Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
 
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
 
 
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
 
 
 
 
 
 
 
 
 
 
 
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
 
 
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
 
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static void page_cache_tree_delete(struct address_space *mapping,
 114				   struct page *page, void *shadow)
 115{
 116	struct radix_tree_node *node;
 117	unsigned long index;
 118	unsigned int offset;
 119	unsigned int tag;
 120	void **slot;
 121
 122	VM_BUG_ON(!PageLocked(page));
 123
 124	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 
 125
 126	if (shadow) {
 127		mapping->nrexceptional++;
 128		/*
 129		 * Make sure the nrexceptional update is committed before
 130		 * the nrpages update so that final truncate racing
 131		 * with reclaim does not see both counters 0 at the
 132		 * same time and miss a shadow entry.
 133		 */
 134		smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135	}
 136	mapping->nrpages--;
 137
 138	if (!node) {
 139		/* Clear direct pointer tags in root node */
 140		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 141		radix_tree_replace_slot(slot, shadow);
 142		return;
 143	}
 144
 145	/* Clear tree tags for the removed page */
 146	index = page->index;
 147	offset = index & RADIX_TREE_MAP_MASK;
 148	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 149		if (test_bit(offset, node->tags[tag]))
 150			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 151	}
 152
 153	/* Delete page, swap shadow entry */
 154	radix_tree_replace_slot(slot, shadow);
 155	workingset_node_pages_dec(node);
 156	if (shadow)
 157		workingset_node_shadows_inc(node);
 158	else
 159		if (__radix_tree_delete_node(&mapping->page_tree, node))
 160			return;
 
 161
 162	/*
 163	 * Track node that only contains shadow entries.
 
 
 164	 *
 165	 * Avoid acquiring the list_lru lock if already tracked.  The
 166	 * list_empty() test is safe as node->private_list is
 167	 * protected by mapping->tree_lock.
 168	 */
 169	if (!workingset_node_pages(node) &&
 170	    list_empty(&node->private_list)) {
 171		node->private_data = mapping;
 172		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 173	}
 
 
 
 174}
 175
 176/*
 177 * Delete a page from the page cache and free it. Caller has to make
 178 * sure the page is locked and that nobody else uses it - or that usage
 179 * is safe.  The caller must hold the mapping's tree_lock.
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow)
 182{
 183	struct address_space *mapping = page->mapping;
 184
 185	trace_mm_filemap_delete_from_page_cache(page);
 186	/*
 187	 * if we're uptodate, flush out into the cleancache, otherwise
 188	 * invalidate any existing cleancache entries.  We can't leave
 189	 * stale data around in the cleancache once our page is gone
 190	 */
 191	if (PageUptodate(page) && PageMappedToDisk(page))
 192		cleancache_put_page(page);
 193	else
 194		cleancache_invalidate_page(mapping, page);
 195
 196	VM_BUG_ON_PAGE(page_mapped(page), page);
 197	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 198		int mapcount;
 
 199
 200		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 201			 current->comm, page_to_pfn(page));
 202		dump_page(page, "still mapped when deleted");
 203		dump_stack();
 204		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 205
 206		mapcount = page_mapcount(page);
 207		if (mapping_exiting(mapping) &&
 208		    page_count(page) >= mapcount + 2) {
 209			/*
 210			 * All vmas have already been torn down, so it's
 211			 * a good bet that actually the page is unmapped,
 212			 * and we'd prefer not to leak it: if we're wrong,
 213			 * some other bad page check should catch it later.
 214			 */
 215			page_mapcount_reset(page);
 216			atomic_sub(mapcount, &page->_count);
 217		}
 218	}
 219
 220	page_cache_tree_delete(mapping, page, shadow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221
 222	page->mapping = NULL;
 223	/* Leave page->index set: truncation lookup relies upon it */
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (!PageHuge(page))
 227		__dec_zone_page_state(page, NR_FILE_PAGES);
 228	if (PageSwapBacked(page))
 229		__dec_zone_page_state(page, NR_SHMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	/*
 232	 * At this point page must be either written or cleaned by truncate.
 233	 * Dirty page here signals a bug and loss of unwritten data.
 234	 *
 235	 * This fixes dirty accounting after removing the page entirely but
 236	 * leaves PageDirty set: it has no effect for truncated page and
 237	 * anyway will be cleared before returning page into buddy allocator.
 238	 */
 239	if (WARN_ON_ONCE(PageDirty(page)))
 240		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 243/**
 244 * delete_from_page_cache - delete page from page cache
 245 * @page: the page which the kernel is trying to remove from page cache
 246 *
 247 * This must be called only on pages that have been verified to be in the page
 248 * cache and locked.  It will never put the page into the free list, the caller
 249 * has a reference on the page.
 250 */
 251void delete_from_page_cache(struct page *page)
 252{
 253	struct address_space *mapping = page->mapping;
 254	unsigned long flags;
 255
 256	void (*freepage)(struct page *);
 257
 258	BUG_ON(!PageLocked(page));
 259
 260	freepage = mapping->a_ops->freepage;
 
 
 
 261
 262	spin_lock_irqsave(&mapping->tree_lock, flags);
 263	__delete_from_page_cache(page, NULL);
 264	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
 265
 266	if (freepage)
 267		freepage(page);
 268	put_page(page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272static int filemap_check_errors(struct address_space *mapping)
 273{
 274	int ret = 0;
 275	/* Check for outstanding write errors */
 276	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 277	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 278		ret = -ENOSPC;
 279	if (test_bit(AS_EIO, &mapping->flags) &&
 280	    test_and_clear_bit(AS_EIO, &mapping->flags))
 281		ret = -EIO;
 282	return ret;
 283}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285/**
 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 287 * @mapping:	address space structure to write
 288 * @start:	offset in bytes where the range starts
 289 * @end:	offset in bytes where the range ends (inclusive)
 290 * @sync_mode:	enable synchronous operation
 291 *
 292 * Start writeback against all of a mapping's dirty pages that lie
 293 * within the byte offsets <start, end> inclusive.
 294 *
 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 296 * opposed to a regular memory cleansing writeback.  The difference between
 297 * these two operations is that if a dirty page/buffer is encountered, it must
 298 * be waited upon, and not just skipped over.
 
 
 299 */
 300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 301				loff_t end, int sync_mode)
 302{
 303	int ret;
 304	struct writeback_control wbc = {
 305		.sync_mode = sync_mode,
 306		.nr_to_write = LONG_MAX,
 307		.range_start = start,
 308		.range_end = end,
 309	};
 310
 311	if (!mapping_cap_writeback_dirty(mapping))
 312		return 0;
 313
 314	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 315	ret = do_writepages(mapping, &wbc);
 316	wbc_detach_inode(&wbc);
 317	return ret;
 318}
 319
 320static inline int __filemap_fdatawrite(struct address_space *mapping,
 321	int sync_mode)
 322{
 323	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 324}
 325
 326int filemap_fdatawrite(struct address_space *mapping)
 327{
 328	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 329}
 330EXPORT_SYMBOL(filemap_fdatawrite);
 331
 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 333				loff_t end)
 334{
 335	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 336}
 337EXPORT_SYMBOL(filemap_fdatawrite_range);
 338
 339/**
 340 * filemap_flush - mostly a non-blocking flush
 341 * @mapping:	target address_space
 342 *
 343 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 344 * purposes - I/O may not be started against all dirty pages.
 
 
 345 */
 346int filemap_flush(struct address_space *mapping)
 347{
 348	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 349}
 350EXPORT_SYMBOL(filemap_flush);
 351
 352static int __filemap_fdatawait_range(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353				     loff_t start_byte, loff_t end_byte)
 354{
 355	pgoff_t index = start_byte >> PAGE_SHIFT;
 356	pgoff_t end = end_byte >> PAGE_SHIFT;
 357	struct pagevec pvec;
 358	int nr_pages;
 359	int ret = 0;
 360
 361	if (end_byte < start_byte)
 362		goto out;
 363
 364	pagevec_init(&pvec, 0);
 365	while ((index <= end) &&
 366			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 367			PAGECACHE_TAG_WRITEBACK,
 368			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 369		unsigned i;
 370
 371		for (i = 0; i < nr_pages; i++) {
 372			struct page *page = pvec.pages[i];
 373
 374			/* until radix tree lookup accepts end_index */
 375			if (page->index > end)
 376				continue;
 
 
 377
 378			wait_on_page_writeback(page);
 379			if (TestClearPageError(page))
 380				ret = -EIO;
 381		}
 382		pagevec_release(&pvec);
 383		cond_resched();
 384	}
 385out:
 386	return ret;
 387}
 388
 389/**
 390 * filemap_fdatawait_range - wait for writeback to complete
 391 * @mapping:		address space structure to wait for
 392 * @start_byte:		offset in bytes where the range starts
 393 * @end_byte:		offset in bytes where the range ends (inclusive)
 394 *
 395 * Walk the list of under-writeback pages of the given address space
 396 * in the given range and wait for all of them.  Check error status of
 397 * the address space and return it.
 398 *
 399 * Since the error status of the address space is cleared by this function,
 400 * callers are responsible for checking the return value and handling and/or
 401 * reporting the error.
 
 
 402 */
 403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 404			    loff_t end_byte)
 405{
 406	int ret, ret2;
 407
 408	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 409	ret2 = filemap_check_errors(mapping);
 410	if (!ret)
 411		ret = ret2;
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL(filemap_fdatawait_range);
 416
 417/**
 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 419 * @mapping: address space structure to wait for
 
 
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 423 * does not clear error status of the address space.
 424 *
 425 * Use this function if callers don't handle errors themselves.  Expected
 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 427 * fsfreeze(8)
 428 */
 429void filemap_fdatawait_keep_errors(struct address_space *mapping)
 
 430{
 431	loff_t i_size = i_size_read(mapping->host);
 
 
 
 432
 433	if (i_size == 0)
 434		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 437}
 
 438
 439/**
 440 * filemap_fdatawait - wait for all under-writeback pages to complete
 441 * @mapping: address space structure to wait for
 442 *
 443 * Walk the list of under-writeback pages of the given address space
 444 * and wait for all of them.  Check error status of the address space
 445 * and return it.
 446 *
 447 * Since the error status of the address space is cleared by this function,
 448 * callers are responsible for checking the return value and handling and/or
 449 * reporting the error.
 
 
 450 */
 451int filemap_fdatawait(struct address_space *mapping)
 452{
 453	loff_t i_size = i_size_read(mapping->host);
 454
 455	if (i_size == 0)
 456		return 0;
 457
 458	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 
 
 459}
 460EXPORT_SYMBOL(filemap_fdatawait);
 461
 462int filemap_write_and_wait(struct address_space *mapping)
 
 463{
 464	int err = 0;
 
 
 465
 466	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 467	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 468		err = filemap_fdatawrite(mapping);
 469		/*
 470		 * Even if the above returned error, the pages may be
 471		 * written partially (e.g. -ENOSPC), so we wait for it.
 472		 * But the -EIO is special case, it may indicate the worst
 473		 * thing (e.g. bug) happened, so we avoid waiting for it.
 474		 */
 475		if (err != -EIO) {
 476			int err2 = filemap_fdatawait(mapping);
 477			if (!err)
 478				err = err2;
 479		}
 480	} else {
 481		err = filemap_check_errors(mapping);
 482	}
 483	return err;
 
 484}
 485EXPORT_SYMBOL(filemap_write_and_wait);
 486
 487/**
 488 * filemap_write_and_wait_range - write out & wait on a file range
 489 * @mapping:	the address_space for the pages
 490 * @lstart:	offset in bytes where the range starts
 491 * @lend:	offset in bytes where the range ends (inclusive)
 492 *
 493 * Write out and wait upon file offsets lstart->lend, inclusive.
 494 *
 495 * Note that `lend' is inclusive (describes the last byte to be written) so
 496 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 497 */
 498int filemap_write_and_wait_range(struct address_space *mapping,
 499				 loff_t lstart, loff_t lend)
 500{
 501	int err = 0;
 
 
 
 502
 503	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 504	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 505		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 506						 WB_SYNC_ALL);
 507		/* See comment of filemap_write_and_wait() */
 508		if (err != -EIO) {
 509			int err2 = filemap_fdatawait_range(mapping,
 510						lstart, lend);
 511			if (!err)
 512				err = err2;
 513		}
 514	} else {
 515		err = filemap_check_errors(mapping);
 516	}
 
 
 
 517	return err;
 518}
 519EXPORT_SYMBOL(filemap_write_and_wait_range);
 520
 
 
 
 
 
 
 
 
 521/**
 522 * replace_page_cache_page - replace a pagecache page with a new one
 523 * @old:	page to be replaced
 524 * @new:	page to replace with
 525 * @gfp_mask:	allocation mode
 526 *
 527 * This function replaces a page in the pagecache with a new one.  On
 528 * success it acquires the pagecache reference for the new page and
 529 * drops it for the old page.  Both the old and new pages must be
 530 * locked.  This function does not add the new page to the LRU, the
 531 * caller must do that.
 
 
 
 
 
 
 
 
 
 
 532 *
 533 * The remove + add is atomic.  The only way this function can fail is
 534 * memory allocation failure.
 535 */
 536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 537{
 538	int error;
 
 
 539
 540	VM_BUG_ON_PAGE(!PageLocked(old), old);
 541	VM_BUG_ON_PAGE(!PageLocked(new), new);
 542	VM_BUG_ON_PAGE(new->mapping, new);
 543
 544	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 545	if (!error) {
 546		struct address_space *mapping = old->mapping;
 547		void (*freepage)(struct page *);
 548		unsigned long flags;
 549
 550		pgoff_t offset = old->index;
 551		freepage = mapping->a_ops->freepage;
 552
 553		get_page(new);
 554		new->mapping = mapping;
 555		new->index = offset;
 556
 557		spin_lock_irqsave(&mapping->tree_lock, flags);
 558		__delete_from_page_cache(old, NULL);
 559		error = radix_tree_insert(&mapping->page_tree, offset, new);
 560		BUG_ON(error);
 561		mapping->nrpages++;
 562
 563		/*
 564		 * hugetlb pages do not participate in page cache accounting.
 565		 */
 566		if (!PageHuge(new))
 567			__inc_zone_page_state(new, NR_FILE_PAGES);
 568		if (PageSwapBacked(new))
 569			__inc_zone_page_state(new, NR_SHMEM);
 570		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 571		mem_cgroup_migrate(old, new);
 572		radix_tree_preload_end();
 573		if (freepage)
 574			freepage(old);
 575		put_page(old);
 576	}
 577
 578	return error;
 
 
 
 
 
 
 
 579}
 580EXPORT_SYMBOL_GPL(replace_page_cache_page);
 581
 582static int page_cache_tree_insert(struct address_space *mapping,
 583				  struct page *page, void **shadowp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584{
 585	struct radix_tree_node *node;
 586	void **slot;
 587	int error;
 588
 589	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 590				    &node, &slot);
 591	if (error)
 592		return error;
 593	if (*slot) {
 594		void *p;
 595
 596		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 597		if (!radix_tree_exceptional_entry(p))
 598			return -EEXIST;
 599
 600		if (WARN_ON(dax_mapping(mapping)))
 601			return -EINVAL;
 602
 603		if (shadowp)
 604			*shadowp = p;
 605		mapping->nrexceptional--;
 606		if (node)
 607			workingset_node_shadows_dec(node);
 608	}
 609	radix_tree_replace_slot(slot, page);
 610	mapping->nrpages++;
 611	if (node) {
 612		workingset_node_pages_inc(node);
 613		/*
 614		 * Don't track node that contains actual pages.
 615		 *
 616		 * Avoid acquiring the list_lru lock if already
 617		 * untracked.  The list_empty() test is safe as
 618		 * node->private_list is protected by
 619		 * mapping->tree_lock.
 620		 */
 621		if (!list_empty(&node->private_list))
 622			list_lru_del(&workingset_shadow_nodes,
 623				     &node->private_list);
 624	}
 625	return 0;
 
 
 
 626}
 
 627
 628static int __add_to_page_cache_locked(struct page *page,
 629				      struct address_space *mapping,
 630				      pgoff_t offset, gfp_t gfp_mask,
 631				      void **shadowp)
 
 
 
 
 
 
 
 
 
 
 632{
 633	int huge = PageHuge(page);
 634	struct mem_cgroup *memcg;
 635	int error;
 
 636
 637	VM_BUG_ON_PAGE(!PageLocked(page), page);
 638	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 639
 640	if (!huge) {
 641		error = mem_cgroup_try_charge(page, current->mm,
 642					      gfp_mask, &memcg, false);
 643		if (error)
 644			return error;
 645	}
 646
 647	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 648	if (error) {
 649		if (!huge)
 650			mem_cgroup_cancel_charge(page, memcg, false);
 651		return error;
 652	}
 653
 654	get_page(page);
 655	page->mapping = mapping;
 656	page->index = offset;
 657
 658	spin_lock_irq(&mapping->tree_lock);
 659	error = page_cache_tree_insert(mapping, page, shadowp);
 660	radix_tree_preload_end();
 661	if (unlikely(error))
 662		goto err_insert;
 663
 
 664	/* hugetlb pages do not participate in page cache accounting. */
 665	if (!huge)
 666		__inc_zone_page_state(page, NR_FILE_PAGES);
 667	spin_unlock_irq(&mapping->tree_lock);
 668	if (!huge)
 669		mem_cgroup_commit_charge(page, memcg, false, false);
 670	trace_mm_filemap_add_to_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	return 0;
 672err_insert:
 673	page->mapping = NULL;
 674	/* Leave page->index set: truncation relies upon it */
 675	spin_unlock_irq(&mapping->tree_lock);
 676	if (!huge)
 677		mem_cgroup_cancel_charge(page, memcg, false);
 678	put_page(page);
 679	return error;
 680}
 
 681
 682/**
 683 * add_to_page_cache_locked - add a locked page to the pagecache
 684 * @page:	page to add
 685 * @mapping:	the page's address_space
 686 * @offset:	page index
 687 * @gfp_mask:	page allocation mode
 688 *
 689 * This function is used to add a page to the pagecache. It must be locked.
 690 * This function does not add the page to the LRU.  The caller must do that.
 691 */
 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 693		pgoff_t offset, gfp_t gfp_mask)
 694{
 695	return __add_to_page_cache_locked(page, mapping, offset,
 696					  gfp_mask, NULL);
 697}
 698EXPORT_SYMBOL(add_to_page_cache_locked);
 699
 700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 701				pgoff_t offset, gfp_t gfp_mask)
 702{
 703	void *shadow = NULL;
 704	int ret;
 705
 706	__SetPageLocked(page);
 707	ret = __add_to_page_cache_locked(page, mapping, offset,
 708					 gfp_mask, &shadow);
 709	if (unlikely(ret))
 710		__ClearPageLocked(page);
 711	else {
 
 
 
 
 712		/*
 713		 * The page might have been evicted from cache only
 714		 * recently, in which case it should be activated like
 715		 * any other repeatedly accessed page.
 
 
 
 716		 */
 717		if (shadow && workingset_refault(shadow)) {
 718			SetPageActive(page);
 719			workingset_activation(page);
 720		} else
 721			ClearPageActive(page);
 722		lru_cache_add(page);
 723	}
 724	return ret;
 725}
 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 727
 728#ifdef CONFIG_NUMA
 729struct page *__page_cache_alloc(gfp_t gfp)
 730{
 731	int n;
 732	struct page *page;
 733
 734	if (cpuset_do_page_mem_spread()) {
 735		unsigned int cpuset_mems_cookie;
 736		do {
 737			cpuset_mems_cookie = read_mems_allowed_begin();
 738			n = cpuset_mem_spread_node();
 739			page = __alloc_pages_node(n, gfp, 0);
 740		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 741
 742		return page;
 743	}
 744	return alloc_pages(gfp, 0);
 745}
 746EXPORT_SYMBOL(__page_cache_alloc);
 747#endif
 748
 749/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 * In order to wait for pages to become available there must be
 751 * waitqueues associated with pages. By using a hash table of
 752 * waitqueues where the bucket discipline is to maintain all
 753 * waiters on the same queue and wake all when any of the pages
 754 * become available, and for the woken contexts to check to be
 755 * sure the appropriate page became available, this saves space
 756 * at a cost of "thundering herd" phenomena during rare hash
 757 * collisions.
 758 */
 759wait_queue_head_t *page_waitqueue(struct page *page)
 760{
 761	const struct zone *zone = page_zone(page);
 762
 763	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 764}
 765EXPORT_SYMBOL(page_waitqueue);
 766
 767void wait_on_page_bit(struct page *page, int bit_nr)
 768{
 769	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 770
 771	if (test_bit(bit_nr, &page->flags))
 772		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 773							TASK_UNINTERRUPTIBLE);
 774}
 775EXPORT_SYMBOL(wait_on_page_bit);
 776
 777int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 780
 781	if (!test_bit(bit_nr, &page->flags))
 782		return 0;
 783
 784	return __wait_on_bit(page_waitqueue(page), &wait,
 785			     bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788int wait_on_page_bit_killable_timeout(struct page *page,
 789				       int bit_nr, unsigned long timeout)
 790{
 791	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 792
 793	wait.key.timeout = jiffies + timeout;
 794	if (!test_bit(bit_nr, &page->flags))
 795		return 0;
 796	return __wait_on_bit(page_waitqueue(page), &wait,
 797			     bit_wait_io_timeout, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 800
 801/**
 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 803 * @page: Page defining the wait queue of interest
 804 * @waiter: Waiter to add to the queue
 805 *
 806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 807 */
 808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 809{
 810	wait_queue_head_t *q = page_waitqueue(page);
 811	unsigned long flags;
 812
 813	spin_lock_irqsave(&q->lock, flags);
 814	__add_wait_queue(q, waiter);
 
 815	spin_unlock_irqrestore(&q->lock, flags);
 816}
 817EXPORT_SYMBOL_GPL(add_page_wait_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819/**
 820 * unlock_page - unlock a locked page
 821 * @page: the page
 822 *
 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 827 *
 828 * The mb is necessary to enforce ordering between the clear_bit and the read
 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 
 830 */
 831void unlock_page(struct page *page)
 832{
 833	page = compound_head(page);
 834	VM_BUG_ON_PAGE(!PageLocked(page), page);
 835	clear_bit_unlock(PG_locked, &page->flags);
 836	smp_mb__after_atomic();
 837	wake_up_page(page, PG_locked);
 838}
 839EXPORT_SYMBOL(unlock_page);
 840
 841/**
 842 * end_page_writeback - end writeback against a page
 843 * @page: the page
 
 
 844 */
 845void end_page_writeback(struct page *page)
 846{
 847	/*
 848	 * TestClearPageReclaim could be used here but it is an atomic
 849	 * operation and overkill in this particular case. Failing to
 850	 * shuffle a page marked for immediate reclaim is too mild to
 851	 * justify taking an atomic operation penalty at the end of
 852	 * ever page writeback.
 853	 */
 854	if (PageReclaim(page)) {
 855		ClearPageReclaim(page);
 856		rotate_reclaimable_page(page);
 857	}
 858
 859	if (!test_clear_page_writeback(page))
 860		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	smp_mb__after_atomic();
 863	wake_up_page(page, PG_writeback);
 
 
 
 
 
 864}
 865EXPORT_SYMBOL(end_page_writeback);
 866
 867/*
 868 * After completing I/O on a page, call this routine to update the page
 869 * flags appropriately
 
 
 
 
 870 */
 871void page_endio(struct page *page, int rw, int err)
 872{
 873	if (rw == READ) {
 874		if (!err) {
 875			SetPageUptodate(page);
 876		} else {
 877			ClearPageUptodate(page);
 878			SetPageError(page);
 879		}
 880		unlock_page(page);
 881	} else { /* rw == WRITE */
 882		if (err) {
 883			SetPageError(page);
 884			if (page->mapping)
 885				mapping_set_error(page->mapping, err);
 886		}
 887		end_page_writeback(page);
 888	}
 
 
 
 
 
 
 
 
 
 
 
 
 889}
 890EXPORT_SYMBOL_GPL(page_endio);
 891
 892/**
 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 894 * @page: the page to lock
 895 */
 896void __lock_page(struct page *page)
 897{
 898	struct page *page_head = compound_head(page);
 899	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 
 
 900
 901	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 902							TASK_UNINTERRUPTIBLE);
 
 
 903}
 904EXPORT_SYMBOL(__lock_page);
 905
 906int __lock_page_killable(struct page *page)
 907{
 908	struct page *page_head = compound_head(page);
 909	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 
 
 
 910
 911	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 912					bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914EXPORT_SYMBOL_GPL(__lock_page_killable);
 915
 916/*
 917 * Return values:
 918 * 1 - page is locked; mmap_sem is still held.
 919 * 0 - page is not locked.
 920 *     mmap_sem has been released (up_read()), unless flags had both
 921 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 922 *     which case mmap_sem is still held.
 923 *
 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 925 * with the page locked and the mmap_sem unperturbed.
 926 */
 927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 928			 unsigned int flags)
 929{
 930	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 931		/*
 932		 * CAUTION! In this case, mmap_sem is not released
 933		 * even though return 0.
 934		 */
 935		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 936			return 0;
 937
 938		up_read(&mm->mmap_sem);
 939		if (flags & FAULT_FLAG_KILLABLE)
 940			wait_on_page_locked_killable(page);
 941		else
 942			wait_on_page_locked(page);
 943		return 0;
 944	} else {
 945		if (flags & FAULT_FLAG_KILLABLE) {
 946			int ret;
 947
 948			ret = __lock_page_killable(page);
 949			if (ret) {
 950				up_read(&mm->mmap_sem);
 951				return 0;
 952			}
 953		} else
 954			__lock_page(page);
 955		return 1;
 956	}
 
 
 957}
 958
 959/**
 960 * page_cache_next_hole - find the next hole (not-present entry)
 961 * @mapping: mapping
 962 * @index: index
 963 * @max_scan: maximum range to search
 964 *
 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 966 * lowest indexed hole.
 967 *
 968 * Returns: the index of the hole if found, otherwise returns an index
 969 * outside of the set specified (in which case 'return - index >=
 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 971 * be returned.
 972 *
 973 * page_cache_next_hole may be called under rcu_read_lock. However,
 974 * like radix_tree_gang_lookup, this will not atomically search a
 975 * snapshot of the tree at a single point in time. For example, if a
 976 * hole is created at index 5, then subsequently a hole is created at
 977 * index 10, page_cache_next_hole covering both indexes may return 10
 978 * if called under rcu_read_lock.
 979 */
 980pgoff_t page_cache_next_hole(struct address_space *mapping,
 981			     pgoff_t index, unsigned long max_scan)
 982{
 983	unsigned long i;
 984
 985	for (i = 0; i < max_scan; i++) {
 986		struct page *page;
 987
 988		page = radix_tree_lookup(&mapping->page_tree, index);
 989		if (!page || radix_tree_exceptional_entry(page))
 990			break;
 991		index++;
 992		if (index == 0)
 993			break;
 994	}
 995
 996	return index;
 997}
 998EXPORT_SYMBOL(page_cache_next_hole);
 999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022			     pgoff_t index, unsigned long max_scan)
1023{
1024	unsigned long i;
1025
1026	for (i = 0; i < max_scan; i++) {
1027		struct page *page;
1028
1029		page = radix_tree_lookup(&mapping->page_tree, index);
1030		if (!page || radix_tree_exceptional_entry(page))
 
1031			break;
1032		index--;
1033		if (index == ULONG_MAX)
1034			break;
1035	}
1036
1037	return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041/**
1042 * find_get_entry - find and get a page cache entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset.  If there is a
1047 * page cache page, it is returned with an increased refcount.
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
 
 
1051 *
1052 * Otherwise, %NULL is returned.
1053 */
1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055{
1056	void **pagep;
1057	struct page *page;
1058
1059	rcu_read_lock();
1060repeat:
1061	page = NULL;
1062	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063	if (pagep) {
1064		page = radix_tree_deref_slot(pagep);
1065		if (unlikely(!page))
1066			goto out;
1067		if (radix_tree_exception(page)) {
1068			if (radix_tree_deref_retry(page))
1069				goto repeat;
1070			/*
1071			 * A shadow entry of a recently evicted page,
1072			 * or a swap entry from shmem/tmpfs.  Return
1073			 * it without attempting to raise page count.
1074			 */
1075			goto out;
1076		}
1077		if (!page_cache_get_speculative(page))
1078			goto repeat;
1079
1080		/*
1081		 * Has the page moved?
1082		 * This is part of the lockless pagecache protocol. See
1083		 * include/linux/pagemap.h for details.
1084		 */
1085		if (unlikely(page != *pagep)) {
1086			put_page(page);
1087			goto repeat;
1088		}
1089	}
1090out:
1091	rcu_read_unlock();
1092
1093	return page;
1094}
1095EXPORT_SYMBOL(find_get_entry);
1096
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
 
 
1101 *
1102 * Looks up the page cache slot at @mapping & @offset.  If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
 
1114{
1115	struct page *page;
1116
1117repeat:
1118	page = find_get_entry(mapping, offset);
1119	if (page && !radix_tree_exception(page)) {
1120		lock_page(page);
1121		/* Has the page been truncated? */
1122		if (unlikely(page->mapping != mapping)) {
1123			unlock_page(page);
1124			put_page(page);
1125			goto repeat;
1126		}
1127		VM_BUG_ON_PAGE(page->index != offset, page);
1128	}
1129	return page;
1130}
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 *		@gfp_mask and added to the page cache and the VM's LRU
1148 *		list. The page is returned locked and with an increased
1149 *		refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
1155 */
1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157	int fgp_flags, gfp_t gfp_mask)
1158{
1159	struct page *page;
1160
1161repeat:
1162	page = find_get_entry(mapping, offset);
1163	if (radix_tree_exceptional_entry(page))
1164		page = NULL;
1165	if (!page)
1166		goto no_page;
1167
1168	if (fgp_flags & FGP_LOCK) {
1169		if (fgp_flags & FGP_NOWAIT) {
1170			if (!trylock_page(page)) {
1171				put_page(page);
1172				return NULL;
1173			}
1174		} else {
1175			lock_page(page);
1176		}
1177
1178		/* Has the page been truncated? */
1179		if (unlikely(page->mapping != mapping)) {
1180			unlock_page(page);
1181			put_page(page);
1182			goto repeat;
1183		}
1184		VM_BUG_ON_PAGE(page->index != offset, page);
1185	}
1186
1187	if (page && (fgp_flags & FGP_ACCESSED))
1188		mark_page_accessed(page);
 
 
 
 
 
1189
 
 
1190no_page:
1191	if (!page && (fgp_flags & FGP_CREAT)) {
 
 
1192		int err;
1193		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194			gfp_mask |= __GFP_WRITE;
 
 
1195		if (fgp_flags & FGP_NOFS)
1196			gfp_mask &= ~__GFP_FS;
 
 
 
 
 
 
1197
1198		page = __page_cache_alloc(gfp_mask);
1199		if (!page)
1200			return NULL;
 
 
1201
1202		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203			fgp_flags |= FGP_LOCK;
 
 
 
 
 
 
 
1204
1205		/* Init accessed so avoid atomic mark_page_accessed later */
1206		if (fgp_flags & FGP_ACCESSED)
1207			__SetPageReferenced(page);
1208
1209		err = add_to_page_cache_lru(page, mapping, offset,
1210				gfp_mask & GFP_RECLAIM_MASK);
1211		if (unlikely(err)) {
1212			put_page(page);
1213			page = NULL;
1214			if (err == -EEXIST)
1215				goto repeat;
1216		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	return page;
 
 
 
1220}
1221EXPORT_SYMBOL(pagecache_get_page);
1222
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping:	The address_space to search
1226 * @start:	The starting page cache index
1227 * @nr_entries:	The maximum number of entries
1228 * @entries:	Where the resulting entries are placed
1229 * @indices:	The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping.  The entries are placed at
1233 * @entries.  find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes.  There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
 
 
 
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247			  pgoff_t start, unsigned int nr_entries,
1248			  struct page **entries, pgoff_t *indices)
1249{
1250	void **slot;
1251	unsigned int ret = 0;
1252	struct radix_tree_iter iter;
1253
1254	if (!nr_entries)
1255		return 0;
1256
1257	rcu_read_lock();
1258	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259		struct page *page;
1260repeat:
1261		page = radix_tree_deref_slot(slot);
1262		if (unlikely(!page))
1263			continue;
1264		if (radix_tree_exception(page)) {
1265			if (radix_tree_deref_retry(page)) {
1266				slot = radix_tree_iter_retry(&iter);
1267				continue;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page, a swap
1271			 * entry from shmem/tmpfs or a DAX entry.  Return it
1272			 * without attempting to raise page count.
1273			 */
1274			goto export;
1275		}
1276		if (!page_cache_get_speculative(page))
1277			goto repeat;
1278
1279		/* Has the page moved? */
1280		if (unlikely(page != *slot)) {
1281			put_page(page);
1282			goto repeat;
1283		}
1284export:
1285		indices[ret] = iter.index;
1286		entries[ret] = page;
1287		if (++ret == nr_entries)
1288			break;
1289	}
 
 
 
 
 
 
 
 
 
 
 
 
1290	rcu_read_unlock();
1291	return ret;
 
1292}
1293
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping:	The address_space to search
1297 * @start:	The starting page index
1298 * @nr_pages:	The maximum number of pages
1299 * @pages:	Where the resulting pages are placed
 
 
 
 
 
 
 
 
 
 
 
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes.  There may be holes in the indices due to not-present pages.
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311			    unsigned int nr_pages, struct page **pages)
1312{
1313	struct radix_tree_iter iter;
1314	void **slot;
1315	unsigned ret = 0;
1316
1317	if (unlikely(!nr_pages))
1318		return 0;
1319
1320	rcu_read_lock();
1321	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322		struct page *page;
1323repeat:
1324		page = radix_tree_deref_slot(slot);
1325		if (unlikely(!page))
1326			continue;
1327
1328		if (radix_tree_exception(page)) {
1329			if (radix_tree_deref_retry(page)) {
1330				slot = radix_tree_iter_retry(&iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331				continue;
1332			}
1333			/*
1334			 * A shadow entry of a recently evicted page,
1335			 * or a swap entry from shmem/tmpfs.  Skip
1336			 * over it.
1337			 */
1338			continue;
1339		}
1340
1341		if (!page_cache_get_speculative(page))
1342			goto repeat;
1343
1344		/* Has the page moved? */
1345		if (unlikely(page != *slot)) {
1346			put_page(page);
1347			goto repeat;
1348		}
1349
1350		pages[ret] = page;
1351		if (++ret == nr_pages)
 
 
1352			break;
 
 
 
 
 
1353	}
1354
1355	rcu_read_unlock();
1356	return ret;
 
1357}
1358
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping:	The address_space to search
1362 * @index:	The starting page index
1363 * @nr_pages:	The maximum number of pages
1364 * @pages:	Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
 
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
 
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372			       unsigned int nr_pages, struct page **pages)
1373{
1374	struct radix_tree_iter iter;
1375	void **slot;
1376	unsigned int ret = 0;
1377
1378	if (unlikely(!nr_pages))
1379		return 0;
1380
1381	rcu_read_lock();
1382	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383		struct page *page;
1384repeat:
1385		page = radix_tree_deref_slot(slot);
1386		/* The hole, there no reason to continue */
1387		if (unlikely(!page))
1388			break;
1389
1390		if (radix_tree_exception(page)) {
1391			if (radix_tree_deref_retry(page)) {
1392				slot = radix_tree_iter_retry(&iter);
1393				continue;
1394			}
1395			/*
1396			 * A shadow entry of a recently evicted page,
1397			 * or a swap entry from shmem/tmpfs.  Stop
1398			 * looking for contiguous pages.
1399			 */
1400			break;
1401		}
1402
1403		if (!page_cache_get_speculative(page))
1404			goto repeat;
1405
1406		/* Has the page moved? */
1407		if (unlikely(page != *slot)) {
1408			put_page(page);
1409			goto repeat;
1410		}
1411
1412		/*
1413		 * must check mapping and index after taking the ref.
1414		 * otherwise we can get both false positives and false
1415		 * negatives, which is just confusing to the caller.
1416		 */
1417		if (page->mapping == NULL || page->index != iter.index) {
1418			put_page(page);
1419			break;
1420		}
1421
1422		pages[ret] = page;
1423		if (++ret == nr_pages)
1424			break;
1425	}
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL(find_get_pages_contig);
1430
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping:	the address_space to search
1434 * @index:	the starting page index
1435 * @tag:	the tag index
1436 * @nr_pages:	the maximum number of pages
1437 * @pages:	where the resulting pages are placed
 
 
 
1438 *
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag.   We update @index to index the next page for the traversal.
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443			int tag, unsigned int nr_pages, struct page **pages)
1444{
1445	struct radix_tree_iter iter;
1446	void **slot;
1447	unsigned ret = 0;
1448
1449	if (unlikely(!nr_pages))
1450		return 0;
 
 
 
 
1451
1452	rcu_read_lock();
1453	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454				   &iter, *index, tag) {
1455		struct page *page;
1456repeat:
1457		page = radix_tree_deref_slot(slot);
1458		if (unlikely(!page))
1459			continue;
1460
1461		if (radix_tree_exception(page)) {
1462			if (radix_tree_deref_retry(page)) {
1463				slot = radix_tree_iter_retry(&iter);
1464				continue;
1465			}
1466			/*
1467			 * A shadow entry of a recently evicted page.
1468			 *
1469			 * Those entries should never be tagged, but
1470			 * this tree walk is lockless and the tags are
1471			 * looked up in bulk, one radix tree node at a
1472			 * time, so there is a sizable window for page
1473			 * reclaim to evict a page we saw tagged.
1474			 *
1475			 * Skip over it.
1476			 */
1477			continue;
1478		}
1479
1480		if (!page_cache_get_speculative(page))
1481			goto repeat;
 
 
1482
1483		/* Has the page moved? */
1484		if (unlikely(page != *slot)) {
1485			put_page(page);
1486			goto repeat;
 
 
 
 
 
 
 
 
 
 
1487		}
 
 
 
1488
1489		pages[ret] = page;
1490		if (++ret == nr_pages)
1491			break;
1492	}
1493
1494	rcu_read_unlock();
 
1495
1496	if (ret)
1497		*index = pages[ret - 1]->index + 1;
1498
1499	return ret;
 
 
 
1500}
1501EXPORT_SYMBOL(find_get_pages_tag);
1502
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping:	the address_space to search
1506 * @start:	the starting page cache index
1507 * @tag:	the tag index
1508 * @nr_entries:	the maximum number of entries
1509 * @entries:	where the resulting entries are placed
1510 * @indices:	the cache indices corresponding to the entries in @entries
 
 
 
 
 
 
 
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516			int tag, unsigned int nr_entries,
1517			struct page **entries, pgoff_t *indices)
1518{
1519	void **slot;
1520	unsigned int ret = 0;
1521	struct radix_tree_iter iter;
1522
1523	if (!nr_entries)
1524		return 0;
1525
1526	rcu_read_lock();
1527	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528				   &iter, start, tag) {
1529		struct page *page;
1530repeat:
1531		page = radix_tree_deref_slot(slot);
1532		if (unlikely(!page))
 
1533			continue;
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539
1540			/*
1541			 * A shadow entry of a recently evicted page, a swap
1542			 * entry from shmem/tmpfs or a DAX entry.  Return it
1543			 * without attempting to raise page count.
1544			 */
1545			goto export;
1546		}
1547		if (!page_cache_get_speculative(page))
1548			goto repeat;
1549
1550		/* Has the page moved? */
1551		if (unlikely(page != *slot)) {
1552			put_page(page);
1553			goto repeat;
1554		}
1555export:
1556		indices[ret] = iter.index;
1557		entries[ret] = page;
1558		if (++ret == nr_entries)
1559			break;
1560	}
 
 
 
 
 
 
 
 
 
 
 
1561	rcu_read_unlock();
1562	return ret;
 
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 *      ---R__________________________________________B__________
1571 *         ^ reading here                             ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582					struct file_ra_state *ra)
1583{
1584	ra->ra_pages /= 4;
1585}
1586
1587/**
1588 * do_generic_file_read - generic file read routine
1589 * @filp:	the file to read
1590 * @ppos:	current file position
1591 * @iter:	data destination
1592 * @written:	already copied
1593 *
1594 * This is a generic file read routine, and uses the
1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
 
 
 
1599 */
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601		struct iov_iter *iter, ssize_t written)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602{
 
1603	struct address_space *mapping = filp->f_mapping;
1604	struct inode *inode = mapping->host;
1605	struct file_ra_state *ra = &filp->f_ra;
1606	pgoff_t index;
1607	pgoff_t last_index;
1608	pgoff_t prev_index;
1609	unsigned long offset;      /* offset into pagecache page */
1610	unsigned int prev_offset;
1611	int error = 0;
1612
1613	index = *ppos >> PAGE_SHIFT;
1614	prev_index = ra->prev_pos >> PAGE_SHIFT;
1615	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617	offset = *ppos & ~PAGE_MASK;
1618
1619	for (;;) {
1620		struct page *page;
1621		pgoff_t end_index;
1622		loff_t isize;
1623		unsigned long nr, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625		cond_resched();
1626find_page:
1627		page = find_get_page(mapping, index);
1628		if (!page) {
1629			page_cache_sync_readahead(mapping,
1630					ra, filp,
1631					index, last_index - index);
1632			page = find_get_page(mapping, index);
1633			if (unlikely(page == NULL))
1634				goto no_cached_page;
1635		}
1636		if (PageReadahead(page)) {
1637			page_cache_async_readahead(mapping,
1638					ra, filp, page,
1639					index, last_index - index);
1640		}
1641		if (!PageUptodate(page)) {
1642			/*
1643			 * See comment in do_read_cache_page on why
1644			 * wait_on_page_locked is used to avoid unnecessarily
1645			 * serialisations and why it's safe.
1646			 */
1647			wait_on_page_locked_killable(page);
1648			if (PageUptodate(page))
1649				goto page_ok;
1650
1651			if (inode->i_blkbits == PAGE_SHIFT ||
1652					!mapping->a_ops->is_partially_uptodate)
1653				goto page_not_up_to_date;
1654			if (!trylock_page(page))
1655				goto page_not_up_to_date;
1656			/* Did it get truncated before we got the lock? */
1657			if (!page->mapping)
1658				goto page_not_up_to_date_locked;
1659			if (!mapping->a_ops->is_partially_uptodate(page,
1660							offset, iter->count))
1661				goto page_not_up_to_date_locked;
1662			unlock_page(page);
1663		}
1664page_ok:
1665		/*
1666		 * i_size must be checked after we know the page is Uptodate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667		 *
1668		 * Checking i_size after the check allows us to calculate
1669		 * the correct value for "nr", which means the zero-filled
1670		 * part of the page is not copied back to userspace (unless
1671		 * another truncate extends the file - this is desired though).
1672		 */
1673
1674		isize = i_size_read(inode);
1675		end_index = (isize - 1) >> PAGE_SHIFT;
1676		if (unlikely(!isize || index > end_index)) {
1677			put_page(page);
1678			goto out;
1679		}
1680
1681		/* nr is the maximum number of bytes to copy from this page */
1682		nr = PAGE_SIZE;
1683		if (index == end_index) {
1684			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685			if (nr <= offset) {
1686				put_page(page);
1687				goto out;
1688			}
1689		}
1690		nr = nr - offset;
1691
1692		/* If users can be writing to this page using arbitrary
1693		 * virtual addresses, take care about potential aliasing
1694		 * before reading the page on the kernel side.
1695		 */
1696		if (mapping_writably_mapped(mapping))
1697			flush_dcache_page(page);
1698
1699		/*
1700		 * When a sequential read accesses a page several times,
1701		 * only mark it as accessed the first time.
1702		 */
1703		if (prev_index != index || offset != prev_offset)
1704			mark_page_accessed(page);
1705		prev_index = index;
1706
1707		/*
1708		 * Ok, we have the page, and it's up-to-date, so
1709		 * now we can copy it to user space...
1710		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712		ret = copy_page_to_iter(page, offset, nr, iter);
1713		offset += ret;
1714		index += offset >> PAGE_SHIFT;
1715		offset &= ~PAGE_MASK;
1716		prev_offset = offset;
1717
1718		put_page(page);
1719		written += ret;
1720		if (!iov_iter_count(iter))
1721			goto out;
1722		if (ret < nr) {
1723			error = -EFAULT;
1724			goto out;
 
1725		}
1726		continue;
 
 
 
 
1727
1728page_not_up_to_date:
1729		/* Get exclusive access to the page ... */
1730		error = lock_page_killable(page);
1731		if (unlikely(error))
1732			goto readpage_error;
1733
1734page_not_up_to_date_locked:
1735		/* Did it get truncated before we got the lock? */
1736		if (!page->mapping) {
1737			unlock_page(page);
1738			put_page(page);
1739			continue;
1740		}
1741
1742		/* Did somebody else fill it already? */
1743		if (PageUptodate(page)) {
1744			unlock_page(page);
1745			goto page_ok;
1746		}
1747
1748readpage:
1749		/*
1750		 * A previous I/O error may have been due to temporary
1751		 * failures, eg. multipath errors.
1752		 * PG_error will be set again if readpage fails.
1753		 */
1754		ClearPageError(page);
1755		/* Start the actual read. The read will unlock the page. */
1756		error = mapping->a_ops->readpage(filp, page);
1757
1758		if (unlikely(error)) {
1759			if (error == AOP_TRUNCATED_PAGE) {
1760				put_page(page);
1761				error = 0;
1762				goto find_page;
1763			}
1764			goto readpage_error;
1765		}
1766
1767		if (!PageUptodate(page)) {
1768			error = lock_page_killable(page);
1769			if (unlikely(error))
1770				goto readpage_error;
1771			if (!PageUptodate(page)) {
1772				if (page->mapping == NULL) {
1773					/*
1774					 * invalidate_mapping_pages got it
1775					 */
1776					unlock_page(page);
1777					put_page(page);
1778					goto find_page;
1779				}
1780				unlock_page(page);
1781				shrink_readahead_size_eio(filp, ra);
1782				error = -EIO;
1783				goto readpage_error;
1784			}
1785			unlock_page(page);
1786		}
1787
1788		goto page_ok;
 
 
1789
1790readpage_error:
1791		/* UHHUH! A synchronous read error occurred. Report it */
1792		put_page(page);
1793		goto out;
1794
1795no_cached_page:
1796		/*
1797		 * Ok, it wasn't cached, so we need to create a new
1798		 * page..
1799		 */
1800		page = page_cache_alloc_cold(mapping);
1801		if (!page) {
1802			error = -ENOMEM;
1803			goto out;
1804		}
1805		error = add_to_page_cache_lru(page, mapping, index,
1806				mapping_gfp_constraint(mapping, GFP_KERNEL));
1807		if (error) {
1808			put_page(page);
1809			if (error == -EEXIST) {
1810				error = 0;
1811				goto find_page;
1812			}
1813			goto out;
1814		}
1815		goto readpage;
1816	}
1817
1818out:
1819	ra->prev_pos = prev_index;
1820	ra->prev_pos <<= PAGE_SHIFT;
1821	ra->prev_pos |= prev_offset;
 
 
 
 
 
1822
1823	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824	file_accessed(filp);
1825	return written ? written : error;
 
 
 
 
1826}
 
1827
1828/**
1829 * generic_file_read_iter - generic filesystem read routine
1830 * @iocb:	kernel I/O control block
1831 * @iter:	destination for the data read
1832 *
1833 * This is the "read_iter()" routine for all filesystems
1834 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
1835 */
1836ssize_t
1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838{
1839	struct file *file = iocb->ki_filp;
1840	ssize_t retval = 0;
1841	loff_t *ppos = &iocb->ki_pos;
1842	loff_t pos = *ppos;
1843	size_t count = iov_iter_count(iter);
 
1844
1845	if (!count)
1846		goto out; /* skip atime */
1847
1848	if (iocb->ki_flags & IOCB_DIRECT) {
 
1849		struct address_space *mapping = file->f_mapping;
1850		struct inode *inode = mapping->host;
1851		loff_t size;
1852
1853		size = i_size_read(inode);
1854		retval = filemap_write_and_wait_range(mapping, pos,
1855					pos + count - 1);
1856		if (!retval) {
1857			struct iov_iter data = *iter;
1858			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859		}
1860
1861		if (retval > 0) {
1862			*ppos = pos + retval;
1863			iov_iter_advance(iter, retval);
 
 
 
 
 
 
1864		}
 
 
1865
1866		/*
1867		 * Btrfs can have a short DIO read if we encounter
1868		 * compressed extents, so if there was an error, or if
1869		 * we've already read everything we wanted to, or if
1870		 * there was a short read because we hit EOF, go ahead
1871		 * and return.  Otherwise fallthrough to buffered io for
1872		 * the rest of the read.  Buffered reads will not work for
1873		 * DAX files, so don't bother trying.
1874		 */
1875		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876		    IS_DAX(inode)) {
1877			file_accessed(file);
1878			goto out;
1879		}
1880	}
1881
1882	retval = do_generic_file_read(file, ppos, iter, retval);
1883out:
1884	return retval;
1885}
1886EXPORT_SYMBOL(generic_file_read_iter);
1887
1888#ifdef CONFIG_MMU
1889/**
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file:	file to read
1892 * @offset:	page index
1893 * @gfp_mask:	memory allocation flags
1894 *
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
1897 */
1898static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
1899{
1900	struct address_space *mapping = file->f_mapping;
1901	struct page *page;
1902	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903
1904	do {
1905		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906		if (!page)
1907			return -ENOMEM;
1908
1909		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910		if (ret == 0)
1911			ret = mapping->a_ops->readpage(file, page);
1912		else if (ret == -EEXIST)
1913			ret = 0; /* losing race to add is OK */
1914
1915		put_page(page);
 
1916
1917	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
1918
1919	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920}
1921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924/*
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
 
 
 
1927 */
1928static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929				   struct file_ra_state *ra,
1930				   struct file *file,
1931				   pgoff_t offset)
1932{
 
 
1933	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934
1935	/* If we don't want any read-ahead, don't bother */
1936	if (vma->vm_flags & VM_RAND_READ)
1937		return;
1938	if (!ra->ra_pages)
1939		return;
1940
1941	if (vma->vm_flags & VM_SEQ_READ) {
1942		page_cache_sync_readahead(mapping, ra, file, offset,
1943					  ra->ra_pages);
1944		return;
1945	}
1946
1947	/* Avoid banging the cache line if not needed */
1948	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949		ra->mmap_miss++;
 
1950
1951	/*
1952	 * Do we miss much more than hit in this file? If so,
1953	 * stop bothering with read-ahead. It will only hurt.
1954	 */
1955	if (ra->mmap_miss > MMAP_LOTSAMISS)
1956		return;
1957
1958	/*
1959	 * mmap read-around
1960	 */
1961	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
1962	ra->size = ra->ra_pages;
1963	ra->async_size = ra->ra_pages / 4;
1964	ra_submit(ra, mapping, file);
 
 
1965}
1966
1967/*
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
 
1970 */
1971static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972				    struct file_ra_state *ra,
1973				    struct file *file,
1974				    struct page *page,
1975				    pgoff_t offset)
1976{
1977	struct address_space *mapping = file->f_mapping;
 
 
 
 
1978
1979	/* If we don't want any read-ahead, don't bother */
1980	if (vma->vm_flags & VM_RAND_READ)
1981		return;
1982	if (ra->mmap_miss > 0)
1983		ra->mmap_miss--;
1984	if (PageReadahead(page))
1985		page_cache_async_readahead(mapping, ra, file,
1986					   page, offset, ra->ra_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987}
1988
1989/**
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma:	vma in which the fault was taken
1992 * @vmf:	struct vm_fault containing details of the fault
1993 *
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1996 *
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2000 *
2001 * vma->vm_mm->mmap_sem must be held on entry.
2002 *
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2007 *
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2010 *
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2012 */
2013int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015	int error;
2016	struct file *file = vma->vm_file;
 
2017	struct address_space *mapping = file->f_mapping;
2018	struct file_ra_state *ra = &file->f_ra;
2019	struct inode *inode = mapping->host;
2020	pgoff_t offset = vmf->pgoff;
2021	struct page *page;
2022	loff_t size;
2023	int ret = 0;
2024
2025	size = round_up(i_size_read(inode), PAGE_SIZE);
2026	if (offset >= size >> PAGE_SHIFT)
2027		return VM_FAULT_SIGBUS;
2028
 
 
2029	/*
2030	 * Do we have something in the page cache already?
2031	 */
2032	page = find_get_page(mapping, offset);
2033	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034		/*
2035		 * We found the page, so try async readahead before
2036		 * waiting for the lock.
2037		 */
2038		do_async_mmap_readahead(vma, ra, file, page, offset);
2039	} else if (!page) {
 
 
 
 
 
 
 
 
 
2040		/* No page in the page cache at all */
2041		do_sync_mmap_readahead(vma, ra, file, offset);
2042		count_vm_event(PGMAJFAULT);
2043		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044		ret = VM_FAULT_MAJOR;
 
2045retry_find:
2046		page = find_get_page(mapping, offset);
2047		if (!page)
2048			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	}
2050
2051	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052		put_page(page);
2053		return ret | VM_FAULT_RETRY;
2054	}
2055
2056	/* Did it get truncated? */
2057	if (unlikely(page->mapping != mapping)) {
2058		unlock_page(page);
2059		put_page(page);
2060		goto retry_find;
2061	}
2062	VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064	/*
2065	 * We have a locked page in the page cache, now we need to check
2066	 * that it's up-to-date. If not, it is going to be due to an error.
 
2067	 */
2068	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
2070
2071	/*
2072	 * Found the page and have a reference on it.
2073	 * We must recheck i_size under page lock.
2074	 */
2075	size = round_up(i_size_read(inode), PAGE_SIZE);
2076	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077		unlock_page(page);
2078		put_page(page);
2079		return VM_FAULT_SIGBUS;
2080	}
2081
2082	vmf->page = page;
2083	return ret | VM_FAULT_LOCKED;
2084
2085no_cached_page:
2086	/*
2087	 * We're only likely to ever get here if MADV_RANDOM is in
2088	 * effect.
2089	 */
2090	error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092	/*
2093	 * The page we want has now been added to the page cache.
2094	 * In the unlikely event that someone removed it in the
2095	 * meantime, we'll just come back here and read it again.
2096	 */
2097	if (error >= 0)
2098		goto retry_find;
2099
2100	/*
2101	 * An error return from page_cache_read can result if the
2102	 * system is low on memory, or a problem occurs while trying
2103	 * to schedule I/O.
2104	 */
2105	if (error == -ENOMEM)
2106		return VM_FAULT_OOM;
2107	return VM_FAULT_SIGBUS;
2108
2109page_not_uptodate:
2110	/*
2111	 * Umm, take care of errors if the page isn't up-to-date.
2112	 * Try to re-read it _once_. We do this synchronously,
2113	 * because there really aren't any performance issues here
2114	 * and we need to check for errors.
2115	 */
2116	ClearPageError(page);
2117	error = mapping->a_ops->readpage(file, page);
2118	if (!error) {
2119		wait_on_page_locked(page);
2120		if (!PageUptodate(page))
2121			error = -EIO;
2122	}
2123	put_page(page);
2124
2125	if (!error || error == AOP_TRUNCATED_PAGE)
2126		goto retry_find;
 
2127
2128	/* Things didn't work out. Return zero to tell the mm layer so. */
2129	shrink_readahead_size_eio(file, ra);
2130	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131}
2132EXPORT_SYMBOL(filemap_fault);
2133
2134void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
 
2135{
2136	struct radix_tree_iter iter;
2137	void **slot;
2138	struct file *file = vma->vm_file;
2139	struct address_space *mapping = file->f_mapping;
2140	loff_t size;
2141	struct page *page;
2142	unsigned long address = (unsigned long) vmf->virtual_address;
2143	unsigned long addr;
2144	pte_t *pte;
2145
2146	rcu_read_lock();
2147	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148		if (iter.index > vmf->max_pgoff)
2149			break;
2150repeat:
2151		page = radix_tree_deref_slot(slot);
2152		if (unlikely(!page))
2153			goto next;
2154		if (radix_tree_exception(page)) {
2155			if (radix_tree_deref_retry(page)) {
2156				slot = radix_tree_iter_retry(&iter);
2157				continue;
2158			}
2159			goto next;
2160		}
 
2161
2162		if (!page_cache_get_speculative(page))
2163			goto repeat;
2164
2165		/* Has the page moved? */
2166		if (unlikely(page != *slot)) {
2167			put_page(page);
2168			goto repeat;
2169		}
2170
2171		if (!PageUptodate(page) ||
2172				PageReadahead(page) ||
2173				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
2174			goto skip;
2175		if (!trylock_page(page))
 
2176			goto skip;
2177
2178		if (page->mapping != mapping || !PageUptodate(page))
 
 
 
2179			goto unlock;
2180
2181		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182		if (page->index >= size >> PAGE_SHIFT)
2183			goto unlock;
2184
2185		pte = vmf->pte + page->index - vmf->pgoff;
2186		if (!pte_none(*pte))
2187			goto unlock;
2188
2189		if (file->f_ra.mmap_miss > 0)
2190			file->f_ra.mmap_miss--;
2191		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192		do_set_pte(vma, addr, page, pte, false, false);
2193		unlock_page(page);
2194		goto next;
2195unlock:
2196		unlock_page(page);
2197skip:
2198		put_page(page);
2199next:
2200		if (iter.index == vmf->max_pgoff)
2201			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	rcu_read_unlock();
 
 
 
 
 
 
 
 
2204}
2205EXPORT_SYMBOL(filemap_map_pages);
2206
2207int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208{
2209	struct page *page = vmf->page;
2210	struct inode *inode = file_inode(vma->vm_file);
2211	int ret = VM_FAULT_LOCKED;
2212
2213	sb_start_pagefault(inode->i_sb);
2214	file_update_time(vma->vm_file);
2215	lock_page(page);
2216	if (page->mapping != inode->i_mapping) {
2217		unlock_page(page);
2218		ret = VM_FAULT_NOPAGE;
2219		goto out;
2220	}
2221	/*
2222	 * We mark the page dirty already here so that when freeze is in
2223	 * progress, we are guaranteed that writeback during freezing will
2224	 * see the dirty page and writeprotect it again.
2225	 */
2226	set_page_dirty(page);
2227	wait_for_stable_page(page);
2228out:
2229	sb_end_pagefault(inode->i_sb);
2230	return ret;
2231}
2232EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234const struct vm_operations_struct generic_file_vm_ops = {
2235	.fault		= filemap_fault,
2236	.map_pages	= filemap_map_pages,
2237	.page_mkwrite	= filemap_page_mkwrite,
2238};
2239
2240/* This is used for a general mmap of a disk file */
2241
2242int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243{
2244	struct address_space *mapping = file->f_mapping;
2245
2246	if (!mapping->a_ops->readpage)
2247		return -ENOEXEC;
2248	file_accessed(file);
2249	vma->vm_ops = &generic_file_vm_ops;
2250	return 0;
2251}
2252
2253/*
2254 * This is for filesystems which do not implement ->writepage.
2255 */
2256int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257{
2258	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259		return -EINVAL;
2260	return generic_file_mmap(file, vma);
2261}
2262#else
2263int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
2264{
2265	return -ENOSYS;
2266}
2267int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268{
2269	return -ENOSYS;
2270}
2271#endif /* CONFIG_MMU */
2272
 
2273EXPORT_SYMBOL(generic_file_mmap);
2274EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276static struct page *wait_on_page_read(struct page *page)
 
2277{
2278	if (!IS_ERR(page)) {
2279		wait_on_page_locked(page);
2280		if (!PageUptodate(page)) {
2281			put_page(page);
2282			page = ERR_PTR(-EIO);
2283		}
2284	}
2285	return page;
2286}
2287
2288static struct page *do_read_cache_page(struct address_space *mapping,
2289				pgoff_t index,
2290				int (*filler)(void *, struct page *),
2291				void *data,
2292				gfp_t gfp)
2293{
2294	struct page *page;
2295	int err;
 
 
 
2296repeat:
2297	page = find_get_page(mapping, index);
2298	if (!page) {
2299		page = __page_cache_alloc(gfp | __GFP_COLD);
2300		if (!page)
 
2301			return ERR_PTR(-ENOMEM);
2302		err = add_to_page_cache_lru(page, mapping, index, gfp);
 
2303		if (unlikely(err)) {
2304			put_page(page);
2305			if (err == -EEXIST)
2306				goto repeat;
2307			/* Presumably ENOMEM for radix tree node */
2308			return ERR_PTR(err);
2309		}
2310
2311filler:
2312		err = filler(data, page);
2313		if (err < 0) {
2314			put_page(page);
2315			return ERR_PTR(err);
2316		}
2317
2318		page = wait_on_page_read(page);
2319		if (IS_ERR(page))
2320			return page;
2321		goto out;
2322	}
2323	if (PageUptodate(page))
2324		goto out;
2325
2326	/*
2327	 * Page is not up to date and may be locked due one of the following
2328	 * case a: Page is being filled and the page lock is held
2329	 * case b: Read/write error clearing the page uptodate status
2330	 * case c: Truncation in progress (page locked)
2331	 * case d: Reclaim in progress
2332	 *
2333	 * Case a, the page will be up to date when the page is unlocked.
2334	 *    There is no need to serialise on the page lock here as the page
2335	 *    is pinned so the lock gives no additional protection. Even if the
2336	 *    the page is truncated, the data is still valid if PageUptodate as
2337	 *    it's a race vs truncate race.
2338	 * Case b, the page will not be up to date
2339	 * Case c, the page may be truncated but in itself, the data may still
2340	 *    be valid after IO completes as it's a read vs truncate race. The
2341	 *    operation must restart if the page is not uptodate on unlock but
2342	 *    otherwise serialising on page lock to stabilise the mapping gives
2343	 *    no additional guarantees to the caller as the page lock is
2344	 *    released before return.
2345	 * Case d, similar to truncation. If reclaim holds the page lock, it
2346	 *    will be a race with remove_mapping that determines if the mapping
2347	 *    is valid on unlock but otherwise the data is valid and there is
2348	 *    no need to serialise with page lock.
2349	 *
2350	 * As the page lock gives no additional guarantee, we optimistically
2351	 * wait on the page to be unlocked and check if it's up to date and
2352	 * use the page if it is. Otherwise, the page lock is required to
2353	 * distinguish between the different cases. The motivation is that we
2354	 * avoid spurious serialisations and wakeups when multiple processes
2355	 * wait on the same page for IO to complete.
2356	 */
2357	wait_on_page_locked(page);
2358	if (PageUptodate(page))
2359		goto out;
2360
2361	/* Distinguish between all the cases under the safety of the lock */
2362	lock_page(page);
 
 
2363
2364	/* Case c or d, restart the operation */
2365	if (!page->mapping) {
2366		unlock_page(page);
2367		put_page(page);
2368		goto repeat;
2369	}
2370
2371	/* Someone else locked and filled the page in a very small window */
2372	if (PageUptodate(page)) {
2373		unlock_page(page);
2374		goto out;
2375	}
2376	goto filler;
 
 
 
 
 
 
 
 
2377
2378out:
2379	mark_page_accessed(page);
2380	return page;
2381}
2382
2383/**
2384 * read_cache_page - read into page cache, fill it if needed
2385 * @mapping:	the page's address_space
2386 * @index:	the page index
2387 * @filler:	function to perform the read
2388 * @data:	first arg to filler(data, page) function, often left as NULL
2389 *
2390 * Read into the page cache. If a page already exists, and PageUptodate() is
2391 * not set, try to fill the page and wait for it to become unlocked.
2392 *
2393 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395struct page *read_cache_page(struct address_space *mapping,
2396				pgoff_t index,
2397				int (*filler)(void *, struct page *),
2398				void *data)
2399{
2400	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2401}
2402EXPORT_SYMBOL(read_cache_page);
2403
2404/**
2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406 * @mapping:	the page's address_space
2407 * @index:	the page index
2408 * @gfp:	the page allocator flags to use if allocating
2409 *
2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411 * any new page allocations done using the specified allocation flags.
2412 *
2413 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2414 */
2415struct page *read_cache_page_gfp(struct address_space *mapping,
2416				pgoff_t index,
2417				gfp_t gfp)
2418{
2419	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422}
2423EXPORT_SYMBOL(read_cache_page_gfp);
2424
2425/*
2426 * Performs necessary checks before doing a write
2427 *
2428 * Can adjust writing position or amount of bytes to write.
2429 * Returns appropriate error code that caller should return or
2430 * zero in case that write should be allowed.
2431 */
2432inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433{
2434	struct file *file = iocb->ki_filp;
2435	struct inode *inode = file->f_mapping->host;
2436	unsigned long limit = rlimit(RLIMIT_FSIZE);
2437	loff_t pos;
2438
2439	if (!iov_iter_count(from))
2440		return 0;
2441
2442	/* FIXME: this is for backwards compatibility with 2.4 */
2443	if (iocb->ki_flags & IOCB_APPEND)
2444		iocb->ki_pos = i_size_read(inode);
2445
2446	pos = iocb->ki_pos;
2447
2448	if (limit != RLIM_INFINITY) {
2449		if (iocb->ki_pos >= limit) {
2450			send_sig(SIGXFSZ, current, 0);
2451			return -EFBIG;
2452		}
2453		iov_iter_truncate(from, limit - (unsigned long)pos);
2454	}
2455
2456	/*
2457	 * LFS rule
2458	 */
2459	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460				!(file->f_flags & O_LARGEFILE))) {
2461		if (pos >= MAX_NON_LFS)
2462			return -EFBIG;
2463		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464	}
2465
2466	/*
2467	 * Are we about to exceed the fs block limit ?
2468	 *
2469	 * If we have written data it becomes a short write.  If we have
2470	 * exceeded without writing data we send a signal and return EFBIG.
2471	 * Linus frestrict idea will clean these up nicely..
2472	 */
2473	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474		return -EFBIG;
2475
2476	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477	return iov_iter_count(from);
2478}
2479EXPORT_SYMBOL(generic_write_checks);
2480
2481int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482				loff_t pos, unsigned len, unsigned flags,
2483				struct page **pagep, void **fsdata)
2484{
2485	const struct address_space_operations *aops = mapping->a_ops;
2486
2487	return aops->write_begin(file, mapping, pos, len, flags,
2488							pagep, fsdata);
2489}
2490EXPORT_SYMBOL(pagecache_write_begin);
2491
2492int pagecache_write_end(struct file *file, struct address_space *mapping,
2493				loff_t pos, unsigned len, unsigned copied,
2494				struct page *page, void *fsdata)
2495{
2496	const struct address_space_operations *aops = mapping->a_ops;
2497
2498	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
 
2499}
2500EXPORT_SYMBOL(pagecache_write_end);
2501
2502ssize_t
2503generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2504{
2505	struct file	*file = iocb->ki_filp;
2506	struct address_space *mapping = file->f_mapping;
2507	struct inode	*inode = mapping->host;
2508	ssize_t		written;
2509	size_t		write_len;
2510	pgoff_t		end;
2511	struct iov_iter data;
2512
2513	write_len = iov_iter_count(from);
2514	end = (pos + write_len - 1) >> PAGE_SHIFT;
2515
2516	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517	if (written)
2518		goto out;
2519
2520	/*
2521	 * After a write we want buffered reads to be sure to go to disk to get
2522	 * the new data.  We invalidate clean cached page from the region we're
2523	 * about to write.  We do this *before* the write so that we can return
2524	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2525	 */
2526	if (mapping->nrpages) {
2527		written = invalidate_inode_pages2_range(mapping,
2528					pos >> PAGE_SHIFT, end);
2529		/*
2530		 * If a page can not be invalidated, return 0 to fall back
2531		 * to buffered write.
2532		 */
2533		if (written) {
2534			if (written == -EBUSY)
2535				return 0;
2536			goto out;
2537		}
2538	}
2539
2540	data = *from;
2541	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543	/*
2544	 * Finally, try again to invalidate clean pages which might have been
2545	 * cached by non-direct readahead, or faulted in by get_user_pages()
2546	 * if the source of the write was an mmap'ed region of the file
2547	 * we're writing.  Either one is a pretty crazy thing to do,
2548	 * so we don't support it 100%.  If this invalidation
2549	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2550	 */
2551	if (mapping->nrpages) {
2552		invalidate_inode_pages2_range(mapping,
2553					      pos >> PAGE_SHIFT, end);
2554	}
2555
2556	if (written > 0) {
 
 
 
 
2557		pos += written;
2558		iov_iter_advance(from, written);
2559		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560			i_size_write(inode, pos);
2561			mark_inode_dirty(inode);
2562		}
2563		iocb->ki_pos = pos;
2564	}
2565out:
 
2566	return written;
2567}
2568EXPORT_SYMBOL(generic_file_direct_write);
2569
2570/*
2571 * Find or create a page at the given pagecache position. Return the locked
2572 * page. This function is specifically for buffered writes.
2573 */
2574struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575					pgoff_t index, unsigned flags)
2576{
2577	struct page *page;
2578	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
2580	if (flags & AOP_FLAG_NOFS)
2581		fgp_flags |= FGP_NOFS;
2582
2583	page = pagecache_get_page(mapping, index, fgp_flags,
2584			mapping_gfp_mask(mapping));
2585	if (page)
2586		wait_for_stable_page(page);
2587
2588	return page;
2589}
2590EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592ssize_t generic_perform_write(struct file *file,
2593				struct iov_iter *i, loff_t pos)
2594{
 
 
2595	struct address_space *mapping = file->f_mapping;
2596	const struct address_space_operations *a_ops = mapping->a_ops;
 
2597	long status = 0;
2598	ssize_t written = 0;
2599	unsigned int flags = 0;
2600
2601	/*
2602	 * Copies from kernel address space cannot fail (NFSD is a big user).
2603	 */
2604	if (!iter_is_iovec(i))
2605		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607	do {
2608		struct page *page;
2609		unsigned long offset;	/* Offset into pagecache page */
2610		unsigned long bytes;	/* Bytes to write to page */
2611		size_t copied;		/* Bytes copied from user */
2612		void *fsdata;
2613
2614		offset = (pos & (PAGE_SIZE - 1));
2615		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616						iov_iter_count(i));
 
 
2617
2618again:
2619		/*
2620		 * Bring in the user page that we will copy from _first_.
2621		 * Otherwise there's a nasty deadlock on copying from the
2622		 * same page as we're writing to, without it being marked
2623		 * up-to-date.
2624		 *
2625		 * Not only is this an optimisation, but it is also required
2626		 * to check that the address is actually valid, when atomic
2627		 * usercopies are used, below.
2628		 */
2629		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630			status = -EFAULT;
2631			break;
2632		}
2633
2634		if (fatal_signal_pending(current)) {
2635			status = -EINTR;
2636			break;
2637		}
2638
2639		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640						&page, &fsdata);
2641		if (unlikely(status < 0))
2642			break;
2643
 
 
 
 
2644		if (mapping_writably_mapped(mapping))
2645			flush_dcache_page(page);
2646
2647		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2648		flush_dcache_page(page);
2649
2650		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651						page, fsdata);
2652		if (unlikely(status < 0))
2653			break;
2654		copied = status;
2655
 
2656		cond_resched();
2657
2658		iov_iter_advance(i, copied);
2659		if (unlikely(copied == 0)) {
2660			/*
2661			 * If we were unable to copy any data at all, we must
2662			 * fall back to a single segment length write.
2663			 *
2664			 * If we didn't fallback here, we could livelock
2665			 * because not all segments in the iov can be copied at
2666			 * once without a pagefault.
2667			 */
2668			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669						iov_iter_single_seg_count(i));
2670			goto again;
 
 
 
 
 
 
2671		}
2672		pos += copied;
2673		written += copied;
2674
2675		balance_dirty_pages_ratelimited(mapping);
2676	} while (iov_iter_count(i));
2677
2678	return written ? written : status;
 
 
 
2679}
2680EXPORT_SYMBOL(generic_perform_write);
2681
2682/**
2683 * __generic_file_write_iter - write data to a file
2684 * @iocb:	IO state structure (file, offset, etc.)
2685 * @from:	iov_iter with data to write
2686 *
2687 * This function does all the work needed for actually writing data to a
2688 * file. It does all basic checks, removes SUID from the file, updates
2689 * modification times and calls proper subroutines depending on whether we
2690 * do direct IO or a standard buffered write.
2691 *
2692 * It expects i_mutex to be grabbed unless we work on a block device or similar
2693 * object which does not need locking at all.
2694 *
2695 * This function does *not* take care of syncing data in case of O_SYNC write.
2696 * A caller has to handle it. This is mainly due to the fact that we want to
2697 * avoid syncing under i_mutex.
 
 
 
 
2698 */
2699ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2700{
2701	struct file *file = iocb->ki_filp;
2702	struct address_space * mapping = file->f_mapping;
2703	struct inode 	*inode = mapping->host;
2704	ssize_t		written = 0;
2705	ssize_t		err;
2706	ssize_t		status;
2707
2708	/* We can write back this queue in page reclaim */
2709	current->backing_dev_info = inode_to_bdi(inode);
2710	err = file_remove_privs(file);
2711	if (err)
2712		goto out;
2713
2714	err = file_update_time(file);
2715	if (err)
2716		goto out;
2717
2718	if (iocb->ki_flags & IOCB_DIRECT) {
2719		loff_t pos, endbyte;
 
2720
2721		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
 
2722		/*
2723		 * If the write stopped short of completing, fall back to
2724		 * buffered writes.  Some filesystems do this for writes to
2725		 * holes, for example.  For DAX files, a buffered write will
2726		 * not succeed (even if it did, DAX does not handle dirty
2727		 * page-cache pages correctly).
2728		 */
2729		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730			goto out;
2731
2732		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2733		/*
2734		 * If generic_perform_write() returned a synchronous error
2735		 * then we want to return the number of bytes which were
2736		 * direct-written, or the error code if that was zero.  Note
2737		 * that this differs from normal direct-io semantics, which
2738		 * will return -EFOO even if some bytes were written.
2739		 */
2740		if (unlikely(status < 0)) {
2741			err = status;
2742			goto out;
2743		}
2744		/*
2745		 * We need to ensure that the page cache pages are written to
2746		 * disk and invalidated to preserve the expected O_DIRECT
2747		 * semantics.
2748		 */
2749		endbyte = pos + status - 1;
2750		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751		if (err == 0) {
2752			iocb->ki_pos = endbyte + 1;
2753			written += status;
2754			invalidate_mapping_pages(mapping,
2755						 pos >> PAGE_SHIFT,
2756						 endbyte >> PAGE_SHIFT);
2757		} else {
2758			/*
2759			 * We don't know how much we wrote, so just return
2760			 * the number of bytes which were direct-written
2761			 */
2762		}
2763	} else {
2764		written = generic_perform_write(file, from, iocb->ki_pos);
2765		if (likely(written > 0))
2766			iocb->ki_pos += written;
2767	}
2768out:
2769	current->backing_dev_info = NULL;
2770	return written ? written : err;
2771}
2772EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774/**
2775 * generic_file_write_iter - write data to a file
2776 * @iocb:	IO state structure
2777 * @from:	iov_iter with data to write
2778 *
2779 * This is a wrapper around __generic_file_write_iter() to be used by most
2780 * filesystems. It takes care of syncing the file in case of O_SYNC file
2781 * and acquires i_mutex as needed.
 
 
 
 
2782 */
2783ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2784{
2785	struct file *file = iocb->ki_filp;
2786	struct inode *inode = file->f_mapping->host;
2787	ssize_t ret;
2788
2789	inode_lock(inode);
2790	ret = generic_write_checks(iocb, from);
2791	if (ret > 0)
2792		ret = __generic_file_write_iter(iocb, from);
2793	inode_unlock(inode);
2794
2795	if (ret > 0) {
2796		ssize_t err;
2797
2798		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799		if (err < 0)
2800			ret = err;
2801	}
2802	return ret;
2803}
2804EXPORT_SYMBOL(generic_file_write_iter);
2805
2806/**
2807 * try_to_release_page() - release old fs-specific metadata on a page
 
 
2808 *
2809 * @page: the page which the kernel is trying to free
2810 * @gfp_mask: memory allocation flags (and I/O mode)
2811 *
2812 * The address_space is to try to release any data against the page
2813 * (presumably at page->private).  If the release was successful, return `1'.
2814 * Otherwise return zero.
2815 *
2816 * This may also be called if PG_fscache is set on a page, indicating that the
2817 * page is known to the local caching routines.
2818 *
2819 * The @gfp_mask argument specifies whether I/O may be performed to release
2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2821 *
 
2822 */
2823int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824{
2825	struct address_space * const mapping = page->mapping;
2826
2827	BUG_ON(!PageLocked(page));
2828	if (PageWriteback(page))
2829		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830
2831	if (mapping && mapping->a_ops->releasepage)
2832		return mapping->a_ops->releasepage(page, gfp_mask);
2833	return try_to_free_buffers(page);
 
 
 
 
 
 
 
2834}
 
2835
2836EXPORT_SYMBOL(try_to_release_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
  36#include <linux/cpuset.h>
 
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <linux/sched/mm.h>
  50#include <asm/pgalloc.h>
  51#include <asm/tlbflush.h>
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/filemap.h>
  56
  57/*
  58 * FIXME: remove all knowledge of the buffer layer from the core VM
  59 */
  60#include <linux/buffer_head.h> /* for try_to_free_buffers */
  61
  62#include <asm/mman.h>
  63
  64#include "swap.h"
  65
  66/*
  67 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  68 * though.
  69 *
  70 * Shared mappings now work. 15.8.1995  Bruno.
  71 *
  72 * finished 'unifying' the page and buffer cache and SMP-threaded the
  73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  74 *
  75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  76 */
  77
  78/*
  79 * Lock ordering:
  80 *
  81 *  ->i_mmap_rwsem		(truncate_pagecache)
  82 *    ->private_lock		(__free_pte->block_dirty_folio)
  83 *      ->swap_lock		(exclusive_swap_page, others)
  84 *        ->i_pages lock
  85 *
  86 *  ->i_rwsem
  87 *    ->invalidate_lock		(acquired by fs in truncate path)
  88 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  89 *
  90 *  ->mmap_lock
  91 *    ->i_mmap_rwsem
  92 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  93 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  94 *
  95 *  ->mmap_lock
  96 *    ->invalidate_lock		(filemap_fault)
  97 *      ->lock_page		(filemap_fault, access_process_vm)
  98 *
  99 *  ->i_rwsem			(generic_perform_write)
 100 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 101 *
 102 *  bdi->wb.list_lock
 103 *    sb_lock			(fs/fs-writeback.c)
 104 *    ->i_pages lock		(__sync_single_inode)
 105 *
 106 *  ->i_mmap_rwsem
 107 *    ->anon_vma.lock		(vma_merge)
 108 *
 109 *  ->anon_vma.lock
 110 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 111 *
 112 *  ->page_table_lock or pte_lock
 113 *    ->swap_lock		(try_to_unmap_one)
 114 *    ->private_lock		(try_to_unmap_one)
 115 *    ->i_pages lock		(try_to_unmap_one)
 116 *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
 117 *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
 118 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 125 */
 126
 127static void page_cache_delete(struct address_space *mapping,
 128				   struct folio *folio, void *shadow)
 129{
 130	XA_STATE(xas, &mapping->i_pages, folio->index);
 131	long nr = 1;
 
 
 
 132
 133	mapping_set_update(&xas, mapping);
 134
 135	xas_set_order(&xas, folio->index, folio_order(folio));
 136	nr = folio_nr_pages(folio);
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	folio->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 150{
 151	long nr;
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = folio_mapcount(folio);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				atomic_set(&folio->_mapcount, -1);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 
 
 179		return;
 
 180
 181	nr = folio_nr_pages(folio);
 
 
 
 
 
 
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 224}
 
 
 
 
 
 
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 
 
 234
 235	if (folio_test_large(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 238}
 
 
 
 
 
 
 
 
 
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 310
 311		i++;
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 
 
 
 
 
 
 
 320{
 321	int i;
 
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 
 342}
 
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct folio *folio;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		folio = xas_find(&xas, max);
 483		if (xas_retry(&xas, folio))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(folio))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return folio != NULL;
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct folio_batch fbatch;
 507	unsigned nr_folios;
 
 508
 509	folio_batch_init(&fbatch);
 
 510
 511	while (index <= end) {
 
 
 
 
 512		unsigned i;
 513
 514		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 515				PAGECACHE_TAG_WRITEBACK, &fbatch);
 516
 517		if (!nr_folios)
 518			break;
 519
 520		for (i = 0; i < nr_folios; i++) {
 521			struct folio *folio = fbatch.folios[i];
 522
 523			folio_wait_writeback(folio);
 
 
 524		}
 525		folio_batch_release(&fbatch);
 526		cond_resched();
 527	}
 
 
 528}
 529
 530/**
 531 * filemap_fdatawait_range - wait for writeback to complete
 532 * @mapping:		address space structure to wait for
 533 * @start_byte:		offset in bytes where the range starts
 534 * @end_byte:		offset in bytes where the range ends (inclusive)
 535 *
 536 * Walk the list of under-writeback pages of the given address space
 537 * in the given range and wait for all of them.  Check error status of
 538 * the address space and return it.
 539 *
 540 * Since the error status of the address space is cleared by this function,
 541 * callers are responsible for checking the return value and handling and/or
 542 * reporting the error.
 543 *
 544 * Return: error status of the address space.
 545 */
 546int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 547			    loff_t end_byte)
 548{
 549	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 550	return filemap_check_errors(mapping);
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL(filemap_fdatawait_range);
 553
 554/**
 555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 556 * @mapping:		address space structure to wait for
 557 * @start_byte:		offset in bytes where the range starts
 558 * @end_byte:		offset in bytes where the range ends (inclusive)
 559 *
 560 * Walk the list of under-writeback pages of the given address space in the
 561 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 562 * this function does not clear error status of the address space.
 563 *
 564 * Use this function if callers don't handle errors themselves.  Expected
 565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 566 * fsfreeze(8)
 567 */
 568int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 569		loff_t start_byte, loff_t end_byte)
 570{
 571	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 572	return filemap_check_and_keep_errors(mapping);
 573}
 574EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 575
 576/**
 577 * file_fdatawait_range - wait for writeback to complete
 578 * @file:		file pointing to address space structure to wait for
 579 * @start_byte:		offset in bytes where the range starts
 580 * @end_byte:		offset in bytes where the range ends (inclusive)
 581 *
 582 * Walk the list of under-writeback pages of the address space that file
 583 * refers to, in the given range and wait for all of them.  Check error
 584 * status of the address space vs. the file->f_wb_err cursor and return it.
 585 *
 586 * Since the error status of the file is advanced by this function,
 587 * callers are responsible for checking the return value and handling and/or
 588 * reporting the error.
 589 *
 590 * Return: error status of the address space vs. the file->f_wb_err cursor.
 591 */
 592int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 593{
 594	struct address_space *mapping = file->f_mapping;
 595
 596	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 597	return file_check_and_advance_wb_err(file);
 598}
 599EXPORT_SYMBOL(file_fdatawait_range);
 600
 601/**
 602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 603 * @mapping: address space structure to wait for
 604 *
 605 * Walk the list of under-writeback pages of the given address space
 606 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 607 * does not clear error status of the address space.
 608 *
 609 * Use this function if callers don't handle errors themselves.  Expected
 610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 611 * fsfreeze(8)
 612 *
 613 * Return: error status of the address space.
 614 */
 615int filemap_fdatawait_keep_errors(struct address_space *mapping)
 616{
 617	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 618	return filemap_check_and_keep_errors(mapping);
 619}
 620EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 621
 622/* Returns true if writeback might be needed or already in progress. */
 623static bool mapping_needs_writeback(struct address_space *mapping)
 624{
 625	return mapping->nrpages;
 626}
 
 627
 628bool filemap_range_has_writeback(struct address_space *mapping,
 629				 loff_t start_byte, loff_t end_byte)
 630{
 631	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 632	pgoff_t max = end_byte >> PAGE_SHIFT;
 633	struct folio *folio;
 634
 635	if (end_byte < start_byte)
 636		return false;
 637
 638	rcu_read_lock();
 639	xas_for_each(&xas, folio, max) {
 640		if (xas_retry(&xas, folio))
 641			continue;
 642		if (xa_is_value(folio))
 643			continue;
 644		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 645				folio_test_writeback(folio))
 646			break;
 
 
 
 
 647	}
 648	rcu_read_unlock();
 649	return folio != NULL;
 650}
 651EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 652
 653/**
 654 * filemap_write_and_wait_range - write out & wait on a file range
 655 * @mapping:	the address_space for the pages
 656 * @lstart:	offset in bytes where the range starts
 657 * @lend:	offset in bytes where the range ends (inclusive)
 658 *
 659 * Write out and wait upon file offsets lstart->lend, inclusive.
 660 *
 661 * Note that @lend is inclusive (describes the last byte to be written) so
 662 * that this function can be used to write to the very end-of-file (end = -1).
 663 *
 664 * Return: error status of the address space.
 665 */
 666int filemap_write_and_wait_range(struct address_space *mapping,
 667				 loff_t lstart, loff_t lend)
 668{
 669	int err = 0, err2;
 670
 671	if (lend < lstart)
 672		return 0;
 673
 674	if (mapping_needs_writeback(mapping)) {
 
 675		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 676						 WB_SYNC_ALL);
 677		/*
 678		 * Even if the above returned error, the pages may be
 679		 * written partially (e.g. -ENOSPC), so we wait for it.
 680		 * But the -EIO is special case, it may indicate the worst
 681		 * thing (e.g. bug) happened, so we avoid waiting for it.
 682		 */
 683		if (err != -EIO)
 684			__filemap_fdatawait_range(mapping, lstart, lend);
 
 685	}
 686	err2 = filemap_check_errors(mapping);
 687	if (!err)
 688		err = err2;
 689	return err;
 690}
 691EXPORT_SYMBOL(filemap_write_and_wait_range);
 692
 693void __filemap_set_wb_err(struct address_space *mapping, int err)
 694{
 695	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 696
 697	trace_filemap_set_wb_err(mapping, eseq);
 698}
 699EXPORT_SYMBOL(__filemap_set_wb_err);
 700
 701/**
 702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 703 * 				   and advance wb_err to current one
 704 * @file: struct file on which the error is being reported
 705 *
 706 * When userland calls fsync (or something like nfsd does the equivalent), we
 707 * want to report any writeback errors that occurred since the last fsync (or
 708 * since the file was opened if there haven't been any).
 709 *
 710 * Grab the wb_err from the mapping. If it matches what we have in the file,
 711 * then just quickly return 0. The file is all caught up.
 712 *
 713 * If it doesn't match, then take the mapping value, set the "seen" flag in
 714 * it and try to swap it into place. If it works, or another task beat us
 715 * to it with the new value, then update the f_wb_err and return the error
 716 * portion. The error at this point must be reported via proper channels
 717 * (a'la fsync, or NFS COMMIT operation, etc.).
 718 *
 719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 720 * value is protected by the f_lock since we must ensure that it reflects
 721 * the latest value swapped in for this file descriptor.
 722 *
 723 * Return: %0 on success, negative error code otherwise.
 
 724 */
 725int file_check_and_advance_wb_err(struct file *file)
 726{
 727	int err = 0;
 728	errseq_t old = READ_ONCE(file->f_wb_err);
 729	struct address_space *mapping = file->f_mapping;
 730
 731	/* Locklessly handle the common case where nothing has changed */
 732	if (errseq_check(&mapping->wb_err, old)) {
 733		/* Something changed, must use slow path */
 734		spin_lock(&file->f_lock);
 735		old = file->f_wb_err;
 736		err = errseq_check_and_advance(&mapping->wb_err,
 737						&file->f_wb_err);
 738		trace_file_check_and_advance_wb_err(file, old);
 739		spin_unlock(&file->f_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	}
 741
 742	/*
 743	 * We're mostly using this function as a drop in replacement for
 744	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 745	 * that the legacy code would have had on these flags.
 746	 */
 747	clear_bit(AS_EIO, &mapping->flags);
 748	clear_bit(AS_ENOSPC, &mapping->flags);
 749	return err;
 750}
 751EXPORT_SYMBOL(file_check_and_advance_wb_err);
 752
 753/**
 754 * file_write_and_wait_range - write out & wait on a file range
 755 * @file:	file pointing to address_space with pages
 756 * @lstart:	offset in bytes where the range starts
 757 * @lend:	offset in bytes where the range ends (inclusive)
 758 *
 759 * Write out and wait upon file offsets lstart->lend, inclusive.
 760 *
 761 * Note that @lend is inclusive (describes the last byte to be written) so
 762 * that this function can be used to write to the very end-of-file (end = -1).
 763 *
 764 * After writing out and waiting on the data, we check and advance the
 765 * f_wb_err cursor to the latest value, and return any errors detected there.
 766 *
 767 * Return: %0 on success, negative error code otherwise.
 768 */
 769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 770{
 771	int err = 0, err2;
 772	struct address_space *mapping = file->f_mapping;
 
 773
 774	if (lend < lstart)
 775		return 0;
 
 
 
 
 776
 777	if (mapping_needs_writeback(mapping)) {
 778		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 779						 WB_SYNC_ALL);
 780		/* See comment of filemap_write_and_wait() */
 781		if (err != -EIO)
 782			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	}
 784	err2 = file_check_and_advance_wb_err(file);
 785	if (!err)
 786		err = err2;
 787	return err;
 788}
 789EXPORT_SYMBOL(file_write_and_wait_range);
 790
 791/**
 792 * replace_page_cache_folio - replace a pagecache folio with a new one
 793 * @old:	folio to be replaced
 794 * @new:	folio to replace with
 795 *
 796 * This function replaces a folio in the pagecache with a new one.  On
 797 * success it acquires the pagecache reference for the new folio and
 798 * drops it for the old folio.  Both the old and new folios must be
 799 * locked.  This function does not add the new folio to the LRU, the
 800 * caller must do that.
 801 *
 802 * The remove + add is atomic.  This function cannot fail.
 803 */
 804void replace_page_cache_folio(struct folio *old, struct folio *new)
 805{
 806	struct address_space *mapping = old->mapping;
 807	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 808	pgoff_t offset = old->index;
 809	XA_STATE(xas, &mapping->i_pages, offset);
 810
 811	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 812	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 813	VM_BUG_ON_FOLIO(new->mapping, new);
 814
 815	folio_get(new);
 816	new->mapping = mapping;
 817	new->index = offset;
 
 
 
 818
 819	mem_cgroup_replace_folio(old, new);
 
 
 
 
 
 820
 821	xas_lock_irq(&xas);
 822	xas_store(&xas, new);
 
 
 
 
 
 
 
 823
 824	old->mapping = NULL;
 825	/* hugetlb pages do not participate in page cache accounting. */
 826	if (!folio_test_hugetlb(old))
 827		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 828	if (!folio_test_hugetlb(new))
 829		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 830	if (folio_test_swapbacked(old))
 831		__lruvec_stat_sub_folio(old, NR_SHMEM);
 832	if (folio_test_swapbacked(new))
 833		__lruvec_stat_add_folio(new, NR_SHMEM);
 834	xas_unlock_irq(&xas);
 835	if (free_folio)
 836		free_folio(old);
 837	folio_put(old);
 838}
 839EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 840
 841noinline int __filemap_add_folio(struct address_space *mapping,
 842		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 843{
 844	XA_STATE(xas, &mapping->i_pages, index);
 845	void *alloced_shadow = NULL;
 846	int alloced_order = 0;
 847	bool huge;
 848	long nr;
 849
 850	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 851	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 852	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
 853			folio);
 854	mapping_set_update(&xas, mapping);
 855
 856	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 857	xas_set_order(&xas, index, folio_order(folio));
 858	huge = folio_test_hugetlb(folio);
 859	nr = folio_nr_pages(folio);
 860
 861	gfp &= GFP_RECLAIM_MASK;
 862	folio_ref_add(folio, nr);
 863	folio->mapping = mapping;
 864	folio->index = xas.xa_index;
 865
 866	for (;;) {
 867		int order = -1, split_order = 0;
 868		void *entry, *old = NULL;
 869
 870		xas_lock_irq(&xas);
 871		xas_for_each_conflict(&xas, entry) {
 872			old = entry;
 873			if (!xa_is_value(entry)) {
 874				xas_set_err(&xas, -EEXIST);
 875				goto unlock;
 876			}
 877			/*
 878			 * If a larger entry exists,
 879			 * it will be the first and only entry iterated.
 880			 */
 881			if (order == -1)
 882				order = xas_get_order(&xas);
 883		}
 884
 885		/* entry may have changed before we re-acquire the lock */
 886		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
 887			xas_destroy(&xas);
 888			alloced_order = 0;
 889		}
 890
 891		if (old) {
 892			if (order > 0 && order > folio_order(folio)) {
 893				/* How to handle large swap entries? */
 894				BUG_ON(shmem_mapping(mapping));
 895				if (!alloced_order) {
 896					split_order = order;
 897					goto unlock;
 898				}
 899				xas_split(&xas, old, order);
 900				xas_reset(&xas);
 901			}
 902			if (shadowp)
 903				*shadowp = old;
 904		}
 905
 906		xas_store(&xas, folio);
 907		if (xas_error(&xas))
 908			goto unlock;
 909
 910		mapping->nrpages += nr;
 911
 912		/* hugetlb pages do not participate in page cache accounting */
 913		if (!huge) {
 914			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 915			if (folio_test_pmd_mappable(folio))
 916				__lruvec_stat_mod_folio(folio,
 917						NR_FILE_THPS, nr);
 918		}
 919
 920unlock:
 921		xas_unlock_irq(&xas);
 922
 923		/* split needed, alloc here and retry. */
 924		if (split_order) {
 925			xas_split_alloc(&xas, old, split_order, gfp);
 926			if (xas_error(&xas))
 927				goto error;
 928			alloced_shadow = old;
 929			alloced_order = split_order;
 930			xas_reset(&xas);
 931			continue;
 932		}
 933
 934		if (!xas_nomem(&xas, gfp))
 935			break;
 936	}
 937
 938	if (xas_error(&xas))
 939		goto error;
 940
 941	trace_mm_filemap_add_to_page_cache(folio);
 942	return 0;
 943error:
 944	folio->mapping = NULL;
 945	/* Leave page->index set: truncation relies upon it */
 946	folio_put_refs(folio, nr);
 947	return xas_error(&xas);
 
 
 
 948}
 949ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 950
 951int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 952				pgoff_t index, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953{
 954	void *shadow = NULL;
 955	int ret;
 956
 957	ret = mem_cgroup_charge(folio, NULL, gfp);
 958	if (ret)
 959		return ret;
 960
 961	__folio_set_locked(folio);
 962	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 963	if (unlikely(ret)) {
 964		mem_cgroup_uncharge(folio);
 965		__folio_clear_locked(folio);
 966	} else {
 967		/*
 968		 * The folio might have been evicted from cache only
 969		 * recently, in which case it should be activated like
 970		 * any other repeatedly accessed folio.
 971		 * The exception is folios getting rewritten; evicting other
 972		 * data from the working set, only to cache data that will
 973		 * get overwritten with something else, is a waste of memory.
 974		 */
 975		WARN_ON_ONCE(folio_test_active(folio));
 976		if (!(gfp & __GFP_WRITE) && shadow)
 977			workingset_refault(folio, shadow);
 978		folio_add_lru(folio);
 
 
 979	}
 980	return ret;
 981}
 982EXPORT_SYMBOL_GPL(filemap_add_folio);
 983
 984#ifdef CONFIG_NUMA
 985struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
 986{
 987	int n;
 988	struct folio *folio;
 989
 990	if (cpuset_do_page_mem_spread()) {
 991		unsigned int cpuset_mems_cookie;
 992		do {
 993			cpuset_mems_cookie = read_mems_allowed_begin();
 994			n = cpuset_mem_spread_node();
 995			folio = __folio_alloc_node_noprof(gfp, order, n);
 996		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 997
 998		return folio;
 999	}
1000	return folio_alloc_noprof(gfp, order);
1001}
1002EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1003#endif
1004
1005/*
1006 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1007 *
1008 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1009 *
1010 * @mapping1: the first mapping to lock
1011 * @mapping2: the second mapping to lock
1012 */
1013void filemap_invalidate_lock_two(struct address_space *mapping1,
1014				 struct address_space *mapping2)
1015{
1016	if (mapping1 > mapping2)
1017		swap(mapping1, mapping2);
1018	if (mapping1)
1019		down_write(&mapping1->invalidate_lock);
1020	if (mapping2 && mapping1 != mapping2)
1021		down_write_nested(&mapping2->invalidate_lock, 1);
1022}
1023EXPORT_SYMBOL(filemap_invalidate_lock_two);
1024
1025/*
1026 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1027 *
1028 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1029 *
1030 * @mapping1: the first mapping to unlock
1031 * @mapping2: the second mapping to unlock
1032 */
1033void filemap_invalidate_unlock_two(struct address_space *mapping1,
1034				   struct address_space *mapping2)
1035{
1036	if (mapping1)
1037		up_write(&mapping1->invalidate_lock);
1038	if (mapping2 && mapping1 != mapping2)
1039		up_write(&mapping2->invalidate_lock);
1040}
1041EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1042
1043/*
1044 * In order to wait for pages to become available there must be
1045 * waitqueues associated with pages. By using a hash table of
1046 * waitqueues where the bucket discipline is to maintain all
1047 * waiters on the same queue and wake all when any of the pages
1048 * become available, and for the woken contexts to check to be
1049 * sure the appropriate page became available, this saves space
1050 * at a cost of "thundering herd" phenomena during rare hash
1051 * collisions.
1052 */
1053#define PAGE_WAIT_TABLE_BITS 8
1054#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1055static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1056
1057static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1058{
1059	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1060}
 
1061
1062void __init pagecache_init(void)
1063{
1064	int i;
1065
1066	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1067		init_waitqueue_head(&folio_wait_table[i]);
1068
1069	page_writeback_init();
 
 
1070}
 
1071
1072/*
1073 * The page wait code treats the "wait->flags" somewhat unusually, because
1074 * we have multiple different kinds of waits, not just the usual "exclusive"
1075 * one.
1076 *
1077 * We have:
1078 *
1079 *  (a) no special bits set:
1080 *
1081 *	We're just waiting for the bit to be released, and when a waker
1082 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1083 *	and remove it from the wait queue.
1084 *
1085 *	Simple and straightforward.
1086 *
1087 *  (b) WQ_FLAG_EXCLUSIVE:
1088 *
1089 *	The waiter is waiting to get the lock, and only one waiter should
1090 *	be woken up to avoid any thundering herd behavior. We'll set the
1091 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1092 *
1093 *	This is the traditional exclusive wait.
1094 *
1095 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1096 *
1097 *	The waiter is waiting to get the bit, and additionally wants the
1098 *	lock to be transferred to it for fair lock behavior. If the lock
1099 *	cannot be taken, we stop walking the wait queue without waking
1100 *	the waiter.
1101 *
1102 *	This is the "fair lock handoff" case, and in addition to setting
1103 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1104 *	that it now has the lock.
1105 */
1106static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1107{
1108	unsigned int flags;
1109	struct wait_page_key *key = arg;
1110	struct wait_page_queue *wait_page
1111		= container_of(wait, struct wait_page_queue, wait);
1112
1113	if (!wake_page_match(wait_page, key))
1114		return 0;
1115
1116	/*
1117	 * If it's a lock handoff wait, we get the bit for it, and
1118	 * stop walking (and do not wake it up) if we can't.
1119	 */
1120	flags = wait->flags;
1121	if (flags & WQ_FLAG_EXCLUSIVE) {
1122		if (test_bit(key->bit_nr, &key->folio->flags))
1123			return -1;
1124		if (flags & WQ_FLAG_CUSTOM) {
1125			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1126				return -1;
1127			flags |= WQ_FLAG_DONE;
1128		}
1129	}
1130
1131	/*
1132	 * We are holding the wait-queue lock, but the waiter that
1133	 * is waiting for this will be checking the flags without
1134	 * any locking.
1135	 *
1136	 * So update the flags atomically, and wake up the waiter
1137	 * afterwards to avoid any races. This store-release pairs
1138	 * with the load-acquire in folio_wait_bit_common().
1139	 */
1140	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1141	wake_up_state(wait->private, mode);
1142
1143	/*
1144	 * Ok, we have successfully done what we're waiting for,
1145	 * and we can unconditionally remove the wait entry.
1146	 *
1147	 * Note that this pairs with the "finish_wait()" in the
1148	 * waiter, and has to be the absolute last thing we do.
1149	 * After this list_del_init(&wait->entry) the wait entry
1150	 * might be de-allocated and the process might even have
1151	 * exited.
1152	 */
1153	list_del_init_careful(&wait->entry);
1154	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1155}
1156
1157static void folio_wake_bit(struct folio *folio, int bit_nr)
 
1158{
1159	wait_queue_head_t *q = folio_waitqueue(folio);
1160	struct wait_page_key key;
1161	unsigned long flags;
1162
1163	key.folio = folio;
1164	key.bit_nr = bit_nr;
1165	key.page_match = 0;
1166
1167	spin_lock_irqsave(&q->lock, flags);
1168	__wake_up_locked_key(q, TASK_NORMAL, &key);
1169
1170	/*
1171	 * It's possible to miss clearing waiters here, when we woke our page
1172	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1173	 * That's okay, it's a rare case. The next waker will clear it.
1174	 *
1175	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1176	 * other), the flag may be cleared in the course of freeing the page;
1177	 * but that is not required for correctness.
1178	 */
1179	if (!waitqueue_active(q) || !key.page_match)
1180		folio_clear_waiters(folio);
1181
1182	spin_unlock_irqrestore(&q->lock, flags);
1183}
1184
1185/*
1186 * A choice of three behaviors for folio_wait_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __folio_lock() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * folio_wait_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like folio_put_wait_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the folio flag, and mark us done
1202 * if successful.
1203 */
1204static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &folio->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &folio->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1221		int state, enum behavior behavior)
1222{
1223	wait_queue_head_t *q = folio_waitqueue(folio);
1224	int unfairness = sysctl_page_lock_unfairness;
1225	struct wait_page_queue wait_page;
1226	wait_queue_entry_t *wait = &wait_page.wait;
1227	bool thrashing = false;
1228	unsigned long pflags;
1229	bool in_thrashing;
1230
1231	if (bit_nr == PG_locked &&
1232	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1233		delayacct_thrashing_start(&in_thrashing);
1234		psi_memstall_enter(&pflags);
1235		thrashing = true;
1236	}
1237
1238	init_wait(wait);
1239	wait->func = wake_page_function;
1240	wait_page.folio = folio;
1241	wait_page.bit_nr = bit_nr;
1242
1243repeat:
1244	wait->flags = 0;
1245	if (behavior == EXCLUSIVE) {
1246		wait->flags = WQ_FLAG_EXCLUSIVE;
1247		if (--unfairness < 0)
1248			wait->flags |= WQ_FLAG_CUSTOM;
1249	}
1250
1251	/*
1252	 * Do one last check whether we can get the
1253	 * page bit synchronously.
1254	 *
1255	 * Do the folio_set_waiters() marking before that
1256	 * to let any waker we _just_ missed know they
1257	 * need to wake us up (otherwise they'll never
1258	 * even go to the slow case that looks at the
1259	 * page queue), and add ourselves to the wait
1260	 * queue if we need to sleep.
1261	 *
1262	 * This part needs to be done under the queue
1263	 * lock to avoid races.
1264	 */
1265	spin_lock_irq(&q->lock);
1266	folio_set_waiters(folio);
1267	if (!folio_trylock_flag(folio, bit_nr, wait))
1268		__add_wait_queue_entry_tail(q, wait);
1269	spin_unlock_irq(&q->lock);
1270
1271	/*
1272	 * From now on, all the logic will be based on
1273	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1274	 * see whether the page bit testing has already
1275	 * been done by the wake function.
1276	 *
1277	 * We can drop our reference to the folio.
1278	 */
1279	if (behavior == DROP)
1280		folio_put(folio);
1281
1282	/*
1283	 * Note that until the "finish_wait()", or until
1284	 * we see the WQ_FLAG_WOKEN flag, we need to
1285	 * be very careful with the 'wait->flags', because
1286	 * we may race with a waker that sets them.
1287	 */
1288	for (;;) {
1289		unsigned int flags;
1290
1291		set_current_state(state);
1292
1293		/* Loop until we've been woken or interrupted */
1294		flags = smp_load_acquire(&wait->flags);
1295		if (!(flags & WQ_FLAG_WOKEN)) {
1296			if (signal_pending_state(state, current))
1297				break;
1298
1299			io_schedule();
1300			continue;
1301		}
1302
1303		/* If we were non-exclusive, we're done */
1304		if (behavior != EXCLUSIVE)
1305			break;
1306
1307		/* If the waker got the lock for us, we're done */
1308		if (flags & WQ_FLAG_DONE)
1309			break;
1310
1311		/*
1312		 * Otherwise, if we're getting the lock, we need to
1313		 * try to get it ourselves.
1314		 *
1315		 * And if that fails, we'll have to retry this all.
1316		 */
1317		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1318			goto repeat;
1319
1320		wait->flags |= WQ_FLAG_DONE;
1321		break;
1322	}
1323
1324	/*
1325	 * If a signal happened, this 'finish_wait()' may remove the last
1326	 * waiter from the wait-queues, but the folio waiters bit will remain
1327	 * set. That's ok. The next wakeup will take care of it, and trying
1328	 * to do it here would be difficult and prone to races.
1329	 */
1330	finish_wait(q, wait);
1331
1332	if (thrashing) {
1333		delayacct_thrashing_end(&in_thrashing);
1334		psi_memstall_leave(&pflags);
1335	}
1336
1337	/*
1338	 * NOTE! The wait->flags weren't stable until we've done the
1339	 * 'finish_wait()', and we could have exited the loop above due
1340	 * to a signal, and had a wakeup event happen after the signal
1341	 * test but before the 'finish_wait()'.
1342	 *
1343	 * So only after the finish_wait() can we reliably determine
1344	 * if we got woken up or not, so we can now figure out the final
1345	 * return value based on that state without races.
1346	 *
1347	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349	 */
1350	if (behavior == EXCLUSIVE)
1351		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352
1353	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354}
1355
1356#ifdef CONFIG_MIGRATION
1357/**
1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359 * @entry: migration swap entry.
1360 * @ptl: already locked ptl. This function will drop the lock.
1361 *
1362 * Wait for a migration entry referencing the given page to be removed. This is
1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364 * this can be called without taking a reference on the page. Instead this
1365 * should be called while holding the ptl for the migration entry referencing
1366 * the page.
1367 *
1368 * Returns after unlocking the ptl.
1369 *
1370 * This follows the same logic as folio_wait_bit_common() so see the comments
1371 * there.
1372 */
1373void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1374	__releases(ptl)
1375{
1376	struct wait_page_queue wait_page;
1377	wait_queue_entry_t *wait = &wait_page.wait;
1378	bool thrashing = false;
1379	unsigned long pflags;
1380	bool in_thrashing;
1381	wait_queue_head_t *q;
1382	struct folio *folio = pfn_swap_entry_folio(entry);
1383
1384	q = folio_waitqueue(folio);
1385	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386		delayacct_thrashing_start(&in_thrashing);
1387		psi_memstall_enter(&pflags);
1388		thrashing = true;
1389	}
1390
1391	init_wait(wait);
1392	wait->func = wake_page_function;
1393	wait_page.folio = folio;
1394	wait_page.bit_nr = PG_locked;
1395	wait->flags = 0;
1396
1397	spin_lock_irq(&q->lock);
1398	folio_set_waiters(folio);
1399	if (!folio_trylock_flag(folio, PG_locked, wait))
1400		__add_wait_queue_entry_tail(q, wait);
1401	spin_unlock_irq(&q->lock);
1402
1403	/*
1404	 * If a migration entry exists for the page the migration path must hold
1405	 * a valid reference to the page, and it must take the ptl to remove the
1406	 * migration entry. So the page is valid until the ptl is dropped.
1407	 */
1408	spin_unlock(ptl);
1409
1410	for (;;) {
1411		unsigned int flags;
1412
1413		set_current_state(TASK_UNINTERRUPTIBLE);
1414
1415		/* Loop until we've been woken or interrupted */
1416		flags = smp_load_acquire(&wait->flags);
1417		if (!(flags & WQ_FLAG_WOKEN)) {
1418			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1419				break;
1420
1421			io_schedule();
1422			continue;
1423		}
1424		break;
1425	}
1426
1427	finish_wait(q, wait);
1428
1429	if (thrashing) {
1430		delayacct_thrashing_end(&in_thrashing);
1431		psi_memstall_leave(&pflags);
1432	}
1433}
1434#endif
1435
1436void folio_wait_bit(struct folio *folio, int bit_nr)
1437{
1438	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1439}
1440EXPORT_SYMBOL(folio_wait_bit);
1441
1442int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1443{
1444	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1445}
1446EXPORT_SYMBOL(folio_wait_bit_killable);
1447
1448/**
1449 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1450 * @folio: The folio to wait for.
1451 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1452 *
1453 * The caller should hold a reference on @folio.  They expect the page to
1454 * become unlocked relatively soon, but do not wish to hold up migration
1455 * (for example) by holding the reference while waiting for the folio to
1456 * come unlocked.  After this function returns, the caller should not
1457 * dereference @folio.
1458 *
1459 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1460 */
1461static int folio_put_wait_locked(struct folio *folio, int state)
1462{
1463	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1464}
 
1465
1466/**
1467 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1468 * @folio: Folio defining the wait queue of interest
1469 * @waiter: Waiter to add to the queue
1470 *
1471 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1472 */
1473void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1474{
1475	wait_queue_head_t *q = folio_waitqueue(folio);
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&q->lock, flags);
1479	__add_wait_queue_entry_tail(q, waiter);
1480	folio_set_waiters(folio);
1481	spin_unlock_irqrestore(&q->lock, flags);
1482}
1483EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1484
1485/**
1486 * folio_unlock - Unlock a locked folio.
1487 * @folio: The folio.
1488 *
1489 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1490 *
1491 * Context: May be called from interrupt or process context.  May not be
1492 * called from NMI context.
1493 */
1494void folio_unlock(struct folio *folio)
1495{
1496	/* Bit 7 allows x86 to check the byte's sign bit */
1497	BUILD_BUG_ON(PG_waiters != 7);
1498	BUILD_BUG_ON(PG_locked > 7);
1499	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1501		folio_wake_bit(folio, PG_locked);
1502}
1503EXPORT_SYMBOL(folio_unlock);
1504
1505/**
1506 * folio_end_read - End read on a folio.
1507 * @folio: The folio.
1508 * @success: True if all reads completed successfully.
1509 *
1510 * When all reads against a folio have completed, filesystems should
1511 * call this function to let the pagecache know that no more reads
1512 * are outstanding.  This will unlock the folio and wake up any thread
1513 * sleeping on the lock.  The folio will also be marked uptodate if all
1514 * reads succeeded.
1515 *
1516 * Context: May be called from interrupt or process context.  May not be
1517 * called from NMI context.
1518 */
1519void folio_end_read(struct folio *folio, bool success)
1520{
1521	unsigned long mask = 1 << PG_locked;
1522
1523	/* Must be in bottom byte for x86 to work */
1524	BUILD_BUG_ON(PG_uptodate > 7);
1525	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526	VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1527
1528	if (likely(success))
1529		mask |= 1 << PG_uptodate;
1530	if (folio_xor_flags_has_waiters(folio, mask))
1531		folio_wake_bit(folio, PG_locked);
1532}
1533EXPORT_SYMBOL(folio_end_read);
1534
1535/**
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1538 *
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it.  The folio reference held for PG_private_2 being set is released.
 
 
1541 *
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1544 * serialised.
1545 */
1546void folio_end_private_2(struct folio *folio)
1547{
1548	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550	folio_wake_bit(folio, PG_private_2);
1551	folio_put(folio);
 
1552}
1553EXPORT_SYMBOL(folio_end_private_2);
1554
1555/**
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1558 *
1559 * Wait for PG_private_2 to be cleared on a folio.
1560 */
1561void folio_wait_private_2(struct folio *folio)
1562{
1563	while (folio_test_private_2(folio))
1564		folio_wait_bit(folio, PG_private_2);
1565}
1566EXPORT_SYMBOL(folio_wait_private_2);
 
 
 
 
 
 
 
1567
1568/**
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1571 *
1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1573 * received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
1579int folio_wait_private_2_killable(struct folio *folio)
1580{
1581	int ret = 0;
1582
1583	while (folio_test_private_2(folio)) {
1584		ret = folio_wait_bit_killable(folio, PG_private_2);
1585		if (ret < 0)
1586			break;
1587	}
1588
1589	return ret;
1590}
1591EXPORT_SYMBOL(folio_wait_private_2_killable);
1592
1593/**
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1596 *
1597 * The folio must actually be under writeback.
1598 *
1599 * Context: May be called from process or interrupt context.
1600 */
1601void folio_end_writeback(struct folio *folio)
1602{
1603	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1604
1605	/*
1606	 * folio_test_clear_reclaim() could be used here but it is an
1607	 * atomic operation and overkill in this particular case. Failing
1608	 * to shuffle a folio marked for immediate reclaim is too mild
1609	 * a gain to justify taking an atomic operation penalty at the
1610	 * end of every folio writeback.
1611	 */
1612	if (folio_test_reclaim(folio)) {
1613		folio_clear_reclaim(folio);
1614		folio_rotate_reclaimable(folio);
 
 
 
1615	}
1616
1617	/*
1618	 * Writeback does not hold a folio reference of its own, relying
1619	 * on truncation to wait for the clearing of PG_writeback.
1620	 * But here we must make sure that the folio is not freed and
1621	 * reused before the folio_wake_bit().
1622	 */
1623	folio_get(folio);
1624	if (__folio_end_writeback(folio))
1625		folio_wake_bit(folio, PG_writeback);
1626	acct_reclaim_writeback(folio);
1627	folio_put(folio);
1628}
1629EXPORT_SYMBOL(folio_end_writeback);
1630
1631/**
1632 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1633 * @folio: The folio to lock
1634 */
1635void __folio_lock(struct folio *folio)
1636{
1637	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1638				EXCLUSIVE);
1639}
1640EXPORT_SYMBOL(__folio_lock);
1641
1642int __folio_lock_killable(struct folio *folio)
1643{
1644	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1645					EXCLUSIVE);
1646}
1647EXPORT_SYMBOL_GPL(__folio_lock_killable);
1648
1649static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1650{
1651	struct wait_queue_head *q = folio_waitqueue(folio);
1652	int ret;
1653
1654	wait->folio = folio;
1655	wait->bit_nr = PG_locked;
1656
1657	spin_lock_irq(&q->lock);
1658	__add_wait_queue_entry_tail(q, &wait->wait);
1659	folio_set_waiters(folio);
1660	ret = !folio_trylock(folio);
1661	/*
1662	 * If we were successful now, we know we're still on the
1663	 * waitqueue as we're still under the lock. This means it's
1664	 * safe to remove and return success, we know the callback
1665	 * isn't going to trigger.
1666	 */
1667	if (!ret)
1668		__remove_wait_queue(q, &wait->wait);
1669	else
1670		ret = -EIOCBQUEUED;
1671	spin_unlock_irq(&q->lock);
1672	return ret;
1673}
 
1674
1675/*
1676 * Return values:
1677 * 0 - folio is locked.
1678 * non-zero - folio is not locked.
1679 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1680 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1681 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1682 *
1683 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1684 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1685 */
1686vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
 
1687{
1688	unsigned int flags = vmf->flags;
1689
1690	if (fault_flag_allow_retry_first(flags)) {
1691		/*
1692		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1693		 * released even though returning VM_FAULT_RETRY.
1694		 */
1695		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1696			return VM_FAULT_RETRY;
1697
1698		release_fault_lock(vmf);
1699		if (flags & FAULT_FLAG_KILLABLE)
1700			folio_wait_locked_killable(folio);
1701		else
1702			folio_wait_locked(folio);
1703		return VM_FAULT_RETRY;
1704	}
1705	if (flags & FAULT_FLAG_KILLABLE) {
1706		bool ret;
1707
1708		ret = __folio_lock_killable(folio);
1709		if (ret) {
1710			release_fault_lock(vmf);
1711			return VM_FAULT_RETRY;
1712		}
1713	} else {
1714		__folio_lock(folio);
 
1715	}
1716
1717	return 0;
1718}
1719
1720/**
1721 * page_cache_next_miss() - Find the next gap in the page cache.
1722 * @mapping: Mapping.
1723 * @index: Index.
1724 * @max_scan: Maximum range to search.
1725 *
1726 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1727 * gap with the lowest index.
1728 *
1729 * This function may be called under the rcu_read_lock.  However, this will
1730 * not atomically search a snapshot of the cache at a single point in time.
1731 * For example, if a gap is created at index 5, then subsequently a gap is
1732 * created at index 10, page_cache_next_miss covering both indices may
1733 * return 10 if called under the rcu_read_lock.
1734 *
1735 * Return: The index of the gap if found, otherwise an index outside the
1736 * range specified (in which case 'return - index >= max_scan' will be true).
1737 * In the rare case of index wrap-around, 0 will be returned.
 
 
1738 */
1739pgoff_t page_cache_next_miss(struct address_space *mapping,
1740			     pgoff_t index, unsigned long max_scan)
1741{
1742	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1743
1744	while (max_scan--) {
1745		void *entry = xas_next(&xas);
1746		if (!entry || xa_is_value(entry))
1747			return xas.xa_index;
1748		if (xas.xa_index == 0)
1749			return 0;
1750	}
1751
1752	return index + max_scan;
1753}
1754EXPORT_SYMBOL(page_cache_next_miss);
1755
1756/**
1757 * page_cache_prev_miss() - Find the previous gap in the page cache.
1758 * @mapping: Mapping.
1759 * @index: Index.
1760 * @max_scan: Maximum range to search.
1761 *
1762 * Search the range [max(index - max_scan + 1, 0), index] for the
1763 * gap with the highest index.
1764 *
1765 * This function may be called under the rcu_read_lock.  However, this will
1766 * not atomically search a snapshot of the cache at a single point in time.
1767 * For example, if a gap is created at index 10, then subsequently a gap is
1768 * created at index 5, page_cache_prev_miss() covering both indices may
1769 * return 5 if called under the rcu_read_lock.
1770 *
1771 * Return: The index of the gap if found, otherwise an index outside the
1772 * range specified (in which case 'index - return >= max_scan' will be true).
1773 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
1774 */
1775pgoff_t page_cache_prev_miss(struct address_space *mapping,
1776			     pgoff_t index, unsigned long max_scan)
1777{
1778	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1779
1780	while (max_scan--) {
1781		void *entry = xas_prev(&xas);
1782		if (!entry || xa_is_value(entry))
1783			break;
1784		if (xas.xa_index == ULONG_MAX)
 
1785			break;
1786	}
1787
1788	return xas.xa_index;
1789}
1790EXPORT_SYMBOL(page_cache_prev_miss);
1791
1792/*
1793 * Lockless page cache protocol:
1794 * On the lookup side:
1795 * 1. Load the folio from i_pages
1796 * 2. Increment the refcount if it's not zero
1797 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1798 *
1799 * On the removal side:
1800 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1801 * B. Remove the page from i_pages
1802 * C. Return the page to the page allocator
1803 *
1804 * This means that any page may have its reference count temporarily
1805 * increased by a speculative page cache (or GUP-fast) lookup as it can
1806 * be allocated by another user before the RCU grace period expires.
1807 * Because the refcount temporarily acquired here may end up being the
1808 * last refcount on the page, any page allocation must be freeable by
1809 * folio_put().
1810 */
1811
1812/*
1813 * filemap_get_entry - Get a page cache entry.
1814 * @mapping: the address_space to search
1815 * @index: The page cache index.
 
 
 
1816 *
1817 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1818 * it is returned with an increased refcount.  If it is a shadow entry
1819 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1820 * it is returned without further action.
1821 *
1822 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1823 */
1824void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1825{
1826	XA_STATE(xas, &mapping->i_pages, index);
1827	struct folio *folio;
1828
1829	rcu_read_lock();
1830repeat:
1831	xas_reset(&xas);
1832	folio = xas_load(&xas);
1833	if (xas_retry(&xas, folio))
1834		goto repeat;
1835	/*
1836	 * A shadow entry of a recently evicted page, or a swap entry from
1837	 * shmem/tmpfs.  Return it without attempting to raise page count.
1838	 */
1839	if (!folio || xa_is_value(folio))
1840		goto out;
 
 
 
 
 
 
 
 
1841
1842	if (!folio_try_get(folio))
1843		goto repeat;
1844
1845	if (unlikely(folio != xas_reload(&xas))) {
1846		folio_put(folio);
1847		goto repeat;
 
 
 
1848	}
1849out:
1850	rcu_read_unlock();
1851
1852	return folio;
1853}
 
1854
1855/**
1856 * __filemap_get_folio - Find and get a reference to a folio.
1857 * @mapping: The address_space to search.
1858 * @index: The page index.
1859 * @fgp_flags: %FGP flags modify how the folio is returned.
1860 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1861 *
1862 * Looks up the page cache entry at @mapping & @index.
 
 
1863 *
1864 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1865 * if the %GFP flags specified for %FGP_CREAT are atomic.
1866 *
1867 * If this function returns a folio, it is returned with an increased refcount.
1868 *
1869 * Return: The found folio or an ERR_PTR() otherwise.
1870 */
1871struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1872		fgf_t fgp_flags, gfp_t gfp)
1873{
1874	struct folio *folio;
1875
1876repeat:
1877	folio = filemap_get_entry(mapping, index);
1878	if (xa_is_value(folio))
1879		folio = NULL;
1880	if (!folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881		goto no_page;
1882
1883	if (fgp_flags & FGP_LOCK) {
1884		if (fgp_flags & FGP_NOWAIT) {
1885			if (!folio_trylock(folio)) {
1886				folio_put(folio);
1887				return ERR_PTR(-EAGAIN);
1888			}
1889		} else {
1890			folio_lock(folio);
1891		}
1892
1893		/* Has the page been truncated? */
1894		if (unlikely(folio->mapping != mapping)) {
1895			folio_unlock(folio);
1896			folio_put(folio);
1897			goto repeat;
1898		}
1899		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1900	}
1901
1902	if (fgp_flags & FGP_ACCESSED)
1903		folio_mark_accessed(folio);
1904	else if (fgp_flags & FGP_WRITE) {
1905		/* Clear idle flag for buffer write */
1906		if (folio_test_idle(folio))
1907			folio_clear_idle(folio);
1908	}
1909
1910	if (fgp_flags & FGP_STABLE)
1911		folio_wait_stable(folio);
1912no_page:
1913	if (!folio && (fgp_flags & FGP_CREAT)) {
1914		unsigned int min_order = mapping_min_folio_order(mapping);
1915		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1916		int err;
1917		index = mapping_align_index(mapping, index);
1918
1919		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1920			gfp |= __GFP_WRITE;
1921		if (fgp_flags & FGP_NOFS)
1922			gfp &= ~__GFP_FS;
1923		if (fgp_flags & FGP_NOWAIT) {
1924			gfp &= ~GFP_KERNEL;
1925			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1926		}
1927		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1928			fgp_flags |= FGP_LOCK;
1929
1930		if (order > mapping_max_folio_order(mapping))
1931			order = mapping_max_folio_order(mapping);
1932		/* If we're not aligned, allocate a smaller folio */
1933		if (index & ((1UL << order) - 1))
1934			order = __ffs(index);
1935
1936		do {
1937			gfp_t alloc_gfp = gfp;
1938
1939			err = -ENOMEM;
1940			if (order > min_order)
1941				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1942			folio = filemap_alloc_folio(alloc_gfp, order);
1943			if (!folio)
1944				continue;
1945
1946			/* Init accessed so avoid atomic mark_page_accessed later */
1947			if (fgp_flags & FGP_ACCESSED)
1948				__folio_set_referenced(folio);
1949
1950			err = filemap_add_folio(mapping, folio, index, gfp);
1951			if (!err)
1952				break;
1953			folio_put(folio);
1954			folio = NULL;
1955		} while (order-- > min_order);
1956
1957		if (err == -EEXIST)
1958			goto repeat;
1959		if (err)
1960			return ERR_PTR(err);
1961		/*
1962		 * filemap_add_folio locks the page, and for mmap
1963		 * we expect an unlocked page.
1964		 */
1965		if (folio && (fgp_flags & FGP_FOR_MMAP))
1966			folio_unlock(folio);
1967	}
1968
1969	if (!folio)
1970		return ERR_PTR(-ENOENT);
1971	return folio;
1972}
1973EXPORT_SYMBOL(__filemap_get_folio);
1974
1975static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1976		xa_mark_t mark)
1977{
1978	struct folio *folio;
1979
1980retry:
1981	if (mark == XA_PRESENT)
1982		folio = xas_find(xas, max);
1983	else
1984		folio = xas_find_marked(xas, max, mark);
1985
1986	if (xas_retry(xas, folio))
1987		goto retry;
1988	/*
1989	 * A shadow entry of a recently evicted page, a swap
1990	 * entry from shmem/tmpfs or a DAX entry.  Return it
1991	 * without attempting to raise page count.
1992	 */
1993	if (!folio || xa_is_value(folio))
1994		return folio;
1995
1996	if (!folio_try_get(folio))
1997		goto reset;
1998
1999	if (unlikely(folio != xas_reload(xas))) {
2000		folio_put(folio);
2001		goto reset;
2002	}
2003
2004	return folio;
2005reset:
2006	xas_reset(xas);
2007	goto retry;
2008}
 
2009
2010/**
2011 * find_get_entries - gang pagecache lookup
2012 * @mapping:	The address_space to search
2013 * @start:	The starting page cache index
2014 * @end:	The final page index (inclusive).
2015 * @fbatch:	Where the resulting entries are placed.
2016 * @indices:	The cache indices corresponding to the entries in @entries
2017 *
2018 * find_get_entries() will search for and return a batch of entries in
2019 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2020 * takes a reference on any actual folios it returns.
 
 
 
 
 
2021 *
2022 * The entries have ascending indexes.  The indices may not be consecutive
2023 * due to not-present entries or large folios.
2024 *
2025 * Any shadow entries of evicted folios, or swap entries from
2026 * shmem/tmpfs, are included in the returned array.
2027 *
2028 * Return: The number of entries which were found.
 
2029 */
2030unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2031		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, *start);
2034	struct folio *folio;
 
 
 
 
 
2035
2036	rcu_read_lock();
2037	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2038		indices[fbatch->nr] = xas.xa_index;
2039		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040			break;
2041	}
2042
2043	if (folio_batch_count(fbatch)) {
2044		unsigned long nr;
2045		int idx = folio_batch_count(fbatch) - 1;
2046
2047		folio = fbatch->folios[idx];
2048		if (!xa_is_value(folio))
2049			nr = folio_nr_pages(folio);
2050		else
2051			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2052		*start = round_down(indices[idx] + nr, nr);
2053	}
2054	rcu_read_unlock();
2055
2056	return folio_batch_count(fbatch);
2057}
2058
2059/**
2060 * find_lock_entries - Find a batch of pagecache entries.
2061 * @mapping:	The address_space to search.
2062 * @start:	The starting page cache index.
2063 * @end:	The final page index (inclusive).
2064 * @fbatch:	Where the resulting entries are placed.
2065 * @indices:	The cache indices of the entries in @fbatch.
2066 *
2067 * find_lock_entries() will return a batch of entries from @mapping.
2068 * Swap, shadow and DAX entries are included.  Folios are returned
2069 * locked and with an incremented refcount.  Folios which are locked
2070 * by somebody else or under writeback are skipped.  Folios which are
2071 * partially outside the range are not returned.
2072 *
2073 * The entries have ascending indexes.  The indices may not be consecutive
2074 * due to not-present entries, large folios, folios which could not be
2075 * locked or folios under writeback.
2076 *
2077 * Return: The number of entries which were found.
 
 
 
 
 
 
 
2078 */
2079unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2080		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2081{
2082	XA_STATE(xas, &mapping->i_pages, *start);
2083	struct folio *folio;
 
 
 
 
2084
2085	rcu_read_lock();
2086	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2087		unsigned long base;
2088		unsigned long nr;
2089
2090		if (!xa_is_value(folio)) {
2091			nr = folio_nr_pages(folio);
2092			base = folio->index;
2093			/* Omit large folio which begins before the start */
2094			if (base < *start)
2095				goto put;
2096			/* Omit large folio which extends beyond the end */
2097			if (base + nr - 1 > end)
2098				goto put;
2099			if (!folio_trylock(folio))
2100				goto put;
2101			if (folio->mapping != mapping ||
2102			    folio_test_writeback(folio))
2103				goto unlock;
2104			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2105					folio);
2106		} else {
2107			nr = 1 << xas_get_order(&xas);
2108			base = xas.xa_index & ~(nr - 1);
2109			/* Omit order>0 value which begins before the start */
2110			if (base < *start)
2111				continue;
2112			/* Omit order>0 value which extends beyond the end */
2113			if (base + nr - 1 > end)
2114				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2115		}
2116
2117		/* Update start now so that last update is correct on return */
2118		*start = base + nr;
2119		indices[fbatch->nr] = xas.xa_index;
2120		if (!folio_batch_add(fbatch, folio))
2121			break;
2122		continue;
2123unlock:
2124		folio_unlock(folio);
2125put:
2126		folio_put(folio);
2127	}
 
2128	rcu_read_unlock();
2129
2130	return folio_batch_count(fbatch);
2131}
2132
2133/**
2134 * filemap_get_folios - Get a batch of folios
2135 * @mapping:	The address_space to search
2136 * @start:	The starting page index
2137 * @end:	The final page index (inclusive)
2138 * @fbatch:	The batch to fill.
2139 *
2140 * Search for and return a batch of folios in the mapping starting at
2141 * index @start and up to index @end (inclusive).  The folios are returned
2142 * in @fbatch with an elevated reference count.
2143 *
2144 * Return: The number of folios which were found.
2145 * We also update @start to index the next folio for the traversal.
2146 */
2147unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2148		pgoff_t end, struct folio_batch *fbatch)
2149{
2150	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152EXPORT_SYMBOL(filemap_get_folios);
2153
2154/**
2155 * filemap_get_folios_contig - Get a batch of contiguous folios
2156 * @mapping:	The address_space to search
2157 * @start:	The starting page index
2158 * @end:	The final page index (inclusive)
2159 * @fbatch:	The batch to fill
2160 *
2161 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2162 * except the returned folios are guaranteed to be contiguous. This may
2163 * not return all contiguous folios if the batch gets filled up.
2164 *
2165 * Return: The number of folios found.
2166 * Also update @start to be positioned for traversal of the next folio.
2167 */
 
 
 
 
 
 
2168
2169unsigned filemap_get_folios_contig(struct address_space *mapping,
2170		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2171{
2172	XA_STATE(xas, &mapping->i_pages, *start);
2173	unsigned long nr;
2174	struct folio *folio;
2175
2176	rcu_read_lock();
 
 
 
 
 
 
 
2177
2178	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2179			folio = xas_next(&xas)) {
2180		if (xas_retry(&xas, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
2181			continue;
2182		/*
2183		 * If the entry has been swapped out, we can stop looking.
2184		 * No current caller is looking for DAX entries.
2185		 */
2186		if (xa_is_value(folio))
2187			goto update_start;
2188
2189		/* If we landed in the middle of a THP, continue at its end. */
2190		if (xa_is_sibling(folio))
2191			goto update_start;
2192
2193		if (!folio_try_get(folio))
2194			goto retry;
2195
2196		if (unlikely(folio != xas_reload(&xas)))
2197			goto put_folio;
2198
2199		if (!folio_batch_add(fbatch, folio)) {
2200			nr = folio_nr_pages(folio);
2201			*start = folio->index + nr;
2202			goto out;
2203		}
2204		continue;
2205put_folio:
2206		folio_put(folio);
2207
2208retry:
2209		xas_reset(&xas);
 
2210	}
2211
2212update_start:
2213	nr = folio_batch_count(fbatch);
2214
2215	if (nr) {
2216		folio = fbatch->folios[nr - 1];
2217		*start = folio_next_index(folio);
2218	}
2219out:
2220	rcu_read_unlock();
2221	return folio_batch_count(fbatch);
2222}
2223EXPORT_SYMBOL(filemap_get_folios_contig);
2224
2225/**
2226 * filemap_get_folios_tag - Get a batch of folios matching @tag
2227 * @mapping:    The address_space to search
2228 * @start:      The starting page index
2229 * @end:        The final page index (inclusive)
2230 * @tag:        The tag index
2231 * @fbatch:     The batch to fill
2232 *
2233 * The first folio may start before @start; if it does, it will contain
2234 * @start.  The final folio may extend beyond @end; if it does, it will
2235 * contain @end.  The folios have ascending indices.  There may be gaps
2236 * between the folios if there are indices which have no folio in the
2237 * page cache.  If folios are added to or removed from the page cache
2238 * while this is running, they may or may not be found by this call.
2239 * Only returns folios that are tagged with @tag.
2240 *
2241 * Return: The number of folios found.
2242 * Also update @start to index the next folio for traversal.
2243 */
2244unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2245			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
 
2246{
2247	XA_STATE(xas, &mapping->i_pages, *start);
2248	struct folio *folio;
 
 
 
 
2249
2250	rcu_read_lock();
2251	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2252		/*
2253		 * Shadow entries should never be tagged, but this iteration
2254		 * is lockless so there is a window for page reclaim to evict
2255		 * a page we saw tagged. Skip over it.
2256		 */
2257		if (xa_is_value(folio))
2258			continue;
2259		if (!folio_batch_add(fbatch, folio)) {
2260			unsigned long nr = folio_nr_pages(folio);
2261			*start = folio->index + nr;
2262			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2263		}
 
 
 
 
 
2264	}
2265	/*
2266	 * We come here when there is no page beyond @end. We take care to not
2267	 * overflow the index @start as it confuses some of the callers. This
2268	 * breaks the iteration when there is a page at index -1 but that is
2269	 * already broke anyway.
2270	 */
2271	if (end == (pgoff_t)-1)
2272		*start = (pgoff_t)-1;
2273	else
2274		*start = end + 1;
2275out:
2276	rcu_read_unlock();
2277
2278	return folio_batch_count(fbatch);
2279}
2280EXPORT_SYMBOL(filemap_get_folios_tag);
2281
2282/*
2283 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2284 * a _large_ part of the i/o request. Imagine the worst scenario:
2285 *
2286 *      ---R__________________________________________B__________
2287 *         ^ reading here                             ^ bad block(assume 4k)
2288 *
2289 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2290 * => failing the whole request => read(R) => read(R+1) =>
2291 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2292 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2293 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2294 *
2295 * It is going insane. Fix it by quickly scaling down the readahead size.
2296 */
2297static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2298{
2299	ra->ra_pages /= 4;
2300}
2301
2302/*
2303 * filemap_get_read_batch - Get a batch of folios for read
 
 
 
 
 
 
 
2304 *
2305 * Get a batch of folios which represent a contiguous range of bytes in
2306 * the file.  No exceptional entries will be returned.  If @index is in
2307 * the middle of a folio, the entire folio will be returned.  The last
2308 * folio in the batch may have the readahead flag set or the uptodate flag
2309 * clear so that the caller can take the appropriate action.
2310 */
2311static void filemap_get_read_batch(struct address_space *mapping,
2312		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2313{
2314	XA_STATE(xas, &mapping->i_pages, index);
2315	struct folio *folio;
2316
2317	rcu_read_lock();
2318	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2319		if (xas_retry(&xas, folio))
2320			continue;
2321		if (xas.xa_index > max || xa_is_value(folio))
2322			break;
2323		if (xa_is_sibling(folio))
2324			break;
2325		if (!folio_try_get(folio))
2326			goto retry;
2327
2328		if (unlikely(folio != xas_reload(&xas)))
2329			goto put_folio;
2330
2331		if (!folio_batch_add(fbatch, folio))
2332			break;
2333		if (!folio_test_uptodate(folio))
2334			break;
2335		if (folio_test_readahead(folio))
2336			break;
2337		xas_advance(&xas, folio_next_index(folio) - 1);
2338		continue;
2339put_folio:
2340		folio_put(folio);
2341retry:
2342		xas_reset(&xas);
2343	}
2344	rcu_read_unlock();
2345}
2346
2347static int filemap_read_folio(struct file *file, filler_t filler,
2348		struct folio *folio)
2349{
2350	bool workingset = folio_test_workingset(folio);
2351	unsigned long pflags;
2352	int error;
2353
2354	/* Start the actual read. The read will unlock the page. */
2355	if (unlikely(workingset))
2356		psi_memstall_enter(&pflags);
2357	error = filler(file, folio);
2358	if (unlikely(workingset))
2359		psi_memstall_leave(&pflags);
2360	if (error)
2361		return error;
2362
2363	error = folio_wait_locked_killable(folio);
2364	if (error)
2365		return error;
2366	if (folio_test_uptodate(folio))
2367		return 0;
2368	if (file)
2369		shrink_readahead_size_eio(&file->f_ra);
2370	return -EIO;
2371}
2372
2373static bool filemap_range_uptodate(struct address_space *mapping,
2374		loff_t pos, size_t count, struct folio *folio,
2375		bool need_uptodate)
2376{
2377	if (folio_test_uptodate(folio))
2378		return true;
2379	/* pipes can't handle partially uptodate pages */
2380	if (need_uptodate)
2381		return false;
2382	if (!mapping->a_ops->is_partially_uptodate)
2383		return false;
2384	if (mapping->host->i_blkbits >= folio_shift(folio))
2385		return false;
2386
2387	if (folio_pos(folio) > pos) {
2388		count -= folio_pos(folio) - pos;
2389		pos = 0;
2390	} else {
2391		pos -= folio_pos(folio);
2392	}
2393
2394	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2395}
2396
2397static int filemap_update_page(struct kiocb *iocb,
2398		struct address_space *mapping, size_t count,
2399		struct folio *folio, bool need_uptodate)
2400{
2401	int error;
2402
2403	if (iocb->ki_flags & IOCB_NOWAIT) {
2404		if (!filemap_invalidate_trylock_shared(mapping))
2405			return -EAGAIN;
2406	} else {
2407		filemap_invalidate_lock_shared(mapping);
2408	}
2409
2410	if (!folio_trylock(folio)) {
2411		error = -EAGAIN;
2412		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2413			goto unlock_mapping;
2414		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2415			filemap_invalidate_unlock_shared(mapping);
2416			/*
2417			 * This is where we usually end up waiting for a
2418			 * previously submitted readahead to finish.
2419			 */
2420			folio_put_wait_locked(folio, TASK_KILLABLE);
2421			return AOP_TRUNCATED_PAGE;
2422		}
2423		error = __folio_lock_async(folio, iocb->ki_waitq);
2424		if (error)
2425			goto unlock_mapping;
2426	}
2427
2428	error = AOP_TRUNCATED_PAGE;
2429	if (!folio->mapping)
2430		goto unlock;
2431
2432	error = 0;
2433	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2434				   need_uptodate))
2435		goto unlock;
2436
2437	error = -EAGAIN;
2438	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2439		goto unlock;
2440
2441	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2442			folio);
2443	goto unlock_mapping;
2444unlock:
2445	folio_unlock(folio);
2446unlock_mapping:
2447	filemap_invalidate_unlock_shared(mapping);
2448	if (error == AOP_TRUNCATED_PAGE)
2449		folio_put(folio);
2450	return error;
2451}
2452
2453static int filemap_create_folio(struct file *file,
2454		struct address_space *mapping, loff_t pos,
2455		struct folio_batch *fbatch)
2456{
2457	struct folio *folio;
2458	int error;
2459	unsigned int min_order = mapping_min_folio_order(mapping);
2460	pgoff_t index;
2461
2462	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2463	if (!folio)
2464		return -ENOMEM;
2465
2466	/*
2467	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2468	 * here assures we cannot instantiate and bring uptodate new
2469	 * pagecache folios after evicting page cache during truncate
2470	 * and before actually freeing blocks.	Note that we could
2471	 * release invalidate_lock after inserting the folio into
2472	 * the page cache as the locked folio would then be enough to
2473	 * synchronize with hole punching. But there are code paths
2474	 * such as filemap_update_page() filling in partially uptodate
2475	 * pages or ->readahead() that need to hold invalidate_lock
2476	 * while mapping blocks for IO so let's hold the lock here as
2477	 * well to keep locking rules simple.
2478	 */
2479	filemap_invalidate_lock_shared(mapping);
2480	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2481	error = filemap_add_folio(mapping, folio, index,
2482			mapping_gfp_constraint(mapping, GFP_KERNEL));
2483	if (error == -EEXIST)
2484		error = AOP_TRUNCATED_PAGE;
2485	if (error)
2486		goto error;
2487
2488	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2489	if (error)
2490		goto error;
2491
2492	filemap_invalidate_unlock_shared(mapping);
2493	folio_batch_add(fbatch, folio);
2494	return 0;
2495error:
2496	filemap_invalidate_unlock_shared(mapping);
2497	folio_put(folio);
2498	return error;
2499}
2500
2501static int filemap_readahead(struct kiocb *iocb, struct file *file,
2502		struct address_space *mapping, struct folio *folio,
2503		pgoff_t last_index)
2504{
2505	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2506
2507	if (iocb->ki_flags & IOCB_NOIO)
2508		return -EAGAIN;
2509	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2510	return 0;
2511}
2512
2513static int filemap_get_pages(struct kiocb *iocb, size_t count,
2514		struct folio_batch *fbatch, bool need_uptodate)
2515{
2516	struct file *filp = iocb->ki_filp;
2517	struct address_space *mapping = filp->f_mapping;
 
2518	struct file_ra_state *ra = &filp->f_ra;
2519	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2520	pgoff_t last_index;
2521	struct folio *folio;
2522	unsigned int flags;
2523	int err = 0;
 
 
 
 
 
 
 
2524
2525	/* "last_index" is the index of the page beyond the end of the read */
2526	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2527retry:
2528	if (fatal_signal_pending(current))
2529		return -EINTR;
2530
2531	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2532	if (!folio_batch_count(fbatch)) {
2533		if (iocb->ki_flags & IOCB_NOIO)
2534			return -EAGAIN;
2535		if (iocb->ki_flags & IOCB_NOWAIT)
2536			flags = memalloc_noio_save();
2537		page_cache_sync_readahead(mapping, ra, filp, index,
2538				last_index - index);
2539		if (iocb->ki_flags & IOCB_NOWAIT)
2540			memalloc_noio_restore(flags);
2541		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2542	}
2543	if (!folio_batch_count(fbatch)) {
2544		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2545			return -EAGAIN;
2546		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2547		if (err == AOP_TRUNCATED_PAGE)
2548			goto retry;
2549		return err;
2550	}
2551
2552	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2553	if (folio_test_readahead(folio)) {
2554		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2555		if (err)
2556			goto err;
2557	}
2558	if (!folio_test_uptodate(folio)) {
2559		if ((iocb->ki_flags & IOCB_WAITQ) &&
2560		    folio_batch_count(fbatch) > 1)
2561			iocb->ki_flags |= IOCB_NOWAIT;
2562		err = filemap_update_page(iocb, mapping, count, folio,
2563					  need_uptodate);
2564		if (err)
2565			goto err;
2566	}
2567
2568	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2569	return 0;
2570err:
2571	if (err < 0)
2572		folio_put(folio);
2573	if (likely(--fbatch->nr))
2574		return 0;
2575	if (err == AOP_TRUNCATED_PAGE)
2576		goto retry;
2577	return err;
2578}
2579
2580static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2581{
2582	unsigned int shift = folio_shift(folio);
2583
2584	return (pos1 >> shift == pos2 >> shift);
2585}
2586
2587/**
2588 * filemap_read - Read data from the page cache.
2589 * @iocb: The iocb to read.
2590 * @iter: Destination for the data.
2591 * @already_read: Number of bytes already read by the caller.
2592 *
2593 * Copies data from the page cache.  If the data is not currently present,
2594 * uses the readahead and read_folio address_space operations to fetch it.
2595 *
2596 * Return: Total number of bytes copied, including those already read by
2597 * the caller.  If an error happens before any bytes are copied, returns
2598 * a negative error number.
2599 */
2600ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2601		ssize_t already_read)
2602{
2603	struct file *filp = iocb->ki_filp;
2604	struct file_ra_state *ra = &filp->f_ra;
2605	struct address_space *mapping = filp->f_mapping;
2606	struct inode *inode = mapping->host;
2607	struct folio_batch fbatch;
2608	int i, error = 0;
2609	bool writably_mapped;
2610	loff_t isize, end_offset;
2611	loff_t last_pos = ra->prev_pos;
2612
2613	if (unlikely(iocb->ki_pos < 0))
2614		return -EINVAL;
2615	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2616		return 0;
2617	if (unlikely(!iov_iter_count(iter)))
2618		return 0;
2619
2620	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2621	folio_batch_init(&fbatch);
2622
2623	do {
2624		cond_resched();
2625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626		/*
2627		 * If we've already successfully copied some data, then we
2628		 * can no longer safely return -EIOCBQUEUED. Hence mark
2629		 * an async read NOWAIT at that point.
2630		 */
2631		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2632			iocb->ki_flags |= IOCB_NOWAIT;
2633
2634		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2635			break;
2636
2637		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2638		if (error < 0)
2639			break;
2640
2641		/*
2642		 * i_size must be checked after we know the pages are Uptodate.
2643		 *
2644		 * Checking i_size after the check allows us to calculate
2645		 * the correct value for "nr", which means the zero-filled
2646		 * part of the page is not copied back to userspace (unless
2647		 * another truncate extends the file - this is desired though).
2648		 */
 
2649		isize = i_size_read(inode);
2650		if (unlikely(iocb->ki_pos >= isize))
2651			goto put_folios;
2652		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653
2654		/*
2655		 * Once we start copying data, we don't want to be touching any
2656		 * cachelines that might be contended:
2657		 */
2658		writably_mapped = mapping_writably_mapped(mapping);
 
 
2659
2660		/*
2661		 * When a read accesses the same folio several times, only
2662		 * mark it as accessed the first time.
2663		 */
2664		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2665				    fbatch.folios[0]))
2666			folio_mark_accessed(fbatch.folios[0]);
2667
2668		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2669			struct folio *folio = fbatch.folios[i];
2670			size_t fsize = folio_size(folio);
2671			size_t offset = iocb->ki_pos & (fsize - 1);
2672			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2673					     fsize - offset);
2674			size_t copied;
2675
2676			if (end_offset < folio_pos(folio))
2677				break;
2678			if (i > 0)
2679				folio_mark_accessed(folio);
2680			/*
2681			 * If users can be writing to this folio using arbitrary
2682			 * virtual addresses, take care of potential aliasing
2683			 * before reading the folio on the kernel side.
2684			 */
2685			if (writably_mapped)
2686				flush_dcache_folio(folio);
2687
2688			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
2689
2690			already_read += copied;
2691			iocb->ki_pos += copied;
2692			last_pos = iocb->ki_pos;
2693
2694			if (copied < bytes) {
2695				error = -EFAULT;
2696				break;
2697			}
2698		}
2699put_folios:
2700		for (i = 0; i < folio_batch_count(&fbatch); i++)
2701			folio_put(fbatch.folios[i]);
2702		folio_batch_init(&fbatch);
2703	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2704
2705	file_accessed(filp);
2706	ra->prev_pos = last_pos;
2707	return already_read ? already_read : error;
2708}
2709EXPORT_SYMBOL_GPL(filemap_read);
 
 
 
 
 
 
 
 
2710
2711int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2712{
2713	struct address_space *mapping = iocb->ki_filp->f_mapping;
2714	loff_t pos = iocb->ki_pos;
2715	loff_t end = pos + count - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716
2717	if (iocb->ki_flags & IOCB_NOWAIT) {
2718		if (filemap_range_needs_writeback(mapping, pos, end))
2719			return -EAGAIN;
2720		return 0;
2721	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2722
2723	return filemap_write_and_wait_range(mapping, pos, end);
2724}
2725EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2726
2727int filemap_invalidate_pages(struct address_space *mapping,
2728			     loff_t pos, loff_t end, bool nowait)
2729{
2730	int ret;
2731
2732	if (nowait) {
2733		/* we could block if there are any pages in the range */
2734		if (filemap_range_has_page(mapping, pos, end))
2735			return -EAGAIN;
2736	} else {
2737		ret = filemap_write_and_wait_range(mapping, pos, end);
2738		if (ret)
2739			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2740	}
2741
2742	/*
2743	 * After a write we want buffered reads to be sure to go to disk to get
2744	 * the new data.  We invalidate clean cached page from the region we're
2745	 * about to write.  We do this *before* the write so that we can return
2746	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2747	 */
2748	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2749					     end >> PAGE_SHIFT);
2750}
2751
2752int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2753{
2754	struct address_space *mapping = iocb->ki_filp->f_mapping;
2755
2756	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2757					iocb->ki_pos + count - 1,
2758					iocb->ki_flags & IOCB_NOWAIT);
2759}
2760EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2761
2762/**
2763 * generic_file_read_iter - generic filesystem read routine
2764 * @iocb:	kernel I/O control block
2765 * @iter:	destination for the data read
2766 *
2767 * This is the "read_iter()" routine for all filesystems
2768 * that can use the page cache directly.
2769 *
2770 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2771 * be returned when no data can be read without waiting for I/O requests
2772 * to complete; it doesn't prevent readahead.
2773 *
2774 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2775 * requests shall be made for the read or for readahead.  When no data
2776 * can be read, -EAGAIN shall be returned.  When readahead would be
2777 * triggered, a partial, possibly empty read shall be returned.
2778 *
2779 * Return:
2780 * * number of bytes copied, even for partial reads
2781 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2782 */
2783ssize_t
2784generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2785{
 
 
 
 
2786	size_t count = iov_iter_count(iter);
2787	ssize_t retval = 0;
2788
2789	if (!count)
2790		return 0; /* skip atime */
2791
2792	if (iocb->ki_flags & IOCB_DIRECT) {
2793		struct file *file = iocb->ki_filp;
2794		struct address_space *mapping = file->f_mapping;
2795		struct inode *inode = mapping->host;
 
 
 
 
 
 
 
 
 
2796
2797		retval = kiocb_write_and_wait(iocb, count);
2798		if (retval < 0)
2799			return retval;
2800		file_accessed(file);
2801
2802		retval = mapping->a_ops->direct_IO(iocb, iter);
2803		if (retval >= 0) {
2804			iocb->ki_pos += retval;
2805			count -= retval;
2806		}
2807		if (retval != -EIOCBQUEUED)
2808			iov_iter_revert(iter, count - iov_iter_count(iter));
2809
2810		/*
2811		 * Btrfs can have a short DIO read if we encounter
2812		 * compressed extents, so if there was an error, or if
2813		 * we've already read everything we wanted to, or if
2814		 * there was a short read because we hit EOF, go ahead
2815		 * and return.  Otherwise fallthrough to buffered io for
2816		 * the rest of the read.  Buffered reads will not work for
2817		 * DAX files, so don't bother trying.
2818		 */
2819		if (retval < 0 || !count || IS_DAX(inode))
2820			return retval;
2821		if (iocb->ki_pos >= i_size_read(inode))
2822			return retval;
 
2823	}
2824
2825	return filemap_read(iocb, iter, retval);
 
 
2826}
2827EXPORT_SYMBOL(generic_file_read_iter);
2828
2829/*
2830 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
2831 */
2832size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2833			      struct folio *folio, loff_t fpos, size_t size)
2834{
 
2835	struct page *page;
2836	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2837
2838	page = folio_page(folio, offset / PAGE_SIZE);
2839	size = min(size, folio_size(folio) - offset);
2840	offset %= PAGE_SIZE;
2841
2842	while (spliced < size &&
2843	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2844		struct pipe_buffer *buf = pipe_head_buf(pipe);
2845		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2846
2847		*buf = (struct pipe_buffer) {
2848			.ops	= &page_cache_pipe_buf_ops,
2849			.page	= page,
2850			.offset	= offset,
2851			.len	= part,
2852		};
2853		folio_get(folio);
2854		pipe->head++;
2855		page++;
2856		spliced += part;
2857		offset = 0;
2858	}
2859
2860	return spliced;
2861}
2862
2863/**
2864 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2865 * @in: The file to read from
2866 * @ppos: Pointer to the file position to read from
2867 * @pipe: The pipe to splice into
2868 * @len: The amount to splice
2869 * @flags: The SPLICE_F_* flags
2870 *
2871 * This function gets folios from a file's pagecache and splices them into the
2872 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2873 * be used for blockdevs also.
2874 *
2875 * Return: On success, the number of bytes read will be returned and *@ppos
2876 * will be updated if appropriate; 0 will be returned if there is no more data
2877 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2878 * other negative error code will be returned on error.  A short read may occur
2879 * if the pipe has insufficient space, we reach the end of the data or we hit a
2880 * hole.
2881 */
2882ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2883			    struct pipe_inode_info *pipe,
2884			    size_t len, unsigned int flags)
2885{
2886	struct folio_batch fbatch;
2887	struct kiocb iocb;
2888	size_t total_spliced = 0, used, npages;
2889	loff_t isize, end_offset;
2890	bool writably_mapped;
2891	int i, error = 0;
2892
2893	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2894		return 0;
2895
2896	init_sync_kiocb(&iocb, in);
2897	iocb.ki_pos = *ppos;
2898
2899	/* Work out how much data we can actually add into the pipe */
2900	used = pipe_occupancy(pipe->head, pipe->tail);
2901	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2902	len = min_t(size_t, len, npages * PAGE_SIZE);
2903
2904	folio_batch_init(&fbatch);
2905
2906	do {
2907		cond_resched();
 
 
 
 
 
 
 
 
2908
2909		if (*ppos >= i_size_read(in->f_mapping->host))
2910			break;
2911
2912		iocb.ki_pos = *ppos;
2913		error = filemap_get_pages(&iocb, len, &fbatch, true);
2914		if (error < 0)
2915			break;
2916
2917		/*
2918		 * i_size must be checked after we know the pages are Uptodate.
2919		 *
2920		 * Checking i_size after the check allows us to calculate
2921		 * the correct value for "nr", which means the zero-filled
2922		 * part of the page is not copied back to userspace (unless
2923		 * another truncate extends the file - this is desired though).
2924		 */
2925		isize = i_size_read(in->f_mapping->host);
2926		if (unlikely(*ppos >= isize))
2927			break;
2928		end_offset = min_t(loff_t, isize, *ppos + len);
2929
2930		/*
2931		 * Once we start copying data, we don't want to be touching any
2932		 * cachelines that might be contended:
2933		 */
2934		writably_mapped = mapping_writably_mapped(in->f_mapping);
2935
2936		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2937			struct folio *folio = fbatch.folios[i];
2938			size_t n;
2939
2940			if (folio_pos(folio) >= end_offset)
2941				goto out;
2942			folio_mark_accessed(folio);
2943
2944			/*
2945			 * If users can be writing to this folio using arbitrary
2946			 * virtual addresses, take care of potential aliasing
2947			 * before reading the folio on the kernel side.
2948			 */
2949			if (writably_mapped)
2950				flush_dcache_folio(folio);
2951
2952			n = min_t(loff_t, len, isize - *ppos);
2953			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2954			if (!n)
2955				goto out;
2956			len -= n;
2957			total_spliced += n;
2958			*ppos += n;
2959			in->f_ra.prev_pos = *ppos;
2960			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2961				goto out;
2962		}
2963
2964		folio_batch_release(&fbatch);
2965	} while (len);
2966
2967out:
2968	folio_batch_release(&fbatch);
2969	file_accessed(in);
2970
2971	return total_spliced ? total_spliced : error;
2972}
2973EXPORT_SYMBOL(filemap_splice_read);
2974
2975static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2976		struct address_space *mapping, struct folio *folio,
2977		loff_t start, loff_t end, bool seek_data)
2978{
2979	const struct address_space_operations *ops = mapping->a_ops;
2980	size_t offset, bsz = i_blocksize(mapping->host);
2981
2982	if (xa_is_value(folio) || folio_test_uptodate(folio))
2983		return seek_data ? start : end;
2984	if (!ops->is_partially_uptodate)
2985		return seek_data ? end : start;
2986
2987	xas_pause(xas);
2988	rcu_read_unlock();
2989	folio_lock(folio);
2990	if (unlikely(folio->mapping != mapping))
2991		goto unlock;
2992
2993	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2994
2995	do {
2996		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2997							seek_data)
2998			break;
2999		start = (start + bsz) & ~((u64)bsz - 1);
3000		offset += bsz;
3001	} while (offset < folio_size(folio));
3002unlock:
3003	folio_unlock(folio);
3004	rcu_read_lock();
3005	return start;
3006}
3007
3008static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3009{
3010	if (xa_is_value(folio))
3011		return PAGE_SIZE << xas_get_order(xas);
3012	return folio_size(folio);
3013}
3014
3015/**
3016 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3017 * @mapping: Address space to search.
3018 * @start: First byte to consider.
3019 * @end: Limit of search (exclusive).
3020 * @whence: Either SEEK_HOLE or SEEK_DATA.
3021 *
3022 * If the page cache knows which blocks contain holes and which blocks
3023 * contain data, your filesystem can use this function to implement
3024 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3025 * entirely memory-based such as tmpfs, and filesystems which support
3026 * unwritten extents.
3027 *
3028 * Return: The requested offset on success, or -ENXIO if @whence specifies
3029 * SEEK_DATA and there is no data after @start.  There is an implicit hole
3030 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3031 * and @end contain data.
3032 */
3033loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3034		loff_t end, int whence)
3035{
3036	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3037	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3038	bool seek_data = (whence == SEEK_DATA);
3039	struct folio *folio;
3040
3041	if (end <= start)
3042		return -ENXIO;
3043
3044	rcu_read_lock();
3045	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3046		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3047		size_t seek_size;
3048
3049		if (start < pos) {
3050			if (!seek_data)
3051				goto unlock;
3052			start = pos;
3053		}
3054
3055		seek_size = seek_folio_size(&xas, folio);
3056		pos = round_up((u64)pos + 1, seek_size);
3057		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3058				seek_data);
3059		if (start < pos)
3060			goto unlock;
3061		if (start >= end)
3062			break;
3063		if (seek_size > PAGE_SIZE)
3064			xas_set(&xas, pos >> PAGE_SHIFT);
3065		if (!xa_is_value(folio))
3066			folio_put(folio);
3067	}
3068	if (seek_data)
3069		start = -ENXIO;
3070unlock:
3071	rcu_read_unlock();
3072	if (folio && !xa_is_value(folio))
3073		folio_put(folio);
3074	if (start > end)
3075		return end;
3076	return start;
3077}
3078
3079#ifdef CONFIG_MMU
3080#define MMAP_LOTSAMISS  (100)
3081/*
3082 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3083 * @vmf - the vm_fault for this fault.
3084 * @folio - the folio to lock.
3085 * @fpin - the pointer to the file we may pin (or is already pinned).
3086 *
3087 * This works similar to lock_folio_or_retry in that it can drop the
3088 * mmap_lock.  It differs in that it actually returns the folio locked
3089 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3090 * to drop the mmap_lock then fpin will point to the pinned file and
3091 * needs to be fput()'ed at a later point.
3092 */
3093static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3094				     struct file **fpin)
3095{
3096	if (folio_trylock(folio))
3097		return 1;
3098
3099	/*
3100	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3101	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3102	 * is supposed to work. We have way too many special cases..
3103	 */
3104	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3105		return 0;
3106
3107	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3108	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3109		if (__folio_lock_killable(folio)) {
3110			/*
3111			 * We didn't have the right flags to drop the
3112			 * fault lock, but all fault_handlers only check
3113			 * for fatal signals if we return VM_FAULT_RETRY,
3114			 * so we need to drop the fault lock here and
3115			 * return 0 if we don't have a fpin.
3116			 */
3117			if (*fpin == NULL)
3118				release_fault_lock(vmf);
3119			return 0;
3120		}
3121	} else
3122		__folio_lock(folio);
3123
3124	return 1;
3125}
3126
3127/*
3128 * Synchronous readahead happens when we don't even find a page in the page
3129 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3130 * to drop the mmap sem we return the file that was pinned in order for us to do
3131 * that.  If we didn't pin a file then we return NULL.  The file that is
3132 * returned needs to be fput()'ed when we're done with it.
3133 */
3134static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3135{
3136	struct file *file = vmf->vma->vm_file;
3137	struct file_ra_state *ra = &file->f_ra;
3138	struct address_space *mapping = file->f_mapping;
3139	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3140	struct file *fpin = NULL;
3141	unsigned long vm_flags = vmf->vma->vm_flags;
3142	unsigned int mmap_miss;
3143
3144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3145	/* Use the readahead code, even if readahead is disabled */
3146	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3147		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3148		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3149		ra->size = HPAGE_PMD_NR;
3150		/*
3151		 * Fetch two PMD folios, so we get the chance to actually
3152		 * readahead, unless we've been told not to.
3153		 */
3154		if (!(vm_flags & VM_RAND_READ))
3155			ra->size *= 2;
3156		ra->async_size = HPAGE_PMD_NR;
3157		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3158		return fpin;
3159	}
3160#endif
3161
3162	/* If we don't want any read-ahead, don't bother */
3163	if (vm_flags & VM_RAND_READ)
3164		return fpin;
3165	if (!ra->ra_pages)
3166		return fpin;
3167
3168	if (vm_flags & VM_SEQ_READ) {
3169		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3170		page_cache_sync_ra(&ractl, ra->ra_pages);
3171		return fpin;
3172	}
3173
3174	/* Avoid banging the cache line if not needed */
3175	mmap_miss = READ_ONCE(ra->mmap_miss);
3176	if (mmap_miss < MMAP_LOTSAMISS * 10)
3177		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3178
3179	/*
3180	 * Do we miss much more than hit in this file? If so,
3181	 * stop bothering with read-ahead. It will only hurt.
3182	 */
3183	if (mmap_miss > MMAP_LOTSAMISS)
3184		return fpin;
3185
3186	/*
3187	 * mmap read-around
3188	 */
3189	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3190	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3191	ra->size = ra->ra_pages;
3192	ra->async_size = ra->ra_pages / 4;
3193	ractl._index = ra->start;
3194	page_cache_ra_order(&ractl, ra, 0);
3195	return fpin;
3196}
3197
3198/*
3199 * Asynchronous readahead happens when we find the page and PG_readahead,
3200 * so we want to possibly extend the readahead further.  We return the file that
3201 * was pinned if we have to drop the mmap_lock in order to do IO.
3202 */
3203static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3204					    struct folio *folio)
 
 
 
3205{
3206	struct file *file = vmf->vma->vm_file;
3207	struct file_ra_state *ra = &file->f_ra;
3208	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3209	struct file *fpin = NULL;
3210	unsigned int mmap_miss;
3211
3212	/* If we don't want any read-ahead, don't bother */
3213	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3214		return fpin;
3215
3216	mmap_miss = READ_ONCE(ra->mmap_miss);
3217	if (mmap_miss)
3218		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3219
3220	if (folio_test_readahead(folio)) {
3221		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3222		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3223	}
3224	return fpin;
3225}
3226
3227static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3228{
3229	struct vm_area_struct *vma = vmf->vma;
3230	vm_fault_t ret = 0;
3231	pte_t *ptep;
3232
3233	/*
3234	 * We might have COW'ed a pagecache folio and might now have an mlocked
3235	 * anon folio mapped. The original pagecache folio is not mlocked and
3236	 * might have been evicted. During a read+clear/modify/write update of
3237	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3238	 * temporarily clear the PTE under PT lock and might detect it here as
3239	 * "none" when not holding the PT lock.
3240	 *
3241	 * Not rechecking the PTE under PT lock could result in an unexpected
3242	 * major fault in an mlock'ed region. Recheck only for this special
3243	 * scenario while holding the PT lock, to not degrade non-mlocked
3244	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3245	 * the number of times we hold PT lock.
3246	 */
3247	if (!(vma->vm_flags & VM_LOCKED))
3248		return 0;
3249
3250	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3251		return 0;
3252
3253	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3254					&vmf->ptl);
3255	if (unlikely(!ptep))
3256		return VM_FAULT_NOPAGE;
3257
3258	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3259		ret = VM_FAULT_NOPAGE;
3260	} else {
3261		spin_lock(vmf->ptl);
3262		if (unlikely(!pte_none(ptep_get(ptep))))
3263			ret = VM_FAULT_NOPAGE;
3264		spin_unlock(vmf->ptl);
3265	}
3266	pte_unmap(ptep);
3267	return ret;
3268}
3269
3270/**
3271 * filemap_fault - read in file data for page fault handling
 
3272 * @vmf:	struct vm_fault containing details of the fault
3273 *
3274 * filemap_fault() is invoked via the vma operations vector for a
3275 * mapped memory region to read in file data during a page fault.
3276 *
3277 * The goto's are kind of ugly, but this streamlines the normal case of having
3278 * it in the page cache, and handles the special cases reasonably without
3279 * having a lot of duplicated code.
3280 *
3281 * vma->vm_mm->mmap_lock must be held on entry.
3282 *
3283 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3284 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 
 
3285 *
3286 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3287 * has not been released.
3288 *
3289 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3290 *
3291 * Return: bitwise-OR of %VM_FAULT_ codes.
3292 */
3293vm_fault_t filemap_fault(struct vm_fault *vmf)
3294{
3295	int error;
3296	struct file *file = vmf->vma->vm_file;
3297	struct file *fpin = NULL;
3298	struct address_space *mapping = file->f_mapping;
 
3299	struct inode *inode = mapping->host;
3300	pgoff_t max_idx, index = vmf->pgoff;
3301	struct folio *folio;
3302	vm_fault_t ret = 0;
3303	bool mapping_locked = false;
3304
3305	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3306	if (unlikely(index >= max_idx))
3307		return VM_FAULT_SIGBUS;
3308
3309	trace_mm_filemap_fault(mapping, index);
3310
3311	/*
3312	 * Do we have something in the page cache already?
3313	 */
3314	folio = filemap_get_folio(mapping, index);
3315	if (likely(!IS_ERR(folio))) {
3316		/*
3317		 * We found the page, so try async readahead before waiting for
3318		 * the lock.
3319		 */
3320		if (!(vmf->flags & FAULT_FLAG_TRIED))
3321			fpin = do_async_mmap_readahead(vmf, folio);
3322		if (unlikely(!folio_test_uptodate(folio))) {
3323			filemap_invalidate_lock_shared(mapping);
3324			mapping_locked = true;
3325		}
3326	} else {
3327		ret = filemap_fault_recheck_pte_none(vmf);
3328		if (unlikely(ret))
3329			return ret;
3330
3331		/* No page in the page cache at all */
 
3332		count_vm_event(PGMAJFAULT);
3333		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3334		ret = VM_FAULT_MAJOR;
3335		fpin = do_sync_mmap_readahead(vmf);
3336retry_find:
3337		/*
3338		 * See comment in filemap_create_folio() why we need
3339		 * invalidate_lock
3340		 */
3341		if (!mapping_locked) {
3342			filemap_invalidate_lock_shared(mapping);
3343			mapping_locked = true;
3344		}
3345		folio = __filemap_get_folio(mapping, index,
3346					  FGP_CREAT|FGP_FOR_MMAP,
3347					  vmf->gfp_mask);
3348		if (IS_ERR(folio)) {
3349			if (fpin)
3350				goto out_retry;
3351			filemap_invalidate_unlock_shared(mapping);
3352			return VM_FAULT_OOM;
3353		}
3354	}
3355
3356	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3357		goto out_retry;
 
 
3358
3359	/* Did it get truncated? */
3360	if (unlikely(folio->mapping != mapping)) {
3361		folio_unlock(folio);
3362		folio_put(folio);
3363		goto retry_find;
3364	}
3365	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3366
3367	/*
3368	 * We have a locked folio in the page cache, now we need to check
3369	 * that it's up-to-date. If not, it is going to be due to an error,
3370	 * or because readahead was otherwise unable to retrieve it.
3371	 */
3372	if (unlikely(!folio_test_uptodate(folio))) {
3373		/*
3374		 * If the invalidate lock is not held, the folio was in cache
3375		 * and uptodate and now it is not. Strange but possible since we
3376		 * didn't hold the page lock all the time. Let's drop
3377		 * everything, get the invalidate lock and try again.
3378		 */
3379		if (!mapping_locked) {
3380			folio_unlock(folio);
3381			folio_put(folio);
3382			goto retry_find;
3383		}
3384
3385		/*
3386		 * OK, the folio is really not uptodate. This can be because the
3387		 * VMA has the VM_RAND_READ flag set, or because an error
3388		 * arose. Let's read it in directly.
3389		 */
3390		goto page_not_uptodate;
3391	}
3392
3393	/*
3394	 * We've made it this far and we had to drop our mmap_lock, now is the
3395	 * time to return to the upper layer and have it re-find the vma and
3396	 * redo the fault.
3397	 */
3398	if (fpin) {
3399		folio_unlock(folio);
3400		goto out_retry;
3401	}
3402	if (mapping_locked)
3403		filemap_invalidate_unlock_shared(mapping);
3404
3405	/*
3406	 * Found the page and have a reference on it.
3407	 * We must recheck i_size under page lock.
3408	 */
3409	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3410	if (unlikely(index >= max_idx)) {
3411		folio_unlock(folio);
3412		folio_put(folio);
3413		return VM_FAULT_SIGBUS;
3414	}
3415
3416	vmf->page = folio_file_page(folio, index);
3417	return ret | VM_FAULT_LOCKED;
3418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419page_not_uptodate:
3420	/*
3421	 * Umm, take care of errors if the page isn't up-to-date.
3422	 * Try to re-read it _once_. We do this synchronously,
3423	 * because there really aren't any performance issues here
3424	 * and we need to check for errors.
3425	 */
3426	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3427	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3428	if (fpin)
3429		goto out_retry;
3430	folio_put(folio);
 
 
 
3431
3432	if (!error || error == AOP_TRUNCATED_PAGE)
3433		goto retry_find;
3434	filemap_invalidate_unlock_shared(mapping);
3435
 
 
3436	return VM_FAULT_SIGBUS;
3437
3438out_retry:
3439	/*
3440	 * We dropped the mmap_lock, we need to return to the fault handler to
3441	 * re-find the vma and come back and find our hopefully still populated
3442	 * page.
3443	 */
3444	if (!IS_ERR(folio))
3445		folio_put(folio);
3446	if (mapping_locked)
3447		filemap_invalidate_unlock_shared(mapping);
3448	if (fpin)
3449		fput(fpin);
3450	return ret | VM_FAULT_RETRY;
3451}
3452EXPORT_SYMBOL(filemap_fault);
3453
3454static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3455		pgoff_t start)
3456{
3457	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
 
 
3458
3459	/* Huge page is mapped? No need to proceed. */
3460	if (pmd_trans_huge(*vmf->pmd)) {
3461		folio_unlock(folio);
3462		folio_put(folio);
3463		return true;
3464	}
3465
3466	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3467		struct page *page = folio_file_page(folio, start);
3468		vm_fault_t ret = do_set_pmd(vmf, page);
3469		if (!ret) {
3470			/* The page is mapped successfully, reference consumed. */
3471			folio_unlock(folio);
3472			return true;
3473		}
3474	}
3475
3476	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3477		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3478
3479	return false;
3480}
 
 
 
3481
3482static struct folio *next_uptodate_folio(struct xa_state *xas,
3483		struct address_space *mapping, pgoff_t end_pgoff)
3484{
3485	struct folio *folio = xas_next_entry(xas, end_pgoff);
3486	unsigned long max_idx;
3487
3488	do {
3489		if (!folio)
3490			return NULL;
3491		if (xas_retry(xas, folio))
3492			continue;
3493		if (xa_is_value(folio))
3494			continue;
3495		if (!folio_try_get(folio))
3496			continue;
3497		if (folio_test_locked(folio))
3498			goto skip;
3499		/* Has the page moved or been split? */
3500		if (unlikely(folio != xas_reload(xas)))
3501			goto skip;
3502		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3503			goto skip;
3504		if (!folio_trylock(folio))
3505			goto skip;
3506		if (folio->mapping != mapping)
3507			goto unlock;
3508		if (!folio_test_uptodate(folio))
 
 
3509			goto unlock;
3510		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3511		if (xas->xa_index >= max_idx)
 
3512			goto unlock;
3513		return folio;
 
 
 
 
 
 
3514unlock:
3515		folio_unlock(folio);
3516skip:
3517		folio_put(folio);
3518	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3519
3520	return NULL;
3521}
3522
3523/*
3524 * Map page range [start_page, start_page + nr_pages) of folio.
3525 * start_page is gotten from start by folio_page(folio, start)
3526 */
3527static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3528			struct folio *folio, unsigned long start,
3529			unsigned long addr, unsigned int nr_pages,
3530			unsigned long *rss, unsigned int *mmap_miss)
3531{
3532	vm_fault_t ret = 0;
3533	struct page *page = folio_page(folio, start);
3534	unsigned int count = 0;
3535	pte_t *old_ptep = vmf->pte;
3536
3537	do {
3538		if (PageHWPoison(page + count))
3539			goto skip;
3540
3541		/*
3542		 * If there are too many folios that are recently evicted
3543		 * in a file, they will probably continue to be evicted.
3544		 * In such situation, read-ahead is only a waste of IO.
3545		 * Don't decrease mmap_miss in this scenario to make sure
3546		 * we can stop read-ahead.
3547		 */
3548		if (!folio_test_workingset(folio))
3549			(*mmap_miss)++;
3550
3551		/*
3552		 * NOTE: If there're PTE markers, we'll leave them to be
3553		 * handled in the specific fault path, and it'll prohibit the
3554		 * fault-around logic.
3555		 */
3556		if (!pte_none(ptep_get(&vmf->pte[count])))
3557			goto skip;
3558
3559		count++;
3560		continue;
3561skip:
3562		if (count) {
3563			set_pte_range(vmf, folio, page, count, addr);
3564			*rss += count;
3565			folio_ref_add(folio, count);
3566			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3567				ret = VM_FAULT_NOPAGE;
3568		}
3569
3570		count++;
3571		page += count;
3572		vmf->pte += count;
3573		addr += count * PAGE_SIZE;
3574		count = 0;
3575	} while (--nr_pages > 0);
3576
3577	if (count) {
3578		set_pte_range(vmf, folio, page, count, addr);
3579		*rss += count;
3580		folio_ref_add(folio, count);
3581		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3582			ret = VM_FAULT_NOPAGE;
3583	}
3584
3585	vmf->pte = old_ptep;
3586
3587	return ret;
3588}
3589
3590static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3591		struct folio *folio, unsigned long addr,
3592		unsigned long *rss, unsigned int *mmap_miss)
3593{
3594	vm_fault_t ret = 0;
3595	struct page *page = &folio->page;
3596
3597	if (PageHWPoison(page))
3598		return ret;
3599
3600	/* See comment of filemap_map_folio_range() */
3601	if (!folio_test_workingset(folio))
3602		(*mmap_miss)++;
3603
3604	/*
3605	 * NOTE: If there're PTE markers, we'll leave them to be
3606	 * handled in the specific fault path, and it'll prohibit
3607	 * the fault-around logic.
3608	 */
3609	if (!pte_none(ptep_get(vmf->pte)))
3610		return ret;
3611
3612	if (vmf->address == addr)
3613		ret = VM_FAULT_NOPAGE;
3614
3615	set_pte_range(vmf, folio, page, 1, addr);
3616	(*rss)++;
3617	folio_ref_inc(folio);
3618
3619	return ret;
3620}
3621
3622vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3623			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3624{
3625	struct vm_area_struct *vma = vmf->vma;
3626	struct file *file = vma->vm_file;
3627	struct address_space *mapping = file->f_mapping;
3628	pgoff_t file_end, last_pgoff = start_pgoff;
3629	unsigned long addr;
3630	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3631	struct folio *folio;
3632	vm_fault_t ret = 0;
3633	unsigned long rss = 0;
3634	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3635
3636	rcu_read_lock();
3637	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3638	if (!folio)
3639		goto out;
3640
3641	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3642		ret = VM_FAULT_NOPAGE;
3643		goto out;
3644	}
3645
3646	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3647	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3648	if (!vmf->pte) {
3649		folio_unlock(folio);
3650		folio_put(folio);
3651		goto out;
3652	}
3653
3654	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3655	if (end_pgoff > file_end)
3656		end_pgoff = file_end;
3657
3658	folio_type = mm_counter_file(folio);
3659	do {
3660		unsigned long end;
3661
3662		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3663		vmf->pte += xas.xa_index - last_pgoff;
3664		last_pgoff = xas.xa_index;
3665		end = folio_next_index(folio) - 1;
3666		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3667
3668		if (!folio_test_large(folio))
3669			ret |= filemap_map_order0_folio(vmf,
3670					folio, addr, &rss, &mmap_miss);
3671		else
3672			ret |= filemap_map_folio_range(vmf, folio,
3673					xas.xa_index - folio->index, addr,
3674					nr_pages, &rss, &mmap_miss);
3675
3676		folio_unlock(folio);
3677		folio_put(folio);
3678	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3679	add_mm_counter(vma->vm_mm, folio_type, rss);
3680	pte_unmap_unlock(vmf->pte, vmf->ptl);
3681	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3682out:
3683	rcu_read_unlock();
3684
3685	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3686	if (mmap_miss >= mmap_miss_saved)
3687		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3688	else
3689		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3690
3691	return ret;
3692}
3693EXPORT_SYMBOL(filemap_map_pages);
3694
3695vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3696{
3697	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3698	struct folio *folio = page_folio(vmf->page);
3699	vm_fault_t ret = VM_FAULT_LOCKED;
3700
3701	sb_start_pagefault(mapping->host->i_sb);
3702	file_update_time(vmf->vma->vm_file);
3703	folio_lock(folio);
3704	if (folio->mapping != mapping) {
3705		folio_unlock(folio);
3706		ret = VM_FAULT_NOPAGE;
3707		goto out;
3708	}
3709	/*
3710	 * We mark the folio dirty already here so that when freeze is in
3711	 * progress, we are guaranteed that writeback during freezing will
3712	 * see the dirty folio and writeprotect it again.
3713	 */
3714	folio_mark_dirty(folio);
3715	folio_wait_stable(folio);
3716out:
3717	sb_end_pagefault(mapping->host->i_sb);
3718	return ret;
3719}
 
3720
3721const struct vm_operations_struct generic_file_vm_ops = {
3722	.fault		= filemap_fault,
3723	.map_pages	= filemap_map_pages,
3724	.page_mkwrite	= filemap_page_mkwrite,
3725};
3726
3727/* This is used for a general mmap of a disk file */
3728
3729int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3730{
3731	struct address_space *mapping = file->f_mapping;
3732
3733	if (!mapping->a_ops->read_folio)
3734		return -ENOEXEC;
3735	file_accessed(file);
3736	vma->vm_ops = &generic_file_vm_ops;
3737	return 0;
3738}
3739
3740/*
3741 * This is for filesystems which do not implement ->writepage.
3742 */
3743int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3744{
3745	if (vma_is_shared_maywrite(vma))
3746		return -EINVAL;
3747	return generic_file_mmap(file, vma);
3748}
3749#else
3750vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3751{
3752	return VM_FAULT_SIGBUS;
3753}
3754int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3755{
3756	return -ENOSYS;
3757}
3758int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3759{
3760	return -ENOSYS;
3761}
3762#endif /* CONFIG_MMU */
3763
3764EXPORT_SYMBOL(filemap_page_mkwrite);
3765EXPORT_SYMBOL(generic_file_mmap);
3766EXPORT_SYMBOL(generic_file_readonly_mmap);
3767
3768static struct folio *do_read_cache_folio(struct address_space *mapping,
3769		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3770{
3771	struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3772	int err;
3773
3774	if (!filler)
3775		filler = mapping->a_ops->read_folio;
3776repeat:
3777	folio = filemap_get_folio(mapping, index);
3778	if (IS_ERR(folio)) {
3779		folio = filemap_alloc_folio(gfp,
3780					    mapping_min_folio_order(mapping));
3781		if (!folio)
3782			return ERR_PTR(-ENOMEM);
3783		index = mapping_align_index(mapping, index);
3784		err = filemap_add_folio(mapping, folio, index, gfp);
3785		if (unlikely(err)) {
3786			folio_put(folio);
3787			if (err == -EEXIST)
3788				goto repeat;
3789			/* Presumably ENOMEM for xarray node */
 
 
 
 
 
 
 
3790			return ERR_PTR(err);
3791		}
3792
3793		goto filler;
 
 
 
3794	}
3795	if (folio_test_uptodate(folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3796		goto out;
3797
3798	if (!folio_trylock(folio)) {
3799		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3800		goto repeat;
3801	}
3802
3803	/* Folio was truncated from mapping */
3804	if (!folio->mapping) {
3805		folio_unlock(folio);
3806		folio_put(folio);
3807		goto repeat;
3808	}
3809
3810	/* Someone else locked and filled the page in a very small window */
3811	if (folio_test_uptodate(folio)) {
3812		folio_unlock(folio);
3813		goto out;
3814	}
3815
3816filler:
3817	err = filemap_read_folio(file, filler, folio);
3818	if (err) {
3819		folio_put(folio);
3820		if (err == AOP_TRUNCATED_PAGE)
3821			goto repeat;
3822		return ERR_PTR(err);
3823	}
3824
3825out:
3826	folio_mark_accessed(folio);
3827	return folio;
3828}
3829
3830/**
3831 * read_cache_folio - Read into page cache, fill it if needed.
3832 * @mapping: The address_space to read from.
3833 * @index: The index to read.
3834 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3835 * @file: Passed to filler function, may be NULL if not required.
3836 *
3837 * Read one page into the page cache.  If it succeeds, the folio returned
3838 * will contain @index, but it may not be the first page of the folio.
3839 *
3840 * If the filler function returns an error, it will be returned to the
3841 * caller.
3842 *
3843 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3844 * Return: An uptodate folio on success, ERR_PTR() on failure.
3845 */
3846struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3847		filler_t filler, struct file *file)
3848{
3849	return do_read_cache_folio(mapping, index, filler, file,
3850			mapping_gfp_mask(mapping));
3851}
3852EXPORT_SYMBOL(read_cache_folio);
3853
3854/**
3855 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3856 * @mapping:	The address_space for the folio.
3857 * @index:	The index that the allocated folio will contain.
3858 * @gfp:	The page allocator flags to use if allocating.
3859 *
3860 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3861 * any new memory allocations done using the specified allocation flags.
3862 *
3863 * The most likely error from this function is EIO, but ENOMEM is
3864 * possible and so is EINTR.  If ->read_folio returns another error,
3865 * that will be returned to the caller.
3866 *
3867 * The function expects mapping->invalidate_lock to be already held.
3868 *
3869 * Return: Uptodate folio on success, ERR_PTR() on failure.
3870 */
3871struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3872		pgoff_t index, gfp_t gfp)
3873{
3874	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3875}
3876EXPORT_SYMBOL(mapping_read_folio_gfp);
3877
3878static struct page *do_read_cache_page(struct address_space *mapping,
3879		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3880{
3881	struct folio *folio;
3882
3883	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3884	if (IS_ERR(folio))
3885		return &folio->page;
3886	return folio_file_page(folio, index);
3887}
3888
3889struct page *read_cache_page(struct address_space *mapping,
3890			pgoff_t index, filler_t *filler, struct file *file)
 
 
3891{
3892	return do_read_cache_page(mapping, index, filler, file,
3893			mapping_gfp_mask(mapping));
3894}
3895EXPORT_SYMBOL(read_cache_page);
3896
3897/**
3898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3899 * @mapping:	the page's address_space
3900 * @index:	the page index
3901 * @gfp:	the page allocator flags to use if allocating
3902 *
3903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3904 * any new page allocations done using the specified allocation flags.
3905 *
3906 * If the page does not get brought uptodate, return -EIO.
3907 *
3908 * The function expects mapping->invalidate_lock to be already held.
3909 *
3910 * Return: up to date page on success, ERR_PTR() on failure.
3911 */
3912struct page *read_cache_page_gfp(struct address_space *mapping,
3913				pgoff_t index,
3914				gfp_t gfp)
3915{
3916	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3917}
3918EXPORT_SYMBOL(read_cache_page_gfp);
3919
3920/*
3921 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3922 */
3923static void dio_warn_stale_pagecache(struct file *filp)
3924{
3925	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3926	char pathname[128];
3927	char *path;
 
 
 
 
 
 
 
 
3928
3929	errseq_set(&filp->f_mapping->wb_err, -EIO);
3930	if (__ratelimit(&_rs)) {
3931		path = file_path(filp, pathname, sizeof(pathname));
3932		if (IS_ERR(path))
3933			path = "(unknown)";
3934		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3935		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3936			current->comm);
3937	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938}
 
3939
3940void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3941{
3942	struct address_space *mapping = iocb->ki_filp->f_mapping;
3943
3944	if (mapping->nrpages &&
3945	    invalidate_inode_pages2_range(mapping,
3946			iocb->ki_pos >> PAGE_SHIFT,
3947			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3948		dio_warn_stale_pagecache(iocb->ki_filp);
3949}
 
3950
3951ssize_t
3952generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3953{
3954	struct address_space *mapping = iocb->ki_filp->f_mapping;
3955	size_t write_len = iov_iter_count(from);
3956	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
3957
3958	/*
3959	 * If a page can not be invalidated, return 0 to fall back
3960	 * to buffered write.
 
 
3961	 */
3962	written = kiocb_invalidate_pages(iocb, write_len);
3963	if (written) {
3964		if (written == -EBUSY)
3965			return 0;
3966		return written;
 
 
 
 
 
 
 
3967	}
3968
3969	written = mapping->a_ops->direct_IO(iocb, from);
 
3970
3971	/*
3972	 * Finally, try again to invalidate clean pages which might have been
3973	 * cached by non-direct readahead, or faulted in by get_user_pages()
3974	 * if the source of the write was an mmap'ed region of the file
3975	 * we're writing.  Either one is a pretty crazy thing to do,
3976	 * so we don't support it 100%.  If this invalidation
3977	 * fails, tough, the write still worked...
3978	 *
3979	 * Most of the time we do not need this since dio_complete() will do
3980	 * the invalidation for us. However there are some file systems that
3981	 * do not end up with dio_complete() being called, so let's not break
3982	 * them by removing it completely.
3983	 *
3984	 * Noticeable example is a blkdev_direct_IO().
3985	 *
3986	 * Skip invalidation for async writes or if mapping has no pages.
3987	 */
 
 
 
 
 
3988	if (written > 0) {
3989		struct inode *inode = mapping->host;
3990		loff_t pos = iocb->ki_pos;
3991
3992		kiocb_invalidate_post_direct_write(iocb, written);
3993		pos += written;
3994		write_len -= written;
3995		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3996			i_size_write(inode, pos);
3997			mark_inode_dirty(inode);
3998		}
3999		iocb->ki_pos = pos;
4000	}
4001	if (written != -EIOCBQUEUED)
4002		iov_iter_revert(from, write_len - iov_iter_count(from));
4003	return written;
4004}
4005EXPORT_SYMBOL(generic_file_direct_write);
4006
4007ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4008{
4009	struct file *file = iocb->ki_filp;
4010	loff_t pos = iocb->ki_pos;
4011	struct address_space *mapping = file->f_mapping;
4012	const struct address_space_operations *a_ops = mapping->a_ops;
4013	size_t chunk = mapping_max_folio_size(mapping);
4014	long status = 0;
4015	ssize_t written = 0;
 
 
 
 
 
 
 
4016
4017	do {
4018		struct folio *folio;
4019		size_t offset;		/* Offset into folio */
4020		size_t bytes;		/* Bytes to write to folio */
4021		size_t copied;		/* Bytes copied from user */
4022		void *fsdata = NULL;
4023
4024		bytes = iov_iter_count(i);
4025retry:
4026		offset = pos & (chunk - 1);
4027		bytes = min(chunk - offset, bytes);
4028		balance_dirty_pages_ratelimited(mapping);
4029
 
4030		/*
4031		 * Bring in the user page that we will copy from _first_.
4032		 * Otherwise there's a nasty deadlock on copying from the
4033		 * same page as we're writing to, without it being marked
4034		 * up-to-date.
 
 
 
 
4035		 */
4036		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4037			status = -EFAULT;
4038			break;
4039		}
4040
4041		if (fatal_signal_pending(current)) {
4042			status = -EINTR;
4043			break;
4044		}
4045
4046		status = a_ops->write_begin(file, mapping, pos, bytes,
4047						&folio, &fsdata);
4048		if (unlikely(status < 0))
4049			break;
4050
4051		offset = offset_in_folio(folio, pos);
4052		if (bytes > folio_size(folio) - offset)
4053			bytes = folio_size(folio) - offset;
4054
4055		if (mapping_writably_mapped(mapping))
4056			flush_dcache_folio(folio);
4057
4058		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4059		flush_dcache_folio(folio);
4060
4061		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4062						folio, fsdata);
4063		if (unlikely(status != copied)) {
4064			iov_iter_revert(i, copied - max(status, 0L));
4065			if (unlikely(status < 0))
4066				break;
4067		}
4068		cond_resched();
4069
4070		if (unlikely(status == 0)) {
 
4071			/*
4072			 * A short copy made ->write_end() reject the
4073			 * thing entirely.  Might be memory poisoning
4074			 * halfway through, might be a race with munmap,
4075			 * might be severe memory pressure.
 
 
4076			 */
4077			if (chunk > PAGE_SIZE)
4078				chunk /= 2;
4079			if (copied) {
4080				bytes = copied;
4081				goto retry;
4082			}
4083		} else {
4084			pos += status;
4085			written += status;
4086		}
 
 
 
 
4087	} while (iov_iter_count(i));
4088
4089	if (!written)
4090		return status;
4091	iocb->ki_pos += written;
4092	return written;
4093}
4094EXPORT_SYMBOL(generic_perform_write);
4095
4096/**
4097 * __generic_file_write_iter - write data to a file
4098 * @iocb:	IO state structure (file, offset, etc.)
4099 * @from:	iov_iter with data to write
4100 *
4101 * This function does all the work needed for actually writing data to a
4102 * file. It does all basic checks, removes SUID from the file, updates
4103 * modification times and calls proper subroutines depending on whether we
4104 * do direct IO or a standard buffered write.
4105 *
4106 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4107 * object which does not need locking at all.
4108 *
4109 * This function does *not* take care of syncing data in case of O_SYNC write.
4110 * A caller has to handle it. This is mainly due to the fact that we want to
4111 * avoid syncing under i_rwsem.
4112 *
4113 * Return:
4114 * * number of bytes written, even for truncated writes
4115 * * negative error code if no data has been written at all
4116 */
4117ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4118{
4119	struct file *file = iocb->ki_filp;
4120	struct address_space *mapping = file->f_mapping;
4121	struct inode *inode = mapping->host;
4122	ssize_t ret;
 
 
 
 
 
 
 
 
4123
4124	ret = file_remove_privs(file);
4125	if (ret)
4126		return ret;
4127
4128	ret = file_update_time(file);
4129	if (ret)
4130		return ret;
4131
4132	if (iocb->ki_flags & IOCB_DIRECT) {
4133		ret = generic_file_direct_write(iocb, from);
4134		/*
4135		 * If the write stopped short of completing, fall back to
4136		 * buffered writes.  Some filesystems do this for writes to
4137		 * holes, for example.  For DAX files, a buffered write will
4138		 * not succeed (even if it did, DAX does not handle dirty
4139		 * page-cache pages correctly).
4140		 */
4141		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4142			return ret;
4143		return direct_write_fallback(iocb, from, ret,
4144				generic_perform_write(iocb, from));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4145	}
4146
4147	return generic_perform_write(iocb, from);
 
4148}
4149EXPORT_SYMBOL(__generic_file_write_iter);
4150
4151/**
4152 * generic_file_write_iter - write data to a file
4153 * @iocb:	IO state structure
4154 * @from:	iov_iter with data to write
4155 *
4156 * This is a wrapper around __generic_file_write_iter() to be used by most
4157 * filesystems. It takes care of syncing the file in case of O_SYNC file
4158 * and acquires i_rwsem as needed.
4159 * Return:
4160 * * negative error code if no data has been written at all of
4161 *   vfs_fsync_range() failed for a synchronous write
4162 * * number of bytes written, even for truncated writes
4163 */
4164ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4165{
4166	struct file *file = iocb->ki_filp;
4167	struct inode *inode = file->f_mapping->host;
4168	ssize_t ret;
4169
4170	inode_lock(inode);
4171	ret = generic_write_checks(iocb, from);
4172	if (ret > 0)
4173		ret = __generic_file_write_iter(iocb, from);
4174	inode_unlock(inode);
4175
4176	if (ret > 0)
4177		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
4178	return ret;
4179}
4180EXPORT_SYMBOL(generic_file_write_iter);
4181
4182/**
4183 * filemap_release_folio() - Release fs-specific metadata on a folio.
4184 * @folio: The folio which the kernel is trying to free.
4185 * @gfp: Memory allocation flags (and I/O mode).
4186 *
4187 * The address_space is trying to release any data attached to a folio
4188 * (presumably at folio->private).
4189 *
4190 * This will also be called if the private_2 flag is set on a page,
4191 * indicating that the folio has other metadata associated with it.
 
4192 *
4193 * The @gfp argument specifies whether I/O may be performed to release
4194 * this page (__GFP_IO), and whether the call may block
4195 * (__GFP_RECLAIM & __GFP_FS).
 
 
4196 *
4197 * Return: %true if the release was successful, otherwise %false.
4198 */
4199bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4200{
4201	struct address_space * const mapping = folio->mapping;
4202
4203	BUG_ON(!folio_test_locked(folio));
4204	if (!folio_needs_release(folio))
4205		return true;
4206	if (folio_test_writeback(folio))
4207		return false;
4208
4209	if (mapping && mapping->a_ops->release_folio)
4210		return mapping->a_ops->release_folio(folio, gfp);
4211	return try_to_free_buffers(folio);
4212}
4213EXPORT_SYMBOL(filemap_release_folio);
4214
4215/**
4216 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4217 * @inode: The inode to flush
4218 * @flush: Set to write back rather than simply invalidate.
4219 * @start: First byte to in range.
4220 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4221 *       onwards.
4222 *
4223 * Invalidate all the folios on an inode that contribute to the specified
4224 * range, possibly writing them back first.  Whilst the operation is
4225 * undertaken, the invalidate lock is held to prevent new folios from being
4226 * installed.
4227 */
4228int filemap_invalidate_inode(struct inode *inode, bool flush,
4229			     loff_t start, loff_t end)
4230{
4231	struct address_space *mapping = inode->i_mapping;
4232	pgoff_t first = start >> PAGE_SHIFT;
4233	pgoff_t last = end >> PAGE_SHIFT;
4234	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4235
4236	if (!mapping || !mapping->nrpages || end < start)
4237		goto out;
4238
4239	/* Prevent new folios from being added to the inode. */
4240	filemap_invalidate_lock(mapping);
4241
4242	if (!mapping->nrpages)
4243		goto unlock;
4244
4245	unmap_mapping_pages(mapping, first, nr, false);
4246
4247	/* Write back the data if we're asked to. */
4248	if (flush) {
4249		struct writeback_control wbc = {
4250			.sync_mode	= WB_SYNC_ALL,
4251			.nr_to_write	= LONG_MAX,
4252			.range_start	= start,
4253			.range_end	= end,
4254		};
4255
4256		filemap_fdatawrite_wbc(mapping, &wbc);
4257	}
4258
4259	/* Wait for writeback to complete on all folios and discard. */
4260	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4261
4262unlock:
4263	filemap_invalidate_unlock(mapping);
4264out:
4265	return filemap_check_errors(mapping);
4266}
4267EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4268
4269#ifdef CONFIG_CACHESTAT_SYSCALL
4270/**
4271 * filemap_cachestat() - compute the page cache statistics of a mapping
4272 * @mapping:	The mapping to compute the statistics for.
4273 * @first_index:	The starting page cache index.
4274 * @last_index:	The final page index (inclusive).
4275 * @cs:	the cachestat struct to write the result to.
4276 *
4277 * This will query the page cache statistics of a mapping in the
4278 * page range of [first_index, last_index] (inclusive). The statistics
4279 * queried include: number of dirty pages, number of pages marked for
4280 * writeback, and the number of (recently) evicted pages.
4281 */
4282static void filemap_cachestat(struct address_space *mapping,
4283		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4284{
4285	XA_STATE(xas, &mapping->i_pages, first_index);
4286	struct folio *folio;
4287
4288	/* Flush stats (and potentially sleep) outside the RCU read section. */
4289	mem_cgroup_flush_stats_ratelimited(NULL);
4290
4291	rcu_read_lock();
4292	xas_for_each(&xas, folio, last_index) {
4293		int order;
4294		unsigned long nr_pages;
4295		pgoff_t folio_first_index, folio_last_index;
4296
4297		/*
4298		 * Don't deref the folio. It is not pinned, and might
4299		 * get freed (and reused) underneath us.
4300		 *
4301		 * We *could* pin it, but that would be expensive for
4302		 * what should be a fast and lightweight syscall.
4303		 *
4304		 * Instead, derive all information of interest from
4305		 * the rcu-protected xarray.
4306		 */
4307
4308		if (xas_retry(&xas, folio))
4309			continue;
4310
4311		order = xas_get_order(&xas);
4312		nr_pages = 1 << order;
4313		folio_first_index = round_down(xas.xa_index, 1 << order);
4314		folio_last_index = folio_first_index + nr_pages - 1;
4315
4316		/* Folios might straddle the range boundaries, only count covered pages */
4317		if (folio_first_index < first_index)
4318			nr_pages -= first_index - folio_first_index;
4319
4320		if (folio_last_index > last_index)
4321			nr_pages -= folio_last_index - last_index;
4322
4323		if (xa_is_value(folio)) {
4324			/* page is evicted */
4325			void *shadow = (void *)folio;
4326			bool workingset; /* not used */
4327
4328			cs->nr_evicted += nr_pages;
4329
4330#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4331			if (shmem_mapping(mapping)) {
4332				/* shmem file - in swap cache */
4333				swp_entry_t swp = radix_to_swp_entry(folio);
4334
4335				/* swapin error results in poisoned entry */
4336				if (non_swap_entry(swp))
4337					goto resched;
4338
4339				/*
4340				 * Getting a swap entry from the shmem
4341				 * inode means we beat
4342				 * shmem_unuse(). rcu_read_lock()
4343				 * ensures swapoff waits for us before
4344				 * freeing the swapper space. However,
4345				 * we can race with swapping and
4346				 * invalidation, so there might not be
4347				 * a shadow in the swapcache (yet).
4348				 */
4349				shadow = get_shadow_from_swap_cache(swp);
4350				if (!shadow)
4351					goto resched;
4352			}
4353#endif
4354			if (workingset_test_recent(shadow, true, &workingset, false))
4355				cs->nr_recently_evicted += nr_pages;
4356
4357			goto resched;
4358		}
4359
4360		/* page is in cache */
4361		cs->nr_cache += nr_pages;
4362
4363		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4364			cs->nr_dirty += nr_pages;
4365
4366		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4367			cs->nr_writeback += nr_pages;
4368
4369resched:
4370		if (need_resched()) {
4371			xas_pause(&xas);
4372			cond_resched_rcu();
4373		}
4374	}
4375	rcu_read_unlock();
4376}
4377
4378/*
4379 * See mincore: reveal pagecache information only for files
4380 * that the calling process has write access to, or could (if
4381 * tried) open for writing.
4382 */
4383static inline bool can_do_cachestat(struct file *f)
4384{
4385	if (f->f_mode & FMODE_WRITE)
4386		return true;
4387	if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4388		return true;
4389	return file_permission(f, MAY_WRITE) == 0;
4390}
4391
4392/*
4393 * The cachestat(2) system call.
4394 *
4395 * cachestat() returns the page cache statistics of a file in the
4396 * bytes range specified by `off` and `len`: number of cached pages,
4397 * number of dirty pages, number of pages marked for writeback,
4398 * number of evicted pages, and number of recently evicted pages.
4399 *
4400 * An evicted page is a page that is previously in the page cache
4401 * but has been evicted since. A page is recently evicted if its last
4402 * eviction was recent enough that its reentry to the cache would
4403 * indicate that it is actively being used by the system, and that
4404 * there is memory pressure on the system.
4405 *
4406 * `off` and `len` must be non-negative integers. If `len` > 0,
4407 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4408 * we will query in the range from `off` to the end of the file.
4409 *
4410 * The `flags` argument is unused for now, but is included for future
4411 * extensibility. User should pass 0 (i.e no flag specified).
4412 *
4413 * Currently, hugetlbfs is not supported.
4414 *
4415 * Because the status of a page can change after cachestat() checks it
4416 * but before it returns to the application, the returned values may
4417 * contain stale information.
4418 *
4419 * return values:
4420 *  zero        - success
4421 *  -EFAULT     - cstat or cstat_range points to an illegal address
4422 *  -EINVAL     - invalid flags
4423 *  -EBADF      - invalid file descriptor
4424 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4425 */
4426SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4427		struct cachestat_range __user *, cstat_range,
4428		struct cachestat __user *, cstat, unsigned int, flags)
4429{
4430	CLASS(fd, f)(fd);
4431	struct address_space *mapping;
4432	struct cachestat_range csr;
4433	struct cachestat cs;
4434	pgoff_t first_index, last_index;
4435
4436	if (fd_empty(f))
4437		return -EBADF;
4438
4439	if (copy_from_user(&csr, cstat_range,
4440			sizeof(struct cachestat_range)))
4441		return -EFAULT;
4442
4443	/* hugetlbfs is not supported */
4444	if (is_file_hugepages(fd_file(f)))
4445		return -EOPNOTSUPP;
4446
4447	if (!can_do_cachestat(fd_file(f)))
4448		return -EPERM;
4449
4450	if (flags != 0)
4451		return -EINVAL;
4452
4453	first_index = csr.off >> PAGE_SHIFT;
4454	last_index =
4455		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4456	memset(&cs, 0, sizeof(struct cachestat));
4457	mapping = fd_file(f)->f_mapping;
4458	filemap_cachestat(mapping, first_index, last_index, &cs);
4459
4460	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4461		return -EFAULT;
4462
4463	return 0;
4464}
4465#endif /* CONFIG_CACHESTAT_SYSCALL */