Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
 
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
 
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
 
 
 
 
 
 
 
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
 
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static void page_cache_tree_delete(struct address_space *mapping,
 114				   struct page *page, void *shadow)
 115{
 116	struct radix_tree_node *node;
 117	unsigned long index;
 118	unsigned int offset;
 119	unsigned int tag;
 120	void **slot;
 121
 122	VM_BUG_ON(!PageLocked(page));
 123
 124	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 125
 126	if (shadow) {
 127		mapping->nrexceptional++;
 128		/*
 129		 * Make sure the nrexceptional update is committed before
 130		 * the nrpages update so that final truncate racing
 131		 * with reclaim does not see both counters 0 at the
 132		 * same time and miss a shadow entry.
 133		 */
 134		smp_wmb();
 135	}
 136	mapping->nrpages--;
 137
 138	if (!node) {
 139		/* Clear direct pointer tags in root node */
 140		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 141		radix_tree_replace_slot(slot, shadow);
 142		return;
 143	}
 144
 145	/* Clear tree tags for the removed page */
 146	index = page->index;
 147	offset = index & RADIX_TREE_MAP_MASK;
 148	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 149		if (test_bit(offset, node->tags[tag]))
 150			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 151	}
 152
 153	/* Delete page, swap shadow entry */
 154	radix_tree_replace_slot(slot, shadow);
 155	workingset_node_pages_dec(node);
 156	if (shadow)
 157		workingset_node_shadows_inc(node);
 158	else
 159		if (__radix_tree_delete_node(&mapping->page_tree, node))
 160			return;
 161
 162	/*
 163	 * Track node that only contains shadow entries.
 164	 *
 165	 * Avoid acquiring the list_lru lock if already tracked.  The
 166	 * list_empty() test is safe as node->private_list is
 167	 * protected by mapping->tree_lock.
 168	 */
 169	if (!workingset_node_pages(node) &&
 170	    list_empty(&node->private_list)) {
 171		node->private_data = mapping;
 172		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 173	}
 174}
 175
 176/*
 177 * Delete a page from the page cache and free it. Caller has to make
 178 * sure the page is locked and that nobody else uses it - or that usage
 179 * is safe.  The caller must hold the mapping's tree_lock.
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow)
 182{
 183	struct address_space *mapping = page->mapping;
 184
 185	trace_mm_filemap_delete_from_page_cache(page);
 186	/*
 187	 * if we're uptodate, flush out into the cleancache, otherwise
 188	 * invalidate any existing cleancache entries.  We can't leave
 189	 * stale data around in the cleancache once our page is gone
 190	 */
 191	if (PageUptodate(page) && PageMappedToDisk(page))
 192		cleancache_put_page(page);
 193	else
 194		cleancache_invalidate_page(mapping, page);
 195
 196	VM_BUG_ON_PAGE(page_mapped(page), page);
 197	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 198		int mapcount;
 199
 
 
 200		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 201			 current->comm, page_to_pfn(page));
 202		dump_page(page, "still mapped when deleted");
 203		dump_stack();
 204		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 205
 206		mapcount = page_mapcount(page);
 207		if (mapping_exiting(mapping) &&
 208		    page_count(page) >= mapcount + 2) {
 209			/*
 210			 * All vmas have already been torn down, so it's
 211			 * a good bet that actually the page is unmapped,
 212			 * and we'd prefer not to leak it: if we're wrong,
 213			 * some other bad page check should catch it later.
 214			 */
 215			page_mapcount_reset(page);
 216			atomic_sub(mapcount, &page->_count);
 
 
 217		}
 218	}
 219
 220	page_cache_tree_delete(mapping, page, shadow);
 
 
 221
 222	page->mapping = NULL;
 223	/* Leave page->index set: truncation lookup relies upon it */
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (!PageHuge(page))
 227		__dec_zone_page_state(page, NR_FILE_PAGES);
 228	if (PageSwapBacked(page))
 229		__dec_zone_page_state(page, NR_SHMEM);
 
 
 
 
 230
 231	/*
 232	 * At this point page must be either written or cleaned by truncate.
 233	 * Dirty page here signals a bug and loss of unwritten data.
 
 
 
 
 
 234	 *
 235	 * This fixes dirty accounting after removing the page entirely but
 236	 * leaves PageDirty set: it has no effect for truncated page and
 237	 * anyway will be cleared before returning page into buddy allocator.
 
 238	 */
 239	if (WARN_ON_ONCE(PageDirty(page)))
 240		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 243/**
 244 * delete_from_page_cache - delete page from page cache
 245 * @page: the page which the kernel is trying to remove from page cache
 246 *
 247 * This must be called only on pages that have been verified to be in the page
 248 * cache and locked.  It will never put the page into the free list, the caller
 249 * has a reference on the page.
 250 */
 251void delete_from_page_cache(struct page *page)
 252{
 253	struct address_space *mapping = page->mapping;
 254	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256	void (*freepage)(struct page *);
 257
 258	BUG_ON(!PageLocked(page));
 
 259
 260	freepage = mapping->a_ops->freepage;
 
 
 
 
 
 
 
 
 
 
 261
 262	spin_lock_irqsave(&mapping->tree_lock, flags);
 263	__delete_from_page_cache(page, NULL);
 264	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 265
 266	if (freepage)
 267		freepage(page);
 268	put_page(page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272static int filemap_check_errors(struct address_space *mapping)
 273{
 274	int ret = 0;
 275	/* Check for outstanding write errors */
 276	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 277	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 278		ret = -ENOSPC;
 279	if (test_bit(AS_EIO, &mapping->flags) &&
 280	    test_and_clear_bit(AS_EIO, &mapping->flags))
 281		ret = -EIO;
 282	return ret;
 283}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285/**
 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 287 * @mapping:	address space structure to write
 288 * @start:	offset in bytes where the range starts
 289 * @end:	offset in bytes where the range ends (inclusive)
 290 * @sync_mode:	enable synchronous operation
 291 *
 292 * Start writeback against all of a mapping's dirty pages that lie
 293 * within the byte offsets <start, end> inclusive.
 294 *
 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 296 * opposed to a regular memory cleansing writeback.  The difference between
 297 * these two operations is that if a dirty page/buffer is encountered, it must
 298 * be waited upon, and not just skipped over.
 
 
 299 */
 300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 301				loff_t end, int sync_mode)
 302{
 303	int ret;
 304	struct writeback_control wbc = {
 305		.sync_mode = sync_mode,
 306		.nr_to_write = LONG_MAX,
 307		.range_start = start,
 308		.range_end = end,
 309	};
 310
 311	if (!mapping_cap_writeback_dirty(mapping))
 312		return 0;
 313
 314	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 315	ret = do_writepages(mapping, &wbc);
 316	wbc_detach_inode(&wbc);
 317	return ret;
 318}
 319
 320static inline int __filemap_fdatawrite(struct address_space *mapping,
 321	int sync_mode)
 322{
 323	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 324}
 325
 326int filemap_fdatawrite(struct address_space *mapping)
 327{
 328	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 329}
 330EXPORT_SYMBOL(filemap_fdatawrite);
 331
 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 333				loff_t end)
 334{
 335	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 336}
 337EXPORT_SYMBOL(filemap_fdatawrite_range);
 338
 339/**
 340 * filemap_flush - mostly a non-blocking flush
 341 * @mapping:	target address_space
 342 *
 343 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 344 * purposes - I/O may not be started against all dirty pages.
 
 
 345 */
 346int filemap_flush(struct address_space *mapping)
 347{
 348	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 349}
 350EXPORT_SYMBOL(filemap_flush);
 351
 352static int __filemap_fdatawait_range(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353				     loff_t start_byte, loff_t end_byte)
 354{
 355	pgoff_t index = start_byte >> PAGE_SHIFT;
 356	pgoff_t end = end_byte >> PAGE_SHIFT;
 357	struct pagevec pvec;
 358	int nr_pages;
 359	int ret = 0;
 360
 361	if (end_byte < start_byte)
 362		goto out;
 363
 364	pagevec_init(&pvec, 0);
 365	while ((index <= end) &&
 366			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 367			PAGECACHE_TAG_WRITEBACK,
 368			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 369		unsigned i;
 370
 
 
 
 
 
 371		for (i = 0; i < nr_pages; i++) {
 372			struct page *page = pvec.pages[i];
 373
 374			/* until radix tree lookup accepts end_index */
 375			if (page->index > end)
 376				continue;
 377
 378			wait_on_page_writeback(page);
 379			if (TestClearPageError(page))
 380				ret = -EIO;
 381		}
 382		pagevec_release(&pvec);
 383		cond_resched();
 384	}
 385out:
 386	return ret;
 387}
 388
 389/**
 390 * filemap_fdatawait_range - wait for writeback to complete
 391 * @mapping:		address space structure to wait for
 392 * @start_byte:		offset in bytes where the range starts
 393 * @end_byte:		offset in bytes where the range ends (inclusive)
 394 *
 395 * Walk the list of under-writeback pages of the given address space
 396 * in the given range and wait for all of them.  Check error status of
 397 * the address space and return it.
 398 *
 399 * Since the error status of the address space is cleared by this function,
 400 * callers are responsible for checking the return value and handling and/or
 401 * reporting the error.
 
 
 402 */
 403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 404			    loff_t end_byte)
 405{
 406	int ret, ret2;
 407
 408	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 409	ret2 = filemap_check_errors(mapping);
 410	if (!ret)
 411		ret = ret2;
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL(filemap_fdatawait_range);
 416
 417/**
 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 419 * @mapping: address space structure to wait for
 
 
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 423 * does not clear error status of the address space.
 424 *
 425 * Use this function if callers don't handle errors themselves.  Expected
 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 427 * fsfreeze(8)
 428 */
 429void filemap_fdatawait_keep_errors(struct address_space *mapping)
 
 430{
 431	loff_t i_size = i_size_read(mapping->host);
 
 
 
 432
 433	if (i_size == 0)
 434		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 437}
 
 438
 439/**
 440 * filemap_fdatawait - wait for all under-writeback pages to complete
 441 * @mapping: address space structure to wait for
 442 *
 443 * Walk the list of under-writeback pages of the given address space
 444 * and wait for all of them.  Check error status of the address space
 445 * and return it.
 446 *
 447 * Since the error status of the address space is cleared by this function,
 448 * callers are responsible for checking the return value and handling and/or
 449 * reporting the error.
 
 
 450 */
 451int filemap_fdatawait(struct address_space *mapping)
 452{
 453	loff_t i_size = i_size_read(mapping->host);
 454
 455	if (i_size == 0)
 456		return 0;
 457
 458	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 
 
 459}
 460EXPORT_SYMBOL(filemap_fdatawait);
 461
 462int filemap_write_and_wait(struct address_space *mapping)
 
 463{
 464	int err = 0;
 
 
 465
 466	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 467	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 468		err = filemap_fdatawrite(mapping);
 469		/*
 470		 * Even if the above returned error, the pages may be
 471		 * written partially (e.g. -ENOSPC), so we wait for it.
 472		 * But the -EIO is special case, it may indicate the worst
 473		 * thing (e.g. bug) happened, so we avoid waiting for it.
 474		 */
 475		if (err != -EIO) {
 476			int err2 = filemap_fdatawait(mapping);
 477			if (!err)
 478				err = err2;
 479		}
 480	} else {
 481		err = filemap_check_errors(mapping);
 482	}
 483	return err;
 
 484}
 485EXPORT_SYMBOL(filemap_write_and_wait);
 486
 487/**
 488 * filemap_write_and_wait_range - write out & wait on a file range
 489 * @mapping:	the address_space for the pages
 490 * @lstart:	offset in bytes where the range starts
 491 * @lend:	offset in bytes where the range ends (inclusive)
 492 *
 493 * Write out and wait upon file offsets lstart->lend, inclusive.
 494 *
 495 * Note that `lend' is inclusive (describes the last byte to be written) so
 496 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 497 */
 498int filemap_write_and_wait_range(struct address_space *mapping,
 499				 loff_t lstart, loff_t lend)
 500{
 501	int err = 0;
 502
 503	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 504	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 
 
 505		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 506						 WB_SYNC_ALL);
 507		/* See comment of filemap_write_and_wait() */
 508		if (err != -EIO) {
 509			int err2 = filemap_fdatawait_range(mapping,
 510						lstart, lend);
 511			if (!err)
 512				err = err2;
 513		}
 514	} else {
 515		err = filemap_check_errors(mapping);
 516	}
 
 
 
 517	return err;
 518}
 519EXPORT_SYMBOL(filemap_write_and_wait_range);
 520
 
 
 
 
 
 
 
 
 521/**
 522 * replace_page_cache_page - replace a pagecache page with a new one
 523 * @old:	page to be replaced
 524 * @new:	page to replace with
 525 * @gfp_mask:	allocation mode
 526 *
 527 * This function replaces a page in the pagecache with a new one.  On
 528 * success it acquires the pagecache reference for the new page and
 529 * drops it for the old page.  Both the old and new pages must be
 530 * locked.  This function does not add the new page to the LRU, the
 531 * caller must do that.
 532 *
 533 * The remove + add is atomic.  The only way this function can fail is
 534 * memory allocation failure.
 
 
 
 
 
 
 
 
 
 535 */
 536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 537{
 538	int error;
 
 
 539
 540	VM_BUG_ON_PAGE(!PageLocked(old), old);
 541	VM_BUG_ON_PAGE(!PageLocked(new), new);
 542	VM_BUG_ON_PAGE(new->mapping, new);
 543
 544	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 545	if (!error) {
 546		struct address_space *mapping = old->mapping;
 547		void (*freepage)(struct page *);
 548		unsigned long flags;
 549
 550		pgoff_t offset = old->index;
 551		freepage = mapping->a_ops->freepage;
 552
 553		get_page(new);
 554		new->mapping = mapping;
 555		new->index = offset;
 556
 557		spin_lock_irqsave(&mapping->tree_lock, flags);
 558		__delete_from_page_cache(old, NULL);
 559		error = radix_tree_insert(&mapping->page_tree, offset, new);
 560		BUG_ON(error);
 561		mapping->nrpages++;
 562
 563		/*
 564		 * hugetlb pages do not participate in page cache accounting.
 565		 */
 566		if (!PageHuge(new))
 567			__inc_zone_page_state(new, NR_FILE_PAGES);
 568		if (PageSwapBacked(new))
 569			__inc_zone_page_state(new, NR_SHMEM);
 570		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 571		mem_cgroup_migrate(old, new);
 572		radix_tree_preload_end();
 573		if (freepage)
 574			freepage(old);
 575		put_page(old);
 576	}
 577
 578	return error;
 
 
 
 
 
 
 
 579}
 580EXPORT_SYMBOL_GPL(replace_page_cache_page);
 581
 582static int page_cache_tree_insert(struct address_space *mapping,
 583				  struct page *page, void **shadowp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584{
 585	struct radix_tree_node *node;
 586	void **slot;
 587	int error;
 588
 589	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 590				    &node, &slot);
 591	if (error)
 592		return error;
 593	if (*slot) {
 594		void *p;
 595
 596		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 597		if (!radix_tree_exceptional_entry(p))
 598			return -EEXIST;
 599
 600		if (WARN_ON(dax_mapping(mapping)))
 601			return -EINVAL;
 602
 603		if (shadowp)
 604			*shadowp = p;
 605		mapping->nrexceptional--;
 606		if (node)
 607			workingset_node_shadows_dec(node);
 608	}
 609	radix_tree_replace_slot(slot, page);
 610	mapping->nrpages++;
 611	if (node) {
 612		workingset_node_pages_inc(node);
 613		/*
 614		 * Don't track node that contains actual pages.
 615		 *
 616		 * Avoid acquiring the list_lru lock if already
 617		 * untracked.  The list_empty() test is safe as
 618		 * node->private_list is protected by
 619		 * mapping->tree_lock.
 620		 */
 621		if (!list_empty(&node->private_list))
 622			list_lru_del(&workingset_shadow_nodes,
 623				     &node->private_list);
 624	}
 625	return 0;
 
 
 
 626}
 
 627
 628static int __add_to_page_cache_locked(struct page *page,
 629				      struct address_space *mapping,
 630				      pgoff_t offset, gfp_t gfp_mask,
 631				      void **shadowp)
 
 
 
 
 
 
 
 
 
 
 632{
 633	int huge = PageHuge(page);
 634	struct mem_cgroup *memcg;
 635	int error;
 
 
 
 
 
 
 
 
 
 
 
 636
 637	VM_BUG_ON_PAGE(!PageLocked(page), page);
 638	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640	if (!huge) {
 641		error = mem_cgroup_try_charge(page, current->mm,
 642					      gfp_mask, &memcg, false);
 643		if (error)
 644			return error;
 
 
 
 645	}
 646
 647	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 648	if (error) {
 649		if (!huge)
 650			mem_cgroup_cancel_charge(page, memcg, false);
 651		return error;
 652	}
 653
 654	get_page(page);
 655	page->mapping = mapping;
 656	page->index = offset;
 657
 658	spin_lock_irq(&mapping->tree_lock);
 659	error = page_cache_tree_insert(mapping, page, shadowp);
 660	radix_tree_preload_end();
 661	if (unlikely(error))
 662		goto err_insert;
 663
 664	/* hugetlb pages do not participate in page cache accounting. */
 665	if (!huge)
 666		__inc_zone_page_state(page, NR_FILE_PAGES);
 667	spin_unlock_irq(&mapping->tree_lock);
 668	if (!huge)
 669		mem_cgroup_commit_charge(page, memcg, false, false);
 670	trace_mm_filemap_add_to_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	return 0;
 672err_insert:
 673	page->mapping = NULL;
 
 
 674	/* Leave page->index set: truncation relies upon it */
 675	spin_unlock_irq(&mapping->tree_lock);
 676	if (!huge)
 677		mem_cgroup_cancel_charge(page, memcg, false);
 678	put_page(page);
 679	return error;
 680}
 681
 682/**
 683 * add_to_page_cache_locked - add a locked page to the pagecache
 684 * @page:	page to add
 685 * @mapping:	the page's address_space
 686 * @offset:	page index
 687 * @gfp_mask:	page allocation mode
 688 *
 689 * This function is used to add a page to the pagecache. It must be locked.
 690 * This function does not add the page to the LRU.  The caller must do that.
 691 */
 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 693		pgoff_t offset, gfp_t gfp_mask)
 694{
 695	return __add_to_page_cache_locked(page, mapping, offset,
 696					  gfp_mask, NULL);
 697}
 698EXPORT_SYMBOL(add_to_page_cache_locked);
 699
 700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 701				pgoff_t offset, gfp_t gfp_mask)
 702{
 703	void *shadow = NULL;
 704	int ret;
 705
 706	__SetPageLocked(page);
 707	ret = __add_to_page_cache_locked(page, mapping, offset,
 708					 gfp_mask, &shadow);
 709	if (unlikely(ret))
 710		__ClearPageLocked(page);
 711	else {
 712		/*
 713		 * The page might have been evicted from cache only
 714		 * recently, in which case it should be activated like
 715		 * any other repeatedly accessed page.
 716		 */
 717		if (shadow && workingset_refault(shadow)) {
 718			SetPageActive(page);
 719			workingset_activation(page);
 720		} else
 721			ClearPageActive(page);
 722		lru_cache_add(page);
 
 723	}
 724	return ret;
 725}
 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 727
 728#ifdef CONFIG_NUMA
 729struct page *__page_cache_alloc(gfp_t gfp)
 730{
 731	int n;
 732	struct page *page;
 733
 734	if (cpuset_do_page_mem_spread()) {
 735		unsigned int cpuset_mems_cookie;
 736		do {
 737			cpuset_mems_cookie = read_mems_allowed_begin();
 738			n = cpuset_mem_spread_node();
 739			page = __alloc_pages_node(n, gfp, 0);
 740		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 741
 742		return page;
 743	}
 744	return alloc_pages(gfp, 0);
 745}
 746EXPORT_SYMBOL(__page_cache_alloc);
 747#endif
 748
 749/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 * In order to wait for pages to become available there must be
 751 * waitqueues associated with pages. By using a hash table of
 752 * waitqueues where the bucket discipline is to maintain all
 753 * waiters on the same queue and wake all when any of the pages
 754 * become available, and for the woken contexts to check to be
 755 * sure the appropriate page became available, this saves space
 756 * at a cost of "thundering herd" phenomena during rare hash
 757 * collisions.
 758 */
 759wait_queue_head_t *page_waitqueue(struct page *page)
 760{
 761	const struct zone *zone = page_zone(page);
 762
 763	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 764}
 765EXPORT_SYMBOL(page_waitqueue);
 766
 767void wait_on_page_bit(struct page *page, int bit_nr)
 768{
 769	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 770
 771	if (test_bit(bit_nr, &page->flags))
 772		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 773							TASK_UNINTERRUPTIBLE);
 
 774}
 775EXPORT_SYMBOL(wait_on_page_bit);
 776
 777int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 780
 781	if (!test_bit(bit_nr, &page->flags))
 782		return 0;
 783
 784	return __wait_on_bit(page_waitqueue(page), &wait,
 785			     bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788int wait_on_page_bit_killable_timeout(struct page *page,
 789				       int bit_nr, unsigned long timeout)
 790{
 791	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 792
 793	wait.key.timeout = jiffies + timeout;
 794	if (!test_bit(bit_nr, &page->flags))
 795		return 0;
 796	return __wait_on_bit(page_waitqueue(page), &wait,
 797			     bit_wait_io_timeout, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801/**
 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 803 * @page: Page defining the wait queue of interest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804 * @waiter: Waiter to add to the queue
 805 *
 806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 807 */
 808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 809{
 810	wait_queue_head_t *q = page_waitqueue(page);
 811	unsigned long flags;
 812
 813	spin_lock_irqsave(&q->lock, flags);
 814	__add_wait_queue(q, waiter);
 
 815	spin_unlock_irqrestore(&q->lock, flags);
 816}
 817EXPORT_SYMBOL_GPL(add_page_wait_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819/**
 820 * unlock_page - unlock a locked page
 821 * @page: the page
 822 *
 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 827 *
 828 * The mb is necessary to enforce ordering between the clear_bit and the read
 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 830 */
 831void unlock_page(struct page *page)
 832{
 833	page = compound_head(page);
 834	VM_BUG_ON_PAGE(!PageLocked(page), page);
 835	clear_bit_unlock(PG_locked, &page->flags);
 836	smp_mb__after_atomic();
 837	wake_up_page(page, PG_locked);
 
 838}
 839EXPORT_SYMBOL(unlock_page);
 840
 841/**
 842 * end_page_writeback - end writeback against a page
 843 * @page: the page
 
 
 
 
 
 
 
 844 */
 845void end_page_writeback(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846{
 847	/*
 848	 * TestClearPageReclaim could be used here but it is an atomic
 849	 * operation and overkill in this particular case. Failing to
 850	 * shuffle a page marked for immediate reclaim is too mild to
 851	 * justify taking an atomic operation penalty at the end of
 852	 * ever page writeback.
 853	 */
 854	if (PageReclaim(page)) {
 855		ClearPageReclaim(page);
 856		rotate_reclaimable_page(page);
 857	}
 858
 859	if (!test_clear_page_writeback(page))
 
 
 
 
 
 
 
 860		BUG();
 861
 862	smp_mb__after_atomic();
 863	wake_up_page(page, PG_writeback);
 
 
 864}
 865EXPORT_SYMBOL(end_page_writeback);
 866
 867/*
 868 * After completing I/O on a page, call this routine to update the page
 869 * flags appropriately
 870 */
 871void page_endio(struct page *page, int rw, int err)
 872{
 873	if (rw == READ) {
 
 
 874		if (!err) {
 875			SetPageUptodate(page);
 876		} else {
 877			ClearPageUptodate(page);
 878			SetPageError(page);
 879		}
 880		unlock_page(page);
 881	} else { /* rw == WRITE */
 882		if (err) {
 883			SetPageError(page);
 884			if (page->mapping)
 885				mapping_set_error(page->mapping, err);
 
 
 
 886		}
 887		end_page_writeback(page);
 888	}
 889}
 890EXPORT_SYMBOL_GPL(page_endio);
 891
 892/**
 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 894 * @page: the page to lock
 895 */
 896void __lock_page(struct page *page)
 897{
 898	struct page *page_head = compound_head(page);
 899	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 
 
 900
 901	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 902							TASK_UNINTERRUPTIBLE);
 
 
 903}
 904EXPORT_SYMBOL(__lock_page);
 905
 906int __lock_page_killable(struct page *page)
 907{
 908	struct page *page_head = compound_head(page);
 909	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 910
 911	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 912					bit_wait_io, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914EXPORT_SYMBOL_GPL(__lock_page_killable);
 915
 916/*
 917 * Return values:
 918 * 1 - page is locked; mmap_sem is still held.
 919 * 0 - page is not locked.
 920 *     mmap_sem has been released (up_read()), unless flags had both
 921 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 922 *     which case mmap_sem is still held.
 923 *
 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 925 * with the page locked and the mmap_sem unperturbed.
 926 */
 927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 928			 unsigned int flags)
 929{
 930	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 931		/*
 932		 * CAUTION! In this case, mmap_sem is not released
 933		 * even though return 0.
 934		 */
 935		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 936			return 0;
 937
 938		up_read(&mm->mmap_sem);
 939		if (flags & FAULT_FLAG_KILLABLE)
 940			wait_on_page_locked_killable(page);
 941		else
 942			wait_on_page_locked(page);
 943		return 0;
 944	} else {
 945		if (flags & FAULT_FLAG_KILLABLE) {
 946			int ret;
 947
 948			ret = __lock_page_killable(page);
 949			if (ret) {
 950				up_read(&mm->mmap_sem);
 951				return 0;
 952			}
 953		} else
 954			__lock_page(page);
 955		return 1;
 956	}
 
 
 957}
 958
 959/**
 960 * page_cache_next_hole - find the next hole (not-present entry)
 961 * @mapping: mapping
 962 * @index: index
 963 * @max_scan: maximum range to search
 964 *
 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 966 * lowest indexed hole.
 967 *
 968 * Returns: the index of the hole if found, otherwise returns an index
 969 * outside of the set specified (in which case 'return - index >=
 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 971 * be returned.
 972 *
 973 * page_cache_next_hole may be called under rcu_read_lock. However,
 974 * like radix_tree_gang_lookup, this will not atomically search a
 975 * snapshot of the tree at a single point in time. For example, if a
 976 * hole is created at index 5, then subsequently a hole is created at
 977 * index 10, page_cache_next_hole covering both indexes may return 10
 978 * if called under rcu_read_lock.
 979 */
 980pgoff_t page_cache_next_hole(struct address_space *mapping,
 981			     pgoff_t index, unsigned long max_scan)
 982{
 983	unsigned long i;
 984
 985	for (i = 0; i < max_scan; i++) {
 986		struct page *page;
 987
 988		page = radix_tree_lookup(&mapping->page_tree, index);
 989		if (!page || radix_tree_exceptional_entry(page))
 
 990			break;
 991		index++;
 992		if (index == 0)
 993			break;
 994	}
 995
 996	return index;
 997}
 998EXPORT_SYMBOL(page_cache_next_hole);
 999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
 
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022			     pgoff_t index, unsigned long max_scan)
1023{
1024	unsigned long i;
1025
1026	for (i = 0; i < max_scan; i++) {
1027		struct page *page;
1028
1029		page = radix_tree_lookup(&mapping->page_tree, index);
1030		if (!page || radix_tree_exceptional_entry(page))
1031			break;
1032		index--;
1033		if (index == ULONG_MAX)
1034			break;
1035	}
1036
1037	return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041/**
1042 * find_get_entry - find and get a page cache entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset.  If there is a
1047 * page cache page, it is returned with an increased refcount.
 
 
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
1051 *
1052 * Otherwise, %NULL is returned.
1053 */
1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055{
1056	void **pagep;
1057	struct page *page;
1058
1059	rcu_read_lock();
1060repeat:
1061	page = NULL;
1062	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063	if (pagep) {
1064		page = radix_tree_deref_slot(pagep);
1065		if (unlikely(!page))
1066			goto out;
1067		if (radix_tree_exception(page)) {
1068			if (radix_tree_deref_retry(page))
1069				goto repeat;
1070			/*
1071			 * A shadow entry of a recently evicted page,
1072			 * or a swap entry from shmem/tmpfs.  Return
1073			 * it without attempting to raise page count.
1074			 */
1075			goto out;
1076		}
1077		if (!page_cache_get_speculative(page))
1078			goto repeat;
1079
1080		/*
1081		 * Has the page moved?
1082		 * This is part of the lockless pagecache protocol. See
1083		 * include/linux/pagemap.h for details.
1084		 */
1085		if (unlikely(page != *pagep)) {
1086			put_page(page);
1087			goto repeat;
1088		}
1089	}
1090out:
1091	rcu_read_unlock();
1092
1093	return page;
1094}
1095EXPORT_SYMBOL(find_get_entry);
1096
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101 *
1102 * Looks up the page cache slot at @mapping & @offset.  If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
 
1114{
1115	struct page *page;
1116
1117repeat:
1118	page = find_get_entry(mapping, offset);
1119	if (page && !radix_tree_exception(page)) {
1120		lock_page(page);
1121		/* Has the page been truncated? */
1122		if (unlikely(page->mapping != mapping)) {
1123			unlock_page(page);
1124			put_page(page);
1125			goto repeat;
1126		}
1127		VM_BUG_ON_PAGE(page->index != offset, page);
1128	}
1129	return page;
1130}
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 *		@gfp_mask and added to the page cache and the VM's LRU
1148 *		list. The page is returned locked and with an increased
1149 *		refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
1155 */
1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157	int fgp_flags, gfp_t gfp_mask)
1158{
1159	struct page *page;
1160
1161repeat:
1162	page = find_get_entry(mapping, offset);
1163	if (radix_tree_exceptional_entry(page))
1164		page = NULL;
1165	if (!page)
1166		goto no_page;
1167
1168	if (fgp_flags & FGP_LOCK) {
1169		if (fgp_flags & FGP_NOWAIT) {
1170			if (!trylock_page(page)) {
1171				put_page(page);
1172				return NULL;
1173			}
1174		} else {
1175			lock_page(page);
1176		}
1177
1178		/* Has the page been truncated? */
1179		if (unlikely(page->mapping != mapping)) {
1180			unlock_page(page);
1181			put_page(page);
1182			goto repeat;
1183		}
1184		VM_BUG_ON_PAGE(page->index != offset, page);
1185	}
1186
1187	if (page && (fgp_flags & FGP_ACCESSED))
1188		mark_page_accessed(page);
 
 
 
 
 
1189
 
 
1190no_page:
1191	if (!page && (fgp_flags & FGP_CREAT)) {
1192		int err;
1193		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194			gfp_mask |= __GFP_WRITE;
1195		if (fgp_flags & FGP_NOFS)
1196			gfp_mask &= ~__GFP_FS;
 
 
 
 
1197
1198		page = __page_cache_alloc(gfp_mask);
1199		if (!page)
1200			return NULL;
1201
1202		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203			fgp_flags |= FGP_LOCK;
1204
1205		/* Init accessed so avoid atomic mark_page_accessed later */
1206		if (fgp_flags & FGP_ACCESSED)
1207			__SetPageReferenced(page);
1208
1209		err = add_to_page_cache_lru(page, mapping, offset,
1210				gfp_mask & GFP_RECLAIM_MASK);
1211		if (unlikely(err)) {
1212			put_page(page);
1213			page = NULL;
1214			if (err == -EEXIST)
1215				goto repeat;
1216		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	return page;
 
 
 
1220}
1221EXPORT_SYMBOL(pagecache_get_page);
1222
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping:	The address_space to search
1226 * @start:	The starting page cache index
1227 * @nr_entries:	The maximum number of entries
1228 * @entries:	Where the resulting entries are placed
1229 * @indices:	The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping.  The entries are placed at
1233 * @entries.  find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes.  There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
 
 
 
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247			  pgoff_t start, unsigned int nr_entries,
1248			  struct page **entries, pgoff_t *indices)
1249{
1250	void **slot;
1251	unsigned int ret = 0;
1252	struct radix_tree_iter iter;
1253
1254	if (!nr_entries)
1255		return 0;
1256
1257	rcu_read_lock();
1258	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259		struct page *page;
1260repeat:
1261		page = radix_tree_deref_slot(slot);
1262		if (unlikely(!page))
1263			continue;
1264		if (radix_tree_exception(page)) {
1265			if (radix_tree_deref_retry(page)) {
1266				slot = radix_tree_iter_retry(&iter);
1267				continue;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page, a swap
1271			 * entry from shmem/tmpfs or a DAX entry.  Return it
1272			 * without attempting to raise page count.
1273			 */
1274			goto export;
1275		}
1276		if (!page_cache_get_speculative(page))
1277			goto repeat;
1278
1279		/* Has the page moved? */
1280		if (unlikely(page != *slot)) {
1281			put_page(page);
1282			goto repeat;
1283		}
1284export:
1285		indices[ret] = iter.index;
1286		entries[ret] = page;
1287		if (++ret == nr_entries)
1288			break;
1289	}
1290	rcu_read_unlock();
1291	return ret;
 
 
 
 
 
 
 
 
 
 
1292}
1293
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping:	The address_space to search
1297 * @start:	The starting page index
1298 * @nr_pages:	The maximum number of pages
1299 * @pages:	Where the resulting pages are placed
 
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
 
 
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes.  There may be holes in the indices due to not-present pages.
 
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311			    unsigned int nr_pages, struct page **pages)
1312{
1313	struct radix_tree_iter iter;
1314	void **slot;
1315	unsigned ret = 0;
1316
1317	if (unlikely(!nr_pages))
1318		return 0;
1319
1320	rcu_read_lock();
1321	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322		struct page *page;
1323repeat:
1324		page = radix_tree_deref_slot(slot);
1325		if (unlikely(!page))
1326			continue;
1327
1328		if (radix_tree_exception(page)) {
1329			if (radix_tree_deref_retry(page)) {
1330				slot = radix_tree_iter_retry(&iter);
1331				continue;
1332			}
1333			/*
1334			 * A shadow entry of a recently evicted page,
1335			 * or a swap entry from shmem/tmpfs.  Skip
1336			 * over it.
1337			 */
1338			continue;
1339		}
1340
1341		if (!page_cache_get_speculative(page))
1342			goto repeat;
1343
1344		/* Has the page moved? */
1345		if (unlikely(page != *slot)) {
1346			put_page(page);
1347			goto repeat;
1348		}
1349
1350		pages[ret] = page;
1351		if (++ret == nr_pages)
1352			break;
 
 
 
 
 
1353	}
1354
1355	rcu_read_unlock();
1356	return ret;
 
 
 
 
 
 
 
 
 
 
1357}
1358
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping:	The address_space to search
1362 * @index:	The starting page index
1363 * @nr_pages:	The maximum number of pages
1364 * @pages:	Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
 
 
 
 
 
 
 
 
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
 
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372			       unsigned int nr_pages, struct page **pages)
1373{
1374	struct radix_tree_iter iter;
1375	void **slot;
1376	unsigned int ret = 0;
1377
1378	if (unlikely(!nr_pages))
1379		return 0;
1380
1381	rcu_read_lock();
1382	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383		struct page *page;
1384repeat:
1385		page = radix_tree_deref_slot(slot);
1386		/* The hole, there no reason to continue */
1387		if (unlikely(!page))
1388			break;
1389
1390		if (radix_tree_exception(page)) {
1391			if (radix_tree_deref_retry(page)) {
1392				slot = radix_tree_iter_retry(&iter);
1393				continue;
1394			}
1395			/*
1396			 * A shadow entry of a recently evicted page,
1397			 * or a swap entry from shmem/tmpfs.  Stop
1398			 * looking for contiguous pages.
1399			 */
1400			break;
1401		}
 
1402
1403		if (!page_cache_get_speculative(page))
1404			goto repeat;
1405
1406		/* Has the page moved? */
1407		if (unlikely(page != *slot)) {
1408			put_page(page);
1409			goto repeat;
1410		}
 
 
 
 
1411
1412		/*
1413		 * must check mapping and index after taking the ref.
1414		 * otherwise we can get both false positives and false
1415		 * negatives, which is just confusing to the caller.
1416		 */
1417		if (page->mapping == NULL || page->index != iter.index) {
1418			put_page(page);
1419			break;
1420		}
1421
1422		pages[ret] = page;
1423		if (++ret == nr_pages)
1424			break;
1425	}
1426	rcu_read_unlock();
1427	return ret;
 
 
1428}
1429EXPORT_SYMBOL(find_get_pages_contig);
1430
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping:	the address_space to search
1434 * @index:	the starting page index
1435 * @tag:	the tag index
1436 * @nr_pages:	the maximum number of pages
1437 * @pages:	where the resulting pages are placed
 
 
 
1438 *
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag.   We update @index to index the next page for the traversal.
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443			int tag, unsigned int nr_pages, struct page **pages)
1444{
1445	struct radix_tree_iter iter;
1446	void **slot;
1447	unsigned ret = 0;
1448
1449	if (unlikely(!nr_pages))
1450		return 0;
 
 
 
 
1451
1452	rcu_read_lock();
1453	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454				   &iter, *index, tag) {
1455		struct page *page;
1456repeat:
1457		page = radix_tree_deref_slot(slot);
1458		if (unlikely(!page))
1459			continue;
1460
1461		if (radix_tree_exception(page)) {
1462			if (radix_tree_deref_retry(page)) {
1463				slot = radix_tree_iter_retry(&iter);
1464				continue;
1465			}
1466			/*
1467			 * A shadow entry of a recently evicted page.
1468			 *
1469			 * Those entries should never be tagged, but
1470			 * this tree walk is lockless and the tags are
1471			 * looked up in bulk, one radix tree node at a
1472			 * time, so there is a sizable window for page
1473			 * reclaim to evict a page we saw tagged.
1474			 *
1475			 * Skip over it.
1476			 */
1477			continue;
1478		}
 
 
 
 
 
1479
1480		if (!page_cache_get_speculative(page))
1481			goto repeat;
1482
1483		/* Has the page moved? */
1484		if (unlikely(page != *slot)) {
1485			put_page(page);
1486			goto repeat;
 
 
 
 
 
 
1487		}
 
 
 
1488
1489		pages[ret] = page;
1490		if (++ret == nr_pages)
1491			break;
1492	}
1493
1494	rcu_read_unlock();
1495
1496	if (ret)
1497		*index = pages[ret - 1]->index + 1;
1498
1499	return ret;
 
 
 
 
 
 
 
 
 
1500}
1501EXPORT_SYMBOL(find_get_pages_tag);
1502
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping:	the address_space to search
1506 * @start:	the starting page cache index
 
1507 * @tag:	the tag index
1508 * @nr_entries:	the maximum number of entries
1509 * @entries:	where the resulting entries are placed
1510 * @indices:	the cache indices corresponding to the entries in @entries
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516			int tag, unsigned int nr_entries,
1517			struct page **entries, pgoff_t *indices)
1518{
1519	void **slot;
1520	unsigned int ret = 0;
1521	struct radix_tree_iter iter;
 
 
1522
1523	if (!nr_entries)
1524		return 0;
1525
1526	rcu_read_lock();
1527	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528				   &iter, start, tag) {
1529		struct page *page;
1530repeat:
1531		page = radix_tree_deref_slot(slot);
1532		if (unlikely(!page))
 
1533			continue;
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539
1540			/*
1541			 * A shadow entry of a recently evicted page, a swap
1542			 * entry from shmem/tmpfs or a DAX entry.  Return it
1543			 * without attempting to raise page count.
1544			 */
1545			goto export;
1546		}
1547		if (!page_cache_get_speculative(page))
1548			goto repeat;
1549
1550		/* Has the page moved? */
1551		if (unlikely(page != *slot)) {
1552			put_page(page);
1553			goto repeat;
1554		}
1555export:
1556		indices[ret] = iter.index;
1557		entries[ret] = page;
1558		if (++ret == nr_entries)
1559			break;
1560	}
 
 
 
 
 
 
 
 
 
 
 
 
1561	rcu_read_unlock();
 
1562	return ret;
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 *      ---R__________________________________________B__________
1571 *         ^ reading here                             ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582					struct file_ra_state *ra)
1583{
1584	ra->ra_pages /= 4;
1585}
1586
1587/**
1588 * do_generic_file_read - generic file read routine
1589 * @filp:	the file to read
1590 * @ppos:	current file position
1591 * @iter:	data destination
1592 * @written:	already copied
1593 *
1594 * This is a generic file read routine, and uses the
1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
 
 
 
1599 */
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601		struct iov_iter *iter, ssize_t written)
1602{
1603	struct address_space *mapping = filp->f_mapping;
1604	struct inode *inode = mapping->host;
1605	struct file_ra_state *ra = &filp->f_ra;
1606	pgoff_t index;
1607	pgoff_t last_index;
1608	pgoff_t prev_index;
1609	unsigned long offset;      /* offset into pagecache page */
1610	unsigned int prev_offset;
1611	int error = 0;
1612
1613	index = *ppos >> PAGE_SHIFT;
1614	prev_index = ra->prev_pos >> PAGE_SHIFT;
1615	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617	offset = *ppos & ~PAGE_MASK;
1618
1619	for (;;) {
1620		struct page *page;
1621		pgoff_t end_index;
1622		loff_t isize;
1623		unsigned long nr, ret;
 
 
 
 
 
1624
1625		cond_resched();
1626find_page:
1627		page = find_get_page(mapping, index);
1628		if (!page) {
1629			page_cache_sync_readahead(mapping,
1630					ra, filp,
1631					index, last_index - index);
1632			page = find_get_page(mapping, index);
1633			if (unlikely(page == NULL))
1634				goto no_cached_page;
1635		}
1636		if (PageReadahead(page)) {
1637			page_cache_async_readahead(mapping,
1638					ra, filp, page,
1639					index, last_index - index);
1640		}
1641		if (!PageUptodate(page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642			/*
1643			 * See comment in do_read_cache_page on why
1644			 * wait_on_page_locked is used to avoid unnecessarily
1645			 * serialisations and why it's safe.
1646			 */
1647			wait_on_page_locked_killable(page);
1648			if (PageUptodate(page))
1649				goto page_ok;
1650
1651			if (inode->i_blkbits == PAGE_SHIFT ||
1652					!mapping->a_ops->is_partially_uptodate)
1653				goto page_not_up_to_date;
1654			if (!trylock_page(page))
1655				goto page_not_up_to_date;
1656			/* Did it get truncated before we got the lock? */
1657			if (!page->mapping)
1658				goto page_not_up_to_date_locked;
1659			if (!mapping->a_ops->is_partially_uptodate(page,
1660							offset, iter->count))
1661				goto page_not_up_to_date_locked;
1662			unlock_page(page);
1663		}
1664page_ok:
1665		/*
1666		 * i_size must be checked after we know the page is Uptodate.
1667		 *
1668		 * Checking i_size after the check allows us to calculate
1669		 * the correct value for "nr", which means the zero-filled
1670		 * part of the page is not copied back to userspace (unless
1671		 * another truncate extends the file - this is desired though).
1672		 */
1673
1674		isize = i_size_read(inode);
1675		end_index = (isize - 1) >> PAGE_SHIFT;
1676		if (unlikely(!isize || index > end_index)) {
1677			put_page(page);
1678			goto out;
1679		}
1680
1681		/* nr is the maximum number of bytes to copy from this page */
1682		nr = PAGE_SIZE;
1683		if (index == end_index) {
1684			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685			if (nr <= offset) {
1686				put_page(page);
1687				goto out;
1688			}
1689		}
1690		nr = nr - offset;
1691
1692		/* If users can be writing to this page using arbitrary
1693		 * virtual addresses, take care about potential aliasing
1694		 * before reading the page on the kernel side.
1695		 */
1696		if (mapping_writably_mapped(mapping))
1697			flush_dcache_page(page);
1698
1699		/*
1700		 * When a sequential read accesses a page several times,
1701		 * only mark it as accessed the first time.
1702		 */
1703		if (prev_index != index || offset != prev_offset)
1704			mark_page_accessed(page);
1705		prev_index = index;
 
 
 
 
1706
1707		/*
1708		 * Ok, we have the page, and it's up-to-date, so
1709		 * now we can copy it to user space...
1710		 */
 
 
1711
1712		ret = copy_page_to_iter(page, offset, nr, iter);
1713		offset += ret;
1714		index += offset >> PAGE_SHIFT;
1715		offset &= ~PAGE_MASK;
1716		prev_offset = offset;
1717
1718		put_page(page);
1719		written += ret;
1720		if (!iov_iter_count(iter))
1721			goto out;
1722		if (ret < nr) {
1723			error = -EFAULT;
1724			goto out;
1725		}
1726		continue;
 
 
 
 
 
 
 
 
 
 
 
1727
1728page_not_up_to_date:
1729		/* Get exclusive access to the page ... */
1730		error = lock_page_killable(page);
1731		if (unlikely(error))
1732			goto readpage_error;
1733
1734page_not_up_to_date_locked:
1735		/* Did it get truncated before we got the lock? */
1736		if (!page->mapping) {
1737			unlock_page(page);
1738			put_page(page);
1739			continue;
1740		}
1741
1742		/* Did somebody else fill it already? */
1743		if (PageUptodate(page)) {
1744			unlock_page(page);
1745			goto page_ok;
1746		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748readpage:
1749		/*
1750		 * A previous I/O error may have been due to temporary
1751		 * failures, eg. multipath errors.
1752		 * PG_error will be set again if readpage fails.
1753		 */
1754		ClearPageError(page);
1755		/* Start the actual read. The read will unlock the page. */
1756		error = mapping->a_ops->readpage(filp, page);
1757
1758		if (unlikely(error)) {
1759			if (error == AOP_TRUNCATED_PAGE) {
1760				put_page(page);
1761				error = 0;
1762				goto find_page;
1763			}
1764			goto readpage_error;
1765		}
1766
1767		if (!PageUptodate(page)) {
1768			error = lock_page_killable(page);
1769			if (unlikely(error))
1770				goto readpage_error;
1771			if (!PageUptodate(page)) {
1772				if (page->mapping == NULL) {
1773					/*
1774					 * invalidate_mapping_pages got it
1775					 */
1776					unlock_page(page);
1777					put_page(page);
1778					goto find_page;
1779				}
1780				unlock_page(page);
1781				shrink_readahead_size_eio(filp, ra);
1782				error = -EIO;
1783				goto readpage_error;
1784			}
1785			unlock_page(page);
1786		}
1787
1788		goto page_ok;
 
 
 
 
 
 
 
 
 
 
 
1789
1790readpage_error:
1791		/* UHHUH! A synchronous read error occurred. Report it */
1792		put_page(page);
1793		goto out;
 
1794
1795no_cached_page:
1796		/*
1797		 * Ok, it wasn't cached, so we need to create a new
1798		 * page..
1799		 */
1800		page = page_cache_alloc_cold(mapping);
1801		if (!page) {
1802			error = -ENOMEM;
1803			goto out;
1804		}
1805		error = add_to_page_cache_lru(page, mapping, index,
1806				mapping_gfp_constraint(mapping, GFP_KERNEL));
1807		if (error) {
1808			put_page(page);
1809			if (error == -EEXIST) {
1810				error = 0;
1811				goto find_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812			}
1813			goto out;
1814		}
1815		goto readpage;
1816	}
1817
1818out:
1819	ra->prev_pos = prev_index;
1820	ra->prev_pos <<= PAGE_SHIFT;
1821	ra->prev_pos |= prev_offset;
1822
1823	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824	file_accessed(filp);
1825	return written ? written : error;
 
1826}
 
1827
1828/**
1829 * generic_file_read_iter - generic filesystem read routine
1830 * @iocb:	kernel I/O control block
1831 * @iter:	destination for the data read
1832 *
1833 * This is the "read_iter()" routine for all filesystems
1834 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
1835 */
1836ssize_t
1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838{
1839	struct file *file = iocb->ki_filp;
1840	ssize_t retval = 0;
1841	loff_t *ppos = &iocb->ki_pos;
1842	loff_t pos = *ppos;
1843	size_t count = iov_iter_count(iter);
 
1844
1845	if (!count)
1846		goto out; /* skip atime */
1847
1848	if (iocb->ki_flags & IOCB_DIRECT) {
 
1849		struct address_space *mapping = file->f_mapping;
1850		struct inode *inode = mapping->host;
1851		loff_t size;
1852
1853		size = i_size_read(inode);
1854		retval = filemap_write_and_wait_range(mapping, pos,
1855					pos + count - 1);
1856		if (!retval) {
1857			struct iov_iter data = *iter;
1858			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859		}
1860
1861		if (retval > 0) {
1862			*ppos = pos + retval;
1863			iov_iter_advance(iter, retval);
 
 
 
 
 
 
 
1864		}
 
 
1865
1866		/*
1867		 * Btrfs can have a short DIO read if we encounter
1868		 * compressed extents, so if there was an error, or if
1869		 * we've already read everything we wanted to, or if
1870		 * there was a short read because we hit EOF, go ahead
1871		 * and return.  Otherwise fallthrough to buffered io for
1872		 * the rest of the read.  Buffered reads will not work for
1873		 * DAX files, so don't bother trying.
1874		 */
1875		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876		    IS_DAX(inode)) {
1877			file_accessed(file);
1878			goto out;
1879		}
1880	}
1881
1882	retval = do_generic_file_read(file, ppos, iter, retval);
1883out:
1884	return retval;
1885}
1886EXPORT_SYMBOL(generic_file_read_iter);
1887
1888#ifdef CONFIG_MMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889/**
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file:	file to read
1892 * @offset:	page index
1893 * @gfp_mask:	memory allocation flags
 
 
 
 
 
 
 
1894 *
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
 
 
1897 */
1898static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
1899{
1900	struct address_space *mapping = file->f_mapping;
1901	struct page *page;
1902	int ret;
1903
1904	do {
1905		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906		if (!page)
1907			return -ENOMEM;
1908
1909		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910		if (ret == 0)
1911			ret = mapping->a_ops->readpage(file, page);
1912		else if (ret == -EEXIST)
1913			ret = 0; /* losing race to add is OK */
1914
1915		put_page(page);
 
1916
1917	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
 
 
 
 
 
 
1918
1919	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920}
1921
 
1922#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924/*
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
 
 
 
1927 */
1928static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929				   struct file_ra_state *ra,
1930				   struct file *file,
1931				   pgoff_t offset)
1932{
 
 
1933	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934
1935	/* If we don't want any read-ahead, don't bother */
1936	if (vma->vm_flags & VM_RAND_READ)
1937		return;
1938	if (!ra->ra_pages)
1939		return;
1940
1941	if (vma->vm_flags & VM_SEQ_READ) {
1942		page_cache_sync_readahead(mapping, ra, file, offset,
1943					  ra->ra_pages);
1944		return;
1945	}
1946
1947	/* Avoid banging the cache line if not needed */
1948	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949		ra->mmap_miss++;
 
1950
1951	/*
1952	 * Do we miss much more than hit in this file? If so,
1953	 * stop bothering with read-ahead. It will only hurt.
1954	 */
1955	if (ra->mmap_miss > MMAP_LOTSAMISS)
1956		return;
1957
1958	/*
1959	 * mmap read-around
1960	 */
1961	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
1962	ra->size = ra->ra_pages;
1963	ra->async_size = ra->ra_pages / 4;
1964	ra_submit(ra, mapping, file);
 
 
1965}
1966
1967/*
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
 
1970 */
1971static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972				    struct file_ra_state *ra,
1973				    struct file *file,
1974				    struct page *page,
1975				    pgoff_t offset)
1976{
1977	struct address_space *mapping = file->f_mapping;
 
 
 
 
1978
1979	/* If we don't want any read-ahead, don't bother */
1980	if (vma->vm_flags & VM_RAND_READ)
1981		return;
1982	if (ra->mmap_miss > 0)
1983		ra->mmap_miss--;
1984	if (PageReadahead(page))
1985		page_cache_async_readahead(mapping, ra, file,
1986					   page, offset, ra->ra_pages);
 
 
 
 
 
1987}
1988
1989/**
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma:	vma in which the fault was taken
1992 * @vmf:	struct vm_fault containing details of the fault
1993 *
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1996 *
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2000 *
2001 * vma->vm_mm->mmap_sem must be held on entry.
2002 *
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2007 *
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2010 *
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2012 */
2013int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015	int error;
2016	struct file *file = vma->vm_file;
 
2017	struct address_space *mapping = file->f_mapping;
2018	struct file_ra_state *ra = &file->f_ra;
2019	struct inode *inode = mapping->host;
2020	pgoff_t offset = vmf->pgoff;
2021	struct page *page;
2022	loff_t size;
2023	int ret = 0;
2024
2025	size = round_up(i_size_read(inode), PAGE_SIZE);
2026	if (offset >= size >> PAGE_SHIFT)
2027		return VM_FAULT_SIGBUS;
2028
2029	/*
2030	 * Do we have something in the page cache already?
2031	 */
2032	page = find_get_page(mapping, offset);
2033	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034		/*
2035		 * We found the page, so try async readahead before
2036		 * waiting for the lock.
2037		 */
2038		do_async_mmap_readahead(vma, ra, file, page, offset);
2039	} else if (!page) {
 
 
 
 
 
2040		/* No page in the page cache at all */
2041		do_sync_mmap_readahead(vma, ra, file, offset);
2042		count_vm_event(PGMAJFAULT);
2043		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044		ret = VM_FAULT_MAJOR;
 
2045retry_find:
2046		page = find_get_page(mapping, offset);
2047		if (!page)
2048			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	}
2050
2051	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052		put_page(page);
2053		return ret | VM_FAULT_RETRY;
2054	}
2055
2056	/* Did it get truncated? */
2057	if (unlikely(page->mapping != mapping)) {
2058		unlock_page(page);
2059		put_page(page);
2060		goto retry_find;
2061	}
2062	VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064	/*
2065	 * We have a locked page in the page cache, now we need to check
2066	 * that it's up-to-date. If not, it is going to be due to an error.
2067	 */
2068	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
2069		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
2070
2071	/*
2072	 * Found the page and have a reference on it.
2073	 * We must recheck i_size under page lock.
2074	 */
2075	size = round_up(i_size_read(inode), PAGE_SIZE);
2076	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077		unlock_page(page);
2078		put_page(page);
2079		return VM_FAULT_SIGBUS;
2080	}
2081
2082	vmf->page = page;
2083	return ret | VM_FAULT_LOCKED;
2084
2085no_cached_page:
2086	/*
2087	 * We're only likely to ever get here if MADV_RANDOM is in
2088	 * effect.
2089	 */
2090	error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092	/*
2093	 * The page we want has now been added to the page cache.
2094	 * In the unlikely event that someone removed it in the
2095	 * meantime, we'll just come back here and read it again.
2096	 */
2097	if (error >= 0)
2098		goto retry_find;
2099
2100	/*
2101	 * An error return from page_cache_read can result if the
2102	 * system is low on memory, or a problem occurs while trying
2103	 * to schedule I/O.
2104	 */
2105	if (error == -ENOMEM)
2106		return VM_FAULT_OOM;
2107	return VM_FAULT_SIGBUS;
2108
2109page_not_uptodate:
2110	/*
2111	 * Umm, take care of errors if the page isn't up-to-date.
2112	 * Try to re-read it _once_. We do this synchronously,
2113	 * because there really aren't any performance issues here
2114	 * and we need to check for errors.
2115	 */
2116	ClearPageError(page);
2117	error = mapping->a_ops->readpage(file, page);
2118	if (!error) {
2119		wait_on_page_locked(page);
2120		if (!PageUptodate(page))
2121			error = -EIO;
2122	}
2123	put_page(page);
2124
2125	if (!error || error == AOP_TRUNCATED_PAGE)
2126		goto retry_find;
 
2127
2128	/* Things didn't work out. Return zero to tell the mm layer so. */
2129	shrink_readahead_size_eio(file, ra);
2130	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131}
2132EXPORT_SYMBOL(filemap_fault);
2133
2134void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2135{
2136	struct radix_tree_iter iter;
2137	void **slot;
2138	struct file *file = vma->vm_file;
2139	struct address_space *mapping = file->f_mapping;
2140	loff_t size;
2141	struct page *page;
2142	unsigned long address = (unsigned long) vmf->virtual_address;
2143	unsigned long addr;
2144	pte_t *pte;
2145
2146	rcu_read_lock();
2147	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148		if (iter.index > vmf->max_pgoff)
2149			break;
2150repeat:
2151		page = radix_tree_deref_slot(slot);
2152		if (unlikely(!page))
2153			goto next;
2154		if (radix_tree_exception(page)) {
2155			if (radix_tree_deref_retry(page)) {
2156				slot = radix_tree_iter_retry(&iter);
2157				continue;
2158			}
2159			goto next;
2160		}
 
2161
2162		if (!page_cache_get_speculative(page))
2163			goto repeat;
2164
2165		/* Has the page moved? */
2166		if (unlikely(page != *slot)) {
2167			put_page(page);
2168			goto repeat;
2169		}
 
 
 
 
2170
2171		if (!PageUptodate(page) ||
2172				PageReadahead(page) ||
2173				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174			goto skip;
2175		if (!trylock_page(page))
2176			goto skip;
2177
2178		if (page->mapping != mapping || !PageUptodate(page))
 
2179			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180
2181		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182		if (page->index >= size >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183			goto unlock;
2184
2185		pte = vmf->pte + page->index - vmf->pgoff;
2186		if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
2187			goto unlock;
2188
2189		if (file->f_ra.mmap_miss > 0)
2190			file->f_ra.mmap_miss--;
2191		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192		do_set_pte(vma, addr, page, pte, false, false);
2193		unlock_page(page);
2194		goto next;
 
 
 
 
 
 
 
 
2195unlock:
2196		unlock_page(page);
2197skip:
2198		put_page(page);
2199next:
2200		if (iter.index == vmf->max_pgoff)
2201			break;
2202	}
 
 
2203	rcu_read_unlock();
 
 
2204}
2205EXPORT_SYMBOL(filemap_map_pages);
2206
2207int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208{
2209	struct page *page = vmf->page;
2210	struct inode *inode = file_inode(vma->vm_file);
2211	int ret = VM_FAULT_LOCKED;
2212
2213	sb_start_pagefault(inode->i_sb);
2214	file_update_time(vma->vm_file);
2215	lock_page(page);
2216	if (page->mapping != inode->i_mapping) {
2217		unlock_page(page);
2218		ret = VM_FAULT_NOPAGE;
2219		goto out;
2220	}
2221	/*
2222	 * We mark the page dirty already here so that when freeze is in
2223	 * progress, we are guaranteed that writeback during freezing will
2224	 * see the dirty page and writeprotect it again.
2225	 */
2226	set_page_dirty(page);
2227	wait_for_stable_page(page);
2228out:
2229	sb_end_pagefault(inode->i_sb);
2230	return ret;
2231}
2232EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234const struct vm_operations_struct generic_file_vm_ops = {
2235	.fault		= filemap_fault,
2236	.map_pages	= filemap_map_pages,
2237	.page_mkwrite	= filemap_page_mkwrite,
2238};
2239
2240/* This is used for a general mmap of a disk file */
2241
2242int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243{
2244	struct address_space *mapping = file->f_mapping;
2245
2246	if (!mapping->a_ops->readpage)
2247		return -ENOEXEC;
2248	file_accessed(file);
2249	vma->vm_ops = &generic_file_vm_ops;
2250	return 0;
2251}
2252
2253/*
2254 * This is for filesystems which do not implement ->writepage.
2255 */
2256int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257{
2258	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259		return -EINVAL;
2260	return generic_file_mmap(file, vma);
2261}
2262#else
2263int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
2264{
2265	return -ENOSYS;
2266}
2267int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268{
2269	return -ENOSYS;
2270}
2271#endif /* CONFIG_MMU */
2272
 
2273EXPORT_SYMBOL(generic_file_mmap);
2274EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276static struct page *wait_on_page_read(struct page *page)
2277{
2278	if (!IS_ERR(page)) {
2279		wait_on_page_locked(page);
2280		if (!PageUptodate(page)) {
2281			put_page(page);
2282			page = ERR_PTR(-EIO);
2283		}
2284	}
2285	return page;
2286}
2287
2288static struct page *do_read_cache_page(struct address_space *mapping,
2289				pgoff_t index,
2290				int (*filler)(void *, struct page *),
2291				void *data,
2292				gfp_t gfp)
2293{
2294	struct page *page;
2295	int err;
 
 
 
2296repeat:
2297	page = find_get_page(mapping, index);
2298	if (!page) {
2299		page = __page_cache_alloc(gfp | __GFP_COLD);
2300		if (!page)
2301			return ERR_PTR(-ENOMEM);
2302		err = add_to_page_cache_lru(page, mapping, index, gfp);
2303		if (unlikely(err)) {
2304			put_page(page);
2305			if (err == -EEXIST)
2306				goto repeat;
2307			/* Presumably ENOMEM for radix tree node */
2308			return ERR_PTR(err);
2309		}
2310
2311filler:
2312		err = filler(data, page);
2313		if (err < 0) {
2314			put_page(page);
2315			return ERR_PTR(err);
2316		}
2317
2318		page = wait_on_page_read(page);
2319		if (IS_ERR(page))
2320			return page;
2321		goto out;
2322	}
2323	if (PageUptodate(page))
2324		goto out;
2325
2326	/*
2327	 * Page is not up to date and may be locked due one of the following
2328	 * case a: Page is being filled and the page lock is held
2329	 * case b: Read/write error clearing the page uptodate status
2330	 * case c: Truncation in progress (page locked)
2331	 * case d: Reclaim in progress
2332	 *
2333	 * Case a, the page will be up to date when the page is unlocked.
2334	 *    There is no need to serialise on the page lock here as the page
2335	 *    is pinned so the lock gives no additional protection. Even if the
2336	 *    the page is truncated, the data is still valid if PageUptodate as
2337	 *    it's a race vs truncate race.
2338	 * Case b, the page will not be up to date
2339	 * Case c, the page may be truncated but in itself, the data may still
2340	 *    be valid after IO completes as it's a read vs truncate race. The
2341	 *    operation must restart if the page is not uptodate on unlock but
2342	 *    otherwise serialising on page lock to stabilise the mapping gives
2343	 *    no additional guarantees to the caller as the page lock is
2344	 *    released before return.
2345	 * Case d, similar to truncation. If reclaim holds the page lock, it
2346	 *    will be a race with remove_mapping that determines if the mapping
2347	 *    is valid on unlock but otherwise the data is valid and there is
2348	 *    no need to serialise with page lock.
2349	 *
2350	 * As the page lock gives no additional guarantee, we optimistically
2351	 * wait on the page to be unlocked and check if it's up to date and
2352	 * use the page if it is. Otherwise, the page lock is required to
2353	 * distinguish between the different cases. The motivation is that we
2354	 * avoid spurious serialisations and wakeups when multiple processes
2355	 * wait on the same page for IO to complete.
2356	 */
2357	wait_on_page_locked(page);
2358	if (PageUptodate(page))
2359		goto out;
2360
2361	/* Distinguish between all the cases under the safety of the lock */
2362	lock_page(page);
 
 
2363
2364	/* Case c or d, restart the operation */
2365	if (!page->mapping) {
2366		unlock_page(page);
2367		put_page(page);
2368		goto repeat;
2369	}
2370
2371	/* Someone else locked and filled the page in a very small window */
2372	if (PageUptodate(page)) {
2373		unlock_page(page);
2374		goto out;
2375	}
2376	goto filler;
 
 
 
 
 
 
 
 
2377
2378out:
2379	mark_page_accessed(page);
2380	return page;
2381}
2382
2383/**
2384 * read_cache_page - read into page cache, fill it if needed
2385 * @mapping:	the page's address_space
2386 * @index:	the page index
2387 * @filler:	function to perform the read
2388 * @data:	first arg to filler(data, page) function, often left as NULL
2389 *
2390 * Read into the page cache. If a page already exists, and PageUptodate() is
2391 * not set, try to fill the page and wait for it to become unlocked.
2392 *
2393 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2394 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395struct page *read_cache_page(struct address_space *mapping,
2396				pgoff_t index,
2397				int (*filler)(void *, struct page *),
2398				void *data)
2399{
2400	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2401}
2402EXPORT_SYMBOL(read_cache_page);
2403
2404/**
2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406 * @mapping:	the page's address_space
2407 * @index:	the page index
2408 * @gfp:	the page allocator flags to use if allocating
2409 *
2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411 * any new page allocations done using the specified allocation flags.
2412 *
2413 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2414 */
2415struct page *read_cache_page_gfp(struct address_space *mapping,
2416				pgoff_t index,
2417				gfp_t gfp)
2418{
2419	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422}
2423EXPORT_SYMBOL(read_cache_page_gfp);
2424
2425/*
2426 * Performs necessary checks before doing a write
2427 *
2428 * Can adjust writing position or amount of bytes to write.
2429 * Returns appropriate error code that caller should return or
2430 * zero in case that write should be allowed.
2431 */
2432inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433{
2434	struct file *file = iocb->ki_filp;
2435	struct inode *inode = file->f_mapping->host;
2436	unsigned long limit = rlimit(RLIMIT_FSIZE);
2437	loff_t pos;
2438
2439	if (!iov_iter_count(from))
2440		return 0;
2441
2442	/* FIXME: this is for backwards compatibility with 2.4 */
2443	if (iocb->ki_flags & IOCB_APPEND)
2444		iocb->ki_pos = i_size_read(inode);
2445
2446	pos = iocb->ki_pos;
2447
2448	if (limit != RLIM_INFINITY) {
2449		if (iocb->ki_pos >= limit) {
2450			send_sig(SIGXFSZ, current, 0);
2451			return -EFBIG;
2452		}
2453		iov_iter_truncate(from, limit - (unsigned long)pos);
2454	}
2455
2456	/*
2457	 * LFS rule
2458	 */
2459	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460				!(file->f_flags & O_LARGEFILE))) {
2461		if (pos >= MAX_NON_LFS)
2462			return -EFBIG;
2463		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464	}
2465
2466	/*
2467	 * Are we about to exceed the fs block limit ?
2468	 *
2469	 * If we have written data it becomes a short write.  If we have
2470	 * exceeded without writing data we send a signal and return EFBIG.
2471	 * Linus frestrict idea will clean these up nicely..
2472	 */
2473	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474		return -EFBIG;
2475
2476	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477	return iov_iter_count(from);
2478}
2479EXPORT_SYMBOL(generic_write_checks);
2480
2481int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482				loff_t pos, unsigned len, unsigned flags,
2483				struct page **pagep, void **fsdata)
2484{
2485	const struct address_space_operations *aops = mapping->a_ops;
2486
2487	return aops->write_begin(file, mapping, pos, len, flags,
2488							pagep, fsdata);
2489}
2490EXPORT_SYMBOL(pagecache_write_begin);
2491
2492int pagecache_write_end(struct file *file, struct address_space *mapping,
2493				loff_t pos, unsigned len, unsigned copied,
2494				struct page *page, void *fsdata)
2495{
2496	const struct address_space_operations *aops = mapping->a_ops;
2497
2498	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2499}
2500EXPORT_SYMBOL(pagecache_write_end);
2501
2502ssize_t
2503generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2504{
2505	struct file	*file = iocb->ki_filp;
2506	struct address_space *mapping = file->f_mapping;
2507	struct inode	*inode = mapping->host;
 
2508	ssize_t		written;
2509	size_t		write_len;
2510	pgoff_t		end;
2511	struct iov_iter data;
2512
2513	write_len = iov_iter_count(from);
2514	end = (pos + write_len - 1) >> PAGE_SHIFT;
2515
2516	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517	if (written)
2518		goto out;
 
 
 
 
 
 
 
 
2519
2520	/*
2521	 * After a write we want buffered reads to be sure to go to disk to get
2522	 * the new data.  We invalidate clean cached page from the region we're
2523	 * about to write.  We do this *before* the write so that we can return
2524	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2525	 */
2526	if (mapping->nrpages) {
2527		written = invalidate_inode_pages2_range(mapping,
2528					pos >> PAGE_SHIFT, end);
2529		/*
2530		 * If a page can not be invalidated, return 0 to fall back
2531		 * to buffered write.
2532		 */
2533		if (written) {
2534			if (written == -EBUSY)
2535				return 0;
2536			goto out;
2537		}
2538	}
2539
2540	data = *from;
2541	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543	/*
2544	 * Finally, try again to invalidate clean pages which might have been
2545	 * cached by non-direct readahead, or faulted in by get_user_pages()
2546	 * if the source of the write was an mmap'ed region of the file
2547	 * we're writing.  Either one is a pretty crazy thing to do,
2548	 * so we don't support it 100%.  If this invalidation
2549	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2550	 */
2551	if (mapping->nrpages) {
2552		invalidate_inode_pages2_range(mapping,
2553					      pos >> PAGE_SHIFT, end);
2554	}
2555
2556	if (written > 0) {
2557		pos += written;
2558		iov_iter_advance(from, written);
2559		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560			i_size_write(inode, pos);
2561			mark_inode_dirty(inode);
2562		}
2563		iocb->ki_pos = pos;
2564	}
 
 
2565out:
2566	return written;
2567}
2568EXPORT_SYMBOL(generic_file_direct_write);
2569
2570/*
2571 * Find or create a page at the given pagecache position. Return the locked
2572 * page. This function is specifically for buffered writes.
2573 */
2574struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575					pgoff_t index, unsigned flags)
2576{
2577	struct page *page;
2578	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
2580	if (flags & AOP_FLAG_NOFS)
2581		fgp_flags |= FGP_NOFS;
2582
2583	page = pagecache_get_page(mapping, index, fgp_flags,
2584			mapping_gfp_mask(mapping));
2585	if (page)
2586		wait_for_stable_page(page);
2587
2588	return page;
2589}
2590EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592ssize_t generic_perform_write(struct file *file,
2593				struct iov_iter *i, loff_t pos)
2594{
 
 
2595	struct address_space *mapping = file->f_mapping;
2596	const struct address_space_operations *a_ops = mapping->a_ops;
2597	long status = 0;
2598	ssize_t written = 0;
2599	unsigned int flags = 0;
2600
2601	/*
2602	 * Copies from kernel address space cannot fail (NFSD is a big user).
2603	 */
2604	if (!iter_is_iovec(i))
2605		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607	do {
2608		struct page *page;
2609		unsigned long offset;	/* Offset into pagecache page */
2610		unsigned long bytes;	/* Bytes to write to page */
2611		size_t copied;		/* Bytes copied from user */
2612		void *fsdata;
2613
2614		offset = (pos & (PAGE_SIZE - 1));
2615		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616						iov_iter_count(i));
2617
2618again:
2619		/*
2620		 * Bring in the user page that we will copy from _first_.
2621		 * Otherwise there's a nasty deadlock on copying from the
2622		 * same page as we're writing to, without it being marked
2623		 * up-to-date.
2624		 *
2625		 * Not only is this an optimisation, but it is also required
2626		 * to check that the address is actually valid, when atomic
2627		 * usercopies are used, below.
2628		 */
2629		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630			status = -EFAULT;
2631			break;
2632		}
2633
2634		if (fatal_signal_pending(current)) {
2635			status = -EINTR;
2636			break;
2637		}
2638
2639		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640						&page, &fsdata);
2641		if (unlikely(status < 0))
2642			break;
2643
2644		if (mapping_writably_mapped(mapping))
2645			flush_dcache_page(page);
2646
2647		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2648		flush_dcache_page(page);
2649
2650		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651						page, fsdata);
2652		if (unlikely(status < 0))
2653			break;
2654		copied = status;
2655
 
2656		cond_resched();
2657
2658		iov_iter_advance(i, copied);
2659		if (unlikely(copied == 0)) {
2660			/*
2661			 * If we were unable to copy any data at all, we must
2662			 * fall back to a single segment length write.
2663			 *
2664			 * If we didn't fallback here, we could livelock
2665			 * because not all segments in the iov can be copied at
2666			 * once without a pagefault.
2667			 */
2668			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669						iov_iter_single_seg_count(i));
2670			goto again;
2671		}
2672		pos += copied;
2673		written += copied;
2674
2675		balance_dirty_pages_ratelimited(mapping);
2676	} while (iov_iter_count(i));
2677
2678	return written ? written : status;
2679}
2680EXPORT_SYMBOL(generic_perform_write);
2681
2682/**
2683 * __generic_file_write_iter - write data to a file
2684 * @iocb:	IO state structure (file, offset, etc.)
2685 * @from:	iov_iter with data to write
2686 *
2687 * This function does all the work needed for actually writing data to a
2688 * file. It does all basic checks, removes SUID from the file, updates
2689 * modification times and calls proper subroutines depending on whether we
2690 * do direct IO or a standard buffered write.
2691 *
2692 * It expects i_mutex to be grabbed unless we work on a block device or similar
2693 * object which does not need locking at all.
2694 *
2695 * This function does *not* take care of syncing data in case of O_SYNC write.
2696 * A caller has to handle it. This is mainly due to the fact that we want to
2697 * avoid syncing under i_mutex.
 
 
 
 
2698 */
2699ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2700{
2701	struct file *file = iocb->ki_filp;
2702	struct address_space * mapping = file->f_mapping;
2703	struct inode 	*inode = mapping->host;
2704	ssize_t		written = 0;
2705	ssize_t		err;
2706	ssize_t		status;
2707
2708	/* We can write back this queue in page reclaim */
2709	current->backing_dev_info = inode_to_bdi(inode);
2710	err = file_remove_privs(file);
2711	if (err)
2712		goto out;
2713
2714	err = file_update_time(file);
2715	if (err)
2716		goto out;
2717
2718	if (iocb->ki_flags & IOCB_DIRECT) {
2719		loff_t pos, endbyte;
2720
2721		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2722		/*
2723		 * If the write stopped short of completing, fall back to
2724		 * buffered writes.  Some filesystems do this for writes to
2725		 * holes, for example.  For DAX files, a buffered write will
2726		 * not succeed (even if it did, DAX does not handle dirty
2727		 * page-cache pages correctly).
2728		 */
2729		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730			goto out;
2731
2732		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 
2733		/*
2734		 * If generic_perform_write() returned a synchronous error
2735		 * then we want to return the number of bytes which were
2736		 * direct-written, or the error code if that was zero.  Note
2737		 * that this differs from normal direct-io semantics, which
2738		 * will return -EFOO even if some bytes were written.
2739		 */
2740		if (unlikely(status < 0)) {
2741			err = status;
2742			goto out;
2743		}
2744		/*
2745		 * We need to ensure that the page cache pages are written to
2746		 * disk and invalidated to preserve the expected O_DIRECT
2747		 * semantics.
2748		 */
2749		endbyte = pos + status - 1;
2750		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751		if (err == 0) {
2752			iocb->ki_pos = endbyte + 1;
2753			written += status;
2754			invalidate_mapping_pages(mapping,
2755						 pos >> PAGE_SHIFT,
2756						 endbyte >> PAGE_SHIFT);
2757		} else {
2758			/*
2759			 * We don't know how much we wrote, so just return
2760			 * the number of bytes which were direct-written
2761			 */
2762		}
2763	} else {
2764		written = generic_perform_write(file, from, iocb->ki_pos);
2765		if (likely(written > 0))
2766			iocb->ki_pos += written;
2767	}
2768out:
2769	current->backing_dev_info = NULL;
2770	return written ? written : err;
2771}
2772EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774/**
2775 * generic_file_write_iter - write data to a file
2776 * @iocb:	IO state structure
2777 * @from:	iov_iter with data to write
2778 *
2779 * This is a wrapper around __generic_file_write_iter() to be used by most
2780 * filesystems. It takes care of syncing the file in case of O_SYNC file
2781 * and acquires i_mutex as needed.
 
 
 
 
2782 */
2783ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2784{
2785	struct file *file = iocb->ki_filp;
2786	struct inode *inode = file->f_mapping->host;
2787	ssize_t ret;
2788
2789	inode_lock(inode);
2790	ret = generic_write_checks(iocb, from);
2791	if (ret > 0)
2792		ret = __generic_file_write_iter(iocb, from);
2793	inode_unlock(inode);
2794
2795	if (ret > 0) {
2796		ssize_t err;
2797
2798		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799		if (err < 0)
2800			ret = err;
2801	}
2802	return ret;
2803}
2804EXPORT_SYMBOL(generic_file_write_iter);
2805
2806/**
2807 * try_to_release_page() - release old fs-specific metadata on a page
2808 *
2809 * @page: the page which the kernel is trying to free
2810 * @gfp_mask: memory allocation flags (and I/O mode)
2811 *
2812 * The address_space is to try to release any data against the page
2813 * (presumably at page->private).  If the release was successful, return `1'.
2814 * Otherwise return zero.
2815 *
2816 * This may also be called if PG_fscache is set on a page, indicating that the
2817 * page is known to the local caching routines.
2818 *
2819 * The @gfp_mask argument specifies whether I/O may be performed to release
2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
 
2821 *
 
2822 */
2823int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824{
2825	struct address_space * const mapping = page->mapping;
2826
2827	BUG_ON(!PageLocked(page));
2828	if (PageWriteback(page))
2829		return 0;
2830
2831	if (mapping && mapping->a_ops->releasepage)
2832		return mapping->a_ops->releasepage(page, gfp_mask);
2833	return try_to_free_buffers(page);
2834}
2835
2836EXPORT_SYMBOL(try_to_release_page);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/mman.h>
  26#include <linux/pagemap.h>
  27#include <linux/file.h>
  28#include <linux/uio.h>
  29#include <linux/error-injection.h>
  30#include <linux/hash.h>
  31#include <linux/writeback.h>
  32#include <linux/backing-dev.h>
  33#include <linux/pagevec.h>
 
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
 
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/shmem_fs.h>
  39#include <linux/rmap.h>
  40#include <linux/delayacct.h>
  41#include <linux/psi.h>
  42#include <linux/ramfs.h>
  43#include <linux/page_idle.h>
  44#include <linux/migrate.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->block_dirty_folio)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_rwsem
  80 *    ->invalidate_lock		(acquired by fs in truncate path)
  81 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  82 *
  83 *  ->mmap_lock
  84 *    ->i_mmap_rwsem
  85 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  86 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  87 *
  88 *  ->mmap_lock
  89 *    ->invalidate_lock		(filemap_fault)
  90 *      ->lock_page		(filemap_fault, access_process_vm)
  91 *
  92 *  ->i_rwsem			(generic_perform_write)
  93 *    ->mmap_lock		(fault_in_readable->do_page_fault)
  94 *
  95 *  bdi->wb.list_lock
  96 *    sb_lock			(fs/fs-writeback.c)
  97 *    ->i_pages lock		(__sync_single_inode)
  98 *
  99 *  ->i_mmap_rwsem
 100 *    ->anon_vma.lock		(vma_adjust)
 101 *
 102 *  ->anon_vma.lock
 103 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 104 *
 105 *  ->page_table_lock or pte_lock
 106 *    ->swap_lock		(try_to_unmap_one)
 107 *    ->private_lock		(try_to_unmap_one)
 108 *    ->i_pages lock		(try_to_unmap_one)
 109 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 110 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 111 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 113 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 114 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 115 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 116 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 117 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 118 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 119 *
 120 * ->i_mmap_rwsem
 121 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 122 */
 123
 124static void page_cache_delete(struct address_space *mapping,
 125				   struct folio *folio, void *shadow)
 126{
 127	XA_STATE(xas, &mapping->i_pages, folio->index);
 128	long nr = 1;
 
 
 
 129
 130	mapping_set_update(&xas, mapping);
 131
 132	/* hugetlb pages are represented by a single entry in the xarray */
 133	if (!folio_test_hugetlb(folio)) {
 134		xas_set_order(&xas, folio->index, folio_order(folio));
 135		nr = folio_nr_pages(folio);
 
 
 
 
 
 
 
 136	}
 
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 
 
 
 
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143	folio->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 
 
 
 
 
 
 
 
 
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 
 
 
 
 150{
 151	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = page_mapcount(&folio->page);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				page_mapcount_reset(&folio->page);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 179		return;
 180
 181	nr = folio_nr_pages(folio);
 
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 224}
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 234
 235	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 238}
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 310
 311		i++;
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 320{
 321	int i;
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 
 342}
 
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct page *page;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		page = xas_find(&xas, max);
 483		if (xas_retry(&xas, page))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(page))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return page != NULL;
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct pagevec pvec;
 507	int nr_pages;
 
 508
 509	pagevec_init(&pvec);
 510	while (index <= end) {
 
 
 
 
 
 
 511		unsigned i;
 512
 513		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 514				end, PAGECACHE_TAG_WRITEBACK);
 515		if (!nr_pages)
 516			break;
 517
 518		for (i = 0; i < nr_pages; i++) {
 519			struct page *page = pvec.pages[i];
 520
 
 
 
 
 521			wait_on_page_writeback(page);
 522			ClearPageError(page);
 
 523		}
 524		pagevec_release(&pvec);
 525		cond_resched();
 526	}
 
 
 527}
 528
 529/**
 530 * filemap_fdatawait_range - wait for writeback to complete
 531 * @mapping:		address space structure to wait for
 532 * @start_byte:		offset in bytes where the range starts
 533 * @end_byte:		offset in bytes where the range ends (inclusive)
 534 *
 535 * Walk the list of under-writeback pages of the given address space
 536 * in the given range and wait for all of them.  Check error status of
 537 * the address space and return it.
 538 *
 539 * Since the error status of the address space is cleared by this function,
 540 * callers are responsible for checking the return value and handling and/or
 541 * reporting the error.
 542 *
 543 * Return: error status of the address space.
 544 */
 545int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 546			    loff_t end_byte)
 547{
 548	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 549	return filemap_check_errors(mapping);
 
 
 
 
 
 
 550}
 551EXPORT_SYMBOL(filemap_fdatawait_range);
 552
 553/**
 554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 555 * @mapping:		address space structure to wait for
 556 * @start_byte:		offset in bytes where the range starts
 557 * @end_byte:		offset in bytes where the range ends (inclusive)
 558 *
 559 * Walk the list of under-writeback pages of the given address space in the
 560 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 561 * this function does not clear error status of the address space.
 562 *
 563 * Use this function if callers don't handle errors themselves.  Expected
 564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 565 * fsfreeze(8)
 566 */
 567int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 568		loff_t start_byte, loff_t end_byte)
 569{
 570	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 571	return filemap_check_and_keep_errors(mapping);
 572}
 573EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 574
 575/**
 576 * file_fdatawait_range - wait for writeback to complete
 577 * @file:		file pointing to address space structure to wait for
 578 * @start_byte:		offset in bytes where the range starts
 579 * @end_byte:		offset in bytes where the range ends (inclusive)
 580 *
 581 * Walk the list of under-writeback pages of the address space that file
 582 * refers to, in the given range and wait for all of them.  Check error
 583 * status of the address space vs. the file->f_wb_err cursor and return it.
 584 *
 585 * Since the error status of the file is advanced by this function,
 586 * callers are responsible for checking the return value and handling and/or
 587 * reporting the error.
 588 *
 589 * Return: error status of the address space vs. the file->f_wb_err cursor.
 590 */
 591int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 592{
 593	struct address_space *mapping = file->f_mapping;
 594
 595	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 596	return file_check_and_advance_wb_err(file);
 597}
 598EXPORT_SYMBOL(file_fdatawait_range);
 599
 600/**
 601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 602 * @mapping: address space structure to wait for
 603 *
 604 * Walk the list of under-writeback pages of the given address space
 605 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 606 * does not clear error status of the address space.
 607 *
 608 * Use this function if callers don't handle errors themselves.  Expected
 609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 610 * fsfreeze(8)
 611 *
 612 * Return: error status of the address space.
 613 */
 614int filemap_fdatawait_keep_errors(struct address_space *mapping)
 615{
 616	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 617	return filemap_check_and_keep_errors(mapping);
 618}
 619EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 620
 621/* Returns true if writeback might be needed or already in progress. */
 622static bool mapping_needs_writeback(struct address_space *mapping)
 623{
 624	return mapping->nrpages;
 625}
 
 626
 627bool filemap_range_has_writeback(struct address_space *mapping,
 628				 loff_t start_byte, loff_t end_byte)
 629{
 630	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 631	pgoff_t max = end_byte >> PAGE_SHIFT;
 632	struct folio *folio;
 633
 634	if (end_byte < start_byte)
 635		return false;
 636
 637	rcu_read_lock();
 638	xas_for_each(&xas, folio, max) {
 639		if (xas_retry(&xas, folio))
 640			continue;
 641		if (xa_is_value(folio))
 642			continue;
 643		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 644				folio_test_writeback(folio))
 645			break;
 
 
 
 
 646	}
 647	rcu_read_unlock();
 648	return folio != NULL;
 649}
 650EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 651
 652/**
 653 * filemap_write_and_wait_range - write out & wait on a file range
 654 * @mapping:	the address_space for the pages
 655 * @lstart:	offset in bytes where the range starts
 656 * @lend:	offset in bytes where the range ends (inclusive)
 657 *
 658 * Write out and wait upon file offsets lstart->lend, inclusive.
 659 *
 660 * Note that @lend is inclusive (describes the last byte to be written) so
 661 * that this function can be used to write to the very end-of-file (end = -1).
 662 *
 663 * Return: error status of the address space.
 664 */
 665int filemap_write_and_wait_range(struct address_space *mapping,
 666				 loff_t lstart, loff_t lend)
 667{
 668	int err = 0, err2;
 669
 670	if (lend < lstart)
 671		return 0;
 672
 673	if (mapping_needs_writeback(mapping)) {
 674		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 675						 WB_SYNC_ALL);
 676		/*
 677		 * Even if the above returned error, the pages may be
 678		 * written partially (e.g. -ENOSPC), so we wait for it.
 679		 * But the -EIO is special case, it may indicate the worst
 680		 * thing (e.g. bug) happened, so we avoid waiting for it.
 681		 */
 682		if (err != -EIO)
 683			__filemap_fdatawait_range(mapping, lstart, lend);
 
 684	}
 685	err2 = filemap_check_errors(mapping);
 686	if (!err)
 687		err = err2;
 688	return err;
 689}
 690EXPORT_SYMBOL(filemap_write_and_wait_range);
 691
 692void __filemap_set_wb_err(struct address_space *mapping, int err)
 693{
 694	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 695
 696	trace_filemap_set_wb_err(mapping, eseq);
 697}
 698EXPORT_SYMBOL(__filemap_set_wb_err);
 699
 700/**
 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 702 * 				   and advance wb_err to current one
 703 * @file: struct file on which the error is being reported
 704 *
 705 * When userland calls fsync (or something like nfsd does the equivalent), we
 706 * want to report any writeback errors that occurred since the last fsync (or
 707 * since the file was opened if there haven't been any).
 708 *
 709 * Grab the wb_err from the mapping. If it matches what we have in the file,
 710 * then just quickly return 0. The file is all caught up.
 711 *
 712 * If it doesn't match, then take the mapping value, set the "seen" flag in
 713 * it and try to swap it into place. If it works, or another task beat us
 714 * to it with the new value, then update the f_wb_err and return the error
 715 * portion. The error at this point must be reported via proper channels
 716 * (a'la fsync, or NFS COMMIT operation, etc.).
 717 *
 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 719 * value is protected by the f_lock since we must ensure that it reflects
 720 * the latest value swapped in for this file descriptor.
 721 *
 722 * Return: %0 on success, negative error code otherwise.
 723 */
 724int file_check_and_advance_wb_err(struct file *file)
 725{
 726	int err = 0;
 727	errseq_t old = READ_ONCE(file->f_wb_err);
 728	struct address_space *mapping = file->f_mapping;
 729
 730	/* Locklessly handle the common case where nothing has changed */
 731	if (errseq_check(&mapping->wb_err, old)) {
 732		/* Something changed, must use slow path */
 733		spin_lock(&file->f_lock);
 734		old = file->f_wb_err;
 735		err = errseq_check_and_advance(&mapping->wb_err,
 736						&file->f_wb_err);
 737		trace_file_check_and_advance_wb_err(file, old);
 738		spin_unlock(&file->f_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	}
 740
 741	/*
 742	 * We're mostly using this function as a drop in replacement for
 743	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 744	 * that the legacy code would have had on these flags.
 745	 */
 746	clear_bit(AS_EIO, &mapping->flags);
 747	clear_bit(AS_ENOSPC, &mapping->flags);
 748	return err;
 749}
 750EXPORT_SYMBOL(file_check_and_advance_wb_err);
 751
 752/**
 753 * file_write_and_wait_range - write out & wait on a file range
 754 * @file:	file pointing to address_space with pages
 755 * @lstart:	offset in bytes where the range starts
 756 * @lend:	offset in bytes where the range ends (inclusive)
 757 *
 758 * Write out and wait upon file offsets lstart->lend, inclusive.
 759 *
 760 * Note that @lend is inclusive (describes the last byte to be written) so
 761 * that this function can be used to write to the very end-of-file (end = -1).
 762 *
 763 * After writing out and waiting on the data, we check and advance the
 764 * f_wb_err cursor to the latest value, and return any errors detected there.
 765 *
 766 * Return: %0 on success, negative error code otherwise.
 767 */
 768int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 769{
 770	int err = 0, err2;
 771	struct address_space *mapping = file->f_mapping;
 
 772
 773	if (lend < lstart)
 774		return 0;
 
 
 
 
 775
 776	if (mapping_needs_writeback(mapping)) {
 777		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 778						 WB_SYNC_ALL);
 779		/* See comment of filemap_write_and_wait() */
 780		if (err != -EIO)
 781			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782	}
 783	err2 = file_check_and_advance_wb_err(file);
 784	if (!err)
 785		err = err2;
 786	return err;
 787}
 788EXPORT_SYMBOL(file_write_and_wait_range);
 789
 790/**
 791 * replace_page_cache_folio - replace a pagecache folio with a new one
 792 * @old:	folio to be replaced
 793 * @new:	folio to replace with
 794 *
 795 * This function replaces a folio in the pagecache with a new one.  On
 796 * success it acquires the pagecache reference for the new folio and
 797 * drops it for the old folio.  Both the old and new folios must be
 798 * locked.  This function does not add the new folio to the LRU, the
 799 * caller must do that.
 800 *
 801 * The remove + add is atomic.  This function cannot fail.
 802 */
 803void replace_page_cache_folio(struct folio *old, struct folio *new)
 804{
 805	struct address_space *mapping = old->mapping;
 806	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 807	pgoff_t offset = old->index;
 808	XA_STATE(xas, &mapping->i_pages, offset);
 809
 810	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 811	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 812	VM_BUG_ON_FOLIO(new->mapping, new);
 813
 814	folio_get(new);
 815	new->mapping = mapping;
 816	new->index = offset;
 817
 818	mem_cgroup_migrate(old, new);
 819
 820	xas_lock_irq(&xas);
 821	xas_store(&xas, new);
 822
 823	old->mapping = NULL;
 824	/* hugetlb pages do not participate in page cache accounting. */
 825	if (!folio_test_hugetlb(old))
 826		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 827	if (!folio_test_hugetlb(new))
 828		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 829	if (folio_test_swapbacked(old))
 830		__lruvec_stat_sub_folio(old, NR_SHMEM);
 831	if (folio_test_swapbacked(new))
 832		__lruvec_stat_add_folio(new, NR_SHMEM);
 833	xas_unlock_irq(&xas);
 834	if (free_folio)
 835		free_folio(old);
 836	folio_put(old);
 837}
 838EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 839
 840noinline int __filemap_add_folio(struct address_space *mapping,
 841		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 842{
 843	XA_STATE(xas, &mapping->i_pages, index);
 844	int huge = folio_test_hugetlb(folio);
 845	bool charged = false;
 846	long nr = 1;
 847
 848	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 849	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 850	mapping_set_update(&xas, mapping);
 851
 852	if (!huge) {
 853		int error = mem_cgroup_charge(folio, NULL, gfp);
 854		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 855		if (error)
 856			return error;
 857		charged = true;
 858		xas_set_order(&xas, index, folio_order(folio));
 859		nr = folio_nr_pages(folio);
 860	}
 861
 862	gfp &= GFP_RECLAIM_MASK;
 863	folio_ref_add(folio, nr);
 864	folio->mapping = mapping;
 865	folio->index = xas.xa_index;
 
 
 866
 867	do {
 868		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 869		void *entry, *old = NULL;
 
 
 
 
 
 
 870
 871		if (order > folio_order(folio))
 872			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 873					order, gfp);
 874		xas_lock_irq(&xas);
 875		xas_for_each_conflict(&xas, entry) {
 876			old = entry;
 877			if (!xa_is_value(entry)) {
 878				xas_set_err(&xas, -EEXIST);
 879				goto unlock;
 880			}
 881		}
 882
 883		if (old) {
 884			if (shadowp)
 885				*shadowp = old;
 886			/* entry may have been split before we acquired lock */
 887			order = xa_get_order(xas.xa, xas.xa_index);
 888			if (order > folio_order(folio)) {
 889				/* How to handle large swap entries? */
 890				BUG_ON(shmem_mapping(mapping));
 891				xas_split(&xas, old, order);
 892				xas_reset(&xas);
 893			}
 894		}
 895
 896		xas_store(&xas, folio);
 897		if (xas_error(&xas))
 898			goto unlock;
 899
 900		mapping->nrpages += nr;
 901
 902		/* hugetlb pages do not participate in page cache accounting */
 903		if (!huge) {
 904			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 905			if (folio_test_pmd_mappable(folio))
 906				__lruvec_stat_mod_folio(folio,
 907						NR_FILE_THPS, nr);
 908		}
 909unlock:
 910		xas_unlock_irq(&xas);
 911	} while (xas_nomem(&xas, gfp));
 912
 913	if (xas_error(&xas))
 914		goto error;
 915
 916	trace_mm_filemap_add_to_page_cache(folio);
 917	return 0;
 918error:
 919	if (charged)
 920		mem_cgroup_uncharge(folio);
 921	folio->mapping = NULL;
 922	/* Leave page->index set: truncation relies upon it */
 923	folio_put_refs(folio, nr);
 924	return xas_error(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 927
 928int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 929				pgoff_t index, gfp_t gfp)
 930{
 931	void *shadow = NULL;
 932	int ret;
 933
 934	__folio_set_locked(folio);
 935	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 
 936	if (unlikely(ret))
 937		__folio_clear_locked(folio);
 938	else {
 939		/*
 940		 * The folio might have been evicted from cache only
 941		 * recently, in which case it should be activated like
 942		 * any other repeatedly accessed folio.
 943		 * The exception is folios getting rewritten; evicting other
 944		 * data from the working set, only to cache data that will
 945		 * get overwritten with something else, is a waste of memory.
 946		 */
 947		WARN_ON_ONCE(folio_test_active(folio));
 948		if (!(gfp & __GFP_WRITE) && shadow)
 949			workingset_refault(folio, shadow);
 950		folio_add_lru(folio);
 951	}
 952	return ret;
 953}
 954EXPORT_SYMBOL_GPL(filemap_add_folio);
 955
 956#ifdef CONFIG_NUMA
 957struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 958{
 959	int n;
 960	struct folio *folio;
 961
 962	if (cpuset_do_page_mem_spread()) {
 963		unsigned int cpuset_mems_cookie;
 964		do {
 965			cpuset_mems_cookie = read_mems_allowed_begin();
 966			n = cpuset_mem_spread_node();
 967			folio = __folio_alloc_node(gfp, order, n);
 968		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 969
 970		return folio;
 971	}
 972	return folio_alloc(gfp, order);
 973}
 974EXPORT_SYMBOL(filemap_alloc_folio);
 975#endif
 976
 977/*
 978 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 979 *
 980 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 981 *
 982 * @mapping1: the first mapping to lock
 983 * @mapping2: the second mapping to lock
 984 */
 985void filemap_invalidate_lock_two(struct address_space *mapping1,
 986				 struct address_space *mapping2)
 987{
 988	if (mapping1 > mapping2)
 989		swap(mapping1, mapping2);
 990	if (mapping1)
 991		down_write(&mapping1->invalidate_lock);
 992	if (mapping2 && mapping1 != mapping2)
 993		down_write_nested(&mapping2->invalidate_lock, 1);
 994}
 995EXPORT_SYMBOL(filemap_invalidate_lock_two);
 996
 997/*
 998 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
 999 *
1000 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1001 *
1002 * @mapping1: the first mapping to unlock
1003 * @mapping2: the second mapping to unlock
1004 */
1005void filemap_invalidate_unlock_two(struct address_space *mapping1,
1006				   struct address_space *mapping2)
1007{
1008	if (mapping1)
1009		up_write(&mapping1->invalidate_lock);
1010	if (mapping2 && mapping1 != mapping2)
1011		up_write(&mapping2->invalidate_lock);
1012}
1013EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1014
1015/*
1016 * In order to wait for pages to become available there must be
1017 * waitqueues associated with pages. By using a hash table of
1018 * waitqueues where the bucket discipline is to maintain all
1019 * waiters on the same queue and wake all when any of the pages
1020 * become available, and for the woken contexts to check to be
1021 * sure the appropriate page became available, this saves space
1022 * at a cost of "thundering herd" phenomena during rare hash
1023 * collisions.
1024 */
1025#define PAGE_WAIT_TABLE_BITS 8
1026#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1027static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1028
1029static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1030{
1031	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1032}
 
1033
1034void __init pagecache_init(void)
1035{
1036	int i;
1037
1038	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1039		init_waitqueue_head(&folio_wait_table[i]);
1040
1041	page_writeback_init();
1042}
 
1043
1044/*
1045 * The page wait code treats the "wait->flags" somewhat unusually, because
1046 * we have multiple different kinds of waits, not just the usual "exclusive"
1047 * one.
1048 *
1049 * We have:
1050 *
1051 *  (a) no special bits set:
1052 *
1053 *	We're just waiting for the bit to be released, and when a waker
1054 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1055 *	and remove it from the wait queue.
1056 *
1057 *	Simple and straightforward.
1058 *
1059 *  (b) WQ_FLAG_EXCLUSIVE:
1060 *
1061 *	The waiter is waiting to get the lock, and only one waiter should
1062 *	be woken up to avoid any thundering herd behavior. We'll set the
1063 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1064 *
1065 *	This is the traditional exclusive wait.
1066 *
1067 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1068 *
1069 *	The waiter is waiting to get the bit, and additionally wants the
1070 *	lock to be transferred to it for fair lock behavior. If the lock
1071 *	cannot be taken, we stop walking the wait queue without waking
1072 *	the waiter.
1073 *
1074 *	This is the "fair lock handoff" case, and in addition to setting
1075 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1076 *	that it now has the lock.
1077 */
1078static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1079{
1080	unsigned int flags;
1081	struct wait_page_key *key = arg;
1082	struct wait_page_queue *wait_page
1083		= container_of(wait, struct wait_page_queue, wait);
1084
1085	if (!wake_page_match(wait_page, key))
1086		return 0;
1087
1088	/*
1089	 * If it's a lock handoff wait, we get the bit for it, and
1090	 * stop walking (and do not wake it up) if we can't.
1091	 */
1092	flags = wait->flags;
1093	if (flags & WQ_FLAG_EXCLUSIVE) {
1094		if (test_bit(key->bit_nr, &key->folio->flags))
1095			return -1;
1096		if (flags & WQ_FLAG_CUSTOM) {
1097			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1098				return -1;
1099			flags |= WQ_FLAG_DONE;
1100		}
1101	}
1102
1103	/*
1104	 * We are holding the wait-queue lock, but the waiter that
1105	 * is waiting for this will be checking the flags without
1106	 * any locking.
1107	 *
1108	 * So update the flags atomically, and wake up the waiter
1109	 * afterwards to avoid any races. This store-release pairs
1110	 * with the load-acquire in folio_wait_bit_common().
1111	 */
1112	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1113	wake_up_state(wait->private, mode);
1114
1115	/*
1116	 * Ok, we have successfully done what we're waiting for,
1117	 * and we can unconditionally remove the wait entry.
1118	 *
1119	 * Note that this pairs with the "finish_wait()" in the
1120	 * waiter, and has to be the absolute last thing we do.
1121	 * After this list_del_init(&wait->entry) the wait entry
1122	 * might be de-allocated and the process might even have
1123	 * exited.
1124	 */
1125	list_del_init_careful(&wait->entry);
1126	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1127}
1128
1129static void folio_wake_bit(struct folio *folio, int bit_nr)
 
1130{
1131	wait_queue_head_t *q = folio_waitqueue(folio);
1132	struct wait_page_key key;
1133	unsigned long flags;
1134	wait_queue_entry_t bookmark;
1135
1136	key.folio = folio;
1137	key.bit_nr = bit_nr;
1138	key.page_match = 0;
1139
1140	bookmark.flags = 0;
1141	bookmark.private = NULL;
1142	bookmark.func = NULL;
1143	INIT_LIST_HEAD(&bookmark.entry);
1144
1145	spin_lock_irqsave(&q->lock, flags);
1146	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1147
1148	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1149		/*
1150		 * Take a breather from holding the lock,
1151		 * allow pages that finish wake up asynchronously
1152		 * to acquire the lock and remove themselves
1153		 * from wait queue
1154		 */
1155		spin_unlock_irqrestore(&q->lock, flags);
1156		cpu_relax();
1157		spin_lock_irqsave(&q->lock, flags);
1158		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1159	}
1160
1161	/*
1162	 * It's possible to miss clearing waiters here, when we woke our page
1163	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1164	 * That's okay, it's a rare case. The next waker will clear it.
1165	 *
1166	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1167	 * other), the flag may be cleared in the course of freeing the page;
1168	 * but that is not required for correctness.
1169	 */
1170	if (!waitqueue_active(q) || !key.page_match)
1171		folio_clear_waiters(folio);
1172
1173	spin_unlock_irqrestore(&q->lock, flags);
1174}
 
1175
1176static void folio_wake(struct folio *folio, int bit)
1177{
1178	if (!folio_test_waiters(folio))
1179		return;
1180	folio_wake_bit(folio, bit);
1181}
1182
1183/*
1184 * A choice of three behaviors for folio_wait_bit_common():
1185 */
1186enum behavior {
1187	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1188			 * __folio_lock() waiting on then setting PG_locked.
1189			 */
1190	SHARED,		/* Hold ref to page and check the bit when woken, like
1191			 * folio_wait_writeback() waiting on PG_writeback.
1192			 */
1193	DROP,		/* Drop ref to page before wait, no check when woken,
1194			 * like folio_put_wait_locked() on PG_locked.
1195			 */
1196};
1197
1198/*
1199 * Attempt to check (or get) the folio flag, and mark us done
1200 * if successful.
1201 */
1202static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1203					struct wait_queue_entry *wait)
1204{
1205	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1206		if (test_and_set_bit(bit_nr, &folio->flags))
1207			return false;
1208	} else if (test_bit(bit_nr, &folio->flags))
1209		return false;
1210
1211	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1212	return true;
1213}
1214
1215/* How many times do we accept lock stealing from under a waiter? */
1216int sysctl_page_lock_unfairness = 5;
1217
1218static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1219		int state, enum behavior behavior)
1220{
1221	wait_queue_head_t *q = folio_waitqueue(folio);
1222	int unfairness = sysctl_page_lock_unfairness;
1223	struct wait_page_queue wait_page;
1224	wait_queue_entry_t *wait = &wait_page.wait;
1225	bool thrashing = false;
1226	unsigned long pflags;
1227	bool in_thrashing;
1228
1229	if (bit_nr == PG_locked &&
1230	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1231		delayacct_thrashing_start(&in_thrashing);
1232		psi_memstall_enter(&pflags);
1233		thrashing = true;
1234	}
1235
1236	init_wait(wait);
1237	wait->func = wake_page_function;
1238	wait_page.folio = folio;
1239	wait_page.bit_nr = bit_nr;
1240
1241repeat:
1242	wait->flags = 0;
1243	if (behavior == EXCLUSIVE) {
1244		wait->flags = WQ_FLAG_EXCLUSIVE;
1245		if (--unfairness < 0)
1246			wait->flags |= WQ_FLAG_CUSTOM;
1247	}
1248
1249	/*
1250	 * Do one last check whether we can get the
1251	 * page bit synchronously.
1252	 *
1253	 * Do the folio_set_waiters() marking before that
1254	 * to let any waker we _just_ missed know they
1255	 * need to wake us up (otherwise they'll never
1256	 * even go to the slow case that looks at the
1257	 * page queue), and add ourselves to the wait
1258	 * queue if we need to sleep.
1259	 *
1260	 * This part needs to be done under the queue
1261	 * lock to avoid races.
1262	 */
1263	spin_lock_irq(&q->lock);
1264	folio_set_waiters(folio);
1265	if (!folio_trylock_flag(folio, bit_nr, wait))
1266		__add_wait_queue_entry_tail(q, wait);
1267	spin_unlock_irq(&q->lock);
1268
1269	/*
1270	 * From now on, all the logic will be based on
1271	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1272	 * see whether the page bit testing has already
1273	 * been done by the wake function.
1274	 *
1275	 * We can drop our reference to the folio.
1276	 */
1277	if (behavior == DROP)
1278		folio_put(folio);
1279
1280	/*
1281	 * Note that until the "finish_wait()", or until
1282	 * we see the WQ_FLAG_WOKEN flag, we need to
1283	 * be very careful with the 'wait->flags', because
1284	 * we may race with a waker that sets them.
1285	 */
1286	for (;;) {
1287		unsigned int flags;
1288
1289		set_current_state(state);
1290
1291		/* Loop until we've been woken or interrupted */
1292		flags = smp_load_acquire(&wait->flags);
1293		if (!(flags & WQ_FLAG_WOKEN)) {
1294			if (signal_pending_state(state, current))
1295				break;
1296
1297			io_schedule();
1298			continue;
1299		}
1300
1301		/* If we were non-exclusive, we're done */
1302		if (behavior != EXCLUSIVE)
1303			break;
1304
1305		/* If the waker got the lock for us, we're done */
1306		if (flags & WQ_FLAG_DONE)
1307			break;
1308
1309		/*
1310		 * Otherwise, if we're getting the lock, we need to
1311		 * try to get it ourselves.
1312		 *
1313		 * And if that fails, we'll have to retry this all.
1314		 */
1315		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1316			goto repeat;
1317
1318		wait->flags |= WQ_FLAG_DONE;
1319		break;
1320	}
1321
1322	/*
1323	 * If a signal happened, this 'finish_wait()' may remove the last
1324	 * waiter from the wait-queues, but the folio waiters bit will remain
1325	 * set. That's ok. The next wakeup will take care of it, and trying
1326	 * to do it here would be difficult and prone to races.
1327	 */
1328	finish_wait(q, wait);
1329
1330	if (thrashing) {
1331		delayacct_thrashing_end(&in_thrashing);
1332		psi_memstall_leave(&pflags);
1333	}
1334
1335	/*
1336	 * NOTE! The wait->flags weren't stable until we've done the
1337	 * 'finish_wait()', and we could have exited the loop above due
1338	 * to a signal, and had a wakeup event happen after the signal
1339	 * test but before the 'finish_wait()'.
1340	 *
1341	 * So only after the finish_wait() can we reliably determine
1342	 * if we got woken up or not, so we can now figure out the final
1343	 * return value based on that state without races.
1344	 *
1345	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1346	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1347	 */
1348	if (behavior == EXCLUSIVE)
1349		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1350
1351	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1352}
1353
1354#ifdef CONFIG_MIGRATION
1355/**
1356 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1357 * @entry: migration swap entry.
1358 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1359 *        for pte entries, pass NULL for pmd entries.
1360 * @ptl: already locked ptl. This function will drop the lock.
1361 *
1362 * Wait for a migration entry referencing the given page to be removed. This is
1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364 * this can be called without taking a reference on the page. Instead this
1365 * should be called while holding the ptl for the migration entry referencing
1366 * the page.
1367 *
1368 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1369 *
1370 * This follows the same logic as folio_wait_bit_common() so see the comments
1371 * there.
1372 */
1373void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1374				spinlock_t *ptl)
1375{
1376	struct wait_page_queue wait_page;
1377	wait_queue_entry_t *wait = &wait_page.wait;
1378	bool thrashing = false;
1379	unsigned long pflags;
1380	bool in_thrashing;
1381	wait_queue_head_t *q;
1382	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1383
1384	q = folio_waitqueue(folio);
1385	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386		delayacct_thrashing_start(&in_thrashing);
1387		psi_memstall_enter(&pflags);
1388		thrashing = true;
1389	}
1390
1391	init_wait(wait);
1392	wait->func = wake_page_function;
1393	wait_page.folio = folio;
1394	wait_page.bit_nr = PG_locked;
1395	wait->flags = 0;
1396
1397	spin_lock_irq(&q->lock);
1398	folio_set_waiters(folio);
1399	if (!folio_trylock_flag(folio, PG_locked, wait))
1400		__add_wait_queue_entry_tail(q, wait);
1401	spin_unlock_irq(&q->lock);
1402
1403	/*
1404	 * If a migration entry exists for the page the migration path must hold
1405	 * a valid reference to the page, and it must take the ptl to remove the
1406	 * migration entry. So the page is valid until the ptl is dropped.
1407	 */
1408	if (ptep)
1409		pte_unmap_unlock(ptep, ptl);
1410	else
1411		spin_unlock(ptl);
1412
1413	for (;;) {
1414		unsigned int flags;
1415
1416		set_current_state(TASK_UNINTERRUPTIBLE);
1417
1418		/* Loop until we've been woken or interrupted */
1419		flags = smp_load_acquire(&wait->flags);
1420		if (!(flags & WQ_FLAG_WOKEN)) {
1421			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1422				break;
1423
1424			io_schedule();
1425			continue;
1426		}
1427		break;
1428	}
1429
1430	finish_wait(q, wait);
1431
1432	if (thrashing) {
1433		delayacct_thrashing_end(&in_thrashing);
1434		psi_memstall_leave(&pflags);
1435	}
1436}
1437#endif
1438
1439void folio_wait_bit(struct folio *folio, int bit_nr)
1440{
1441	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1442}
1443EXPORT_SYMBOL(folio_wait_bit);
1444
1445int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1446{
1447	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1448}
1449EXPORT_SYMBOL(folio_wait_bit_killable);
1450
1451/**
1452 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1453 * @folio: The folio to wait for.
1454 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1455 *
1456 * The caller should hold a reference on @folio.  They expect the page to
1457 * become unlocked relatively soon, but do not wish to hold up migration
1458 * (for example) by holding the reference while waiting for the folio to
1459 * come unlocked.  After this function returns, the caller should not
1460 * dereference @folio.
1461 *
1462 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1463 */
1464static int folio_put_wait_locked(struct folio *folio, int state)
1465{
1466	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1467}
1468
1469/**
1470 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1471 * @folio: Folio defining the wait queue of interest
1472 * @waiter: Waiter to add to the queue
1473 *
1474 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1475 */
1476void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1477{
1478	wait_queue_head_t *q = folio_waitqueue(folio);
1479	unsigned long flags;
1480
1481	spin_lock_irqsave(&q->lock, flags);
1482	__add_wait_queue_entry_tail(q, waiter);
1483	folio_set_waiters(folio);
1484	spin_unlock_irqrestore(&q->lock, flags);
1485}
1486EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1487
1488#ifndef clear_bit_unlock_is_negative_byte
1489
1490/*
1491 * PG_waiters is the high bit in the same byte as PG_lock.
1492 *
1493 * On x86 (and on many other architectures), we can clear PG_lock and
1494 * test the sign bit at the same time. But if the architecture does
1495 * not support that special operation, we just do this all by hand
1496 * instead.
1497 *
1498 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1499 * being cleared, but a memory barrier should be unnecessary since it is
1500 * in the same byte as PG_locked.
1501 */
1502static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1503{
1504	clear_bit_unlock(nr, mem);
1505	/* smp_mb__after_atomic(); */
1506	return test_bit(PG_waiters, mem);
1507}
1508
1509#endif
1510
1511/**
1512 * folio_unlock - Unlock a locked folio.
1513 * @folio: The folio.
1514 *
1515 * Unlocks the folio and wakes up any thread sleeping on the page lock.
 
 
 
1516 *
1517 * Context: May be called from interrupt or process context.  May not be
1518 * called from NMI context.
1519 */
1520void folio_unlock(struct folio *folio)
1521{
1522	/* Bit 7 allows x86 to check the byte's sign bit */
1523	BUILD_BUG_ON(PG_waiters != 7);
1524	BUILD_BUG_ON(PG_locked > 7);
1525	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1527		folio_wake_bit(folio, PG_locked);
1528}
1529EXPORT_SYMBOL(folio_unlock);
1530
1531/**
1532 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1533 * @folio: The folio.
1534 *
1535 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1536 * it.  The folio reference held for PG_private_2 being set is released.
1537 *
1538 * This is, for example, used when a netfs folio is being written to a local
1539 * disk cache, thereby allowing writes to the cache for the same folio to be
1540 * serialised.
1541 */
1542void folio_end_private_2(struct folio *folio)
1543{
1544	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1545	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1546	folio_wake_bit(folio, PG_private_2);
1547	folio_put(folio);
1548}
1549EXPORT_SYMBOL(folio_end_private_2);
1550
1551/**
1552 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1553 * @folio: The folio to wait on.
1554 *
1555 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1556 */
1557void folio_wait_private_2(struct folio *folio)
1558{
1559	while (folio_test_private_2(folio))
1560		folio_wait_bit(folio, PG_private_2);
1561}
1562EXPORT_SYMBOL(folio_wait_private_2);
1563
1564/**
1565 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1566 * @folio: The folio to wait on.
1567 *
1568 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1569 * fatal signal is received by the calling task.
1570 *
1571 * Return:
1572 * - 0 if successful.
1573 * - -EINTR if a fatal signal was encountered.
1574 */
1575int folio_wait_private_2_killable(struct folio *folio)
1576{
1577	int ret = 0;
1578
1579	while (folio_test_private_2(folio)) {
1580		ret = folio_wait_bit_killable(folio, PG_private_2);
1581		if (ret < 0)
1582			break;
1583	}
1584
1585	return ret;
1586}
1587EXPORT_SYMBOL(folio_wait_private_2_killable);
1588
1589/**
1590 * folio_end_writeback - End writeback against a folio.
1591 * @folio: The folio.
1592 */
1593void folio_end_writeback(struct folio *folio)
1594{
1595	/*
1596	 * folio_test_clear_reclaim() could be used here but it is an
1597	 * atomic operation and overkill in this particular case. Failing
1598	 * to shuffle a folio marked for immediate reclaim is too mild
1599	 * a gain to justify taking an atomic operation penalty at the
1600	 * end of every folio writeback.
1601	 */
1602	if (folio_test_reclaim(folio)) {
1603		folio_clear_reclaim(folio);
1604		folio_rotate_reclaimable(folio);
1605	}
1606
1607	/*
1608	 * Writeback does not hold a folio reference of its own, relying
1609	 * on truncation to wait for the clearing of PG_writeback.
1610	 * But here we must make sure that the folio is not freed and
1611	 * reused before the folio_wake().
1612	 */
1613	folio_get(folio);
1614	if (!__folio_end_writeback(folio))
1615		BUG();
1616
1617	smp_mb__after_atomic();
1618	folio_wake(folio, PG_writeback);
1619	acct_reclaim_writeback(folio);
1620	folio_put(folio);
1621}
1622EXPORT_SYMBOL(folio_end_writeback);
1623
1624/*
1625 * After completing I/O on a page, call this routine to update the page
1626 * flags appropriately
1627 */
1628void page_endio(struct page *page, bool is_write, int err)
1629{
1630	struct folio *folio = page_folio(page);
1631
1632	if (!is_write) {
1633		if (!err) {
1634			folio_mark_uptodate(folio);
1635		} else {
1636			folio_clear_uptodate(folio);
1637			folio_set_error(folio);
1638		}
1639		folio_unlock(folio);
1640	} else {
1641		if (err) {
1642			struct address_space *mapping;
1643
1644			folio_set_error(folio);
1645			mapping = folio_mapping(folio);
1646			if (mapping)
1647				mapping_set_error(mapping, err);
1648		}
1649		folio_end_writeback(folio);
1650	}
1651}
1652EXPORT_SYMBOL_GPL(page_endio);
1653
1654/**
1655 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1656 * @folio: The folio to lock
1657 */
1658void __folio_lock(struct folio *folio)
1659{
1660	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1661				EXCLUSIVE);
1662}
1663EXPORT_SYMBOL(__folio_lock);
1664
1665int __folio_lock_killable(struct folio *folio)
1666{
1667	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1668					EXCLUSIVE);
1669}
1670EXPORT_SYMBOL_GPL(__folio_lock_killable);
1671
1672static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1673{
1674	struct wait_queue_head *q = folio_waitqueue(folio);
1675	int ret = 0;
1676
1677	wait->folio = folio;
1678	wait->bit_nr = PG_locked;
1679
1680	spin_lock_irq(&q->lock);
1681	__add_wait_queue_entry_tail(q, &wait->wait);
1682	folio_set_waiters(folio);
1683	ret = !folio_trylock(folio);
1684	/*
1685	 * If we were successful now, we know we're still on the
1686	 * waitqueue as we're still under the lock. This means it's
1687	 * safe to remove and return success, we know the callback
1688	 * isn't going to trigger.
1689	 */
1690	if (!ret)
1691		__remove_wait_queue(q, &wait->wait);
1692	else
1693		ret = -EIOCBQUEUED;
1694	spin_unlock_irq(&q->lock);
1695	return ret;
1696}
 
1697
1698/*
1699 * Return values:
1700 * true - folio is locked; mmap_lock is still held.
1701 * false - folio is not locked.
1702 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1703 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1704 *     which case mmap_lock is still held.
1705 *
1706 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1707 * with the folio locked and the mmap_lock unperturbed.
1708 */
1709bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1710			 unsigned int flags)
1711{
1712	if (fault_flag_allow_retry_first(flags)) {
1713		/*
1714		 * CAUTION! In this case, mmap_lock is not released
1715		 * even though return 0.
1716		 */
1717		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1718			return false;
1719
1720		mmap_read_unlock(mm);
1721		if (flags & FAULT_FLAG_KILLABLE)
1722			folio_wait_locked_killable(folio);
1723		else
1724			folio_wait_locked(folio);
1725		return false;
1726	}
1727	if (flags & FAULT_FLAG_KILLABLE) {
1728		bool ret;
1729
1730		ret = __folio_lock_killable(folio);
1731		if (ret) {
1732			mmap_read_unlock(mm);
1733			return false;
1734		}
1735	} else {
1736		__folio_lock(folio);
 
1737	}
1738
1739	return true;
1740}
1741
1742/**
1743 * page_cache_next_miss() - Find the next gap in the page cache.
1744 * @mapping: Mapping.
1745 * @index: Index.
1746 * @max_scan: Maximum range to search.
1747 *
1748 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1749 * gap with the lowest index.
1750 *
1751 * This function may be called under the rcu_read_lock.  However, this will
1752 * not atomically search a snapshot of the cache at a single point in time.
1753 * For example, if a gap is created at index 5, then subsequently a gap is
1754 * created at index 10, page_cache_next_miss covering both indices may
1755 * return 10 if called under the rcu_read_lock.
1756 *
1757 * Return: The index of the gap if found, otherwise an index outside the
1758 * range specified (in which case 'return - index >= max_scan' will be true).
1759 * In the rare case of index wrap-around, 0 will be returned.
 
 
1760 */
1761pgoff_t page_cache_next_miss(struct address_space *mapping,
1762			     pgoff_t index, unsigned long max_scan)
1763{
1764	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1765
1766	while (max_scan--) {
1767		void *entry = xas_next(&xas);
1768		if (!entry || xa_is_value(entry))
1769			break;
1770		if (xas.xa_index == 0)
 
1771			break;
1772	}
1773
1774	return xas.xa_index;
1775}
1776EXPORT_SYMBOL(page_cache_next_miss);
1777
1778/**
1779 * page_cache_prev_miss() - Find the previous gap in the page cache.
1780 * @mapping: Mapping.
1781 * @index: Index.
1782 * @max_scan: Maximum range to search.
1783 *
1784 * Search the range [max(index - max_scan + 1, 0), index] for the
1785 * gap with the highest index.
1786 *
1787 * This function may be called under the rcu_read_lock.  However, this will
1788 * not atomically search a snapshot of the cache at a single point in time.
1789 * For example, if a gap is created at index 10, then subsequently a gap is
1790 * created at index 5, page_cache_prev_miss() covering both indices may
1791 * return 5 if called under the rcu_read_lock.
1792 *
1793 * Return: The index of the gap if found, otherwise an index outside the
1794 * range specified (in which case 'index - return >= max_scan' will be true).
1795 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
 
1796 */
1797pgoff_t page_cache_prev_miss(struct address_space *mapping,
1798			     pgoff_t index, unsigned long max_scan)
1799{
1800	XA_STATE(xas, &mapping->i_pages, index);
1801
1802	while (max_scan--) {
1803		void *entry = xas_prev(&xas);
1804		if (!entry || xa_is_value(entry))
 
 
1805			break;
1806		if (xas.xa_index == ULONG_MAX)
 
1807			break;
1808	}
1809
1810	return xas.xa_index;
1811}
1812EXPORT_SYMBOL(page_cache_prev_miss);
1813
1814/*
1815 * Lockless page cache protocol:
1816 * On the lookup side:
1817 * 1. Load the folio from i_pages
1818 * 2. Increment the refcount if it's not zero
1819 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1820 *
1821 * On the removal side:
1822 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1823 * B. Remove the page from i_pages
1824 * C. Return the page to the page allocator
1825 *
1826 * This means that any page may have its reference count temporarily
1827 * increased by a speculative page cache (or fast GUP) lookup as it can
1828 * be allocated by another user before the RCU grace period expires.
1829 * Because the refcount temporarily acquired here may end up being the
1830 * last refcount on the page, any page allocation must be freeable by
1831 * folio_put().
1832 */
1833
1834/*
1835 * mapping_get_entry - Get a page cache entry.
1836 * @mapping: the address_space to search
1837 * @index: The page cache index.
1838 *
1839 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1840 * it is returned with an increased refcount.  If it is a shadow entry
1841 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1842 * it is returned without further action.
1843 *
1844 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
 
 
 
1845 */
1846static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1847{
1848	XA_STATE(xas, &mapping->i_pages, index);
1849	struct folio *folio;
1850
1851	rcu_read_lock();
1852repeat:
1853	xas_reset(&xas);
1854	folio = xas_load(&xas);
1855	if (xas_retry(&xas, folio))
1856		goto repeat;
1857	/*
1858	 * A shadow entry of a recently evicted page, or a swap entry from
1859	 * shmem/tmpfs.  Return it without attempting to raise page count.
1860	 */
1861	if (!folio || xa_is_value(folio))
1862		goto out;
 
 
 
 
 
 
 
 
1863
1864	if (!folio_try_get_rcu(folio))
1865		goto repeat;
1866
1867	if (unlikely(folio != xas_reload(&xas))) {
1868		folio_put(folio);
1869		goto repeat;
 
 
 
1870	}
1871out:
1872	rcu_read_unlock();
1873
1874	return folio;
1875}
 
1876
1877/**
1878 * __filemap_get_folio - Find and get a reference to a folio.
1879 * @mapping: The address_space to search.
1880 * @index: The page index.
1881 * @fgp_flags: %FGP flags modify how the folio is returned.
1882 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1883 *
1884 * Looks up the page cache entry at @mapping & @index.
1885 *
1886 * @fgp_flags can be zero or more of these flags:
1887 *
1888 * * %FGP_ACCESSED - The folio will be marked accessed.
1889 * * %FGP_LOCK - The folio is returned locked.
1890 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1891 *   instead of allocating a new folio to replace it.
1892 * * %FGP_CREAT - If no page is present then a new page is allocated using
1893 *   @gfp and added to the page cache and the VM's LRU list.
1894 *   The page is returned locked and with an increased refcount.
1895 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1896 *   page is already in cache.  If the page was allocated, unlock it before
1897 *   returning so the caller can do the same dance.
1898 * * %FGP_WRITE - The page will be written to by the caller.
1899 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1900 * * %FGP_NOWAIT - Don't get blocked by page lock.
1901 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1902 *
1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904 * if the %GFP flags specified for %FGP_CREAT are atomic.
 
1905 *
1906 * If there is a page cache page, it is returned with an increased refcount.
 
 
 
1907 *
1908 * Return: The found folio or %NULL otherwise.
1909 */
1910struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911		int fgp_flags, gfp_t gfp)
1912{
1913	struct folio *folio;
1914
1915repeat:
1916	folio = mapping_get_entry(mapping, index);
1917	if (xa_is_value(folio)) {
1918		if (fgp_flags & FGP_ENTRY)
1919			return folio;
1920		folio = NULL;
 
 
 
 
 
1921	}
1922	if (!folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923		goto no_page;
1924
1925	if (fgp_flags & FGP_LOCK) {
1926		if (fgp_flags & FGP_NOWAIT) {
1927			if (!folio_trylock(folio)) {
1928				folio_put(folio);
1929				return NULL;
1930			}
1931		} else {
1932			folio_lock(folio);
1933		}
1934
1935		/* Has the page been truncated? */
1936		if (unlikely(folio->mapping != mapping)) {
1937			folio_unlock(folio);
1938			folio_put(folio);
1939			goto repeat;
1940		}
1941		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1942	}
1943
1944	if (fgp_flags & FGP_ACCESSED)
1945		folio_mark_accessed(folio);
1946	else if (fgp_flags & FGP_WRITE) {
1947		/* Clear idle flag for buffer write */
1948		if (folio_test_idle(folio))
1949			folio_clear_idle(folio);
1950	}
1951
1952	if (fgp_flags & FGP_STABLE)
1953		folio_wait_stable(folio);
1954no_page:
1955	if (!folio && (fgp_flags & FGP_CREAT)) {
1956		int err;
1957		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1958			gfp |= __GFP_WRITE;
1959		if (fgp_flags & FGP_NOFS)
1960			gfp &= ~__GFP_FS;
1961		if (fgp_flags & FGP_NOWAIT) {
1962			gfp &= ~GFP_KERNEL;
1963			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1964		}
1965
1966		folio = filemap_alloc_folio(gfp, 0);
1967		if (!folio)
1968			return NULL;
1969
1970		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1971			fgp_flags |= FGP_LOCK;
1972
1973		/* Init accessed so avoid atomic mark_page_accessed later */
1974		if (fgp_flags & FGP_ACCESSED)
1975			__folio_set_referenced(folio);
1976
1977		err = filemap_add_folio(mapping, folio, index, gfp);
 
1978		if (unlikely(err)) {
1979			folio_put(folio);
1980			folio = NULL;
1981			if (err == -EEXIST)
1982				goto repeat;
1983		}
1984
1985		/*
1986		 * filemap_add_folio locks the page, and for mmap
1987		 * we expect an unlocked page.
1988		 */
1989		if (folio && (fgp_flags & FGP_FOR_MMAP))
1990			folio_unlock(folio);
1991	}
1992
1993	return folio;
1994}
1995EXPORT_SYMBOL(__filemap_get_folio);
1996
1997static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1998		xa_mark_t mark)
1999{
2000	struct folio *folio;
2001
2002retry:
2003	if (mark == XA_PRESENT)
2004		folio = xas_find(xas, max);
2005	else
2006		folio = xas_find_marked(xas, max, mark);
2007
2008	if (xas_retry(xas, folio))
2009		goto retry;
2010	/*
2011	 * A shadow entry of a recently evicted page, a swap
2012	 * entry from shmem/tmpfs or a DAX entry.  Return it
2013	 * without attempting to raise page count.
2014	 */
2015	if (!folio || xa_is_value(folio))
2016		return folio;
2017
2018	if (!folio_try_get_rcu(folio))
2019		goto reset;
2020
2021	if (unlikely(folio != xas_reload(xas))) {
2022		folio_put(folio);
2023		goto reset;
2024	}
2025
2026	return folio;
2027reset:
2028	xas_reset(xas);
2029	goto retry;
2030}
 
2031
2032/**
2033 * find_get_entries - gang pagecache lookup
2034 * @mapping:	The address_space to search
2035 * @start:	The starting page cache index
2036 * @end:	The final page index (inclusive).
2037 * @fbatch:	Where the resulting entries are placed.
2038 * @indices:	The cache indices corresponding to the entries in @entries
2039 *
2040 * find_get_entries() will search for and return a batch of entries in
2041 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2042 * takes a reference on any actual folios it returns.
 
 
 
 
 
2043 *
2044 * The entries have ascending indexes.  The indices may not be consecutive
2045 * due to not-present entries or large folios.
2046 *
2047 * Any shadow entries of evicted folios, or swap entries from
2048 * shmem/tmpfs, are included in the returned array.
2049 *
2050 * Return: The number of entries which were found.
 
2051 */
2052unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2053		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054{
2055	XA_STATE(xas, &mapping->i_pages, *start);
2056	struct folio *folio;
 
 
 
 
 
2057
2058	rcu_read_lock();
2059	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2060		indices[fbatch->nr] = xas.xa_index;
2061		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062			break;
2063	}
2064	rcu_read_unlock();
2065
2066	if (folio_batch_count(fbatch)) {
2067		unsigned long nr = 1;
2068		int idx = folio_batch_count(fbatch) - 1;
2069
2070		folio = fbatch->folios[idx];
2071		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2072			nr = folio_nr_pages(folio);
2073		*start = indices[idx] + nr;
2074	}
2075	return folio_batch_count(fbatch);
2076}
2077
2078/**
2079 * find_lock_entries - Find a batch of pagecache entries.
2080 * @mapping:	The address_space to search.
2081 * @start:	The starting page cache index.
2082 * @end:	The final page index (inclusive).
2083 * @fbatch:	Where the resulting entries are placed.
2084 * @indices:	The cache indices of the entries in @fbatch.
2085 *
2086 * find_lock_entries() will return a batch of entries from @mapping.
2087 * Swap, shadow and DAX entries are included.  Folios are returned
2088 * locked and with an incremented refcount.  Folios which are locked
2089 * by somebody else or under writeback are skipped.  Folios which are
2090 * partially outside the range are not returned.
2091 *
2092 * The entries have ascending indexes.  The indices may not be consecutive
2093 * due to not-present entries, large folios, folios which could not be
2094 * locked or folios under writeback.
2095 *
2096 * Return: The number of entries which were found.
2097 */
2098unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2099		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2100{
2101	XA_STATE(xas, &mapping->i_pages, *start);
2102	struct folio *folio;
 
 
 
 
2103
2104	rcu_read_lock();
2105	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2106		if (!xa_is_value(folio)) {
2107			if (folio->index < *start)
2108				goto put;
2109			if (folio->index + folio_nr_pages(folio) - 1 > end)
2110				goto put;
2111			if (!folio_trylock(folio))
2112				goto put;
2113			if (folio->mapping != mapping ||
2114			    folio_test_writeback(folio))
2115				goto unlock;
2116			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2117					folio);
 
 
 
 
 
2118		}
2119		indices[fbatch->nr] = xas.xa_index;
2120		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
2121			break;
2122		continue;
2123unlock:
2124		folio_unlock(folio);
2125put:
2126		folio_put(folio);
2127	}
 
2128	rcu_read_unlock();
2129
2130	if (folio_batch_count(fbatch)) {
2131		unsigned long nr = 1;
2132		int idx = folio_batch_count(fbatch) - 1;
2133
2134		folio = fbatch->folios[idx];
2135		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2136			nr = folio_nr_pages(folio);
2137		*start = indices[idx] + nr;
2138	}
2139	return folio_batch_count(fbatch);
2140}
2141
2142/**
2143 * filemap_get_folios - Get a batch of folios
2144 * @mapping:	The address_space to search
2145 * @start:	The starting page index
2146 * @end:	The final page index (inclusive)
2147 * @fbatch:	The batch to fill.
2148 *
2149 * Search for and return a batch of folios in the mapping starting at
2150 * index @start and up to index @end (inclusive).  The folios are returned
2151 * in @fbatch with an elevated reference count.
2152 *
2153 * The first folio may start before @start; if it does, it will contain
2154 * @start.  The final folio may extend beyond @end; if it does, it will
2155 * contain @end.  The folios have ascending indices.  There may be gaps
2156 * between the folios if there are indices which have no folio in the
2157 * page cache.  If folios are added to or removed from the page cache
2158 * while this is running, they may or may not be found by this call.
2159 *
2160 * Return: The number of folios which were found.
2161 * We also update @start to index the next folio for the traversal.
2162 */
2163unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2164		pgoff_t end, struct folio_batch *fbatch)
2165{
2166	XA_STATE(xas, &mapping->i_pages, *start);
2167	struct folio *folio;
 
 
 
 
2168
2169	rcu_read_lock();
2170	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2171		/* Skip over shadow, swap and DAX entries */
2172		if (xa_is_value(folio))
2173			continue;
2174		if (!folio_batch_add(fbatch, folio)) {
2175			unsigned long nr = folio_nr_pages(folio);
 
2176
2177			if (folio_test_hugetlb(folio))
2178				nr = 1;
2179			*start = folio->index + nr;
2180			goto out;
 
 
 
 
 
 
 
2181		}
2182	}
2183
2184	/*
2185	 * We come here when there is no page beyond @end. We take care to not
2186	 * overflow the index @start as it confuses some of the callers. This
2187	 * breaks the iteration when there is a page at index -1 but that is
2188	 * already broken anyway.
2189	 */
2190	if (end == (pgoff_t)-1)
2191		*start = (pgoff_t)-1;
2192	else
2193		*start = end + 1;
2194out:
2195	rcu_read_unlock();
2196
2197	return folio_batch_count(fbatch);
2198}
2199EXPORT_SYMBOL(filemap_get_folios);
 
 
 
 
 
 
2200
2201static inline
2202bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2203{
2204	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2205		return false;
2206	if (index >= max)
2207		return false;
2208	return index < folio->index + folio_nr_pages(folio) - 1;
2209}
 
2210
2211/**
2212 * filemap_get_folios_contig - Get a batch of contiguous folios
2213 * @mapping:	The address_space to search
2214 * @start:	The starting page index
2215 * @end:	The final page index (inclusive)
2216 * @fbatch:	The batch to fill
2217 *
2218 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2219 * except the returned folios are guaranteed to be contiguous. This may
2220 * not return all contiguous folios if the batch gets filled up.
2221 *
2222 * Return: The number of folios found.
2223 * Also update @start to be positioned for traversal of the next folio.
2224 */
 
 
 
 
 
 
2225
2226unsigned filemap_get_folios_contig(struct address_space *mapping,
2227		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2228{
2229	XA_STATE(xas, &mapping->i_pages, *start);
2230	unsigned long nr;
2231	struct folio *folio;
2232
2233	rcu_read_lock();
 
 
 
 
 
 
 
2234
2235	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2236			folio = xas_next(&xas)) {
2237		if (xas_retry(&xas, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
2238			continue;
2239		/*
2240		 * If the entry has been swapped out, we can stop looking.
2241		 * No current caller is looking for DAX entries.
2242		 */
2243		if (xa_is_value(folio))
2244			goto update_start;
2245
2246		if (!folio_try_get_rcu(folio))
2247			goto retry;
2248
2249		if (unlikely(folio != xas_reload(&xas)))
2250			goto put_folio;
2251
2252		if (!folio_batch_add(fbatch, folio)) {
2253			nr = folio_nr_pages(folio);
2254
2255			if (folio_test_hugetlb(folio))
2256				nr = 1;
2257			*start = folio->index + nr;
2258			goto out;
2259		}
2260		continue;
2261put_folio:
2262		folio_put(folio);
2263
2264retry:
2265		xas_reset(&xas);
 
2266	}
2267
2268update_start:
2269	nr = folio_batch_count(fbatch);
 
 
2270
2271	if (nr) {
2272		folio = fbatch->folios[nr - 1];
2273		if (folio_test_hugetlb(folio))
2274			*start = folio->index + 1;
2275		else
2276			*start = folio->index + folio_nr_pages(folio);
2277	}
2278out:
2279	rcu_read_unlock();
2280	return folio_batch_count(fbatch);
2281}
2282EXPORT_SYMBOL(filemap_get_folios_contig);
2283
2284/**
2285 * find_get_pages_range_tag - Find and return head pages matching @tag.
2286 * @mapping:	the address_space to search
2287 * @index:	the starting page index
2288 * @end:	The final page index (inclusive)
2289 * @tag:	the tag index
2290 * @nr_pages:	the maximum number of pages
2291 * @pages:	where the resulting pages are placed
2292 *
2293 * Like find_get_pages_range(), except we only return head pages which are
2294 * tagged with @tag.  @index is updated to the index immediately after the
2295 * last page we return, ready for the next iteration.
2296 *
2297 * Return: the number of pages which were found.
2298 */
2299unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2300			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2301			struct page **pages)
2302{
2303	XA_STATE(xas, &mapping->i_pages, *index);
2304	struct folio *folio;
2305	unsigned ret = 0;
2306
2307	if (unlikely(!nr_pages))
2308		return 0;
2309
2310	rcu_read_lock();
2311	while ((folio = find_get_entry(&xas, end, tag))) {
2312		/*
2313		 * Shadow entries should never be tagged, but this iteration
2314		 * is lockless so there is a window for page reclaim to evict
2315		 * a page we saw tagged.  Skip over it.
2316		 */
2317		if (xa_is_value(folio))
2318			continue;
 
 
 
 
 
2319
2320		pages[ret] = &folio->page;
2321		if (++ret == nr_pages) {
2322			*index = folio->index + folio_nr_pages(folio);
2323			goto out;
 
 
 
 
 
 
 
 
 
 
2324		}
 
 
 
 
 
2325	}
2326
2327	/*
2328	 * We come here when we got to @end. We take care to not overflow the
2329	 * index @index as it confuses some of the callers. This breaks the
2330	 * iteration when there is a page at index -1 but that is already
2331	 * broken anyway.
2332	 */
2333	if (end == (pgoff_t)-1)
2334		*index = (pgoff_t)-1;
2335	else
2336		*index = end + 1;
2337out:
2338	rcu_read_unlock();
2339
2340	return ret;
2341}
2342EXPORT_SYMBOL(find_get_pages_range_tag);
2343
2344/*
2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346 * a _large_ part of the i/o request. Imagine the worst scenario:
2347 *
2348 *      ---R__________________________________________B__________
2349 *         ^ reading here                             ^ bad block(assume 4k)
2350 *
2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352 * => failing the whole request => read(R) => read(R+1) =>
2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356 *
2357 * It is going insane. Fix it by quickly scaling down the readahead size.
2358 */
2359static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2360{
2361	ra->ra_pages /= 4;
2362}
2363
2364/*
2365 * filemap_get_read_batch - Get a batch of folios for read
 
 
 
 
 
 
 
2366 *
2367 * Get a batch of folios which represent a contiguous range of bytes in
2368 * the file.  No exceptional entries will be returned.  If @index is in
2369 * the middle of a folio, the entire folio will be returned.  The last
2370 * folio in the batch may have the readahead flag set or the uptodate flag
2371 * clear so that the caller can take the appropriate action.
2372 */
2373static void filemap_get_read_batch(struct address_space *mapping,
2374		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2375{
2376	XA_STATE(xas, &mapping->i_pages, index);
2377	struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
2378
2379	rcu_read_lock();
2380	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381		if (xas_retry(&xas, folio))
2382			continue;
2383		if (xas.xa_index > max || xa_is_value(folio))
2384			break;
2385		if (xa_is_sibling(folio))
2386			break;
2387		if (!folio_try_get_rcu(folio))
2388			goto retry;
2389
2390		if (unlikely(folio != xas_reload(&xas)))
2391			goto put_folio;
2392
2393		if (!folio_batch_add(fbatch, folio))
2394			break;
2395		if (!folio_test_uptodate(folio))
2396			break;
2397		if (folio_test_readahead(folio))
2398			break;
2399		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2400		continue;
2401put_folio:
2402		folio_put(folio);
2403retry:
2404		xas_reset(&xas);
2405	}
2406	rcu_read_unlock();
2407}
2408
2409static int filemap_read_folio(struct file *file, filler_t filler,
2410		struct folio *folio)
2411{
2412	bool workingset = folio_test_workingset(folio);
2413	unsigned long pflags;
2414	int error;
2415
2416	/*
2417	 * A previous I/O error may have been due to temporary failures,
2418	 * eg. multipath errors.  PG_error will be set again if read_folio
2419	 * fails.
2420	 */
2421	folio_clear_error(folio);
2422
2423	/* Start the actual read. The read will unlock the page. */
2424	if (unlikely(workingset))
2425		psi_memstall_enter(&pflags);
2426	error = filler(file, folio);
2427	if (unlikely(workingset))
2428		psi_memstall_leave(&pflags);
2429	if (error)
2430		return error;
2431
2432	error = folio_wait_locked_killable(folio);
2433	if (error)
2434		return error;
2435	if (folio_test_uptodate(folio))
2436		return 0;
2437	if (file)
2438		shrink_readahead_size_eio(&file->f_ra);
2439	return -EIO;
2440}
2441
2442static bool filemap_range_uptodate(struct address_space *mapping,
2443		loff_t pos, struct iov_iter *iter, struct folio *folio)
2444{
2445	int count;
2446
2447	if (folio_test_uptodate(folio))
2448		return true;
2449	/* pipes can't handle partially uptodate pages */
2450	if (iov_iter_is_pipe(iter))
2451		return false;
2452	if (!mapping->a_ops->is_partially_uptodate)
2453		return false;
2454	if (mapping->host->i_blkbits >= folio_shift(folio))
2455		return false;
2456
2457	count = iter->count;
2458	if (folio_pos(folio) > pos) {
2459		count -= folio_pos(folio) - pos;
2460		pos = 0;
2461	} else {
2462		pos -= folio_pos(folio);
2463	}
2464
2465	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2466}
2467
2468static int filemap_update_page(struct kiocb *iocb,
2469		struct address_space *mapping, struct iov_iter *iter,
2470		struct folio *folio)
2471{
2472	int error;
2473
2474	if (iocb->ki_flags & IOCB_NOWAIT) {
2475		if (!filemap_invalidate_trylock_shared(mapping))
2476			return -EAGAIN;
2477	} else {
2478		filemap_invalidate_lock_shared(mapping);
2479	}
2480
2481	if (!folio_trylock(folio)) {
2482		error = -EAGAIN;
2483		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2484			goto unlock_mapping;
2485		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2486			filemap_invalidate_unlock_shared(mapping);
2487			/*
2488			 * This is where we usually end up waiting for a
2489			 * previously submitted readahead to finish.
 
2490			 */
2491			folio_put_wait_locked(folio, TASK_KILLABLE);
2492			return AOP_TRUNCATED_PAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493		}
2494		error = __folio_lock_async(folio, iocb->ki_waitq);
2495		if (error)
2496			goto unlock_mapping;
2497	}
 
 
 
 
 
2498
2499	error = AOP_TRUNCATED_PAGE;
2500	if (!folio->mapping)
2501		goto unlock;
 
 
 
2502
2503	error = 0;
2504	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2505		goto unlock;
 
 
 
 
 
 
 
2506
2507	error = -EAGAIN;
2508	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2509		goto unlock;
 
 
 
2510
2511	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2512			folio);
2513	goto unlock_mapping;
2514unlock:
2515	folio_unlock(folio);
2516unlock_mapping:
2517	filemap_invalidate_unlock_shared(mapping);
2518	if (error == AOP_TRUNCATED_PAGE)
2519		folio_put(folio);
2520	return error;
2521}
2522
2523static int filemap_create_folio(struct file *file,
2524		struct address_space *mapping, pgoff_t index,
2525		struct folio_batch *fbatch)
2526{
2527	struct folio *folio;
2528	int error;
2529
2530	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2531	if (!folio)
2532		return -ENOMEM;
 
 
2533
2534	/*
2535	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2536	 * here assures we cannot instantiate and bring uptodate new
2537	 * pagecache folios after evicting page cache during truncate
2538	 * and before actually freeing blocks.	Note that we could
2539	 * release invalidate_lock after inserting the folio into
2540	 * the page cache as the locked folio would then be enough to
2541	 * synchronize with hole punching. But there are code paths
2542	 * such as filemap_update_page() filling in partially uptodate
2543	 * pages or ->readahead() that need to hold invalidate_lock
2544	 * while mapping blocks for IO so let's hold the lock here as
2545	 * well to keep locking rules simple.
2546	 */
2547	filemap_invalidate_lock_shared(mapping);
2548	error = filemap_add_folio(mapping, folio, index,
2549			mapping_gfp_constraint(mapping, GFP_KERNEL));
2550	if (error == -EEXIST)
2551		error = AOP_TRUNCATED_PAGE;
2552	if (error)
2553		goto error;
2554
2555	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2556	if (error)
2557		goto error;
 
 
 
 
 
 
 
 
 
 
2558
2559	filemap_invalidate_unlock_shared(mapping);
2560	folio_batch_add(fbatch, folio);
2561	return 0;
2562error:
2563	filemap_invalidate_unlock_shared(mapping);
2564	folio_put(folio);
2565	return error;
2566}
2567
2568static int filemap_readahead(struct kiocb *iocb, struct file *file,
2569		struct address_space *mapping, struct folio *folio,
2570		pgoff_t last_index)
2571{
2572	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2573
2574	if (iocb->ki_flags & IOCB_NOIO)
2575		return -EAGAIN;
2576	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2577	return 0;
2578}
2579
2580static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2581		struct folio_batch *fbatch)
2582{
2583	struct file *filp = iocb->ki_filp;
2584	struct address_space *mapping = filp->f_mapping;
2585	struct file_ra_state *ra = &filp->f_ra;
2586	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2587	pgoff_t last_index;
2588	struct folio *folio;
2589	int err = 0;
2590
2591	/* "last_index" is the index of the page beyond the end of the read */
2592	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2593retry:
2594	if (fatal_signal_pending(current))
2595		return -EINTR;
2596
2597	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2598	if (!folio_batch_count(fbatch)) {
2599		if (iocb->ki_flags & IOCB_NOIO)
2600			return -EAGAIN;
2601		page_cache_sync_readahead(mapping, ra, filp, index,
2602				last_index - index);
2603		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2604	}
2605	if (!folio_batch_count(fbatch)) {
2606		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2607			return -EAGAIN;
2608		err = filemap_create_folio(filp, mapping,
2609				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2610		if (err == AOP_TRUNCATED_PAGE)
2611			goto retry;
2612		return err;
2613	}
2614
2615	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2616	if (folio_test_readahead(folio)) {
2617		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618		if (err)
2619			goto err;
2620	}
2621	if (!folio_test_uptodate(folio)) {
2622		if ((iocb->ki_flags & IOCB_WAITQ) &&
2623		    folio_batch_count(fbatch) > 1)
2624			iocb->ki_flags |= IOCB_NOWAIT;
2625		err = filemap_update_page(iocb, mapping, iter, folio);
2626		if (err)
2627			goto err;
2628	}
2629
2630	return 0;
2631err:
2632	if (err < 0)
2633		folio_put(folio);
2634	if (likely(--fbatch->nr))
2635		return 0;
2636	if (err == AOP_TRUNCATED_PAGE)
2637		goto retry;
2638	return err;
2639}
2640
2641static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2642{
2643	unsigned int shift = folio_shift(folio);
2644
2645	return (pos1 >> shift == pos2 >> shift);
2646}
2647
2648/**
2649 * filemap_read - Read data from the page cache.
2650 * @iocb: The iocb to read.
2651 * @iter: Destination for the data.
2652 * @already_read: Number of bytes already read by the caller.
2653 *
2654 * Copies data from the page cache.  If the data is not currently present,
2655 * uses the readahead and read_folio address_space operations to fetch it.
2656 *
2657 * Return: Total number of bytes copied, including those already read by
2658 * the caller.  If an error happens before any bytes are copied, returns
2659 * a negative error number.
2660 */
2661ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2662		ssize_t already_read)
2663{
2664	struct file *filp = iocb->ki_filp;
2665	struct file_ra_state *ra = &filp->f_ra;
2666	struct address_space *mapping = filp->f_mapping;
2667	struct inode *inode = mapping->host;
2668	struct folio_batch fbatch;
2669	int i, error = 0;
2670	bool writably_mapped;
2671	loff_t isize, end_offset;
2672
2673	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2674		return 0;
2675	if (unlikely(!iov_iter_count(iter)))
2676		return 0;
2677
2678	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2679	folio_batch_init(&fbatch);
2680
2681	do {
2682		cond_resched();
2683
 
2684		/*
2685		 * If we've already successfully copied some data, then we
2686		 * can no longer safely return -EIOCBQUEUED. Hence mark
2687		 * an async read NOWAIT at that point.
2688		 */
2689		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2690			iocb->ki_flags |= IOCB_NOWAIT;
 
2691
2692		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2693			break;
 
 
 
 
 
 
2694
2695		error = filemap_get_pages(iocb, iter, &fbatch);
2696		if (error < 0)
2697			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698
2699		/*
2700		 * i_size must be checked after we know the pages are Uptodate.
2701		 *
2702		 * Checking i_size after the check allows us to calculate
2703		 * the correct value for "nr", which means the zero-filled
2704		 * part of the page is not copied back to userspace (unless
2705		 * another truncate extends the file - this is desired though).
2706		 */
2707		isize = i_size_read(inode);
2708		if (unlikely(iocb->ki_pos >= isize))
2709			goto put_folios;
2710		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2711
2712		/*
2713		 * Once we start copying data, we don't want to be touching any
2714		 * cachelines that might be contended:
2715		 */
2716		writably_mapped = mapping_writably_mapped(mapping);
2717
 
2718		/*
2719		 * When a read accesses the same folio several times, only
2720		 * mark it as accessed the first time.
2721		 */
2722		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2723							fbatch.folios[0]))
2724			folio_mark_accessed(fbatch.folios[0]);
2725
2726		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2727			struct folio *folio = fbatch.folios[i];
2728			size_t fsize = folio_size(folio);
2729			size_t offset = iocb->ki_pos & (fsize - 1);
2730			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2731					     fsize - offset);
2732			size_t copied;
2733
2734			if (end_offset < folio_pos(folio))
2735				break;
2736			if (i > 0)
2737				folio_mark_accessed(folio);
2738			/*
2739			 * If users can be writing to this folio using arbitrary
2740			 * virtual addresses, take care of potential aliasing
2741			 * before reading the folio on the kernel side.
2742			 */
2743			if (writably_mapped)
2744				flush_dcache_folio(folio);
2745
2746			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2747
2748			already_read += copied;
2749			iocb->ki_pos += copied;
2750			ra->prev_pos = iocb->ki_pos;
2751
2752			if (copied < bytes) {
2753				error = -EFAULT;
2754				break;
2755			}
 
2756		}
2757put_folios:
2758		for (i = 0; i < folio_batch_count(&fbatch); i++)
2759			folio_put(fbatch.folios[i]);
2760		folio_batch_init(&fbatch);
2761	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
 
 
2762
 
2763	file_accessed(filp);
2764
2765	return already_read ? already_read : error;
2766}
2767EXPORT_SYMBOL_GPL(filemap_read);
2768
2769/**
2770 * generic_file_read_iter - generic filesystem read routine
2771 * @iocb:	kernel I/O control block
2772 * @iter:	destination for the data read
2773 *
2774 * This is the "read_iter()" routine for all filesystems
2775 * that can use the page cache directly.
2776 *
2777 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2778 * be returned when no data can be read without waiting for I/O requests
2779 * to complete; it doesn't prevent readahead.
2780 *
2781 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2782 * requests shall be made for the read or for readahead.  When no data
2783 * can be read, -EAGAIN shall be returned.  When readahead would be
2784 * triggered, a partial, possibly empty read shall be returned.
2785 *
2786 * Return:
2787 * * number of bytes copied, even for partial reads
2788 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2789 */
2790ssize_t
2791generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2792{
 
 
 
 
2793	size_t count = iov_iter_count(iter);
2794	ssize_t retval = 0;
2795
2796	if (!count)
2797		return 0; /* skip atime */
2798
2799	if (iocb->ki_flags & IOCB_DIRECT) {
2800		struct file *file = iocb->ki_filp;
2801		struct address_space *mapping = file->f_mapping;
2802		struct inode *inode = mapping->host;
 
2803
2804		if (iocb->ki_flags & IOCB_NOWAIT) {
2805			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2806						iocb->ki_pos + count - 1))
2807				return -EAGAIN;
2808		} else {
2809			retval = filemap_write_and_wait_range(mapping,
2810						iocb->ki_pos,
2811					        iocb->ki_pos + count - 1);
2812			if (retval < 0)
2813				return retval;
2814		}
2815
2816		file_accessed(file);
2817
2818		retval = mapping->a_ops->direct_IO(iocb, iter);
2819		if (retval >= 0) {
2820			iocb->ki_pos += retval;
2821			count -= retval;
2822		}
2823		if (retval != -EIOCBQUEUED)
2824			iov_iter_revert(iter, count - iov_iter_count(iter));
2825
2826		/*
2827		 * Btrfs can have a short DIO read if we encounter
2828		 * compressed extents, so if there was an error, or if
2829		 * we've already read everything we wanted to, or if
2830		 * there was a short read because we hit EOF, go ahead
2831		 * and return.  Otherwise fallthrough to buffered io for
2832		 * the rest of the read.  Buffered reads will not work for
2833		 * DAX files, so don't bother trying.
2834		 */
2835		if (retval < 0 || !count || IS_DAX(inode))
2836			return retval;
2837		if (iocb->ki_pos >= i_size_read(inode))
2838			return retval;
 
2839	}
2840
2841	return filemap_read(iocb, iter, retval);
 
 
2842}
2843EXPORT_SYMBOL(generic_file_read_iter);
2844
2845static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2846		struct address_space *mapping, struct folio *folio,
2847		loff_t start, loff_t end, bool seek_data)
2848{
2849	const struct address_space_operations *ops = mapping->a_ops;
2850	size_t offset, bsz = i_blocksize(mapping->host);
2851
2852	if (xa_is_value(folio) || folio_test_uptodate(folio))
2853		return seek_data ? start : end;
2854	if (!ops->is_partially_uptodate)
2855		return seek_data ? end : start;
2856
2857	xas_pause(xas);
2858	rcu_read_unlock();
2859	folio_lock(folio);
2860	if (unlikely(folio->mapping != mapping))
2861		goto unlock;
2862
2863	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2864
2865	do {
2866		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2867							seek_data)
2868			break;
2869		start = (start + bsz) & ~(bsz - 1);
2870		offset += bsz;
2871	} while (offset < folio_size(folio));
2872unlock:
2873	folio_unlock(folio);
2874	rcu_read_lock();
2875	return start;
2876}
2877
2878static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2879{
2880	if (xa_is_value(folio))
2881		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2882	return folio_size(folio);
2883}
2884
2885/**
2886 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2887 * @mapping: Address space to search.
2888 * @start: First byte to consider.
2889 * @end: Limit of search (exclusive).
2890 * @whence: Either SEEK_HOLE or SEEK_DATA.
2891 *
2892 * If the page cache knows which blocks contain holes and which blocks
2893 * contain data, your filesystem can use this function to implement
2894 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2895 * entirely memory-based such as tmpfs, and filesystems which support
2896 * unwritten extents.
2897 *
2898 * Return: The requested offset on success, or -ENXIO if @whence specifies
2899 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2900 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2901 * and @end contain data.
2902 */
2903loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2904		loff_t end, int whence)
2905{
2906	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2907	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2908	bool seek_data = (whence == SEEK_DATA);
2909	struct folio *folio;
 
 
 
 
 
 
 
 
 
 
2910
2911	if (end <= start)
2912		return -ENXIO;
2913
2914	rcu_read_lock();
2915	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2916		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2917		size_t seek_size;
2918
2919		if (start < pos) {
2920			if (!seek_data)
2921				goto unlock;
2922			start = pos;
2923		}
2924
2925		seek_size = seek_folio_size(&xas, folio);
2926		pos = round_up((u64)pos + 1, seek_size);
2927		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2928				seek_data);
2929		if (start < pos)
2930			goto unlock;
2931		if (start >= end)
2932			break;
2933		if (seek_size > PAGE_SIZE)
2934			xas_set(&xas, pos >> PAGE_SHIFT);
2935		if (!xa_is_value(folio))
2936			folio_put(folio);
2937	}
2938	if (seek_data)
2939		start = -ENXIO;
2940unlock:
2941	rcu_read_unlock();
2942	if (folio && !xa_is_value(folio))
2943		folio_put(folio);
2944	if (start > end)
2945		return end;
2946	return start;
2947}
2948
2949#ifdef CONFIG_MMU
2950#define MMAP_LOTSAMISS  (100)
2951/*
2952 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2953 * @vmf - the vm_fault for this fault.
2954 * @folio - the folio to lock.
2955 * @fpin - the pointer to the file we may pin (or is already pinned).
2956 *
2957 * This works similar to lock_folio_or_retry in that it can drop the
2958 * mmap_lock.  It differs in that it actually returns the folio locked
2959 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2960 * to drop the mmap_lock then fpin will point to the pinned file and
2961 * needs to be fput()'ed at a later point.
2962 */
2963static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2964				     struct file **fpin)
2965{
2966	if (folio_trylock(folio))
2967		return 1;
2968
2969	/*
2970	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2971	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2972	 * is supposed to work. We have way too many special cases..
2973	 */
2974	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2975		return 0;
2976
2977	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2978	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2979		if (__folio_lock_killable(folio)) {
2980			/*
2981			 * We didn't have the right flags to drop the mmap_lock,
2982			 * but all fault_handlers only check for fatal signals
2983			 * if we return VM_FAULT_RETRY, so we need to drop the
2984			 * mmap_lock here and return 0 if we don't have a fpin.
2985			 */
2986			if (*fpin == NULL)
2987				mmap_read_unlock(vmf->vma->vm_mm);
2988			return 0;
2989		}
2990	} else
2991		__folio_lock(folio);
2992
2993	return 1;
2994}
2995
2996/*
2997 * Synchronous readahead happens when we don't even find a page in the page
2998 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2999 * to drop the mmap sem we return the file that was pinned in order for us to do
3000 * that.  If we didn't pin a file then we return NULL.  The file that is
3001 * returned needs to be fput()'ed when we're done with it.
3002 */
3003static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3004{
3005	struct file *file = vmf->vma->vm_file;
3006	struct file_ra_state *ra = &file->f_ra;
3007	struct address_space *mapping = file->f_mapping;
3008	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3009	struct file *fpin = NULL;
3010	unsigned long vm_flags = vmf->vma->vm_flags;
3011	unsigned int mmap_miss;
3012
3013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3014	/* Use the readahead code, even if readahead is disabled */
3015	if (vm_flags & VM_HUGEPAGE) {
3016		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3017		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3018		ra->size = HPAGE_PMD_NR;
3019		/*
3020		 * Fetch two PMD folios, so we get the chance to actually
3021		 * readahead, unless we've been told not to.
3022		 */
3023		if (!(vm_flags & VM_RAND_READ))
3024			ra->size *= 2;
3025		ra->async_size = HPAGE_PMD_NR;
3026		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3027		return fpin;
3028	}
3029#endif
3030
3031	/* If we don't want any read-ahead, don't bother */
3032	if (vm_flags & VM_RAND_READ)
3033		return fpin;
3034	if (!ra->ra_pages)
3035		return fpin;
3036
3037	if (vm_flags & VM_SEQ_READ) {
3038		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3039		page_cache_sync_ra(&ractl, ra->ra_pages);
3040		return fpin;
3041	}
3042
3043	/* Avoid banging the cache line if not needed */
3044	mmap_miss = READ_ONCE(ra->mmap_miss);
3045	if (mmap_miss < MMAP_LOTSAMISS * 10)
3046		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3047
3048	/*
3049	 * Do we miss much more than hit in this file? If so,
3050	 * stop bothering with read-ahead. It will only hurt.
3051	 */
3052	if (mmap_miss > MMAP_LOTSAMISS)
3053		return fpin;
3054
3055	/*
3056	 * mmap read-around
3057	 */
3058	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3059	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3060	ra->size = ra->ra_pages;
3061	ra->async_size = ra->ra_pages / 4;
3062	ractl._index = ra->start;
3063	page_cache_ra_order(&ractl, ra, 0);
3064	return fpin;
3065}
3066
3067/*
3068 * Asynchronous readahead happens when we find the page and PG_readahead,
3069 * so we want to possibly extend the readahead further.  We return the file that
3070 * was pinned if we have to drop the mmap_lock in order to do IO.
3071 */
3072static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3073					    struct folio *folio)
 
 
 
3074{
3075	struct file *file = vmf->vma->vm_file;
3076	struct file_ra_state *ra = &file->f_ra;
3077	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3078	struct file *fpin = NULL;
3079	unsigned int mmap_miss;
3080
3081	/* If we don't want any read-ahead, don't bother */
3082	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3083		return fpin;
3084
3085	mmap_miss = READ_ONCE(ra->mmap_miss);
3086	if (mmap_miss)
3087		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3088
3089	if (folio_test_readahead(folio)) {
3090		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3091		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3092	}
3093	return fpin;
3094}
3095
3096/**
3097 * filemap_fault - read in file data for page fault handling
 
3098 * @vmf:	struct vm_fault containing details of the fault
3099 *
3100 * filemap_fault() is invoked via the vma operations vector for a
3101 * mapped memory region to read in file data during a page fault.
3102 *
3103 * The goto's are kind of ugly, but this streamlines the normal case of having
3104 * it in the page cache, and handles the special cases reasonably without
3105 * having a lot of duplicated code.
3106 *
3107 * vma->vm_mm->mmap_lock must be held on entry.
3108 *
3109 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3110 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 
 
3111 *
3112 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3113 * has not been released.
3114 *
3115 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3116 *
3117 * Return: bitwise-OR of %VM_FAULT_ codes.
3118 */
3119vm_fault_t filemap_fault(struct vm_fault *vmf)
3120{
3121	int error;
3122	struct file *file = vmf->vma->vm_file;
3123	struct file *fpin = NULL;
3124	struct address_space *mapping = file->f_mapping;
 
3125	struct inode *inode = mapping->host;
3126	pgoff_t max_idx, index = vmf->pgoff;
3127	struct folio *folio;
3128	vm_fault_t ret = 0;
3129	bool mapping_locked = false;
3130
3131	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3132	if (unlikely(index >= max_idx))
3133		return VM_FAULT_SIGBUS;
3134
3135	/*
3136	 * Do we have something in the page cache already?
3137	 */
3138	folio = filemap_get_folio(mapping, index);
3139	if (likely(folio)) {
3140		/*
3141		 * We found the page, so try async readahead before waiting for
3142		 * the lock.
3143		 */
3144		if (!(vmf->flags & FAULT_FLAG_TRIED))
3145			fpin = do_async_mmap_readahead(vmf, folio);
3146		if (unlikely(!folio_test_uptodate(folio))) {
3147			filemap_invalidate_lock_shared(mapping);
3148			mapping_locked = true;
3149		}
3150	} else {
3151		/* No page in the page cache at all */
 
3152		count_vm_event(PGMAJFAULT);
3153		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3154		ret = VM_FAULT_MAJOR;
3155		fpin = do_sync_mmap_readahead(vmf);
3156retry_find:
3157		/*
3158		 * See comment in filemap_create_folio() why we need
3159		 * invalidate_lock
3160		 */
3161		if (!mapping_locked) {
3162			filemap_invalidate_lock_shared(mapping);
3163			mapping_locked = true;
3164		}
3165		folio = __filemap_get_folio(mapping, index,
3166					  FGP_CREAT|FGP_FOR_MMAP,
3167					  vmf->gfp_mask);
3168		if (!folio) {
3169			if (fpin)
3170				goto out_retry;
3171			filemap_invalidate_unlock_shared(mapping);
3172			return VM_FAULT_OOM;
3173		}
3174	}
3175
3176	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3177		goto out_retry;
 
 
3178
3179	/* Did it get truncated? */
3180	if (unlikely(folio->mapping != mapping)) {
3181		folio_unlock(folio);
3182		folio_put(folio);
3183		goto retry_find;
3184	}
3185	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3186
3187	/*
3188	 * We have a locked page in the page cache, now we need to check
3189	 * that it's up-to-date. If not, it is going to be due to an error.
3190	 */
3191	if (unlikely(!folio_test_uptodate(folio))) {
3192		/*
3193		 * The page was in cache and uptodate and now it is not.
3194		 * Strange but possible since we didn't hold the page lock all
3195		 * the time. Let's drop everything get the invalidate lock and
3196		 * try again.
3197		 */
3198		if (!mapping_locked) {
3199			folio_unlock(folio);
3200			folio_put(folio);
3201			goto retry_find;
3202		}
3203		goto page_not_uptodate;
3204	}
3205
3206	/*
3207	 * We've made it this far and we had to drop our mmap_lock, now is the
3208	 * time to return to the upper layer and have it re-find the vma and
3209	 * redo the fault.
3210	 */
3211	if (fpin) {
3212		folio_unlock(folio);
3213		goto out_retry;
3214	}
3215	if (mapping_locked)
3216		filemap_invalidate_unlock_shared(mapping);
3217
3218	/*
3219	 * Found the page and have a reference on it.
3220	 * We must recheck i_size under page lock.
3221	 */
3222	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3223	if (unlikely(index >= max_idx)) {
3224		folio_unlock(folio);
3225		folio_put(folio);
3226		return VM_FAULT_SIGBUS;
3227	}
3228
3229	vmf->page = folio_file_page(folio, index);
3230	return ret | VM_FAULT_LOCKED;
3231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3232page_not_uptodate:
3233	/*
3234	 * Umm, take care of errors if the page isn't up-to-date.
3235	 * Try to re-read it _once_. We do this synchronously,
3236	 * because there really aren't any performance issues here
3237	 * and we need to check for errors.
3238	 */
3239	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3240	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3241	if (fpin)
3242		goto out_retry;
3243	folio_put(folio);
 
 
 
3244
3245	if (!error || error == AOP_TRUNCATED_PAGE)
3246		goto retry_find;
3247	filemap_invalidate_unlock_shared(mapping);
3248
 
 
3249	return VM_FAULT_SIGBUS;
3250
3251out_retry:
3252	/*
3253	 * We dropped the mmap_lock, we need to return to the fault handler to
3254	 * re-find the vma and come back and find our hopefully still populated
3255	 * page.
3256	 */
3257	if (folio)
3258		folio_put(folio);
3259	if (mapping_locked)
3260		filemap_invalidate_unlock_shared(mapping);
3261	if (fpin)
3262		fput(fpin);
3263	return ret | VM_FAULT_RETRY;
3264}
3265EXPORT_SYMBOL(filemap_fault);
3266
3267static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3268{
3269	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
 
 
3270
3271	/* Huge page is mapped? No need to proceed. */
3272	if (pmd_trans_huge(*vmf->pmd)) {
3273		unlock_page(page);
3274		put_page(page);
3275		return true;
3276	}
3277
3278	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3279		vm_fault_t ret = do_set_pmd(vmf, page);
3280		if (!ret) {
3281			/* The page is mapped successfully, reference consumed. */
3282			unlock_page(page);
3283			return true;
 
3284		}
3285	}
3286
3287	if (pmd_none(*vmf->pmd))
3288		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3289
3290	/* See comment in handle_pte_fault() */
3291	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3292		unlock_page(page);
3293		put_page(page);
3294		return true;
3295	}
3296
3297	return false;
3298}
3299
3300static struct folio *next_uptodate_page(struct folio *folio,
3301				       struct address_space *mapping,
3302				       struct xa_state *xas, pgoff_t end_pgoff)
3303{
3304	unsigned long max_idx;
3305
3306	do {
3307		if (!folio)
3308			return NULL;
3309		if (xas_retry(xas, folio))
3310			continue;
3311		if (xa_is_value(folio))
3312			continue;
3313		if (folio_test_locked(folio))
3314			continue;
3315		if (!folio_try_get_rcu(folio))
3316			continue;
3317		/* Has the page moved or been split? */
3318		if (unlikely(folio != xas_reload(xas)))
3319			goto skip;
3320		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3321			goto skip;
3322		if (!folio_trylock(folio))
3323			goto skip;
3324		if (folio->mapping != mapping)
3325			goto unlock;
3326		if (!folio_test_uptodate(folio))
3327			goto unlock;
3328		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3329		if (xas->xa_index >= max_idx)
3330			goto unlock;
3331		return folio;
3332unlock:
3333		folio_unlock(folio);
3334skip:
3335		folio_put(folio);
3336	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3337
3338	return NULL;
3339}
3340
3341static inline struct folio *first_map_page(struct address_space *mapping,
3342					  struct xa_state *xas,
3343					  pgoff_t end_pgoff)
3344{
3345	return next_uptodate_page(xas_find(xas, end_pgoff),
3346				  mapping, xas, end_pgoff);
3347}
3348
3349static inline struct folio *next_map_page(struct address_space *mapping,
3350					 struct xa_state *xas,
3351					 pgoff_t end_pgoff)
3352{
3353	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3354				  mapping, xas, end_pgoff);
3355}
3356
3357vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3358			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3359{
3360	struct vm_area_struct *vma = vmf->vma;
3361	struct file *file = vma->vm_file;
3362	struct address_space *mapping = file->f_mapping;
3363	pgoff_t last_pgoff = start_pgoff;
3364	unsigned long addr;
3365	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3366	struct folio *folio;
3367	struct page *page;
3368	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3369	vm_fault_t ret = 0;
3370
3371	rcu_read_lock();
3372	folio = first_map_page(mapping, &xas, end_pgoff);
3373	if (!folio)
3374		goto out;
3375
3376	if (filemap_map_pmd(vmf, &folio->page)) {
3377		ret = VM_FAULT_NOPAGE;
3378		goto out;
3379	}
3380
3381	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3382	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3383	do {
3384again:
3385		page = folio_file_page(folio, xas.xa_index);
3386		if (PageHWPoison(page))
3387			goto unlock;
3388
3389		if (mmap_miss > 0)
3390			mmap_miss--;
3391
3392		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3393		vmf->pte += xas.xa_index - last_pgoff;
3394		last_pgoff = xas.xa_index;
3395
3396		/*
3397		 * NOTE: If there're PTE markers, we'll leave them to be
3398		 * handled in the specific fault path, and it'll prohibit the
3399		 * fault-around logic.
3400		 */
3401		if (!pte_none(*vmf->pte))
3402			goto unlock;
3403
3404		/* We're about to handle the fault */
3405		if (vmf->address == addr)
3406			ret = VM_FAULT_NOPAGE;
3407
3408		do_set_pte(vmf, page, addr);
3409		/* no need to invalidate: a not-present page won't be cached */
3410		update_mmu_cache(vma, addr, vmf->pte);
3411		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3412			xas.xa_index++;
3413			folio_ref_inc(folio);
3414			goto again;
3415		}
3416		folio_unlock(folio);
3417		continue;
3418unlock:
3419		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3420			xas.xa_index++;
3421			goto again;
3422		}
3423		folio_unlock(folio);
3424		folio_put(folio);
3425	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3426	pte_unmap_unlock(vmf->pte, vmf->ptl);
3427out:
3428	rcu_read_unlock();
3429	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3430	return ret;
3431}
3432EXPORT_SYMBOL(filemap_map_pages);
3433
3434vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3435{
3436	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3437	struct folio *folio = page_folio(vmf->page);
3438	vm_fault_t ret = VM_FAULT_LOCKED;
3439
3440	sb_start_pagefault(mapping->host->i_sb);
3441	file_update_time(vmf->vma->vm_file);
3442	folio_lock(folio);
3443	if (folio->mapping != mapping) {
3444		folio_unlock(folio);
3445		ret = VM_FAULT_NOPAGE;
3446		goto out;
3447	}
3448	/*
3449	 * We mark the folio dirty already here so that when freeze is in
3450	 * progress, we are guaranteed that writeback during freezing will
3451	 * see the dirty folio and writeprotect it again.
3452	 */
3453	folio_mark_dirty(folio);
3454	folio_wait_stable(folio);
3455out:
3456	sb_end_pagefault(mapping->host->i_sb);
3457	return ret;
3458}
 
3459
3460const struct vm_operations_struct generic_file_vm_ops = {
3461	.fault		= filemap_fault,
3462	.map_pages	= filemap_map_pages,
3463	.page_mkwrite	= filemap_page_mkwrite,
3464};
3465
3466/* This is used for a general mmap of a disk file */
3467
3468int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3469{
3470	struct address_space *mapping = file->f_mapping;
3471
3472	if (!mapping->a_ops->read_folio)
3473		return -ENOEXEC;
3474	file_accessed(file);
3475	vma->vm_ops = &generic_file_vm_ops;
3476	return 0;
3477}
3478
3479/*
3480 * This is for filesystems which do not implement ->writepage.
3481 */
3482int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3483{
3484	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3485		return -EINVAL;
3486	return generic_file_mmap(file, vma);
3487}
3488#else
3489vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3490{
3491	return VM_FAULT_SIGBUS;
3492}
3493int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3494{
3495	return -ENOSYS;
3496}
3497int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3498{
3499	return -ENOSYS;
3500}
3501#endif /* CONFIG_MMU */
3502
3503EXPORT_SYMBOL(filemap_page_mkwrite);
3504EXPORT_SYMBOL(generic_file_mmap);
3505EXPORT_SYMBOL(generic_file_readonly_mmap);
3506
3507static struct folio *do_read_cache_folio(struct address_space *mapping,
3508		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3509{
3510	struct folio *folio;
3511	int err;
3512
3513	if (!filler)
3514		filler = mapping->a_ops->read_folio;
3515repeat:
3516	folio = filemap_get_folio(mapping, index);
3517	if (!folio) {
3518		folio = filemap_alloc_folio(gfp, 0);
3519		if (!folio)
3520			return ERR_PTR(-ENOMEM);
3521		err = filemap_add_folio(mapping, folio, index, gfp);
3522		if (unlikely(err)) {
3523			folio_put(folio);
3524			if (err == -EEXIST)
3525				goto repeat;
3526			/* Presumably ENOMEM for xarray node */
3527			return ERR_PTR(err);
3528		}
3529
3530		goto filler;
 
 
 
 
 
 
 
 
 
 
3531	}
3532	if (folio_test_uptodate(folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533		goto out;
3534
3535	if (!folio_trylock(folio)) {
3536		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3537		goto repeat;
3538	}
3539
3540	/* Folio was truncated from mapping */
3541	if (!folio->mapping) {
3542		folio_unlock(folio);
3543		folio_put(folio);
3544		goto repeat;
3545	}
3546
3547	/* Someone else locked and filled the page in a very small window */
3548	if (folio_test_uptodate(folio)) {
3549		folio_unlock(folio);
3550		goto out;
3551	}
3552
3553filler:
3554	err = filemap_read_folio(file, filler, folio);
3555	if (err) {
3556		folio_put(folio);
3557		if (err == AOP_TRUNCATED_PAGE)
3558			goto repeat;
3559		return ERR_PTR(err);
3560	}
3561
3562out:
3563	folio_mark_accessed(folio);
3564	return folio;
3565}
3566
3567/**
3568 * read_cache_folio - Read into page cache, fill it if needed.
3569 * @mapping: The address_space to read from.
3570 * @index: The index to read.
3571 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3572 * @file: Passed to filler function, may be NULL if not required.
3573 *
3574 * Read one page into the page cache.  If it succeeds, the folio returned
3575 * will contain @index, but it may not be the first page of the folio.
3576 *
3577 * If the filler function returns an error, it will be returned to the
3578 * caller.
3579 *
3580 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3581 * Return: An uptodate folio on success, ERR_PTR() on failure.
3582 */
3583struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3584		filler_t filler, struct file *file)
3585{
3586	return do_read_cache_folio(mapping, index, filler, file,
3587			mapping_gfp_mask(mapping));
3588}
3589EXPORT_SYMBOL(read_cache_folio);
3590
3591static struct page *do_read_cache_page(struct address_space *mapping,
3592		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3593{
3594	struct folio *folio;
3595
3596	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3597	if (IS_ERR(folio))
3598		return &folio->page;
3599	return folio_file_page(folio, index);
3600}
3601
3602struct page *read_cache_page(struct address_space *mapping,
3603			pgoff_t index, filler_t *filler, struct file *file)
 
 
3604{
3605	return do_read_cache_page(mapping, index, filler, file,
3606			mapping_gfp_mask(mapping));
3607}
3608EXPORT_SYMBOL(read_cache_page);
3609
3610/**
3611 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3612 * @mapping:	the page's address_space
3613 * @index:	the page index
3614 * @gfp:	the page allocator flags to use if allocating
3615 *
3616 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3617 * any new page allocations done using the specified allocation flags.
3618 *
3619 * If the page does not get brought uptodate, return -EIO.
3620 *
3621 * The function expects mapping->invalidate_lock to be already held.
3622 *
3623 * Return: up to date page on success, ERR_PTR() on failure.
3624 */
3625struct page *read_cache_page_gfp(struct address_space *mapping,
3626				pgoff_t index,
3627				gfp_t gfp)
3628{
3629	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3630}
3631EXPORT_SYMBOL(read_cache_page_gfp);
3632
3633/*
3634 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3635 */
3636void dio_warn_stale_pagecache(struct file *filp)
3637{
3638	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3639	char pathname[128];
3640	char *path;
3641
3642	errseq_set(&filp->f_mapping->wb_err, -EIO);
3643	if (__ratelimit(&_rs)) {
3644		path = file_path(filp, pathname, sizeof(pathname));
3645		if (IS_ERR(path))
3646			path = "(unknown)";
3647		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3648		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3649			current->comm);
 
 
 
 
 
 
 
 
3650	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651}
 
3652
3653ssize_t
3654generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3655{
3656	struct file	*file = iocb->ki_filp;
3657	struct address_space *mapping = file->f_mapping;
3658	struct inode	*inode = mapping->host;
3659	loff_t		pos = iocb->ki_pos;
3660	ssize_t		written;
3661	size_t		write_len;
3662	pgoff_t		end;
 
3663
3664	write_len = iov_iter_count(from);
3665	end = (pos + write_len - 1) >> PAGE_SHIFT;
3666
3667	if (iocb->ki_flags & IOCB_NOWAIT) {
3668		/* If there are pages to writeback, return */
3669		if (filemap_range_has_page(file->f_mapping, pos,
3670					   pos + write_len - 1))
3671			return -EAGAIN;
3672	} else {
3673		written = filemap_write_and_wait_range(mapping, pos,
3674							pos + write_len - 1);
3675		if (written)
3676			goto out;
3677	}
3678
3679	/*
3680	 * After a write we want buffered reads to be sure to go to disk to get
3681	 * the new data.  We invalidate clean cached page from the region we're
3682	 * about to write.  We do this *before* the write so that we can return
3683	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3684	 */
3685	written = invalidate_inode_pages2_range(mapping,
 
3686					pos >> PAGE_SHIFT, end);
3687	/*
3688	 * If a page can not be invalidated, return 0 to fall back
3689	 * to buffered write.
3690	 */
3691	if (written) {
3692		if (written == -EBUSY)
3693			return 0;
3694		goto out;
 
3695	}
3696
3697	written = mapping->a_ops->direct_IO(iocb, from);
 
3698
3699	/*
3700	 * Finally, try again to invalidate clean pages which might have been
3701	 * cached by non-direct readahead, or faulted in by get_user_pages()
3702	 * if the source of the write was an mmap'ed region of the file
3703	 * we're writing.  Either one is a pretty crazy thing to do,
3704	 * so we don't support it 100%.  If this invalidation
3705	 * fails, tough, the write still worked...
3706	 *
3707	 * Most of the time we do not need this since dio_complete() will do
3708	 * the invalidation for us. However there are some file systems that
3709	 * do not end up with dio_complete() being called, so let's not break
3710	 * them by removing it completely.
3711	 *
3712	 * Noticeable example is a blkdev_direct_IO().
3713	 *
3714	 * Skip invalidation for async writes or if mapping has no pages.
3715	 */
3716	if (written > 0 && mapping->nrpages &&
3717	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3718		dio_warn_stale_pagecache(file);
 
3719
3720	if (written > 0) {
3721		pos += written;
3722		write_len -= written;
3723		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3724			i_size_write(inode, pos);
3725			mark_inode_dirty(inode);
3726		}
3727		iocb->ki_pos = pos;
3728	}
3729	if (written != -EIOCBQUEUED)
3730		iov_iter_revert(from, write_len - iov_iter_count(from));
3731out:
3732	return written;
3733}
3734EXPORT_SYMBOL(generic_file_direct_write);
3735
3736ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737{
3738	struct file *file = iocb->ki_filp;
3739	loff_t pos = iocb->ki_pos;
3740	struct address_space *mapping = file->f_mapping;
3741	const struct address_space_operations *a_ops = mapping->a_ops;
3742	long status = 0;
3743	ssize_t written = 0;
 
 
 
 
 
 
 
3744
3745	do {
3746		struct page *page;
3747		unsigned long offset;	/* Offset into pagecache page */
3748		unsigned long bytes;	/* Bytes to write to page */
3749		size_t copied;		/* Bytes copied from user */
3750		void *fsdata = NULL;
3751
3752		offset = (pos & (PAGE_SIZE - 1));
3753		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3754						iov_iter_count(i));
3755
3756again:
3757		/*
3758		 * Bring in the user page that we will copy from _first_.
3759		 * Otherwise there's a nasty deadlock on copying from the
3760		 * same page as we're writing to, without it being marked
3761		 * up-to-date.
 
 
 
 
3762		 */
3763		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3764			status = -EFAULT;
3765			break;
3766		}
3767
3768		if (fatal_signal_pending(current)) {
3769			status = -EINTR;
3770			break;
3771		}
3772
3773		status = a_ops->write_begin(file, mapping, pos, bytes,
3774						&page, &fsdata);
3775		if (unlikely(status < 0))
3776			break;
3777
3778		if (mapping_writably_mapped(mapping))
3779			flush_dcache_page(page);
3780
3781		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3782		flush_dcache_page(page);
3783
3784		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3785						page, fsdata);
3786		if (unlikely(status != copied)) {
3787			iov_iter_revert(i, copied - max(status, 0L));
3788			if (unlikely(status < 0))
3789				break;
3790		}
3791		cond_resched();
3792
3793		if (unlikely(status == 0)) {
 
3794			/*
3795			 * A short copy made ->write_end() reject the
3796			 * thing entirely.  Might be memory poisoning
3797			 * halfway through, might be a race with munmap,
3798			 * might be severe memory pressure.
 
 
3799			 */
3800			if (copied)
3801				bytes = copied;
3802			goto again;
3803		}
3804		pos += status;
3805		written += status;
3806
3807		balance_dirty_pages_ratelimited(mapping);
3808	} while (iov_iter_count(i));
3809
3810	return written ? written : status;
3811}
3812EXPORT_SYMBOL(generic_perform_write);
3813
3814/**
3815 * __generic_file_write_iter - write data to a file
3816 * @iocb:	IO state structure (file, offset, etc.)
3817 * @from:	iov_iter with data to write
3818 *
3819 * This function does all the work needed for actually writing data to a
3820 * file. It does all basic checks, removes SUID from the file, updates
3821 * modification times and calls proper subroutines depending on whether we
3822 * do direct IO or a standard buffered write.
3823 *
3824 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3825 * object which does not need locking at all.
3826 *
3827 * This function does *not* take care of syncing data in case of O_SYNC write.
3828 * A caller has to handle it. This is mainly due to the fact that we want to
3829 * avoid syncing under i_rwsem.
3830 *
3831 * Return:
3832 * * number of bytes written, even for truncated writes
3833 * * negative error code if no data has been written at all
3834 */
3835ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3836{
3837	struct file *file = iocb->ki_filp;
3838	struct address_space *mapping = file->f_mapping;
3839	struct inode 	*inode = mapping->host;
3840	ssize_t		written = 0;
3841	ssize_t		err;
3842	ssize_t		status;
3843
3844	/* We can write back this queue in page reclaim */
3845	current->backing_dev_info = inode_to_bdi(inode);
3846	err = file_remove_privs(file);
3847	if (err)
3848		goto out;
3849
3850	err = file_update_time(file);
3851	if (err)
3852		goto out;
3853
3854	if (iocb->ki_flags & IOCB_DIRECT) {
3855		loff_t pos, endbyte;
3856
3857		written = generic_file_direct_write(iocb, from);
3858		/*
3859		 * If the write stopped short of completing, fall back to
3860		 * buffered writes.  Some filesystems do this for writes to
3861		 * holes, for example.  For DAX files, a buffered write will
3862		 * not succeed (even if it did, DAX does not handle dirty
3863		 * page-cache pages correctly).
3864		 */
3865		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3866			goto out;
3867
3868		pos = iocb->ki_pos;
3869		status = generic_perform_write(iocb, from);
3870		/*
3871		 * If generic_perform_write() returned a synchronous error
3872		 * then we want to return the number of bytes which were
3873		 * direct-written, or the error code if that was zero.  Note
3874		 * that this differs from normal direct-io semantics, which
3875		 * will return -EFOO even if some bytes were written.
3876		 */
3877		if (unlikely(status < 0)) {
3878			err = status;
3879			goto out;
3880		}
3881		/*
3882		 * We need to ensure that the page cache pages are written to
3883		 * disk and invalidated to preserve the expected O_DIRECT
3884		 * semantics.
3885		 */
3886		endbyte = pos + status - 1;
3887		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3888		if (err == 0) {
3889			iocb->ki_pos = endbyte + 1;
3890			written += status;
3891			invalidate_mapping_pages(mapping,
3892						 pos >> PAGE_SHIFT,
3893						 endbyte >> PAGE_SHIFT);
3894		} else {
3895			/*
3896			 * We don't know how much we wrote, so just return
3897			 * the number of bytes which were direct-written
3898			 */
3899		}
3900	} else {
3901		written = generic_perform_write(iocb, from);
3902		if (likely(written > 0))
3903			iocb->ki_pos += written;
3904	}
3905out:
3906	current->backing_dev_info = NULL;
3907	return written ? written : err;
3908}
3909EXPORT_SYMBOL(__generic_file_write_iter);
3910
3911/**
3912 * generic_file_write_iter - write data to a file
3913 * @iocb:	IO state structure
3914 * @from:	iov_iter with data to write
3915 *
3916 * This is a wrapper around __generic_file_write_iter() to be used by most
3917 * filesystems. It takes care of syncing the file in case of O_SYNC file
3918 * and acquires i_rwsem as needed.
3919 * Return:
3920 * * negative error code if no data has been written at all of
3921 *   vfs_fsync_range() failed for a synchronous write
3922 * * number of bytes written, even for truncated writes
3923 */
3924ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3925{
3926	struct file *file = iocb->ki_filp;
3927	struct inode *inode = file->f_mapping->host;
3928	ssize_t ret;
3929
3930	inode_lock(inode);
3931	ret = generic_write_checks(iocb, from);
3932	if (ret > 0)
3933		ret = __generic_file_write_iter(iocb, from);
3934	inode_unlock(inode);
3935
3936	if (ret > 0)
3937		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
3938	return ret;
3939}
3940EXPORT_SYMBOL(generic_file_write_iter);
3941
3942/**
3943 * filemap_release_folio() - Release fs-specific metadata on a folio.
3944 * @folio: The folio which the kernel is trying to free.
3945 * @gfp: Memory allocation flags (and I/O mode).
 
3946 *
3947 * The address_space is trying to release any data attached to a folio
3948 * (presumably at folio->private).
 
3949 *
3950 * This will also be called if the private_2 flag is set on a page,
3951 * indicating that the folio has other metadata associated with it.
3952 *
3953 * The @gfp argument specifies whether I/O may be performed to release
3954 * this page (__GFP_IO), and whether the call may block
3955 * (__GFP_RECLAIM & __GFP_FS).
3956 *
3957 * Return: %true if the release was successful, otherwise %false.
3958 */
3959bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3960{
3961	struct address_space * const mapping = folio->mapping;
3962
3963	BUG_ON(!folio_test_locked(folio));
3964	if (folio_test_writeback(folio))
3965		return false;
3966
3967	if (mapping && mapping->a_ops->release_folio)
3968		return mapping->a_ops->release_folio(folio, gfp);
3969	return try_to_free_buffers(folio);
3970}
3971EXPORT_SYMBOL(filemap_release_folio);