Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/init.h>
  25#include <linux/kexec.h>
 
 
  26#include <linux/of_fdt.h>
  27#include <linux/cpu.h>
  28#include <linux/interrupt.h>
  29#include <linux/smp.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
  32#include <linux/bug.h>
  33#include <linux/compiler.h>
  34#include <linux/sort.h>
  35#include <linux/psci.h>
  36
  37#include <asm/unified.h>
  38#include <asm/cp15.h>
  39#include <asm/cpu.h>
  40#include <asm/cputype.h>
  41#include <asm/efi.h>
  42#include <asm/elf.h>
  43#include <asm/early_ioremap.h>
  44#include <asm/fixmap.h>
  45#include <asm/procinfo.h>
  46#include <asm/psci.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/smp_plat.h>
  50#include <asm/mach-types.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cachetype.h>
  53#include <asm/tlbflush.h>
  54#include <asm/xen/hypervisor.h>
  55
  56#include <asm/prom.h>
  57#include <asm/mach/arch.h>
  58#include <asm/mach/irq.h>
  59#include <asm/mach/time.h>
  60#include <asm/system_info.h>
  61#include <asm/system_misc.h>
  62#include <asm/traps.h>
  63#include <asm/unwind.h>
  64#include <asm/memblock.h>
  65#include <asm/virt.h>
 
  66
  67#include "atags.h"
  68
  69
  70#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  71char fpe_type[8];
  72
  73static int __init fpe_setup(char *line)
  74{
  75	memcpy(fpe_type, line, 8);
  76	return 1;
  77}
  78
  79__setup("fpe=", fpe_setup);
  80#endif
  81
  82extern void init_default_cache_policy(unsigned long);
  83extern void paging_init(const struct machine_desc *desc);
  84extern void early_paging_init(const struct machine_desc *);
  85extern void sanity_check_meminfo(void);
  86extern enum reboot_mode reboot_mode;
  87extern void setup_dma_zone(const struct machine_desc *desc);
  88
  89unsigned int processor_id;
  90EXPORT_SYMBOL(processor_id);
  91unsigned int __machine_arch_type __read_mostly;
  92EXPORT_SYMBOL(__machine_arch_type);
  93unsigned int cacheid __read_mostly;
  94EXPORT_SYMBOL(cacheid);
  95
  96unsigned int __atags_pointer __initdata;
  97
  98unsigned int system_rev;
  99EXPORT_SYMBOL(system_rev);
 100
 101const char *system_serial;
 102EXPORT_SYMBOL(system_serial);
 103
 104unsigned int system_serial_low;
 105EXPORT_SYMBOL(system_serial_low);
 106
 107unsigned int system_serial_high;
 108EXPORT_SYMBOL(system_serial_high);
 109
 110unsigned int elf_hwcap __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap);
 112
 113unsigned int elf_hwcap2 __read_mostly;
 114EXPORT_SYMBOL(elf_hwcap2);
 115
 116
 117#ifdef MULTI_CPU
 118struct processor processor __read_mostly;
 
 
 
 
 
 119#endif
 120#ifdef MULTI_TLB
 121struct cpu_tlb_fns cpu_tlb __read_mostly;
 122#endif
 123#ifdef MULTI_USER
 124struct cpu_user_fns cpu_user __read_mostly;
 125#endif
 126#ifdef MULTI_CACHE
 127struct cpu_cache_fns cpu_cache __read_mostly;
 128#endif
 129#ifdef CONFIG_OUTER_CACHE
 130struct outer_cache_fns outer_cache __read_mostly;
 131EXPORT_SYMBOL(outer_cache);
 132#endif
 133
 134/*
 135 * Cached cpu_architecture() result for use by assembler code.
 136 * C code should use the cpu_architecture() function instead of accessing this
 137 * variable directly.
 138 */
 139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 140
 141struct stack {
 142	u32 irq[3];
 143	u32 abt[3];
 144	u32 und[3];
 145	u32 fiq[3];
 146} ____cacheline_aligned;
 147
 148#ifndef CONFIG_CPU_V7M
 149static struct stack stacks[NR_CPUS];
 150#endif
 151
 152char elf_platform[ELF_PLATFORM_SIZE];
 153EXPORT_SYMBOL(elf_platform);
 154
 155static const char *cpu_name;
 156static const char *machine_name;
 157static char __initdata cmd_line[COMMAND_LINE_SIZE];
 158const struct machine_desc *machine_desc __initdata;
 159
 160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 161#define ENDIANNESS ((char)endian_test.l)
 162
 163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 164
 165/*
 166 * Standard memory resources
 167 */
 168static struct resource mem_res[] = {
 169	{
 170		.name = "Video RAM",
 171		.start = 0,
 172		.end = 0,
 173		.flags = IORESOURCE_MEM
 174	},
 175	{
 176		.name = "Kernel code",
 177		.start = 0,
 178		.end = 0,
 179		.flags = IORESOURCE_SYSTEM_RAM
 180	},
 181	{
 182		.name = "Kernel data",
 183		.start = 0,
 184		.end = 0,
 185		.flags = IORESOURCE_SYSTEM_RAM
 186	}
 187};
 188
 189#define video_ram   mem_res[0]
 190#define kernel_code mem_res[1]
 191#define kernel_data mem_res[2]
 192
 193static struct resource io_res[] = {
 194	{
 195		.name = "reserved",
 196		.start = 0x3bc,
 197		.end = 0x3be,
 198		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 199	},
 200	{
 201		.name = "reserved",
 202		.start = 0x378,
 203		.end = 0x37f,
 204		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 205	},
 206	{
 207		.name = "reserved",
 208		.start = 0x278,
 209		.end = 0x27f,
 210		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 211	}
 212};
 213
 214#define lp0 io_res[0]
 215#define lp1 io_res[1]
 216#define lp2 io_res[2]
 217
 218static const char *proc_arch[] = {
 219	"undefined/unknown",
 220	"3",
 221	"4",
 222	"4T",
 223	"5",
 224	"5T",
 225	"5TE",
 226	"5TEJ",
 227	"6TEJ",
 228	"7",
 229	"7M",
 230	"?(12)",
 231	"?(13)",
 232	"?(14)",
 233	"?(15)",
 234	"?(16)",
 235	"?(17)",
 236};
 237
 238#ifdef CONFIG_CPU_V7M
 239static int __get_cpu_architecture(void)
 240{
 241	return CPU_ARCH_ARMv7M;
 242}
 243#else
 244static int __get_cpu_architecture(void)
 245{
 246	int cpu_arch;
 247
 248	if ((read_cpuid_id() & 0x0008f000) == 0) {
 249		cpu_arch = CPU_ARCH_UNKNOWN;
 250	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 251		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 252	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 253		cpu_arch = (read_cpuid_id() >> 16) & 7;
 254		if (cpu_arch)
 255			cpu_arch += CPU_ARCH_ARMv3;
 256	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 257		/* Revised CPUID format. Read the Memory Model Feature
 258		 * Register 0 and check for VMSAv7 or PMSAv7 */
 259		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 260		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 261		    (mmfr0 & 0x000000f0) >= 0x00000030)
 262			cpu_arch = CPU_ARCH_ARMv7;
 263		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 264			 (mmfr0 & 0x000000f0) == 0x00000020)
 265			cpu_arch = CPU_ARCH_ARMv6;
 266		else
 267			cpu_arch = CPU_ARCH_UNKNOWN;
 268	} else
 269		cpu_arch = CPU_ARCH_UNKNOWN;
 270
 271	return cpu_arch;
 272}
 273#endif
 274
 275int __pure cpu_architecture(void)
 276{
 277	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 278
 279	return __cpu_architecture;
 280}
 281
 282static int cpu_has_aliasing_icache(unsigned int arch)
 283{
 284	int aliasing_icache;
 285	unsigned int id_reg, num_sets, line_size;
 286
 287	/* PIPT caches never alias. */
 288	if (icache_is_pipt())
 289		return 0;
 290
 291	/* arch specifies the register format */
 292	switch (arch) {
 293	case CPU_ARCH_ARMv7:
 294		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 295		    : /* No output operands */
 296		    : "r" (1));
 297		isb();
 298		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 299		    : "=r" (id_reg));
 300		line_size = 4 << ((id_reg & 0x7) + 2);
 301		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 302		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 303		break;
 304	case CPU_ARCH_ARMv6:
 305		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 306		break;
 307	default:
 308		/* I-cache aliases will be handled by D-cache aliasing code */
 309		aliasing_icache = 0;
 310	}
 311
 312	return aliasing_icache;
 313}
 314
 315static void __init cacheid_init(void)
 316{
 317	unsigned int arch = cpu_architecture();
 318
 319	if (arch == CPU_ARCH_ARMv7M) {
 320		cacheid = 0;
 321	} else if (arch >= CPU_ARCH_ARMv6) {
 322		unsigned int cachetype = read_cpuid_cachetype();
 323		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 
 
 453
 454	if (cpu_architecture() < CPU_ARCH_ARMv7)
 455		return;
 456
 457	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 458	if (block >= 2)
 459		elf_hwcap |= HWCAP_IDIVA;
 460	if (block >= 1)
 461		elf_hwcap |= HWCAP_IDIVT;
 462
 463	/* LPAE implies atomic ldrd/strd instructions */
 464	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 465	if (block >= 5)
 466		elf_hwcap |= HWCAP_LPAE;
 467
 468	/* check for supported v8 Crypto instructions */
 469	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 470
 471	block = cpuid_feature_extract_field(isar5, 4);
 472	if (block >= 2)
 473		elf_hwcap2 |= HWCAP2_PMULL;
 474	if (block >= 1)
 475		elf_hwcap2 |= HWCAP2_AES;
 476
 477	block = cpuid_feature_extract_field(isar5, 8);
 478	if (block >= 1)
 479		elf_hwcap2 |= HWCAP2_SHA1;
 480
 481	block = cpuid_feature_extract_field(isar5, 12);
 482	if (block >= 1)
 483		elf_hwcap2 |= HWCAP2_SHA2;
 484
 485	block = cpuid_feature_extract_field(isar5, 16);
 486	if (block >= 1)
 487		elf_hwcap2 |= HWCAP2_CRC32;
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static void __init elf_hwcap_fixup(void)
 491{
 492	unsigned id = read_cpuid_id();
 493
 494	/*
 495	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 496	 * see also kuser_get_tls_init.
 497	 */
 498	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 499	    ((id >> 20) & 3) == 0) {
 500		elf_hwcap &= ~HWCAP_TLS;
 501		return;
 502	}
 503
 504	/* Verify if CPUID scheme is implemented */
 505	if ((id & 0x000f0000) != 0x000f0000)
 506		return;
 507
 508	/*
 509	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 510	 * avoid advertising SWP; it may not be atomic with
 511	 * multiprocessing cores.
 512	 */
 513	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 514	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 515	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 516		elf_hwcap &= ~HWCAP_SWP;
 517}
 518
 519/*
 520 * cpu_init - initialise one CPU.
 521 *
 522 * cpu_init sets up the per-CPU stacks.
 523 */
 524void notrace cpu_init(void)
 525{
 526#ifndef CONFIG_CPU_V7M
 527	unsigned int cpu = smp_processor_id();
 528	struct stack *stk = &stacks[cpu];
 529
 530	if (cpu >= NR_CPUS) {
 531		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 532		BUG();
 533	}
 534
 535	/*
 536	 * This only works on resume and secondary cores. For booting on the
 537	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 538	 */
 539	set_my_cpu_offset(per_cpu_offset(cpu));
 540
 541	cpu_proc_init();
 542
 543	/*
 544	 * Define the placement constraint for the inline asm directive below.
 545	 * In Thumb-2, msr with an immediate value is not allowed.
 546	 */
 547#ifdef CONFIG_THUMB2_KERNEL
 548#define PLC	"r"
 
 549#else
 550#define PLC	"I"
 
 551#endif
 552
 553	/*
 554	 * setup stacks for re-entrant exception handlers
 555	 */
 556	__asm__ (
 557	"msr	cpsr_c, %1\n\t"
 558	"add	r14, %0, %2\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %3\n\t"
 561	"add	r14, %0, %4\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %5\n\t"
 564	"add	r14, %0, %6\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %7\n\t"
 567	"add	r14, %0, %8\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %9"
 570	    :
 571	    : "r" (stk),
 572	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 573	      "I" (offsetof(struct stack, irq[0])),
 574	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 575	      "I" (offsetof(struct stack, abt[0])),
 576	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 577	      "I" (offsetof(struct stack, und[0])),
 578	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 579	      "I" (offsetof(struct stack, fiq[0])),
 580	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 581	    : "r14");
 582#endif
 583}
 584
 585u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 586
 587void __init smp_setup_processor_id(void)
 588{
 589	int i;
 590	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 591	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 592
 593	cpu_logical_map(0) = cpu;
 594	for (i = 1; i < nr_cpu_ids; ++i)
 595		cpu_logical_map(i) = i == cpu ? 0 : i;
 596
 597	/*
 598	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 599	 * using percpu variable early, for example, lockdep will
 600	 * access percpu variable inside lock_release
 601	 */
 602	set_my_cpu_offset(0);
 603
 604	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 605}
 606
 607struct mpidr_hash mpidr_hash;
 608#ifdef CONFIG_SMP
 609/**
 610 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 611 *			  level in order to build a linear index from an
 612 *			  MPIDR value. Resulting algorithm is a collision
 613 *			  free hash carried out through shifting and ORing
 614 */
 615static void __init smp_build_mpidr_hash(void)
 616{
 617	u32 i, affinity;
 618	u32 fs[3], bits[3], ls, mask = 0;
 619	/*
 620	 * Pre-scan the list of MPIDRS and filter out bits that do
 621	 * not contribute to affinity levels, ie they never toggle.
 622	 */
 623	for_each_possible_cpu(i)
 624		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 625	pr_debug("mask of set bits 0x%x\n", mask);
 626	/*
 627	 * Find and stash the last and first bit set at all affinity levels to
 628	 * check how many bits are required to represent them.
 629	 */
 630	for (i = 0; i < 3; i++) {
 631		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 632		/*
 633		 * Find the MSB bit and LSB bits position
 634		 * to determine how many bits are required
 635		 * to express the affinity level.
 636		 */
 637		ls = fls(affinity);
 638		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 639		bits[i] = ls - fs[i];
 640	}
 641	/*
 642	 * An index can be created from the MPIDR by isolating the
 643	 * significant bits at each affinity level and by shifting
 644	 * them in order to compress the 24 bits values space to a
 645	 * compressed set of values. This is equivalent to hashing
 646	 * the MPIDR through shifting and ORing. It is a collision free
 647	 * hash though not minimal since some levels might contain a number
 648	 * of CPUs that is not an exact power of 2 and their bit
 649	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 650	 */
 651	mpidr_hash.shift_aff[0] = fs[0];
 652	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 653	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 654						(bits[1] + bits[0]);
 655	mpidr_hash.mask = mask;
 656	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 657	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 658				mpidr_hash.shift_aff[0],
 659				mpidr_hash.shift_aff[1],
 660				mpidr_hash.shift_aff[2],
 661				mpidr_hash.mask,
 662				mpidr_hash.bits);
 663	/*
 664	 * 4x is an arbitrary value used to warn on a hash table much bigger
 665	 * than expected on most systems.
 666	 */
 667	if (mpidr_hash_size() > 4 * num_possible_cpus())
 668		pr_warn("Large number of MPIDR hash buckets detected\n");
 669	sync_cache_w(&mpidr_hash);
 670}
 671#endif
 672
 673static void __init setup_processor(void)
 
 
 
 
 674{
 675	struct proc_info_list *list;
 676
 677	/*
 678	 * locate processor in the list of supported processor
 679	 * types.  The linker builds this table for us from the
 680	 * entries in arch/arm/mm/proc-*.S
 681	 */
 682	list = lookup_processor_type(read_cpuid_id());
 683	if (!list) {
 684		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 685		       read_cpuid_id());
 686		while (1);
 
 687	}
 688
 
 
 
 
 
 
 
 
 689	cpu_name = list->cpu_name;
 690	__cpu_architecture = __get_cpu_architecture();
 691
 692#ifdef MULTI_CPU
 693	processor = *list->proc;
 694#endif
 695#ifdef MULTI_TLB
 696	cpu_tlb = *list->tlb;
 697#endif
 698#ifdef MULTI_USER
 699	cpu_user = *list->user;
 700#endif
 701#ifdef MULTI_CACHE
 702	cpu_cache = *list->cache;
 703#endif
 704
 705	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 706		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 707		proc_arch[cpu_architecture()], get_cr());
 708
 709	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 710		 list->arch_name, ENDIANNESS);
 711	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 712		 list->elf_name, ENDIANNESS);
 713	elf_hwcap = list->elf_hwcap;
 714
 715	cpuid_init_hwcaps();
 716	patch_aeabi_idiv();
 717
 718#ifndef CONFIG_ARM_THUMB
 719	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 720#endif
 721#ifdef CONFIG_MMU
 722	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 723#endif
 724	erratum_a15_798181_init();
 725
 726	elf_hwcap_fixup();
 727
 728	cacheid_init();
 729	cpu_init();
 730}
 731
 732void __init dump_machine_table(void)
 733{
 734	const struct machine_desc *p;
 735
 736	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 737	for_each_machine_desc(p)
 738		early_print("%08x\t%s\n", p->nr, p->name);
 739
 740	early_print("\nPlease check your kernel config and/or bootloader.\n");
 741
 742	while (true)
 743		/* can't use cpu_relax() here as it may require MMU setup */;
 744}
 745
 746int __init arm_add_memory(u64 start, u64 size)
 747{
 748	u64 aligned_start;
 749
 750	/*
 751	 * Ensure that start/size are aligned to a page boundary.
 752	 * Size is rounded down, start is rounded up.
 753	 */
 754	aligned_start = PAGE_ALIGN(start);
 755	if (aligned_start > start + size)
 756		size = 0;
 757	else
 758		size -= aligned_start - start;
 759
 760#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 761	if (aligned_start > ULONG_MAX) {
 762		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 763			(long long)start);
 764		return -EINVAL;
 765	}
 766
 767	if (aligned_start + size > ULONG_MAX) {
 768		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 769			(long long)start);
 770		/*
 771		 * To ensure bank->start + bank->size is representable in
 772		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 773		 * This means we lose a page after masking.
 774		 */
 775		size = ULONG_MAX - aligned_start;
 776	}
 777#endif
 778
 779	if (aligned_start < PHYS_OFFSET) {
 780		if (aligned_start + size <= PHYS_OFFSET) {
 781			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 782				aligned_start, aligned_start + size);
 783			return -EINVAL;
 784		}
 785
 786		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 787			aligned_start, (u64)PHYS_OFFSET);
 788
 789		size -= PHYS_OFFSET - aligned_start;
 790		aligned_start = PHYS_OFFSET;
 791	}
 792
 793	start = aligned_start;
 794	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 795
 796	/*
 797	 * Check whether this memory region has non-zero size or
 798	 * invalid node number.
 799	 */
 800	if (size == 0)
 801		return -EINVAL;
 802
 803	memblock_add(start, size);
 804	return 0;
 805}
 806
 807/*
 808 * Pick out the memory size.  We look for mem=size@start,
 809 * where start and size are "size[KkMm]"
 810 */
 811
 812static int __init early_mem(char *p)
 813{
 814	static int usermem __initdata = 0;
 815	u64 size;
 816	u64 start;
 817	char *endp;
 818
 819	/*
 820	 * If the user specifies memory size, we
 821	 * blow away any automatically generated
 822	 * size.
 823	 */
 824	if (usermem == 0) {
 825		usermem = 1;
 826		memblock_remove(memblock_start_of_DRAM(),
 827			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 828	}
 829
 830	start = PHYS_OFFSET;
 831	size  = memparse(p, &endp);
 832	if (*endp == '@')
 833		start = memparse(endp + 1, NULL);
 834
 835	arm_add_memory(start, size);
 836
 837	return 0;
 838}
 839early_param("mem", early_mem);
 840
 841static void __init request_standard_resources(const struct machine_desc *mdesc)
 842{
 843	struct memblock_region *region;
 844	struct resource *res;
 
 845
 846	kernel_code.start   = virt_to_phys(_text);
 847	kernel_code.end     = virt_to_phys(_etext - 1);
 848	kernel_data.start   = virt_to_phys(_sdata);
 849	kernel_data.end     = virt_to_phys(_end - 1);
 850
 851	for_each_memblock(memory, region) {
 852		res = memblock_virt_alloc(sizeof(*res), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853		res->name  = "System RAM";
 854		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 855		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 856		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 857
 858		request_resource(&iomem_resource, res);
 859
 860		if (kernel_code.start >= res->start &&
 861		    kernel_code.end <= res->end)
 862			request_resource(res, &kernel_code);
 863		if (kernel_data.start >= res->start &&
 864		    kernel_data.end <= res->end)
 865			request_resource(res, &kernel_data);
 866	}
 867
 868	if (mdesc->video_start) {
 869		video_ram.start = mdesc->video_start;
 870		video_ram.end   = mdesc->video_end;
 871		request_resource(&iomem_resource, &video_ram);
 872	}
 873
 874	/*
 875	 * Some machines don't have the possibility of ever
 876	 * possessing lp0, lp1 or lp2
 877	 */
 878	if (mdesc->reserve_lp0)
 879		request_resource(&ioport_resource, &lp0);
 880	if (mdesc->reserve_lp1)
 881		request_resource(&ioport_resource, &lp1);
 882	if (mdesc->reserve_lp2)
 883		request_resource(&ioport_resource, &lp2);
 884}
 885
 886#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 887struct screen_info screen_info = {
 888 .orig_video_lines	= 30,
 889 .orig_video_cols	= 80,
 890 .orig_video_mode	= 0,
 891 .orig_video_ega_bx	= 0,
 892 .orig_video_isVGA	= 1,
 893 .orig_video_points	= 8
 894};
 895#endif
 896
 897static int __init customize_machine(void)
 898{
 899	/*
 900	 * customizes platform devices, or adds new ones
 901	 * On DT based machines, we fall back to populating the
 902	 * machine from the device tree, if no callback is provided,
 903	 * otherwise we would always need an init_machine callback.
 904	 */
 905	of_iommu_init();
 906	if (machine_desc->init_machine)
 907		machine_desc->init_machine();
 908#ifdef CONFIG_OF
 909	else
 910		of_platform_populate(NULL, of_default_bus_match_table,
 911					NULL, NULL);
 912#endif
 913	return 0;
 914}
 915arch_initcall(customize_machine);
 916
 917static int __init init_machine_late(void)
 918{
 919	struct device_node *root;
 920	int ret;
 921
 922	if (machine_desc->init_late)
 923		machine_desc->init_late();
 924
 925	root = of_find_node_by_path("/");
 926	if (root) {
 927		ret = of_property_read_string(root, "serial-number",
 928					      &system_serial);
 929		if (ret)
 930			system_serial = NULL;
 931	}
 932
 933	if (!system_serial)
 934		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 935					  system_serial_high,
 936					  system_serial_low);
 937
 938	return 0;
 939}
 940late_initcall(init_machine_late);
 941
 942#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 943static inline unsigned long long get_total_mem(void)
 944{
 945	unsigned long total;
 946
 947	total = max_low_pfn - min_low_pfn;
 948	return total << PAGE_SHIFT;
 949}
 950
 951/**
 952 * reserve_crashkernel() - reserves memory are for crash kernel
 953 *
 954 * This function reserves memory area given in "crashkernel=" kernel command
 955 * line parameter. The memory reserved is used by a dump capture kernel when
 956 * primary kernel is crashing.
 957 */
 958static void __init reserve_crashkernel(void)
 959{
 960	unsigned long long crash_size, crash_base;
 961	unsigned long long total_mem;
 962	int ret;
 963
 964	total_mem = get_total_mem();
 965	ret = parse_crashkernel(boot_command_line, total_mem,
 966				&crash_size, &crash_base);
 967	if (ret)
 
 
 968		return;
 969
 970	ret = memblock_reserve(crash_base, crash_size);
 971	if (ret < 0) {
 972		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 973			(unsigned long)crash_base);
 974		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	}
 976
 977	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 978		(unsigned long)(crash_size >> 20),
 979		(unsigned long)(crash_base >> 20),
 980		(unsigned long)(total_mem >> 20));
 981
 
 982	crashk_res.start = crash_base;
 983	crashk_res.end = crash_base + crash_size - 1;
 984	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985}
 986#else
 987static inline void reserve_crashkernel(void) {}
 988#endif /* CONFIG_KEXEC */
 989
 990void __init hyp_mode_check(void)
 991{
 992#ifdef CONFIG_ARM_VIRT_EXT
 993	sync_boot_mode();
 994
 995	if (is_hyp_mode_available()) {
 996		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 997		pr_info("CPU: Virtualization extensions available.\n");
 998	} else if (is_hyp_mode_mismatched()) {
 999		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000			__boot_cpu_mode & MODE_MASK);
1001		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002	} else
1003		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1004#endif
1005}
1006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007void __init setup_arch(char **cmdline_p)
1008{
1009	const struct machine_desc *mdesc;
 
 
 
 
1010
1011	setup_processor();
1012	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
1013	if (!mdesc)
1014		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 
 
 
 
 
 
 
 
 
1015	machine_desc = mdesc;
1016	machine_name = mdesc->name;
1017	dump_stack_set_arch_desc("%s", mdesc->name);
1018
1019	if (mdesc->reboot_mode != REBOOT_HARD)
1020		reboot_mode = mdesc->reboot_mode;
1021
1022	init_mm.start_code = (unsigned long) _text;
1023	init_mm.end_code   = (unsigned long) _etext;
1024	init_mm.end_data   = (unsigned long) _edata;
1025	init_mm.brk	   = (unsigned long) _end;
1026
1027	/* populate cmd_line too for later use, preserving boot_command_line */
1028	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029	*cmdline_p = cmd_line;
1030
1031	early_fixmap_init();
1032	early_ioremap_init();
1033
1034	parse_early_param();
1035
1036#ifdef CONFIG_MMU
1037	early_paging_init(mdesc);
1038#endif
1039	setup_dma_zone(mdesc);
1040	efi_init();
1041	sanity_check_meminfo();
 
 
 
 
 
1042	arm_memblock_init(mdesc);
 
 
1043
1044	early_ioremap_reset();
1045
1046	paging_init(mdesc);
 
1047	request_standard_resources(mdesc);
1048
1049	if (mdesc->restart)
1050		arm_pm_restart = mdesc->restart;
 
 
1051
1052	unflatten_device_tree();
1053
1054	arm_dt_init_cpu_maps();
1055	psci_dt_init();
1056	xen_early_init();
1057#ifdef CONFIG_SMP
1058	if (is_smp()) {
1059		if (!mdesc->smp_init || !mdesc->smp_init()) {
1060			if (psci_smp_available())
1061				smp_set_ops(&psci_smp_ops);
1062			else if (mdesc->smp)
1063				smp_set_ops(mdesc->smp);
1064		}
1065		smp_init_cpus();
1066		smp_build_mpidr_hash();
1067	}
1068#endif
1069
1070	if (!is_smp())
1071		hyp_mode_check();
1072
1073	reserve_crashkernel();
1074
1075#ifdef CONFIG_MULTI_IRQ_HANDLER
1076	handle_arch_irq = mdesc->handle_irq;
1077#endif
1078
1079#ifdef CONFIG_VT
1080#if defined(CONFIG_VGA_CONSOLE)
1081	conswitchp = &vga_con;
1082#elif defined(CONFIG_DUMMY_CONSOLE)
1083	conswitchp = &dummy_con;
1084#endif
1085#endif
1086
1087	if (mdesc->init_early)
1088		mdesc->init_early();
1089}
1090
1091
1092static int __init topology_init(void)
1093{
1094	int cpu;
1095
1096	for_each_possible_cpu(cpu) {
1097		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099		register_cpu(&cpuinfo->cpu, cpu);
1100	}
1101
1102	return 0;
1103}
1104subsys_initcall(topology_init);
1105
1106#ifdef CONFIG_HAVE_PROC_CPU
1107static int __init proc_cpu_init(void)
1108{
1109	struct proc_dir_entry *res;
1110
1111	res = proc_mkdir("cpu", NULL);
1112	if (!res)
1113		return -ENOMEM;
1114	return 0;
1115}
1116fs_initcall(proc_cpu_init);
1117#endif
1118
1119static const char *hwcap_str[] = {
1120	"swp",
1121	"half",
1122	"thumb",
1123	"26bit",
1124	"fastmult",
1125	"fpa",
1126	"vfp",
1127	"edsp",
1128	"java",
1129	"iwmmxt",
1130	"crunch",
1131	"thumbee",
1132	"neon",
1133	"vfpv3",
1134	"vfpv3d16",
1135	"tls",
1136	"vfpv4",
1137	"idiva",
1138	"idivt",
1139	"vfpd32",
1140	"lpae",
1141	"evtstrm",
 
 
 
 
 
 
1142	NULL
1143};
1144
1145static const char *hwcap2_str[] = {
1146	"aes",
1147	"pmull",
1148	"sha1",
1149	"sha2",
1150	"crc32",
 
 
1151	NULL
1152};
1153
1154static int c_show(struct seq_file *m, void *v)
1155{
1156	int i, j;
1157	u32 cpuid;
1158
1159	for_each_online_cpu(i) {
1160		/*
1161		 * glibc reads /proc/cpuinfo to determine the number of
1162		 * online processors, looking for lines beginning with
1163		 * "processor".  Give glibc what it expects.
1164		 */
1165		seq_printf(m, "processor\t: %d\n", i);
1166		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168			   cpu_name, cpuid & 15, elf_platform);
1169
1170#if defined(CONFIG_SMP)
1171		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174#else
1175		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176			   loops_per_jiffy / (500000/HZ),
1177			   (loops_per_jiffy / (5000/HZ)) % 100);
1178#endif
1179		/* dump out the processor features */
1180		seq_puts(m, "Features\t: ");
1181
1182		for (j = 0; hwcap_str[j]; j++)
1183			if (elf_hwcap & (1 << j))
1184				seq_printf(m, "%s ", hwcap_str[j]);
1185
1186		for (j = 0; hwcap2_str[j]; j++)
1187			if (elf_hwcap2 & (1 << j))
1188				seq_printf(m, "%s ", hwcap2_str[j]);
1189
1190		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191		seq_printf(m, "CPU architecture: %s\n",
1192			   proc_arch[cpu_architecture()]);
1193
1194		if ((cpuid & 0x0008f000) == 0x00000000) {
1195			/* pre-ARM7 */
1196			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1197		} else {
1198			if ((cpuid & 0x0008f000) == 0x00007000) {
1199				/* ARM7 */
1200				seq_printf(m, "CPU variant\t: 0x%02x\n",
1201					   (cpuid >> 16) & 127);
1202			} else {
1203				/* post-ARM7 */
1204				seq_printf(m, "CPU variant\t: 0x%x\n",
1205					   (cpuid >> 20) & 15);
1206			}
1207			seq_printf(m, "CPU part\t: 0x%03x\n",
1208				   (cpuid >> 4) & 0xfff);
1209		}
1210		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1211	}
1212
1213	seq_printf(m, "Hardware\t: %s\n", machine_name);
1214	seq_printf(m, "Revision\t: %04x\n", system_rev);
1215	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1216
1217	return 0;
1218}
1219
1220static void *c_start(struct seq_file *m, loff_t *pos)
1221{
1222	return *pos < 1 ? (void *)1 : NULL;
1223}
1224
1225static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226{
1227	++*pos;
1228	return NULL;
1229}
1230
1231static void c_stop(struct seq_file *m, void *v)
1232{
1233}
1234
1235const struct seq_operations cpuinfo_op = {
1236	.start	= c_start,
1237	.next	= c_next,
1238	.stop	= c_stop,
1239	.show	= c_show
1240};
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
 
 
  18#include <linux/init.h>
  19#include <linux/kexec.h>
  20#include <linux/libfdt.h>
  21#include <linux/of.h>
  22#include <linux/of_fdt.h>
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
  64#include "atags.h"
  65
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
 
 
 
 
 
 
 
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
  91const char *system_serial;
  92EXPORT_SYMBOL(system_serial);
  93
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __ro_after_init;
 109#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 110struct processor *cpu_vtable[NR_CPUS] = {
 111	[0] = &processor,
 112};
 113#endif
 114#endif
 115#ifdef MULTI_TLB
 116struct cpu_tlb_fns cpu_tlb __ro_after_init;
 117#endif
 118#ifdef MULTI_USER
 119struct cpu_user_fns cpu_user __ro_after_init;
 120#endif
 121#ifdef MULTI_CACHE
 122struct cpu_cache_fns cpu_cache __ro_after_init;
 123#endif
 124#ifdef CONFIG_OUTER_CACHE
 125struct outer_cache_fns outer_cache __ro_after_init;
 126EXPORT_SYMBOL(outer_cache);
 127#endif
 128
 129/*
 130 * Cached cpu_architecture() result for use by assembler code.
 131 * C code should use the cpu_architecture() function instead of accessing this
 132 * variable directly.
 133 */
 134int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 135
 136struct stack {
 137	u32 irq[4];
 138	u32 abt[4];
 139	u32 und[4];
 140	u32 fiq[4];
 141} ____cacheline_aligned;
 142
 143#ifndef CONFIG_CPU_V7M
 144static struct stack stacks[NR_CPUS];
 145#endif
 146
 147char elf_platform[ELF_PLATFORM_SIZE];
 148EXPORT_SYMBOL(elf_platform);
 149
 150static const char *cpu_name;
 151static const char *machine_name;
 152static char __initdata cmd_line[COMMAND_LINE_SIZE];
 153const struct machine_desc *machine_desc __initdata;
 154
 155static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 156#define ENDIANNESS ((char)endian_test.l)
 157
 158DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 159
 160/*
 161 * Standard memory resources
 162 */
 163static struct resource mem_res[] = {
 164	{
 165		.name = "Video RAM",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel code",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_SYSTEM_RAM
 175	},
 176	{
 177		.name = "Kernel data",
 178		.start = 0,
 179		.end = 0,
 180		.flags = IORESOURCE_SYSTEM_RAM
 181	}
 182};
 183
 184#define video_ram   mem_res[0]
 185#define kernel_code mem_res[1]
 186#define kernel_data mem_res[2]
 187
 188static struct resource io_res[] = {
 189	{
 190		.name = "reserved",
 191		.start = 0x3bc,
 192		.end = 0x3be,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x378,
 198		.end = 0x37f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	},
 201	{
 202		.name = "reserved",
 203		.start = 0x278,
 204		.end = 0x27f,
 205		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 206	}
 207};
 208
 209#define lp0 io_res[0]
 210#define lp1 io_res[1]
 211#define lp2 io_res[2]
 212
 213static const char *proc_arch[] = {
 214	"undefined/unknown",
 215	"3",
 216	"4",
 217	"4T",
 218	"5",
 219	"5T",
 220	"5TE",
 221	"5TEJ",
 222	"6TEJ",
 223	"7",
 224	"7M",
 225	"?(12)",
 226	"?(13)",
 227	"?(14)",
 228	"?(15)",
 229	"?(16)",
 230	"?(17)",
 231};
 232
 233#ifdef CONFIG_CPU_V7M
 234static int __get_cpu_architecture(void)
 235{
 236	return CPU_ARCH_ARMv7M;
 237}
 238#else
 239static int __get_cpu_architecture(void)
 240{
 241	int cpu_arch;
 242
 243	if ((read_cpuid_id() & 0x0008f000) == 0) {
 244		cpu_arch = CPU_ARCH_UNKNOWN;
 245	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 246		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 247	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 248		cpu_arch = (read_cpuid_id() >> 16) & 7;
 249		if (cpu_arch)
 250			cpu_arch += CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 252		/* Revised CPUID format. Read the Memory Model Feature
 253		 * Register 0 and check for VMSAv7 or PMSAv7 */
 254		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 255		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 256		    (mmfr0 & 0x000000f0) >= 0x00000030)
 257			cpu_arch = CPU_ARCH_ARMv7;
 258		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 259			 (mmfr0 & 0x000000f0) == 0x00000020)
 260			cpu_arch = CPU_ARCH_ARMv6;
 261		else
 262			cpu_arch = CPU_ARCH_UNKNOWN;
 263	} else
 264		cpu_arch = CPU_ARCH_UNKNOWN;
 265
 266	return cpu_arch;
 267}
 268#endif
 269
 270int __pure cpu_architecture(void)
 271{
 272	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 273
 274	return __cpu_architecture;
 275}
 276
 277static int cpu_has_aliasing_icache(unsigned int arch)
 278{
 279	int aliasing_icache;
 280	unsigned int id_reg, num_sets, line_size;
 281
 282	/* PIPT caches never alias. */
 283	if (icache_is_pipt())
 284		return 0;
 285
 286	/* arch specifies the register format */
 287	switch (arch) {
 288	case CPU_ARCH_ARMv7:
 289		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 290		isb();
 291		id_reg = read_ccsidr();
 
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch >= CPU_ARCH_ARMv6) {
 
 
 312		unsigned int cachetype = read_cpuid_cachetype();
 313
 314		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 315			cacheid = 0;
 316		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 317			/* ARMv7 register format */
 318			arch = CPU_ARCH_ARMv7;
 319			cacheid = CACHEID_VIPT_NONALIASING;
 320			switch (cachetype & (3 << 14)) {
 321			case (1 << 14):
 322				cacheid |= CACHEID_ASID_TAGGED;
 323				break;
 324			case (3 << 14):
 325				cacheid |= CACHEID_PIPT;
 326				break;
 327			}
 328		} else {
 329			arch = CPU_ARCH_ARMv6;
 330			if (cachetype & (1 << 23))
 331				cacheid = CACHEID_VIPT_ALIASING;
 332			else
 333				cacheid = CACHEID_VIPT_NONALIASING;
 334		}
 335		if (cpu_has_aliasing_icache(arch))
 336			cacheid |= CACHEID_VIPT_I_ALIASING;
 337	} else {
 338		cacheid = CACHEID_VIVT;
 339	}
 340
 341	pr_info("CPU: %s data cache, %s instruction cache\n",
 342		cache_is_vivt() ? "VIVT" :
 343		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 344		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 345		cache_is_vivt() ? "VIVT" :
 346		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 347		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		icache_is_pipt() ? "PIPT" :
 349		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 350}
 351
 352/*
 353 * These functions re-use the assembly code in head.S, which
 354 * already provide the required functionality.
 355 */
 356extern struct proc_info_list *lookup_processor_type(unsigned int);
 357
 358void __init early_print(const char *str, ...)
 359{
 360	extern void printascii(const char *);
 361	char buf[256];
 362	va_list ap;
 363
 364	va_start(ap, str);
 365	vsnprintf(buf, sizeof(buf), str, ap);
 366	va_end(ap);
 367
 368#ifdef CONFIG_DEBUG_LL
 369	printascii(buf);
 370#endif
 371	printk("%s", buf);
 372}
 373
 374#ifdef CONFIG_ARM_PATCH_IDIV
 375
 376static inline u32 __attribute_const__ sdiv_instruction(void)
 377{
 378	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 379		/* "sdiv r0, r0, r1" */
 380		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 381		return __opcode_to_mem_thumb32(insn);
 382	}
 383
 384	/* "sdiv r0, r0, r1" */
 385	return __opcode_to_mem_arm(0xe710f110);
 386}
 387
 388static inline u32 __attribute_const__ udiv_instruction(void)
 389{
 390	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 391		/* "udiv r0, r0, r1" */
 392		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 393		return __opcode_to_mem_thumb32(insn);
 394	}
 395
 396	/* "udiv r0, r0, r1" */
 397	return __opcode_to_mem_arm(0xe730f110);
 398}
 399
 400static inline u32 __attribute_const__ bx_lr_instruction(void)
 401{
 402	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 403		/* "bx lr; nop" */
 404		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 405		return __opcode_to_mem_thumb32(insn);
 406	}
 407
 408	/* "bx lr" */
 409	return __opcode_to_mem_arm(0xe12fff1e);
 410}
 411
 412static void __init patch_aeabi_idiv(void)
 413{
 414	extern void __aeabi_uidiv(void);
 415	extern void __aeabi_idiv(void);
 416	uintptr_t fn_addr;
 417	unsigned int mask;
 418
 419	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 420	if (!(elf_hwcap & mask))
 421		return;
 422
 423	pr_info("CPU: div instructions available: patching division code\n");
 424
 425	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 426	asm ("" : "+g" (fn_addr));
 427	((u32 *)fn_addr)[0] = udiv_instruction();
 428	((u32 *)fn_addr)[1] = bx_lr_instruction();
 429	flush_icache_range(fn_addr, fn_addr + 8);
 430
 431	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 432	asm ("" : "+g" (fn_addr));
 433	((u32 *)fn_addr)[0] = sdiv_instruction();
 434	((u32 *)fn_addr)[1] = bx_lr_instruction();
 435	flush_icache_range(fn_addr, fn_addr + 8);
 436}
 437
 438#else
 439static inline void patch_aeabi_idiv(void) { }
 440#endif
 441
 442static void __init cpuid_init_hwcaps(void)
 443{
 444	int block;
 445	u32 isar5;
 446	u32 isar6;
 447	u32 pfr2;
 448
 449	if (cpu_architecture() < CPU_ARCH_ARMv7)
 450		return;
 451
 452	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 453	if (block >= 2)
 454		elf_hwcap |= HWCAP_IDIVA;
 455	if (block >= 1)
 456		elf_hwcap |= HWCAP_IDIVT;
 457
 458	/* LPAE implies atomic ldrd/strd instructions */
 459	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 460	if (block >= 5)
 461		elf_hwcap |= HWCAP_LPAE;
 462
 463	/* check for supported v8 Crypto instructions */
 464	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 465
 466	block = cpuid_feature_extract_field(isar5, 4);
 467	if (block >= 2)
 468		elf_hwcap2 |= HWCAP2_PMULL;
 469	if (block >= 1)
 470		elf_hwcap2 |= HWCAP2_AES;
 471
 472	block = cpuid_feature_extract_field(isar5, 8);
 473	if (block >= 1)
 474		elf_hwcap2 |= HWCAP2_SHA1;
 475
 476	block = cpuid_feature_extract_field(isar5, 12);
 477	if (block >= 1)
 478		elf_hwcap2 |= HWCAP2_SHA2;
 479
 480	block = cpuid_feature_extract_field(isar5, 16);
 481	if (block >= 1)
 482		elf_hwcap2 |= HWCAP2_CRC32;
 483
 484	/* Check for Speculation barrier instruction */
 485	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 486	block = cpuid_feature_extract_field(isar6, 12);
 487	if (block >= 1)
 488		elf_hwcap2 |= HWCAP2_SB;
 489
 490	/* Check for Speculative Store Bypassing control */
 491	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 492	block = cpuid_feature_extract_field(pfr2, 4);
 493	if (block >= 1)
 494		elf_hwcap2 |= HWCAP2_SSBS;
 495}
 496
 497static void __init elf_hwcap_fixup(void)
 498{
 499	unsigned id = read_cpuid_id();
 500
 501	/*
 502	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 503	 * see also kuser_get_tls_init.
 504	 */
 505	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 506	    ((id >> 20) & 3) == 0) {
 507		elf_hwcap &= ~HWCAP_TLS;
 508		return;
 509	}
 510
 511	/* Verify if CPUID scheme is implemented */
 512	if ((id & 0x000f0000) != 0x000f0000)
 513		return;
 514
 515	/*
 516	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 517	 * avoid advertising SWP; it may not be atomic with
 518	 * multiprocessing cores.
 519	 */
 520	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 521	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 522	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 523		elf_hwcap &= ~HWCAP_SWP;
 524}
 525
 526/*
 527 * cpu_init - initialise one CPU.
 528 *
 529 * cpu_init sets up the per-CPU stacks.
 530 */
 531void notrace cpu_init(void)
 532{
 533#ifndef CONFIG_CPU_V7M
 534	unsigned int cpu = smp_processor_id();
 535	struct stack *stk = &stacks[cpu];
 536
 537	if (cpu >= NR_CPUS) {
 538		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 539		BUG();
 540	}
 541
 542	/*
 543	 * This only works on resume and secondary cores. For booting on the
 544	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 545	 */
 546	set_my_cpu_offset(per_cpu_offset(cpu));
 547
 548	cpu_proc_init();
 549
 550	/*
 551	 * Define the placement constraint for the inline asm directive below.
 552	 * In Thumb-2, msr with an immediate value is not allowed.
 553	 */
 554#ifdef CONFIG_THUMB2_KERNEL
 555#define PLC_l	"l"
 556#define PLC_r	"r"
 557#else
 558#define PLC_l	"I"
 559#define PLC_r	"I"
 560#endif
 561
 562	/*
 563	 * setup stacks for re-entrant exception handlers
 564	 */
 565	__asm__ (
 566	"msr	cpsr_c, %1\n\t"
 567	"add	r14, %0, %2\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %3\n\t"
 570	"add	r14, %0, %4\n\t"
 571	"mov	sp, r14\n\t"
 572	"msr	cpsr_c, %5\n\t"
 573	"add	r14, %0, %6\n\t"
 574	"mov	sp, r14\n\t"
 575	"msr	cpsr_c, %7\n\t"
 576	"add	r14, %0, %8\n\t"
 577	"mov	sp, r14\n\t"
 578	"msr	cpsr_c, %9"
 579	    :
 580	    : "r" (stk),
 581	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 582	      "I" (offsetof(struct stack, irq[0])),
 583	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 584	      "I" (offsetof(struct stack, abt[0])),
 585	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 586	      "I" (offsetof(struct stack, und[0])),
 587	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 588	      "I" (offsetof(struct stack, fiq[0])),
 589	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 590	    : "r14");
 591#endif
 592}
 593
 594u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 595
 596void __init smp_setup_processor_id(void)
 597{
 598	int i;
 599	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 600	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 601
 602	cpu_logical_map(0) = cpu;
 603	for (i = 1; i < nr_cpu_ids; ++i)
 604		cpu_logical_map(i) = i == cpu ? 0 : i;
 605
 606	/*
 607	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 608	 * using percpu variable early, for example, lockdep will
 609	 * access percpu variable inside lock_release
 610	 */
 611	set_my_cpu_offset(0);
 612
 613	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 614}
 615
 616struct mpidr_hash mpidr_hash;
 617#ifdef CONFIG_SMP
 618/**
 619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 620 *			  level in order to build a linear index from an
 621 *			  MPIDR value. Resulting algorithm is a collision
 622 *			  free hash carried out through shifting and ORing
 623 */
 624static void __init smp_build_mpidr_hash(void)
 625{
 626	u32 i, affinity;
 627	u32 fs[3], bits[3], ls, mask = 0;
 628	/*
 629	 * Pre-scan the list of MPIDRS and filter out bits that do
 630	 * not contribute to affinity levels, ie they never toggle.
 631	 */
 632	for_each_possible_cpu(i)
 633		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 634	pr_debug("mask of set bits 0x%x\n", mask);
 635	/*
 636	 * Find and stash the last and first bit set at all affinity levels to
 637	 * check how many bits are required to represent them.
 638	 */
 639	for (i = 0; i < 3; i++) {
 640		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 641		/*
 642		 * Find the MSB bit and LSB bits position
 643		 * to determine how many bits are required
 644		 * to express the affinity level.
 645		 */
 646		ls = fls(affinity);
 647		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 648		bits[i] = ls - fs[i];
 649	}
 650	/*
 651	 * An index can be created from the MPIDR by isolating the
 652	 * significant bits at each affinity level and by shifting
 653	 * them in order to compress the 24 bits values space to a
 654	 * compressed set of values. This is equivalent to hashing
 655	 * the MPIDR through shifting and ORing. It is a collision free
 656	 * hash though not minimal since some levels might contain a number
 657	 * of CPUs that is not an exact power of 2 and their bit
 658	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 659	 */
 660	mpidr_hash.shift_aff[0] = fs[0];
 661	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 662	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 663						(bits[1] + bits[0]);
 664	mpidr_hash.mask = mask;
 665	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 666	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 667				mpidr_hash.shift_aff[0],
 668				mpidr_hash.shift_aff[1],
 669				mpidr_hash.shift_aff[2],
 670				mpidr_hash.mask,
 671				mpidr_hash.bits);
 672	/*
 673	 * 4x is an arbitrary value used to warn on a hash table much bigger
 674	 * than expected on most systems.
 675	 */
 676	if (mpidr_hash_size() > 4 * num_possible_cpus())
 677		pr_warn("Large number of MPIDR hash buckets detected\n");
 678	sync_cache_w(&mpidr_hash);
 679}
 680#endif
 681
 682/*
 683 * locate processor in the list of supported processor types.  The linker
 684 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 685 */
 686struct proc_info_list *lookup_processor(u32 midr)
 687{
 688	struct proc_info_list *list = lookup_processor_type(midr);
 689
 
 
 
 
 
 
 690	if (!list) {
 691		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 692		       smp_processor_id(), midr);
 693		while (1)
 694		/* can't use cpu_relax() here as it may require MMU setup */;
 695	}
 696
 697	return list;
 698}
 699
 700static void __init setup_processor(void)
 701{
 702	unsigned int midr = read_cpuid_id();
 703	struct proc_info_list *list = lookup_processor(midr);
 704
 705	cpu_name = list->cpu_name;
 706	__cpu_architecture = __get_cpu_architecture();
 707
 708	init_proc_vtable(list->proc);
 
 
 709#ifdef MULTI_TLB
 710	cpu_tlb = *list->tlb;
 711#endif
 712#ifdef MULTI_USER
 713	cpu_user = *list->user;
 714#endif
 715#ifdef MULTI_CACHE
 716	cpu_cache = *list->cache;
 717#endif
 718
 719	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 720		list->cpu_name, midr, midr & 15,
 721		proc_arch[cpu_architecture()], get_cr());
 722
 723	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 724		 list->arch_name, ENDIANNESS);
 725	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 726		 list->elf_name, ENDIANNESS);
 727	elf_hwcap = list->elf_hwcap;
 728
 729	cpuid_init_hwcaps();
 730	patch_aeabi_idiv();
 731
 732#ifndef CONFIG_ARM_THUMB
 733	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 734#endif
 735#ifdef CONFIG_MMU
 736	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 737#endif
 738	erratum_a15_798181_init();
 739
 740	elf_hwcap_fixup();
 741
 742	cacheid_init();
 743	cpu_init();
 744}
 745
 746void __init dump_machine_table(void)
 747{
 748	const struct machine_desc *p;
 749
 750	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 751	for_each_machine_desc(p)
 752		early_print("%08x\t%s\n", p->nr, p->name);
 753
 754	early_print("\nPlease check your kernel config and/or bootloader.\n");
 755
 756	while (true)
 757		/* can't use cpu_relax() here as it may require MMU setup */;
 758}
 759
 760int __init arm_add_memory(u64 start, u64 size)
 761{
 762	u64 aligned_start;
 763
 764	/*
 765	 * Ensure that start/size are aligned to a page boundary.
 766	 * Size is rounded down, start is rounded up.
 767	 */
 768	aligned_start = PAGE_ALIGN(start);
 769	if (aligned_start > start + size)
 770		size = 0;
 771	else
 772		size -= aligned_start - start;
 773
 774#ifndef CONFIG_PHYS_ADDR_T_64BIT
 775	if (aligned_start > ULONG_MAX) {
 776		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 777			start);
 778		return -EINVAL;
 779	}
 780
 781	if (aligned_start + size > ULONG_MAX) {
 782		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 783			(long long)start);
 784		/*
 785		 * To ensure bank->start + bank->size is representable in
 786		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 787		 * This means we lose a page after masking.
 788		 */
 789		size = ULONG_MAX - aligned_start;
 790	}
 791#endif
 792
 793	if (aligned_start < PHYS_OFFSET) {
 794		if (aligned_start + size <= PHYS_OFFSET) {
 795			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 796				aligned_start, aligned_start + size);
 797			return -EINVAL;
 798		}
 799
 800		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 801			aligned_start, (u64)PHYS_OFFSET);
 802
 803		size -= PHYS_OFFSET - aligned_start;
 804		aligned_start = PHYS_OFFSET;
 805	}
 806
 807	start = aligned_start;
 808	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 809
 810	/*
 811	 * Check whether this memory region has non-zero size or
 812	 * invalid node number.
 813	 */
 814	if (size == 0)
 815		return -EINVAL;
 816
 817	memblock_add(start, size);
 818	return 0;
 819}
 820
 821/*
 822 * Pick out the memory size.  We look for mem=size@start,
 823 * where start and size are "size[KkMm]"
 824 */
 825
 826static int __init early_mem(char *p)
 827{
 828	static int usermem __initdata = 0;
 829	u64 size;
 830	u64 start;
 831	char *endp;
 832
 833	/*
 834	 * If the user specifies memory size, we
 835	 * blow away any automatically generated
 836	 * size.
 837	 */
 838	if (usermem == 0) {
 839		usermem = 1;
 840		memblock_remove(memblock_start_of_DRAM(),
 841			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 842	}
 843
 844	start = PHYS_OFFSET;
 845	size  = memparse(p, &endp);
 846	if (*endp == '@')
 847		start = memparse(endp + 1, NULL);
 848
 849	arm_add_memory(start, size);
 850
 851	return 0;
 852}
 853early_param("mem", early_mem);
 854
 855static void __init request_standard_resources(const struct machine_desc *mdesc)
 856{
 857	phys_addr_t start, end, res_end;
 858	struct resource *res;
 859	u64 i;
 860
 861	kernel_code.start   = virt_to_phys(_text);
 862	kernel_code.end     = virt_to_phys(__init_begin - 1);
 863	kernel_data.start   = virt_to_phys(_sdata);
 864	kernel_data.end     = virt_to_phys(_end - 1);
 865
 866	for_each_mem_range(i, &start, &end) {
 867		unsigned long boot_alias_start;
 868
 869		/*
 870		 * In memblock, end points to the first byte after the
 871		 * range while in resourses, end points to the last byte in
 872		 * the range.
 873		 */
 874		res_end = end - 1;
 875
 876		/*
 877		 * Some systems have a special memory alias which is only
 878		 * used for booting.  We need to advertise this region to
 879		 * kexec-tools so they know where bootable RAM is located.
 880		 */
 881		boot_alias_start = phys_to_idmap(start);
 882		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 883			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 884			if (!res)
 885				panic("%s: Failed to allocate %zu bytes\n",
 886				      __func__, sizeof(*res));
 887			res->name = "System RAM (boot alias)";
 888			res->start = boot_alias_start;
 889			res->end = phys_to_idmap(res_end);
 890			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 891			request_resource(&iomem_resource, res);
 892		}
 893
 894		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 895		if (!res)
 896			panic("%s: Failed to allocate %zu bytes\n", __func__,
 897			      sizeof(*res));
 898		res->name  = "System RAM";
 899		res->start = start;
 900		res->end = res_end;
 901		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 902
 903		request_resource(&iomem_resource, res);
 904
 905		if (kernel_code.start >= res->start &&
 906		    kernel_code.end <= res->end)
 907			request_resource(res, &kernel_code);
 908		if (kernel_data.start >= res->start &&
 909		    kernel_data.end <= res->end)
 910			request_resource(res, &kernel_data);
 911	}
 912
 913	if (mdesc->video_start) {
 914		video_ram.start = mdesc->video_start;
 915		video_ram.end   = mdesc->video_end;
 916		request_resource(&iomem_resource, &video_ram);
 917	}
 918
 919	/*
 920	 * Some machines don't have the possibility of ever
 921	 * possessing lp0, lp1 or lp2
 922	 */
 923	if (mdesc->reserve_lp0)
 924		request_resource(&ioport_resource, &lp0);
 925	if (mdesc->reserve_lp1)
 926		request_resource(&ioport_resource, &lp1);
 927	if (mdesc->reserve_lp2)
 928		request_resource(&ioport_resource, &lp2);
 929}
 930
 931#if defined(CONFIG_VGA_CONSOLE)
 932struct screen_info vgacon_screen_info = {
 933 .orig_video_lines	= 30,
 934 .orig_video_cols	= 80,
 935 .orig_video_mode	= 0,
 936 .orig_video_ega_bx	= 0,
 937 .orig_video_isVGA	= 1,
 938 .orig_video_points	= 8
 939};
 940#endif
 941
 942static int __init customize_machine(void)
 943{
 944	/*
 945	 * customizes platform devices, or adds new ones
 946	 * On DT based machines, we fall back to populating the
 947	 * machine from the device tree, if no callback is provided,
 948	 * otherwise we would always need an init_machine callback.
 949	 */
 
 950	if (machine_desc->init_machine)
 951		machine_desc->init_machine();
 952
 
 
 
 
 953	return 0;
 954}
 955arch_initcall(customize_machine);
 956
 957static int __init init_machine_late(void)
 958{
 959	struct device_node *root;
 960	int ret;
 961
 962	if (machine_desc->init_late)
 963		machine_desc->init_late();
 964
 965	root = of_find_node_by_path("/");
 966	if (root) {
 967		ret = of_property_read_string(root, "serial-number",
 968					      &system_serial);
 969		if (ret)
 970			system_serial = NULL;
 971	}
 972
 973	if (!system_serial)
 974		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 975					  system_serial_high,
 976					  system_serial_low);
 977
 978	return 0;
 979}
 980late_initcall(init_machine_late);
 981
 982#ifdef CONFIG_KEXEC
 983/*
 984 * The crash region must be aligned to 128MB to avoid
 985 * zImage relocating below the reserved region.
 986 */
 987#define CRASH_ALIGN	(128 << 20)
 988
 989static inline unsigned long long get_total_mem(void)
 990{
 991	unsigned long total;
 992
 993	total = max_low_pfn - min_low_pfn;
 994	return total << PAGE_SHIFT;
 995}
 996
 997/**
 998 * reserve_crashkernel() - reserves memory are for crash kernel
 999 *
1000 * This function reserves memory area given in "crashkernel=" kernel command
1001 * line parameter. The memory reserved is used by a dump capture kernel when
1002 * primary kernel is crashing.
1003 */
1004static void __init reserve_crashkernel(void)
1005{
1006	unsigned long long crash_size, crash_base;
1007	unsigned long long total_mem;
1008	int ret;
1009
1010	total_mem = get_total_mem();
1011	ret = parse_crashkernel(boot_command_line, total_mem,
1012				&crash_size, &crash_base,
1013				NULL, NULL);
1014	/* invalid value specified or crashkernel=0 */
1015	if (ret || !crash_size)
1016		return;
1017
1018	if (crash_base <= 0) {
1019		unsigned long long crash_max = idmap_to_phys((u32)~0);
1020		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1021		if (crash_max > lowmem_max)
1022			crash_max = lowmem_max;
1023
1024		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1025						       CRASH_ALIGN, crash_max);
1026		if (!crash_base) {
1027			pr_err("crashkernel reservation failed - No suitable area found.\n");
1028			return;
1029		}
1030	} else {
1031		unsigned long long crash_max = crash_base + crash_size;
1032		unsigned long long start;
1033
1034		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1035						  crash_base, crash_max);
1036		if (!start) {
1037			pr_err("crashkernel reservation failed - memory is in use.\n");
1038			return;
1039		}
1040	}
1041
1042	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043		(unsigned long)(crash_size >> 20),
1044		(unsigned long)(crash_base >> 20),
1045		(unsigned long)(total_mem >> 20));
1046
1047	/* The crashk resource must always be located in normal mem */
1048	crashk_res.start = crash_base;
1049	crashk_res.end = crash_base + crash_size - 1;
1050	insert_resource(&iomem_resource, &crashk_res);
1051
1052	if (arm_has_idmap_alias()) {
1053		/*
1054		 * If we have a special RAM alias for use at boot, we
1055		 * need to advertise to kexec tools where the alias is.
1056		 */
1057		static struct resource crashk_boot_res = {
1058			.name = "Crash kernel (boot alias)",
1059			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1060		};
1061
1062		crashk_boot_res.start = phys_to_idmap(crash_base);
1063		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1064		insert_resource(&iomem_resource, &crashk_boot_res);
1065	}
1066}
1067#else
1068static inline void reserve_crashkernel(void) {}
1069#endif /* CONFIG_KEXEC */
1070
1071void __init hyp_mode_check(void)
1072{
1073#ifdef CONFIG_ARM_VIRT_EXT
1074	sync_boot_mode();
1075
1076	if (is_hyp_mode_available()) {
1077		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078		pr_info("CPU: Virtualization extensions available.\n");
1079	} else if (is_hyp_mode_mismatched()) {
1080		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081			__boot_cpu_mode & MODE_MASK);
1082		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1083	} else
1084		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1085#endif
1086}
1087
1088static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1089
1090static int arm_restart(struct notifier_block *nb, unsigned long action,
1091		       void *data)
1092{
1093	__arm_pm_restart(action, data);
1094	return NOTIFY_DONE;
1095}
1096
1097static struct notifier_block arm_restart_nb = {
1098	.notifier_call = arm_restart,
1099	.priority = 128,
1100};
1101
1102void __init setup_arch(char **cmdline_p)
1103{
1104	const struct machine_desc *mdesc = NULL;
1105	void *atags_vaddr = NULL;
1106
1107	if (__atags_pointer)
1108		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1109
1110	setup_processor();
1111	if (atags_vaddr) {
1112		mdesc = setup_machine_fdt(atags_vaddr);
1113		if (mdesc)
1114			memblock_reserve(__atags_pointer,
1115					 fdt_totalsize(atags_vaddr));
1116	}
1117	if (!mdesc)
1118		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1119	if (!mdesc) {
1120		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1122			    __atags_pointer);
1123		if (__atags_pointer)
1124			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1125		dump_machine_table();
1126	}
1127
1128	machine_desc = mdesc;
1129	machine_name = mdesc->name;
1130	dump_stack_set_arch_desc("%s", mdesc->name);
1131
1132	if (mdesc->reboot_mode != REBOOT_HARD)
1133		reboot_mode = mdesc->reboot_mode;
1134
1135	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1136
1137	/* populate cmd_line too for later use, preserving boot_command_line */
1138	strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1139	*cmdline_p = cmd_line;
1140
1141	early_fixmap_init();
1142	early_ioremap_init();
1143
1144	parse_early_param();
1145
1146#ifdef CONFIG_MMU
1147	early_mm_init(mdesc);
1148#endif
1149	setup_dma_zone(mdesc);
1150	xen_early_init();
1151	arm_efi_init();
1152	/*
1153	 * Make sure the calculation for lowmem/highmem is set appropriately
1154	 * before reserving/allocating any memory
1155	 */
1156	adjust_lowmem_bounds();
1157	arm_memblock_init(mdesc);
1158	/* Memory may have been removed so recalculate the bounds. */
1159	adjust_lowmem_bounds();
1160
1161	early_ioremap_reset();
1162
1163	paging_init(mdesc);
1164	kasan_init();
1165	request_standard_resources(mdesc);
1166
1167	if (mdesc->restart) {
1168		__arm_pm_restart = mdesc->restart;
1169		register_restart_handler(&arm_restart_nb);
1170	}
1171
1172	unflatten_device_tree();
1173
1174	arm_dt_init_cpu_maps();
1175	psci_dt_init();
 
1176#ifdef CONFIG_SMP
1177	if (is_smp()) {
1178		if (!mdesc->smp_init || !mdesc->smp_init()) {
1179			if (psci_smp_available())
1180				smp_set_ops(&psci_smp_ops);
1181			else if (mdesc->smp)
1182				smp_set_ops(mdesc->smp);
1183		}
1184		smp_init_cpus();
1185		smp_build_mpidr_hash();
1186	}
1187#endif
1188
1189	if (!is_smp())
1190		hyp_mode_check();
1191
1192	reserve_crashkernel();
1193
 
 
 
 
1194#ifdef CONFIG_VT
1195#if defined(CONFIG_VGA_CONSOLE)
1196	vgacon_register_screen(&vgacon_screen_info);
 
 
1197#endif
1198#endif
1199
1200	if (mdesc->init_early)
1201		mdesc->init_early();
1202}
1203
1204
1205static int __init topology_init(void)
1206{
1207	int cpu;
1208
1209	for_each_possible_cpu(cpu) {
1210		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1211		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1212		register_cpu(&cpuinfo->cpu, cpu);
1213	}
1214
1215	return 0;
1216}
1217subsys_initcall(topology_init);
1218
1219#ifdef CONFIG_HAVE_PROC_CPU
1220static int __init proc_cpu_init(void)
1221{
1222	struct proc_dir_entry *res;
1223
1224	res = proc_mkdir("cpu", NULL);
1225	if (!res)
1226		return -ENOMEM;
1227	return 0;
1228}
1229fs_initcall(proc_cpu_init);
1230#endif
1231
1232static const char *hwcap_str[] = {
1233	"swp",
1234	"half",
1235	"thumb",
1236	"26bit",
1237	"fastmult",
1238	"fpa",
1239	"vfp",
1240	"edsp",
1241	"java",
1242	"iwmmxt",
1243	"crunch",
1244	"thumbee",
1245	"neon",
1246	"vfpv3",
1247	"vfpv3d16",
1248	"tls",
1249	"vfpv4",
1250	"idiva",
1251	"idivt",
1252	"vfpd32",
1253	"lpae",
1254	"evtstrm",
1255	"fphp",
1256	"asimdhp",
1257	"asimddp",
1258	"asimdfhm",
1259	"asimdbf16",
1260	"i8mm",
1261	NULL
1262};
1263
1264static const char *hwcap2_str[] = {
1265	"aes",
1266	"pmull",
1267	"sha1",
1268	"sha2",
1269	"crc32",
1270	"sb",
1271	"ssbs",
1272	NULL
1273};
1274
1275static int c_show(struct seq_file *m, void *v)
1276{
1277	int i, j;
1278	u32 cpuid;
1279
1280	for_each_online_cpu(i) {
1281		/*
1282		 * glibc reads /proc/cpuinfo to determine the number of
1283		 * online processors, looking for lines beginning with
1284		 * "processor".  Give glibc what it expects.
1285		 */
1286		seq_printf(m, "processor\t: %d\n", i);
1287		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1288		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1289			   cpu_name, cpuid & 15, elf_platform);
1290
1291#if defined(CONFIG_SMP)
1292		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1293			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1294			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1295#else
1296		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1297			   loops_per_jiffy / (500000/HZ),
1298			   (loops_per_jiffy / (5000/HZ)) % 100);
1299#endif
1300		/* dump out the processor features */
1301		seq_puts(m, "Features\t: ");
1302
1303		for (j = 0; hwcap_str[j]; j++)
1304			if (elf_hwcap & (1 << j))
1305				seq_printf(m, "%s ", hwcap_str[j]);
1306
1307		for (j = 0; hwcap2_str[j]; j++)
1308			if (elf_hwcap2 & (1 << j))
1309				seq_printf(m, "%s ", hwcap2_str[j]);
1310
1311		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1312		seq_printf(m, "CPU architecture: %s\n",
1313			   proc_arch[cpu_architecture()]);
1314
1315		if ((cpuid & 0x0008f000) == 0x00000000) {
1316			/* pre-ARM7 */
1317			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1318		} else {
1319			if ((cpuid & 0x0008f000) == 0x00007000) {
1320				/* ARM7 */
1321				seq_printf(m, "CPU variant\t: 0x%02x\n",
1322					   (cpuid >> 16) & 127);
1323			} else {
1324				/* post-ARM7 */
1325				seq_printf(m, "CPU variant\t: 0x%x\n",
1326					   (cpuid >> 20) & 15);
1327			}
1328			seq_printf(m, "CPU part\t: 0x%03x\n",
1329				   (cpuid >> 4) & 0xfff);
1330		}
1331		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1332	}
1333
1334	seq_printf(m, "Hardware\t: %s\n", machine_name);
1335	seq_printf(m, "Revision\t: %04x\n", system_rev);
1336	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1337
1338	return 0;
1339}
1340
1341static void *c_start(struct seq_file *m, loff_t *pos)
1342{
1343	return *pos < 1 ? (void *)1 : NULL;
1344}
1345
1346static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1347{
1348	++*pos;
1349	return NULL;
1350}
1351
1352static void c_stop(struct seq_file *m, void *v)
1353{
1354}
1355
1356const struct seq_operations cpuinfo_op = {
1357	.start	= c_start,
1358	.next	= c_next,
1359	.stop	= c_stop,
1360	.show	= c_show
1361};