Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.6
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/uaccess.h>
 
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static void page_cache_tree_delete(struct address_space *mapping,
 114				   struct page *page, void *shadow)
 115{
 116	struct radix_tree_node *node;
 117	unsigned long index;
 118	unsigned int offset;
 119	unsigned int tag;
 120	void **slot;
 121
 122	VM_BUG_ON(!PageLocked(page));
 123
 124	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 125
 126	if (shadow) {
 127		mapping->nrexceptional++;
 128		/*
 129		 * Make sure the nrexceptional update is committed before
 130		 * the nrpages update so that final truncate racing
 131		 * with reclaim does not see both counters 0 at the
 132		 * same time and miss a shadow entry.
 133		 */
 134		smp_wmb();
 135	}
 136	mapping->nrpages--;
 137
 138	if (!node) {
 139		/* Clear direct pointer tags in root node */
 140		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 141		radix_tree_replace_slot(slot, shadow);
 142		return;
 143	}
 144
 145	/* Clear tree tags for the removed page */
 146	index = page->index;
 147	offset = index & RADIX_TREE_MAP_MASK;
 148	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 149		if (test_bit(offset, node->tags[tag]))
 150			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 151	}
 152
 153	/* Delete page, swap shadow entry */
 154	radix_tree_replace_slot(slot, shadow);
 155	workingset_node_pages_dec(node);
 156	if (shadow)
 157		workingset_node_shadows_inc(node);
 158	else
 159		if (__radix_tree_delete_node(&mapping->page_tree, node))
 160			return;
 161
 162	/*
 163	 * Track node that only contains shadow entries.
 164	 *
 165	 * Avoid acquiring the list_lru lock if already tracked.  The
 166	 * list_empty() test is safe as node->private_list is
 167	 * protected by mapping->tree_lock.
 168	 */
 169	if (!workingset_node_pages(node) &&
 170	    list_empty(&node->private_list)) {
 171		node->private_data = mapping;
 172		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 173	}
 174}
 175
 176/*
 177 * Delete a page from the page cache and free it. Caller has to make
 178 * sure the page is locked and that nobody else uses it - or that usage
 179 * is safe.  The caller must hold the mapping's tree_lock.
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow)
 182{
 183	struct address_space *mapping = page->mapping;
 184
 185	trace_mm_filemap_delete_from_page_cache(page);
 186	/*
 187	 * if we're uptodate, flush out into the cleancache, otherwise
 188	 * invalidate any existing cleancache entries.  We can't leave
 189	 * stale data around in the cleancache once our page is gone
 190	 */
 191	if (PageUptodate(page) && PageMappedToDisk(page))
 192		cleancache_put_page(page);
 193	else
 194		cleancache_invalidate_page(mapping, page);
 195
 196	VM_BUG_ON_PAGE(page_mapped(page), page);
 197	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 198		int mapcount;
 199
 200		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 201			 current->comm, page_to_pfn(page));
 202		dump_page(page, "still mapped when deleted");
 203		dump_stack();
 204		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 205
 206		mapcount = page_mapcount(page);
 207		if (mapping_exiting(mapping) &&
 208		    page_count(page) >= mapcount + 2) {
 209			/*
 210			 * All vmas have already been torn down, so it's
 211			 * a good bet that actually the page is unmapped,
 212			 * and we'd prefer not to leak it: if we're wrong,
 213			 * some other bad page check should catch it later.
 214			 */
 215			page_mapcount_reset(page);
 216			atomic_sub(mapcount, &page->_count);
 217		}
 218	}
 219
 220	page_cache_tree_delete(mapping, page, shadow);
 221
 222	page->mapping = NULL;
 223	/* Leave page->index set: truncation lookup relies upon it */
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (!PageHuge(page))
 227		__dec_zone_page_state(page, NR_FILE_PAGES);
 228	if (PageSwapBacked(page))
 229		__dec_zone_page_state(page, NR_SHMEM);
 
 230
 231	/*
 232	 * At this point page must be either written or cleaned by truncate.
 233	 * Dirty page here signals a bug and loss of unwritten data.
 234	 *
 235	 * This fixes dirty accounting after removing the page entirely but
 236	 * leaves PageDirty set: it has no effect for truncated page and
 237	 * anyway will be cleared before returning page into buddy allocator.
 238	 */
 239	if (WARN_ON_ONCE(PageDirty(page)))
 240		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 241}
 242
 243/**
 244 * delete_from_page_cache - delete page from page cache
 245 * @page: the page which the kernel is trying to remove from page cache
 246 *
 247 * This must be called only on pages that have been verified to be in the page
 248 * cache and locked.  It will never put the page into the free list, the caller
 249 * has a reference on the page.
 250 */
 251void delete_from_page_cache(struct page *page)
 252{
 253	struct address_space *mapping = page->mapping;
 254	unsigned long flags;
 255
 256	void (*freepage)(struct page *);
 257
 258	BUG_ON(!PageLocked(page));
 259
 260	freepage = mapping->a_ops->freepage;
 261
 262	spin_lock_irqsave(&mapping->tree_lock, flags);
 263	__delete_from_page_cache(page, NULL);
 264	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 265
 266	if (freepage)
 267		freepage(page);
 268	put_page(page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272static int filemap_check_errors(struct address_space *mapping)
 273{
 274	int ret = 0;
 275	/* Check for outstanding write errors */
 276	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 277	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 278		ret = -ENOSPC;
 279	if (test_bit(AS_EIO, &mapping->flags) &&
 280	    test_and_clear_bit(AS_EIO, &mapping->flags))
 281		ret = -EIO;
 282	return ret;
 283}
 284
 285/**
 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 287 * @mapping:	address space structure to write
 288 * @start:	offset in bytes where the range starts
 289 * @end:	offset in bytes where the range ends (inclusive)
 290 * @sync_mode:	enable synchronous operation
 291 *
 292 * Start writeback against all of a mapping's dirty pages that lie
 293 * within the byte offsets <start, end> inclusive.
 294 *
 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 296 * opposed to a regular memory cleansing writeback.  The difference between
 297 * these two operations is that if a dirty page/buffer is encountered, it must
 298 * be waited upon, and not just skipped over.
 299 */
 300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 301				loff_t end, int sync_mode)
 302{
 303	int ret;
 304	struct writeback_control wbc = {
 305		.sync_mode = sync_mode,
 306		.nr_to_write = LONG_MAX,
 307		.range_start = start,
 308		.range_end = end,
 309	};
 310
 311	if (!mapping_cap_writeback_dirty(mapping))
 312		return 0;
 313
 314	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 315	ret = do_writepages(mapping, &wbc);
 316	wbc_detach_inode(&wbc);
 317	return ret;
 318}
 319
 320static inline int __filemap_fdatawrite(struct address_space *mapping,
 321	int sync_mode)
 322{
 323	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 324}
 325
 326int filemap_fdatawrite(struct address_space *mapping)
 327{
 328	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 329}
 330EXPORT_SYMBOL(filemap_fdatawrite);
 331
 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 333				loff_t end)
 334{
 335	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 336}
 337EXPORT_SYMBOL(filemap_fdatawrite_range);
 338
 339/**
 340 * filemap_flush - mostly a non-blocking flush
 341 * @mapping:	target address_space
 342 *
 343 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 344 * purposes - I/O may not be started against all dirty pages.
 345 */
 346int filemap_flush(struct address_space *mapping)
 347{
 348	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 349}
 350EXPORT_SYMBOL(filemap_flush);
 351
 352static int __filemap_fdatawait_range(struct address_space *mapping,
 353				     loff_t start_byte, loff_t end_byte)
 
 
 
 
 
 
 
 
 
 354{
 355	pgoff_t index = start_byte >> PAGE_SHIFT;
 356	pgoff_t end = end_byte >> PAGE_SHIFT;
 357	struct pagevec pvec;
 358	int nr_pages;
 359	int ret = 0;
 360
 361	if (end_byte < start_byte)
 362		goto out;
 363
 364	pagevec_init(&pvec, 0);
 365	while ((index <= end) &&
 366			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 367			PAGECACHE_TAG_WRITEBACK,
 368			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 369		unsigned i;
 370
 371		for (i = 0; i < nr_pages; i++) {
 372			struct page *page = pvec.pages[i];
 373
 374			/* until radix tree lookup accepts end_index */
 375			if (page->index > end)
 376				continue;
 377
 378			wait_on_page_writeback(page);
 379			if (TestClearPageError(page))
 380				ret = -EIO;
 381		}
 382		pagevec_release(&pvec);
 383		cond_resched();
 384	}
 385out:
 386	return ret;
 387}
 388
 389/**
 390 * filemap_fdatawait_range - wait for writeback to complete
 391 * @mapping:		address space structure to wait for
 392 * @start_byte:		offset in bytes where the range starts
 393 * @end_byte:		offset in bytes where the range ends (inclusive)
 394 *
 395 * Walk the list of under-writeback pages of the given address space
 396 * in the given range and wait for all of them.  Check error status of
 397 * the address space and return it.
 398 *
 399 * Since the error status of the address space is cleared by this function,
 400 * callers are responsible for checking the return value and handling and/or
 401 * reporting the error.
 402 */
 403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 404			    loff_t end_byte)
 405{
 406	int ret, ret2;
 407
 408	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 409	ret2 = filemap_check_errors(mapping);
 410	if (!ret)
 411		ret = ret2;
 
 412
 413	return ret;
 414}
 415EXPORT_SYMBOL(filemap_fdatawait_range);
 416
 417/**
 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 419 * @mapping: address space structure to wait for
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 423 * does not clear error status of the address space.
 424 *
 425 * Use this function if callers don't handle errors themselves.  Expected
 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 427 * fsfreeze(8)
 428 */
 429void filemap_fdatawait_keep_errors(struct address_space *mapping)
 430{
 431	loff_t i_size = i_size_read(mapping->host);
 432
 433	if (i_size == 0)
 434		return;
 435
 436	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 437}
 438
 439/**
 440 * filemap_fdatawait - wait for all under-writeback pages to complete
 441 * @mapping: address space structure to wait for
 442 *
 443 * Walk the list of under-writeback pages of the given address space
 444 * and wait for all of them.  Check error status of the address space
 445 * and return it.
 446 *
 447 * Since the error status of the address space is cleared by this function,
 448 * callers are responsible for checking the return value and handling and/or
 449 * reporting the error.
 450 */
 451int filemap_fdatawait(struct address_space *mapping)
 452{
 453	loff_t i_size = i_size_read(mapping->host);
 454
 455	if (i_size == 0)
 456		return 0;
 457
 458	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 459}
 460EXPORT_SYMBOL(filemap_fdatawait);
 461
 462int filemap_write_and_wait(struct address_space *mapping)
 463{
 464	int err = 0;
 465
 466	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 467	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 468		err = filemap_fdatawrite(mapping);
 469		/*
 470		 * Even if the above returned error, the pages may be
 471		 * written partially (e.g. -ENOSPC), so we wait for it.
 472		 * But the -EIO is special case, it may indicate the worst
 473		 * thing (e.g. bug) happened, so we avoid waiting for it.
 474		 */
 475		if (err != -EIO) {
 476			int err2 = filemap_fdatawait(mapping);
 477			if (!err)
 478				err = err2;
 479		}
 480	} else {
 481		err = filemap_check_errors(mapping);
 482	}
 483	return err;
 484}
 485EXPORT_SYMBOL(filemap_write_and_wait);
 486
 487/**
 488 * filemap_write_and_wait_range - write out & wait on a file range
 489 * @mapping:	the address_space for the pages
 490 * @lstart:	offset in bytes where the range starts
 491 * @lend:	offset in bytes where the range ends (inclusive)
 492 *
 493 * Write out and wait upon file offsets lstart->lend, inclusive.
 494 *
 495 * Note that `lend' is inclusive (describes the last byte to be written) so
 496 * that this function can be used to write to the very end-of-file (end = -1).
 497 */
 498int filemap_write_and_wait_range(struct address_space *mapping,
 499				 loff_t lstart, loff_t lend)
 500{
 501	int err = 0;
 502
 503	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 504	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 505		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 506						 WB_SYNC_ALL);
 507		/* See comment of filemap_write_and_wait() */
 508		if (err != -EIO) {
 509			int err2 = filemap_fdatawait_range(mapping,
 510						lstart, lend);
 511			if (!err)
 512				err = err2;
 513		}
 514	} else {
 515		err = filemap_check_errors(mapping);
 516	}
 517	return err;
 518}
 519EXPORT_SYMBOL(filemap_write_and_wait_range);
 520
 521/**
 522 * replace_page_cache_page - replace a pagecache page with a new one
 523 * @old:	page to be replaced
 524 * @new:	page to replace with
 525 * @gfp_mask:	allocation mode
 526 *
 527 * This function replaces a page in the pagecache with a new one.  On
 528 * success it acquires the pagecache reference for the new page and
 529 * drops it for the old page.  Both the old and new pages must be
 530 * locked.  This function does not add the new page to the LRU, the
 531 * caller must do that.
 532 *
 533 * The remove + add is atomic.  The only way this function can fail is
 534 * memory allocation failure.
 535 */
 536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 537{
 538	int error;
 539
 540	VM_BUG_ON_PAGE(!PageLocked(old), old);
 541	VM_BUG_ON_PAGE(!PageLocked(new), new);
 542	VM_BUG_ON_PAGE(new->mapping, new);
 543
 544	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 545	if (!error) {
 546		struct address_space *mapping = old->mapping;
 547		void (*freepage)(struct page *);
 548		unsigned long flags;
 549
 550		pgoff_t offset = old->index;
 551		freepage = mapping->a_ops->freepage;
 552
 553		get_page(new);
 554		new->mapping = mapping;
 555		new->index = offset;
 556
 557		spin_lock_irqsave(&mapping->tree_lock, flags);
 558		__delete_from_page_cache(old, NULL);
 559		error = radix_tree_insert(&mapping->page_tree, offset, new);
 560		BUG_ON(error);
 561		mapping->nrpages++;
 562
 563		/*
 564		 * hugetlb pages do not participate in page cache accounting.
 565		 */
 566		if (!PageHuge(new))
 567			__inc_zone_page_state(new, NR_FILE_PAGES);
 568		if (PageSwapBacked(new))
 569			__inc_zone_page_state(new, NR_SHMEM);
 570		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 571		mem_cgroup_migrate(old, new);
 
 572		radix_tree_preload_end();
 573		if (freepage)
 574			freepage(old);
 575		put_page(old);
 576	}
 577
 578	return error;
 579}
 580EXPORT_SYMBOL_GPL(replace_page_cache_page);
 581
 582static int page_cache_tree_insert(struct address_space *mapping,
 583				  struct page *page, void **shadowp)
 584{
 585	struct radix_tree_node *node;
 586	void **slot;
 587	int error;
 588
 589	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 590				    &node, &slot);
 591	if (error)
 592		return error;
 593	if (*slot) {
 594		void *p;
 595
 596		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 597		if (!radix_tree_exceptional_entry(p))
 598			return -EEXIST;
 599
 600		if (WARN_ON(dax_mapping(mapping)))
 601			return -EINVAL;
 602
 603		if (shadowp)
 604			*shadowp = p;
 605		mapping->nrexceptional--;
 606		if (node)
 607			workingset_node_shadows_dec(node);
 608	}
 609	radix_tree_replace_slot(slot, page);
 610	mapping->nrpages++;
 611	if (node) {
 612		workingset_node_pages_inc(node);
 613		/*
 614		 * Don't track node that contains actual pages.
 615		 *
 616		 * Avoid acquiring the list_lru lock if already
 617		 * untracked.  The list_empty() test is safe as
 618		 * node->private_list is protected by
 619		 * mapping->tree_lock.
 620		 */
 621		if (!list_empty(&node->private_list))
 622			list_lru_del(&workingset_shadow_nodes,
 623				     &node->private_list);
 624	}
 625	return 0;
 626}
 627
 628static int __add_to_page_cache_locked(struct page *page,
 629				      struct address_space *mapping,
 630				      pgoff_t offset, gfp_t gfp_mask,
 631				      void **shadowp)
 632{
 633	int huge = PageHuge(page);
 634	struct mem_cgroup *memcg;
 635	int error;
 636
 637	VM_BUG_ON_PAGE(!PageLocked(page), page);
 638	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 639
 640	if (!huge) {
 641		error = mem_cgroup_try_charge(page, current->mm,
 642					      gfp_mask, &memcg, false);
 643		if (error)
 644			return error;
 645	}
 646
 647	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 648	if (error) {
 649		if (!huge)
 650			mem_cgroup_cancel_charge(page, memcg, false);
 651		return error;
 652	}
 653
 654	get_page(page);
 655	page->mapping = mapping;
 656	page->index = offset;
 657
 658	spin_lock_irq(&mapping->tree_lock);
 659	error = page_cache_tree_insert(mapping, page, shadowp);
 660	radix_tree_preload_end();
 661	if (unlikely(error))
 662		goto err_insert;
 663
 664	/* hugetlb pages do not participate in page cache accounting. */
 665	if (!huge)
 666		__inc_zone_page_state(page, NR_FILE_PAGES);
 667	spin_unlock_irq(&mapping->tree_lock);
 668	if (!huge)
 669		mem_cgroup_commit_charge(page, memcg, false, false);
 670	trace_mm_filemap_add_to_page_cache(page);
 671	return 0;
 672err_insert:
 673	page->mapping = NULL;
 674	/* Leave page->index set: truncation relies upon it */
 675	spin_unlock_irq(&mapping->tree_lock);
 676	if (!huge)
 677		mem_cgroup_cancel_charge(page, memcg, false);
 678	put_page(page);
 679	return error;
 680}
 681
 682/**
 683 * add_to_page_cache_locked - add a locked page to the pagecache
 684 * @page:	page to add
 685 * @mapping:	the page's address_space
 686 * @offset:	page index
 687 * @gfp_mask:	page allocation mode
 688 *
 689 * This function is used to add a page to the pagecache. It must be locked.
 690 * This function does not add the page to the LRU.  The caller must do that.
 691 */
 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 693		pgoff_t offset, gfp_t gfp_mask)
 694{
 695	return __add_to_page_cache_locked(page, mapping, offset,
 696					  gfp_mask, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698EXPORT_SYMBOL(add_to_page_cache_locked);
 699
 700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 701				pgoff_t offset, gfp_t gfp_mask)
 702{
 703	void *shadow = NULL;
 704	int ret;
 705
 706	__SetPageLocked(page);
 707	ret = __add_to_page_cache_locked(page, mapping, offset,
 708					 gfp_mask, &shadow);
 709	if (unlikely(ret))
 710		__ClearPageLocked(page);
 711	else {
 712		/*
 713		 * The page might have been evicted from cache only
 714		 * recently, in which case it should be activated like
 715		 * any other repeatedly accessed page.
 716		 */
 717		if (shadow && workingset_refault(shadow)) {
 718			SetPageActive(page);
 719			workingset_activation(page);
 720		} else
 721			ClearPageActive(page);
 722		lru_cache_add(page);
 723	}
 724	return ret;
 725}
 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 727
 728#ifdef CONFIG_NUMA
 729struct page *__page_cache_alloc(gfp_t gfp)
 730{
 731	int n;
 732	struct page *page;
 733
 734	if (cpuset_do_page_mem_spread()) {
 735		unsigned int cpuset_mems_cookie;
 736		do {
 737			cpuset_mems_cookie = read_mems_allowed_begin();
 738			n = cpuset_mem_spread_node();
 739			page = __alloc_pages_node(n, gfp, 0);
 740		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 741
 742		return page;
 743	}
 744	return alloc_pages(gfp, 0);
 745}
 746EXPORT_SYMBOL(__page_cache_alloc);
 747#endif
 748
 749/*
 750 * In order to wait for pages to become available there must be
 751 * waitqueues associated with pages. By using a hash table of
 752 * waitqueues where the bucket discipline is to maintain all
 753 * waiters on the same queue and wake all when any of the pages
 754 * become available, and for the woken contexts to check to be
 755 * sure the appropriate page became available, this saves space
 756 * at a cost of "thundering herd" phenomena during rare hash
 757 * collisions.
 758 */
 759wait_queue_head_t *page_waitqueue(struct page *page)
 760{
 761	const struct zone *zone = page_zone(page);
 762
 763	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 764}
 765EXPORT_SYMBOL(page_waitqueue);
 
 
 
 
 766
 767void wait_on_page_bit(struct page *page, int bit_nr)
 768{
 769	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 770
 771	if (test_bit(bit_nr, &page->flags))
 772		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 773							TASK_UNINTERRUPTIBLE);
 774}
 775EXPORT_SYMBOL(wait_on_page_bit);
 776
 777int wait_on_page_bit_killable(struct page *page, int bit_nr)
 778{
 779	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 780
 781	if (!test_bit(bit_nr, &page->flags))
 782		return 0;
 783
 784	return __wait_on_bit(page_waitqueue(page), &wait,
 785			     bit_wait_io, TASK_KILLABLE);
 786}
 787
 788int wait_on_page_bit_killable_timeout(struct page *page,
 789				       int bit_nr, unsigned long timeout)
 790{
 791	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 792
 793	wait.key.timeout = jiffies + timeout;
 794	if (!test_bit(bit_nr, &page->flags))
 795		return 0;
 796	return __wait_on_bit(page_waitqueue(page), &wait,
 797			     bit_wait_io_timeout, TASK_KILLABLE);
 798}
 799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 800
 801/**
 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 803 * @page: Page defining the wait queue of interest
 804 * @waiter: Waiter to add to the queue
 805 *
 806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 807 */
 808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 809{
 810	wait_queue_head_t *q = page_waitqueue(page);
 811	unsigned long flags;
 812
 813	spin_lock_irqsave(&q->lock, flags);
 814	__add_wait_queue(q, waiter);
 815	spin_unlock_irqrestore(&q->lock, flags);
 816}
 817EXPORT_SYMBOL_GPL(add_page_wait_queue);
 818
 819/**
 820 * unlock_page - unlock a locked page
 821 * @page: the page
 822 *
 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 827 *
 828 * The mb is necessary to enforce ordering between the clear_bit and the read
 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 830 */
 831void unlock_page(struct page *page)
 832{
 833	page = compound_head(page);
 834	VM_BUG_ON_PAGE(!PageLocked(page), page);
 835	clear_bit_unlock(PG_locked, &page->flags);
 836	smp_mb__after_atomic();
 837	wake_up_page(page, PG_locked);
 838}
 839EXPORT_SYMBOL(unlock_page);
 840
 841/**
 842 * end_page_writeback - end writeback against a page
 843 * @page: the page
 844 */
 845void end_page_writeback(struct page *page)
 846{
 847	/*
 848	 * TestClearPageReclaim could be used here but it is an atomic
 849	 * operation and overkill in this particular case. Failing to
 850	 * shuffle a page marked for immediate reclaim is too mild to
 851	 * justify taking an atomic operation penalty at the end of
 852	 * ever page writeback.
 853	 */
 854	if (PageReclaim(page)) {
 855		ClearPageReclaim(page);
 856		rotate_reclaimable_page(page);
 857	}
 858
 859	if (!test_clear_page_writeback(page))
 860		BUG();
 861
 862	smp_mb__after_atomic();
 863	wake_up_page(page, PG_writeback);
 864}
 865EXPORT_SYMBOL(end_page_writeback);
 866
 867/*
 868 * After completing I/O on a page, call this routine to update the page
 869 * flags appropriately
 870 */
 871void page_endio(struct page *page, int rw, int err)
 872{
 873	if (rw == READ) {
 874		if (!err) {
 875			SetPageUptodate(page);
 876		} else {
 877			ClearPageUptodate(page);
 878			SetPageError(page);
 879		}
 880		unlock_page(page);
 881	} else { /* rw == WRITE */
 882		if (err) {
 883			SetPageError(page);
 884			if (page->mapping)
 885				mapping_set_error(page->mapping, err);
 886		}
 887		end_page_writeback(page);
 888	}
 889}
 890EXPORT_SYMBOL_GPL(page_endio);
 891
 892/**
 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 894 * @page: the page to lock
 895 */
 896void __lock_page(struct page *page)
 897{
 898	struct page *page_head = compound_head(page);
 899	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 900
 901	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 902							TASK_UNINTERRUPTIBLE);
 903}
 904EXPORT_SYMBOL(__lock_page);
 905
 906int __lock_page_killable(struct page *page)
 907{
 908	struct page *page_head = compound_head(page);
 909	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 910
 911	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 912					bit_wait_io, TASK_KILLABLE);
 913}
 914EXPORT_SYMBOL_GPL(__lock_page_killable);
 915
 916/*
 917 * Return values:
 918 * 1 - page is locked; mmap_sem is still held.
 919 * 0 - page is not locked.
 920 *     mmap_sem has been released (up_read()), unless flags had both
 921 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 922 *     which case mmap_sem is still held.
 923 *
 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 925 * with the page locked and the mmap_sem unperturbed.
 926 */
 927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 928			 unsigned int flags)
 929{
 930	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 931		/*
 932		 * CAUTION! In this case, mmap_sem is not released
 933		 * even though return 0.
 934		 */
 935		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 936			return 0;
 937
 938		up_read(&mm->mmap_sem);
 939		if (flags & FAULT_FLAG_KILLABLE)
 940			wait_on_page_locked_killable(page);
 941		else
 942			wait_on_page_locked(page);
 943		return 0;
 944	} else {
 945		if (flags & FAULT_FLAG_KILLABLE) {
 946			int ret;
 947
 948			ret = __lock_page_killable(page);
 949			if (ret) {
 950				up_read(&mm->mmap_sem);
 951				return 0;
 952			}
 953		} else
 954			__lock_page(page);
 955		return 1;
 956	}
 957}
 958
 959/**
 960 * page_cache_next_hole - find the next hole (not-present entry)
 961 * @mapping: mapping
 962 * @index: index
 963 * @max_scan: maximum range to search
 964 *
 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 966 * lowest indexed hole.
 967 *
 968 * Returns: the index of the hole if found, otherwise returns an index
 969 * outside of the set specified (in which case 'return - index >=
 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 971 * be returned.
 972 *
 973 * page_cache_next_hole may be called under rcu_read_lock. However,
 974 * like radix_tree_gang_lookup, this will not atomically search a
 975 * snapshot of the tree at a single point in time. For example, if a
 976 * hole is created at index 5, then subsequently a hole is created at
 977 * index 10, page_cache_next_hole covering both indexes may return 10
 978 * if called under rcu_read_lock.
 979 */
 980pgoff_t page_cache_next_hole(struct address_space *mapping,
 981			     pgoff_t index, unsigned long max_scan)
 982{
 983	unsigned long i;
 984
 985	for (i = 0; i < max_scan; i++) {
 986		struct page *page;
 987
 988		page = radix_tree_lookup(&mapping->page_tree, index);
 989		if (!page || radix_tree_exceptional_entry(page))
 990			break;
 991		index++;
 992		if (index == 0)
 993			break;
 994	}
 995
 996	return index;
 997}
 998EXPORT_SYMBOL(page_cache_next_hole);
 999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022			     pgoff_t index, unsigned long max_scan)
1023{
1024	unsigned long i;
1025
1026	for (i = 0; i < max_scan; i++) {
1027		struct page *page;
1028
1029		page = radix_tree_lookup(&mapping->page_tree, index);
1030		if (!page || radix_tree_exceptional_entry(page))
1031			break;
1032		index--;
1033		if (index == ULONG_MAX)
1034			break;
1035	}
1036
1037	return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041/**
1042 * find_get_entry - find and get a page cache entry
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset.  If there is a
1047 * page cache page, it is returned with an increased refcount.
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
1051 *
1052 * Otherwise, %NULL is returned.
 
1053 */
1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055{
1056	void **pagep;
1057	struct page *page;
1058
1059	rcu_read_lock();
1060repeat:
1061	page = NULL;
1062	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063	if (pagep) {
1064		page = radix_tree_deref_slot(pagep);
1065		if (unlikely(!page))
1066			goto out;
1067		if (radix_tree_exception(page)) {
1068			if (radix_tree_deref_retry(page))
1069				goto repeat;
1070			/*
1071			 * A shadow entry of a recently evicted page,
1072			 * or a swap entry from shmem/tmpfs.  Return
1073			 * it without attempting to raise page count.
1074			 */
1075			goto out;
1076		}
1077		if (!page_cache_get_speculative(page))
1078			goto repeat;
1079
1080		/*
1081		 * Has the page moved?
1082		 * This is part of the lockless pagecache protocol. See
1083		 * include/linux/pagemap.h for details.
1084		 */
1085		if (unlikely(page != *pagep)) {
1086			put_page(page);
1087			goto repeat;
1088		}
1089	}
1090out:
1091	rcu_read_unlock();
1092
1093	return page;
1094}
1095EXPORT_SYMBOL(find_get_entry);
1096
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
1101 *
1102 * Looks up the page cache slot at @mapping & @offset.  If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
 
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114{
1115	struct page *page;
1116
1117repeat:
1118	page = find_get_entry(mapping, offset);
1119	if (page && !radix_tree_exception(page)) {
1120		lock_page(page);
1121		/* Has the page been truncated? */
1122		if (unlikely(page->mapping != mapping)) {
1123			unlock_page(page);
1124			put_page(page);
1125			goto repeat;
1126		}
1127		VM_BUG_ON_PAGE(page->index != offset, page);
1128	}
1129	return page;
1130}
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 *		@gfp_mask and added to the page cache and the VM's LRU
1148 *		list. The page is returned locked and with an increased
1149 *		refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
 
1155 */
1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157	int fgp_flags, gfp_t gfp_mask)
1158{
1159	struct page *page;
1160
1161repeat:
1162	page = find_get_entry(mapping, offset);
1163	if (radix_tree_exceptional_entry(page))
1164		page = NULL;
1165	if (!page)
1166		goto no_page;
1167
1168	if (fgp_flags & FGP_LOCK) {
1169		if (fgp_flags & FGP_NOWAIT) {
1170			if (!trylock_page(page)) {
1171				put_page(page);
1172				return NULL;
1173			}
1174		} else {
1175			lock_page(page);
1176		}
1177
1178		/* Has the page been truncated? */
1179		if (unlikely(page->mapping != mapping)) {
1180			unlock_page(page);
1181			put_page(page);
1182			goto repeat;
1183		}
1184		VM_BUG_ON_PAGE(page->index != offset, page);
1185	}
1186
1187	if (page && (fgp_flags & FGP_ACCESSED))
1188		mark_page_accessed(page);
1189
1190no_page:
1191	if (!page && (fgp_flags & FGP_CREAT)) {
1192		int err;
1193		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194			gfp_mask |= __GFP_WRITE;
1195		if (fgp_flags & FGP_NOFS)
1196			gfp_mask &= ~__GFP_FS;
1197
1198		page = __page_cache_alloc(gfp_mask);
1199		if (!page)
1200			return NULL;
1201
1202		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203			fgp_flags |= FGP_LOCK;
1204
1205		/* Init accessed so avoid atomic mark_page_accessed later */
1206		if (fgp_flags & FGP_ACCESSED)
1207			__SetPageReferenced(page);
1208
1209		err = add_to_page_cache_lru(page, mapping, offset,
1210				gfp_mask & GFP_RECLAIM_MASK);
1211		if (unlikely(err)) {
1212			put_page(page);
1213			page = NULL;
1214			if (err == -EEXIST)
1215				goto repeat;
1216		}
1217	}
1218
1219	return page;
1220}
1221EXPORT_SYMBOL(pagecache_get_page);
1222
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping:	The address_space to search
1226 * @start:	The starting page cache index
1227 * @nr_entries:	The maximum number of entries
1228 * @entries:	Where the resulting entries are placed
1229 * @indices:	The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping.  The entries are placed at
1233 * @entries.  find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes.  There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247			  pgoff_t start, unsigned int nr_entries,
1248			  struct page **entries, pgoff_t *indices)
1249{
1250	void **slot;
1251	unsigned int ret = 0;
1252	struct radix_tree_iter iter;
1253
1254	if (!nr_entries)
1255		return 0;
1256
1257	rcu_read_lock();
1258	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259		struct page *page;
1260repeat:
1261		page = radix_tree_deref_slot(slot);
1262		if (unlikely(!page))
1263			continue;
1264		if (radix_tree_exception(page)) {
1265			if (radix_tree_deref_retry(page)) {
1266				slot = radix_tree_iter_retry(&iter);
1267				continue;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page, a swap
1271			 * entry from shmem/tmpfs or a DAX entry.  Return it
1272			 * without attempting to raise page count.
1273			 */
1274			goto export;
1275		}
1276		if (!page_cache_get_speculative(page))
1277			goto repeat;
1278
1279		/* Has the page moved? */
1280		if (unlikely(page != *slot)) {
1281			put_page(page);
1282			goto repeat;
1283		}
1284export:
1285		indices[ret] = iter.index;
1286		entries[ret] = page;
1287		if (++ret == nr_entries)
1288			break;
1289	}
1290	rcu_read_unlock();
1291	return ret;
1292}
1293
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping:	The address_space to search
1297 * @start:	The starting page index
1298 * @nr_pages:	The maximum number of pages
1299 * @pages:	Where the resulting pages are placed
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes.  There may be holes in the indices due to not-present pages.
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311			    unsigned int nr_pages, struct page **pages)
1312{
1313	struct radix_tree_iter iter;
1314	void **slot;
1315	unsigned ret = 0;
1316
1317	if (unlikely(!nr_pages))
1318		return 0;
1319
1320	rcu_read_lock();
 
1321	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322		struct page *page;
1323repeat:
1324		page = radix_tree_deref_slot(slot);
1325		if (unlikely(!page))
1326			continue;
1327
1328		if (radix_tree_exception(page)) {
1329			if (radix_tree_deref_retry(page)) {
1330				slot = radix_tree_iter_retry(&iter);
1331				continue;
 
 
 
 
 
1332			}
1333			/*
1334			 * A shadow entry of a recently evicted page,
1335			 * or a swap entry from shmem/tmpfs.  Skip
1336			 * over it.
1337			 */
1338			continue;
1339		}
1340
1341		if (!page_cache_get_speculative(page))
1342			goto repeat;
1343
1344		/* Has the page moved? */
1345		if (unlikely(page != *slot)) {
1346			put_page(page);
1347			goto repeat;
1348		}
1349
1350		pages[ret] = page;
1351		if (++ret == nr_pages)
1352			break;
1353	}
1354
1355	rcu_read_unlock();
1356	return ret;
1357}
1358
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping:	The address_space to search
1362 * @index:	The starting page index
1363 * @nr_pages:	The maximum number of pages
1364 * @pages:	Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372			       unsigned int nr_pages, struct page **pages)
1373{
1374	struct radix_tree_iter iter;
1375	void **slot;
1376	unsigned int ret = 0;
1377
1378	if (unlikely(!nr_pages))
1379		return 0;
1380
1381	rcu_read_lock();
 
1382	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383		struct page *page;
1384repeat:
1385		page = radix_tree_deref_slot(slot);
1386		/* The hole, there no reason to continue */
1387		if (unlikely(!page))
1388			break;
1389
1390		if (radix_tree_exception(page)) {
1391			if (radix_tree_deref_retry(page)) {
1392				slot = radix_tree_iter_retry(&iter);
1393				continue;
 
 
 
 
1394			}
1395			/*
1396			 * A shadow entry of a recently evicted page,
1397			 * or a swap entry from shmem/tmpfs.  Stop
1398			 * looking for contiguous pages.
1399			 */
1400			break;
1401		}
1402
1403		if (!page_cache_get_speculative(page))
1404			goto repeat;
1405
1406		/* Has the page moved? */
1407		if (unlikely(page != *slot)) {
1408			put_page(page);
1409			goto repeat;
1410		}
1411
1412		/*
1413		 * must check mapping and index after taking the ref.
1414		 * otherwise we can get both false positives and false
1415		 * negatives, which is just confusing to the caller.
1416		 */
1417		if (page->mapping == NULL || page->index != iter.index) {
1418			put_page(page);
1419			break;
1420		}
1421
1422		pages[ret] = page;
1423		if (++ret == nr_pages)
1424			break;
1425	}
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL(find_get_pages_contig);
1430
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping:	the address_space to search
1434 * @index:	the starting page index
1435 * @tag:	the tag index
1436 * @nr_pages:	the maximum number of pages
1437 * @pages:	where the resulting pages are placed
1438 *
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag.   We update @index to index the next page for the traversal.
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443			int tag, unsigned int nr_pages, struct page **pages)
1444{
1445	struct radix_tree_iter iter;
1446	void **slot;
1447	unsigned ret = 0;
1448
1449	if (unlikely(!nr_pages))
1450		return 0;
1451
1452	rcu_read_lock();
 
1453	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454				   &iter, *index, tag) {
1455		struct page *page;
1456repeat:
1457		page = radix_tree_deref_slot(slot);
1458		if (unlikely(!page))
1459			continue;
1460
1461		if (radix_tree_exception(page)) {
1462			if (radix_tree_deref_retry(page)) {
1463				slot = radix_tree_iter_retry(&iter);
1464				continue;
 
 
 
 
1465			}
1466			/*
1467			 * A shadow entry of a recently evicted page.
1468			 *
1469			 * Those entries should never be tagged, but
1470			 * this tree walk is lockless and the tags are
1471			 * looked up in bulk, one radix tree node at a
1472			 * time, so there is a sizable window for page
1473			 * reclaim to evict a page we saw tagged.
1474			 *
1475			 * Skip over it.
1476			 */
1477			continue;
1478		}
1479
1480		if (!page_cache_get_speculative(page))
1481			goto repeat;
1482
1483		/* Has the page moved? */
1484		if (unlikely(page != *slot)) {
1485			put_page(page);
1486			goto repeat;
1487		}
1488
1489		pages[ret] = page;
1490		if (++ret == nr_pages)
1491			break;
1492	}
1493
1494	rcu_read_unlock();
1495
1496	if (ret)
1497		*index = pages[ret - 1]->index + 1;
1498
1499	return ret;
1500}
1501EXPORT_SYMBOL(find_get_pages_tag);
1502
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping:	the address_space to search
1506 * @start:	the starting page cache index
1507 * @tag:	the tag index
1508 * @nr_entries:	the maximum number of entries
1509 * @entries:	where the resulting entries are placed
1510 * @indices:	the cache indices corresponding to the entries in @entries
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516			int tag, unsigned int nr_entries,
1517			struct page **entries, pgoff_t *indices)
1518{
1519	void **slot;
1520	unsigned int ret = 0;
1521	struct radix_tree_iter iter;
1522
1523	if (!nr_entries)
1524		return 0;
1525
1526	rcu_read_lock();
1527	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528				   &iter, start, tag) {
1529		struct page *page;
1530repeat:
1531		page = radix_tree_deref_slot(slot);
1532		if (unlikely(!page))
1533			continue;
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539
1540			/*
1541			 * A shadow entry of a recently evicted page, a swap
1542			 * entry from shmem/tmpfs or a DAX entry.  Return it
1543			 * without attempting to raise page count.
1544			 */
1545			goto export;
1546		}
1547		if (!page_cache_get_speculative(page))
1548			goto repeat;
1549
1550		/* Has the page moved? */
1551		if (unlikely(page != *slot)) {
1552			put_page(page);
1553			goto repeat;
1554		}
1555export:
1556		indices[ret] = iter.index;
1557		entries[ret] = page;
1558		if (++ret == nr_entries)
1559			break;
1560	}
1561	rcu_read_unlock();
1562	return ret;
 
 
 
 
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 *      ---R__________________________________________B__________
1571 *         ^ reading here                             ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582					struct file_ra_state *ra)
1583{
1584	ra->ra_pages /= 4;
1585}
1586
1587/**
1588 * do_generic_file_read - generic file read routine
1589 * @filp:	the file to read
1590 * @ppos:	current file position
1591 * @iter:	data destination
1592 * @written:	already copied
1593 *
1594 * This is a generic file read routine, and uses the
1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
1599 */
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601		struct iov_iter *iter, ssize_t written)
1602{
1603	struct address_space *mapping = filp->f_mapping;
1604	struct inode *inode = mapping->host;
1605	struct file_ra_state *ra = &filp->f_ra;
1606	pgoff_t index;
1607	pgoff_t last_index;
1608	pgoff_t prev_index;
1609	unsigned long offset;      /* offset into pagecache page */
1610	unsigned int prev_offset;
1611	int error = 0;
1612
1613	index = *ppos >> PAGE_SHIFT;
1614	prev_index = ra->prev_pos >> PAGE_SHIFT;
1615	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617	offset = *ppos & ~PAGE_MASK;
1618
1619	for (;;) {
1620		struct page *page;
1621		pgoff_t end_index;
1622		loff_t isize;
1623		unsigned long nr, ret;
1624
1625		cond_resched();
1626find_page:
1627		page = find_get_page(mapping, index);
1628		if (!page) {
1629			page_cache_sync_readahead(mapping,
1630					ra, filp,
1631					index, last_index - index);
1632			page = find_get_page(mapping, index);
1633			if (unlikely(page == NULL))
1634				goto no_cached_page;
1635		}
1636		if (PageReadahead(page)) {
1637			page_cache_async_readahead(mapping,
1638					ra, filp, page,
1639					index, last_index - index);
1640		}
1641		if (!PageUptodate(page)) {
1642			/*
1643			 * See comment in do_read_cache_page on why
1644			 * wait_on_page_locked is used to avoid unnecessarily
1645			 * serialisations and why it's safe.
1646			 */
1647			wait_on_page_locked_killable(page);
1648			if (PageUptodate(page))
1649				goto page_ok;
1650
1651			if (inode->i_blkbits == PAGE_SHIFT ||
1652					!mapping->a_ops->is_partially_uptodate)
1653				goto page_not_up_to_date;
1654			if (!trylock_page(page))
1655				goto page_not_up_to_date;
1656			/* Did it get truncated before we got the lock? */
1657			if (!page->mapping)
1658				goto page_not_up_to_date_locked;
1659			if (!mapping->a_ops->is_partially_uptodate(page,
1660							offset, iter->count))
1661				goto page_not_up_to_date_locked;
1662			unlock_page(page);
1663		}
1664page_ok:
1665		/*
1666		 * i_size must be checked after we know the page is Uptodate.
1667		 *
1668		 * Checking i_size after the check allows us to calculate
1669		 * the correct value for "nr", which means the zero-filled
1670		 * part of the page is not copied back to userspace (unless
1671		 * another truncate extends the file - this is desired though).
1672		 */
1673
1674		isize = i_size_read(inode);
1675		end_index = (isize - 1) >> PAGE_SHIFT;
1676		if (unlikely(!isize || index > end_index)) {
1677			put_page(page);
1678			goto out;
1679		}
1680
1681		/* nr is the maximum number of bytes to copy from this page */
1682		nr = PAGE_SIZE;
1683		if (index == end_index) {
1684			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685			if (nr <= offset) {
1686				put_page(page);
1687				goto out;
1688			}
1689		}
1690		nr = nr - offset;
1691
1692		/* If users can be writing to this page using arbitrary
1693		 * virtual addresses, take care about potential aliasing
1694		 * before reading the page on the kernel side.
1695		 */
1696		if (mapping_writably_mapped(mapping))
1697			flush_dcache_page(page);
1698
1699		/*
1700		 * When a sequential read accesses a page several times,
1701		 * only mark it as accessed the first time.
1702		 */
1703		if (prev_index != index || offset != prev_offset)
1704			mark_page_accessed(page);
1705		prev_index = index;
1706
1707		/*
1708		 * Ok, we have the page, and it's up-to-date, so
1709		 * now we can copy it to user space...
 
 
 
 
 
 
1710		 */
1711
1712		ret = copy_page_to_iter(page, offset, nr, iter);
1713		offset += ret;
1714		index += offset >> PAGE_SHIFT;
1715		offset &= ~PAGE_MASK;
1716		prev_offset = offset;
1717
1718		put_page(page);
1719		written += ret;
1720		if (!iov_iter_count(iter))
1721			goto out;
1722		if (ret < nr) {
1723			error = -EFAULT;
1724			goto out;
1725		}
1726		continue;
1727
1728page_not_up_to_date:
1729		/* Get exclusive access to the page ... */
1730		error = lock_page_killable(page);
1731		if (unlikely(error))
1732			goto readpage_error;
1733
1734page_not_up_to_date_locked:
1735		/* Did it get truncated before we got the lock? */
1736		if (!page->mapping) {
1737			unlock_page(page);
1738			put_page(page);
1739			continue;
1740		}
1741
1742		/* Did somebody else fill it already? */
1743		if (PageUptodate(page)) {
1744			unlock_page(page);
1745			goto page_ok;
1746		}
1747
1748readpage:
1749		/*
1750		 * A previous I/O error may have been due to temporary
1751		 * failures, eg. multipath errors.
1752		 * PG_error will be set again if readpage fails.
1753		 */
1754		ClearPageError(page);
1755		/* Start the actual read. The read will unlock the page. */
1756		error = mapping->a_ops->readpage(filp, page);
1757
1758		if (unlikely(error)) {
1759			if (error == AOP_TRUNCATED_PAGE) {
1760				put_page(page);
1761				error = 0;
1762				goto find_page;
1763			}
1764			goto readpage_error;
1765		}
1766
1767		if (!PageUptodate(page)) {
1768			error = lock_page_killable(page);
1769			if (unlikely(error))
1770				goto readpage_error;
1771			if (!PageUptodate(page)) {
1772				if (page->mapping == NULL) {
1773					/*
1774					 * invalidate_mapping_pages got it
1775					 */
1776					unlock_page(page);
1777					put_page(page);
1778					goto find_page;
1779				}
1780				unlock_page(page);
1781				shrink_readahead_size_eio(filp, ra);
1782				error = -EIO;
1783				goto readpage_error;
1784			}
1785			unlock_page(page);
1786		}
1787
1788		goto page_ok;
1789
1790readpage_error:
1791		/* UHHUH! A synchronous read error occurred. Report it */
1792		put_page(page);
 
1793		goto out;
1794
1795no_cached_page:
1796		/*
1797		 * Ok, it wasn't cached, so we need to create a new
1798		 * page..
1799		 */
1800		page = page_cache_alloc_cold(mapping);
1801		if (!page) {
1802			error = -ENOMEM;
1803			goto out;
1804		}
1805		error = add_to_page_cache_lru(page, mapping, index,
1806				mapping_gfp_constraint(mapping, GFP_KERNEL));
1807		if (error) {
1808			put_page(page);
1809			if (error == -EEXIST) {
1810				error = 0;
1811				goto find_page;
1812			}
1813			goto out;
1814		}
1815		goto readpage;
1816	}
1817
1818out:
1819	ra->prev_pos = prev_index;
1820	ra->prev_pos <<= PAGE_SHIFT;
1821	ra->prev_pos |= prev_offset;
1822
1823	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824	file_accessed(filp);
1825	return written ? written : error;
1826}
1827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828/**
1829 * generic_file_read_iter - generic filesystem read routine
1830 * @iocb:	kernel I/O control block
1831 * @iter:	destination for the data read
 
 
1832 *
1833 * This is the "read_iter()" routine for all filesystems
1834 * that can use the page cache directly.
1835 */
1836ssize_t
1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
1838{
1839	struct file *file = iocb->ki_filp;
1840	ssize_t retval = 0;
 
 
1841	loff_t *ppos = &iocb->ki_pos;
1842	loff_t pos = *ppos;
1843	size_t count = iov_iter_count(iter);
1844
1845	if (!count)
1846		goto out; /* skip atime */
 
 
1847
1848	if (iocb->ki_flags & IOCB_DIRECT) {
1849		struct address_space *mapping = file->f_mapping;
1850		struct inode *inode = mapping->host;
1851		loff_t size;
 
 
1852
 
 
 
 
1853		size = i_size_read(inode);
1854		retval = filemap_write_and_wait_range(mapping, pos,
1855					pos + count - 1);
1856		if (!retval) {
1857			struct iov_iter data = *iter;
1858			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859		}
 
 
 
 
 
 
 
 
 
1860
1861		if (retval > 0) {
1862			*ppos = pos + retval;
1863			iov_iter_advance(iter, retval);
 
 
 
 
 
 
 
 
 
1864		}
 
 
 
 
 
 
1865
1866		/*
1867		 * Btrfs can have a short DIO read if we encounter
1868		 * compressed extents, so if there was an error, or if
1869		 * we've already read everything we wanted to, or if
1870		 * there was a short read because we hit EOF, go ahead
1871		 * and return.  Otherwise fallthrough to buffered io for
1872		 * the rest of the read.  Buffered reads will not work for
1873		 * DAX files, so don't bother trying.
1874		 */
1875		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876		    IS_DAX(inode)) {
1877			file_accessed(file);
1878			goto out;
 
 
 
1879		}
1880	}
1881
1882	retval = do_generic_file_read(file, ppos, iter, retval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883out:
1884	return retval;
1885}
1886EXPORT_SYMBOL(generic_file_read_iter);
1887
1888#ifdef CONFIG_MMU
1889/**
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file:	file to read
1892 * @offset:	page index
1893 * @gfp_mask:	memory allocation flags
1894 *
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
1897 */
1898static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1899{
1900	struct address_space *mapping = file->f_mapping;
1901	struct page *page;
1902	int ret;
1903
1904	do {
1905		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906		if (!page)
1907			return -ENOMEM;
1908
1909		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910		if (ret == 0)
1911			ret = mapping->a_ops->readpage(file, page);
1912		else if (ret == -EEXIST)
1913			ret = 0; /* losing race to add is OK */
1914
1915		put_page(page);
1916
1917	} while (ret == AOP_TRUNCATED_PAGE);
1918
1919	return ret;
1920}
1921
1922#define MMAP_LOTSAMISS  (100)
1923
1924/*
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
1927 */
1928static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929				   struct file_ra_state *ra,
1930				   struct file *file,
1931				   pgoff_t offset)
1932{
 
1933	struct address_space *mapping = file->f_mapping;
1934
1935	/* If we don't want any read-ahead, don't bother */
1936	if (vma->vm_flags & VM_RAND_READ)
1937		return;
1938	if (!ra->ra_pages)
1939		return;
1940
1941	if (vma->vm_flags & VM_SEQ_READ) {
1942		page_cache_sync_readahead(mapping, ra, file, offset,
1943					  ra->ra_pages);
1944		return;
1945	}
1946
1947	/* Avoid banging the cache line if not needed */
1948	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949		ra->mmap_miss++;
1950
1951	/*
1952	 * Do we miss much more than hit in this file? If so,
1953	 * stop bothering with read-ahead. It will only hurt.
1954	 */
1955	if (ra->mmap_miss > MMAP_LOTSAMISS)
1956		return;
1957
1958	/*
1959	 * mmap read-around
1960	 */
1961	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1962	ra->size = ra->ra_pages;
1963	ra->async_size = ra->ra_pages / 4;
 
1964	ra_submit(ra, mapping, file);
1965}
1966
1967/*
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
1970 */
1971static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972				    struct file_ra_state *ra,
1973				    struct file *file,
1974				    struct page *page,
1975				    pgoff_t offset)
1976{
1977	struct address_space *mapping = file->f_mapping;
1978
1979	/* If we don't want any read-ahead, don't bother */
1980	if (vma->vm_flags & VM_RAND_READ)
1981		return;
1982	if (ra->mmap_miss > 0)
1983		ra->mmap_miss--;
1984	if (PageReadahead(page))
1985		page_cache_async_readahead(mapping, ra, file,
1986					   page, offset, ra->ra_pages);
1987}
1988
1989/**
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma:	vma in which the fault was taken
1992 * @vmf:	struct vm_fault containing details of the fault
1993 *
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1996 *
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2000 *
2001 * vma->vm_mm->mmap_sem must be held on entry.
2002 *
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2007 *
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2010 *
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2012 */
2013int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015	int error;
2016	struct file *file = vma->vm_file;
2017	struct address_space *mapping = file->f_mapping;
2018	struct file_ra_state *ra = &file->f_ra;
2019	struct inode *inode = mapping->host;
2020	pgoff_t offset = vmf->pgoff;
2021	struct page *page;
2022	loff_t size;
2023	int ret = 0;
2024
2025	size = round_up(i_size_read(inode), PAGE_SIZE);
2026	if (offset >= size >> PAGE_SHIFT)
2027		return VM_FAULT_SIGBUS;
2028
2029	/*
2030	 * Do we have something in the page cache already?
2031	 */
2032	page = find_get_page(mapping, offset);
2033	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034		/*
2035		 * We found the page, so try async readahead before
2036		 * waiting for the lock.
2037		 */
2038		do_async_mmap_readahead(vma, ra, file, page, offset);
2039	} else if (!page) {
2040		/* No page in the page cache at all */
2041		do_sync_mmap_readahead(vma, ra, file, offset);
2042		count_vm_event(PGMAJFAULT);
2043		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044		ret = VM_FAULT_MAJOR;
2045retry_find:
2046		page = find_get_page(mapping, offset);
2047		if (!page)
2048			goto no_cached_page;
2049	}
2050
2051	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052		put_page(page);
2053		return ret | VM_FAULT_RETRY;
2054	}
2055
2056	/* Did it get truncated? */
2057	if (unlikely(page->mapping != mapping)) {
2058		unlock_page(page);
2059		put_page(page);
2060		goto retry_find;
2061	}
2062	VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064	/*
2065	 * We have a locked page in the page cache, now we need to check
2066	 * that it's up-to-date. If not, it is going to be due to an error.
2067	 */
2068	if (unlikely(!PageUptodate(page)))
2069		goto page_not_uptodate;
2070
2071	/*
2072	 * Found the page and have a reference on it.
2073	 * We must recheck i_size under page lock.
2074	 */
2075	size = round_up(i_size_read(inode), PAGE_SIZE);
2076	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077		unlock_page(page);
2078		put_page(page);
2079		return VM_FAULT_SIGBUS;
2080	}
2081
2082	vmf->page = page;
2083	return ret | VM_FAULT_LOCKED;
2084
2085no_cached_page:
2086	/*
2087	 * We're only likely to ever get here if MADV_RANDOM is in
2088	 * effect.
2089	 */
2090	error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092	/*
2093	 * The page we want has now been added to the page cache.
2094	 * In the unlikely event that someone removed it in the
2095	 * meantime, we'll just come back here and read it again.
2096	 */
2097	if (error >= 0)
2098		goto retry_find;
2099
2100	/*
2101	 * An error return from page_cache_read can result if the
2102	 * system is low on memory, or a problem occurs while trying
2103	 * to schedule I/O.
2104	 */
2105	if (error == -ENOMEM)
2106		return VM_FAULT_OOM;
2107	return VM_FAULT_SIGBUS;
2108
2109page_not_uptodate:
2110	/*
2111	 * Umm, take care of errors if the page isn't up-to-date.
2112	 * Try to re-read it _once_. We do this synchronously,
2113	 * because there really aren't any performance issues here
2114	 * and we need to check for errors.
2115	 */
2116	ClearPageError(page);
2117	error = mapping->a_ops->readpage(file, page);
2118	if (!error) {
2119		wait_on_page_locked(page);
2120		if (!PageUptodate(page))
2121			error = -EIO;
2122	}
2123	put_page(page);
2124
2125	if (!error || error == AOP_TRUNCATED_PAGE)
2126		goto retry_find;
2127
2128	/* Things didn't work out. Return zero to tell the mm layer so. */
2129	shrink_readahead_size_eio(file, ra);
2130	return VM_FAULT_SIGBUS;
2131}
2132EXPORT_SYMBOL(filemap_fault);
2133
2134void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2135{
2136	struct radix_tree_iter iter;
2137	void **slot;
2138	struct file *file = vma->vm_file;
2139	struct address_space *mapping = file->f_mapping;
2140	loff_t size;
2141	struct page *page;
2142	unsigned long address = (unsigned long) vmf->virtual_address;
2143	unsigned long addr;
2144	pte_t *pte;
2145
2146	rcu_read_lock();
2147	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148		if (iter.index > vmf->max_pgoff)
2149			break;
2150repeat:
2151		page = radix_tree_deref_slot(slot);
2152		if (unlikely(!page))
2153			goto next;
2154		if (radix_tree_exception(page)) {
2155			if (radix_tree_deref_retry(page)) {
2156				slot = radix_tree_iter_retry(&iter);
2157				continue;
2158			}
2159			goto next;
2160		}
2161
2162		if (!page_cache_get_speculative(page))
2163			goto repeat;
2164
2165		/* Has the page moved? */
2166		if (unlikely(page != *slot)) {
2167			put_page(page);
2168			goto repeat;
2169		}
2170
2171		if (!PageUptodate(page) ||
2172				PageReadahead(page) ||
2173				PageHWPoison(page))
2174			goto skip;
2175		if (!trylock_page(page))
2176			goto skip;
2177
2178		if (page->mapping != mapping || !PageUptodate(page))
2179			goto unlock;
2180
2181		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182		if (page->index >= size >> PAGE_SHIFT)
2183			goto unlock;
2184
2185		pte = vmf->pte + page->index - vmf->pgoff;
2186		if (!pte_none(*pte))
2187			goto unlock;
2188
2189		if (file->f_ra.mmap_miss > 0)
2190			file->f_ra.mmap_miss--;
2191		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192		do_set_pte(vma, addr, page, pte, false, false);
2193		unlock_page(page);
2194		goto next;
2195unlock:
2196		unlock_page(page);
2197skip:
2198		put_page(page);
2199next:
2200		if (iter.index == vmf->max_pgoff)
2201			break;
2202	}
2203	rcu_read_unlock();
2204}
2205EXPORT_SYMBOL(filemap_map_pages);
2206
2207int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208{
2209	struct page *page = vmf->page;
2210	struct inode *inode = file_inode(vma->vm_file);
2211	int ret = VM_FAULT_LOCKED;
2212
2213	sb_start_pagefault(inode->i_sb);
2214	file_update_time(vma->vm_file);
2215	lock_page(page);
2216	if (page->mapping != inode->i_mapping) {
2217		unlock_page(page);
2218		ret = VM_FAULT_NOPAGE;
2219		goto out;
2220	}
2221	/*
2222	 * We mark the page dirty already here so that when freeze is in
2223	 * progress, we are guaranteed that writeback during freezing will
2224	 * see the dirty page and writeprotect it again.
2225	 */
2226	set_page_dirty(page);
2227	wait_for_stable_page(page);
2228out:
2229	sb_end_pagefault(inode->i_sb);
2230	return ret;
2231}
2232EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234const struct vm_operations_struct generic_file_vm_ops = {
2235	.fault		= filemap_fault,
2236	.map_pages	= filemap_map_pages,
2237	.page_mkwrite	= filemap_page_mkwrite,
2238};
2239
2240/* This is used for a general mmap of a disk file */
2241
2242int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243{
2244	struct address_space *mapping = file->f_mapping;
2245
2246	if (!mapping->a_ops->readpage)
2247		return -ENOEXEC;
2248	file_accessed(file);
2249	vma->vm_ops = &generic_file_vm_ops;
 
2250	return 0;
2251}
2252
2253/*
2254 * This is for filesystems which do not implement ->writepage.
2255 */
2256int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257{
2258	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259		return -EINVAL;
2260	return generic_file_mmap(file, vma);
2261}
2262#else
2263int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2264{
2265	return -ENOSYS;
2266}
2267int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268{
2269	return -ENOSYS;
2270}
2271#endif /* CONFIG_MMU */
2272
2273EXPORT_SYMBOL(generic_file_mmap);
2274EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276static struct page *wait_on_page_read(struct page *page)
2277{
2278	if (!IS_ERR(page)) {
2279		wait_on_page_locked(page);
2280		if (!PageUptodate(page)) {
2281			put_page(page);
2282			page = ERR_PTR(-EIO);
2283		}
2284	}
2285	return page;
2286}
2287
2288static struct page *do_read_cache_page(struct address_space *mapping,
2289				pgoff_t index,
2290				int (*filler)(void *, struct page *),
2291				void *data,
2292				gfp_t gfp)
2293{
2294	struct page *page;
2295	int err;
2296repeat:
2297	page = find_get_page(mapping, index);
2298	if (!page) {
2299		page = __page_cache_alloc(gfp | __GFP_COLD);
2300		if (!page)
2301			return ERR_PTR(-ENOMEM);
2302		err = add_to_page_cache_lru(page, mapping, index, gfp);
2303		if (unlikely(err)) {
2304			put_page(page);
2305			if (err == -EEXIST)
2306				goto repeat;
2307			/* Presumably ENOMEM for radix tree node */
2308			return ERR_PTR(err);
2309		}
2310
2311filler:
2312		err = filler(data, page);
2313		if (err < 0) {
2314			put_page(page);
2315			return ERR_PTR(err);
2316		}
2317
2318		page = wait_on_page_read(page);
2319		if (IS_ERR(page))
2320			return page;
2321		goto out;
2322	}
2323	if (PageUptodate(page))
2324		goto out;
2325
2326	/*
2327	 * Page is not up to date and may be locked due one of the following
2328	 * case a: Page is being filled and the page lock is held
2329	 * case b: Read/write error clearing the page uptodate status
2330	 * case c: Truncation in progress (page locked)
2331	 * case d: Reclaim in progress
2332	 *
2333	 * Case a, the page will be up to date when the page is unlocked.
2334	 *    There is no need to serialise on the page lock here as the page
2335	 *    is pinned so the lock gives no additional protection. Even if the
2336	 *    the page is truncated, the data is still valid if PageUptodate as
2337	 *    it's a race vs truncate race.
2338	 * Case b, the page will not be up to date
2339	 * Case c, the page may be truncated but in itself, the data may still
2340	 *    be valid after IO completes as it's a read vs truncate race. The
2341	 *    operation must restart if the page is not uptodate on unlock but
2342	 *    otherwise serialising on page lock to stabilise the mapping gives
2343	 *    no additional guarantees to the caller as the page lock is
2344	 *    released before return.
2345	 * Case d, similar to truncation. If reclaim holds the page lock, it
2346	 *    will be a race with remove_mapping that determines if the mapping
2347	 *    is valid on unlock but otherwise the data is valid and there is
2348	 *    no need to serialise with page lock.
2349	 *
2350	 * As the page lock gives no additional guarantee, we optimistically
2351	 * wait on the page to be unlocked and check if it's up to date and
2352	 * use the page if it is. Otherwise, the page lock is required to
2353	 * distinguish between the different cases. The motivation is that we
2354	 * avoid spurious serialisations and wakeups when multiple processes
2355	 * wait on the same page for IO to complete.
2356	 */
2357	wait_on_page_locked(page);
2358	if (PageUptodate(page))
2359		goto out;
2360
2361	/* Distinguish between all the cases under the safety of the lock */
2362	lock_page(page);
2363
2364	/* Case c or d, restart the operation */
2365	if (!page->mapping) {
2366		unlock_page(page);
2367		put_page(page);
2368		goto repeat;
2369	}
2370
2371	/* Someone else locked and filled the page in a very small window */
2372	if (PageUptodate(page)) {
2373		unlock_page(page);
2374		goto out;
2375	}
2376	goto filler;
2377
 
 
 
2378out:
2379	mark_page_accessed(page);
2380	return page;
2381}
2382
2383/**
2384 * read_cache_page - read into page cache, fill it if needed
2385 * @mapping:	the page's address_space
2386 * @index:	the page index
2387 * @filler:	function to perform the read
2388 * @data:	first arg to filler(data, page) function, often left as NULL
2389 *
 
 
 
2390 * Read into the page cache. If a page already exists, and PageUptodate() is
2391 * not set, try to fill the page and wait for it to become unlocked.
2392 *
2393 * If the page does not get brought uptodate, return -EIO.
2394 */
2395struct page *read_cache_page(struct address_space *mapping,
2396				pgoff_t index,
2397				int (*filler)(void *, struct page *),
2398				void *data)
2399{
2400	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2401}
2402EXPORT_SYMBOL(read_cache_page);
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404/**
2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406 * @mapping:	the page's address_space
2407 * @index:	the page index
2408 * @gfp:	the page allocator flags to use if allocating
2409 *
2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411 * any new page allocations done using the specified allocation flags.
2412 *
2413 * If the page does not get brought uptodate, return -EIO.
2414 */
2415struct page *read_cache_page_gfp(struct address_space *mapping,
2416				pgoff_t index,
2417				gfp_t gfp)
2418{
2419	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422}
2423EXPORT_SYMBOL(read_cache_page_gfp);
2424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425/*
2426 * Performs necessary checks before doing a write
2427 *
2428 * Can adjust writing position or amount of bytes to write.
2429 * Returns appropriate error code that caller should return or
2430 * zero in case that write should be allowed.
2431 */
2432inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433{
2434	struct file *file = iocb->ki_filp;
2435	struct inode *inode = file->f_mapping->host;
2436	unsigned long limit = rlimit(RLIMIT_FSIZE);
2437	loff_t pos;
2438
2439	if (!iov_iter_count(from))
2440		return 0;
2441
2442	/* FIXME: this is for backwards compatibility with 2.4 */
2443	if (iocb->ki_flags & IOCB_APPEND)
2444		iocb->ki_pos = i_size_read(inode);
2445
2446	pos = iocb->ki_pos;
2447
2448	if (limit != RLIM_INFINITY) {
2449		if (iocb->ki_pos >= limit) {
2450			send_sig(SIGXFSZ, current, 0);
2451			return -EFBIG;
 
 
 
2452		}
2453		iov_iter_truncate(from, limit - (unsigned long)pos);
2454	}
2455
2456	/*
2457	 * LFS rule
2458	 */
2459	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460				!(file->f_flags & O_LARGEFILE))) {
2461		if (pos >= MAX_NON_LFS)
2462			return -EFBIG;
2463		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
 
 
 
2464	}
2465
2466	/*
2467	 * Are we about to exceed the fs block limit ?
2468	 *
2469	 * If we have written data it becomes a short write.  If we have
2470	 * exceeded without writing data we send a signal and return EFBIG.
2471	 * Linus frestrict idea will clean these up nicely..
2472	 */
2473	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474		return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475
2476	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477	return iov_iter_count(from);
 
 
 
 
 
2478}
2479EXPORT_SYMBOL(generic_write_checks);
2480
2481int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482				loff_t pos, unsigned len, unsigned flags,
2483				struct page **pagep, void **fsdata)
2484{
2485	const struct address_space_operations *aops = mapping->a_ops;
2486
2487	return aops->write_begin(file, mapping, pos, len, flags,
2488							pagep, fsdata);
2489}
2490EXPORT_SYMBOL(pagecache_write_begin);
2491
2492int pagecache_write_end(struct file *file, struct address_space *mapping,
2493				loff_t pos, unsigned len, unsigned copied,
2494				struct page *page, void *fsdata)
2495{
2496	const struct address_space_operations *aops = mapping->a_ops;
2497
 
2498	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2499}
2500EXPORT_SYMBOL(pagecache_write_end);
2501
2502ssize_t
2503generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
 
 
2504{
2505	struct file	*file = iocb->ki_filp;
2506	struct address_space *mapping = file->f_mapping;
2507	struct inode	*inode = mapping->host;
2508	ssize_t		written;
2509	size_t		write_len;
2510	pgoff_t		end;
2511	struct iov_iter data;
2512
2513	write_len = iov_iter_count(from);
2514	end = (pos + write_len - 1) >> PAGE_SHIFT;
 
 
 
2515
2516	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517	if (written)
2518		goto out;
2519
2520	/*
2521	 * After a write we want buffered reads to be sure to go to disk to get
2522	 * the new data.  We invalidate clean cached page from the region we're
2523	 * about to write.  We do this *before* the write so that we can return
2524	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2525	 */
2526	if (mapping->nrpages) {
2527		written = invalidate_inode_pages2_range(mapping,
2528					pos >> PAGE_SHIFT, end);
2529		/*
2530		 * If a page can not be invalidated, return 0 to fall back
2531		 * to buffered write.
2532		 */
2533		if (written) {
2534			if (written == -EBUSY)
2535				return 0;
2536			goto out;
2537		}
2538	}
2539
2540	data = *from;
2541	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543	/*
2544	 * Finally, try again to invalidate clean pages which might have been
2545	 * cached by non-direct readahead, or faulted in by get_user_pages()
2546	 * if the source of the write was an mmap'ed region of the file
2547	 * we're writing.  Either one is a pretty crazy thing to do,
2548	 * so we don't support it 100%.  If this invalidation
2549	 * fails, tough, the write still worked...
2550	 */
2551	if (mapping->nrpages) {
2552		invalidate_inode_pages2_range(mapping,
2553					      pos >> PAGE_SHIFT, end);
2554	}
2555
2556	if (written > 0) {
2557		pos += written;
2558		iov_iter_advance(from, written);
2559		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560			i_size_write(inode, pos);
2561			mark_inode_dirty(inode);
2562		}
2563		iocb->ki_pos = pos;
2564	}
2565out:
2566	return written;
2567}
2568EXPORT_SYMBOL(generic_file_direct_write);
2569
2570/*
2571 * Find or create a page at the given pagecache position. Return the locked
2572 * page. This function is specifically for buffered writes.
2573 */
2574struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575					pgoff_t index, unsigned flags)
2576{
 
 
2577	struct page *page;
2578	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
 
 
 
2580	if (flags & AOP_FLAG_NOFS)
2581		fgp_flags |= FGP_NOFS;
2582
2583	page = pagecache_get_page(mapping, index, fgp_flags,
2584			mapping_gfp_mask(mapping));
2585	if (page)
2586		wait_for_stable_page(page);
2587
 
 
 
 
 
 
 
 
 
 
 
 
 
2588	return page;
2589}
2590EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592ssize_t generic_perform_write(struct file *file,
2593				struct iov_iter *i, loff_t pos)
2594{
2595	struct address_space *mapping = file->f_mapping;
2596	const struct address_space_operations *a_ops = mapping->a_ops;
2597	long status = 0;
2598	ssize_t written = 0;
2599	unsigned int flags = 0;
2600
2601	/*
2602	 * Copies from kernel address space cannot fail (NFSD is a big user).
2603	 */
2604	if (!iter_is_iovec(i))
2605		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607	do {
2608		struct page *page;
2609		unsigned long offset;	/* Offset into pagecache page */
2610		unsigned long bytes;	/* Bytes to write to page */
2611		size_t copied;		/* Bytes copied from user */
2612		void *fsdata;
2613
2614		offset = (pos & (PAGE_SIZE - 1));
2615		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616						iov_iter_count(i));
2617
2618again:
2619		/*
2620		 * Bring in the user page that we will copy from _first_.
2621		 * Otherwise there's a nasty deadlock on copying from the
2622		 * same page as we're writing to, without it being marked
2623		 * up-to-date.
2624		 *
2625		 * Not only is this an optimisation, but it is also required
2626		 * to check that the address is actually valid, when atomic
2627		 * usercopies are used, below.
2628		 */
2629		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630			status = -EFAULT;
2631			break;
2632		}
2633
2634		if (fatal_signal_pending(current)) {
2635			status = -EINTR;
2636			break;
2637		}
2638
2639		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640						&page, &fsdata);
2641		if (unlikely(status < 0))
2642			break;
2643
2644		if (mapping_writably_mapped(mapping))
2645			flush_dcache_page(page);
2646
 
2647		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 
2648		flush_dcache_page(page);
2649
 
2650		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651						page, fsdata);
2652		if (unlikely(status < 0))
2653			break;
2654		copied = status;
2655
2656		cond_resched();
2657
2658		iov_iter_advance(i, copied);
2659		if (unlikely(copied == 0)) {
2660			/*
2661			 * If we were unable to copy any data at all, we must
2662			 * fall back to a single segment length write.
2663			 *
2664			 * If we didn't fallback here, we could livelock
2665			 * because not all segments in the iov can be copied at
2666			 * once without a pagefault.
2667			 */
2668			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669						iov_iter_single_seg_count(i));
2670			goto again;
2671		}
2672		pos += copied;
2673		written += copied;
2674
2675		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
2676	} while (iov_iter_count(i));
2677
2678	return written ? written : status;
2679}
2680EXPORT_SYMBOL(generic_perform_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681
2682/**
2683 * __generic_file_write_iter - write data to a file
2684 * @iocb:	IO state structure (file, offset, etc.)
2685 * @from:	iov_iter with data to write
 
 
2686 *
2687 * This function does all the work needed for actually writing data to a
2688 * file. It does all basic checks, removes SUID from the file, updates
2689 * modification times and calls proper subroutines depending on whether we
2690 * do direct IO or a standard buffered write.
2691 *
2692 * It expects i_mutex to be grabbed unless we work on a block device or similar
2693 * object which does not need locking at all.
2694 *
2695 * This function does *not* take care of syncing data in case of O_SYNC write.
2696 * A caller has to handle it. This is mainly due to the fact that we want to
2697 * avoid syncing under i_mutex.
2698 */
2699ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
2700{
2701	struct file *file = iocb->ki_filp;
2702	struct address_space * mapping = file->f_mapping;
 
 
2703	struct inode 	*inode = mapping->host;
2704	ssize_t		written = 0;
 
2705	ssize_t		err;
2706	ssize_t		status;
 
 
 
 
 
 
 
 
 
2707
2708	/* We can write back this queue in page reclaim */
2709	current->backing_dev_info = inode_to_bdi(inode);
2710	err = file_remove_privs(file);
 
 
2711	if (err)
2712		goto out;
2713
2714	err = file_update_time(file);
 
 
 
2715	if (err)
2716		goto out;
2717
2718	if (iocb->ki_flags & IOCB_DIRECT) {
2719		loff_t pos, endbyte;
 
2720
2721		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
 
 
 
 
 
 
 
 
2722		/*
2723		 * If the write stopped short of completing, fall back to
2724		 * buffered writes.  Some filesystems do this for writes to
2725		 * holes, for example.  For DAX files, a buffered write will
2726		 * not succeed (even if it did, DAX does not handle dirty
2727		 * page-cache pages correctly).
2728		 */
2729		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730			goto out;
2731
2732		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 
2733		/*
2734		 * If generic_perform_write() returned a synchronous error
2735		 * then we want to return the number of bytes which were
2736		 * direct-written, or the error code if that was zero.  Note
2737		 * that this differs from normal direct-io semantics, which
2738		 * will return -EFOO even if some bytes were written.
2739		 */
2740		if (unlikely(status < 0)) {
2741			err = status;
2742			goto out;
2743		}
 
2744		/*
2745		 * We need to ensure that the page cache pages are written to
2746		 * disk and invalidated to preserve the expected O_DIRECT
2747		 * semantics.
2748		 */
2749		endbyte = pos + status - 1;
2750		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751		if (err == 0) {
2752			iocb->ki_pos = endbyte + 1;
2753			written += status;
2754			invalidate_mapping_pages(mapping,
2755						 pos >> PAGE_SHIFT,
2756						 endbyte >> PAGE_SHIFT);
2757		} else {
2758			/*
2759			 * We don't know how much we wrote, so just return
2760			 * the number of bytes which were direct-written
2761			 */
2762		}
2763	} else {
2764		written = generic_perform_write(file, from, iocb->ki_pos);
2765		if (likely(written > 0))
2766			iocb->ki_pos += written;
2767	}
2768out:
2769	current->backing_dev_info = NULL;
2770	return written ? written : err;
2771}
2772EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774/**
2775 * generic_file_write_iter - write data to a file
2776 * @iocb:	IO state structure
2777 * @from:	iov_iter with data to write
 
 
2778 *
2779 * This is a wrapper around __generic_file_write_iter() to be used by most
2780 * filesystems. It takes care of syncing the file in case of O_SYNC file
2781 * and acquires i_mutex as needed.
2782 */
2783ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
2784{
2785	struct file *file = iocb->ki_filp;
2786	struct inode *inode = file->f_mapping->host;
 
2787	ssize_t ret;
2788
2789	inode_lock(inode);
2790	ret = generic_write_checks(iocb, from);
2791	if (ret > 0)
2792		ret = __generic_file_write_iter(iocb, from);
2793	inode_unlock(inode);
 
2794
2795	if (ret > 0) {
2796		ssize_t err;
2797
2798		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799		if (err < 0)
2800			ret = err;
2801	}
 
2802	return ret;
2803}
2804EXPORT_SYMBOL(generic_file_write_iter);
2805
2806/**
2807 * try_to_release_page() - release old fs-specific metadata on a page
2808 *
2809 * @page: the page which the kernel is trying to free
2810 * @gfp_mask: memory allocation flags (and I/O mode)
2811 *
2812 * The address_space is to try to release any data against the page
2813 * (presumably at page->private).  If the release was successful, return `1'.
2814 * Otherwise return zero.
2815 *
2816 * This may also be called if PG_fscache is set on a page, indicating that the
2817 * page is known to the local caching routines.
2818 *
2819 * The @gfp_mask argument specifies whether I/O may be performed to release
2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2821 *
2822 */
2823int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824{
2825	struct address_space * const mapping = page->mapping;
2826
2827	BUG_ON(!PageLocked(page));
2828	if (PageWriteback(page))
2829		return 0;
2830
2831	if (mapping && mapping->a_ops->releasepage)
2832		return mapping->a_ops->releasepage(page, gfp_mask);
2833	return try_to_free_buffers(page);
2834}
2835
2836EXPORT_SYMBOL(try_to_release_page);
v3.5.6
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
 
  34#include <linux/memcontrol.h>
  35#include <linux/cleancache.h>
 
  36#include "internal.h"
  37
 
 
 
  38/*
  39 * FIXME: remove all knowledge of the buffer layer from the core VM
  40 */
  41#include <linux/buffer_head.h> /* for try_to_free_buffers */
  42
  43#include <asm/mman.h>
  44
  45/*
  46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  47 * though.
  48 *
  49 * Shared mappings now work. 15.8.1995  Bruno.
  50 *
  51 * finished 'unifying' the page and buffer cache and SMP-threaded the
  52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  53 *
  54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  55 */
  56
  57/*
  58 * Lock ordering:
  59 *
  60 *  ->i_mmap_mutex		(truncate_pagecache)
  61 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  62 *      ->swap_lock		(exclusive_swap_page, others)
  63 *        ->mapping->tree_lock
  64 *
  65 *  ->i_mutex
  66 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  67 *
  68 *  ->mmap_sem
  69 *    ->i_mmap_mutex
  70 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  71 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  72 *
  73 *  ->mmap_sem
  74 *    ->lock_page		(access_process_vm)
  75 *
  76 *  ->i_mutex			(generic_file_buffered_write)
  77 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  78 *
  79 *  bdi->wb.list_lock
  80 *    sb_lock			(fs/fs-writeback.c)
  81 *    ->mapping->tree_lock	(__sync_single_inode)
  82 *
  83 *  ->i_mmap_mutex
  84 *    ->anon_vma.lock		(vma_adjust)
  85 *
  86 *  ->anon_vma.lock
  87 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  88 *
  89 *  ->page_table_lock or pte_lock
  90 *    ->swap_lock		(try_to_unmap_one)
  91 *    ->private_lock		(try_to_unmap_one)
  92 *    ->tree_lock		(try_to_unmap_one)
  93 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  94 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  95 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  96 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  97 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  98 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 
  99 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 100 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 101 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 102 *
 103 * ->i_mmap_mutex
 104 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 105 */
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/*
 108 * Delete a page from the page cache and free it. Caller has to make
 109 * sure the page is locked and that nobody else uses it - or that usage
 110 * is safe.  The caller must hold the mapping's tree_lock.
 111 */
 112void __delete_from_page_cache(struct page *page)
 113{
 114	struct address_space *mapping = page->mapping;
 115
 
 116	/*
 117	 * if we're uptodate, flush out into the cleancache, otherwise
 118	 * invalidate any existing cleancache entries.  We can't leave
 119	 * stale data around in the cleancache once our page is gone
 120	 */
 121	if (PageUptodate(page) && PageMappedToDisk(page))
 122		cleancache_put_page(page);
 123	else
 124		cleancache_invalidate_page(mapping, page);
 125
 126	radix_tree_delete(&mapping->page_tree, page->index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127	page->mapping = NULL;
 128	/* Leave page->index set: truncation lookup relies upon it */
 129	mapping->nrpages--;
 130	__dec_zone_page_state(page, NR_FILE_PAGES);
 
 
 131	if (PageSwapBacked(page))
 132		__dec_zone_page_state(page, NR_SHMEM);
 133	BUG_ON(page_mapped(page));
 134
 135	/*
 136	 * Some filesystems seem to re-dirty the page even after
 137	 * the VM has canceled the dirty bit (eg ext3 journaling).
 138	 *
 139	 * Fix it up by doing a final dirty accounting check after
 140	 * having removed the page entirely.
 
 141	 */
 142	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 143		dec_zone_page_state(page, NR_FILE_DIRTY);
 144		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 145	}
 146}
 147
 148/**
 149 * delete_from_page_cache - delete page from page cache
 150 * @page: the page which the kernel is trying to remove from page cache
 151 *
 152 * This must be called only on pages that have been verified to be in the page
 153 * cache and locked.  It will never put the page into the free list, the caller
 154 * has a reference on the page.
 155 */
 156void delete_from_page_cache(struct page *page)
 157{
 158	struct address_space *mapping = page->mapping;
 
 
 159	void (*freepage)(struct page *);
 160
 161	BUG_ON(!PageLocked(page));
 162
 163	freepage = mapping->a_ops->freepage;
 164	spin_lock_irq(&mapping->tree_lock);
 165	__delete_from_page_cache(page);
 166	spin_unlock_irq(&mapping->tree_lock);
 167	mem_cgroup_uncharge_cache_page(page);
 168
 169	if (freepage)
 170		freepage(page);
 171	page_cache_release(page);
 172}
 173EXPORT_SYMBOL(delete_from_page_cache);
 174
 175static int sleep_on_page(void *word)
 176{
 177	io_schedule();
 178	return 0;
 179}
 180
 181static int sleep_on_page_killable(void *word)
 182{
 183	sleep_on_page(word);
 184	return fatal_signal_pending(current) ? -EINTR : 0;
 
 185}
 186
 187/**
 188 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 189 * @mapping:	address space structure to write
 190 * @start:	offset in bytes where the range starts
 191 * @end:	offset in bytes where the range ends (inclusive)
 192 * @sync_mode:	enable synchronous operation
 193 *
 194 * Start writeback against all of a mapping's dirty pages that lie
 195 * within the byte offsets <start, end> inclusive.
 196 *
 197 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 198 * opposed to a regular memory cleansing writeback.  The difference between
 199 * these two operations is that if a dirty page/buffer is encountered, it must
 200 * be waited upon, and not just skipped over.
 201 */
 202int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 203				loff_t end, int sync_mode)
 204{
 205	int ret;
 206	struct writeback_control wbc = {
 207		.sync_mode = sync_mode,
 208		.nr_to_write = LONG_MAX,
 209		.range_start = start,
 210		.range_end = end,
 211	};
 212
 213	if (!mapping_cap_writeback_dirty(mapping))
 214		return 0;
 215
 
 216	ret = do_writepages(mapping, &wbc);
 
 217	return ret;
 218}
 219
 220static inline int __filemap_fdatawrite(struct address_space *mapping,
 221	int sync_mode)
 222{
 223	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 224}
 225
 226int filemap_fdatawrite(struct address_space *mapping)
 227{
 228	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 229}
 230EXPORT_SYMBOL(filemap_fdatawrite);
 231
 232int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 233				loff_t end)
 234{
 235	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 236}
 237EXPORT_SYMBOL(filemap_fdatawrite_range);
 238
 239/**
 240 * filemap_flush - mostly a non-blocking flush
 241 * @mapping:	target address_space
 242 *
 243 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 244 * purposes - I/O may not be started against all dirty pages.
 245 */
 246int filemap_flush(struct address_space *mapping)
 247{
 248	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 249}
 250EXPORT_SYMBOL(filemap_flush);
 251
 252/**
 253 * filemap_fdatawait_range - wait for writeback to complete
 254 * @mapping:		address space structure to wait for
 255 * @start_byte:		offset in bytes where the range starts
 256 * @end_byte:		offset in bytes where the range ends (inclusive)
 257 *
 258 * Walk the list of under-writeback pages of the given address space
 259 * in the given range and wait for all of them.
 260 */
 261int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 262			    loff_t end_byte)
 263{
 264	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 265	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 266	struct pagevec pvec;
 267	int nr_pages;
 268	int ret = 0;
 269
 270	if (end_byte < start_byte)
 271		return 0;
 272
 273	pagevec_init(&pvec, 0);
 274	while ((index <= end) &&
 275			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 276			PAGECACHE_TAG_WRITEBACK,
 277			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 278		unsigned i;
 279
 280		for (i = 0; i < nr_pages; i++) {
 281			struct page *page = pvec.pages[i];
 282
 283			/* until radix tree lookup accepts end_index */
 284			if (page->index > end)
 285				continue;
 286
 287			wait_on_page_writeback(page);
 288			if (TestClearPageError(page))
 289				ret = -EIO;
 290		}
 291		pagevec_release(&pvec);
 292		cond_resched();
 293	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295	/* Check for outstanding write errors */
 296	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 297		ret = -ENOSPC;
 298	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 299		ret = -EIO;
 300
 301	return ret;
 302}
 303EXPORT_SYMBOL(filemap_fdatawait_range);
 304
 305/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306 * filemap_fdatawait - wait for all under-writeback pages to complete
 307 * @mapping: address space structure to wait for
 308 *
 309 * Walk the list of under-writeback pages of the given address space
 310 * and wait for all of them.
 
 
 
 
 
 311 */
 312int filemap_fdatawait(struct address_space *mapping)
 313{
 314	loff_t i_size = i_size_read(mapping->host);
 315
 316	if (i_size == 0)
 317		return 0;
 318
 319	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 320}
 321EXPORT_SYMBOL(filemap_fdatawait);
 322
 323int filemap_write_and_wait(struct address_space *mapping)
 324{
 325	int err = 0;
 326
 327	if (mapping->nrpages) {
 
 328		err = filemap_fdatawrite(mapping);
 329		/*
 330		 * Even if the above returned error, the pages may be
 331		 * written partially (e.g. -ENOSPC), so we wait for it.
 332		 * But the -EIO is special case, it may indicate the worst
 333		 * thing (e.g. bug) happened, so we avoid waiting for it.
 334		 */
 335		if (err != -EIO) {
 336			int err2 = filemap_fdatawait(mapping);
 337			if (!err)
 338				err = err2;
 339		}
 
 
 340	}
 341	return err;
 342}
 343EXPORT_SYMBOL(filemap_write_and_wait);
 344
 345/**
 346 * filemap_write_and_wait_range - write out & wait on a file range
 347 * @mapping:	the address_space for the pages
 348 * @lstart:	offset in bytes where the range starts
 349 * @lend:	offset in bytes where the range ends (inclusive)
 350 *
 351 * Write out and wait upon file offsets lstart->lend, inclusive.
 352 *
 353 * Note that `lend' is inclusive (describes the last byte to be written) so
 354 * that this function can be used to write to the very end-of-file (end = -1).
 355 */
 356int filemap_write_and_wait_range(struct address_space *mapping,
 357				 loff_t lstart, loff_t lend)
 358{
 359	int err = 0;
 360
 361	if (mapping->nrpages) {
 
 362		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 363						 WB_SYNC_ALL);
 364		/* See comment of filemap_write_and_wait() */
 365		if (err != -EIO) {
 366			int err2 = filemap_fdatawait_range(mapping,
 367						lstart, lend);
 368			if (!err)
 369				err = err2;
 370		}
 
 
 371	}
 372	return err;
 373}
 374EXPORT_SYMBOL(filemap_write_and_wait_range);
 375
 376/**
 377 * replace_page_cache_page - replace a pagecache page with a new one
 378 * @old:	page to be replaced
 379 * @new:	page to replace with
 380 * @gfp_mask:	allocation mode
 381 *
 382 * This function replaces a page in the pagecache with a new one.  On
 383 * success it acquires the pagecache reference for the new page and
 384 * drops it for the old page.  Both the old and new pages must be
 385 * locked.  This function does not add the new page to the LRU, the
 386 * caller must do that.
 387 *
 388 * The remove + add is atomic.  The only way this function can fail is
 389 * memory allocation failure.
 390 */
 391int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 392{
 393	int error;
 394
 395	VM_BUG_ON(!PageLocked(old));
 396	VM_BUG_ON(!PageLocked(new));
 397	VM_BUG_ON(new->mapping);
 398
 399	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 400	if (!error) {
 401		struct address_space *mapping = old->mapping;
 402		void (*freepage)(struct page *);
 
 403
 404		pgoff_t offset = old->index;
 405		freepage = mapping->a_ops->freepage;
 406
 407		page_cache_get(new);
 408		new->mapping = mapping;
 409		new->index = offset;
 410
 411		spin_lock_irq(&mapping->tree_lock);
 412		__delete_from_page_cache(old);
 413		error = radix_tree_insert(&mapping->page_tree, offset, new);
 414		BUG_ON(error);
 415		mapping->nrpages++;
 416		__inc_zone_page_state(new, NR_FILE_PAGES);
 
 
 
 
 
 417		if (PageSwapBacked(new))
 418			__inc_zone_page_state(new, NR_SHMEM);
 419		spin_unlock_irq(&mapping->tree_lock);
 420		/* mem_cgroup codes must not be called under tree_lock */
 421		mem_cgroup_replace_page_cache(old, new);
 422		radix_tree_preload_end();
 423		if (freepage)
 424			freepage(old);
 425		page_cache_release(old);
 426	}
 427
 428	return error;
 429}
 430EXPORT_SYMBOL_GPL(replace_page_cache_page);
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432/**
 433 * add_to_page_cache_locked - add a locked page to the pagecache
 434 * @page:	page to add
 435 * @mapping:	the page's address_space
 436 * @offset:	page index
 437 * @gfp_mask:	page allocation mode
 438 *
 439 * This function is used to add a page to the pagecache. It must be locked.
 440 * This function does not add the page to the LRU.  The caller must do that.
 441 */
 442int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 443		pgoff_t offset, gfp_t gfp_mask)
 444{
 445	int error;
 446
 447	VM_BUG_ON(!PageLocked(page));
 448	VM_BUG_ON(PageSwapBacked(page));
 449
 450	error = mem_cgroup_cache_charge(page, current->mm,
 451					gfp_mask & GFP_RECLAIM_MASK);
 452	if (error)
 453		goto out;
 454
 455	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 456	if (error == 0) {
 457		page_cache_get(page);
 458		page->mapping = mapping;
 459		page->index = offset;
 460
 461		spin_lock_irq(&mapping->tree_lock);
 462		error = radix_tree_insert(&mapping->page_tree, offset, page);
 463		if (likely(!error)) {
 464			mapping->nrpages++;
 465			__inc_zone_page_state(page, NR_FILE_PAGES);
 466			spin_unlock_irq(&mapping->tree_lock);
 467		} else {
 468			page->mapping = NULL;
 469			/* Leave page->index set: truncation relies upon it */
 470			spin_unlock_irq(&mapping->tree_lock);
 471			mem_cgroup_uncharge_cache_page(page);
 472			page_cache_release(page);
 473		}
 474		radix_tree_preload_end();
 475	} else
 476		mem_cgroup_uncharge_cache_page(page);
 477out:
 478	return error;
 479}
 480EXPORT_SYMBOL(add_to_page_cache_locked);
 481
 482int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 483				pgoff_t offset, gfp_t gfp_mask)
 484{
 
 485	int ret;
 486
 487	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 488	if (ret == 0)
 489		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	return ret;
 491}
 492EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 493
 494#ifdef CONFIG_NUMA
 495struct page *__page_cache_alloc(gfp_t gfp)
 496{
 497	int n;
 498	struct page *page;
 499
 500	if (cpuset_do_page_mem_spread()) {
 501		unsigned int cpuset_mems_cookie;
 502		do {
 503			cpuset_mems_cookie = get_mems_allowed();
 504			n = cpuset_mem_spread_node();
 505			page = alloc_pages_exact_node(n, gfp, 0);
 506		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
 507
 508		return page;
 509	}
 510	return alloc_pages(gfp, 0);
 511}
 512EXPORT_SYMBOL(__page_cache_alloc);
 513#endif
 514
 515/*
 516 * In order to wait for pages to become available there must be
 517 * waitqueues associated with pages. By using a hash table of
 518 * waitqueues where the bucket discipline is to maintain all
 519 * waiters on the same queue and wake all when any of the pages
 520 * become available, and for the woken contexts to check to be
 521 * sure the appropriate page became available, this saves space
 522 * at a cost of "thundering herd" phenomena during rare hash
 523 * collisions.
 524 */
 525static wait_queue_head_t *page_waitqueue(struct page *page)
 526{
 527	const struct zone *zone = page_zone(page);
 528
 529	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 530}
 531
 532static inline void wake_up_page(struct page *page, int bit)
 533{
 534	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 535}
 536
 537void wait_on_page_bit(struct page *page, int bit_nr)
 538{
 539	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 540
 541	if (test_bit(bit_nr, &page->flags))
 542		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 543							TASK_UNINTERRUPTIBLE);
 544}
 545EXPORT_SYMBOL(wait_on_page_bit);
 546
 547int wait_on_page_bit_killable(struct page *page, int bit_nr)
 548{
 549	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 550
 551	if (!test_bit(bit_nr, &page->flags))
 552		return 0;
 553
 554	return __wait_on_bit(page_waitqueue(page), &wait,
 555			     sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 
 557
 558/**
 559 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 560 * @page: Page defining the wait queue of interest
 561 * @waiter: Waiter to add to the queue
 562 *
 563 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 564 */
 565void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 566{
 567	wait_queue_head_t *q = page_waitqueue(page);
 568	unsigned long flags;
 569
 570	spin_lock_irqsave(&q->lock, flags);
 571	__add_wait_queue(q, waiter);
 572	spin_unlock_irqrestore(&q->lock, flags);
 573}
 574EXPORT_SYMBOL_GPL(add_page_wait_queue);
 575
 576/**
 577 * unlock_page - unlock a locked page
 578 * @page: the page
 579 *
 580 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 581 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 582 * mechananism between PageLocked pages and PageWriteback pages is shared.
 583 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 584 *
 585 * The mb is necessary to enforce ordering between the clear_bit and the read
 586 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 587 */
 588void unlock_page(struct page *page)
 589{
 590	VM_BUG_ON(!PageLocked(page));
 
 591	clear_bit_unlock(PG_locked, &page->flags);
 592	smp_mb__after_clear_bit();
 593	wake_up_page(page, PG_locked);
 594}
 595EXPORT_SYMBOL(unlock_page);
 596
 597/**
 598 * end_page_writeback - end writeback against a page
 599 * @page: the page
 600 */
 601void end_page_writeback(struct page *page)
 602{
 603	if (TestClearPageReclaim(page))
 
 
 
 
 
 
 
 
 604		rotate_reclaimable_page(page);
 
 605
 606	if (!test_clear_page_writeback(page))
 607		BUG();
 608
 609	smp_mb__after_clear_bit();
 610	wake_up_page(page, PG_writeback);
 611}
 612EXPORT_SYMBOL(end_page_writeback);
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614/**
 615 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 616 * @page: the page to lock
 617 */
 618void __lock_page(struct page *page)
 619{
 620	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 621
 622	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 623							TASK_UNINTERRUPTIBLE);
 624}
 625EXPORT_SYMBOL(__lock_page);
 626
 627int __lock_page_killable(struct page *page)
 628{
 629	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 630
 631	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 632					sleep_on_page_killable, TASK_KILLABLE);
 633}
 634EXPORT_SYMBOL_GPL(__lock_page_killable);
 635
 
 
 
 
 
 
 
 
 
 
 
 636int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 637			 unsigned int flags)
 638{
 639	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 640		/*
 641		 * CAUTION! In this case, mmap_sem is not released
 642		 * even though return 0.
 643		 */
 644		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 645			return 0;
 646
 647		up_read(&mm->mmap_sem);
 648		if (flags & FAULT_FLAG_KILLABLE)
 649			wait_on_page_locked_killable(page);
 650		else
 651			wait_on_page_locked(page);
 652		return 0;
 653	} else {
 654		if (flags & FAULT_FLAG_KILLABLE) {
 655			int ret;
 656
 657			ret = __lock_page_killable(page);
 658			if (ret) {
 659				up_read(&mm->mmap_sem);
 660				return 0;
 661			}
 662		} else
 663			__lock_page(page);
 664		return 1;
 665	}
 666}
 667
 668/**
 669 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670 * @mapping: the address_space to search
 671 * @offset: the page index
 
 
 
 
 
 
 672 *
 673 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 674 * If yes, increment its refcount and return it; if no, return NULL.
 675 */
 676struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 677{
 678	void **pagep;
 679	struct page *page;
 680
 681	rcu_read_lock();
 682repeat:
 683	page = NULL;
 684	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 685	if (pagep) {
 686		page = radix_tree_deref_slot(pagep);
 687		if (unlikely(!page))
 688			goto out;
 689		if (radix_tree_exception(page)) {
 690			if (radix_tree_deref_retry(page))
 691				goto repeat;
 692			/*
 693			 * Otherwise, shmem/tmpfs must be storing a swap entry
 694			 * here as an exceptional entry: so return it without
 695			 * attempting to raise page count.
 696			 */
 697			goto out;
 698		}
 699		if (!page_cache_get_speculative(page))
 700			goto repeat;
 701
 702		/*
 703		 * Has the page moved?
 704		 * This is part of the lockless pagecache protocol. See
 705		 * include/linux/pagemap.h for details.
 706		 */
 707		if (unlikely(page != *pagep)) {
 708			page_cache_release(page);
 709			goto repeat;
 710		}
 711	}
 712out:
 713	rcu_read_unlock();
 714
 715	return page;
 716}
 717EXPORT_SYMBOL(find_get_page);
 718
 719/**
 720 * find_lock_page - locate, pin and lock a pagecache page
 721 * @mapping: the address_space to search
 722 * @offset: the page index
 
 
 
 
 
 
 
 723 *
 724 * Locates the desired pagecache page, locks it, increments its reference
 725 * count and returns its address.
 726 *
 727 * Returns zero if the page was not present. find_lock_page() may sleep.
 728 */
 729struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 730{
 731	struct page *page;
 732
 733repeat:
 734	page = find_get_page(mapping, offset);
 735	if (page && !radix_tree_exception(page)) {
 736		lock_page(page);
 737		/* Has the page been truncated? */
 738		if (unlikely(page->mapping != mapping)) {
 739			unlock_page(page);
 740			page_cache_release(page);
 741			goto repeat;
 742		}
 743		VM_BUG_ON(page->index != offset);
 744	}
 745	return page;
 746}
 747EXPORT_SYMBOL(find_lock_page);
 748
 749/**
 750 * find_or_create_page - locate or add a pagecache page
 751 * @mapping: the page's address_space
 752 * @index: the page's index into the mapping
 753 * @gfp_mask: page allocation mode
 
 
 
 
 
 754 *
 755 * Locates a page in the pagecache.  If the page is not present, a new page
 756 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 757 * LRU list.  The returned page is locked and has its reference count
 758 * incremented.
 
 
 759 *
 760 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 761 * allocation!
 762 *
 763 * find_or_create_page() returns the desired page's address, or zero on
 764 * memory exhaustion.
 765 */
 766struct page *find_or_create_page(struct address_space *mapping,
 767		pgoff_t index, gfp_t gfp_mask)
 768{
 769	struct page *page;
 770	int err;
 771repeat:
 772	page = find_lock_page(mapping, index);
 773	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774		page = __page_cache_alloc(gfp_mask);
 775		if (!page)
 776			return NULL;
 777		/*
 778		 * We want a regular kernel memory (not highmem or DMA etc)
 779		 * allocation for the radix tree nodes, but we need to honour
 780		 * the context-specific requirements the caller has asked for.
 781		 * GFP_RECLAIM_MASK collects those requirements.
 782		 */
 783		err = add_to_page_cache_lru(page, mapping, index,
 784			(gfp_mask & GFP_RECLAIM_MASK));
 
 
 785		if (unlikely(err)) {
 786			page_cache_release(page);
 787			page = NULL;
 788			if (err == -EEXIST)
 789				goto repeat;
 790		}
 791	}
 
 792	return page;
 793}
 794EXPORT_SYMBOL(find_or_create_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795
 796/**
 797 * find_get_pages - gang pagecache lookup
 798 * @mapping:	The address_space to search
 799 * @start:	The starting page index
 800 * @nr_pages:	The maximum number of pages
 801 * @pages:	Where the resulting pages are placed
 802 *
 803 * find_get_pages() will search for and return a group of up to
 804 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 805 * find_get_pages() takes a reference against the returned pages.
 806 *
 807 * The search returns a group of mapping-contiguous pages with ascending
 808 * indexes.  There may be holes in the indices due to not-present pages.
 809 *
 810 * find_get_pages() returns the number of pages which were found.
 811 */
 812unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 813			    unsigned int nr_pages, struct page **pages)
 814{
 815	struct radix_tree_iter iter;
 816	void **slot;
 817	unsigned ret = 0;
 818
 819	if (unlikely(!nr_pages))
 820		return 0;
 821
 822	rcu_read_lock();
 823restart:
 824	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 825		struct page *page;
 826repeat:
 827		page = radix_tree_deref_slot(slot);
 828		if (unlikely(!page))
 829			continue;
 830
 831		if (radix_tree_exception(page)) {
 832			if (radix_tree_deref_retry(page)) {
 833				/*
 834				 * Transient condition which can only trigger
 835				 * when entry at index 0 moves out of or back
 836				 * to root: none yet gotten, safe to restart.
 837				 */
 838				WARN_ON(iter.index);
 839				goto restart;
 840			}
 841			/*
 842			 * Otherwise, shmem/tmpfs must be storing a swap entry
 843			 * here as an exceptional entry: so skip over it -
 844			 * we only reach this from invalidate_mapping_pages().
 845			 */
 846			continue;
 847		}
 848
 849		if (!page_cache_get_speculative(page))
 850			goto repeat;
 851
 852		/* Has the page moved? */
 853		if (unlikely(page != *slot)) {
 854			page_cache_release(page);
 855			goto repeat;
 856		}
 857
 858		pages[ret] = page;
 859		if (++ret == nr_pages)
 860			break;
 861	}
 862
 863	rcu_read_unlock();
 864	return ret;
 865}
 866
 867/**
 868 * find_get_pages_contig - gang contiguous pagecache lookup
 869 * @mapping:	The address_space to search
 870 * @index:	The starting page index
 871 * @nr_pages:	The maximum number of pages
 872 * @pages:	Where the resulting pages are placed
 873 *
 874 * find_get_pages_contig() works exactly like find_get_pages(), except
 875 * that the returned number of pages are guaranteed to be contiguous.
 876 *
 877 * find_get_pages_contig() returns the number of pages which were found.
 878 */
 879unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 880			       unsigned int nr_pages, struct page **pages)
 881{
 882	struct radix_tree_iter iter;
 883	void **slot;
 884	unsigned int ret = 0;
 885
 886	if (unlikely(!nr_pages))
 887		return 0;
 888
 889	rcu_read_lock();
 890restart:
 891	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
 892		struct page *page;
 893repeat:
 894		page = radix_tree_deref_slot(slot);
 895		/* The hole, there no reason to continue */
 896		if (unlikely(!page))
 897			break;
 898
 899		if (radix_tree_exception(page)) {
 900			if (radix_tree_deref_retry(page)) {
 901				/*
 902				 * Transient condition which can only trigger
 903				 * when entry at index 0 moves out of or back
 904				 * to root: none yet gotten, safe to restart.
 905				 */
 906				goto restart;
 907			}
 908			/*
 909			 * Otherwise, shmem/tmpfs must be storing a swap entry
 910			 * here as an exceptional entry: so stop looking for
 911			 * contiguous pages.
 912			 */
 913			break;
 914		}
 915
 916		if (!page_cache_get_speculative(page))
 917			goto repeat;
 918
 919		/* Has the page moved? */
 920		if (unlikely(page != *slot)) {
 921			page_cache_release(page);
 922			goto repeat;
 923		}
 924
 925		/*
 926		 * must check mapping and index after taking the ref.
 927		 * otherwise we can get both false positives and false
 928		 * negatives, which is just confusing to the caller.
 929		 */
 930		if (page->mapping == NULL || page->index != iter.index) {
 931			page_cache_release(page);
 932			break;
 933		}
 934
 935		pages[ret] = page;
 936		if (++ret == nr_pages)
 937			break;
 938	}
 939	rcu_read_unlock();
 940	return ret;
 941}
 942EXPORT_SYMBOL(find_get_pages_contig);
 943
 944/**
 945 * find_get_pages_tag - find and return pages that match @tag
 946 * @mapping:	the address_space to search
 947 * @index:	the starting page index
 948 * @tag:	the tag index
 949 * @nr_pages:	the maximum number of pages
 950 * @pages:	where the resulting pages are placed
 951 *
 952 * Like find_get_pages, except we only return pages which are tagged with
 953 * @tag.   We update @index to index the next page for the traversal.
 954 */
 955unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 956			int tag, unsigned int nr_pages, struct page **pages)
 957{
 958	struct radix_tree_iter iter;
 959	void **slot;
 960	unsigned ret = 0;
 961
 962	if (unlikely(!nr_pages))
 963		return 0;
 964
 965	rcu_read_lock();
 966restart:
 967	radix_tree_for_each_tagged(slot, &mapping->page_tree,
 968				   &iter, *index, tag) {
 969		struct page *page;
 970repeat:
 971		page = radix_tree_deref_slot(slot);
 972		if (unlikely(!page))
 973			continue;
 974
 975		if (radix_tree_exception(page)) {
 976			if (radix_tree_deref_retry(page)) {
 977				/*
 978				 * Transient condition which can only trigger
 979				 * when entry at index 0 moves out of or back
 980				 * to root: none yet gotten, safe to restart.
 981				 */
 982				goto restart;
 983			}
 984			/*
 985			 * This function is never used on a shmem/tmpfs
 986			 * mapping, so a swap entry won't be found here.
 
 
 
 
 
 
 
 987			 */
 988			BUG();
 989		}
 990
 991		if (!page_cache_get_speculative(page))
 992			goto repeat;
 993
 994		/* Has the page moved? */
 995		if (unlikely(page != *slot)) {
 996			page_cache_release(page);
 997			goto repeat;
 998		}
 999
1000		pages[ret] = page;
1001		if (++ret == nr_pages)
1002			break;
1003	}
1004
1005	rcu_read_unlock();
1006
1007	if (ret)
1008		*index = pages[ret - 1]->index + 1;
1009
1010	return ret;
1011}
1012EXPORT_SYMBOL(find_get_pages_tag);
1013
1014/**
1015 * grab_cache_page_nowait - returns locked page at given index in given cache
1016 * @mapping: target address_space
1017 * @index: the page index
1018 *
1019 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020 * This is intended for speculative data generators, where the data can
1021 * be regenerated if the page couldn't be grabbed.  This routine should
1022 * be safe to call while holding the lock for another page.
1023 *
1024 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025 * and deadlock against the caller's locked page.
1026 */
1027struct page *
1028grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1029{
1030	struct page *page = find_get_page(mapping, index);
 
 
 
 
 
1031
1032	if (page) {
1033		if (trylock_page(page))
1034			return page;
1035		page_cache_release(page);
1036		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037	}
1038	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040		page_cache_release(page);
1041		page = NULL;
1042	}
1043	return page;
1044}
1045EXPORT_SYMBOL(grab_cache_page_nowait);
1046
1047/*
1048 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049 * a _large_ part of the i/o request. Imagine the worst scenario:
1050 *
1051 *      ---R__________________________________________B__________
1052 *         ^ reading here                             ^ bad block(assume 4k)
1053 *
1054 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055 * => failing the whole request => read(R) => read(R+1) =>
1056 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1059 *
1060 * It is going insane. Fix it by quickly scaling down the readahead size.
1061 */
1062static void shrink_readahead_size_eio(struct file *filp,
1063					struct file_ra_state *ra)
1064{
1065	ra->ra_pages /= 4;
1066}
1067
1068/**
1069 * do_generic_file_read - generic file read routine
1070 * @filp:	the file to read
1071 * @ppos:	current file position
1072 * @desc:	read_descriptor
1073 * @actor:	read method
1074 *
1075 * This is a generic file read routine, and uses the
1076 * mapping->a_ops->readpage() function for the actual low-level stuff.
1077 *
1078 * This is really ugly. But the goto's actually try to clarify some
1079 * of the logic when it comes to error handling etc.
1080 */
1081static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082		read_descriptor_t *desc, read_actor_t actor)
1083{
1084	struct address_space *mapping = filp->f_mapping;
1085	struct inode *inode = mapping->host;
1086	struct file_ra_state *ra = &filp->f_ra;
1087	pgoff_t index;
1088	pgoff_t last_index;
1089	pgoff_t prev_index;
1090	unsigned long offset;      /* offset into pagecache page */
1091	unsigned int prev_offset;
1092	int error;
1093
1094	index = *ppos >> PAGE_CACHE_SHIFT;
1095	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098	offset = *ppos & ~PAGE_CACHE_MASK;
1099
1100	for (;;) {
1101		struct page *page;
1102		pgoff_t end_index;
1103		loff_t isize;
1104		unsigned long nr, ret;
1105
1106		cond_resched();
1107find_page:
1108		page = find_get_page(mapping, index);
1109		if (!page) {
1110			page_cache_sync_readahead(mapping,
1111					ra, filp,
1112					index, last_index - index);
1113			page = find_get_page(mapping, index);
1114			if (unlikely(page == NULL))
1115				goto no_cached_page;
1116		}
1117		if (PageReadahead(page)) {
1118			page_cache_async_readahead(mapping,
1119					ra, filp, page,
1120					index, last_index - index);
1121		}
1122		if (!PageUptodate(page)) {
1123			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
 
 
 
 
 
 
 
 
 
1124					!mapping->a_ops->is_partially_uptodate)
1125				goto page_not_up_to_date;
1126			if (!trylock_page(page))
1127				goto page_not_up_to_date;
1128			/* Did it get truncated before we got the lock? */
1129			if (!page->mapping)
1130				goto page_not_up_to_date_locked;
1131			if (!mapping->a_ops->is_partially_uptodate(page,
1132								desc, offset))
1133				goto page_not_up_to_date_locked;
1134			unlock_page(page);
1135		}
1136page_ok:
1137		/*
1138		 * i_size must be checked after we know the page is Uptodate.
1139		 *
1140		 * Checking i_size after the check allows us to calculate
1141		 * the correct value for "nr", which means the zero-filled
1142		 * part of the page is not copied back to userspace (unless
1143		 * another truncate extends the file - this is desired though).
1144		 */
1145
1146		isize = i_size_read(inode);
1147		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148		if (unlikely(!isize || index > end_index)) {
1149			page_cache_release(page);
1150			goto out;
1151		}
1152
1153		/* nr is the maximum number of bytes to copy from this page */
1154		nr = PAGE_CACHE_SIZE;
1155		if (index == end_index) {
1156			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157			if (nr <= offset) {
1158				page_cache_release(page);
1159				goto out;
1160			}
1161		}
1162		nr = nr - offset;
1163
1164		/* If users can be writing to this page using arbitrary
1165		 * virtual addresses, take care about potential aliasing
1166		 * before reading the page on the kernel side.
1167		 */
1168		if (mapping_writably_mapped(mapping))
1169			flush_dcache_page(page);
1170
1171		/*
1172		 * When a sequential read accesses a page several times,
1173		 * only mark it as accessed the first time.
1174		 */
1175		if (prev_index != index || offset != prev_offset)
1176			mark_page_accessed(page);
1177		prev_index = index;
1178
1179		/*
1180		 * Ok, we have the page, and it's up-to-date, so
1181		 * now we can copy it to user space...
1182		 *
1183		 * The actor routine returns how many bytes were actually used..
1184		 * NOTE! This may not be the same as how much of a user buffer
1185		 * we filled up (we may be padding etc), so we can only update
1186		 * "pos" here (the actor routine has to update the user buffer
1187		 * pointers and the remaining count).
1188		 */
1189		ret = actor(desc, page, offset, nr);
 
1190		offset += ret;
1191		index += offset >> PAGE_CACHE_SHIFT;
1192		offset &= ~PAGE_CACHE_MASK;
1193		prev_offset = offset;
1194
1195		page_cache_release(page);
1196		if (ret == nr && desc->count)
1197			continue;
1198		goto out;
 
 
 
 
 
1199
1200page_not_up_to_date:
1201		/* Get exclusive access to the page ... */
1202		error = lock_page_killable(page);
1203		if (unlikely(error))
1204			goto readpage_error;
1205
1206page_not_up_to_date_locked:
1207		/* Did it get truncated before we got the lock? */
1208		if (!page->mapping) {
1209			unlock_page(page);
1210			page_cache_release(page);
1211			continue;
1212		}
1213
1214		/* Did somebody else fill it already? */
1215		if (PageUptodate(page)) {
1216			unlock_page(page);
1217			goto page_ok;
1218		}
1219
1220readpage:
1221		/*
1222		 * A previous I/O error may have been due to temporary
1223		 * failures, eg. multipath errors.
1224		 * PG_error will be set again if readpage fails.
1225		 */
1226		ClearPageError(page);
1227		/* Start the actual read. The read will unlock the page. */
1228		error = mapping->a_ops->readpage(filp, page);
1229
1230		if (unlikely(error)) {
1231			if (error == AOP_TRUNCATED_PAGE) {
1232				page_cache_release(page);
 
1233				goto find_page;
1234			}
1235			goto readpage_error;
1236		}
1237
1238		if (!PageUptodate(page)) {
1239			error = lock_page_killable(page);
1240			if (unlikely(error))
1241				goto readpage_error;
1242			if (!PageUptodate(page)) {
1243				if (page->mapping == NULL) {
1244					/*
1245					 * invalidate_mapping_pages got it
1246					 */
1247					unlock_page(page);
1248					page_cache_release(page);
1249					goto find_page;
1250				}
1251				unlock_page(page);
1252				shrink_readahead_size_eio(filp, ra);
1253				error = -EIO;
1254				goto readpage_error;
1255			}
1256			unlock_page(page);
1257		}
1258
1259		goto page_ok;
1260
1261readpage_error:
1262		/* UHHUH! A synchronous read error occurred. Report it */
1263		desc->error = error;
1264		page_cache_release(page);
1265		goto out;
1266
1267no_cached_page:
1268		/*
1269		 * Ok, it wasn't cached, so we need to create a new
1270		 * page..
1271		 */
1272		page = page_cache_alloc_cold(mapping);
1273		if (!page) {
1274			desc->error = -ENOMEM;
1275			goto out;
1276		}
1277		error = add_to_page_cache_lru(page, mapping,
1278						index, GFP_KERNEL);
1279		if (error) {
1280			page_cache_release(page);
1281			if (error == -EEXIST)
 
1282				goto find_page;
1283			desc->error = error;
1284			goto out;
1285		}
1286		goto readpage;
1287	}
1288
1289out:
1290	ra->prev_pos = prev_index;
1291	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292	ra->prev_pos |= prev_offset;
1293
1294	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295	file_accessed(filp);
 
1296}
1297
1298int file_read_actor(read_descriptor_t *desc, struct page *page,
1299			unsigned long offset, unsigned long size)
1300{
1301	char *kaddr;
1302	unsigned long left, count = desc->count;
1303
1304	if (size > count)
1305		size = count;
1306
1307	/*
1308	 * Faults on the destination of a read are common, so do it before
1309	 * taking the kmap.
1310	 */
1311	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312		kaddr = kmap_atomic(page);
1313		left = __copy_to_user_inatomic(desc->arg.buf,
1314						kaddr + offset, size);
1315		kunmap_atomic(kaddr);
1316		if (left == 0)
1317			goto success;
1318	}
1319
1320	/* Do it the slow way */
1321	kaddr = kmap(page);
1322	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323	kunmap(page);
1324
1325	if (left) {
1326		size -= left;
1327		desc->error = -EFAULT;
1328	}
1329success:
1330	desc->count = count - size;
1331	desc->written += size;
1332	desc->arg.buf += size;
1333	return size;
1334}
1335
1336/*
1337 * Performs necessary checks before doing a write
1338 * @iov:	io vector request
1339 * @nr_segs:	number of segments in the iovec
1340 * @count:	number of bytes to write
1341 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1342 *
1343 * Adjust number of segments and amount of bytes to write (nr_segs should be
1344 * properly initialized first). Returns appropriate error code that caller
1345 * should return or zero in case that write should be allowed.
1346 */
1347int generic_segment_checks(const struct iovec *iov,
1348			unsigned long *nr_segs, size_t *count, int access_flags)
1349{
1350	unsigned long   seg;
1351	size_t cnt = 0;
1352	for (seg = 0; seg < *nr_segs; seg++) {
1353		const struct iovec *iv = &iov[seg];
1354
1355		/*
1356		 * If any segment has a negative length, or the cumulative
1357		 * length ever wraps negative then return -EINVAL.
1358		 */
1359		cnt += iv->iov_len;
1360		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361			return -EINVAL;
1362		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363			continue;
1364		if (seg == 0)
1365			return -EFAULT;
1366		*nr_segs = seg;
1367		cnt -= iv->iov_len;	/* This segment is no good */
1368		break;
1369	}
1370	*count = cnt;
1371	return 0;
1372}
1373EXPORT_SYMBOL(generic_segment_checks);
1374
1375/**
1376 * generic_file_aio_read - generic filesystem read routine
1377 * @iocb:	kernel I/O control block
1378 * @iov:	io vector request
1379 * @nr_segs:	number of segments in the iovec
1380 * @pos:	current file position
1381 *
1382 * This is the "read()" routine for all filesystems
1383 * that can use the page cache directly.
1384 */
1385ssize_t
1386generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387		unsigned long nr_segs, loff_t pos)
1388{
1389	struct file *filp = iocb->ki_filp;
1390	ssize_t retval;
1391	unsigned long seg = 0;
1392	size_t count;
1393	loff_t *ppos = &iocb->ki_pos;
 
 
1394
1395	count = 0;
1396	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397	if (retval)
1398		return retval;
1399
1400	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401	if (filp->f_flags & O_DIRECT) {
 
1402		loff_t size;
1403		struct address_space *mapping;
1404		struct inode *inode;
1405
1406		mapping = filp->f_mapping;
1407		inode = mapping->host;
1408		if (!count)
1409			goto out; /* skip atime */
1410		size = i_size_read(inode);
1411		if (pos < size) {
1412			retval = filemap_write_and_wait_range(mapping, pos,
1413					pos + iov_length(iov, nr_segs) - 1);
1414			if (!retval) {
1415				struct blk_plug plug;
1416
1417				blk_start_plug(&plug);
1418				retval = mapping->a_ops->direct_IO(READ, iocb,
1419							iov, pos, nr_segs);
1420				blk_finish_plug(&plug);
1421			}
1422			if (retval > 0) {
1423				*ppos = pos + retval;
1424				count -= retval;
1425			}
1426
1427			/*
1428			 * Btrfs can have a short DIO read if we encounter
1429			 * compressed extents, so if there was an error, or if
1430			 * we've already read everything we wanted to, or if
1431			 * there was a short read because we hit EOF, go ahead
1432			 * and return.  Otherwise fallthrough to buffered io for
1433			 * the rest of the read.
1434			 */
1435			if (retval < 0 || !count || *ppos >= size) {
1436				file_accessed(filp);
1437				goto out;
1438			}
1439		}
1440	}
1441
1442	count = retval;
1443	for (seg = 0; seg < nr_segs; seg++) {
1444		read_descriptor_t desc;
1445		loff_t offset = 0;
1446
1447		/*
1448		 * If we did a short DIO read we need to skip the section of the
1449		 * iov that we've already read data into.
 
 
 
 
 
1450		 */
1451		if (count) {
1452			if (count > iov[seg].iov_len) {
1453				count -= iov[seg].iov_len;
1454				continue;
1455			}
1456			offset = count;
1457			count = 0;
1458		}
 
1459
1460		desc.written = 0;
1461		desc.arg.buf = iov[seg].iov_base + offset;
1462		desc.count = iov[seg].iov_len - offset;
1463		if (desc.count == 0)
1464			continue;
1465		desc.error = 0;
1466		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1467		retval += desc.written;
1468		if (desc.error) {
1469			retval = retval ?: desc.error;
1470			break;
1471		}
1472		if (desc.count > 0)
1473			break;
1474	}
1475out:
1476	return retval;
1477}
1478EXPORT_SYMBOL(generic_file_aio_read);
1479
1480#ifdef CONFIG_MMU
1481/**
1482 * page_cache_read - adds requested page to the page cache if not already there
1483 * @file:	file to read
1484 * @offset:	page index
 
1485 *
1486 * This adds the requested page to the page cache if it isn't already there,
1487 * and schedules an I/O to read in its contents from disk.
1488 */
1489static int page_cache_read(struct file *file, pgoff_t offset)
1490{
1491	struct address_space *mapping = file->f_mapping;
1492	struct page *page; 
1493	int ret;
1494
1495	do {
1496		page = page_cache_alloc_cold(mapping);
1497		if (!page)
1498			return -ENOMEM;
1499
1500		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1501		if (ret == 0)
1502			ret = mapping->a_ops->readpage(file, page);
1503		else if (ret == -EEXIST)
1504			ret = 0; /* losing race to add is OK */
1505
1506		page_cache_release(page);
1507
1508	} while (ret == AOP_TRUNCATED_PAGE);
1509		
1510	return ret;
1511}
1512
1513#define MMAP_LOTSAMISS  (100)
1514
1515/*
1516 * Synchronous readahead happens when we don't even find
1517 * a page in the page cache at all.
1518 */
1519static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1520				   struct file_ra_state *ra,
1521				   struct file *file,
1522				   pgoff_t offset)
1523{
1524	unsigned long ra_pages;
1525	struct address_space *mapping = file->f_mapping;
1526
1527	/* If we don't want any read-ahead, don't bother */
1528	if (VM_RandomReadHint(vma))
1529		return;
1530	if (!ra->ra_pages)
1531		return;
1532
1533	if (VM_SequentialReadHint(vma)) {
1534		page_cache_sync_readahead(mapping, ra, file, offset,
1535					  ra->ra_pages);
1536		return;
1537	}
1538
1539	/* Avoid banging the cache line if not needed */
1540	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1541		ra->mmap_miss++;
1542
1543	/*
1544	 * Do we miss much more than hit in this file? If so,
1545	 * stop bothering with read-ahead. It will only hurt.
1546	 */
1547	if (ra->mmap_miss > MMAP_LOTSAMISS)
1548		return;
1549
1550	/*
1551	 * mmap read-around
1552	 */
1553	ra_pages = max_sane_readahead(ra->ra_pages);
1554	ra->start = max_t(long, 0, offset - ra_pages / 2);
1555	ra->size = ra_pages;
1556	ra->async_size = ra_pages / 4;
1557	ra_submit(ra, mapping, file);
1558}
1559
1560/*
1561 * Asynchronous readahead happens when we find the page and PG_readahead,
1562 * so we want to possibly extend the readahead further..
1563 */
1564static void do_async_mmap_readahead(struct vm_area_struct *vma,
1565				    struct file_ra_state *ra,
1566				    struct file *file,
1567				    struct page *page,
1568				    pgoff_t offset)
1569{
1570	struct address_space *mapping = file->f_mapping;
1571
1572	/* If we don't want any read-ahead, don't bother */
1573	if (VM_RandomReadHint(vma))
1574		return;
1575	if (ra->mmap_miss > 0)
1576		ra->mmap_miss--;
1577	if (PageReadahead(page))
1578		page_cache_async_readahead(mapping, ra, file,
1579					   page, offset, ra->ra_pages);
1580}
1581
1582/**
1583 * filemap_fault - read in file data for page fault handling
1584 * @vma:	vma in which the fault was taken
1585 * @vmf:	struct vm_fault containing details of the fault
1586 *
1587 * filemap_fault() is invoked via the vma operations vector for a
1588 * mapped memory region to read in file data during a page fault.
1589 *
1590 * The goto's are kind of ugly, but this streamlines the normal case of having
1591 * it in the page cache, and handles the special cases reasonably without
1592 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1593 */
1594int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1595{
1596	int error;
1597	struct file *file = vma->vm_file;
1598	struct address_space *mapping = file->f_mapping;
1599	struct file_ra_state *ra = &file->f_ra;
1600	struct inode *inode = mapping->host;
1601	pgoff_t offset = vmf->pgoff;
1602	struct page *page;
1603	pgoff_t size;
1604	int ret = 0;
1605
1606	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1607	if (offset >= size)
1608		return VM_FAULT_SIGBUS;
1609
1610	/*
1611	 * Do we have something in the page cache already?
1612	 */
1613	page = find_get_page(mapping, offset);
1614	if (likely(page)) {
1615		/*
1616		 * We found the page, so try async readahead before
1617		 * waiting for the lock.
1618		 */
1619		do_async_mmap_readahead(vma, ra, file, page, offset);
1620	} else {
1621		/* No page in the page cache at all */
1622		do_sync_mmap_readahead(vma, ra, file, offset);
1623		count_vm_event(PGMAJFAULT);
1624		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1625		ret = VM_FAULT_MAJOR;
1626retry_find:
1627		page = find_get_page(mapping, offset);
1628		if (!page)
1629			goto no_cached_page;
1630	}
1631
1632	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1633		page_cache_release(page);
1634		return ret | VM_FAULT_RETRY;
1635	}
1636
1637	/* Did it get truncated? */
1638	if (unlikely(page->mapping != mapping)) {
1639		unlock_page(page);
1640		put_page(page);
1641		goto retry_find;
1642	}
1643	VM_BUG_ON(page->index != offset);
1644
1645	/*
1646	 * We have a locked page in the page cache, now we need to check
1647	 * that it's up-to-date. If not, it is going to be due to an error.
1648	 */
1649	if (unlikely(!PageUptodate(page)))
1650		goto page_not_uptodate;
1651
1652	/*
1653	 * Found the page and have a reference on it.
1654	 * We must recheck i_size under page lock.
1655	 */
1656	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657	if (unlikely(offset >= size)) {
1658		unlock_page(page);
1659		page_cache_release(page);
1660		return VM_FAULT_SIGBUS;
1661	}
1662
1663	vmf->page = page;
1664	return ret | VM_FAULT_LOCKED;
1665
1666no_cached_page:
1667	/*
1668	 * We're only likely to ever get here if MADV_RANDOM is in
1669	 * effect.
1670	 */
1671	error = page_cache_read(file, offset);
1672
1673	/*
1674	 * The page we want has now been added to the page cache.
1675	 * In the unlikely event that someone removed it in the
1676	 * meantime, we'll just come back here and read it again.
1677	 */
1678	if (error >= 0)
1679		goto retry_find;
1680
1681	/*
1682	 * An error return from page_cache_read can result if the
1683	 * system is low on memory, or a problem occurs while trying
1684	 * to schedule I/O.
1685	 */
1686	if (error == -ENOMEM)
1687		return VM_FAULT_OOM;
1688	return VM_FAULT_SIGBUS;
1689
1690page_not_uptodate:
1691	/*
1692	 * Umm, take care of errors if the page isn't up-to-date.
1693	 * Try to re-read it _once_. We do this synchronously,
1694	 * because there really aren't any performance issues here
1695	 * and we need to check for errors.
1696	 */
1697	ClearPageError(page);
1698	error = mapping->a_ops->readpage(file, page);
1699	if (!error) {
1700		wait_on_page_locked(page);
1701		if (!PageUptodate(page))
1702			error = -EIO;
1703	}
1704	page_cache_release(page);
1705
1706	if (!error || error == AOP_TRUNCATED_PAGE)
1707		goto retry_find;
1708
1709	/* Things didn't work out. Return zero to tell the mm layer so. */
1710	shrink_readahead_size_eio(file, ra);
1711	return VM_FAULT_SIGBUS;
1712}
1713EXPORT_SYMBOL(filemap_fault);
1714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715const struct vm_operations_struct generic_file_vm_ops = {
1716	.fault		= filemap_fault,
 
 
1717};
1718
1719/* This is used for a general mmap of a disk file */
1720
1721int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1722{
1723	struct address_space *mapping = file->f_mapping;
1724
1725	if (!mapping->a_ops->readpage)
1726		return -ENOEXEC;
1727	file_accessed(file);
1728	vma->vm_ops = &generic_file_vm_ops;
1729	vma->vm_flags |= VM_CAN_NONLINEAR;
1730	return 0;
1731}
1732
1733/*
1734 * This is for filesystems which do not implement ->writepage.
1735 */
1736int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1737{
1738	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1739		return -EINVAL;
1740	return generic_file_mmap(file, vma);
1741}
1742#else
1743int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1744{
1745	return -ENOSYS;
1746}
1747int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1748{
1749	return -ENOSYS;
1750}
1751#endif /* CONFIG_MMU */
1752
1753EXPORT_SYMBOL(generic_file_mmap);
1754EXPORT_SYMBOL(generic_file_readonly_mmap);
1755
1756static struct page *__read_cache_page(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
1757				pgoff_t index,
1758				int (*filler)(void *, struct page *),
1759				void *data,
1760				gfp_t gfp)
1761{
1762	struct page *page;
1763	int err;
1764repeat:
1765	page = find_get_page(mapping, index);
1766	if (!page) {
1767		page = __page_cache_alloc(gfp | __GFP_COLD);
1768		if (!page)
1769			return ERR_PTR(-ENOMEM);
1770		err = add_to_page_cache_lru(page, mapping, index, gfp);
1771		if (unlikely(err)) {
1772			page_cache_release(page);
1773			if (err == -EEXIST)
1774				goto repeat;
1775			/* Presumably ENOMEM for radix tree node */
1776			return ERR_PTR(err);
1777		}
 
 
1778		err = filler(data, page);
1779		if (err < 0) {
1780			page_cache_release(page);
1781			page = ERR_PTR(err);
1782		}
 
 
 
 
 
1783	}
1784	return page;
1785}
1786
1787static struct page *do_read_cache_page(struct address_space *mapping,
1788				pgoff_t index,
1789				int (*filler)(void *, struct page *),
1790				void *data,
1791				gfp_t gfp)
1792
1793{
1794	struct page *page;
1795	int err;
1796
1797retry:
1798	page = __read_cache_page(mapping, index, filler, data, gfp);
1799	if (IS_ERR(page))
1800		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801	if (PageUptodate(page))
1802		goto out;
1803
 
1804	lock_page(page);
 
 
1805	if (!page->mapping) {
1806		unlock_page(page);
1807		page_cache_release(page);
1808		goto retry;
1809	}
 
 
1810	if (PageUptodate(page)) {
1811		unlock_page(page);
1812		goto out;
1813	}
1814	err = filler(data, page);
1815	if (err < 0) {
1816		page_cache_release(page);
1817		return ERR_PTR(err);
1818	}
1819out:
1820	mark_page_accessed(page);
1821	return page;
1822}
1823
1824/**
1825 * read_cache_page_async - read into page cache, fill it if needed
1826 * @mapping:	the page's address_space
1827 * @index:	the page index
1828 * @filler:	function to perform the read
1829 * @data:	first arg to filler(data, page) function, often left as NULL
1830 *
1831 * Same as read_cache_page, but don't wait for page to become unlocked
1832 * after submitting it to the filler.
1833 *
1834 * Read into the page cache. If a page already exists, and PageUptodate() is
1835 * not set, try to fill the page but don't wait for it to become unlocked.
1836 *
1837 * If the page does not get brought uptodate, return -EIO.
1838 */
1839struct page *read_cache_page_async(struct address_space *mapping,
1840				pgoff_t index,
1841				int (*filler)(void *, struct page *),
1842				void *data)
1843{
1844	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1845}
1846EXPORT_SYMBOL(read_cache_page_async);
1847
1848static struct page *wait_on_page_read(struct page *page)
1849{
1850	if (!IS_ERR(page)) {
1851		wait_on_page_locked(page);
1852		if (!PageUptodate(page)) {
1853			page_cache_release(page);
1854			page = ERR_PTR(-EIO);
1855		}
1856	}
1857	return page;
1858}
1859
1860/**
1861 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1862 * @mapping:	the page's address_space
1863 * @index:	the page index
1864 * @gfp:	the page allocator flags to use if allocating
1865 *
1866 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1867 * any new page allocations done using the specified allocation flags.
1868 *
1869 * If the page does not get brought uptodate, return -EIO.
1870 */
1871struct page *read_cache_page_gfp(struct address_space *mapping,
1872				pgoff_t index,
1873				gfp_t gfp)
1874{
1875	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1876
1877	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1878}
1879EXPORT_SYMBOL(read_cache_page_gfp);
1880
1881/**
1882 * read_cache_page - read into page cache, fill it if needed
1883 * @mapping:	the page's address_space
1884 * @index:	the page index
1885 * @filler:	function to perform the read
1886 * @data:	first arg to filler(data, page) function, often left as NULL
1887 *
1888 * Read into the page cache. If a page already exists, and PageUptodate() is
1889 * not set, try to fill the page then wait for it to become unlocked.
1890 *
1891 * If the page does not get brought uptodate, return -EIO.
1892 */
1893struct page *read_cache_page(struct address_space *mapping,
1894				pgoff_t index,
1895				int (*filler)(void *, struct page *),
1896				void *data)
1897{
1898	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1899}
1900EXPORT_SYMBOL(read_cache_page);
1901
1902static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1903			const struct iovec *iov, size_t base, size_t bytes)
1904{
1905	size_t copied = 0, left = 0;
1906
1907	while (bytes) {
1908		char __user *buf = iov->iov_base + base;
1909		int copy = min(bytes, iov->iov_len - base);
1910
1911		base = 0;
1912		left = __copy_from_user_inatomic(vaddr, buf, copy);
1913		copied += copy;
1914		bytes -= copy;
1915		vaddr += copy;
1916		iov++;
1917
1918		if (unlikely(left))
1919			break;
1920	}
1921	return copied - left;
1922}
1923
1924/*
1925 * Copy as much as we can into the page and return the number of bytes which
1926 * were successfully copied.  If a fault is encountered then return the number of
1927 * bytes which were copied.
1928 */
1929size_t iov_iter_copy_from_user_atomic(struct page *page,
1930		struct iov_iter *i, unsigned long offset, size_t bytes)
1931{
1932	char *kaddr;
1933	size_t copied;
1934
1935	BUG_ON(!in_atomic());
1936	kaddr = kmap_atomic(page);
1937	if (likely(i->nr_segs == 1)) {
1938		int left;
1939		char __user *buf = i->iov->iov_base + i->iov_offset;
1940		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1941		copied = bytes - left;
1942	} else {
1943		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1944						i->iov, i->iov_offset, bytes);
1945	}
1946	kunmap_atomic(kaddr);
1947
1948	return copied;
1949}
1950EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1951
1952/*
1953 * This has the same sideeffects and return value as
1954 * iov_iter_copy_from_user_atomic().
1955 * The difference is that it attempts to resolve faults.
1956 * Page must not be locked.
1957 */
1958size_t iov_iter_copy_from_user(struct page *page,
1959		struct iov_iter *i, unsigned long offset, size_t bytes)
1960{
1961	char *kaddr;
1962	size_t copied;
1963
1964	kaddr = kmap(page);
1965	if (likely(i->nr_segs == 1)) {
1966		int left;
1967		char __user *buf = i->iov->iov_base + i->iov_offset;
1968		left = __copy_from_user(kaddr + offset, buf, bytes);
1969		copied = bytes - left;
1970	} else {
1971		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1972						i->iov, i->iov_offset, bytes);
1973	}
1974	kunmap(page);
1975	return copied;
1976}
1977EXPORT_SYMBOL(iov_iter_copy_from_user);
1978
1979void iov_iter_advance(struct iov_iter *i, size_t bytes)
1980{
1981	BUG_ON(i->count < bytes);
1982
1983	if (likely(i->nr_segs == 1)) {
1984		i->iov_offset += bytes;
1985		i->count -= bytes;
1986	} else {
1987		const struct iovec *iov = i->iov;
1988		size_t base = i->iov_offset;
1989		unsigned long nr_segs = i->nr_segs;
1990
1991		/*
1992		 * The !iov->iov_len check ensures we skip over unlikely
1993		 * zero-length segments (without overruning the iovec).
1994		 */
1995		while (bytes || unlikely(i->count && !iov->iov_len)) {
1996			int copy;
1997
1998			copy = min(bytes, iov->iov_len - base);
1999			BUG_ON(!i->count || i->count < copy);
2000			i->count -= copy;
2001			bytes -= copy;
2002			base += copy;
2003			if (iov->iov_len == base) {
2004				iov++;
2005				nr_segs--;
2006				base = 0;
2007			}
2008		}
2009		i->iov = iov;
2010		i->iov_offset = base;
2011		i->nr_segs = nr_segs;
2012	}
2013}
2014EXPORT_SYMBOL(iov_iter_advance);
2015
2016/*
2017 * Fault in the first iovec of the given iov_iter, to a maximum length
2018 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2019 * accessed (ie. because it is an invalid address).
2020 *
2021 * writev-intensive code may want this to prefault several iovecs -- that
2022 * would be possible (callers must not rely on the fact that _only_ the
2023 * first iovec will be faulted with the current implementation).
2024 */
2025int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2026{
2027	char __user *buf = i->iov->iov_base + i->iov_offset;
2028	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2029	return fault_in_pages_readable(buf, bytes);
2030}
2031EXPORT_SYMBOL(iov_iter_fault_in_readable);
2032
2033/*
2034 * Return the count of just the current iov_iter segment.
2035 */
2036size_t iov_iter_single_seg_count(struct iov_iter *i)
2037{
2038	const struct iovec *iov = i->iov;
2039	if (i->nr_segs == 1)
2040		return i->count;
2041	else
2042		return min(i->count, iov->iov_len - i->iov_offset);
2043}
2044EXPORT_SYMBOL(iov_iter_single_seg_count);
2045
2046/*
2047 * Performs necessary checks before doing a write
2048 *
2049 * Can adjust writing position or amount of bytes to write.
2050 * Returns appropriate error code that caller should return or
2051 * zero in case that write should be allowed.
2052 */
2053inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2054{
 
2055	struct inode *inode = file->f_mapping->host;
2056	unsigned long limit = rlimit(RLIMIT_FSIZE);
 
2057
2058        if (unlikely(*pos < 0))
2059                return -EINVAL;
2060
2061	if (!isblk) {
2062		/* FIXME: this is for backwards compatibility with 2.4 */
2063		if (file->f_flags & O_APPEND)
2064                        *pos = i_size_read(inode);
2065
2066		if (limit != RLIM_INFINITY) {
2067			if (*pos >= limit) {
2068				send_sig(SIGXFSZ, current, 0);
2069				return -EFBIG;
2070			}
2071			if (*count > limit - (typeof(limit))*pos) {
2072				*count = limit - (typeof(limit))*pos;
2073			}
2074		}
 
2075	}
2076
2077	/*
2078	 * LFS rule
2079	 */
2080	if (unlikely(*pos + *count > MAX_NON_LFS &&
2081				!(file->f_flags & O_LARGEFILE))) {
2082		if (*pos >= MAX_NON_LFS) {
2083			return -EFBIG;
2084		}
2085		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2086			*count = MAX_NON_LFS - (unsigned long)*pos;
2087		}
2088	}
2089
2090	/*
2091	 * Are we about to exceed the fs block limit ?
2092	 *
2093	 * If we have written data it becomes a short write.  If we have
2094	 * exceeded without writing data we send a signal and return EFBIG.
2095	 * Linus frestrict idea will clean these up nicely..
2096	 */
2097	if (likely(!isblk)) {
2098		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2099			if (*count || *pos > inode->i_sb->s_maxbytes) {
2100				return -EFBIG;
2101			}
2102			/* zero-length writes at ->s_maxbytes are OK */
2103		}
2104
2105		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2106			*count = inode->i_sb->s_maxbytes - *pos;
2107	} else {
2108#ifdef CONFIG_BLOCK
2109		loff_t isize;
2110		if (bdev_read_only(I_BDEV(inode)))
2111			return -EPERM;
2112		isize = i_size_read(inode);
2113		if (*pos >= isize) {
2114			if (*count || *pos > isize)
2115				return -ENOSPC;
2116		}
2117
2118		if (*pos + *count > isize)
2119			*count = isize - *pos;
2120#else
2121		return -EPERM;
2122#endif
2123	}
2124	return 0;
2125}
2126EXPORT_SYMBOL(generic_write_checks);
2127
2128int pagecache_write_begin(struct file *file, struct address_space *mapping,
2129				loff_t pos, unsigned len, unsigned flags,
2130				struct page **pagep, void **fsdata)
2131{
2132	const struct address_space_operations *aops = mapping->a_ops;
2133
2134	return aops->write_begin(file, mapping, pos, len, flags,
2135							pagep, fsdata);
2136}
2137EXPORT_SYMBOL(pagecache_write_begin);
2138
2139int pagecache_write_end(struct file *file, struct address_space *mapping,
2140				loff_t pos, unsigned len, unsigned copied,
2141				struct page *page, void *fsdata)
2142{
2143	const struct address_space_operations *aops = mapping->a_ops;
2144
2145	mark_page_accessed(page);
2146	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2147}
2148EXPORT_SYMBOL(pagecache_write_end);
2149
2150ssize_t
2151generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2152		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2153		size_t count, size_t ocount)
2154{
2155	struct file	*file = iocb->ki_filp;
2156	struct address_space *mapping = file->f_mapping;
2157	struct inode	*inode = mapping->host;
2158	ssize_t		written;
2159	size_t		write_len;
2160	pgoff_t		end;
 
2161
2162	if (count != ocount)
2163		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2164
2165	write_len = iov_length(iov, *nr_segs);
2166	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2167
2168	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2169	if (written)
2170		goto out;
2171
2172	/*
2173	 * After a write we want buffered reads to be sure to go to disk to get
2174	 * the new data.  We invalidate clean cached page from the region we're
2175	 * about to write.  We do this *before* the write so that we can return
2176	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2177	 */
2178	if (mapping->nrpages) {
2179		written = invalidate_inode_pages2_range(mapping,
2180					pos >> PAGE_CACHE_SHIFT, end);
2181		/*
2182		 * If a page can not be invalidated, return 0 to fall back
2183		 * to buffered write.
2184		 */
2185		if (written) {
2186			if (written == -EBUSY)
2187				return 0;
2188			goto out;
2189		}
2190	}
2191
2192	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
 
2193
2194	/*
2195	 * Finally, try again to invalidate clean pages which might have been
2196	 * cached by non-direct readahead, or faulted in by get_user_pages()
2197	 * if the source of the write was an mmap'ed region of the file
2198	 * we're writing.  Either one is a pretty crazy thing to do,
2199	 * so we don't support it 100%.  If this invalidation
2200	 * fails, tough, the write still worked...
2201	 */
2202	if (mapping->nrpages) {
2203		invalidate_inode_pages2_range(mapping,
2204					      pos >> PAGE_CACHE_SHIFT, end);
2205	}
2206
2207	if (written > 0) {
2208		pos += written;
 
2209		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2210			i_size_write(inode, pos);
2211			mark_inode_dirty(inode);
2212		}
2213		*ppos = pos;
2214	}
2215out:
2216	return written;
2217}
2218EXPORT_SYMBOL(generic_file_direct_write);
2219
2220/*
2221 * Find or create a page at the given pagecache position. Return the locked
2222 * page. This function is specifically for buffered writes.
2223 */
2224struct page *grab_cache_page_write_begin(struct address_space *mapping,
2225					pgoff_t index, unsigned flags)
2226{
2227	int status;
2228	gfp_t gfp_mask;
2229	struct page *page;
2230	gfp_t gfp_notmask = 0;
2231
2232	gfp_mask = mapping_gfp_mask(mapping);
2233	if (mapping_cap_account_dirty(mapping))
2234		gfp_mask |= __GFP_WRITE;
2235	if (flags & AOP_FLAG_NOFS)
2236		gfp_notmask = __GFP_FS;
2237repeat:
2238	page = find_lock_page(mapping, index);
 
2239	if (page)
2240		goto found;
2241
2242	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2243	if (!page)
2244		return NULL;
2245	status = add_to_page_cache_lru(page, mapping, index,
2246						GFP_KERNEL & ~gfp_notmask);
2247	if (unlikely(status)) {
2248		page_cache_release(page);
2249		if (status == -EEXIST)
2250			goto repeat;
2251		return NULL;
2252	}
2253found:
2254	wait_on_page_writeback(page);
2255	return page;
2256}
2257EXPORT_SYMBOL(grab_cache_page_write_begin);
2258
2259static ssize_t generic_perform_write(struct file *file,
2260				struct iov_iter *i, loff_t pos)
2261{
2262	struct address_space *mapping = file->f_mapping;
2263	const struct address_space_operations *a_ops = mapping->a_ops;
2264	long status = 0;
2265	ssize_t written = 0;
2266	unsigned int flags = 0;
2267
2268	/*
2269	 * Copies from kernel address space cannot fail (NFSD is a big user).
2270	 */
2271	if (segment_eq(get_fs(), KERNEL_DS))
2272		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2273
2274	do {
2275		struct page *page;
2276		unsigned long offset;	/* Offset into pagecache page */
2277		unsigned long bytes;	/* Bytes to write to page */
2278		size_t copied;		/* Bytes copied from user */
2279		void *fsdata;
2280
2281		offset = (pos & (PAGE_CACHE_SIZE - 1));
2282		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2283						iov_iter_count(i));
2284
2285again:
2286		/*
2287		 * Bring in the user page that we will copy from _first_.
2288		 * Otherwise there's a nasty deadlock on copying from the
2289		 * same page as we're writing to, without it being marked
2290		 * up-to-date.
2291		 *
2292		 * Not only is this an optimisation, but it is also required
2293		 * to check that the address is actually valid, when atomic
2294		 * usercopies are used, below.
2295		 */
2296		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2297			status = -EFAULT;
2298			break;
2299		}
2300
 
 
 
 
 
2301		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2302						&page, &fsdata);
2303		if (unlikely(status))
2304			break;
2305
2306		if (mapping_writably_mapped(mapping))
2307			flush_dcache_page(page);
2308
2309		pagefault_disable();
2310		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2311		pagefault_enable();
2312		flush_dcache_page(page);
2313
2314		mark_page_accessed(page);
2315		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2316						page, fsdata);
2317		if (unlikely(status < 0))
2318			break;
2319		copied = status;
2320
2321		cond_resched();
2322
2323		iov_iter_advance(i, copied);
2324		if (unlikely(copied == 0)) {
2325			/*
2326			 * If we were unable to copy any data at all, we must
2327			 * fall back to a single segment length write.
2328			 *
2329			 * If we didn't fallback here, we could livelock
2330			 * because not all segments in the iov can be copied at
2331			 * once without a pagefault.
2332			 */
2333			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2334						iov_iter_single_seg_count(i));
2335			goto again;
2336		}
2337		pos += copied;
2338		written += copied;
2339
2340		balance_dirty_pages_ratelimited(mapping);
2341		if (fatal_signal_pending(current)) {
2342			status = -EINTR;
2343			break;
2344		}
2345	} while (iov_iter_count(i));
2346
2347	return written ? written : status;
2348}
2349
2350ssize_t
2351generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2352		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2353		size_t count, ssize_t written)
2354{
2355	struct file *file = iocb->ki_filp;
2356	ssize_t status;
2357	struct iov_iter i;
2358
2359	iov_iter_init(&i, iov, nr_segs, count, written);
2360	status = generic_perform_write(file, &i, pos);
2361
2362	if (likely(status >= 0)) {
2363		written += status;
2364		*ppos = pos + status;
2365  	}
2366	
2367	return written ? written : status;
2368}
2369EXPORT_SYMBOL(generic_file_buffered_write);
2370
2371/**
2372 * __generic_file_aio_write - write data to a file
2373 * @iocb:	IO state structure (file, offset, etc.)
2374 * @iov:	vector with data to write
2375 * @nr_segs:	number of segments in the vector
2376 * @ppos:	position where to write
2377 *
2378 * This function does all the work needed for actually writing data to a
2379 * file. It does all basic checks, removes SUID from the file, updates
2380 * modification times and calls proper subroutines depending on whether we
2381 * do direct IO or a standard buffered write.
2382 *
2383 * It expects i_mutex to be grabbed unless we work on a block device or similar
2384 * object which does not need locking at all.
2385 *
2386 * This function does *not* take care of syncing data in case of O_SYNC write.
2387 * A caller has to handle it. This is mainly due to the fact that we want to
2388 * avoid syncing under i_mutex.
2389 */
2390ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2391				 unsigned long nr_segs, loff_t *ppos)
2392{
2393	struct file *file = iocb->ki_filp;
2394	struct address_space * mapping = file->f_mapping;
2395	size_t ocount;		/* original count */
2396	size_t count;		/* after file limit checks */
2397	struct inode 	*inode = mapping->host;
2398	loff_t		pos;
2399	ssize_t		written;
2400	ssize_t		err;
2401
2402	ocount = 0;
2403	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2404	if (err)
2405		return err;
2406
2407	count = ocount;
2408	pos = *ppos;
2409
2410	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2411
2412	/* We can write back this queue in page reclaim */
2413	current->backing_dev_info = mapping->backing_dev_info;
2414	written = 0;
2415
2416	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2417	if (err)
2418		goto out;
2419
2420	if (count == 0)
2421		goto out;
2422
2423	err = file_remove_suid(file);
2424	if (err)
2425		goto out;
2426
2427	err = file_update_time(file);
2428	if (err)
2429		goto out;
2430
2431	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2432	if (unlikely(file->f_flags & O_DIRECT)) {
2433		loff_t endbyte;
2434		ssize_t written_buffered;
2435
2436		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2437							ppos, count, ocount);
2438		if (written < 0 || written == count)
2439			goto out;
2440		/*
2441		 * direct-io write to a hole: fall through to buffered I/O
2442		 * for completing the rest of the request.
 
 
 
2443		 */
2444		pos += written;
2445		count -= written;
2446		written_buffered = generic_file_buffered_write(iocb, iov,
2447						nr_segs, pos, ppos, count,
2448						written);
2449		/*
2450		 * If generic_file_buffered_write() retuned a synchronous error
2451		 * then we want to return the number of bytes which were
2452		 * direct-written, or the error code if that was zero.  Note
2453		 * that this differs from normal direct-io semantics, which
2454		 * will return -EFOO even if some bytes were written.
2455		 */
2456		if (written_buffered < 0) {
2457			err = written_buffered;
2458			goto out;
2459		}
2460
2461		/*
2462		 * We need to ensure that the page cache pages are written to
2463		 * disk and invalidated to preserve the expected O_DIRECT
2464		 * semantics.
2465		 */
2466		endbyte = pos + written_buffered - written - 1;
2467		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2468		if (err == 0) {
2469			written = written_buffered;
 
2470			invalidate_mapping_pages(mapping,
2471						 pos >> PAGE_CACHE_SHIFT,
2472						 endbyte >> PAGE_CACHE_SHIFT);
2473		} else {
2474			/*
2475			 * We don't know how much we wrote, so just return
2476			 * the number of bytes which were direct-written
2477			 */
2478		}
2479	} else {
2480		written = generic_file_buffered_write(iocb, iov, nr_segs,
2481				pos, ppos, count, written);
 
2482	}
2483out:
2484	current->backing_dev_info = NULL;
2485	return written ? written : err;
2486}
2487EXPORT_SYMBOL(__generic_file_aio_write);
2488
2489/**
2490 * generic_file_aio_write - write data to a file
2491 * @iocb:	IO state structure
2492 * @iov:	vector with data to write
2493 * @nr_segs:	number of segments in the vector
2494 * @pos:	position in file where to write
2495 *
2496 * This is a wrapper around __generic_file_aio_write() to be used by most
2497 * filesystems. It takes care of syncing the file in case of O_SYNC file
2498 * and acquires i_mutex as needed.
2499 */
2500ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2501		unsigned long nr_segs, loff_t pos)
2502{
2503	struct file *file = iocb->ki_filp;
2504	struct inode *inode = file->f_mapping->host;
2505	struct blk_plug plug;
2506	ssize_t ret;
2507
2508	BUG_ON(iocb->ki_pos != pos);
2509
2510	mutex_lock(&inode->i_mutex);
2511	blk_start_plug(&plug);
2512	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2513	mutex_unlock(&inode->i_mutex);
2514
2515	if (ret > 0 || ret == -EIOCBQUEUED) {
2516		ssize_t err;
2517
2518		err = generic_write_sync(file, pos, ret);
2519		if (err < 0 && ret > 0)
2520			ret = err;
2521	}
2522	blk_finish_plug(&plug);
2523	return ret;
2524}
2525EXPORT_SYMBOL(generic_file_aio_write);
2526
2527/**
2528 * try_to_release_page() - release old fs-specific metadata on a page
2529 *
2530 * @page: the page which the kernel is trying to free
2531 * @gfp_mask: memory allocation flags (and I/O mode)
2532 *
2533 * The address_space is to try to release any data against the page
2534 * (presumably at page->private).  If the release was successful, return `1'.
2535 * Otherwise return zero.
2536 *
2537 * This may also be called if PG_fscache is set on a page, indicating that the
2538 * page is known to the local caching routines.
2539 *
2540 * The @gfp_mask argument specifies whether I/O may be performed to release
2541 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2542 *
2543 */
2544int try_to_release_page(struct page *page, gfp_t gfp_mask)
2545{
2546	struct address_space * const mapping = page->mapping;
2547
2548	BUG_ON(!PageLocked(page));
2549	if (PageWriteback(page))
2550		return 0;
2551
2552	if (mapping && mapping->a_ops->releasepage)
2553		return mapping->a_ops->releasepage(page, gfp_mask);
2554	return try_to_free_buffers(page);
2555}
2556
2557EXPORT_SYMBOL(try_to_release_page);