460EXPORT_SYMBOL(filemap_fdatawait);
 461
 462int filemap_write_and_wait(struct address_space *mapping)
 
 463{
 464	int err = 0;
 
 
 465
 466	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 467	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 468		err = filemap_fdatawrite(mapping);
 469		/*
 470		 * Even if the above returned error, the pages may be
 471		 * written partially (e.g. -ENOSPC), so we wait for it.
 472		 * But the -EIO is special case, it may indicate the worst
 473		 * thing (e.g. bug) happened, so we avoid waiting for it.
 474		 */
 475		if (err != -EIO) {
 476			int err2 = filemap_fdatawait(mapping);
 477			if (!err)
 478				err = err2;
 479		}
 480	} else {
 481		err = filemap_check_errors(mapping);
 482	}
 483	return err;
 
 484}
 485EXPORT_SYMBOL(filemap_write_and_wait);
 486
 487/**
 488 * filemap_write_and_wait_range - write out & wait on a file range
 489 * @mapping:	the address_space for the pages
 490 * @lstart:	offset in bytes where the range starts
 491 * @lend:	offset in bytes where the range ends (inclusive)
 492 *
 493 * Write out and wait upon file offsets lstart->lend, inclusive.
 494 *
 495 * Note that `lend' is inclusive (describes the last byte to be written) so
 496 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 497 */
 498int filemap_write_and_wait_range(struct address_space *mapping,
 499				 loff_t lstart, loff_t lend)
 500{
 501	int err = 0;
 
 
 
 502
 503	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 504	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 505		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 506						 WB_SYNC_ALL);
 507		/* See comment of filemap_write_and_wait() */
 508		if (err != -EIO) {
 509			int err2 = filemap_fdatawait_range(mapping,
 510						lstart, lend);
 511			if (!err)
 512				err = err2;
 513		}
 514	} else {
 515		err = filemap_check_errors(mapping);
 516	}
 
 
 
 517	return err;
 518}
 519EXPORT_SYMBOL(filemap_write_and_wait_range);
 520
 
 
 
 
 
 
 
 
 521/**
 522 * replace_page_cache_page - replace a pagecache page with a new one
 523 * @old:	page to be replaced
 524 * @new:	page to replace with
 525 * @gfp_mask:	allocation mode
 526 *
 527 * This function replaces a page in the pagecache with a new one.  On
 528 * success it acquires the pagecache reference for the new page and
 529 * drops it for the old page.  Both the old and new pages must be
 530 * locked.  This function does not add the new page to the LRU, the
 531 * caller must do that.
 
 
 
 
 
 
 
 
 
 
 532 *
 533 * The remove + add is atomic.  The only way this function can fail is
 534 * memory allocation failure.
 535 */
 536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 537{
 538	int error;
 
 
 539
 540	VM_BUG_ON_PAGE(!PageLocked(old), old);
 541	VM_BUG_ON_PAGE(!PageLocked(new), new);
 542	VM_BUG_ON_PAGE(new->mapping, new);
 543
 544	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 545	if (!error) {
 546		struct address_space *mapping = old->mapping;
 547		void (*freepage)(struct page *);
 548		unsigned long flags;
 549
 550		pgoff_t offset = old->index;
 551		freepage = mapping->a_ops->freepage;
 552
 553		get_page(new);
 554		new->mapping = mapping;
 555		new->index = offset;
 556
 557		spin_lock_irqsave(&mapping->tree_lock, flags);
 558		__delete_from_page_cache(old, NULL);
 559		error = radix_tree_insert(&mapping->page_tree, offset, new);
 560		BUG_ON(error);
 561		mapping->nrpages++;
 562
 563		/*
 564		 * hugetlb pages do not participate in page cache accounting.
 565		 */
 566		if (!PageHuge(new))
 567			__inc_zone_page_state(new, NR_FILE_PAGES);
 568		if (PageSwapBacked(new))
 569			__inc_zone_page_state(new, NR_SHMEM);
 570		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 571		mem_cgroup_migrate(old, new);
 572		radix_tree_preload_end();
 573		if (freepage)
 574			freepage(old);
 575		put_page(old);
 576	}
 577
 578	return error;
 
 
 
 
 
 
 
 579}
 580EXPORT_SYMBOL_GPL(replace_page_cache_page);
 581
 582static int page_cache_tree_insert(struct address_space *mapping,
 583				  struct page *page, void **shadowp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584{
 585	struct radix_tree_node *node;
 586	void **slot;
 587	int error;
 588
 589	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 590				    &node, &slot);
 591	if (error)
 592		return error;
 593	if (*slot) {
 594		void *p;
 595
 596		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 597		if (!radix_tree_exceptional_entry(p))
 598			return -EEXIST;
 599
 600		if (WARN_ON(dax_mapping(mapping)))
 601			return -EINVAL;
 602
 603		if (shadowp)
 604			*shadowp = p;
 605		mapping->nrexceptional--;
 606		if (node)
 607			workingset_node_shadows_dec(node);
 608	}
 609	radix_tree_replace_slot(slot, page);
 610	mapping->nrpages++;
 611	if (node) {
 612		workingset_node_pages_inc(node);
 613		/*
 614		 * Don't track node that contains actual pages.
 615		 *
 616		 * Avoid acquiring the list_lru lock if already
 617		 * untracked.  The list_empty() test is safe as
 618		 * node->private_list is protected by
 619		 * mapping->tree_lock.
 620		 */
 621		if (!list_empty(&node->private_list))
 622			list_lru_del(&workingset_shadow_nodes,
 623				     &node->private_list);
 624	}
 625	return 0;
 
 
 
 626}
 
 627
 628static int __add_to_page_cache_locked(struct page *page,
 629				      struct address_space *mapping,
 630				      pgoff_t offset, gfp_t gfp_mask,
 631				      void **shadowp)
 
 
 
 
 
 
 
 
 
 
 632{
 633	int huge = PageHuge(page);
 634	struct mem_cgroup *memcg;
 635	int error;
 
 
 
 
 
 
 
 
 
 
 
 636
 637	VM_BUG_ON_PAGE(!PageLocked(page), page);
 638	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640	if (!huge) {
 641		error = mem_cgroup_try_charge(page, current->mm,
 642					      gfp_mask, &memcg, false);
 643		if (error)
 644			return error;
 
 645	}
 646
 647	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 648	if (error) {
 649		if (!huge)
 650			mem_cgroup_cancel_charge(page, memcg, false);
 651		return error;
 652	}
 653
 654	get_page(page);
 655	page->mapping = mapping;
 656	page->index = offset;
 657
 658	spin_lock_irq(&mapping->tree_lock);
 659	error = page_cache_tree_insert(mapping, page, shadowp);
 660	radix_tree_preload_end();
 661	if (unlikely(error))
 662		goto err_insert;
 663
 664	/* hugetlb pages do not participate in page cache accounting. */
 665	if (!huge)
 666		__inc_zone_page_state(page, NR_FILE_PAGES);
 667	spin_unlock_irq(&mapping->tree_lock);
 668	if (!huge)
 669		mem_cgroup_commit_charge(page, memcg, false, false);
 670	trace_mm_filemap_add_to_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	return 0;
 672err_insert:
 673	page->mapping = NULL;
 
 
 674	/* Leave page->index set: truncation relies upon it */
 675	spin_unlock_irq(&mapping->tree_lock);
 676	if (!huge)
 677		mem_cgroup_cancel_charge(page, memcg, false);
 678	put_page(page);
 679	return error;
 680}
 681
 682/**
 683 * add_to_page_cache_locked - add a locked page to the pagecache
 684 * @page:	page to add
 685 * @mapping:	the page's address_space
 686 * @offset:	page index
 687 * @gfp_mask:	page allocation mode
 688 *
 689 * This function is used to add a page to the pagecache. It must be locked.
 690 * This function does not add the page to the LRU.  The caller must do that.
 691 */
 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 693		pgoff_t offset, gfp_t gfp_mask)
 694{
 695	return __add_to_page_cache_locked(page, mapping, offset,
 696					  gfp_mask, NULL);
 697}
 698EXPORT_SYMBOL(add_to_page_cache_locked);
 699
 700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 701				pgoff_t offset, gfp_t gfp_mask)
 702{
 703	void *shadow = NULL;
 704	int ret;
 705
 706	__SetPageLocked(page);
 707	ret = __add_to_page_cache_locked(page, mapping, offset,
 708					 gfp_mask, &shadow);
 709	if (unlikely(ret))
 710		__ClearPageLocked(page);
 711	else {
 712		/*
 713		 * The page might have been evicted from cache only
 714		 * recently, in which case it should be activated like
 715		 * any other repeatedly accessed page.
 
 
 
 716		 */
 717		if (shadow && workingset_refault(shadow)) {
 718			SetPageActive(page);
 719			workingset_activation(page);
 720		} else
 721			ClearPageActive(page);
 722		lru_cache_add(page);
 723	}
 724	return ret;
 725}
 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 727
 728#ifdef CONFIG_NUMA
 729struct page *__page_cache_alloc(gfp_t gfp)
 730{
 731	int n;
 732	struct page *page;
 733
 734	if (cpuset_do_page_mem_spread()) {
 735		unsigned int cpuset_mems_cookie;
 736		do {
 737			cpuset_mems_cookie = read_mems_allowed_begin();
 738			n = cpuset_mem_spread_node();
 739			page = __alloc_pages_node(n, gfp, 0);
 740		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 741
 742		return page;
 743	}
 744	return alloc_pages(gfp, 0);
 745}
 746EXPORT_SYMBOL(__page_cache_alloc);
 747#endif
 748
 749/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 * In order to wait for pages to become available there must be
 751 * waitqueues associated with pages. By using a hash table of
 752 * waitqueues where the bucket discipline is to maintain all
 753 * waiters on the same queue and wake all when any of the pages
 754 * become available, and for the woken contexts to check to be
 755 * sure the appropriate page became available, this saves space
 756 * at a cost of "thundering herd" phenomena during rare hash
 757 * collisions.
 758 */
 759wait_queue_head_t *page_waitqueue(struct page *page)
 760{
 761	const struct zone *zone = page_zone(page);
 762
 763	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 764}
 765EXPORT_SYMBOL(page_waitqueue);
 766
 767void wait_on_page_bit(struct page *page, int bit_nr)
 768{
 769	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 770
 771	if (test_bit(bit_nr, &page->flags))
 772		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 773							TASK_UNINTERRUPTIBLE);
 774}
 775EXPORT_SYMBOL(wait_on_page_bit);
 776
 777int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 780
 781	if (!test_bit(bit_nr, &page->flags))
 782		return 0;
 783
 784	return __wait_on_bit(page_waitqueue(page), &wait,
 785			     bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788int wait_on_page_bit_killable_timeout(struct page *page,
 789				       int bit_nr, unsigned long timeout)
 790{
 791	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 792
 793	wait.key.timeout = jiffies + timeout;
 794	if (!test_bit(bit_nr, &page->flags))
 795		return 0;
 796	return __wait_on_bit(page_waitqueue(page), &wait,
 797			     bit_wait_io_timeout, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801/**
 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 803 * @page: Page defining the wait queue of interest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804 * @waiter: Waiter to add to the queue
 805 *
 806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 807 */
 808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 809{
 810	wait_queue_head_t *q = page_waitqueue(page);
 811	unsigned long flags;
 812
 813	spin_lock_irqsave(&q->lock, flags);
 814	__add_wait_queue(q, waiter);
 
 815	spin_unlock_irqrestore(&q->lock, flags);
 816}
 817EXPORT_SYMBOL_GPL(add_page_wait_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819/**
 820 * unlock_page - unlock a locked page
 821 * @page: the page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822 *
 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 
 
 
 
 
 
 
 
 
 
 
 
 827 *
 828 * The mb is necessary to enforce ordering between the clear_bit and the read
 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 830 */
 831void unlock_page(struct page *page)
 832{
 833	page = compound_head(page);
 834	VM_BUG_ON_PAGE(!PageLocked(page), page);
 835	clear_bit_unlock(PG_locked, &page->flags);
 836	smp_mb__after_atomic();
 837	wake_up_page(page, PG_locked);
 838}
 839EXPORT_SYMBOL(unlock_page);
 840
 841/**
 842 * end_page_writeback - end writeback against a page
 843 * @page: the page
 
 
 
 
 
 
 
 844 */
 845void end_page_writeback(struct page *page)
 846{
 847	/*
 848	 * TestClearPageReclaim could be used here but it is an atomic
 849	 * operation and overkill in this particular case. Failing to
 850	 * shuffle a page marked for immediate reclaim is too mild to
 851	 * justify taking an atomic operation penalty at the end of
 852	 * ever page writeback.
 853	 */
 854	if (PageReclaim(page)) {
 855		ClearPageReclaim(page);
 856		rotate_reclaimable_page(page);
 857	}
 858
 859	if (!test_clear_page_writeback(page))
 860		BUG();
 
 
 
 861
 862	smp_mb__after_atomic();
 863	wake_up_page(page, PG_writeback);
 864}
 865EXPORT_SYMBOL(end_page_writeback);
 866
 867/*
 868 * After completing I/O on a page, call this routine to update the page
 869 * flags appropriately
 
 
 
 
 870 */
 871void page_endio(struct page *page, int rw, int err)
 872{
 873	if (rw == READ) {
 874		if (!err) {
 875			SetPageUptodate(page);
 876		} else {
 877			ClearPageUptodate(page);
 878			SetPageError(page);
 879		}
 880		unlock_page(page);
 881	} else { /* rw == WRITE */
 882		if (err) {
 883			SetPageError(page);
 884			if (page->mapping)
 885				mapping_set_error(page->mapping, err);
 886		}
 887		end_page_writeback(page);
 888	}
 
 
 
 
 
 
 
 
 
 
 
 
 889}
 890EXPORT_SYMBOL_GPL(page_endio);
 891
 892/**
 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 894 * @page: the page to lock
 895 */
 896void __lock_page(struct page *page)
 897{
 898	struct page *page_head = compound_head(page);
 899	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 
 
 900
 901	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 902							TASK_UNINTERRUPTIBLE);
 
 
 903}
 904EXPORT_SYMBOL(__lock_page);
 905
 906int __lock_page_killable(struct page *page)
 907{
 908	struct page *page_head = compound_head(page);
 909	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 910
 911	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 912					bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914EXPORT_SYMBOL_GPL(__lock_page_killable);
 915
 916/*
 917 * Return values:
 918 * 1 - page is locked; mmap_sem is still held.
 919 * 0 - page is not locked.
 920 *     mmap_sem has been released (up_read()), unless flags had both
 921 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 922 *     which case mmap_sem is still held.
 923 *
 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 925 * with the page locked and the mmap_sem unperturbed.
 926 */
 927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 928			 unsigned int flags)
 929{
 930	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 931		/*
 932		 * CAUTION! In this case, mmap_sem is not released
 933		 * even though return 0.
 934		 */
 935		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 936			return 0;
 937
 938		up_read(&mm->mmap_sem);
 939		if (flags & FAULT_FLAG_KILLABLE)
 940			wait_on_page_locked_killable(page);
 941		else
 942			wait_on_page_locked(page);
 943		return 0;
 944	} else {
 945		if (flags & FAULT_FLAG_KILLABLE) {
 946			int ret;
 947
 948			ret = __lock_page_killable(page);
 949			if (ret) {
 950				up_read(&mm->mmap_sem);
 951				return 0;
 952			}
 953		} else
 954			__lock_page(page);
 955		return 1;
 956	}
 
 
 957}
 958
 959/**
 960 * page_cache_next_hole - find the next hole (not-present entry)
 961 * @mapping: mapping
 962 * @index: index
 963 * @max_scan: maximum range to search
 964 *
 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 966 * lowest indexed hole.
 967 *
 968 * Returns: the index of the hole if found, otherwise returns an index
 969 * outside of the set specified (in which case 'return - index >=
 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 971 * be returned.
 972 *
 973 * page_cache_next_hole may be called under rcu_read_lock. However,
 974 * like radix_tree_gang_lookup, this will not atomically search a
 975 * snapshot of the tree at a single point in time. For example, if a
 976 * hole is created at index 5, then subsequently a hole is created at
 977 * index 10, page_cache_next_hole covering both indexes may return 10
 978 * if called under rcu_read_lock.
 979 */
 980pgoff_t page_cache_next_hole(struct address_space *mapping,
 981			     pgoff_t index, unsigned long max_scan)
 982{
 983	unsigned long i;
 984
 985	for (i = 0; i < max_scan; i++) {
 986		struct page *page;
 987
 988		page = radix_tree_lookup(&mapping->page_tree, index);
 989		if (!page || radix_tree_exceptional_entry(page))
 
 990			break;
 991		index++;
 992		if (index == 0)
 993			break;
 994	}
 995
 996	return index;
 997}
 998EXPORT_SYMBOL(page_cache_next_hole);
 999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022			     pgoff_t index, unsigned long max_scan)
1023{
1024	unsigned long i;
1025
1026	for (i = 0; i < max_scan; i++) {
1027		struct page *page;
1028
1029		page = radix_tree_lookup(&mapping->page_tree, index);
1030		if (!page || radix_tree_exceptional_entry(page))
 
1031			break;
1032		index--;
1033		if (index == ULONG_MAX)
1034			break;
1035	}
1036
1037	return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041/**
1042 * find_get_entry - find and get a page cache entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset.  If there is a
1047 * page cache page, it is returned with an increased refcount.
 
 
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
1051 *
1052 * Otherwise, %NULL is returned.
1053 */
1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055{
1056	void **pagep;
1057	struct page *page;
1058
1059	rcu_read_lock();
1060repeat:
1061	page = NULL;
1062	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063	if (pagep) {
1064		page = radix_tree_deref_slot(pagep);
1065		if (unlikely(!page))
1066			goto out;
1067		if (radix_tree_exception(page)) {
1068			if (radix_tree_deref_retry(page))
1069				goto repeat;
1070			/*
1071			 * A shadow entry of a recently evicted page,
1072			 * or a swap entry from shmem/tmpfs.  Return
1073			 * it without attempting to raise page count.
1074			 */
1075			goto out;
1076		}
1077		if (!page_cache_get_speculative(page))
1078			goto repeat;
1079
1080		/*
1081		 * Has the page moved?
1082		 * This is part of the lockless pagecache protocol. See
1083		 * include/linux/pagemap.h for details.
1084		 */
1085		if (unlikely(page != *pagep)) {
1086			put_page(page);
1087			goto repeat;
1088		}
1089	}
1090out:
1091	rcu_read_unlock();
1092
1093	return page;
1094}
1095EXPORT_SYMBOL(find_get_entry);
1096
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
1101 *
1102 * Looks up the page cache slot at @mapping & @offset.  If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114{
1115	struct page *page;
1116
1117repeat:
1118	page = find_get_entry(mapping, offset);
1119	if (page && !radix_tree_exception(page)) {
1120		lock_page(page);
1121		/* Has the page been truncated? */
1122		if (unlikely(page->mapping != mapping)) {
1123			unlock_page(page);
1124			put_page(page);
1125			goto repeat;
1126		}
1127		VM_BUG_ON_PAGE(page->index != offset, page);
1128	}
1129	return page;
1130}
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 *		@gfp_mask and added to the page cache and the VM's LRU
1148 *		list. The page is returned locked and with an increased
1149 *		refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
1155 */
1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157	int fgp_flags, gfp_t gfp_mask)
1158{
1159	struct page *page;
1160
1161repeat:
1162	page = find_get_entry(mapping, offset);
1163	if (radix_tree_exceptional_entry(page))
1164		page = NULL;
1165	if (!page)
1166		goto no_page;
1167
1168	if (fgp_flags & FGP_LOCK) {
1169		if (fgp_flags & FGP_NOWAIT) {
1170			if (!trylock_page(page)) {
1171				put_page(page);
1172				return NULL;
1173			}
1174		} else {
1175			lock_page(page);
1176		}
1177
1178		/* Has the page been truncated? */
1179		if (unlikely(page->mapping != mapping)) {
1180			unlock_page(page);
1181			put_page(page);
1182			goto repeat;
1183		}
1184		VM_BUG_ON_PAGE(page->index != offset, page);
1185	}
1186
1187	if (page && (fgp_flags & FGP_ACCESSED))
1188		mark_page_accessed(page);
 
 
 
 
 
1189
 
 
1190no_page:
1191	if (!page && (fgp_flags & FGP_CREAT)) {
 
1192		int err;
1193		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194			gfp_mask |= __GFP_WRITE;
 
1195		if (fgp_flags & FGP_NOFS)
1196			gfp_mask &= ~__GFP_FS;
 
 
 
 
 
 
1197
1198		page = __page_cache_alloc(gfp_mask);
1199		if (!page)
1200			return NULL;
 
 
 
 
1201
1202		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203			fgp_flags |= FGP_LOCK;
1204
1205		/* Init accessed so avoid atomic mark_page_accessed later */
1206		if (fgp_flags & FGP_ACCESSED)
1207			__SetPageReferenced(page);
 
 
 
1208
1209		err = add_to_page_cache_lru(page, mapping, offset,
1210				gfp_mask & GFP_RECLAIM_MASK);
1211		if (unlikely(err)) {
1212			put_page(page);
1213			page = NULL;
1214			if (err == -EEXIST)
1215				goto repeat;
1216		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220}
1221EXPORT_SYMBOL(pagecache_get_page);
1222
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping:	The address_space to search
1226 * @start:	The starting page cache index
1227 * @nr_entries:	The maximum number of entries
1228 * @entries:	Where the resulting entries are placed
1229 * @indices:	The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping.  The entries are placed at
1233 * @entries.  find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes.  There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
 
 
 
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247			  pgoff_t start, unsigned int nr_entries,
1248			  struct page **entries, pgoff_t *indices)
1249{
1250	void **slot;
1251	unsigned int ret = 0;
1252	struct radix_tree_iter iter;
1253
1254	if (!nr_entries)
1255		return 0;
1256
1257	rcu_read_lock();
1258	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259		struct page *page;
1260repeat:
1261		page = radix_tree_deref_slot(slot);
1262		if (unlikely(!page))
1263			continue;
1264		if (radix_tree_exception(page)) {
1265			if (radix_tree_deref_retry(page)) {
1266				slot = radix_tree_iter_retry(&iter);
1267				continue;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page, a swap
1271			 * entry from shmem/tmpfs or a DAX entry.  Return it
1272			 * without attempting to raise page count.
1273			 */
1274			goto export;
1275		}
1276		if (!page_cache_get_speculative(page))
1277			goto repeat;
1278
1279		/* Has the page moved? */
1280		if (unlikely(page != *slot)) {
1281			put_page(page);
1282			goto repeat;
1283		}
1284export:
1285		indices[ret] = iter.index;
1286		entries[ret] = page;
1287		if (++ret == nr_entries)
1288			break;
1289	}
1290	rcu_read_unlock();
1291	return ret;
 
 
 
 
 
 
 
 
 
 
1292}
1293
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping:	The address_space to search
1297 * @start:	The starting page index
1298 * @nr_pages:	The maximum number of pages
1299 * @pages:	Where the resulting pages are placed
 
 
 
 
 
 
 
 
 
 
 
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes.  There may be holes in the indices due to not-present pages.
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311			    unsigned int nr_pages, struct page **pages)
1312{
1313	struct radix_tree_iter iter;
1314	void **slot;
1315	unsigned ret = 0;
1316
1317	if (unlikely(!nr_pages))
1318		return 0;
1319
1320	rcu_read_lock();
1321	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322		struct page *page;
1323repeat:
1324		page = radix_tree_deref_slot(slot);
1325		if (unlikely(!page))
1326			continue;
1327
1328		if (radix_tree_exception(page)) {
1329			if (radix_tree_deref_retry(page)) {
1330				slot = radix_tree_iter_retry(&iter);
1331				continue;
1332			}
1333			/*
1334			 * A shadow entry of a recently evicted page,
1335			 * or a swap entry from shmem/tmpfs.  Skip
1336			 * over it.
1337			 */
1338			continue;
1339		}
1340
1341		if (!page_cache_get_speculative(page))
1342			goto repeat;
1343
1344		/* Has the page moved? */
1345		if (unlikely(page != *slot)) {
1346			put_page(page);
1347			goto repeat;
1348		}
1349
1350		pages[ret] = page;
1351		if (++ret == nr_pages)
1352			break;
 
 
 
 
 
1353	}
1354
1355	rcu_read_unlock();
1356	return ret;
 
 
 
 
 
 
 
 
 
 
1357}
1358
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping:	The address_space to search
1362 * @index:	The starting page index
1363 * @nr_pages:	The maximum number of pages
1364 * @pages:	Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
 
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
 
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372			       unsigned int nr_pages, struct page **pages)
1373{
1374	struct radix_tree_iter iter;
1375	void **slot;
1376	unsigned int ret = 0;
1377
1378	if (unlikely(!nr_pages))
1379		return 0;
1380
1381	rcu_read_lock();
1382	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383		struct page *page;
1384repeat:
1385		page = radix_tree_deref_slot(slot);
1386		/* The hole, there no reason to continue */
1387		if (unlikely(!page))
1388			break;
1389
1390		if (radix_tree_exception(page)) {
1391			if (radix_tree_deref_retry(page)) {
1392				slot = radix_tree_iter_retry(&iter);
1393				continue;
1394			}
1395			/*
1396			 * A shadow entry of a recently evicted page,
1397			 * or a swap entry from shmem/tmpfs.  Stop
1398			 * looking for contiguous pages.
1399			 */
1400			break;
1401		}
1402
1403		if (!page_cache_get_speculative(page))
1404			goto repeat;
1405
1406		/* Has the page moved? */
1407		if (unlikely(page != *slot)) {
1408			put_page(page);
1409			goto repeat;
1410		}
1411
1412		/*
1413		 * must check mapping and index after taking the ref.
1414		 * otherwise we can get both false positives and false
1415		 * negatives, which is just confusing to the caller.
1416		 */
1417		if (page->mapping == NULL || page->index != iter.index) {
1418			put_page(page);
1419			break;
1420		}
1421
1422		pages[ret] = page;
1423		if (++ret == nr_pages)
1424			break;
1425	}
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL(find_get_pages_contig);
1430
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping:	the address_space to search
1434 * @index:	the starting page index
1435 * @tag:	the tag index
1436 * @nr_pages:	the maximum number of pages
1437 * @pages:	where the resulting pages are placed
 
 
 
1438 *
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag.   We update @index to index the next page for the traversal.
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443			int tag, unsigned int nr_pages, struct page **pages)
1444{
1445	struct radix_tree_iter iter;
1446	void **slot;
1447	unsigned ret = 0;
1448
1449	if (unlikely(!nr_pages))
1450		return 0;
 
 
 
 
1451
1452	rcu_read_lock();
1453	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454				   &iter, *index, tag) {
1455		struct page *page;
1456repeat:
1457		page = radix_tree_deref_slot(slot);
1458		if (unlikely(!page))
1459			continue;
1460
1461		if (radix_tree_exception(page)) {
1462			if (radix_tree_deref_retry(page)) {
1463				slot = radix_tree_iter_retry(&iter);
1464				continue;
1465			}
1466			/*
1467			 * A shadow entry of a recently evicted page.
1468			 *
1469			 * Those entries should never be tagged, but
1470			 * this tree walk is lockless and the tags are
1471			 * looked up in bulk, one radix tree node at a
1472			 * time, so there is a sizable window for page
1473			 * reclaim to evict a page we saw tagged.
1474			 *
1475			 * Skip over it.
1476			 */
1477			continue;
1478		}
 
 
 
 
 
1479
1480		if (!page_cache_get_speculative(page))
1481			goto repeat;
1482
1483		/* Has the page moved? */
1484		if (unlikely(page != *slot)) {
1485			put_page(page);
1486			goto repeat;
 
 
 
1487		}
 
 
 
1488
1489		pages[ret] = page;
1490		if (++ret == nr_pages)
1491			break;
1492	}
1493
1494	rcu_read_unlock();
1495
1496	if (ret)
1497		*index = pages[ret - 1]->index + 1;
1498
1499	return ret;
 
 
 
 
 
 
1500}
1501EXPORT_SYMBOL(find_get_pages_tag);
1502
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping:	the address_space to search
1506 * @start:	the starting page cache index
1507 * @tag:	the tag index
1508 * @nr_entries:	the maximum number of entries
1509 * @entries:	where the resulting entries are placed
1510 * @indices:	the cache indices corresponding to the entries in @entries
 
 
 
 
 
 
 
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516			int tag, unsigned int nr_entries,
1517			struct page **entries, pgoff_t *indices)
1518{
1519	void **slot;
1520	unsigned int ret = 0;
1521	struct radix_tree_iter iter;
1522
1523	if (!nr_entries)
1524		return 0;
1525
1526	rcu_read_lock();
1527	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528				   &iter, start, tag) {
1529		struct page *page;
1530repeat:
1531		page = radix_tree_deref_slot(slot);
1532		if (unlikely(!page))
 
1533			continue;
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539
1540			/*
1541			 * A shadow entry of a recently evicted page, a swap
1542			 * entry from shmem/tmpfs or a DAX entry.  Return it
1543			 * without attempting to raise page count.
1544			 */
1545			goto export;
1546		}
1547		if (!page_cache_get_speculative(page))
1548			goto repeat;
1549
1550		/* Has the page moved? */
1551		if (unlikely(page != *slot)) {
1552			put_page(page);
1553			goto repeat;
1554		}
1555export:
1556		indices[ret] = iter.index;
1557		entries[ret] = page;
1558		if (++ret == nr_entries)
1559			break;
1560	}
 
 
 
 
 
 
 
 
 
 
 
1561	rcu_read_unlock();
1562	return ret;
 
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 *      ---R__________________________________________B__________
1571 *         ^ reading here                             ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582					struct file_ra_state *ra)
1583{
1584	ra->ra_pages /= 4;
1585}
1586
1587/**
1588 * do_generic_file_read - generic file read routine
1589 * @filp:	the file to read
1590 * @ppos:	current file position
1591 * @iter:	data destination
1592 * @written:	already copied
1593 *
1594 * This is a generic file read routine, and uses the
1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
 
 
 
1599 */
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601		struct iov_iter *iter, ssize_t written)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602{
 
1603	struct address_space *mapping = filp->f_mapping;
1604	struct inode *inode = mapping->host;
1605	struct file_ra_state *ra = &filp->f_ra;
1606	pgoff_t index;
1607	pgoff_t last_index;
1608	pgoff_t prev_index;
1609	unsigned long offset;      /* offset into pagecache page */
1610	unsigned int prev_offset;
1611	int error = 0;
1612
1613	index = *ppos >> PAGE_SHIFT;
1614	prev_index = ra->prev_pos >> PAGE_SHIFT;
1615	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617	offset = *ppos & ~PAGE_MASK;
1618
1619	for (;;) {
1620		struct page *page;
1621		pgoff_t end_index;
1622		loff_t isize;
1623		unsigned long nr, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625		cond_resched();
1626find_page:
1627		page = find_get_page(mapping, index);
1628		if (!page) {
1629			page_cache_sync_readahead(mapping,
1630					ra, filp,
1631					index, last_index - index);
1632			page = find_get_page(mapping, index);
1633			if (unlikely(page == NULL))
1634				goto no_cached_page;
1635		}
1636		if (PageReadahead(page)) {
1637			page_cache_async_readahead(mapping,
1638					ra, filp, page,
1639					index, last_index - index);
1640		}
1641		if (!PageUptodate(page)) {
1642			/*
1643			 * See comment in do_read_cache_page on why
1644			 * wait_on_page_locked is used to avoid unnecessarily
1645			 * serialisations and why it's safe.
1646			 */
1647			wait_on_page_locked_killable(page);
1648			if (PageUptodate(page))
1649				goto page_ok;
1650
1651			if (inode->i_blkbits == PAGE_SHIFT ||
1652					!mapping->a_ops->is_partially_uptodate)
1653				goto page_not_up_to_date;
1654			if (!trylock_page(page))
1655				goto page_not_up_to_date;
1656			/* Did it get truncated before we got the lock? */
1657			if (!page->mapping)
1658				goto page_not_up_to_date_locked;
1659			if (!mapping->a_ops->is_partially_uptodate(page,
1660							offset, iter->count))
1661				goto page_not_up_to_date_locked;
1662			unlock_page(page);
1663		}
1664page_ok:
1665		/*
1666		 * i_size must be checked after we know the page is Uptodate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667		 *
1668		 * Checking i_size after the check allows us to calculate
1669		 * the correct value for "nr", which means the zero-filled
1670		 * part of the page is not copied back to userspace (unless
1671		 * another truncate extends the file - this is desired though).
1672		 */
1673
1674		isize = i_size_read(inode);
1675		end_index = (isize - 1) >> PAGE_SHIFT;
1676		if (unlikely(!isize || index > end_index)) {
1677			put_page(page);
1678			goto out;
1679		}
1680
1681		/* nr is the maximum number of bytes to copy from this page */
1682		nr = PAGE_SIZE;
1683		if (index == end_index) {
1684			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685			if (nr <= offset) {
1686				put_page(page);
1687				goto out;
1688			}
1689		}
1690		nr = nr - offset;
1691
1692		/* If users can be writing to this page using arbitrary
1693		 * virtual addresses, take care about potential aliasing
1694		 * before reading the page on the kernel side.
1695		 */
1696		if (mapping_writably_mapped(mapping))
1697			flush_dcache_page(page);
1698
1699		/*
1700		 * When a sequential read accesses a page several times,
1701		 * only mark it as accessed the first time.
1702		 */
1703		if (prev_index != index || offset != prev_offset)
1704			mark_page_accessed(page);
1705		prev_index = index;
1706
1707		/*
1708		 * Ok, we have the page, and it's up-to-date, so
1709		 * now we can copy it to user space...
1710		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712		ret = copy_page_to_iter(page, offset, nr, iter);
1713		offset += ret;
1714		index += offset >> PAGE_SHIFT;
1715		offset &= ~PAGE_MASK;
1716		prev_offset = offset;
1717
1718		put_page(page);
1719		written += ret;
1720		if (!iov_iter_count(iter))
1721			goto out;
1722		if (ret < nr) {
1723			error = -EFAULT;
1724			goto out;
 
1725		}
1726		continue;
 
 
 
 
1727
1728page_not_up_to_date:
1729		/* Get exclusive access to the page ... */
1730		error = lock_page_killable(page);
1731		if (unlikely(error))
1732			goto readpage_error;
1733
1734page_not_up_to_date_locked:
1735		/* Did it get truncated before we got the lock? */
1736		if (!page->mapping) {
1737			unlock_page(page);
1738			put_page(page);
1739			continue;
1740		}
1741
1742		/* Did somebody else fill it already? */
1743		if (PageUptodate(page)) {
1744			unlock_page(page);
1745			goto page_ok;
1746		}
1747
1748readpage:
1749		/*
1750		 * A previous I/O error may have been due to temporary
1751		 * failures, eg. multipath errors.
1752		 * PG_error will be set again if readpage fails.
1753		 */
1754		ClearPageError(page);
1755		/* Start the actual read. The read will unlock the page. */
1756		error = mapping->a_ops->readpage(filp, page);
1757
1758		if (unlikely(error)) {
1759			if (error == AOP_TRUNCATED_PAGE) {
1760				put_page(page);
1761				error = 0;
1762				goto find_page;
1763			}
1764			goto readpage_error;
1765		}
1766
1767		if (!PageUptodate(page)) {
1768			error = lock_page_killable(page);
1769			if (unlikely(error))
1770				goto readpage_error;
1771			if (!PageUptodate(page)) {
1772				if (page->mapping == NULL) {
1773					/*
1774					 * invalidate_mapping_pages got it
1775					 */
1776					unlock_page(page);
1777					put_page(page);
1778					goto find_page;
1779				}
1780				unlock_page(page);
1781				shrink_readahead_size_eio(filp, ra);
1782				error = -EIO;
1783				goto readpage_error;
1784			}
1785			unlock_page(page);
1786		}
1787
1788		goto page_ok;
 
 
1789
1790readpage_error:
1791		/* UHHUH! A synchronous read error occurred. Report it */
1792		put_page(page);
1793		goto out;
 
 
1794
1795no_cached_page:
1796		/*
1797		 * Ok, it wasn't cached, so we need to create a new
1798		 * page..
1799		 */
1800		page = page_cache_alloc_cold(mapping);
1801		if (!page) {
1802			error = -ENOMEM;
1803			goto out;
1804		}
1805		error = add_to_page_cache_lru(page, mapping, index,
1806				mapping_gfp_constraint(mapping, GFP_KERNEL));
1807		if (error) {
1808			put_page(page);
1809			if (error == -EEXIST) {
1810				error = 0;
1811				goto find_page;
1812			}
1813			goto out;
1814		}
1815		goto readpage;
1816	}
1817
1818out:
1819	ra->prev_pos = prev_index;
1820	ra->prev_pos <<= PAGE_SHIFT;
1821	ra->prev_pos |= prev_offset;
1822
1823	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824	file_accessed(filp);
1825	return written ? written : error;
1826}
 
1827
1828/**
1829 * generic_file_read_iter - generic filesystem read routine
1830 * @iocb:	kernel I/O control block
1831 * @iter:	destination for the data read
1832 *
1833 * This is the "read_iter()" routine for all filesystems
1834 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
1835 */
1836ssize_t
1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838{
1839	struct file *file = iocb->ki_filp;
1840	ssize_t retval = 0;
1841	loff_t *ppos = &iocb->ki_pos;
1842	loff_t pos = *ppos;
1843	size_t count = iov_iter_count(iter);
 
1844
1845	if (!count)
1846		goto out; /* skip atime */
1847
1848	if (iocb->ki_flags & IOCB_DIRECT) {
 
1849		struct address_space *mapping = file->f_mapping;
1850		struct inode *inode = mapping->host;
1851		loff_t size;
1852
1853		size = i_size_read(inode);
1854		retval = filemap_write_and_wait_range(mapping, pos,
1855					pos + count - 1);
1856		if (!retval) {
1857			struct iov_iter data = *iter;
1858			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859		}
1860
1861		if (retval > 0) {
1862			*ppos = pos + retval;
1863			iov_iter_advance(iter, retval);
 
 
 
 
 
 
1864		}
 
 
1865
1866		/*
1867		 * Btrfs can have a short DIO read if we encounter
1868		 * compressed extents, so if there was an error, or if
1869		 * we've already read everything we wanted to, or if
1870		 * there was a short read because we hit EOF, go ahead
1871		 * and return.  Otherwise fallthrough to buffered io for
1872		 * the rest of the read.  Buffered reads will not work for
1873		 * DAX files, so don't bother trying.
1874		 */
1875		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876		    IS_DAX(inode)) {
1877			file_accessed(file);
1878			goto out;
1879		}
1880	}
1881
1882	retval = do_generic_file_read(file, ppos, iter, retval);
1883out:
1884	return retval;
1885}
1886EXPORT_SYMBOL(generic_file_read_iter);
1887
1888#ifdef CONFIG_MMU
1889/**
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file:	file to read
1892 * @offset:	page index
1893 * @gfp_mask:	memory allocation flags
1894 *
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
1897 */
1898static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
1899{
1900	struct address_space *mapping = file->f_mapping;
1901	struct page *page;
1902	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903
1904	do {
1905		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906		if (!page)
1907			return -ENOMEM;
1908
1909		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910		if (ret == 0)
1911			ret = mapping->a_ops->readpage(file, page);
1912		else if (ret == -EEXIST)
1913			ret = 0; /* losing race to add is OK */
1914
1915		put_page(page);
 
1916
1917	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
1918
1919	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920}
1921
 
1922#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924/*
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
 
 
 
1927 */
1928static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929				   struct file_ra_state *ra,
1930				   struct file *file,
1931				   pgoff_t offset)
1932{
 
 
1933	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934
1935	/* If we don't want any read-ahead, don't bother */
1936	if (vma->vm_flags & VM_RAND_READ)
1937		return;
1938	if (!ra->ra_pages)
1939		return;
1940
1941	if (vma->vm_flags & VM_SEQ_READ) {
1942		page_cache_sync_readahead(mapping, ra, file, offset,
1943					  ra->ra_pages);
1944		return;
1945	}
1946
1947	/* Avoid banging the cache line if not needed */
1948	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949		ra->mmap_miss++;
 
1950
1951	/*
1952	 * Do we miss much more than hit in this file? If so,
1953	 * stop bothering with read-ahead. It will only hurt.
1954	 */
1955	if (ra->mmap_miss > MMAP_LOTSAMISS)
1956		return;
1957
1958	/*
1959	 * mmap read-around
1960	 */
1961	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
1962	ra->size = ra->ra_pages;
1963	ra->async_size = ra->ra_pages / 4;
1964	ra_submit(ra, mapping, file);
 
 
1965}
1966
1967/*
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
 
1970 */
1971static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972				    struct file_ra_state *ra,
1973				    struct file *file,
1974				    struct page *page,
1975				    pgoff_t offset)
1976{
1977	struct address_space *mapping = file->f_mapping;
 
 
 
 
1978
1979	/* If we don't want any read-ahead, don't bother */
1980	if (vma->vm_flags & VM_RAND_READ)
1981		return;
1982	if (ra->mmap_miss > 0)
1983		ra->mmap_miss--;
1984	if (PageReadahead(page))
1985		page_cache_async_readahead(mapping, ra, file,
1986					   page, offset, ra->ra_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987}
1988
1989/**
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma:	vma in which the fault was taken
1992 * @vmf:	struct vm_fault containing details of the fault
1993 *
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1996 *
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2000 *
2001 * vma->vm_mm->mmap_sem must be held on entry.
2002 *
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2007 *
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2010 *
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2012 */
2013int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015	int error;
2016	struct file *file = vma->vm_file;
 
2017	struct address_space *mapping = file->f_mapping;
2018	struct file_ra_state *ra = &file->f_ra;
2019	struct inode *inode = mapping->host;
2020	pgoff_t offset = vmf->pgoff;
2021	struct page *page;
2022	loff_t size;
2023	int ret = 0;
2024
2025	size = round_up(i_size_read(inode), PAGE_SIZE);
2026	if (offset >= size >> PAGE_SHIFT)
2027		return VM_FAULT_SIGBUS;
2028
2029	/*
2030	 * Do we have something in the page cache already?
2031	 */
2032	page = find_get_page(mapping, offset);
2033	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034		/*
2035		 * We found the page, so try async readahead before
2036		 * waiting for the lock.
2037		 */
2038		do_async_mmap_readahead(vma, ra, file, page, offset);
2039	} else if (!page) {
 
 
 
 
 
 
 
 
 
2040		/* No page in the page cache at all */
2041		do_sync_mmap_readahead(vma, ra, file, offset);
2042		count_vm_event(PGMAJFAULT);
2043		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044		ret = VM_FAULT_MAJOR;
 
2045retry_find:
2046		page = find_get_page(mapping, offset);
2047		if (!page)
2048			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	}
2050
2051	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052		put_page(page);
2053		return ret | VM_FAULT_RETRY;
2054	}
2055
2056	/* Did it get truncated? */
2057	if (unlikely(page->mapping != mapping)) {
2058		unlock_page(page);
2059		put_page(page);
2060		goto retry_find;
2061	}
2062	VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064	/*
2065	 * We have a locked page in the page cache, now we need to check
2066	 * that it's up-to-date. If not, it is going to be due to an error.
 
2067	 */
2068	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
2070
2071	/*
2072	 * Found the page and have a reference on it.
2073	 * We must recheck i_size under page lock.
2074	 */
2075	size = round_up(i_size_read(inode), PAGE_SIZE);
2076	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077		unlock_page(page);
2078		put_page(page);
2079		return VM_FAULT_SIGBUS;
2080	}
2081
2082	vmf->page = page;
2083	return ret | VM_FAULT_LOCKED;
2084
2085no_cached_page:
2086	/*
2087	 * We're only likely to ever get here if MADV_RANDOM is in
2088	 * effect.
2089	 */
2090	error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092	/*
2093	 * The page we want has now been added to the page cache.
2094	 * In the unlikely event that someone removed it in the
2095	 * meantime, we'll just come back here and read it again.
2096	 */
2097	if (error >= 0)
2098		goto retry_find;
2099
2100	/*
2101	 * An error return from page_cache_read can result if the
2102	 * system is low on memory, or a problem occurs while trying
2103	 * to schedule I/O.
2104	 */
2105	if (error == -ENOMEM)
2106		return VM_FAULT_OOM;
2107	return VM_FAULT_SIGBUS;
2108
2109page_not_uptodate:
2110	/*
2111	 * Umm, take care of errors if the page isn't up-to-date.
2112	 * Try to re-read it _once_. We do this synchronously,
2113	 * because there really aren't any performance issues here
2114	 * and we need to check for errors.
2115	 */
2116	ClearPageError(page);
2117	error = mapping->a_ops->readpage(file, page);
2118	if (!error) {
2119		wait_on_page_locked(page);
2120		if (!PageUptodate(page))
2121			error = -EIO;
2122	}
2123	put_page(page);
2124
2125	if (!error || error == AOP_TRUNCATED_PAGE)
2126		goto retry_find;
 
2127
2128	/* Things didn't work out. Return zero to tell the mm layer so. */
2129	shrink_readahead_size_eio(file, ra);
2130	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131}
2132EXPORT_SYMBOL(filemap_fault);
2133
2134void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
 
2135{
2136	struct radix_tree_iter iter;
2137	void **slot;
2138	struct file *file = vma->vm_file;
2139	struct address_space *mapping = file->f_mapping;
2140	loff_t size;
2141	struct page *page;
2142	unsigned long address = (unsigned long) vmf->virtual_address;
2143	unsigned long addr;
2144	pte_t *pte;
2145
2146	rcu_read_lock();
2147	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148		if (iter.index > vmf->max_pgoff)
2149			break;
2150repeat:
2151		page = radix_tree_deref_slot(slot);
2152		if (unlikely(!page))
2153			goto next;
2154		if (radix_tree_exception(page)) {
2155			if (radix_tree_deref_retry(page)) {
2156				slot = radix_tree_iter_retry(&iter);
2157				continue;
2158			}
2159			goto next;
2160		}
 
2161
2162		if (!page_cache_get_speculative(page))
2163			goto repeat;
2164
2165		/* Has the page moved? */
2166		if (unlikely(page != *slot)) {
2167			put_page(page);
2168			goto repeat;
2169		}
2170
2171		if (!PageUptodate(page) ||
2172				PageReadahead(page) ||
2173				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174			goto skip;
2175		if (!trylock_page(page))
2176			goto skip;
2177
2178		if (page->mapping != mapping || !PageUptodate(page))
 
2179			goto unlock;
2180
2181		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182		if (page->index >= size >> PAGE_SHIFT)
2183			goto unlock;
2184
2185		pte = vmf->pte + page->index - vmf->pgoff;
2186		if (!pte_none(*pte))
2187			goto unlock;
2188
2189		if (file->f_ra.mmap_miss > 0)
2190			file->f_ra.mmap_miss--;
2191		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192		do_set_pte(vma, addr, page, pte, false, false);
2193		unlock_page(page);
2194		goto next;
2195unlock:
2196		unlock_page(page);
2197skip:
2198		put_page(page);
2199next:
2200		if (iter.index == vmf->max_pgoff)
2201			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	rcu_read_unlock();
 
 
 
 
 
 
 
 
2204}
2205EXPORT_SYMBOL(filemap_map_pages);
2206
2207int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208{
2209	struct page *page = vmf->page;
2210	struct inode *inode = file_inode(vma->vm_file);
2211	int ret = VM_FAULT_LOCKED;
2212
2213	sb_start_pagefault(inode->i_sb);
2214	file_update_time(vma->vm_file);
2215	lock_page(page);
2216	if (page->mapping != inode->i_mapping) {
2217		unlock_page(page);
2218		ret = VM_FAULT_NOPAGE;
2219		goto out;
2220	}
2221	/*
2222	 * We mark the page dirty already here so that when freeze is in
2223	 * progress, we are guaranteed that writeback during freezing will
2224	 * see the dirty page and writeprotect it again.
2225	 */
2226	set_page_dirty(page);
2227	wait_for_stable_page(page);
2228out:
2229	sb_end_pagefault(inode->i_sb);
2230	return ret;
2231}
2232EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234const struct vm_operations_struct generic_file_vm_ops = {
2235	.fault		= filemap_fault,
2236	.map_pages	= filemap_map_pages,
2237	.page_mkwrite	= filemap_page_mkwrite,
2238};
2239
2240/* This is used for a general mmap of a disk file */
2241
2242int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243{
2244	struct address_space *mapping = file->f_mapping;
2245
2246	if (!mapping->a_ops->readpage)
2247		return -ENOEXEC;
2248	file_accessed(file);
2249	vma->vm_ops = &generic_file_vm_ops;
2250	return 0;
2251}
2252
2253/*
2254 * This is for filesystems which do not implement ->writepage.
2255 */
2256int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257{
2258	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259		return -EINVAL;
2260	return generic_file_mmap(file, vma);
2261}
2262#else
2263int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
2264{
2265	return -ENOSYS;
2266}
2267int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268{
2269	return -ENOSYS;
2270}
2271#endif /* CONFIG_MMU */
2272
 
2273EXPORT_SYMBOL(generic_file_mmap);
2274EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276static struct page *wait_on_page_read(struct page *page)
 
2277{
2278	if (!IS_ERR(page)) {
2279		wait_on_page_locked(page);
2280		if (!PageUptodate(page)) {
2281			put_page(page);
2282			page = ERR_PTR(-EIO);
2283		}
2284	}
2285	return page;
2286}
2287
2288static struct page *do_read_cache_page(struct address_space *mapping,
2289				pgoff_t index,
2290				int (*filler)(void *, struct page *),
2291				void *data,
2292				gfp_t gfp)
2293{
2294	struct page *page;
2295	int err;
 
 
 
2296repeat:
2297	page = find_get_page(mapping, index);
2298	if (!page) {
2299		page = __page_cache_alloc(gfp | __GFP_COLD);
2300		if (!page)
2301			return ERR_PTR(-ENOMEM);
2302		err = add_to_page_cache_lru(page, mapping, index, gfp);
2303		if (unlikely(err)) {
2304			put_page(page);
2305			if (err == -EEXIST)
2306				goto repeat;
2307			/* Presumably ENOMEM for radix tree node */
2308			return ERR_PTR(err);
2309		}
2310
2311filler:
2312		err = filler(data, page);
2313		if (err < 0) {
2314			put_page(page);
2315			return ERR_PTR(err);
2316		}
2317
2318		page = wait_on_page_read(page);
2319		if (IS_ERR(page))
2320			return page;
2321		goto out;
2322	}
2323	if (PageUptodate(page))
2324		goto out;
2325
2326	/*
2327	 * Page is not up to date and may be locked due one of the following
2328	 * case a: Page is being filled and the page lock is held
2329	 * case b: Read/write error clearing the page uptodate status
2330	 * case c: Truncation in progress (page locked)
2331	 * case d: Reclaim in progress
2332	 *
2333	 * Case a, the page will be up to date when the page is unlocked.
2334	 *    There is no need to serialise on the page lock here as the page
2335	 *    is pinned so the lock gives no additional protection. Even if the
2336	 *    the page is truncated, the data is still valid if PageUptodate as
2337	 *    it's a race vs truncate race.
2338	 * Case b, the page will not be up to date
2339	 * Case c, the page may be truncated but in itself, the data may still
2340	 *    be valid after IO completes as it's a read vs truncate race. The
2341	 *    operation must restart if the page is not uptodate on unlock but
2342	 *    otherwise serialising on page lock to stabilise the mapping gives
2343	 *    no additional guarantees to the caller as the page lock is
2344	 *    released before return.
2345	 * Case d, similar to truncation. If reclaim holds the page lock, it
2346	 *    will be a race with remove_mapping that determines if the mapping
2347	 *    is valid on unlock but otherwise the data is valid and there is
2348	 *    no need to serialise with page lock.
2349	 *
2350	 * As the page lock gives no additional guarantee, we optimistically
2351	 * wait on the page to be unlocked and check if it's up to date and
2352	 * use the page if it is. Otherwise, the page lock is required to
2353	 * distinguish between the different cases. The motivation is that we
2354	 * avoid spurious serialisations and wakeups when multiple processes
2355	 * wait on the same page for IO to complete.
2356	 */
2357	wait_on_page_locked(page);
2358	if (PageUptodate(page))
2359		goto out;
2360
2361	/* Distinguish between all the cases under the safety of the lock */
2362	lock_page(page);
2363
2364	/* Case c or d, restart the operation */
2365	if (!page->mapping) {
2366		unlock_page(page);
2367		put_page(page);
2368		goto repeat;
2369	}
2370
2371	/* Someone else locked and filled the page in a very small window */
2372	if (PageUptodate(page)) {
2373		unlock_page(page);
2374		goto out;
2375	}
2376	goto filler;
 
 
 
 
 
 
 
 
2377
2378out:
2379	mark_page_accessed(page);
2380	return page;
2381}
2382
2383/**
2384 * read_cache_page - read into page cache, fill it if needed
2385 * @mapping:	the page's address_space
2386 * @index:	the page index
2387 * @filler:	function to perform the read
2388 * @data:	first arg to filler(data, page) function, often left as NULL
2389 *
2390 * Read into the page cache. If a page already exists, and PageUptodate() is
2391 * not set, try to fill the page and wait for it to become unlocked.
2392 *
2393 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395struct page *read_cache_page(struct address_space *mapping,
2396				pgoff_t index,
2397				int (*filler)(void *, struct page *),
2398				void *data)
2399{
2400	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2401}
2402EXPORT_SYMBOL(read_cache_page);
2403
2404/**
2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406 * @mapping:	the page's address_space
2407 * @index:	the page index
2408 * @gfp:	the page allocator flags to use if allocating
2409 *
2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411 * any new page allocations done using the specified allocation flags.
2412 *
2413 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2414 */
2415struct page *read_cache_page_gfp(struct address_space *mapping,
2416				pgoff_t index,
2417				gfp_t gfp)
2418{
2419	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422}
2423EXPORT_SYMBOL(read_cache_page_gfp);
2424
2425/*
2426 * Performs necessary checks before doing a write
2427 *
2428 * Can adjust writing position or amount of bytes to write.
2429 * Returns appropriate error code that caller should return or
2430 * zero in case that write should be allowed.
2431 */
2432inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433{
2434	struct file *file = iocb->ki_filp;
2435	struct inode *inode = file->f_mapping->host;
2436	unsigned long limit = rlimit(RLIMIT_FSIZE);
2437	loff_t pos;
2438
2439	if (!iov_iter_count(from))
2440		return 0;
2441
2442	/* FIXME: this is for backwards compatibility with 2.4 */
2443	if (iocb->ki_flags & IOCB_APPEND)
2444		iocb->ki_pos = i_size_read(inode);
2445
2446	pos = iocb->ki_pos;
2447
2448	if (limit != RLIM_INFINITY) {
2449		if (iocb->ki_pos >= limit) {
2450			send_sig(SIGXFSZ, current, 0);
2451			return -EFBIG;
2452		}
2453		iov_iter_truncate(from, limit - (unsigned long)pos);
2454	}
2455
2456	/*
2457	 * LFS rule
2458	 */
2459	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460				!(file->f_flags & O_LARGEFILE))) {
2461		if (pos >= MAX_NON_LFS)
2462			return -EFBIG;
2463		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464	}
2465
2466	/*
2467	 * Are we about to exceed the fs block limit ?
2468	 *
2469	 * If we have written data it becomes a short write.  If we have
2470	 * exceeded without writing data we send a signal and return EFBIG.
2471	 * Linus frestrict idea will clean these up nicely..
2472	 */
2473	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474		return -EFBIG;
2475
2476	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477	return iov_iter_count(from);
2478}
2479EXPORT_SYMBOL(generic_write_checks);
2480
2481int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482				loff_t pos, unsigned len, unsigned flags,
2483				struct page **pagep, void **fsdata)
2484{
2485	const struct address_space_operations *aops = mapping->a_ops;
2486
2487	return aops->write_begin(file, mapping, pos, len, flags,
2488							pagep, fsdata);
2489}
2490EXPORT_SYMBOL(pagecache_write_begin);
2491
2492int pagecache_write_end(struct file *file, struct address_space *mapping,
2493				loff_t pos, unsigned len, unsigned copied,
2494				struct page *page, void *fsdata)
2495{
2496	const struct address_space_operations *aops = mapping->a_ops;
2497
2498	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
 
2499}
2500EXPORT_SYMBOL(pagecache_write_end);
2501
2502ssize_t
2503generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2504{
2505	struct file	*file = iocb->ki_filp;
2506	struct address_space *mapping = file->f_mapping;
2507	struct inode	*inode = mapping->host;
2508	ssize_t		written;
2509	size_t		write_len;
2510	pgoff_t		end;
2511	struct iov_iter data;
2512
2513	write_len = iov_iter_count(from);
2514	end = (pos + write_len - 1) >> PAGE_SHIFT;
2515
2516	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517	if (written)
2518		goto out;
2519
2520	/*
2521	 * After a write we want buffered reads to be sure to go to disk to get
2522	 * the new data.  We invalidate clean cached page from the region we're
2523	 * about to write.  We do this *before* the write so that we can return
2524	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2525	 */
2526	if (mapping->nrpages) {
2527		written = invalidate_inode_pages2_range(mapping,
2528					pos >> PAGE_SHIFT, end);
2529		/*
2530		 * If a page can not be invalidated, return 0 to fall back
2531		 * to buffered write.
2532		 */
2533		if (written) {
2534			if (written == -EBUSY)
2535				return 0;
2536			goto out;
2537		}
2538	}
2539
2540	data = *from;
2541	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543	/*
2544	 * Finally, try again to invalidate clean pages which might have been
2545	 * cached by non-direct readahead, or faulted in by get_user_pages()
2546	 * if the source of the write was an mmap'ed region of the file
2547	 * we're writing.  Either one is a pretty crazy thing to do,
2548	 * so we don't support it 100%.  If this invalidation
2549	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2550	 */
2551	if (mapping->nrpages) {
2552		invalidate_inode_pages2_range(mapping,
2553					      pos >> PAGE_SHIFT, end);
2554	}
2555
2556	if (written > 0) {
 
 
 
 
2557		pos += written;
2558		iov_iter_advance(from, written);
2559		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560			i_size_write(inode, pos);
2561			mark_inode_dirty(inode);
2562		}
2563		iocb->ki_pos = pos;
2564	}
2565out:
 
2566	return written;
2567}
2568EXPORT_SYMBOL(generic_file_direct_write);
2569
2570/*
2571 * Find or create a page at the given pagecache position. Return the locked
2572 * page. This function is specifically for buffered writes.
2573 */
2574struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575					pgoff_t index, unsigned flags)
2576{
2577	struct page *page;
2578	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
2580	if (flags & AOP_FLAG_NOFS)
2581		fgp_flags |= FGP_NOFS;
2582
2583	page = pagecache_get_page(mapping, index, fgp_flags,
2584			mapping_gfp_mask(mapping));
2585	if (page)
2586		wait_for_stable_page(page);
2587
2588	return page;
2589}
2590EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592ssize_t generic_perform_write(struct file *file,
2593				struct iov_iter *i, loff_t pos)
2594{
 
 
2595	struct address_space *mapping = file->f_mapping;
2596	const struct address_space_operations *a_ops = mapping->a_ops;
2597	long status = 0;
2598	ssize_t written = 0;
2599	unsigned int flags = 0;
2600
2601	/*
2602	 * Copies from kernel address space cannot fail (NFSD is a big user).
2603	 */
2604	if (!iter_is_iovec(i))
2605		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607	do {
2608		struct page *page;
2609		unsigned long offset;	/* Offset into pagecache page */
2610		unsigned long bytes;	/* Bytes to write to page */
2611		size_t copied;		/* Bytes copied from user */
2612		void *fsdata;
2613
2614		offset = (pos & (PAGE_SIZE - 1));
2615		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616						iov_iter_count(i));
2617
2618again:
2619		/*
2620		 * Bring in the user page that we will copy from _first_.
2621		 * Otherwise there's a nasty deadlock on copying from the
2622		 * same page as we're writing to, without it being marked
2623		 * up-to-date.
2624		 *
2625		 * Not only is this an optimisation, but it is also required
2626		 * to check that the address is actually valid, when atomic
2627		 * usercopies are used, below.
2628		 */
2629		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630			status = -EFAULT;
2631			break;
2632		}
2633
2634		if (fatal_signal_pending(current)) {
2635			status = -EINTR;
2636			break;
2637		}
2638
2639		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640						&page, &fsdata);
2641		if (unlikely(status < 0))
2642			break;
2643
2644		if (mapping_writably_mapped(mapping))
2645			flush_dcache_page(page);
2646
2647		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2648		flush_dcache_page(page);
2649
2650		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651						page, fsdata);
2652		if (unlikely(status < 0))
2653			break;
2654		copied = status;
2655
 
2656		cond_resched();
2657
2658		iov_iter_advance(i, copied);
2659		if (unlikely(copied == 0)) {
2660			/*
2661			 * If we were unable to copy any data at all, we must
2662			 * fall back to a single segment length write.
2663			 *
2664			 * If we didn't fallback here, we could livelock
2665			 * because not all segments in the iov can be copied at
2666			 * once without a pagefault.
2667			 */
2668			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669						iov_iter_single_seg_count(i));
2670			goto again;
2671		}
2672		pos += copied;
2673		written += copied;
2674
2675		balance_dirty_pages_ratelimited(mapping);
2676	} while (iov_iter_count(i));
2677
2678	return written ? written : status;
 
 
 
2679}
2680EXPORT_SYMBOL(generic_perform_write);
2681
2682/**
2683 * __generic_file_write_iter - write data to a file
2684 * @iocb:	IO state structure (file, offset, etc.)
2685 * @from:	iov_iter with data to write
2686 *
2687 * This function does all the work needed for actually writing data to a
2688 * file. It does all basic checks, removes SUID from the file, updates
2689 * modification times and calls proper subroutines depending on whether we
2690 * do direct IO or a standard buffered write.
2691 *
2692 * It expects i_mutex to be grabbed unless we work on a block device or similar
2693 * object which does not need locking at all.
2694 *
2695 * This function does *not* take care of syncing data in case of O_SYNC write.
2696 * A caller has to handle it. This is mainly due to the fact that we want to
2697 * avoid syncing under i_mutex.
 
 
 
 
2698 */
2699ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2700{
2701	struct file *file = iocb->ki_filp;
2702	struct address_space * mapping = file->f_mapping;
2703	struct inode 	*inode = mapping->host;
2704	ssize_t		written = 0;
2705	ssize_t		err;
2706	ssize_t		status;
2707
2708	/* We can write back this queue in page reclaim */
2709	current->backing_dev_info = inode_to_bdi(inode);
2710	err = file_remove_privs(file);
2711	if (err)
2712		goto out;
2713
2714	err = file_update_time(file);
2715	if (err)
2716		goto out;
2717
2718	if (iocb->ki_flags & IOCB_DIRECT) {
2719		loff_t pos, endbyte;
 
2720
2721		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
 
2722		/*
2723		 * If the write stopped short of completing, fall back to
2724		 * buffered writes.  Some filesystems do this for writes to
2725		 * holes, for example.  For DAX files, a buffered write will
2726		 * not succeed (even if it did, DAX does not handle dirty
2727		 * page-cache pages correctly).
2728		 */
2729		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730			goto out;
2731
2732		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2733		/*
2734		 * If generic_perform_write() returned a synchronous error
2735		 * then we want to return the number of bytes which were
2736		 * direct-written, or the error code if that was zero.  Note
2737		 * that this differs from normal direct-io semantics, which
2738		 * will return -EFOO even if some bytes were written.
2739		 */
2740		if (unlikely(status < 0)) {
2741			err = status;
2742			goto out;
2743		}
2744		/*
2745		 * We need to ensure that the page cache pages are written to
2746		 * disk and invalidated to preserve the expected O_DIRECT
2747		 * semantics.
2748		 */
2749		endbyte = pos + status - 1;
2750		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751		if (err == 0) {
2752			iocb->ki_pos = endbyte + 1;
2753			written += status;
2754			invalidate_mapping_pages(mapping,
2755						 pos >> PAGE_SHIFT,
2756						 endbyte >> PAGE_SHIFT);
2757		} else {
2758			/*
2759			 * We don't know how much we wrote, so just return
2760			 * the number of bytes which were direct-written
2761			 */
2762		}
2763	} else {
2764		written = generic_perform_write(file, from, iocb->ki_pos);
2765		if (likely(written > 0))
2766			iocb->ki_pos += written;
2767	}
2768out:
2769	current->backing_dev_info = NULL;
2770	return written ? written : err;
2771}
2772EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774/**
2775 * generic_file_write_iter - write data to a file
2776 * @iocb:	IO state structure
2777 * @from:	iov_iter with data to write
2778 *
2779 * This is a wrapper around __generic_file_write_iter() to be used by most
2780 * filesystems. It takes care of syncing the file in case of O_SYNC file
2781 * and acquires i_mutex as needed.
 
 
 
 
2782 */
2783ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2784{
2785	struct file *file = iocb->ki_filp;
2786	struct inode *inode = file->f_mapping->host;
2787	ssize_t ret;
2788
2789	inode_lock(inode);
2790	ret = generic_write_checks(iocb, from);
2791	if (ret > 0)
2792		ret = __generic_file_write_iter(iocb, from);
2793	inode_unlock(inode);
2794
2795	if (ret > 0) {
2796		ssize_t err;
2797
2798		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799		if (err < 0)
2800			ret = err;
2801	}
2802	return ret;
2803}
2804EXPORT_SYMBOL(generic_file_write_iter);
2805
2806/**
2807 * try_to_release_page() - release old fs-specific metadata on a page
 
 
2808 *
2809 * @page: the page which the kernel is trying to free
2810 * @gfp_mask: memory allocation flags (and I/O mode)
2811 *
2812 * The address_space is to try to release any data against the page
2813 * (presumably at page->private).  If the release was successful, return `1'.
2814 * Otherwise return zero.
2815 *
2816 * This may also be called if PG_fscache is set on a page, indicating that the
2817 * page is known to the local caching routines.
2818 *
2819 * The @gfp_mask argument specifies whether I/O may be performed to release
2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2821 *
 
2822 */
2823int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824{
2825	struct address_space * const mapping = page->mapping;
2826
2827	BUG_ON(!PageLocked(page));
2828	if (PageWriteback(page))
2829		return 0;
 
 
2830
2831	if (mapping && mapping->a_ops->releasepage)
2832		return mapping->a_ops->releasepage(page, gfp_mask);
2833	return try_to_free_buffers(page);
2834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836EXPORT_SYMBOL(try_to_release_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
  36#include <linux/cpuset.h>
 
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <asm/pgalloc.h>
  50#include <asm/tlbflush.h>
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/filemap.h>
  55
  56/*
  57 * FIXME: remove all knowledge of the buffer layer from the core VM
  58 */
  59#include <linux/buffer_head.h> /* for try_to_free_buffers */
  60
  61#include <asm/mman.h>
  62
  63#include "swap.h"
  64
  65/*
  66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  67 * though.
  68 *
  69 * Shared mappings now work. 15.8.1995  Bruno.
  70 *
  71 * finished 'unifying' the page and buffer cache and SMP-threaded the
  72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  73 *
  74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  75 */
  76
  77/*
  78 * Lock ordering:
  79 *
  80 *  ->i_mmap_rwsem		(truncate_pagecache)
  81 *    ->private_lock		(__free_pte->block_dirty_folio)
  82 *      ->swap_lock		(exclusive_swap_page, others)
  83 *        ->i_pages lock
  84 *
  85 *  ->i_rwsem
  86 *    ->invalidate_lock		(acquired by fs in truncate path)
  87 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  88 *
  89 *  ->mmap_lock
  90 *    ->i_mmap_rwsem
  91 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  92 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  93 *
  94 *  ->mmap_lock
  95 *    ->invalidate_lock		(filemap_fault)
  96 *      ->lock_page		(filemap_fault, access_process_vm)
  97 *
  98 *  ->i_rwsem			(generic_perform_write)
  99 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 100 *
 101 *  bdi->wb.list_lock
 102 *    sb_lock			(fs/fs-writeback.c)
 103 *    ->i_pages lock		(__sync_single_inode)
 104 *
 105 *  ->i_mmap_rwsem
 106 *    ->anon_vma.lock		(vma_merge)
 107 *
 108 *  ->anon_vma.lock
 109 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 110 *
 111 *  ->page_table_lock or pte_lock
 112 *    ->swap_lock		(try_to_unmap_one)
 113 *    ->private_lock		(try_to_unmap_one)
 114 *    ->i_pages lock		(try_to_unmap_one)
 115 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 116 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 117 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 118 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 125 */
 126
 127static void mapping_set_update(struct xa_state *xas,
 128		struct address_space *mapping)
 129{
 130	if (dax_mapping(mapping) || shmem_mapping(mapping))
 131		return;
 132	xas_set_update(xas, workingset_update_node);
 133	xas_set_lru(xas, &shadow_nodes);
 134}
 135
 136static void page_cache_delete(struct address_space *mapping,
 137				   struct folio *folio, void *shadow)
 138{
 139	XA_STATE(xas, &mapping->i_pages, folio->index);
 140	long nr = 1;
 
 
 
 141
 142	mapping_set_update(&xas, mapping);
 143
 144	xas_set_order(&xas, folio->index, folio_order(folio));
 145	nr = folio_nr_pages(folio);
 146
 147	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 148
 149	xas_store(&xas, shadow);
 150	xas_init_marks(&xas);
 151
 152	folio->mapping = NULL;
 153	/* Leave page->index set: truncation lookup relies upon it */
 154	mapping->nrpages -= nr;
 155}
 156
 157static void filemap_unaccount_folio(struct address_space *mapping,
 158		struct folio *folio)
 159{
 160	long nr;
 161
 162	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 163	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 164		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 165			 current->comm, folio_pfn(folio));
 166		dump_page(&folio->page, "still mapped when deleted");
 167		dump_stack();
 168		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 169
 170		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 171			int mapcount = page_mapcount(&folio->page);
 172
 173			if (folio_ref_count(folio) >= mapcount + 2) {
 174				/*
 175				 * All vmas have already been torn down, so it's
 176				 * a good bet that actually the page is unmapped
 177				 * and we'd rather not leak it: if we're wrong,
 178				 * another bad page check should catch it later.
 179				 */
 180				page_mapcount_reset(&folio->page);
 181				folio_ref_sub(folio, mapcount);
 182			}
 183		}
 184	}
 
 185
 186	/* hugetlb folios do not participate in page cache accounting. */
 187	if (folio_test_hugetlb(folio))
 
 
 188		return;
 
 189
 190	nr = folio_nr_pages(folio);
 
 
 
 
 
 
 191
 192	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 193	if (folio_test_swapbacked(folio)) {
 194		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 195		if (folio_test_pmd_mappable(folio))
 196			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 197	} else if (folio_test_pmd_mappable(folio)) {
 198		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 199		filemap_nr_thps_dec(mapping);
 200	}
 201
 202	/*
 203	 * At this point folio must be either written or cleaned by
 204	 * truncate.  Dirty folio here signals a bug and loss of
 205	 * unwritten data - on ordinary filesystems.
 206	 *
 207	 * But it's harmless on in-memory filesystems like tmpfs; and can
 208	 * occur when a driver which did get_user_pages() sets page dirty
 209	 * before putting it, while the inode is being finally evicted.
 210	 *
 211	 * Below fixes dirty accounting after removing the folio entirely
 212	 * but leaves the dirty flag set: it has no effect for truncated
 213	 * folio and anyway will be cleared before returning folio to
 214	 * buddy allocator.
 215	 */
 216	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 217			 mapping_can_writeback(mapping)))
 218		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 219}
 220
 221/*
 222 * Delete a page from the page cache and free it. Caller has to make
 223 * sure the page is locked and that nobody else uses it - or that usage
 224 * is safe.  The caller must hold the i_pages lock.
 225 */
 226void __filemap_remove_folio(struct folio *folio, void *shadow)
 227{
 228	struct address_space *mapping = folio->mapping;
 229
 230	trace_mm_filemap_delete_from_page_cache(folio);
 231	filemap_unaccount_folio(mapping, folio);
 232	page_cache_delete(mapping, folio, shadow);
 233}
 
 
 
 
 
 
 234
 235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 236{
 237	void (*free_folio)(struct folio *);
 238	int refs = 1;
 239
 240	free_folio = mapping->a_ops->free_folio;
 241	if (free_folio)
 242		free_folio(folio);
 
 
 243
 244	if (folio_test_large(folio))
 245		refs = folio_nr_pages(folio);
 246	folio_put_refs(folio, refs);
 247}
 
 
 
 
 
 
 
 
 
 248
 249/**
 250 * filemap_remove_folio - Remove folio from page cache.
 251 * @folio: The folio.
 252 *
 253 * This must be called only on folios that are locked and have been
 254 * verified to be in the page cache.  It will never put the folio into
 255 * the free list because the caller has a reference on the page.
 256 */
 257void filemap_remove_folio(struct folio *folio)
 258{
 259	struct address_space *mapping = folio->mapping;
 260
 261	BUG_ON(!folio_test_locked(folio));
 262	spin_lock(&mapping->host->i_lock);
 263	xa_lock_irq(&mapping->i_pages);
 264	__filemap_remove_folio(folio, NULL);
 265	xa_unlock_irq(&mapping->i_pages);
 266	if (mapping_shrinkable(mapping))
 267		inode_add_lru(mapping->host);
 268	spin_unlock(&mapping->host->i_lock);
 269
 270	filemap_free_folio(mapping, folio);
 271}
 272
 273/*
 274 * page_cache_delete_batch - delete several folios from page cache
 275 * @mapping: the mapping to which folios belong
 276 * @fbatch: batch of folios to delete
 277 *
 278 * The function walks over mapping->i_pages and removes folios passed in
 279 * @fbatch from the mapping. The function expects @fbatch to be sorted
 280 * by page index and is optimised for it to be dense.
 281 * It tolerates holes in @fbatch (mapping entries at those indices are not
 282 * modified).
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287			     struct folio_batch *fbatch)
 288{
 289	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 290	long total_pages = 0;
 291	int i = 0;
 292	struct folio *folio;
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, folio, ULONG_MAX) {
 296		if (i >= folio_batch_count(fbatch))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(folio))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (folio != fbatch->folios[i]) {
 310			VM_BUG_ON_FOLIO(folio->index >
 311					fbatch->folios[i]->index, folio);
 312			continue;
 313		}
 314
 315		WARN_ON_ONCE(!folio_test_locked(folio));
 316
 317		folio->mapping = NULL;
 318		/* Leave folio->index set: truncation lookup relies on it */
 319
 320		i++;
 321		xas_store(&xas, NULL);
 322		total_pages += folio_nr_pages(folio);
 323	}
 324	mapping->nrpages -= total_pages;
 325}
 326
 327void delete_from_page_cache_batch(struct address_space *mapping,
 328				  struct folio_batch *fbatch)
 
 
 
 
 
 
 
 329{
 330	int i;
 
 331
 332	if (!folio_batch_count(fbatch))
 333		return;
 
 334
 335	spin_lock(&mapping->host->i_lock);
 336	xa_lock_irq(&mapping->i_pages);
 337	for (i = 0; i < folio_batch_count(fbatch); i++) {
 338		struct folio *folio = fbatch->folios[i];
 339
 340		trace_mm_filemap_delete_from_page_cache(folio);
 341		filemap_unaccount_folio(mapping, folio);
 342	}
 343	page_cache_delete_batch(mapping, fbatch);
 344	xa_unlock_irq(&mapping->i_pages);
 345	if (mapping_shrinkable(mapping))
 346		inode_add_lru(mapping->host);
 347	spin_unlock(&mapping->host->i_lock);
 348
 349	for (i = 0; i < folio_batch_count(fbatch); i++)
 350		filemap_free_folio(mapping, fbatch->folios[i]);
 
 351}
 
 352
 353int filemap_check_errors(struct address_space *mapping)
 354{
 355	int ret = 0;
 356	/* Check for outstanding write errors */
 357	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 358	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 359		ret = -ENOSPC;
 360	if (test_bit(AS_EIO, &mapping->flags) &&
 361	    test_and_clear_bit(AS_EIO, &mapping->flags))
 362		ret = -EIO;
 363	return ret;
 364}
 365EXPORT_SYMBOL(filemap_check_errors);
 366
 367static int filemap_check_and_keep_errors(struct address_space *mapping)
 368{
 369	/* Check for outstanding write errors */
 370	if (test_bit(AS_EIO, &mapping->flags))
 371		return -EIO;
 372	if (test_bit(AS_ENOSPC, &mapping->flags))
 373		return -ENOSPC;
 374	return 0;
 375}
 376
 377/**
 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 379 * @mapping:	address space structure to write
 380 * @wbc:	the writeback_control controlling the writeout
 381 *
 382 * Call writepages on the mapping using the provided wbc to control the
 383 * writeout.
 384 *
 385 * Return: %0 on success, negative error code otherwise.
 386 */
 387int filemap_fdatawrite_wbc(struct address_space *mapping,
 388			   struct writeback_control *wbc)
 389{
 390	int ret;
 391
 392	if (!mapping_can_writeback(mapping) ||
 393	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 394		return 0;
 395
 396	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 397	ret = do_writepages(mapping, wbc);
 398	wbc_detach_inode(wbc);
 399	return ret;
 400}
 401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 402
 403/**
 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 405 * @mapping:	address space structure to write
 406 * @start:	offset in bytes where the range starts
 407 * @end:	offset in bytes where the range ends (inclusive)
 408 * @sync_mode:	enable synchronous operation
 409 *
 410 * Start writeback against all of a mapping's dirty pages that lie
 411 * within the byte offsets <start, end> inclusive.
 412 *
 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 414 * opposed to a regular memory cleansing writeback.  The difference between
 415 * these two operations is that if a dirty page/buffer is encountered, it must
 416 * be waited upon, and not just skipped over.
 417 *
 418 * Return: %0 on success, negative error code otherwise.
 419 */
 420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 421				loff_t end, int sync_mode)
 422{
 
 423	struct writeback_control wbc = {
 424		.sync_mode = sync_mode,
 425		.nr_to_write = LONG_MAX,
 426		.range_start = start,
 427		.range_end = end,
 428	};
 429
 430	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 431}
 432
 433static inline int __filemap_fdatawrite(struct address_space *mapping,
 434	int sync_mode)
 435{
 436	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 437}
 438
 439int filemap_fdatawrite(struct address_space *mapping)
 440{
 441	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 442}
 443EXPORT_SYMBOL(filemap_fdatawrite);
 444
 445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 446				loff_t end)
 447{
 448	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 449}
 450EXPORT_SYMBOL(filemap_fdatawrite_range);
 451
 452/**
 453 * filemap_flush - mostly a non-blocking flush
 454 * @mapping:	target address_space
 455 *
 456 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 457 * purposes - I/O may not be started against all dirty pages.
 458 *
 459 * Return: %0 on success, negative error code otherwise.
 460 */
 461int filemap_flush(struct address_space *mapping)
 462{
 463	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 464}
 465EXPORT_SYMBOL(filemap_flush);
 466
 467/**
 468 * filemap_range_has_page - check if a page exists in range.
 469 * @mapping:           address space within which to check
 470 * @start_byte:        offset in bytes where the range starts
 471 * @end_byte:          offset in bytes where the range ends (inclusive)
 472 *
 473 * Find at least one page in the range supplied, usually used to check if
 474 * direct writing in this range will trigger a writeback.
 475 *
 476 * Return: %true if at least one page exists in the specified range,
 477 * %false otherwise.
 478 */
 479bool filemap_range_has_page(struct address_space *mapping,
 480			   loff_t start_byte, loff_t end_byte)
 481{
 482	struct folio *folio;
 483	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 484	pgoff_t max = end_byte >> PAGE_SHIFT;
 485
 486	if (end_byte < start_byte)
 487		return false;
 488
 489	rcu_read_lock();
 490	for (;;) {
 491		folio = xas_find(&xas, max);
 492		if (xas_retry(&xas, folio))
 493			continue;
 494		/* Shadow entries don't count */
 495		if (xa_is_value(folio))
 496			continue;
 497		/*
 498		 * We don't need to try to pin this page; we're about to
 499		 * release the RCU lock anyway.  It is enough to know that
 500		 * there was a page here recently.
 501		 */
 502		break;
 503	}
 504	rcu_read_unlock();
 505
 506	return folio != NULL;
 507}
 508EXPORT_SYMBOL(filemap_range_has_page);
 509
 510static void __filemap_fdatawait_range(struct address_space *mapping,
 511				     loff_t start_byte, loff_t end_byte)
 512{
 513	pgoff_t index = start_byte >> PAGE_SHIFT;
 514	pgoff_t end = end_byte >> PAGE_SHIFT;
 515	struct folio_batch fbatch;
 516	unsigned nr_folios;
 
 517
 518	folio_batch_init(&fbatch);
 
 519
 520	while (index <= end) {
 
 
 
 
 521		unsigned i;
 522
 523		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 524				PAGECACHE_TAG_WRITEBACK, &fbatch);
 525
 526		if (!nr_folios)
 527			break;
 528
 529		for (i = 0; i < nr_folios; i++) {
 530			struct folio *folio = fbatch.folios[i];
 531
 532			folio_wait_writeback(folio);
 533			folio_clear_error(folio);
 
 534		}
 535		folio_batch_release(&fbatch);
 536		cond_resched();
 537	}
 
 
 538}
 539
 540/**
 541 * filemap_fdatawait_range - wait for writeback to complete
 542 * @mapping:		address space structure to wait for
 543 * @start_byte:		offset in bytes where the range starts
 544 * @end_byte:		offset in bytes where the range ends (inclusive)
 545 *
 546 * Walk the list of under-writeback pages of the given address space
 547 * in the given range and wait for all of them.  Check error status of
 548 * the address space and return it.
 549 *
 550 * Since the error status of the address space is cleared by this function,
 551 * callers are responsible for checking the return value and handling and/or
 552 * reporting the error.
 553 *
 554 * Return: error status of the address space.
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 
 
 
 
 
 
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 566 * @mapping:		address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the given address space in the
 571 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 572 * this function does not clear error status of the address space.
 573 *
 574 * Use this function if callers don't handle errors themselves.  Expected
 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 576 * fsfreeze(8)
 577 */
 578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 579		loff_t start_byte, loff_t end_byte)
 580{
 581	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 582	return filemap_check_and_keep_errors(mapping);
 583}
 584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 585
 586/**
 587 * file_fdatawait_range - wait for writeback to complete
 588 * @file:		file pointing to address space structure to wait for
 589 * @start_byte:		offset in bytes where the range starts
 590 * @end_byte:		offset in bytes where the range ends (inclusive)
 591 *
 592 * Walk the list of under-writeback pages of the address space that file
 593 * refers to, in the given range and wait for all of them.  Check error
 594 * status of the address space vs. the file->f_wb_err cursor and return it.
 595 *
 596 * Since the error status of the file is advanced by this function,
 597 * callers are responsible for checking the return value and handling and/or
 598 * reporting the error.
 599 *
 600 * Return: error status of the address space vs. the file->f_wb_err cursor.
 601 */
 602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 603{
 604	struct address_space *mapping = file->f_mapping;
 605
 606	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 607	return file_check_and_advance_wb_err(file);
 608}
 609EXPORT_SYMBOL(file_fdatawait_range);
 610
 611/**
 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 613 * @mapping: address space structure to wait for
 614 *
 615 * Walk the list of under-writeback pages of the given address space
 616 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 617 * does not clear error status of the address space.
 618 *
 619 * Use this function if callers don't handle errors themselves.  Expected
 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 621 * fsfreeze(8)
 622 *
 623 * Return: error status of the address space.
 624 */
 625int filemap_fdatawait_keep_errors(struct address_space *mapping)
 626{
 627	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 628	return filemap_check_and_keep_errors(mapping);
 629}
 630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 631
 632/* Returns true if writeback might be needed or already in progress. */
 633static bool mapping_needs_writeback(struct address_space *mapping)
 634{
 635	return mapping->nrpages;
 636}
 
 637
 638bool filemap_range_has_writeback(struct address_space *mapping,
 639				 loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct folio *folio;
 644
 645	if (end_byte < start_byte)
 646		return false;
 647
 648	rcu_read_lock();
 649	xas_for_each(&xas, folio, max) {
 650		if (xas_retry(&xas, folio))
 651			continue;
 652		if (xa_is_value(folio))
 653			continue;
 654		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 655				folio_test_writeback(folio))
 656			break;
 
 
 
 
 657	}
 658	rcu_read_unlock();
 659	return folio != NULL;
 660}
 661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 662
 663/**
 664 * filemap_write_and_wait_range - write out & wait on a file range
 665 * @mapping:	the address_space for the pages
 666 * @lstart:	offset in bytes where the range starts
 667 * @lend:	offset in bytes where the range ends (inclusive)
 668 *
 669 * Write out and wait upon file offsets lstart->lend, inclusive.
 670 *
 671 * Note that @lend is inclusive (describes the last byte to be written) so
 672 * that this function can be used to write to the very end-of-file (end = -1).
 673 *
 674 * Return: error status of the address space.
 675 */
 676int filemap_write_and_wait_range(struct address_space *mapping,
 677				 loff_t lstart, loff_t lend)
 678{
 679	int err = 0, err2;
 680
 681	if (lend < lstart)
 682		return 0;
 683
 684	if (mapping_needs_writeback(mapping)) {
 
 685		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 686						 WB_SYNC_ALL);
 687		/*
 688		 * Even if the above returned error, the pages may be
 689		 * written partially (e.g. -ENOSPC), so we wait for it.
 690		 * But the -EIO is special case, it may indicate the worst
 691		 * thing (e.g. bug) happened, so we avoid waiting for it.
 692		 */
 693		if (err != -EIO)
 694			__filemap_fdatawait_range(mapping, lstart, lend);
 
 695	}
 696	err2 = filemap_check_errors(mapping);
 697	if (!err)
 698		err = err2;
 699	return err;
 700}
 701EXPORT_SYMBOL(filemap_write_and_wait_range);
 702
 703void __filemap_set_wb_err(struct address_space *mapping, int err)
 704{
 705	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 706
 707	trace_filemap_set_wb_err(mapping, eseq);
 708}
 709EXPORT_SYMBOL(__filemap_set_wb_err);
 710
 711/**
 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 713 * 				   and advance wb_err to current one
 714 * @file: struct file on which the error is being reported
 715 *
 716 * When userland calls fsync (or something like nfsd does the equivalent), we
 717 * want to report any writeback errors that occurred since the last fsync (or
 718 * since the file was opened if there haven't been any).
 719 *
 720 * Grab the wb_err from the mapping. If it matches what we have in the file,
 721 * then just quickly return 0. The file is all caught up.
 722 *
 723 * If it doesn't match, then take the mapping value, set the "seen" flag in
 724 * it and try to swap it into place. If it works, or another task beat us
 725 * to it with the new value, then update the f_wb_err and return the error
 726 * portion. The error at this point must be reported via proper channels
 727 * (a'la fsync, or NFS COMMIT operation, etc.).
 728 *
 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 730 * value is protected by the f_lock since we must ensure that it reflects
 731 * the latest value swapped in for this file descriptor.
 732 *
 733 * Return: %0 on success, negative error code otherwise.
 
 734 */
 735int file_check_and_advance_wb_err(struct file *file)
 736{
 737	int err = 0;
 738	errseq_t old = READ_ONCE(file->f_wb_err);
 739	struct address_space *mapping = file->f_mapping;
 740
 741	/* Locklessly handle the common case where nothing has changed */
 742	if (errseq_check(&mapping->wb_err, old)) {
 743		/* Something changed, must use slow path */
 744		spin_lock(&file->f_lock);
 745		old = file->f_wb_err;
 746		err = errseq_check_and_advance(&mapping->wb_err,
 747						&file->f_wb_err);
 748		trace_file_check_and_advance_wb_err(file, old);
 749		spin_unlock(&file->f_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750	}
 751
 752	/*
 753	 * We're mostly using this function as a drop in replacement for
 754	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 755	 * that the legacy code would have had on these flags.
 756	 */
 757	clear_bit(AS_EIO, &mapping->flags);
 758	clear_bit(AS_ENOSPC, &mapping->flags);
 759	return err;
 760}
 761EXPORT_SYMBOL(file_check_and_advance_wb_err);
 762
 763/**
 764 * file_write_and_wait_range - write out & wait on a file range
 765 * @file:	file pointing to address_space with pages
 766 * @lstart:	offset in bytes where the range starts
 767 * @lend:	offset in bytes where the range ends (inclusive)
 768 *
 769 * Write out and wait upon file offsets lstart->lend, inclusive.
 770 *
 771 * Note that @lend is inclusive (describes the last byte to be written) so
 772 * that this function can be used to write to the very end-of-file (end = -1).
 773 *
 774 * After writing out and waiting on the data, we check and advance the
 775 * f_wb_err cursor to the latest value, and return any errors detected there.
 776 *
 777 * Return: %0 on success, negative error code otherwise.
 778 */
 779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 780{
 781	int err = 0, err2;
 782	struct address_space *mapping = file->f_mapping;
 
 783
 784	if (lend < lstart)
 785		return 0;
 
 
 
 
 786
 787	if (mapping_needs_writeback(mapping)) {
 788		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 789						 WB_SYNC_ALL);
 790		/* See comment of filemap_write_and_wait() */
 791		if (err != -EIO)
 792			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	}
 794	err2 = file_check_and_advance_wb_err(file);
 795	if (!err)
 796		err = err2;
 797	return err;
 798}
 799EXPORT_SYMBOL(file_write_and_wait_range);
 800
 801/**
 802 * replace_page_cache_folio - replace a pagecache folio with a new one
 803 * @old:	folio to be replaced
 804 * @new:	folio to replace with
 805 *
 806 * This function replaces a folio in the pagecache with a new one.  On
 807 * success it acquires the pagecache reference for the new folio and
 808 * drops it for the old folio.  Both the old and new folios must be
 809 * locked.  This function does not add the new folio to the LRU, the
 810 * caller must do that.
 811 *
 812 * The remove + add is atomic.  This function cannot fail.
 813 */
 814void replace_page_cache_folio(struct folio *old, struct folio *new)
 815{
 816	struct address_space *mapping = old->mapping;
 817	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 818	pgoff_t offset = old->index;
 819	XA_STATE(xas, &mapping->i_pages, offset);
 820
 821	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 822	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 823	VM_BUG_ON_FOLIO(new->mapping, new);
 824
 825	folio_get(new);
 826	new->mapping = mapping;
 827	new->index = offset;
 828
 829	mem_cgroup_replace_folio(old, new);
 830
 831	xas_lock_irq(&xas);
 832	xas_store(&xas, new);
 833
 834	old->mapping = NULL;
 835	/* hugetlb pages do not participate in page cache accounting. */
 836	if (!folio_test_hugetlb(old))
 837		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 838	if (!folio_test_hugetlb(new))
 839		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 840	if (folio_test_swapbacked(old))
 841		__lruvec_stat_sub_folio(old, NR_SHMEM);
 842	if (folio_test_swapbacked(new))
 843		__lruvec_stat_add_folio(new, NR_SHMEM);
 844	xas_unlock_irq(&xas);
 845	if (free_folio)
 846		free_folio(old);
 847	folio_put(old);
 848}
 849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 850
 851noinline int __filemap_add_folio(struct address_space *mapping,
 852		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 853{
 854	XA_STATE(xas, &mapping->i_pages, index);
 855	bool huge = folio_test_hugetlb(folio);
 856	bool charged = false;
 857	long nr = 1;
 858
 859	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 860	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 861	mapping_set_update(&xas, mapping);
 862
 863	if (!huge) {
 864		int error = mem_cgroup_charge(folio, NULL, gfp);
 
 865		if (error)
 866			return error;
 867		charged = true;
 868	}
 869
 870	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 871	xas_set_order(&xas, index, folio_order(folio));
 872	nr = folio_nr_pages(folio);
 
 
 
 873
 874	gfp &= GFP_RECLAIM_MASK;
 875	folio_ref_add(folio, nr);
 876	folio->mapping = mapping;
 877	folio->index = xas.xa_index;
 
 
 
 
 
 878
 879	do {
 880		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 881		void *entry, *old = NULL;
 882
 883		if (order > folio_order(folio))
 884			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 885					order, gfp);
 886		xas_lock_irq(&xas);
 887		xas_for_each_conflict(&xas, entry) {
 888			old = entry;
 889			if (!xa_is_value(entry)) {
 890				xas_set_err(&xas, -EEXIST);
 891				goto unlock;
 892			}
 893		}
 894
 895		if (old) {
 896			if (shadowp)
 897				*shadowp = old;
 898			/* entry may have been split before we acquired lock */
 899			order = xa_get_order(xas.xa, xas.xa_index);
 900			if (order > folio_order(folio)) {
 901				/* How to handle large swap entries? */
 902				BUG_ON(shmem_mapping(mapping));
 903				xas_split(&xas, old, order);
 904				xas_reset(&xas);
 905			}
 906		}
 907
 908		xas_store(&xas, folio);
 909		if (xas_error(&xas))
 910			goto unlock;
 911
 912		mapping->nrpages += nr;
 913
 914		/* hugetlb pages do not participate in page cache accounting */
 915		if (!huge) {
 916			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 917			if (folio_test_pmd_mappable(folio))
 918				__lruvec_stat_mod_folio(folio,
 919						NR_FILE_THPS, nr);
 920		}
 921unlock:
 922		xas_unlock_irq(&xas);
 923	} while (xas_nomem(&xas, gfp));
 924
 925	if (xas_error(&xas))
 926		goto error;
 927
 928	trace_mm_filemap_add_to_page_cache(folio);
 929	return 0;
 930error:
 931	if (charged)
 932		mem_cgroup_uncharge(folio);
 933	folio->mapping = NULL;
 934	/* Leave page->index set: truncation relies upon it */
 935	folio_put_refs(folio, nr);
 936	return xas_error(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937}
 938ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 939
 940int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 941				pgoff_t index, gfp_t gfp)
 942{
 943	void *shadow = NULL;
 944	int ret;
 945
 946	__folio_set_locked(folio);
 947	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 
 948	if (unlikely(ret))
 949		__folio_clear_locked(folio);
 950	else {
 951		/*
 952		 * The folio might have been evicted from cache only
 953		 * recently, in which case it should be activated like
 954		 * any other repeatedly accessed folio.
 955		 * The exception is folios getting rewritten; evicting other
 956		 * data from the working set, only to cache data that will
 957		 * get overwritten with something else, is a waste of memory.
 958		 */
 959		WARN_ON_ONCE(folio_test_active(folio));
 960		if (!(gfp & __GFP_WRITE) && shadow)
 961			workingset_refault(folio, shadow);
 962		folio_add_lru(folio);
 
 
 963	}
 964	return ret;
 965}
 966EXPORT_SYMBOL_GPL(filemap_add_folio);
 967
 968#ifdef CONFIG_NUMA
 969struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 970{
 971	int n;
 972	struct folio *folio;
 973
 974	if (cpuset_do_page_mem_spread()) {
 975		unsigned int cpuset_mems_cookie;
 976		do {
 977			cpuset_mems_cookie = read_mems_allowed_begin();
 978			n = cpuset_mem_spread_node();
 979			folio = __folio_alloc_node(gfp, order, n);
 980		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 981
 982		return folio;
 983	}
 984	return folio_alloc(gfp, order);
 985}
 986EXPORT_SYMBOL(filemap_alloc_folio);
 987#endif
 988
 989/*
 990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 991 *
 992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 993 *
 994 * @mapping1: the first mapping to lock
 995 * @mapping2: the second mapping to lock
 996 */
 997void filemap_invalidate_lock_two(struct address_space *mapping1,
 998				 struct address_space *mapping2)
 999{
1000	if (mapping1 > mapping2)
1001		swap(mapping1, mapping2);
1002	if (mapping1)
1003		down_write(&mapping1->invalidate_lock);
1004	if (mapping2 && mapping1 != mapping2)
1005		down_write_nested(&mapping2->invalidate_lock, 1);
1006}
1007EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008
1009/*
1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011 *
1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to unlock
1015 * @mapping2: the second mapping to unlock
1016 */
1017void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018				   struct address_space *mapping2)
1019{
1020	if (mapping1)
1021		up_write(&mapping1->invalidate_lock);
1022	if (mapping2 && mapping1 != mapping2)
1023		up_write(&mapping2->invalidate_lock);
1024}
1025EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026
1027/*
1028 * In order to wait for pages to become available there must be
1029 * waitqueues associated with pages. By using a hash table of
1030 * waitqueues where the bucket discipline is to maintain all
1031 * waiters on the same queue and wake all when any of the pages
1032 * become available, and for the woken contexts to check to be
1033 * sure the appropriate page became available, this saves space
1034 * at a cost of "thundering herd" phenomena during rare hash
1035 * collisions.
1036 */
1037#define PAGE_WAIT_TABLE_BITS 8
1038#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1039static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1040
1041static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1042{
1043	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1044}
 
1045
1046void __init pagecache_init(void)
1047{
1048	int i;
1049
1050	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1051		init_waitqueue_head(&folio_wait_table[i]);
1052
1053	page_writeback_init();
 
 
1054}
 
1055
1056/*
1057 * The page wait code treats the "wait->flags" somewhat unusually, because
1058 * we have multiple different kinds of waits, not just the usual "exclusive"
1059 * one.
1060 *
1061 * We have:
1062 *
1063 *  (a) no special bits set:
1064 *
1065 *	We're just waiting for the bit to be released, and when a waker
1066 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067 *	and remove it from the wait queue.
1068 *
1069 *	Simple and straightforward.
1070 *
1071 *  (b) WQ_FLAG_EXCLUSIVE:
1072 *
1073 *	The waiter is waiting to get the lock, and only one waiter should
1074 *	be woken up to avoid any thundering herd behavior. We'll set the
1075 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076 *
1077 *	This is the traditional exclusive wait.
1078 *
1079 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1080 *
1081 *	The waiter is waiting to get the bit, and additionally wants the
1082 *	lock to be transferred to it for fair lock behavior. If the lock
1083 *	cannot be taken, we stop walking the wait queue without waking
1084 *	the waiter.
1085 *
1086 *	This is the "fair lock handoff" case, and in addition to setting
1087 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088 *	that it now has the lock.
1089 */
1090static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1091{
1092	unsigned int flags;
1093	struct wait_page_key *key = arg;
1094	struct wait_page_queue *wait_page
1095		= container_of(wait, struct wait_page_queue, wait);
1096
1097	if (!wake_page_match(wait_page, key))
1098		return 0;
1099
1100	/*
1101	 * If it's a lock handoff wait, we get the bit for it, and
1102	 * stop walking (and do not wake it up) if we can't.
1103	 */
1104	flags = wait->flags;
1105	if (flags & WQ_FLAG_EXCLUSIVE) {
1106		if (test_bit(key->bit_nr, &key->folio->flags))
1107			return -1;
1108		if (flags & WQ_FLAG_CUSTOM) {
1109			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1110				return -1;
1111			flags |= WQ_FLAG_DONE;
1112		}
1113	}
1114
1115	/*
1116	 * We are holding the wait-queue lock, but the waiter that
1117	 * is waiting for this will be checking the flags without
1118	 * any locking.
1119	 *
1120	 * So update the flags atomically, and wake up the waiter
1121	 * afterwards to avoid any races. This store-release pairs
1122	 * with the load-acquire in folio_wait_bit_common().
1123	 */
1124	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1125	wake_up_state(wait->private, mode);
1126
1127	/*
1128	 * Ok, we have successfully done what we're waiting for,
1129	 * and we can unconditionally remove the wait entry.
1130	 *
1131	 * Note that this pairs with the "finish_wait()" in the
1132	 * waiter, and has to be the absolute last thing we do.
1133	 * After this list_del_init(&wait->entry) the wait entry
1134	 * might be de-allocated and the process might even have
1135	 * exited.
1136	 */
1137	list_del_init_careful(&wait->entry);
1138	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1139}
1140
1141static void folio_wake_bit(struct folio *folio, int bit_nr)
 
1142{
1143	wait_queue_head_t *q = folio_waitqueue(folio);
1144	struct wait_page_key key;
1145	unsigned long flags;
1146
1147	key.folio = folio;
1148	key.bit_nr = bit_nr;
1149	key.page_match = 0;
1150
1151	spin_lock_irqsave(&q->lock, flags);
1152	__wake_up_locked_key(q, TASK_NORMAL, &key);
1153
1154	/*
1155	 * It's possible to miss clearing waiters here, when we woke our page
1156	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157	 * That's okay, it's a rare case. The next waker will clear it.
1158	 *
1159	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160	 * other), the flag may be cleared in the course of freeing the page;
1161	 * but that is not required for correctness.
1162	 */
1163	if (!waitqueue_active(q) || !key.page_match)
1164		folio_clear_waiters(folio);
1165
1166	spin_unlock_irqrestore(&q->lock, flags);
1167}
 
1168
1169/*
1170 * A choice of three behaviors for folio_wait_bit_common():
1171 */
1172enum behavior {
1173	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1174			 * __folio_lock() waiting on then setting PG_locked.
1175			 */
1176	SHARED,		/* Hold ref to page and check the bit when woken, like
1177			 * folio_wait_writeback() waiting on PG_writeback.
1178			 */
1179	DROP,		/* Drop ref to page before wait, no check when woken,
1180			 * like folio_put_wait_locked() on PG_locked.
1181			 */
1182};
1183
1184/*
1185 * Attempt to check (or get) the folio flag, and mark us done
1186 * if successful.
1187 */
1188static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1189					struct wait_queue_entry *wait)
1190{
1191	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1192		if (test_and_set_bit(bit_nr, &folio->flags))
1193			return false;
1194	} else if (test_bit(bit_nr, &folio->flags))
1195		return false;
1196
1197	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1198	return true;
1199}
1200
1201/* How many times do we accept lock stealing from under a waiter? */
1202int sysctl_page_lock_unfairness = 5;
1203
1204static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205		int state, enum behavior behavior)
1206{
1207	wait_queue_head_t *q = folio_waitqueue(folio);
1208	int unfairness = sysctl_page_lock_unfairness;
1209	struct wait_page_queue wait_page;
1210	wait_queue_entry_t *wait = &wait_page.wait;
1211	bool thrashing = false;
1212	unsigned long pflags;
1213	bool in_thrashing;
1214
1215	if (bit_nr == PG_locked &&
1216	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1217		delayacct_thrashing_start(&in_thrashing);
1218		psi_memstall_enter(&pflags);
1219		thrashing = true;
1220	}
1221
1222	init_wait(wait);
1223	wait->func = wake_page_function;
1224	wait_page.folio = folio;
1225	wait_page.bit_nr = bit_nr;
1226
1227repeat:
1228	wait->flags = 0;
1229	if (behavior == EXCLUSIVE) {
1230		wait->flags = WQ_FLAG_EXCLUSIVE;
1231		if (--unfairness < 0)
1232			wait->flags |= WQ_FLAG_CUSTOM;
1233	}
1234
1235	/*
1236	 * Do one last check whether we can get the
1237	 * page bit synchronously.
1238	 *
1239	 * Do the folio_set_waiters() marking before that
1240	 * to let any waker we _just_ missed know they
1241	 * need to wake us up (otherwise they'll never
1242	 * even go to the slow case that looks at the
1243	 * page queue), and add ourselves to the wait
1244	 * queue if we need to sleep.
1245	 *
1246	 * This part needs to be done under the queue
1247	 * lock to avoid races.
1248	 */
1249	spin_lock_irq(&q->lock);
1250	folio_set_waiters(folio);
1251	if (!folio_trylock_flag(folio, bit_nr, wait))
1252		__add_wait_queue_entry_tail(q, wait);
1253	spin_unlock_irq(&q->lock);
1254
1255	/*
1256	 * From now on, all the logic will be based on
1257	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258	 * see whether the page bit testing has already
1259	 * been done by the wake function.
1260	 *
1261	 * We can drop our reference to the folio.
1262	 */
1263	if (behavior == DROP)
1264		folio_put(folio);
1265
1266	/*
1267	 * Note that until the "finish_wait()", or until
1268	 * we see the WQ_FLAG_WOKEN flag, we need to
1269	 * be very careful with the 'wait->flags', because
1270	 * we may race with a waker that sets them.
1271	 */
1272	for (;;) {
1273		unsigned int flags;
1274
1275		set_current_state(state);
1276
1277		/* Loop until we've been woken or interrupted */
1278		flags = smp_load_acquire(&wait->flags);
1279		if (!(flags & WQ_FLAG_WOKEN)) {
1280			if (signal_pending_state(state, current))
1281				break;
1282
1283			io_schedule();
1284			continue;
1285		}
1286
1287		/* If we were non-exclusive, we're done */
1288		if (behavior != EXCLUSIVE)
1289			break;
1290
1291		/* If the waker got the lock for us, we're done */
1292		if (flags & WQ_FLAG_DONE)
1293			break;
1294
1295		/*
1296		 * Otherwise, if we're getting the lock, we need to
1297		 * try to get it ourselves.
1298		 *
1299		 * And if that fails, we'll have to retry this all.
1300		 */
1301		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1302			goto repeat;
1303
1304		wait->flags |= WQ_FLAG_DONE;
1305		break;
1306	}
1307
1308	/*
1309	 * If a signal happened, this 'finish_wait()' may remove the last
1310	 * waiter from the wait-queues, but the folio waiters bit will remain
1311	 * set. That's ok. The next wakeup will take care of it, and trying
1312	 * to do it here would be difficult and prone to races.
1313	 */
1314	finish_wait(q, wait);
1315
1316	if (thrashing) {
1317		delayacct_thrashing_end(&in_thrashing);
1318		psi_memstall_leave(&pflags);
1319	}
1320
1321	/*
1322	 * NOTE! The wait->flags weren't stable until we've done the
1323	 * 'finish_wait()', and we could have exited the loop above due
1324	 * to a signal, and had a wakeup event happen after the signal
1325	 * test but before the 'finish_wait()'.
1326	 *
1327	 * So only after the finish_wait() can we reliably determine
1328	 * if we got woken up or not, so we can now figure out the final
1329	 * return value based on that state without races.
1330	 *
1331	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333	 */
1334	if (behavior == EXCLUSIVE)
1335		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336
1337	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338}
1339
1340#ifdef CONFIG_MIGRATION
1341/**
1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343 * @entry: migration swap entry.
1344 * @ptl: already locked ptl. This function will drop the lock.
1345 *
1346 * Wait for a migration entry referencing the given page to be removed. This is
1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348 * this can be called without taking a reference on the page. Instead this
1349 * should be called while holding the ptl for the migration entry referencing
1350 * the page.
1351 *
1352 * Returns after unlocking the ptl.
1353 *
1354 * This follows the same logic as folio_wait_bit_common() so see the comments
1355 * there.
1356 */
1357void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358	__releases(ptl)
1359{
1360	struct wait_page_queue wait_page;
1361	wait_queue_entry_t *wait = &wait_page.wait;
1362	bool thrashing = false;
1363	unsigned long pflags;
1364	bool in_thrashing;
1365	wait_queue_head_t *q;
1366	struct folio *folio = pfn_swap_entry_folio(entry);
1367
1368	q = folio_waitqueue(folio);
1369	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1370		delayacct_thrashing_start(&in_thrashing);
1371		psi_memstall_enter(&pflags);
1372		thrashing = true;
1373	}
1374
1375	init_wait(wait);
1376	wait->func = wake_page_function;
1377	wait_page.folio = folio;
1378	wait_page.bit_nr = PG_locked;
1379	wait->flags = 0;
1380
1381	spin_lock_irq(&q->lock);
1382	folio_set_waiters(folio);
1383	if (!folio_trylock_flag(folio, PG_locked, wait))
1384		__add_wait_queue_entry_tail(q, wait);
1385	spin_unlock_irq(&q->lock);
1386
1387	/*
1388	 * If a migration entry exists for the page the migration path must hold
1389	 * a valid reference to the page, and it must take the ptl to remove the
1390	 * migration entry. So the page is valid until the ptl is dropped.
1391	 */
1392	spin_unlock(ptl);
1393
1394	for (;;) {
1395		unsigned int flags;
1396
1397		set_current_state(TASK_UNINTERRUPTIBLE);
1398
1399		/* Loop until we've been woken or interrupted */
1400		flags = smp_load_acquire(&wait->flags);
1401		if (!(flags & WQ_FLAG_WOKEN)) {
1402			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403				break;
1404
1405			io_schedule();
1406			continue;
1407		}
1408		break;
1409	}
1410
1411	finish_wait(q, wait);
1412
1413	if (thrashing) {
1414		delayacct_thrashing_end(&in_thrashing);
1415		psi_memstall_leave(&pflags);
1416	}
1417}
1418#endif
1419
1420void folio_wait_bit(struct folio *folio, int bit_nr)
1421{
1422	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1423}
1424EXPORT_SYMBOL(folio_wait_bit);
1425
1426int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1427{
1428	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1429}
1430EXPORT_SYMBOL(folio_wait_bit_killable);
1431
1432/**
1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434 * @folio: The folio to wait for.
1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436 *
1437 * The caller should hold a reference on @folio.  They expect the page to
1438 * become unlocked relatively soon, but do not wish to hold up migration
1439 * (for example) by holding the reference while waiting for the folio to
1440 * come unlocked.  After this function returns, the caller should not
1441 * dereference @folio.
1442 *
1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1444 */
1445static int folio_put_wait_locked(struct folio *folio, int state)
1446{
1447	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1448}
1449
1450/**
1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452 * @folio: Folio defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1456 */
1457void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1458{
1459	wait_queue_head_t *q = folio_waitqueue(folio);
1460	unsigned long flags;
1461
1462	spin_lock_irqsave(&q->lock, flags);
1463	__add_wait_queue_entry_tail(q, waiter);
1464	folio_set_waiters(folio);
1465	spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1468
1469/**
1470 * folio_unlock - Unlock a locked folio.
1471 * @folio: The folio.
1472 *
1473 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1474 *
1475 * Context: May be called from interrupt or process context.  May not be
1476 * called from NMI context.
1477 */
1478void folio_unlock(struct folio *folio)
1479{
1480	/* Bit 7 allows x86 to check the byte's sign bit */
1481	BUILD_BUG_ON(PG_waiters != 7);
1482	BUILD_BUG_ON(PG_locked > 7);
1483	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1484	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1485		folio_wake_bit(folio, PG_locked);
1486}
1487EXPORT_SYMBOL(folio_unlock);
1488
1489/**
1490 * folio_end_read - End read on a folio.
1491 * @folio: The folio.
1492 * @success: True if all reads completed successfully.
1493 *
1494 * When all reads against a folio have completed, filesystems should
1495 * call this function to let the pagecache know that no more reads
1496 * are outstanding.  This will unlock the folio and wake up any thread
1497 * sleeping on the lock.  The folio will also be marked uptodate if all
1498 * reads succeeded.
1499 *
1500 * Context: May be called from interrupt or process context.  May not be
1501 * called from NMI context.
1502 */
1503void folio_end_read(struct folio *folio, bool success)
1504{
1505	unsigned long mask = 1 << PG_locked;
1506
1507	/* Must be in bottom byte for x86 to work */
1508	BUILD_BUG_ON(PG_uptodate > 7);
1509	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511
1512	if (likely(success))
1513		mask |= 1 << PG_uptodate;
1514	if (folio_xor_flags_has_waiters(folio, mask))
1515		folio_wake_bit(folio, PG_locked);
1516}
1517EXPORT_SYMBOL(folio_end_read);
1518
1519/**
1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521 * @folio: The folio.
1522 *
1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524 * it.  The folio reference held for PG_private_2 being set is released.
1525 *
1526 * This is, for example, used when a netfs folio is being written to a local
1527 * disk cache, thereby allowing writes to the cache for the same folio to be
1528 * serialised.
1529 */
1530void folio_end_private_2(struct folio *folio)
1531{
1532	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534	folio_wake_bit(folio, PG_private_2);
1535	folio_put(folio);
1536}
1537EXPORT_SYMBOL(folio_end_private_2);
1538
1539/**
1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541 * @folio: The folio to wait on.
1542 *
1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
 
1544 */
1545void folio_wait_private_2(struct folio *folio)
1546{
1547	while (folio_test_private_2(folio))
1548		folio_wait_bit(folio, PG_private_2);
 
 
 
1549}
1550EXPORT_SYMBOL(folio_wait_private_2);
1551
1552/**
1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554 * @folio: The folio to wait on.
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int folio_wait_private_2_killable(struct folio *folio)
1564{
1565	int ret = 0;
 
 
 
 
 
 
 
 
 
 
1566
1567	while (folio_test_private_2(folio)) {
1568		ret = folio_wait_bit_killable(folio, PG_private_2);
1569		if (ret < 0)
1570			break;
1571	}
1572
1573	return ret;
 
1574}
1575EXPORT_SYMBOL(folio_wait_private_2_killable);
1576
1577/**
1578 * folio_end_writeback - End writeback against a folio.
1579 * @folio: The folio.
1580 *
1581 * The folio must actually be under writeback.
1582 *
1583 * Context: May be called from process or interrupt context.
1584 */
1585void folio_end_writeback(struct folio *folio)
1586{
1587	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1588
1589	/*
1590	 * folio_test_clear_reclaim() could be used here but it is an
1591	 * atomic operation and overkill in this particular case. Failing
1592	 * to shuffle a folio marked for immediate reclaim is too mild
1593	 * a gain to justify taking an atomic operation penalty at the
1594	 * end of every folio writeback.
1595	 */
1596	if (folio_test_reclaim(folio)) {
1597		folio_clear_reclaim(folio);
1598		folio_rotate_reclaimable(folio);
 
 
 
1599	}
1600
1601	/*
1602	 * Writeback does not hold a folio reference of its own, relying
1603	 * on truncation to wait for the clearing of PG_writeback.
1604	 * But here we must make sure that the folio is not freed and
1605	 * reused before the folio_wake_bit().
1606	 */
1607	folio_get(folio);
1608	if (__folio_end_writeback(folio))
1609		folio_wake_bit(folio, PG_writeback);
1610	acct_reclaim_writeback(folio);
1611	folio_put(folio);
1612}
1613EXPORT_SYMBOL(folio_end_writeback);
1614
1615/**
1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617 * @folio: The folio to lock
1618 */
1619void __folio_lock(struct folio *folio)
1620{
1621	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1622				EXCLUSIVE);
1623}
1624EXPORT_SYMBOL(__folio_lock);
1625
1626int __folio_lock_killable(struct folio *folio)
1627{
1628	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1629					EXCLUSIVE);
1630}
1631EXPORT_SYMBOL_GPL(__folio_lock_killable);
1632
1633static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1634{
1635	struct wait_queue_head *q = folio_waitqueue(folio);
1636	int ret;
1637
1638	wait->folio = folio;
1639	wait->bit_nr = PG_locked;
1640
1641	spin_lock_irq(&q->lock);
1642	__add_wait_queue_entry_tail(q, &wait->wait);
1643	folio_set_waiters(folio);
1644	ret = !folio_trylock(folio);
1645	/*
1646	 * If we were successful now, we know we're still on the
1647	 * waitqueue as we're still under the lock. This means it's
1648	 * safe to remove and return success, we know the callback
1649	 * isn't going to trigger.
1650	 */
1651	if (!ret)
1652		__remove_wait_queue(q, &wait->wait);
1653	else
1654		ret = -EIOCBQUEUED;
1655	spin_unlock_irq(&q->lock);
1656	return ret;
1657}
 
1658
1659/*
1660 * Return values:
1661 * 0 - folio is locked.
1662 * non-zero - folio is not locked.
1663 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1666 *
1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1669 */
1670vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
 
1671{
1672	unsigned int flags = vmf->flags;
1673
1674	if (fault_flag_allow_retry_first(flags)) {
1675		/*
1676		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677		 * released even though returning VM_FAULT_RETRY.
1678		 */
1679		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1680			return VM_FAULT_RETRY;
1681
1682		release_fault_lock(vmf);
1683		if (flags & FAULT_FLAG_KILLABLE)
1684			folio_wait_locked_killable(folio);
1685		else
1686			folio_wait_locked(folio);
1687		return VM_FAULT_RETRY;
1688	}
1689	if (flags & FAULT_FLAG_KILLABLE) {
1690		bool ret;
1691
1692		ret = __folio_lock_killable(folio);
1693		if (ret) {
1694			release_fault_lock(vmf);
1695			return VM_FAULT_RETRY;
1696		}
1697	} else {
1698		__folio_lock(folio);
 
1699	}
1700
1701	return 0;
1702}
1703
1704/**
1705 * page_cache_next_miss() - Find the next gap in the page cache.
1706 * @mapping: Mapping.
1707 * @index: Index.
1708 * @max_scan: Maximum range to search.
1709 *
1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711 * gap with the lowest index.
1712 *
1713 * This function may be called under the rcu_read_lock.  However, this will
1714 * not atomically search a snapshot of the cache at a single point in time.
1715 * For example, if a gap is created at index 5, then subsequently a gap is
1716 * created at index 10, page_cache_next_miss covering both indices may
1717 * return 10 if called under the rcu_read_lock.
1718 *
1719 * Return: The index of the gap if found, otherwise an index outside the
1720 * range specified (in which case 'return - index >= max_scan' will be true).
1721 * In the rare case of index wrap-around, 0 will be returned.
 
 
1722 */
1723pgoff_t page_cache_next_miss(struct address_space *mapping,
1724			     pgoff_t index, unsigned long max_scan)
1725{
1726	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1727
1728	while (max_scan--) {
1729		void *entry = xas_next(&xas);
1730		if (!entry || xa_is_value(entry))
1731			break;
1732		if (xas.xa_index == 0)
 
1733			break;
1734	}
1735
1736	return xas.xa_index;
1737}
1738EXPORT_SYMBOL(page_cache_next_miss);
1739
1740/**
1741 * page_cache_prev_miss() - Find the previous gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [max(index - max_scan + 1, 0), index] for the
1747 * gap with the highest index.
1748 *
1749 * This function may be called under the rcu_read_lock.  However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 10, then subsequently a gap is
1752 * created at index 5, page_cache_prev_miss() covering both indices may
1753 * return 5 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'index - return >= max_scan' will be true).
1757 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
1758 */
1759pgoff_t page_cache_prev_miss(struct address_space *mapping,
1760			     pgoff_t index, unsigned long max_scan)
1761{
1762	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1763
1764	while (max_scan--) {
1765		void *entry = xas_prev(&xas);
1766		if (!entry || xa_is_value(entry))
1767			break;
1768		if (xas.xa_index == ULONG_MAX)
 
1769			break;
1770	}
1771
1772	return xas.xa_index;
1773}
1774EXPORT_SYMBOL(page_cache_prev_miss);
1775
1776/*
1777 * Lockless page cache protocol:
1778 * On the lookup side:
1779 * 1. Load the folio from i_pages
1780 * 2. Increment the refcount if it's not zero
1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782 *
1783 * On the removal side:
1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785 * B. Remove the page from i_pages
1786 * C. Return the page to the page allocator
1787 *
1788 * This means that any page may have its reference count temporarily
1789 * increased by a speculative page cache (or fast GUP) lookup as it can
1790 * be allocated by another user before the RCU grace period expires.
1791 * Because the refcount temporarily acquired here may end up being the
1792 * last refcount on the page, any page allocation must be freeable by
1793 * folio_put().
1794 */
1795
1796/*
1797 * filemap_get_entry - Get a page cache entry.
1798 * @mapping: the address_space to search
1799 * @index: The page cache index.
1800 *
1801 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1802 * it is returned with an increased refcount.  If it is a shadow entry
1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804 * it is returned without further action.
1805 *
1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
 
 
 
1807 */
1808void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1809{
1810	XA_STATE(xas, &mapping->i_pages, index);
1811	struct folio *folio;
1812
1813	rcu_read_lock();
1814repeat:
1815	xas_reset(&xas);
1816	folio = xas_load(&xas);
1817	if (xas_retry(&xas, folio))
1818		goto repeat;
1819	/*
1820	 * A shadow entry of a recently evicted page, or a swap entry from
1821	 * shmem/tmpfs.  Return it without attempting to raise page count.
1822	 */
1823	if (!folio || xa_is_value(folio))
1824		goto out;
 
 
 
 
 
 
 
 
1825
1826	if (!folio_try_get_rcu(folio))
1827		goto repeat;
1828
1829	if (unlikely(folio != xas_reload(&xas))) {
1830		folio_put(folio);
1831		goto repeat;
 
 
 
1832	}
1833out:
1834	rcu_read_unlock();
1835
1836	return folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837}
 
1838
1839/**
1840 * __filemap_get_folio - Find and get a reference to a folio.
1841 * @mapping: The address_space to search.
1842 * @index: The page index.
1843 * @fgp_flags: %FGP flags modify how the folio is returned.
1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
 
 
1845 *
1846 * Looks up the page cache entry at @mapping & @index.
1847 *
1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849 * if the %GFP flags specified for %FGP_CREAT are atomic.
 
 
 
 
1850 *
1851 * If this function returns a folio, it is returned with an increased refcount.
 
1852 *
1853 * Return: The found folio or an ERR_PTR() otherwise.
1854 */
1855struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1856		fgf_t fgp_flags, gfp_t gfp)
1857{
1858	struct folio *folio;
1859
1860repeat:
1861	folio = filemap_get_entry(mapping, index);
1862	if (xa_is_value(folio))
1863		folio = NULL;
1864	if (!folio)
1865		goto no_page;
1866
1867	if (fgp_flags & FGP_LOCK) {
1868		if (fgp_flags & FGP_NOWAIT) {
1869			if (!folio_trylock(folio)) {
1870				folio_put(folio);
1871				return ERR_PTR(-EAGAIN);
1872			}
1873		} else {
1874			folio_lock(folio);
1875		}
1876
1877		/* Has the page been truncated? */
1878		if (unlikely(folio->mapping != mapping)) {
1879			folio_unlock(folio);
1880			folio_put(folio);
1881			goto repeat;
1882		}
1883		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1884	}
1885
1886	if (fgp_flags & FGP_ACCESSED)
1887		folio_mark_accessed(folio);
1888	else if (fgp_flags & FGP_WRITE) {
1889		/* Clear idle flag for buffer write */
1890		if (folio_test_idle(folio))
1891			folio_clear_idle(folio);
1892	}
1893
1894	if (fgp_flags & FGP_STABLE)
1895		folio_wait_stable(folio);
1896no_page:
1897	if (!folio && (fgp_flags & FGP_CREAT)) {
1898		unsigned order = FGF_GET_ORDER(fgp_flags);
1899		int err;
1900
1901		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1902			gfp |= __GFP_WRITE;
1903		if (fgp_flags & FGP_NOFS)
1904			gfp &= ~__GFP_FS;
1905		if (fgp_flags & FGP_NOWAIT) {
1906			gfp &= ~GFP_KERNEL;
1907			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908		}
1909		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1910			fgp_flags |= FGP_LOCK;
1911
1912		if (!mapping_large_folio_support(mapping))
1913			order = 0;
1914		if (order > MAX_PAGECACHE_ORDER)
1915			order = MAX_PAGECACHE_ORDER;
1916		/* If we're not aligned, allocate a smaller folio */
1917		if (index & ((1UL << order) - 1))
1918			order = __ffs(index);
1919
1920		do {
1921			gfp_t alloc_gfp = gfp;
1922
1923			err = -ENOMEM;
1924			if (order > 0)
1925				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926			folio = filemap_alloc_folio(alloc_gfp, order);
1927			if (!folio)
1928				continue;
1929
1930			/* Init accessed so avoid atomic mark_page_accessed later */
1931			if (fgp_flags & FGP_ACCESSED)
1932				__folio_set_referenced(folio);
1933
1934			err = filemap_add_folio(mapping, folio, index, gfp);
1935			if (!err)
1936				break;
1937			folio_put(folio);
1938			folio = NULL;
1939		} while (order-- > 0);
1940
1941		if (err == -EEXIST)
1942			goto repeat;
1943		if (err)
1944			return ERR_PTR(err);
1945		/*
1946		 * filemap_add_folio locks the page, and for mmap
1947		 * we expect an unlocked page.
1948		 */
1949		if (folio && (fgp_flags & FGP_FOR_MMAP))
1950			folio_unlock(folio);
1951	}
1952
1953	if (!folio)
1954		return ERR_PTR(-ENOENT);
1955	return folio;
1956}
1957EXPORT_SYMBOL(__filemap_get_folio);
1958
1959static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1960		xa_mark_t mark)
1961{
1962	struct folio *folio;
1963
1964retry:
1965	if (mark == XA_PRESENT)
1966		folio = xas_find(xas, max);
1967	else
1968		folio = xas_find_marked(xas, max, mark);
1969
1970	if (xas_retry(xas, folio))
1971		goto retry;
1972	/*
1973	 * A shadow entry of a recently evicted page, a swap
1974	 * entry from shmem/tmpfs or a DAX entry.  Return it
1975	 * without attempting to raise page count.
1976	 */
1977	if (!folio || xa_is_value(folio))
1978		return folio;
1979
1980	if (!folio_try_get_rcu(folio))
1981		goto reset;
1982
1983	if (unlikely(folio != xas_reload(xas))) {
1984		folio_put(folio);
1985		goto reset;
1986	}
1987
1988	return folio;
1989reset:
1990	xas_reset(xas);
1991	goto retry;
1992}
 
1993
1994/**
1995 * find_get_entries - gang pagecache lookup
1996 * @mapping:	The address_space to search
1997 * @start:	The starting page cache index
1998 * @end:	The final page index (inclusive).
1999 * @fbatch:	Where the resulting entries are placed.
2000 * @indices:	The cache indices corresponding to the entries in @entries
2001 *
2002 * find_get_entries() will search for and return a batch of entries in
2003 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2004 * takes a reference on any actual folios it returns.
 
 
 
 
 
2005 *
2006 * The entries have ascending indexes.  The indices may not be consecutive
2007 * due to not-present entries or large folios.
2008 *
2009 * Any shadow entries of evicted folios, or swap entries from
2010 * shmem/tmpfs, are included in the returned array.
2011 *
2012 * Return: The number of entries which were found.
 
2013 */
2014unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2015		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2016{
2017	XA_STATE(xas, &mapping->i_pages, *start);
2018	struct folio *folio;
 
 
 
 
 
2019
2020	rcu_read_lock();
2021	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2022		indices[fbatch->nr] = xas.xa_index;
2023		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024			break;
2025	}
2026	rcu_read_unlock();
2027
2028	if (folio_batch_count(fbatch)) {
2029		unsigned long nr = 1;
2030		int idx = folio_batch_count(fbatch) - 1;
2031
2032		folio = fbatch->folios[idx];
2033		if (!xa_is_value(folio))
2034			nr = folio_nr_pages(folio);
2035		*start = indices[idx] + nr;
2036	}
2037	return folio_batch_count(fbatch);
2038}
2039
2040/**
2041 * find_lock_entries - Find a batch of pagecache entries.
2042 * @mapping:	The address_space to search.
2043 * @start:	The starting page cache index.
2044 * @end:	The final page index (inclusive).
2045 * @fbatch:	Where the resulting entries are placed.
2046 * @indices:	The cache indices of the entries in @fbatch.
2047 *
2048 * find_lock_entries() will return a batch of entries from @mapping.
2049 * Swap, shadow and DAX entries are included.  Folios are returned
2050 * locked and with an incremented refcount.  Folios which are locked
2051 * by somebody else or under writeback are skipped.  Folios which are
2052 * partially outside the range are not returned.
2053 *
2054 * The entries have ascending indexes.  The indices may not be consecutive
2055 * due to not-present entries, large folios, folios which could not be
2056 * locked or folios under writeback.
2057 *
2058 * Return: The number of entries which were found.
 
 
 
 
 
 
 
2059 */
2060unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2061		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2062{
2063	XA_STATE(xas, &mapping->i_pages, *start);
2064	struct folio *folio;
 
 
 
 
2065
2066	rcu_read_lock();
2067	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068		if (!xa_is_value(folio)) {
2069			if (folio->index < *start)
2070				goto put;
2071			if (folio_next_index(folio) - 1 > end)
2072				goto put;
2073			if (!folio_trylock(folio))
2074				goto put;
2075			if (folio->mapping != mapping ||
2076			    folio_test_writeback(folio))
2077				goto unlock;
2078			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079					folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080		}
2081		indices[fbatch->nr] = xas.xa_index;
2082		if (!folio_batch_add(fbatch, folio))
 
2083			break;
2084		continue;
2085unlock:
2086		folio_unlock(folio);
2087put:
2088		folio_put(folio);
2089	}
 
2090	rcu_read_unlock();
2091
2092	if (folio_batch_count(fbatch)) {
2093		unsigned long nr = 1;
2094		int idx = folio_batch_count(fbatch) - 1;
2095
2096		folio = fbatch->folios[idx];
2097		if (!xa_is_value(folio))
2098			nr = folio_nr_pages(folio);
2099		*start = indices[idx] + nr;
2100	}
2101	return folio_batch_count(fbatch);
2102}
2103
2104/**
2105 * filemap_get_folios - Get a batch of folios
2106 * @mapping:	The address_space to search
2107 * @start:	The starting page index
2108 * @end:	The final page index (inclusive)
2109 * @fbatch:	The batch to fill.
2110 *
2111 * Search for and return a batch of folios in the mapping starting at
2112 * index @start and up to index @end (inclusive).  The folios are returned
2113 * in @fbatch with an elevated reference count.
2114 *
2115 * Return: The number of folios which were found.
2116 * We also update @start to index the next folio for the traversal.
2117 */
2118unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119		pgoff_t end, struct folio_batch *fbatch)
2120{
2121	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122}
2123EXPORT_SYMBOL(filemap_get_folios);
2124
2125/**
2126 * filemap_get_folios_contig - Get a batch of contiguous folios
2127 * @mapping:	The address_space to search
2128 * @start:	The starting page index
2129 * @end:	The final page index (inclusive)
2130 * @fbatch:	The batch to fill
2131 *
2132 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133 * except the returned folios are guaranteed to be contiguous. This may
2134 * not return all contiguous folios if the batch gets filled up.
2135 *
2136 * Return: The number of folios found.
2137 * Also update @start to be positioned for traversal of the next folio.
2138 */
 
 
 
 
 
 
2139
2140unsigned filemap_get_folios_contig(struct address_space *mapping,
2141		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2142{
2143	XA_STATE(xas, &mapping->i_pages, *start);
2144	unsigned long nr;
2145	struct folio *folio;
2146
2147	rcu_read_lock();
 
 
 
 
 
 
 
2148
2149	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150			folio = xas_next(&xas)) {
2151		if (xas_retry(&xas, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
2152			continue;
2153		/*
2154		 * If the entry has been swapped out, we can stop looking.
2155		 * No current caller is looking for DAX entries.
2156		 */
2157		if (xa_is_value(folio))
2158			goto update_start;
2159
2160		if (!folio_try_get_rcu(folio))
2161			goto retry;
2162
2163		if (unlikely(folio != xas_reload(&xas)))
2164			goto put_folio;
2165
2166		if (!folio_batch_add(fbatch, folio)) {
2167			nr = folio_nr_pages(folio);
2168			*start = folio->index + nr;
2169			goto out;
2170		}
2171		continue;
2172put_folio:
2173		folio_put(folio);
2174
2175retry:
2176		xas_reset(&xas);
 
2177	}
2178
2179update_start:
2180	nr = folio_batch_count(fbatch);
 
 
2181
2182	if (nr) {
2183		folio = fbatch->folios[nr - 1];
2184		*start = folio_next_index(folio);
2185	}
2186out:
2187	rcu_read_unlock();
2188	return folio_batch_count(fbatch);
2189}
2190EXPORT_SYMBOL(filemap_get_folios_contig);
2191
2192/**
2193 * filemap_get_folios_tag - Get a batch of folios matching @tag
2194 * @mapping:    The address_space to search
2195 * @start:      The starting page index
2196 * @end:        The final page index (inclusive)
2197 * @tag:        The tag index
2198 * @fbatch:     The batch to fill
2199 *
2200 * The first folio may start before @start; if it does, it will contain
2201 * @start.  The final folio may extend beyond @end; if it does, it will
2202 * contain @end.  The folios have ascending indices.  There may be gaps
2203 * between the folios if there are indices which have no folio in the
2204 * page cache.  If folios are added to or removed from the page cache
2205 * while this is running, they may or may not be found by this call.
2206 * Only returns folios that are tagged with @tag.
2207 *
2208 * Return: The number of folios found.
2209 * Also update @start to index the next folio for traversal.
2210 */
2211unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
 
2213{
2214	XA_STATE(xas, &mapping->i_pages, *start);
2215	struct folio *folio;
 
 
 
 
2216
2217	rcu_read_lock();
2218	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2219		/*
2220		 * Shadow entries should never be tagged, but this iteration
2221		 * is lockless so there is a window for page reclaim to evict
2222		 * a page we saw tagged. Skip over it.
2223		 */
2224		if (xa_is_value(folio))
2225			continue;
2226		if (!folio_batch_add(fbatch, folio)) {
2227			unsigned long nr = folio_nr_pages(folio);
2228			*start = folio->index + nr;
2229			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230		}
 
 
 
 
 
2231	}
2232	/*
2233	 * We come here when there is no page beyond @end. We take care to not
2234	 * overflow the index @start as it confuses some of the callers. This
2235	 * breaks the iteration when there is a page at index -1 but that is
2236	 * already broke anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*start = (pgoff_t)-1;
2240	else
2241		*start = end + 1;
2242out:
2243	rcu_read_unlock();
2244
2245	return folio_batch_count(fbatch);
2246}
2247EXPORT_SYMBOL(filemap_get_folios_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2265{
2266	ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of folios for read
 
 
 
 
 
 
 
2271 *
2272 * Get a batch of folios which represent a contiguous range of bytes in
2273 * the file.  No exceptional entries will be returned.  If @index is in
2274 * the middle of a folio, the entire folio will be returned.  The last
2275 * folio in the batch may have the readahead flag set or the uptodate flag
2276 * clear so that the caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct folio *folio;
2283
2284	rcu_read_lock();
2285	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286		if (xas_retry(&xas, folio))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(folio))
2289			break;
2290		if (xa_is_sibling(folio))
2291			break;
2292		if (!folio_try_get_rcu(folio))
2293			goto retry;
2294
2295		if (unlikely(folio != xas_reload(&xas)))
2296			goto put_folio;
2297
2298		if (!folio_batch_add(fbatch, folio))
2299			break;
2300		if (!folio_test_uptodate(folio))
2301			break;
2302		if (folio_test_readahead(folio))
2303			break;
2304		xas_advance(&xas, folio_next_index(folio) - 1);
2305		continue;
2306put_folio:
2307		folio_put(folio);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
2312}
2313
2314static int filemap_read_folio(struct file *file, filler_t filler,
2315		struct folio *folio)
2316{
2317	bool workingset = folio_test_workingset(folio);
2318	unsigned long pflags;
2319	int error;
2320
2321	/*
2322	 * A previous I/O error may have been due to temporary failures,
2323	 * eg. multipath errors.  PG_error will be set again if read_folio
2324	 * fails.
2325	 */
2326	folio_clear_error(folio);
2327
2328	/* Start the actual read. The read will unlock the page. */
2329	if (unlikely(workingset))
2330		psi_memstall_enter(&pflags);
2331	error = filler(file, folio);
2332	if (unlikely(workingset))
2333		psi_memstall_leave(&pflags);
2334	if (error)
2335		return error;
2336
2337	error = folio_wait_locked_killable(folio);
2338	if (error)
2339		return error;
2340	if (folio_test_uptodate(folio))
2341		return 0;
2342	if (file)
2343		shrink_readahead_size_eio(&file->f_ra);
2344	return -EIO;
2345}
2346
2347static bool filemap_range_uptodate(struct address_space *mapping,
2348		loff_t pos, size_t count, struct folio *folio,
2349		bool need_uptodate)
2350{
2351	if (folio_test_uptodate(folio))
2352		return true;
2353	/* pipes can't handle partially uptodate pages */
2354	if (need_uptodate)
2355		return false;
2356	if (!mapping->a_ops->is_partially_uptodate)
2357		return false;
2358	if (mapping->host->i_blkbits >= folio_shift(folio))
2359		return false;
2360
2361	if (folio_pos(folio) > pos) {
2362		count -= folio_pos(folio) - pos;
2363		pos = 0;
2364	} else {
2365		pos -= folio_pos(folio);
2366	}
2367
2368	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2369}
2370
2371static int filemap_update_page(struct kiocb *iocb,
2372		struct address_space *mapping, size_t count,
2373		struct folio *folio, bool need_uptodate)
2374{
2375	int error;
2376
2377	if (iocb->ki_flags & IOCB_NOWAIT) {
2378		if (!filemap_invalidate_trylock_shared(mapping))
2379			return -EAGAIN;
2380	} else {
2381		filemap_invalidate_lock_shared(mapping);
2382	}
2383
2384	if (!folio_trylock(folio)) {
2385		error = -EAGAIN;
2386		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2387			goto unlock_mapping;
2388		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2389			filemap_invalidate_unlock_shared(mapping);
2390			/*
2391			 * This is where we usually end up waiting for a
2392			 * previously submitted readahead to finish.
2393			 */
2394			folio_put_wait_locked(folio, TASK_KILLABLE);
2395			return AOP_TRUNCATED_PAGE;
2396		}
2397		error = __folio_lock_async(folio, iocb->ki_waitq);
2398		if (error)
2399			goto unlock_mapping;
2400	}
2401
2402	error = AOP_TRUNCATED_PAGE;
2403	if (!folio->mapping)
2404		goto unlock;
2405
2406	error = 0;
2407	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408				   need_uptodate))
2409		goto unlock;
2410
2411	error = -EAGAIN;
2412	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413		goto unlock;
2414
2415	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416			folio);
2417	goto unlock_mapping;
2418unlock:
2419	folio_unlock(folio);
2420unlock_mapping:
2421	filemap_invalidate_unlock_shared(mapping);
2422	if (error == AOP_TRUNCATED_PAGE)
2423		folio_put(folio);
2424	return error;
2425}
2426
2427static int filemap_create_folio(struct file *file,
2428		struct address_space *mapping, pgoff_t index,
2429		struct folio_batch *fbatch)
2430{
2431	struct folio *folio;
2432	int error;
2433
2434	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435	if (!folio)
2436		return -ENOMEM;
2437
2438	/*
2439	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440	 * here assures we cannot instantiate and bring uptodate new
2441	 * pagecache folios after evicting page cache during truncate
2442	 * and before actually freeing blocks.	Note that we could
2443	 * release invalidate_lock after inserting the folio into
2444	 * the page cache as the locked folio would then be enough to
2445	 * synchronize with hole punching. But there are code paths
2446	 * such as filemap_update_page() filling in partially uptodate
2447	 * pages or ->readahead() that need to hold invalidate_lock
2448	 * while mapping blocks for IO so let's hold the lock here as
2449	 * well to keep locking rules simple.
2450	 */
2451	filemap_invalidate_lock_shared(mapping);
2452	error = filemap_add_folio(mapping, folio, index,
2453			mapping_gfp_constraint(mapping, GFP_KERNEL));
2454	if (error == -EEXIST)
2455		error = AOP_TRUNCATED_PAGE;
2456	if (error)
2457		goto error;
2458
2459	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2460	if (error)
2461		goto error;
2462
2463	filemap_invalidate_unlock_shared(mapping);
2464	folio_batch_add(fbatch, folio);
2465	return 0;
2466error:
2467	filemap_invalidate_unlock_shared(mapping);
2468	folio_put(folio);
2469	return error;
2470}
2471
2472static int filemap_readahead(struct kiocb *iocb, struct file *file,
2473		struct address_space *mapping, struct folio *folio,
2474		pgoff_t last_index)
2475{
2476	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477
2478	if (iocb->ki_flags & IOCB_NOIO)
2479		return -EAGAIN;
2480	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2481	return 0;
2482}
2483
2484static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485		struct folio_batch *fbatch, bool need_uptodate)
2486{
2487	struct file *filp = iocb->ki_filp;
2488	struct address_space *mapping = filp->f_mapping;
 
2489	struct file_ra_state *ra = &filp->f_ra;
2490	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2491	pgoff_t last_index;
2492	struct folio *folio;
2493	int err = 0;
 
 
 
 
 
 
 
 
2494
2495	/* "last_index" is the index of the page beyond the end of the read */
2496	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2497retry:
2498	if (fatal_signal_pending(current))
2499		return -EINTR;
2500
2501	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502	if (!folio_batch_count(fbatch)) {
2503		if (iocb->ki_flags & IOCB_NOIO)
2504			return -EAGAIN;
2505		page_cache_sync_readahead(mapping, ra, filp, index,
2506				last_index - index);
2507		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2508	}
2509	if (!folio_batch_count(fbatch)) {
2510		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511			return -EAGAIN;
2512		err = filemap_create_folio(filp, mapping,
2513				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2514		if (err == AOP_TRUNCATED_PAGE)
2515			goto retry;
2516		return err;
2517	}
2518
2519	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2520	if (folio_test_readahead(folio)) {
2521		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2522		if (err)
2523			goto err;
2524	}
2525	if (!folio_test_uptodate(folio)) {
2526		if ((iocb->ki_flags & IOCB_WAITQ) &&
2527		    folio_batch_count(fbatch) > 1)
2528			iocb->ki_flags |= IOCB_NOWAIT;
2529		err = filemap_update_page(iocb, mapping, count, folio,
2530					  need_uptodate);
2531		if (err)
2532			goto err;
2533	}
2534
2535	return 0;
2536err:
2537	if (err < 0)
2538		folio_put(folio);
2539	if (likely(--fbatch->nr))
2540		return 0;
2541	if (err == AOP_TRUNCATED_PAGE)
2542		goto retry;
2543	return err;
2544}
2545
2546static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2547{
2548	unsigned int shift = folio_shift(folio);
2549
2550	return (pos1 >> shift == pos2 >> shift);
2551}
2552
2553/**
2554 * filemap_read - Read data from the page cache.
2555 * @iocb: The iocb to read.
2556 * @iter: Destination for the data.
2557 * @already_read: Number of bytes already read by the caller.
2558 *
2559 * Copies data from the page cache.  If the data is not currently present,
2560 * uses the readahead and read_folio address_space operations to fetch it.
2561 *
2562 * Return: Total number of bytes copied, including those already read by
2563 * the caller.  If an error happens before any bytes are copied, returns
2564 * a negative error number.
2565 */
2566ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567		ssize_t already_read)
2568{
2569	struct file *filp = iocb->ki_filp;
2570	struct file_ra_state *ra = &filp->f_ra;
2571	struct address_space *mapping = filp->f_mapping;
2572	struct inode *inode = mapping->host;
2573	struct folio_batch fbatch;
2574	int i, error = 0;
2575	bool writably_mapped;
2576	loff_t isize, end_offset;
2577	loff_t last_pos = ra->prev_pos;
2578
2579	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2580		return 0;
2581	if (unlikely(!iov_iter_count(iter)))
2582		return 0;
2583
2584	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2585	folio_batch_init(&fbatch);
2586
2587	do {
2588		cond_resched();
2589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		/*
2591		 * If we've already successfully copied some data, then we
2592		 * can no longer safely return -EIOCBQUEUED. Hence mark
2593		 * an async read NOWAIT at that point.
2594		 */
2595		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2596			iocb->ki_flags |= IOCB_NOWAIT;
2597
2598		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599			break;
2600
2601		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2602		if (error < 0)
2603			break;
2604
2605		/*
2606		 * i_size must be checked after we know the pages are Uptodate.
2607		 *
2608		 * Checking i_size after the check allows us to calculate
2609		 * the correct value for "nr", which means the zero-filled
2610		 * part of the page is not copied back to userspace (unless
2611		 * another truncate extends the file - this is desired though).
2612		 */
 
2613		isize = i_size_read(inode);
2614		if (unlikely(iocb->ki_pos >= isize))
2615			goto put_folios;
2616		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618		/*
2619		 * Once we start copying data, we don't want to be touching any
2620		 * cachelines that might be contended:
2621		 */
2622		writably_mapped = mapping_writably_mapped(mapping);
 
 
2623
2624		/*
2625		 * When a read accesses the same folio several times, only
2626		 * mark it as accessed the first time.
2627		 */
2628		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629				    fbatch.folios[0]))
2630			folio_mark_accessed(fbatch.folios[0]);
2631
2632		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633			struct folio *folio = fbatch.folios[i];
2634			size_t fsize = folio_size(folio);
2635			size_t offset = iocb->ki_pos & (fsize - 1);
2636			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2637					     fsize - offset);
2638			size_t copied;
2639
2640			if (end_offset < folio_pos(folio))
2641				break;
2642			if (i > 0)
2643				folio_mark_accessed(folio);
2644			/*
2645			 * If users can be writing to this folio using arbitrary
2646			 * virtual addresses, take care of potential aliasing
2647			 * before reading the folio on the kernel side.
2648			 */
2649			if (writably_mapped)
2650				flush_dcache_folio(folio);
2651
2652			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
2653
2654			already_read += copied;
2655			iocb->ki_pos += copied;
2656			last_pos = iocb->ki_pos;
2657
2658			if (copied < bytes) {
2659				error = -EFAULT;
2660				break;
2661			}
2662		}
2663put_folios:
2664		for (i = 0; i < folio_batch_count(&fbatch); i++)
2665			folio_put(fbatch.folios[i]);
2666		folio_batch_init(&fbatch);
2667	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2668
2669	file_accessed(filp);
2670	ra->prev_pos = last_pos;
2671	return already_read ? already_read : error;
2672}
2673EXPORT_SYMBOL_GPL(filemap_read);
 
 
 
 
 
 
 
 
2674
2675int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676{
2677	struct address_space *mapping = iocb->ki_filp->f_mapping;
2678	loff_t pos = iocb->ki_pos;
2679	loff_t end = pos + count - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680
2681	if (iocb->ki_flags & IOCB_NOWAIT) {
2682		if (filemap_range_needs_writeback(mapping, pos, end))
2683			return -EAGAIN;
2684		return 0;
2685	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686
2687	return filemap_write_and_wait_range(mapping, pos, end);
2688}
2689EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2690
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693	struct address_space *mapping = iocb->ki_filp->f_mapping;
2694	loff_t pos = iocb->ki_pos;
2695	loff_t end = pos + count - 1;
2696	int ret;
2697
2698	if (iocb->ki_flags & IOCB_NOWAIT) {
2699		/* we could block if there are any pages in the range */
2700		if (filemap_range_has_page(mapping, pos, end))
2701			return -EAGAIN;
2702	} else {
2703		ret = filemap_write_and_wait_range(mapping, pos, end);
2704		if (ret)
2705			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2706	}
2707
2708	/*
2709	 * After a write we want buffered reads to be sure to go to disk to get
2710	 * the new data.  We invalidate clean cached page from the region we're
2711	 * about to write.  We do this *before* the write so that we can return
2712	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713	 */
2714	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715					     end >> PAGE_SHIFT);
2716}
2717EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2718
2719/**
2720 * generic_file_read_iter - generic filesystem read routine
2721 * @iocb:	kernel I/O control block
2722 * @iter:	destination for the data read
2723 *
2724 * This is the "read_iter()" routine for all filesystems
2725 * that can use the page cache directly.
2726 *
2727 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728 * be returned when no data can be read without waiting for I/O requests
2729 * to complete; it doesn't prevent readahead.
2730 *
2731 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732 * requests shall be made for the read or for readahead.  When no data
2733 * can be read, -EAGAIN shall be returned.  When readahead would be
2734 * triggered, a partial, possibly empty read shall be returned.
2735 *
2736 * Return:
2737 * * number of bytes copied, even for partial reads
2738 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2739 */
2740ssize_t
2741generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742{
 
 
 
 
2743	size_t count = iov_iter_count(iter);
2744	ssize_t retval = 0;
2745
2746	if (!count)
2747		return 0; /* skip atime */
2748
2749	if (iocb->ki_flags & IOCB_DIRECT) {
2750		struct file *file = iocb->ki_filp;
2751		struct address_space *mapping = file->f_mapping;
2752		struct inode *inode = mapping->host;
 
 
 
 
 
 
 
 
 
2753
2754		retval = kiocb_write_and_wait(iocb, count);
2755		if (retval < 0)
2756			return retval;
2757		file_accessed(file);
2758
2759		retval = mapping->a_ops->direct_IO(iocb, iter);
2760		if (retval >= 0) {
2761			iocb->ki_pos += retval;
2762			count -= retval;
2763		}
2764		if (retval != -EIOCBQUEUED)
2765			iov_iter_revert(iter, count - iov_iter_count(iter));
2766
2767		/*
2768		 * Btrfs can have a short DIO read if we encounter
2769		 * compressed extents, so if there was an error, or if
2770		 * we've already read everything we wanted to, or if
2771		 * there was a short read because we hit EOF, go ahead
2772		 * and return.  Otherwise fallthrough to buffered io for
2773		 * the rest of the read.  Buffered reads will not work for
2774		 * DAX files, so don't bother trying.
2775		 */
2776		if (retval < 0 || !count || IS_DAX(inode))
2777			return retval;
2778		if (iocb->ki_pos >= i_size_read(inode))
2779			return retval;
 
2780	}
2781
2782	return filemap_read(iocb, iter, retval);
 
 
2783}
2784EXPORT_SYMBOL(generic_file_read_iter);
2785
2786/*
2787 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
2788 */
2789size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790			      struct folio *folio, loff_t fpos, size_t size)
2791{
 
2792	struct page *page;
2793	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794
2795	page = folio_page(folio, offset / PAGE_SIZE);
2796	size = min(size, folio_size(folio) - offset);
2797	offset %= PAGE_SIZE;
2798
2799	while (spliced < size &&
2800	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801		struct pipe_buffer *buf = pipe_head_buf(pipe);
2802		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803
2804		*buf = (struct pipe_buffer) {
2805			.ops	= &page_cache_pipe_buf_ops,
2806			.page	= page,
2807			.offset	= offset,
2808			.len	= part,
2809		};
2810		folio_get(folio);
2811		pipe->head++;
2812		page++;
2813		spliced += part;
2814		offset = 0;
2815	}
2816
2817	return spliced;
2818}
2819
2820/**
2821 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2822 * @in: The file to read from
2823 * @ppos: Pointer to the file position to read from
2824 * @pipe: The pipe to splice into
2825 * @len: The amount to splice
2826 * @flags: The SPLICE_F_* flags
2827 *
2828 * This function gets folios from a file's pagecache and splices them into the
2829 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2830 * be used for blockdevs also.
2831 *
2832 * Return: On success, the number of bytes read will be returned and *@ppos
2833 * will be updated if appropriate; 0 will be returned if there is no more data
2834 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835 * other negative error code will be returned on error.  A short read may occur
2836 * if the pipe has insufficient space, we reach the end of the data or we hit a
2837 * hole.
2838 */
2839ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840			    struct pipe_inode_info *pipe,
2841			    size_t len, unsigned int flags)
2842{
2843	struct folio_batch fbatch;
2844	struct kiocb iocb;
2845	size_t total_spliced = 0, used, npages;
2846	loff_t isize, end_offset;
2847	bool writably_mapped;
2848	int i, error = 0;
2849
2850	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851		return 0;
2852
2853	init_sync_kiocb(&iocb, in);
2854	iocb.ki_pos = *ppos;
2855
2856	/* Work out how much data we can actually add into the pipe */
2857	used = pipe_occupancy(pipe->head, pipe->tail);
2858	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859	len = min_t(size_t, len, npages * PAGE_SIZE);
2860
2861	folio_batch_init(&fbatch);
2862
2863	do {
2864		cond_resched();
 
 
 
 
 
 
 
 
2865
2866		if (*ppos >= i_size_read(in->f_mapping->host))
2867			break;
2868
2869		iocb.ki_pos = *ppos;
2870		error = filemap_get_pages(&iocb, len, &fbatch, true);
2871		if (error < 0)
2872			break;
2873
2874		/*
2875		 * i_size must be checked after we know the pages are Uptodate.
2876		 *
2877		 * Checking i_size after the check allows us to calculate
2878		 * the correct value for "nr", which means the zero-filled
2879		 * part of the page is not copied back to userspace (unless
2880		 * another truncate extends the file - this is desired though).
2881		 */
2882		isize = i_size_read(in->f_mapping->host);
2883		if (unlikely(*ppos >= isize))
2884			break;
2885		end_offset = min_t(loff_t, isize, *ppos + len);
2886
2887		/*
2888		 * Once we start copying data, we don't want to be touching any
2889		 * cachelines that might be contended:
2890		 */
2891		writably_mapped = mapping_writably_mapped(in->f_mapping);
2892
2893		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894			struct folio *folio = fbatch.folios[i];
2895			size_t n;
2896
2897			if (folio_pos(folio) >= end_offset)
2898				goto out;
2899			folio_mark_accessed(folio);
2900
2901			/*
2902			 * If users can be writing to this folio using arbitrary
2903			 * virtual addresses, take care of potential aliasing
2904			 * before reading the folio on the kernel side.
2905			 */
2906			if (writably_mapped)
2907				flush_dcache_folio(folio);
2908
2909			n = min_t(loff_t, len, isize - *ppos);
2910			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911			if (!n)
2912				goto out;
2913			len -= n;
2914			total_spliced += n;
2915			*ppos += n;
2916			in->f_ra.prev_pos = *ppos;
2917			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918				goto out;
2919		}
2920
2921		folio_batch_release(&fbatch);
2922	} while (len);
2923
2924out:
2925	folio_batch_release(&fbatch);
2926	file_accessed(in);
2927
2928	return total_spliced ? total_spliced : error;
2929}
2930EXPORT_SYMBOL(filemap_splice_read);
2931
2932static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933		struct address_space *mapping, struct folio *folio,
2934		loff_t start, loff_t end, bool seek_data)
2935{
2936	const struct address_space_operations *ops = mapping->a_ops;
2937	size_t offset, bsz = i_blocksize(mapping->host);
2938
2939	if (xa_is_value(folio) || folio_test_uptodate(folio))
2940		return seek_data ? start : end;
2941	if (!ops->is_partially_uptodate)
2942		return seek_data ? end : start;
2943
2944	xas_pause(xas);
2945	rcu_read_unlock();
2946	folio_lock(folio);
2947	if (unlikely(folio->mapping != mapping))
2948		goto unlock;
2949
2950	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2951
2952	do {
2953		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2954							seek_data)
2955			break;
2956		start = (start + bsz) & ~(bsz - 1);
2957		offset += bsz;
2958	} while (offset < folio_size(folio));
2959unlock:
2960	folio_unlock(folio);
2961	rcu_read_lock();
2962	return start;
2963}
2964
2965static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966{
2967	if (xa_is_value(folio))
2968		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2969	return folio_size(folio);
2970}
2971
2972/**
2973 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974 * @mapping: Address space to search.
2975 * @start: First byte to consider.
2976 * @end: Limit of search (exclusive).
2977 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 *
2979 * If the page cache knows which blocks contain holes and which blocks
2980 * contain data, your filesystem can use this function to implement
2981 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2982 * entirely memory-based such as tmpfs, and filesystems which support
2983 * unwritten extents.
2984 *
2985 * Return: The requested offset on success, or -ENXIO if @whence specifies
2986 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2987 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988 * and @end contain data.
2989 */
2990loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991		loff_t end, int whence)
2992{
2993	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2994	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2995	bool seek_data = (whence == SEEK_DATA);
2996	struct folio *folio;
2997
2998	if (end <= start)
2999		return -ENXIO;
3000
3001	rcu_read_lock();
3002	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3003		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3004		size_t seek_size;
3005
3006		if (start < pos) {
3007			if (!seek_data)
3008				goto unlock;
3009			start = pos;
3010		}
3011
3012		seek_size = seek_folio_size(&xas, folio);
3013		pos = round_up((u64)pos + 1, seek_size);
3014		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3015				seek_data);
3016		if (start < pos)
3017			goto unlock;
3018		if (start >= end)
3019			break;
3020		if (seek_size > PAGE_SIZE)
3021			xas_set(&xas, pos >> PAGE_SHIFT);
3022		if (!xa_is_value(folio))
3023			folio_put(folio);
3024	}
3025	if (seek_data)
3026		start = -ENXIO;
3027unlock:
3028	rcu_read_unlock();
3029	if (folio && !xa_is_value(folio))
3030		folio_put(folio);
3031	if (start > end)
3032		return end;
3033	return start;
3034}
3035
3036#ifdef CONFIG_MMU
3037#define MMAP_LOTSAMISS  (100)
3038/*
3039 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3040 * @vmf - the vm_fault for this fault.
3041 * @folio - the folio to lock.
3042 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 *
3044 * This works similar to lock_folio_or_retry in that it can drop the
3045 * mmap_lock.  It differs in that it actually returns the folio locked
3046 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3047 * to drop the mmap_lock then fpin will point to the pinned file and
3048 * needs to be fput()'ed at a later point.
3049 */
3050static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3051				     struct file **fpin)
3052{
3053	if (folio_trylock(folio))
3054		return 1;
3055
3056	/*
3057	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3058	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3059	 * is supposed to work. We have way too many special cases..
3060	 */
3061	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062		return 0;
3063
3064	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3066		if (__folio_lock_killable(folio)) {
3067			/*
3068			 * We didn't have the right flags to drop the
3069			 * fault lock, but all fault_handlers only check
3070			 * for fatal signals if we return VM_FAULT_RETRY,
3071			 * so we need to drop the fault lock here and
3072			 * return 0 if we don't have a fpin.
3073			 */
3074			if (*fpin == NULL)
3075				release_fault_lock(vmf);
3076			return 0;
3077		}
3078	} else
3079		__folio_lock(folio);
3080
3081	return 1;
3082}
3083
3084/*
3085 * Synchronous readahead happens when we don't even find a page in the page
3086 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3087 * to drop the mmap sem we return the file that was pinned in order for us to do
3088 * that.  If we didn't pin a file then we return NULL.  The file that is
3089 * returned needs to be fput()'ed when we're done with it.
3090 */
3091static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3092{
3093	struct file *file = vmf->vma->vm_file;
3094	struct file_ra_state *ra = &file->f_ra;
3095	struct address_space *mapping = file->f_mapping;
3096	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3097	struct file *fpin = NULL;
3098	unsigned long vm_flags = vmf->vma->vm_flags;
3099	unsigned int mmap_miss;
3100
3101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102	/* Use the readahead code, even if readahead is disabled */
3103	if (vm_flags & VM_HUGEPAGE) {
3104		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106		ra->size = HPAGE_PMD_NR;
3107		/*
3108		 * Fetch two PMD folios, so we get the chance to actually
3109		 * readahead, unless we've been told not to.
3110		 */
3111		if (!(vm_flags & VM_RAND_READ))
3112			ra->size *= 2;
3113		ra->async_size = HPAGE_PMD_NR;
3114		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115		return fpin;
3116	}
3117#endif
3118
3119	/* If we don't want any read-ahead, don't bother */
3120	if (vm_flags & VM_RAND_READ)
3121		return fpin;
3122	if (!ra->ra_pages)
3123		return fpin;
3124
3125	if (vm_flags & VM_SEQ_READ) {
3126		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3127		page_cache_sync_ra(&ractl, ra->ra_pages);
3128		return fpin;
3129	}
3130
3131	/* Avoid banging the cache line if not needed */
3132	mmap_miss = READ_ONCE(ra->mmap_miss);
3133	if (mmap_miss < MMAP_LOTSAMISS * 10)
3134		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3135
3136	/*
3137	 * Do we miss much more than hit in this file? If so,
3138	 * stop bothering with read-ahead. It will only hurt.
3139	 */
3140	if (mmap_miss > MMAP_LOTSAMISS)
3141		return fpin;
3142
3143	/*
3144	 * mmap read-around
3145	 */
3146	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3148	ra->size = ra->ra_pages;
3149	ra->async_size = ra->ra_pages / 4;
3150	ractl._index = ra->start;
3151	page_cache_ra_order(&ractl, ra, 0);
3152	return fpin;
3153}
3154
3155/*
3156 * Asynchronous readahead happens when we find the page and PG_readahead,
3157 * so we want to possibly extend the readahead further.  We return the file that
3158 * was pinned if we have to drop the mmap_lock in order to do IO.
3159 */
3160static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3161					    struct folio *folio)
 
 
 
3162{
3163	struct file *file = vmf->vma->vm_file;
3164	struct file_ra_state *ra = &file->f_ra;
3165	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3166	struct file *fpin = NULL;
3167	unsigned int mmap_miss;
3168
3169	/* If we don't want any read-ahead, don't bother */
3170	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3171		return fpin;
3172
3173	mmap_miss = READ_ONCE(ra->mmap_miss);
3174	if (mmap_miss)
3175		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176
3177	if (folio_test_readahead(folio)) {
3178		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3180	}
3181	return fpin;
3182}
3183
3184static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185{
3186	struct vm_area_struct *vma = vmf->vma;
3187	vm_fault_t ret = 0;
3188	pte_t *ptep;
3189
3190	/*
3191	 * We might have COW'ed a pagecache folio and might now have an mlocked
3192	 * anon folio mapped. The original pagecache folio is not mlocked and
3193	 * might have been evicted. During a read+clear/modify/write update of
3194	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195	 * temporarily clear the PTE under PT lock and might detect it here as
3196	 * "none" when not holding the PT lock.
3197	 *
3198	 * Not rechecking the PTE under PT lock could result in an unexpected
3199	 * major fault in an mlock'ed region. Recheck only for this special
3200	 * scenario while holding the PT lock, to not degrade non-mlocked
3201	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202	 * the number of times we hold PT lock.
3203	 */
3204	if (!(vma->vm_flags & VM_LOCKED))
3205		return 0;
3206
3207	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208		return 0;
3209
3210	ptep = pte_offset_map(vmf->pmd, vmf->address);
3211	if (unlikely(!ptep))
3212		return VM_FAULT_NOPAGE;
3213
3214	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215		ret = VM_FAULT_NOPAGE;
3216	} else {
3217		spin_lock(vmf->ptl);
3218		if (unlikely(!pte_none(ptep_get(ptep))))
3219			ret = VM_FAULT_NOPAGE;
3220		spin_unlock(vmf->ptl);
3221	}
3222	pte_unmap(ptep);
3223	return ret;
3224}
3225
3226/**
3227 * filemap_fault - read in file data for page fault handling
 
3228 * @vmf:	struct vm_fault containing details of the fault
3229 *
3230 * filemap_fault() is invoked via the vma operations vector for a
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
3236 *
3237 * vma->vm_mm->mmap_lock must be held on entry.
3238 *
3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 
 
3241 *
3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
3248 */
3249vm_fault_t filemap_fault(struct vm_fault *vmf)
3250{
3251	int error;
3252	struct file *file = vmf->vma->vm_file;
3253	struct file *fpin = NULL;
3254	struct address_space *mapping = file->f_mapping;
 
3255	struct inode *inode = mapping->host;
3256	pgoff_t max_idx, index = vmf->pgoff;
3257	struct folio *folio;
3258	vm_fault_t ret = 0;
3259	bool mapping_locked = false;
3260
3261	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262	if (unlikely(index >= max_idx))
3263		return VM_FAULT_SIGBUS;
3264
3265	/*
3266	 * Do we have something in the page cache already?
3267	 */
3268	folio = filemap_get_folio(mapping, index);
3269	if (likely(!IS_ERR(folio))) {
3270		/*
3271		 * We found the page, so try async readahead before waiting for
3272		 * the lock.
3273		 */
3274		if (!(vmf->flags & FAULT_FLAG_TRIED))
3275			fpin = do_async_mmap_readahead(vmf, folio);
3276		if (unlikely(!folio_test_uptodate(folio))) {
3277			filemap_invalidate_lock_shared(mapping);
3278			mapping_locked = true;
3279		}
3280	} else {
3281		ret = filemap_fault_recheck_pte_none(vmf);
3282		if (unlikely(ret))
3283			return ret;
3284
3285		/* No page in the page cache at all */
 
3286		count_vm_event(PGMAJFAULT);
3287		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3288		ret = VM_FAULT_MAJOR;
3289		fpin = do_sync_mmap_readahead(vmf);
3290retry_find:
3291		/*
3292		 * See comment in filemap_create_folio() why we need
3293		 * invalidate_lock
3294		 */
3295		if (!mapping_locked) {
3296			filemap_invalidate_lock_shared(mapping);
3297			mapping_locked = true;
3298		}
3299		folio = __filemap_get_folio(mapping, index,
3300					  FGP_CREAT|FGP_FOR_MMAP,
3301					  vmf->gfp_mask);
3302		if (IS_ERR(folio)) {
3303			if (fpin)
3304				goto out_retry;
3305			filemap_invalidate_unlock_shared(mapping);
3306			return VM_FAULT_OOM;
3307		}
3308	}
3309
3310	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3311		goto out_retry;
 
 
3312
3313	/* Did it get truncated? */
3314	if (unlikely(folio->mapping != mapping)) {
3315		folio_unlock(folio);
3316		folio_put(folio);
3317		goto retry_find;
3318	}
3319	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3320
3321	/*
3322	 * We have a locked folio in the page cache, now we need to check
3323	 * that it's up-to-date. If not, it is going to be due to an error,
3324	 * or because readahead was otherwise unable to retrieve it.
3325	 */
3326	if (unlikely(!folio_test_uptodate(folio))) {
3327		/*
3328		 * If the invalidate lock is not held, the folio was in cache
3329		 * and uptodate and now it is not. Strange but possible since we
3330		 * didn't hold the page lock all the time. Let's drop
3331		 * everything, get the invalidate lock and try again.
3332		 */
3333		if (!mapping_locked) {
3334			folio_unlock(folio);
3335			folio_put(folio);
3336			goto retry_find;
3337		}
3338
3339		/*
3340		 * OK, the folio is really not uptodate. This can be because the
3341		 * VMA has the VM_RAND_READ flag set, or because an error
3342		 * arose. Let's read it in directly.
3343		 */
3344		goto page_not_uptodate;
3345	}
3346
3347	/*
3348	 * We've made it this far and we had to drop our mmap_lock, now is the
3349	 * time to return to the upper layer and have it re-find the vma and
3350	 * redo the fault.
3351	 */
3352	if (fpin) {
3353		folio_unlock(folio);
3354		goto out_retry;
3355	}
3356	if (mapping_locked)
3357		filemap_invalidate_unlock_shared(mapping);
3358
3359	/*
3360	 * Found the page and have a reference on it.
3361	 * We must recheck i_size under page lock.
3362	 */
3363	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364	if (unlikely(index >= max_idx)) {
3365		folio_unlock(folio);
3366		folio_put(folio);
3367		return VM_FAULT_SIGBUS;
3368	}
3369
3370	vmf->page = folio_file_page(folio, index);
3371	return ret | VM_FAULT_LOCKED;
3372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3373page_not_uptodate:
3374	/*
3375	 * Umm, take care of errors if the page isn't up-to-date.
3376	 * Try to re-read it _once_. We do this synchronously,
3377	 * because there really aren't any performance issues here
3378	 * and we need to check for errors.
3379	 */
3380	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3382	if (fpin)
3383		goto out_retry;
3384	folio_put(folio);
 
 
 
3385
3386	if (!error || error == AOP_TRUNCATED_PAGE)
3387		goto retry_find;
3388	filemap_invalidate_unlock_shared(mapping);
3389
 
 
3390	return VM_FAULT_SIGBUS;
3391
3392out_retry:
3393	/*
3394	 * We dropped the mmap_lock, we need to return to the fault handler to
3395	 * re-find the vma and come back and find our hopefully still populated
3396	 * page.
3397	 */
3398	if (!IS_ERR(folio))
3399		folio_put(folio);
3400	if (mapping_locked)
3401		filemap_invalidate_unlock_shared(mapping);
3402	if (fpin)
3403		fput(fpin);
3404	return ret | VM_FAULT_RETRY;
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409		pgoff_t start)
3410{
3411	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
 
 
3412
3413	/* Huge page is mapped? No need to proceed. */
3414	if (pmd_trans_huge(*vmf->pmd)) {
3415		folio_unlock(folio);
3416		folio_put(folio);
3417		return true;
3418	}
3419
3420	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421		struct page *page = folio_file_page(folio, start);
3422		vm_fault_t ret = do_set_pmd(vmf, page);
3423		if (!ret) {
3424			/* The page is mapped successfully, reference consumed. */
3425			folio_unlock(folio);
3426			return true;
3427		}
3428	}
3429
3430	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3431		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3432
3433	return false;
3434}
 
 
 
3435
3436static struct folio *next_uptodate_folio(struct xa_state *xas,
3437		struct address_space *mapping, pgoff_t end_pgoff)
3438{
3439	struct folio *folio = xas_next_entry(xas, end_pgoff);
3440	unsigned long max_idx;
3441
3442	do {
3443		if (!folio)
3444			return NULL;
3445		if (xas_retry(xas, folio))
3446			continue;
3447		if (xa_is_value(folio))
3448			continue;
3449		if (folio_test_locked(folio))
3450			continue;
3451		if (!folio_try_get_rcu(folio))
3452			continue;
3453		/* Has the page moved or been split? */
3454		if (unlikely(folio != xas_reload(xas)))
3455			goto skip;
3456		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3457			goto skip;
3458		if (!folio_trylock(folio))
3459			goto skip;
3460		if (folio->mapping != mapping)
3461			goto unlock;
3462		if (!folio_test_uptodate(folio))
 
 
3463			goto unlock;
3464		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465		if (xas->xa_index >= max_idx)
 
3466			goto unlock;
3467		return folio;
 
 
 
 
 
 
3468unlock:
3469		folio_unlock(folio);
3470skip:
3471		folio_put(folio);
3472	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3473
3474	return NULL;
3475}
3476
3477/*
3478 * Map page range [start_page, start_page + nr_pages) of folio.
3479 * start_page is gotten from start by folio_page(folio, start)
3480 */
3481static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482			struct folio *folio, unsigned long start,
3483			unsigned long addr, unsigned int nr_pages,
3484			unsigned int *mmap_miss)
3485{
3486	vm_fault_t ret = 0;
3487	struct page *page = folio_page(folio, start);
3488	unsigned int count = 0;
3489	pte_t *old_ptep = vmf->pte;
3490
3491	do {
3492		if (PageHWPoison(page + count))
3493			goto skip;
3494
3495		(*mmap_miss)++;
3496
3497		/*
3498		 * NOTE: If there're PTE markers, we'll leave them to be
3499		 * handled in the specific fault path, and it'll prohibit the
3500		 * fault-around logic.
3501		 */
3502		if (!pte_none(ptep_get(&vmf->pte[count])))
3503			goto skip;
3504
3505		count++;
3506		continue;
3507skip:
3508		if (count) {
3509			set_pte_range(vmf, folio, page, count, addr);
3510			folio_ref_add(folio, count);
3511			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3512				ret = VM_FAULT_NOPAGE;
3513		}
3514
3515		count++;
3516		page += count;
3517		vmf->pte += count;
3518		addr += count * PAGE_SIZE;
3519		count = 0;
3520	} while (--nr_pages > 0);
3521
3522	if (count) {
3523		set_pte_range(vmf, folio, page, count, addr);
3524		folio_ref_add(folio, count);
3525		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3526			ret = VM_FAULT_NOPAGE;
3527	}
3528
3529	vmf->pte = old_ptep;
3530
3531	return ret;
3532}
3533
3534static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535		struct folio *folio, unsigned long addr,
3536		unsigned int *mmap_miss)
3537{
3538	vm_fault_t ret = 0;
3539	struct page *page = &folio->page;
3540
3541	if (PageHWPoison(page))
3542		return ret;
3543
3544	(*mmap_miss)++;
3545
3546	/*
3547	 * NOTE: If there're PTE markers, we'll leave them to be
3548	 * handled in the specific fault path, and it'll prohibit
3549	 * the fault-around logic.
3550	 */
3551	if (!pte_none(ptep_get(vmf->pte)))
3552		return ret;
3553
3554	if (vmf->address == addr)
3555		ret = VM_FAULT_NOPAGE;
3556
3557	set_pte_range(vmf, folio, page, 1, addr);
3558	folio_ref_inc(folio);
3559
3560	return ret;
3561}
3562
3563vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3565{
3566	struct vm_area_struct *vma = vmf->vma;
3567	struct file *file = vma->vm_file;
3568	struct address_space *mapping = file->f_mapping;
3569	pgoff_t last_pgoff = start_pgoff;
3570	unsigned long addr;
3571	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3572	struct folio *folio;
3573	vm_fault_t ret = 0;
3574	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3575
3576	rcu_read_lock();
3577	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3578	if (!folio)
3579		goto out;
3580
3581	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3582		ret = VM_FAULT_NOPAGE;
3583		goto out;
3584	}
3585
3586	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3588	if (!vmf->pte) {
3589		folio_unlock(folio);
3590		folio_put(folio);
3591		goto out;
3592	}
3593	do {
3594		unsigned long end;
3595
3596		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3597		vmf->pte += xas.xa_index - last_pgoff;
3598		last_pgoff = xas.xa_index;
3599		end = folio_next_index(folio) - 1;
3600		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3601
3602		if (!folio_test_large(folio))
3603			ret |= filemap_map_order0_folio(vmf,
3604					folio, addr, &mmap_miss);
3605		else
3606			ret |= filemap_map_folio_range(vmf, folio,
3607					xas.xa_index - folio->index, addr,
3608					nr_pages, &mmap_miss);
3609
3610		folio_unlock(folio);
3611		folio_put(folio);
3612	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3613	pte_unmap_unlock(vmf->pte, vmf->ptl);
3614out:
3615	rcu_read_unlock();
3616
3617	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618	if (mmap_miss >= mmap_miss_saved)
3619		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620	else
3621		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622
3623	return ret;
3624}
3625EXPORT_SYMBOL(filemap_map_pages);
3626
3627vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3628{
3629	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3630	struct folio *folio = page_folio(vmf->page);
3631	vm_fault_t ret = VM_FAULT_LOCKED;
3632
3633	sb_start_pagefault(mapping->host->i_sb);
3634	file_update_time(vmf->vma->vm_file);
3635	folio_lock(folio);
3636	if (folio->mapping != mapping) {
3637		folio_unlock(folio);
3638		ret = VM_FAULT_NOPAGE;
3639		goto out;
3640	}
3641	/*
3642	 * We mark the folio dirty already here so that when freeze is in
3643	 * progress, we are guaranteed that writeback during freezing will
3644	 * see the dirty folio and writeprotect it again.
3645	 */
3646	folio_mark_dirty(folio);
3647	folio_wait_stable(folio);
3648out:
3649	sb_end_pagefault(mapping->host->i_sb);
3650	return ret;
3651}
 
3652
3653const struct vm_operations_struct generic_file_vm_ops = {
3654	.fault		= filemap_fault,
3655	.map_pages	= filemap_map_pages,
3656	.page_mkwrite	= filemap_page_mkwrite,
3657};
3658
3659/* This is used for a general mmap of a disk file */
3660
3661int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3662{
3663	struct address_space *mapping = file->f_mapping;
3664
3665	if (!mapping->a_ops->read_folio)
3666		return -ENOEXEC;
3667	file_accessed(file);
3668	vma->vm_ops = &generic_file_vm_ops;
3669	return 0;
3670}
3671
3672/*
3673 * This is for filesystems which do not implement ->writepage.
3674 */
3675int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676{
3677	if (vma_is_shared_maywrite(vma))
3678		return -EINVAL;
3679	return generic_file_mmap(file, vma);
3680}
3681#else
3682vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3683{
3684	return VM_FAULT_SIGBUS;
3685}
3686int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3687{
3688	return -ENOSYS;
3689}
3690int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3691{
3692	return -ENOSYS;
3693}
3694#endif /* CONFIG_MMU */
3695
3696EXPORT_SYMBOL(filemap_page_mkwrite);
3697EXPORT_SYMBOL(generic_file_mmap);
3698EXPORT_SYMBOL(generic_file_readonly_mmap);
3699
3700static struct folio *do_read_cache_folio(struct address_space *mapping,
3701		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3702{
3703	struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3704	int err;
3705
3706	if (!filler)
3707		filler = mapping->a_ops->read_folio;
3708repeat:
3709	folio = filemap_get_folio(mapping, index);
3710	if (IS_ERR(folio)) {
3711		folio = filemap_alloc_folio(gfp, 0);
3712		if (!folio)
3713			return ERR_PTR(-ENOMEM);
3714		err = filemap_add_folio(mapping, folio, index, gfp);
3715		if (unlikely(err)) {
3716			folio_put(folio);
3717			if (err == -EEXIST)
3718				goto repeat;
3719			/* Presumably ENOMEM for xarray node */
3720			return ERR_PTR(err);
3721		}
3722
3723		goto filler;
 
 
 
 
 
 
 
 
 
 
3724	}
3725	if (folio_test_uptodate(folio))
3726		goto out;
3727
3728	if (!folio_trylock(folio)) {
3729		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730		goto repeat;
3731	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732
3733	/* Folio was truncated from mapping */
3734	if (!folio->mapping) {
3735		folio_unlock(folio);
3736		folio_put(folio);
3737		goto repeat;
3738	}
3739
3740	/* Someone else locked and filled the page in a very small window */
3741	if (folio_test_uptodate(folio)) {
3742		folio_unlock(folio);
3743		goto out;
3744	}
3745
3746filler:
3747	err = filemap_read_folio(file, filler, folio);
3748	if (err) {
3749		folio_put(folio);
3750		if (err == AOP_TRUNCATED_PAGE)
3751			goto repeat;
3752		return ERR_PTR(err);
3753	}
3754
3755out:
3756	folio_mark_accessed(folio);
3757	return folio;
3758}
3759
3760/**
3761 * read_cache_folio - Read into page cache, fill it if needed.
3762 * @mapping: The address_space to read from.
3763 * @index: The index to read.
3764 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765 * @file: Passed to filler function, may be NULL if not required.
3766 *
3767 * Read one page into the page cache.  If it succeeds, the folio returned
3768 * will contain @index, but it may not be the first page of the folio.
3769 *
3770 * If the filler function returns an error, it will be returned to the
3771 * caller.
3772 *
3773 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3774 * Return: An uptodate folio on success, ERR_PTR() on failure.
3775 */
3776struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3777		filler_t filler, struct file *file)
3778{
3779	return do_read_cache_folio(mapping, index, filler, file,
3780			mapping_gfp_mask(mapping));
3781}
3782EXPORT_SYMBOL(read_cache_folio);
3783
3784/**
3785 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786 * @mapping:	The address_space for the folio.
3787 * @index:	The index that the allocated folio will contain.
3788 * @gfp:	The page allocator flags to use if allocating.
3789 *
3790 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791 * any new memory allocations done using the specified allocation flags.
3792 *
3793 * The most likely error from this function is EIO, but ENOMEM is
3794 * possible and so is EINTR.  If ->read_folio returns another error,
3795 * that will be returned to the caller.
3796 *
3797 * The function expects mapping->invalidate_lock to be already held.
3798 *
3799 * Return: Uptodate folio on success, ERR_PTR() on failure.
3800 */
3801struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802		pgoff_t index, gfp_t gfp)
3803{
3804	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805}
3806EXPORT_SYMBOL(mapping_read_folio_gfp);
3807
3808static struct page *do_read_cache_page(struct address_space *mapping,
3809		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3810{
3811	struct folio *folio;
3812
3813	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3814	if (IS_ERR(folio))
3815		return &folio->page;
3816	return folio_file_page(folio, index);
3817}
3818
3819struct page *read_cache_page(struct address_space *mapping,
3820			pgoff_t index, filler_t *filler, struct file *file)
 
 
3821{
3822	return do_read_cache_page(mapping, index, filler, file,
3823			mapping_gfp_mask(mapping));
3824}
3825EXPORT_SYMBOL(read_cache_page);
3826
3827/**
3828 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829 * @mapping:	the page's address_space
3830 * @index:	the page index
3831 * @gfp:	the page allocator flags to use if allocating
3832 *
3833 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3834 * any new page allocations done using the specified allocation flags.
3835 *
3836 * If the page does not get brought uptodate, return -EIO.
3837 *
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
3840 * Return: up to date page on success, ERR_PTR() on failure.
3841 */
3842struct page *read_cache_page_gfp(struct address_space *mapping,
3843				pgoff_t index,
3844				gfp_t gfp)
3845{
3846	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3847}
3848EXPORT_SYMBOL(read_cache_page_gfp);
3849
3850/*
3851 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3852 */
3853static void dio_warn_stale_pagecache(struct file *filp)
3854{
3855	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856	char pathname[128];
3857	char *path;
 
3858
3859	errseq_set(&filp->f_mapping->wb_err, -EIO);
3860	if (__ratelimit(&_rs)) {
3861		path = file_path(filp, pathname, sizeof(pathname));
3862		if (IS_ERR(path))
3863			path = "(unknown)";
3864		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3865		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866			current->comm);
 
 
 
 
 
 
 
3867	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3868}
 
3869
3870void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3871{
3872	struct address_space *mapping = iocb->ki_filp->f_mapping;
3873
3874	if (mapping->nrpages &&
3875	    invalidate_inode_pages2_range(mapping,
3876			iocb->ki_pos >> PAGE_SHIFT,
3877			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878		dio_warn_stale_pagecache(iocb->ki_filp);
3879}
 
3880
3881ssize_t
3882generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3883{
3884	struct address_space *mapping = iocb->ki_filp->f_mapping;
3885	size_t write_len = iov_iter_count(from);
3886	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
3887
3888	/*
3889	 * If a page can not be invalidated, return 0 to fall back
3890	 * to buffered write.
 
 
3891	 */
3892	written = kiocb_invalidate_pages(iocb, write_len);
3893	if (written) {
3894		if (written == -EBUSY)
3895			return 0;
3896		return written;
 
 
 
 
 
 
 
3897	}
3898
3899	written = mapping->a_ops->direct_IO(iocb, from);
 
3900
3901	/*
3902	 * Finally, try again to invalidate clean pages which might have been
3903	 * cached by non-direct readahead, or faulted in by get_user_pages()
3904	 * if the source of the write was an mmap'ed region of the file
3905	 * we're writing.  Either one is a pretty crazy thing to do,
3906	 * so we don't support it 100%.  If this invalidation
3907	 * fails, tough, the write still worked...
3908	 *
3909	 * Most of the time we do not need this since dio_complete() will do
3910	 * the invalidation for us. However there are some file systems that
3911	 * do not end up with dio_complete() being called, so let's not break
3912	 * them by removing it completely.
3913	 *
3914	 * Noticeable example is a blkdev_direct_IO().
3915	 *
3916	 * Skip invalidation for async writes or if mapping has no pages.
3917	 */
 
 
 
 
 
3918	if (written > 0) {
3919		struct inode *inode = mapping->host;
3920		loff_t pos = iocb->ki_pos;
3921
3922		kiocb_invalidate_post_direct_write(iocb, written);
3923		pos += written;
3924		write_len -= written;
3925		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926			i_size_write(inode, pos);
3927			mark_inode_dirty(inode);
3928		}
3929		iocb->ki_pos = pos;
3930	}
3931	if (written != -EIOCBQUEUED)
3932		iov_iter_revert(from, write_len - iov_iter_count(from));
3933	return written;
3934}
3935EXPORT_SYMBOL(generic_file_direct_write);
3936
3937ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938{
3939	struct file *file = iocb->ki_filp;
3940	loff_t pos = iocb->ki_pos;
3941	struct address_space *mapping = file->f_mapping;
3942	const struct address_space_operations *a_ops = mapping->a_ops;
3943	long status = 0;
3944	ssize_t written = 0;
 
 
 
 
 
 
 
3945
3946	do {
3947		struct page *page;
3948		unsigned long offset;	/* Offset into pagecache page */
3949		unsigned long bytes;	/* Bytes to write to page */
3950		size_t copied;		/* Bytes copied from user */
3951		void *fsdata = NULL;
3952
3953		offset = (pos & (PAGE_SIZE - 1));
3954		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3955						iov_iter_count(i));
3956
3957again:
3958		/*
3959		 * Bring in the user page that we will copy from _first_.
3960		 * Otherwise there's a nasty deadlock on copying from the
3961		 * same page as we're writing to, without it being marked
3962		 * up-to-date.
 
 
 
 
3963		 */
3964		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3965			status = -EFAULT;
3966			break;
3967		}
3968
3969		if (fatal_signal_pending(current)) {
3970			status = -EINTR;
3971			break;
3972		}
3973
3974		status = a_ops->write_begin(file, mapping, pos, bytes,
3975						&page, &fsdata);
3976		if (unlikely(status < 0))
3977			break;
3978
3979		if (mapping_writably_mapped(mapping))
3980			flush_dcache_page(page);
3981
3982		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3983		flush_dcache_page(page);
3984
3985		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986						page, fsdata);
3987		if (unlikely(status != copied)) {
3988			iov_iter_revert(i, copied - max(status, 0L));
3989			if (unlikely(status < 0))
3990				break;
3991		}
3992		cond_resched();
3993
3994		if (unlikely(status == 0)) {
 
3995			/*
3996			 * A short copy made ->write_end() reject the
3997			 * thing entirely.  Might be memory poisoning
3998			 * halfway through, might be a race with munmap,
3999			 * might be severe memory pressure.
 
 
4000			 */
4001			if (copied)
4002				bytes = copied;
4003			goto again;
4004		}
4005		pos += status;
4006		written += status;
4007
4008		balance_dirty_pages_ratelimited(mapping);
4009	} while (iov_iter_count(i));
4010
4011	if (!written)
4012		return status;
4013	iocb->ki_pos += written;
4014	return written;
4015}
4016EXPORT_SYMBOL(generic_perform_write);
4017
4018/**
4019 * __generic_file_write_iter - write data to a file
4020 * @iocb:	IO state structure (file, offset, etc.)
4021 * @from:	iov_iter with data to write
4022 *
4023 * This function does all the work needed for actually writing data to a
4024 * file. It does all basic checks, removes SUID from the file, updates
4025 * modification times and calls proper subroutines depending on whether we
4026 * do direct IO or a standard buffered write.
4027 *
4028 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4029 * object which does not need locking at all.
4030 *
4031 * This function does *not* take care of syncing data in case of O_SYNC write.
4032 * A caller has to handle it. This is mainly due to the fact that we want to
4033 * avoid syncing under i_rwsem.
4034 *
4035 * Return:
4036 * * number of bytes written, even for truncated writes
4037 * * negative error code if no data has been written at all
4038 */
4039ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040{
4041	struct file *file = iocb->ki_filp;
4042	struct address_space *mapping = file->f_mapping;
4043	struct inode *inode = mapping->host;
4044	ssize_t ret;
 
 
 
 
 
 
 
 
4045
4046	ret = file_remove_privs(file);
4047	if (ret)
4048		return ret;
4049
4050	ret = file_update_time(file);
4051	if (ret)
4052		return ret;
4053
4054	if (iocb->ki_flags & IOCB_DIRECT) {
4055		ret = generic_file_direct_write(iocb, from);
4056		/*
4057		 * If the write stopped short of completing, fall back to
4058		 * buffered writes.  Some filesystems do this for writes to
4059		 * holes, for example.  For DAX files, a buffered write will
4060		 * not succeed (even if it did, DAX does not handle dirty
4061		 * page-cache pages correctly).
4062		 */
4063		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064			return ret;
4065		return direct_write_fallback(iocb, from, ret,
4066				generic_perform_write(iocb, from));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067	}
4068
4069	return generic_perform_write(iocb, from);
 
4070}
4071EXPORT_SYMBOL(__generic_file_write_iter);
4072
4073/**
4074 * generic_file_write_iter - write data to a file
4075 * @iocb:	IO state structure
4076 * @from:	iov_iter with data to write
4077 *
4078 * This is a wrapper around __generic_file_write_iter() to be used by most
4079 * filesystems. It takes care of syncing the file in case of O_SYNC file
4080 * and acquires i_rwsem as needed.
4081 * Return:
4082 * * negative error code if no data has been written at all of
4083 *   vfs_fsync_range() failed for a synchronous write
4084 * * number of bytes written, even for truncated writes
4085 */
4086ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4087{
4088	struct file *file = iocb->ki_filp;
4089	struct inode *inode = file->f_mapping->host;
4090	ssize_t ret;
4091
4092	inode_lock(inode);
4093	ret = generic_write_checks(iocb, from);
4094	if (ret > 0)
4095		ret = __generic_file_write_iter(iocb, from);
4096	inode_unlock(inode);
4097
4098	if (ret > 0)
4099		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
4100	return ret;
4101}
4102EXPORT_SYMBOL(generic_file_write_iter);
4103
4104/**
4105 * filemap_release_folio() - Release fs-specific metadata on a folio.
4106 * @folio: The folio which the kernel is trying to free.
4107 * @gfp: Memory allocation flags (and I/O mode).
4108 *
4109 * The address_space is trying to release any data attached to a folio
4110 * (presumably at folio->private).
4111 *
4112 * This will also be called if the private_2 flag is set on a page,
4113 * indicating that the folio has other metadata associated with it.
 
4114 *
4115 * The @gfp argument specifies whether I/O may be performed to release
4116 * this page (__GFP_IO), and whether the call may block
4117 * (__GFP_RECLAIM & __GFP_FS).
 
 
4118 *
4119 * Return: %true if the release was successful, otherwise %false.
4120 */
4121bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4122{
4123	struct address_space * const mapping = folio->mapping;
4124
4125	BUG_ON(!folio_test_locked(folio));
4126	if (!folio_needs_release(folio))
4127		return true;
4128	if (folio_test_writeback(folio))
4129		return false;
4130
4131	if (mapping && mapping->a_ops->release_folio)
4132		return mapping->a_ops->release_folio(folio, gfp);
4133	return try_to_free_buffers(folio);
4134}
4135EXPORT_SYMBOL(filemap_release_folio);
4136
4137#ifdef CONFIG_CACHESTAT_SYSCALL
4138/**
4139 * filemap_cachestat() - compute the page cache statistics of a mapping
4140 * @mapping:	The mapping to compute the statistics for.
4141 * @first_index:	The starting page cache index.
4142 * @last_index:	The final page index (inclusive).
4143 * @cs:	the cachestat struct to write the result to.
4144 *
4145 * This will query the page cache statistics of a mapping in the
4146 * page range of [first_index, last_index] (inclusive). The statistics
4147 * queried include: number of dirty pages, number of pages marked for
4148 * writeback, and the number of (recently) evicted pages.
4149 */
4150static void filemap_cachestat(struct address_space *mapping,
4151		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152{
4153	XA_STATE(xas, &mapping->i_pages, first_index);
4154	struct folio *folio;
4155
4156	rcu_read_lock();
4157	xas_for_each(&xas, folio, last_index) {
4158		int order;
4159		unsigned long nr_pages;
4160		pgoff_t folio_first_index, folio_last_index;
4161
4162		/*
4163		 * Don't deref the folio. It is not pinned, and might
4164		 * get freed (and reused) underneath us.
4165		 *
4166		 * We *could* pin it, but that would be expensive for
4167		 * what should be a fast and lightweight syscall.
4168		 *
4169		 * Instead, derive all information of interest from
4170		 * the rcu-protected xarray.
4171		 */
4172
4173		if (xas_retry(&xas, folio))
4174			continue;
4175
4176		order = xa_get_order(xas.xa, xas.xa_index);
4177		nr_pages = 1 << order;
4178		folio_first_index = round_down(xas.xa_index, 1 << order);
4179		folio_last_index = folio_first_index + nr_pages - 1;
4180
4181		/* Folios might straddle the range boundaries, only count covered pages */
4182		if (folio_first_index < first_index)
4183			nr_pages -= first_index - folio_first_index;
4184
4185		if (folio_last_index > last_index)
4186			nr_pages -= folio_last_index - last_index;
4187
4188		if (xa_is_value(folio)) {
4189			/* page is evicted */
4190			void *shadow = (void *)folio;
4191			bool workingset; /* not used */
4192
4193			cs->nr_evicted += nr_pages;
4194
4195#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196			if (shmem_mapping(mapping)) {
4197				/* shmem file - in swap cache */
4198				swp_entry_t swp = radix_to_swp_entry(folio);
4199
4200				/* swapin error results in poisoned entry */
4201				if (non_swap_entry(swp))
4202					goto resched;
4203
4204				/*
4205				 * Getting a swap entry from the shmem
4206				 * inode means we beat
4207				 * shmem_unuse(). rcu_read_lock()
4208				 * ensures swapoff waits for us before
4209				 * freeing the swapper space. However,
4210				 * we can race with swapping and
4211				 * invalidation, so there might not be
4212				 * a shadow in the swapcache (yet).
4213				 */
4214				shadow = get_shadow_from_swap_cache(swp);
4215				if (!shadow)
4216					goto resched;
4217			}
4218#endif
4219			if (workingset_test_recent(shadow, true, &workingset))
4220				cs->nr_recently_evicted += nr_pages;
4221
4222			goto resched;
4223		}
4224
4225		/* page is in cache */
4226		cs->nr_cache += nr_pages;
4227
4228		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4229			cs->nr_dirty += nr_pages;
4230
4231		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4232			cs->nr_writeback += nr_pages;
4233
4234resched:
4235		if (need_resched()) {
4236			xas_pause(&xas);
4237			cond_resched_rcu();
4238		}
4239	}
4240	rcu_read_unlock();
4241}
4242
4243/*
4244 * The cachestat(2) system call.
4245 *
4246 * cachestat() returns the page cache statistics of a file in the
4247 * bytes range specified by `off` and `len`: number of cached pages,
4248 * number of dirty pages, number of pages marked for writeback,
4249 * number of evicted pages, and number of recently evicted pages.
4250 *
4251 * An evicted page is a page that is previously in the page cache
4252 * but has been evicted since. A page is recently evicted if its last
4253 * eviction was recent enough that its reentry to the cache would
4254 * indicate that it is actively being used by the system, and that
4255 * there is memory pressure on the system.
4256 *
4257 * `off` and `len` must be non-negative integers. If `len` > 0,
4258 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259 * we will query in the range from `off` to the end of the file.
4260 *
4261 * The `flags` argument is unused for now, but is included for future
4262 * extensibility. User should pass 0 (i.e no flag specified).
4263 *
4264 * Currently, hugetlbfs is not supported.
4265 *
4266 * Because the status of a page can change after cachestat() checks it
4267 * but before it returns to the application, the returned values may
4268 * contain stale information.
4269 *
4270 * return values:
4271 *  zero        - success
4272 *  -EFAULT     - cstat or cstat_range points to an illegal address
4273 *  -EINVAL     - invalid flags
4274 *  -EBADF      - invalid file descriptor
4275 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276 */
4277SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278		struct cachestat_range __user *, cstat_range,
4279		struct cachestat __user *, cstat, unsigned int, flags)
4280{
4281	struct fd f = fdget(fd);
4282	struct address_space *mapping;
4283	struct cachestat_range csr;
4284	struct cachestat cs;
4285	pgoff_t first_index, last_index;
4286
4287	if (!f.file)
4288		return -EBADF;
4289
4290	if (copy_from_user(&csr, cstat_range,
4291			sizeof(struct cachestat_range))) {
4292		fdput(f);
4293		return -EFAULT;
4294	}
4295
4296	/* hugetlbfs is not supported */
4297	if (is_file_hugepages(f.file)) {
4298		fdput(f);
4299		return -EOPNOTSUPP;
4300	}
4301
4302	if (flags != 0) {
4303		fdput(f);
4304		return -EINVAL;
4305	}
4306
4307	first_index = csr.off >> PAGE_SHIFT;
4308	last_index =
4309		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310	memset(&cs, 0, sizeof(struct cachestat));
4311	mapping = f.file->f_mapping;
4312	filemap_cachestat(mapping, first_index, last_index, &cs);
4313	fdput(f);
4314
4315	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316		return -EFAULT;
4317
4318	return 0;
4319}
4320#endif /* CONFIG_CACHESTAT_SYSCALL */