Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/init.h>
  25#include <linux/kexec.h>
  26#include <linux/of_fdt.h>
 
 
  27#include <linux/cpu.h>
  28#include <linux/interrupt.h>
  29#include <linux/smp.h>
 
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
  32#include <linux/bug.h>
  33#include <linux/compiler.h>
  34#include <linux/sort.h>
  35#include <linux/psci.h>
  36
  37#include <asm/unified.h>
  38#include <asm/cp15.h>
  39#include <asm/cpu.h>
  40#include <asm/cputype.h>
  41#include <asm/efi.h>
  42#include <asm/elf.h>
  43#include <asm/early_ioremap.h>
  44#include <asm/fixmap.h>
  45#include <asm/procinfo.h>
  46#include <asm/psci.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/smp_plat.h>
  50#include <asm/mach-types.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cachetype.h>
  53#include <asm/tlbflush.h>
  54#include <asm/xen/hypervisor.h>
  55
  56#include <asm/prom.h>
  57#include <asm/mach/arch.h>
  58#include <asm/mach/irq.h>
  59#include <asm/mach/time.h>
  60#include <asm/system_info.h>
  61#include <asm/system_misc.h>
  62#include <asm/traps.h>
  63#include <asm/unwind.h>
  64#include <asm/memblock.h>
  65#include <asm/virt.h>
  66
 
 
 
  67#include "atags.h"
 
  68
 
 
 
  69
  70#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  71char fpe_type[8];
  72
  73static int __init fpe_setup(char *line)
  74{
  75	memcpy(fpe_type, line, 8);
  76	return 1;
  77}
  78
  79__setup("fpe=", fpe_setup);
  80#endif
  81
  82extern void init_default_cache_policy(unsigned long);
  83extern void paging_init(const struct machine_desc *desc);
  84extern void early_paging_init(const struct machine_desc *);
  85extern void sanity_check_meminfo(void);
  86extern enum reboot_mode reboot_mode;
  87extern void setup_dma_zone(const struct machine_desc *desc);
  88
  89unsigned int processor_id;
  90EXPORT_SYMBOL(processor_id);
  91unsigned int __machine_arch_type __read_mostly;
  92EXPORT_SYMBOL(__machine_arch_type);
  93unsigned int cacheid __read_mostly;
  94EXPORT_SYMBOL(cacheid);
  95
  96unsigned int __atags_pointer __initdata;
  97
  98unsigned int system_rev;
  99EXPORT_SYMBOL(system_rev);
 100
 101const char *system_serial;
 102EXPORT_SYMBOL(system_serial);
 103
 104unsigned int system_serial_low;
 105EXPORT_SYMBOL(system_serial_low);
 106
 107unsigned int system_serial_high;
 108EXPORT_SYMBOL(system_serial_high);
 109
 110unsigned int elf_hwcap __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap);
 112
 113unsigned int elf_hwcap2 __read_mostly;
 114EXPORT_SYMBOL(elf_hwcap2);
 115
 116
 117#ifdef MULTI_CPU
 118struct processor processor __read_mostly;
 119#endif
 120#ifdef MULTI_TLB
 121struct cpu_tlb_fns cpu_tlb __read_mostly;
 122#endif
 123#ifdef MULTI_USER
 124struct cpu_user_fns cpu_user __read_mostly;
 125#endif
 126#ifdef MULTI_CACHE
 127struct cpu_cache_fns cpu_cache __read_mostly;
 128#endif
 129#ifdef CONFIG_OUTER_CACHE
 130struct outer_cache_fns outer_cache __read_mostly;
 131EXPORT_SYMBOL(outer_cache);
 132#endif
 133
 134/*
 135 * Cached cpu_architecture() result for use by assembler code.
 136 * C code should use the cpu_architecture() function instead of accessing this
 137 * variable directly.
 138 */
 139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 140
 141struct stack {
 142	u32 irq[3];
 143	u32 abt[3];
 144	u32 und[3];
 145	u32 fiq[3];
 146} ____cacheline_aligned;
 147
 148#ifndef CONFIG_CPU_V7M
 149static struct stack stacks[NR_CPUS];
 150#endif
 151
 152char elf_platform[ELF_PLATFORM_SIZE];
 153EXPORT_SYMBOL(elf_platform);
 154
 155static const char *cpu_name;
 156static const char *machine_name;
 157static char __initdata cmd_line[COMMAND_LINE_SIZE];
 158const struct machine_desc *machine_desc __initdata;
 159
 
 160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 161#define ENDIANNESS ((char)endian_test.l)
 162
 163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 164
 165/*
 166 * Standard memory resources
 167 */
 168static struct resource mem_res[] = {
 169	{
 170		.name = "Video RAM",
 171		.start = 0,
 172		.end = 0,
 173		.flags = IORESOURCE_MEM
 174	},
 175	{
 176		.name = "Kernel code",
 177		.start = 0,
 178		.end = 0,
 179		.flags = IORESOURCE_SYSTEM_RAM
 180	},
 181	{
 182		.name = "Kernel data",
 183		.start = 0,
 184		.end = 0,
 185		.flags = IORESOURCE_SYSTEM_RAM
 186	}
 187};
 188
 189#define video_ram   mem_res[0]
 190#define kernel_code mem_res[1]
 191#define kernel_data mem_res[2]
 192
 193static struct resource io_res[] = {
 194	{
 195		.name = "reserved",
 196		.start = 0x3bc,
 197		.end = 0x3be,
 198		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 199	},
 200	{
 201		.name = "reserved",
 202		.start = 0x378,
 203		.end = 0x37f,
 204		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 205	},
 206	{
 207		.name = "reserved",
 208		.start = 0x278,
 209		.end = 0x27f,
 210		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 211	}
 212};
 213
 214#define lp0 io_res[0]
 215#define lp1 io_res[1]
 216#define lp2 io_res[2]
 217
 218static const char *proc_arch[] = {
 219	"undefined/unknown",
 220	"3",
 221	"4",
 222	"4T",
 223	"5",
 224	"5T",
 225	"5TE",
 226	"5TEJ",
 227	"6TEJ",
 228	"7",
 229	"7M",
 230	"?(12)",
 231	"?(13)",
 232	"?(14)",
 233	"?(15)",
 234	"?(16)",
 235	"?(17)",
 236};
 237
 238#ifdef CONFIG_CPU_V7M
 239static int __get_cpu_architecture(void)
 240{
 241	return CPU_ARCH_ARMv7M;
 242}
 243#else
 244static int __get_cpu_architecture(void)
 245{
 246	int cpu_arch;
 247
 248	if ((read_cpuid_id() & 0x0008f000) == 0) {
 249		cpu_arch = CPU_ARCH_UNKNOWN;
 250	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 251		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 252	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 253		cpu_arch = (read_cpuid_id() >> 16) & 7;
 254		if (cpu_arch)
 255			cpu_arch += CPU_ARCH_ARMv3;
 256	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 257		/* Revised CPUID format. Read the Memory Model Feature
 258		 * Register 0 and check for VMSAv7 or PMSAv7 */
 259		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 260		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 261		    (mmfr0 & 0x000000f0) >= 0x00000030)
 262			cpu_arch = CPU_ARCH_ARMv7;
 263		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 264			 (mmfr0 & 0x000000f0) == 0x00000020)
 265			cpu_arch = CPU_ARCH_ARMv6;
 266		else
 267			cpu_arch = CPU_ARCH_UNKNOWN;
 268	} else
 269		cpu_arch = CPU_ARCH_UNKNOWN;
 270
 271	return cpu_arch;
 272}
 273#endif
 274
 275int __pure cpu_architecture(void)
 276{
 277	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 278
 279	return __cpu_architecture;
 280}
 281
 282static int cpu_has_aliasing_icache(unsigned int arch)
 283{
 284	int aliasing_icache;
 285	unsigned int id_reg, num_sets, line_size;
 286
 287	/* PIPT caches never alias. */
 288	if (icache_is_pipt())
 289		return 0;
 290
 291	/* arch specifies the register format */
 292	switch (arch) {
 293	case CPU_ARCH_ARMv7:
 294		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 295		    : /* No output operands */
 296		    : "r" (1));
 297		isb();
 298		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 299		    : "=r" (id_reg));
 300		line_size = 4 << ((id_reg & 0x7) + 2);
 301		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 302		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 303		break;
 304	case CPU_ARCH_ARMv6:
 305		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 306		break;
 307	default:
 308		/* I-cache aliases will be handled by D-cache aliasing code */
 309		aliasing_icache = 0;
 310	}
 311
 312	return aliasing_icache;
 313}
 314
 315static void __init cacheid_init(void)
 316{
 
 317	unsigned int arch = cpu_architecture();
 318
 319	if (arch == CPU_ARCH_ARMv7M) {
 320		cacheid = 0;
 321	} else if (arch >= CPU_ARCH_ARMv6) {
 322		unsigned int cachetype = read_cpuid_cachetype();
 323		if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453
 454	if (cpu_architecture() < CPU_ARCH_ARMv7)
 455		return;
 456
 457	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 458	if (block >= 2)
 459		elf_hwcap |= HWCAP_IDIVA;
 460	if (block >= 1)
 461		elf_hwcap |= HWCAP_IDIVT;
 462
 463	/* LPAE implies atomic ldrd/strd instructions */
 464	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 465	if (block >= 5)
 466		elf_hwcap |= HWCAP_LPAE;
 467
 468	/* check for supported v8 Crypto instructions */
 469	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 470
 471	block = cpuid_feature_extract_field(isar5, 4);
 472	if (block >= 2)
 473		elf_hwcap2 |= HWCAP2_PMULL;
 474	if (block >= 1)
 475		elf_hwcap2 |= HWCAP2_AES;
 476
 477	block = cpuid_feature_extract_field(isar5, 8);
 478	if (block >= 1)
 479		elf_hwcap2 |= HWCAP2_SHA1;
 480
 481	block = cpuid_feature_extract_field(isar5, 12);
 482	if (block >= 1)
 483		elf_hwcap2 |= HWCAP2_SHA2;
 484
 485	block = cpuid_feature_extract_field(isar5, 16);
 486	if (block >= 1)
 487		elf_hwcap2 |= HWCAP2_CRC32;
 488}
 489
 490static void __init elf_hwcap_fixup(void)
 491{
 492	unsigned id = read_cpuid_id();
 493
 494	/*
 495	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 496	 * see also kuser_get_tls_init.
 497	 */
 498	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 499	    ((id >> 20) & 3) == 0) {
 500		elf_hwcap &= ~HWCAP_TLS;
 501		return;
 502	}
 503
 504	/* Verify if CPUID scheme is implemented */
 505	if ((id & 0x000f0000) != 0x000f0000)
 506		return;
 507
 508	/*
 509	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 510	 * avoid advertising SWP; it may not be atomic with
 511	 * multiprocessing cores.
 512	 */
 513	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 514	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 515	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 516		elf_hwcap &= ~HWCAP_SWP;
 517}
 518
 519/*
 520 * cpu_init - initialise one CPU.
 521 *
 522 * cpu_init sets up the per-CPU stacks.
 523 */
 524void notrace cpu_init(void)
 525{
 526#ifndef CONFIG_CPU_V7M
 527	unsigned int cpu = smp_processor_id();
 528	struct stack *stk = &stacks[cpu];
 529
 530	if (cpu >= NR_CPUS) {
 531		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 532		BUG();
 533	}
 534
 535	/*
 536	 * This only works on resume and secondary cores. For booting on the
 537	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 538	 */
 539	set_my_cpu_offset(per_cpu_offset(cpu));
 540
 541	cpu_proc_init();
 542
 543	/*
 544	 * Define the placement constraint for the inline asm directive below.
 545	 * In Thumb-2, msr with an immediate value is not allowed.
 546	 */
 547#ifdef CONFIG_THUMB2_KERNEL
 548#define PLC	"r"
 549#else
 550#define PLC	"I"
 551#endif
 552
 553	/*
 554	 * setup stacks for re-entrant exception handlers
 555	 */
 556	__asm__ (
 557	"msr	cpsr_c, %1\n\t"
 558	"add	r14, %0, %2\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %3\n\t"
 561	"add	r14, %0, %4\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %5\n\t"
 564	"add	r14, %0, %6\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %7\n\t"
 567	"add	r14, %0, %8\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %9"
 570	    :
 571	    : "r" (stk),
 572	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 573	      "I" (offsetof(struct stack, irq[0])),
 574	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 575	      "I" (offsetof(struct stack, abt[0])),
 576	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 577	      "I" (offsetof(struct stack, und[0])),
 578	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 579	      "I" (offsetof(struct stack, fiq[0])),
 580	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 581	    : "r14");
 582#endif
 583}
 584
 585u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 586
 587void __init smp_setup_processor_id(void)
 588{
 589	int i;
 590	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 591	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 592
 593	cpu_logical_map(0) = cpu;
 594	for (i = 1; i < nr_cpu_ids; ++i)
 595		cpu_logical_map(i) = i == cpu ? 0 : i;
 596
 597	/*
 598	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 599	 * using percpu variable early, for example, lockdep will
 600	 * access percpu variable inside lock_release
 601	 */
 602	set_my_cpu_offset(0);
 603
 604	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 605}
 606
 607struct mpidr_hash mpidr_hash;
 608#ifdef CONFIG_SMP
 609/**
 610 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 611 *			  level in order to build a linear index from an
 612 *			  MPIDR value. Resulting algorithm is a collision
 613 *			  free hash carried out through shifting and ORing
 614 */
 615static void __init smp_build_mpidr_hash(void)
 616{
 617	u32 i, affinity;
 618	u32 fs[3], bits[3], ls, mask = 0;
 619	/*
 620	 * Pre-scan the list of MPIDRS and filter out bits that do
 621	 * not contribute to affinity levels, ie they never toggle.
 622	 */
 623	for_each_possible_cpu(i)
 624		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 625	pr_debug("mask of set bits 0x%x\n", mask);
 626	/*
 627	 * Find and stash the last and first bit set at all affinity levels to
 628	 * check how many bits are required to represent them.
 629	 */
 630	for (i = 0; i < 3; i++) {
 631		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 632		/*
 633		 * Find the MSB bit and LSB bits position
 634		 * to determine how many bits are required
 635		 * to express the affinity level.
 636		 */
 637		ls = fls(affinity);
 638		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 639		bits[i] = ls - fs[i];
 640	}
 641	/*
 642	 * An index can be created from the MPIDR by isolating the
 643	 * significant bits at each affinity level and by shifting
 644	 * them in order to compress the 24 bits values space to a
 645	 * compressed set of values. This is equivalent to hashing
 646	 * the MPIDR through shifting and ORing. It is a collision free
 647	 * hash though not minimal since some levels might contain a number
 648	 * of CPUs that is not an exact power of 2 and their bit
 649	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 650	 */
 651	mpidr_hash.shift_aff[0] = fs[0];
 652	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 653	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 654						(bits[1] + bits[0]);
 655	mpidr_hash.mask = mask;
 656	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 657	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 658				mpidr_hash.shift_aff[0],
 659				mpidr_hash.shift_aff[1],
 660				mpidr_hash.shift_aff[2],
 661				mpidr_hash.mask,
 662				mpidr_hash.bits);
 663	/*
 664	 * 4x is an arbitrary value used to warn on a hash table much bigger
 665	 * than expected on most systems.
 666	 */
 667	if (mpidr_hash_size() > 4 * num_possible_cpus())
 668		pr_warn("Large number of MPIDR hash buckets detected\n");
 669	sync_cache_w(&mpidr_hash);
 670}
 671#endif
 672
 673static void __init setup_processor(void)
 674{
 675	struct proc_info_list *list;
 676
 677	/*
 678	 * locate processor in the list of supported processor
 679	 * types.  The linker builds this table for us from the
 680	 * entries in arch/arm/mm/proc-*.S
 681	 */
 682	list = lookup_processor_type(read_cpuid_id());
 683	if (!list) {
 684		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 685		       read_cpuid_id());
 686		while (1);
 687	}
 688
 689	cpu_name = list->cpu_name;
 690	__cpu_architecture = __get_cpu_architecture();
 691
 692#ifdef MULTI_CPU
 693	processor = *list->proc;
 694#endif
 695#ifdef MULTI_TLB
 696	cpu_tlb = *list->tlb;
 697#endif
 698#ifdef MULTI_USER
 699	cpu_user = *list->user;
 700#endif
 701#ifdef MULTI_CACHE
 702	cpu_cache = *list->cache;
 703#endif
 704
 705	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 706		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 707		proc_arch[cpu_architecture()], get_cr());
 708
 709	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 710		 list->arch_name, ENDIANNESS);
 711	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 712		 list->elf_name, ENDIANNESS);
 713	elf_hwcap = list->elf_hwcap;
 714
 715	cpuid_init_hwcaps();
 716	patch_aeabi_idiv();
 717
 
 
 
 718#ifndef CONFIG_ARM_THUMB
 719	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 720#endif
 721#ifdef CONFIG_MMU
 722	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 723#endif
 724	erratum_a15_798181_init();
 725
 726	elf_hwcap_fixup();
 727
 728	cacheid_init();
 729	cpu_init();
 730}
 731
 732void __init dump_machine_table(void)
 733{
 734	const struct machine_desc *p;
 735
 736	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 737	for_each_machine_desc(p)
 738		early_print("%08x\t%s\n", p->nr, p->name);
 739
 740	early_print("\nPlease check your kernel config and/or bootloader.\n");
 741
 742	while (true)
 743		/* can't use cpu_relax() here as it may require MMU setup */;
 744}
 745
 746int __init arm_add_memory(u64 start, u64 size)
 747{
 748	u64 aligned_start;
 749
 750	/*
 751	 * Ensure that start/size are aligned to a page boundary.
 752	 * Size is rounded down, start is rounded up.
 753	 */
 754	aligned_start = PAGE_ALIGN(start);
 755	if (aligned_start > start + size)
 756		size = 0;
 757	else
 758		size -= aligned_start - start;
 759
 760#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 761	if (aligned_start > ULONG_MAX) {
 762		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 763			(long long)start);
 764		return -EINVAL;
 765	}
 766
 767	if (aligned_start + size > ULONG_MAX) {
 768		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 769			(long long)start);
 770		/*
 771		 * To ensure bank->start + bank->size is representable in
 772		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 773		 * This means we lose a page after masking.
 774		 */
 775		size = ULONG_MAX - aligned_start;
 776	}
 777#endif
 778
 779	if (aligned_start < PHYS_OFFSET) {
 780		if (aligned_start + size <= PHYS_OFFSET) {
 781			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 782				aligned_start, aligned_start + size);
 783			return -EINVAL;
 784		}
 785
 786		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 787			aligned_start, (u64)PHYS_OFFSET);
 788
 789		size -= PHYS_OFFSET - aligned_start;
 790		aligned_start = PHYS_OFFSET;
 791	}
 792
 793	start = aligned_start;
 794	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 795
 796	/*
 797	 * Check whether this memory region has non-zero size or
 798	 * invalid node number.
 799	 */
 800	if (size == 0)
 801		return -EINVAL;
 802
 803	memblock_add(start, size);
 804	return 0;
 805}
 806
 807/*
 808 * Pick out the memory size.  We look for mem=size@start,
 809 * where start and size are "size[KkMm]"
 810 */
 811
 812static int __init early_mem(char *p)
 813{
 814	static int usermem __initdata = 0;
 815	u64 size;
 816	u64 start;
 817	char *endp;
 818
 819	/*
 820	 * If the user specifies memory size, we
 821	 * blow away any automatically generated
 822	 * size.
 823	 */
 824	if (usermem == 0) {
 825		usermem = 1;
 826		memblock_remove(memblock_start_of_DRAM(),
 827			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 828	}
 829
 830	start = PHYS_OFFSET;
 831	size  = memparse(p, &endp);
 832	if (*endp == '@')
 833		start = memparse(endp + 1, NULL);
 834
 835	arm_add_memory(start, size);
 836
 837	return 0;
 838}
 839early_param("mem", early_mem);
 840
 841static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842{
 843	struct memblock_region *region;
 844	struct resource *res;
 845
 846	kernel_code.start   = virt_to_phys(_text);
 847	kernel_code.end     = virt_to_phys(_etext - 1);
 848	kernel_data.start   = virt_to_phys(_sdata);
 849	kernel_data.end     = virt_to_phys(_end - 1);
 850
 851	for_each_memblock(memory, region) {
 852		res = memblock_virt_alloc(sizeof(*res), 0);
 853		res->name  = "System RAM";
 854		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 855		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 856		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 857
 858		request_resource(&iomem_resource, res);
 859
 860		if (kernel_code.start >= res->start &&
 861		    kernel_code.end <= res->end)
 862			request_resource(res, &kernel_code);
 863		if (kernel_data.start >= res->start &&
 864		    kernel_data.end <= res->end)
 865			request_resource(res, &kernel_data);
 866	}
 867
 868	if (mdesc->video_start) {
 869		video_ram.start = mdesc->video_start;
 870		video_ram.end   = mdesc->video_end;
 871		request_resource(&iomem_resource, &video_ram);
 872	}
 873
 874	/*
 875	 * Some machines don't have the possibility of ever
 876	 * possessing lp0, lp1 or lp2
 877	 */
 878	if (mdesc->reserve_lp0)
 879		request_resource(&ioport_resource, &lp0);
 880	if (mdesc->reserve_lp1)
 881		request_resource(&ioport_resource, &lp1);
 882	if (mdesc->reserve_lp2)
 883		request_resource(&ioport_resource, &lp2);
 884}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 887struct screen_info screen_info = {
 888 .orig_video_lines	= 30,
 889 .orig_video_cols	= 80,
 890 .orig_video_mode	= 0,
 891 .orig_video_ega_bx	= 0,
 892 .orig_video_isVGA	= 1,
 893 .orig_video_points	= 8
 894};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895#endif
 896
 897static int __init customize_machine(void)
 898{
 899	/*
 900	 * customizes platform devices, or adds new ones
 901	 * On DT based machines, we fall back to populating the
 902	 * machine from the device tree, if no callback is provided,
 903	 * otherwise we would always need an init_machine callback.
 904	 */
 905	of_iommu_init();
 906	if (machine_desc->init_machine)
 907		machine_desc->init_machine();
 908#ifdef CONFIG_OF
 909	else
 910		of_platform_populate(NULL, of_default_bus_match_table,
 911					NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912#endif
 913	return 0;
 914}
 915arch_initcall(customize_machine);
 916
 917static int __init init_machine_late(void)
 
 
 
 
 
 
 
 918{
 919	struct device_node *root;
 920	int ret;
 921
 922	if (machine_desc->init_late)
 923		machine_desc->init_late();
 
 
 
 924
 925	root = of_find_node_by_path("/");
 926	if (root) {
 927		ret = of_property_read_string(root, "serial-number",
 928					      &system_serial);
 929		if (ret)
 930			system_serial = NULL;
 931	}
 932
 933	if (!system_serial)
 934		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 935					  system_serial_high,
 936					  system_serial_low);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 
 
 
 
 
 938	return 0;
 939}
 940late_initcall(init_machine_late);
 941
 942#ifdef CONFIG_KEXEC
 943static inline unsigned long long get_total_mem(void)
 944{
 945	unsigned long total;
 946
 947	total = max_low_pfn - min_low_pfn;
 948	return total << PAGE_SHIFT;
 949}
 950
 951/**
 952 * reserve_crashkernel() - reserves memory are for crash kernel
 953 *
 954 * This function reserves memory area given in "crashkernel=" kernel command
 955 * line parameter. The memory reserved is used by a dump capture kernel when
 956 * primary kernel is crashing.
 957 */
 958static void __init reserve_crashkernel(void)
 959{
 960	unsigned long long crash_size, crash_base;
 961	unsigned long long total_mem;
 962	int ret;
 963
 964	total_mem = get_total_mem();
 965	ret = parse_crashkernel(boot_command_line, total_mem,
 966				&crash_size, &crash_base);
 967	if (ret)
 968		return;
 969
 970	ret = memblock_reserve(crash_base, crash_size);
 971	if (ret < 0) {
 972		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 973			(unsigned long)crash_base);
 974		return;
 975	}
 976
 977	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 978		(unsigned long)(crash_size >> 20),
 979		(unsigned long)(crash_base >> 20),
 980		(unsigned long)(total_mem >> 20));
 
 981
 982	crashk_res.start = crash_base;
 983	crashk_res.end = crash_base + crash_size - 1;
 984	insert_resource(&iomem_resource, &crashk_res);
 985}
 986#else
 987static inline void reserve_crashkernel(void) {}
 988#endif /* CONFIG_KEXEC */
 989
 990void __init hyp_mode_check(void)
 991{
 992#ifdef CONFIG_ARM_VIRT_EXT
 993	sync_boot_mode();
 
 
 994
 995	if (is_hyp_mode_available()) {
 996		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 997		pr_info("CPU: Virtualization extensions available.\n");
 998	} else if (is_hyp_mode_mismatched()) {
 999		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000			__boot_cpu_mode & MODE_MASK);
1001		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002	} else
1003		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005}
1006
 
1007void __init setup_arch(char **cmdline_p)
1008{
1009	const struct machine_desc *mdesc;
 
 
1010
1011	setup_processor();
1012	mdesc = setup_machine_fdt(__atags_pointer);
1013	if (!mdesc)
1014		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1015	machine_desc = mdesc;
1016	machine_name = mdesc->name;
1017	dump_stack_set_arch_desc("%s", mdesc->name);
1018
1019	if (mdesc->reboot_mode != REBOOT_HARD)
1020		reboot_mode = mdesc->reboot_mode;
1021
1022	init_mm.start_code = (unsigned long) _text;
1023	init_mm.end_code   = (unsigned long) _etext;
1024	init_mm.end_data   = (unsigned long) _edata;
1025	init_mm.brk	   = (unsigned long) _end;
1026
1027	/* populate cmd_line too for later use, preserving boot_command_line */
1028	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029	*cmdline_p = cmd_line;
1030
1031	early_fixmap_init();
1032	early_ioremap_init();
1033
1034	parse_early_param();
1035
1036#ifdef CONFIG_MMU
1037	early_paging_init(mdesc);
1038#endif
1039	setup_dma_zone(mdesc);
1040	efi_init();
1041	sanity_check_meminfo();
1042	arm_memblock_init(mdesc);
1043
1044	early_ioremap_reset();
1045
1046	paging_init(mdesc);
1047	request_standard_resources(mdesc);
1048
1049	if (mdesc->restart)
1050		arm_pm_restart = mdesc->restart;
1051
1052	unflatten_device_tree();
1053
1054	arm_dt_init_cpu_maps();
1055	psci_dt_init();
1056	xen_early_init();
1057#ifdef CONFIG_SMP
1058	if (is_smp()) {
1059		if (!mdesc->smp_init || !mdesc->smp_init()) {
1060			if (psci_smp_available())
1061				smp_set_ops(&psci_smp_ops);
1062			else if (mdesc->smp)
1063				smp_set_ops(mdesc->smp);
1064		}
1065		smp_init_cpus();
1066		smp_build_mpidr_hash();
1067	}
1068#endif
1069
1070	if (!is_smp())
1071		hyp_mode_check();
1072
1073	reserve_crashkernel();
1074
 
 
 
 
 
 
 
 
1075#ifdef CONFIG_MULTI_IRQ_HANDLER
1076	handle_arch_irq = mdesc->handle_irq;
1077#endif
1078
1079#ifdef CONFIG_VT
1080#if defined(CONFIG_VGA_CONSOLE)
1081	conswitchp = &vga_con;
1082#elif defined(CONFIG_DUMMY_CONSOLE)
1083	conswitchp = &dummy_con;
1084#endif
1085#endif
 
1086
1087	if (mdesc->init_early)
1088		mdesc->init_early();
1089}
1090
1091
1092static int __init topology_init(void)
1093{
1094	int cpu;
1095
1096	for_each_possible_cpu(cpu) {
1097		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099		register_cpu(&cpuinfo->cpu, cpu);
1100	}
1101
1102	return 0;
1103}
1104subsys_initcall(topology_init);
1105
1106#ifdef CONFIG_HAVE_PROC_CPU
1107static int __init proc_cpu_init(void)
1108{
1109	struct proc_dir_entry *res;
1110
1111	res = proc_mkdir("cpu", NULL);
1112	if (!res)
1113		return -ENOMEM;
1114	return 0;
1115}
1116fs_initcall(proc_cpu_init);
1117#endif
1118
1119static const char *hwcap_str[] = {
1120	"swp",
1121	"half",
1122	"thumb",
1123	"26bit",
1124	"fastmult",
1125	"fpa",
1126	"vfp",
1127	"edsp",
1128	"java",
1129	"iwmmxt",
1130	"crunch",
1131	"thumbee",
1132	"neon",
1133	"vfpv3",
1134	"vfpv3d16",
1135	"tls",
1136	"vfpv4",
1137	"idiva",
1138	"idivt",
1139	"vfpd32",
1140	"lpae",
1141	"evtstrm",
1142	NULL
1143};
1144
1145static const char *hwcap2_str[] = {
1146	"aes",
1147	"pmull",
1148	"sha1",
1149	"sha2",
1150	"crc32",
1151	NULL
1152};
1153
1154static int c_show(struct seq_file *m, void *v)
1155{
1156	int i, j;
1157	u32 cpuid;
1158
 
 
 
 
1159	for_each_online_cpu(i) {
1160		/*
1161		 * glibc reads /proc/cpuinfo to determine the number of
1162		 * online processors, looking for lines beginning with
1163		 * "processor".  Give glibc what it expects.
1164		 */
1165		seq_printf(m, "processor\t: %d\n", i);
1166		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168			   cpu_name, cpuid & 15, elf_platform);
1169
1170#if defined(CONFIG_SMP)
1171		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174#else
1175		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176			   loops_per_jiffy / (500000/HZ),
1177			   (loops_per_jiffy / (5000/HZ)) % 100);
1178#endif
1179		/* dump out the processor features */
1180		seq_puts(m, "Features\t: ");
1181
1182		for (j = 0; hwcap_str[j]; j++)
1183			if (elf_hwcap & (1 << j))
1184				seq_printf(m, "%s ", hwcap_str[j]);
1185
1186		for (j = 0; hwcap2_str[j]; j++)
1187			if (elf_hwcap2 & (1 << j))
1188				seq_printf(m, "%s ", hwcap2_str[j]);
1189
1190		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191		seq_printf(m, "CPU architecture: %s\n",
1192			   proc_arch[cpu_architecture()]);
1193
1194		if ((cpuid & 0x0008f000) == 0x00000000) {
1195			/* pre-ARM7 */
1196			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1197		} else {
1198			if ((cpuid & 0x0008f000) == 0x00007000) {
1199				/* ARM7 */
1200				seq_printf(m, "CPU variant\t: 0x%02x\n",
1201					   (cpuid >> 16) & 127);
1202			} else {
1203				/* post-ARM7 */
1204				seq_printf(m, "CPU variant\t: 0x%x\n",
1205					   (cpuid >> 20) & 15);
1206			}
1207			seq_printf(m, "CPU part\t: 0x%03x\n",
1208				   (cpuid >> 4) & 0xfff);
1209		}
1210		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1211	}
 
 
 
1212
1213	seq_printf(m, "Hardware\t: %s\n", machine_name);
1214	seq_printf(m, "Revision\t: %04x\n", system_rev);
1215	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1216
1217	return 0;
1218}
1219
1220static void *c_start(struct seq_file *m, loff_t *pos)
1221{
1222	return *pos < 1 ? (void *)1 : NULL;
1223}
1224
1225static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226{
1227	++*pos;
1228	return NULL;
1229}
1230
1231static void c_stop(struct seq_file *m, void *v)
1232{
1233}
1234
1235const struct seq_operations cpuinfo_op = {
1236	.start	= c_start,
1237	.next	= c_next,
1238	.stop	= c_stop,
1239	.show	= c_show
1240};
v3.1
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
 
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
  23#include <linux/of_fdt.h>
  24#include <linux/crash_dump.h>
  25#include <linux/root_dev.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/fs.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
 
 
 
 
  32
  33#include <asm/unified.h>
 
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
 
  36#include <asm/elf.h>
 
 
  37#include <asm/procinfo.h>
 
  38#include <asm/sections.h>
  39#include <asm/setup.h>
  40#include <asm/smp_plat.h>
  41#include <asm/mach-types.h>
  42#include <asm/cacheflush.h>
  43#include <asm/cachetype.h>
  44#include <asm/tlbflush.h>
 
  45
  46#include <asm/prom.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mach/irq.h>
  49#include <asm/mach/time.h>
 
 
  50#include <asm/traps.h>
  51#include <asm/unwind.h>
 
 
  52
  53#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  54#include "compat.h"
  55#endif
  56#include "atags.h"
  57#include "tcm.h"
  58
  59#ifndef MEM_SIZE
  60#define MEM_SIZE	(16*1024*1024)
  61#endif
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(struct machine_desc *desc);
 
 
  76extern void sanity_check_meminfo(void);
  77extern void reboot_setup(char *str);
 
  78
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
 
 
 
  91unsigned int system_serial_low;
  92EXPORT_SYMBOL(system_serial_low);
  93
  94unsigned int system_serial_high;
  95EXPORT_SYMBOL(system_serial_high);
  96
  97unsigned int elf_hwcap __read_mostly;
  98EXPORT_SYMBOL(elf_hwcap);
  99
 
 
 
 100
 101#ifdef MULTI_CPU
 102struct processor processor __read_mostly;
 103#endif
 104#ifdef MULTI_TLB
 105struct cpu_tlb_fns cpu_tlb __read_mostly;
 106#endif
 107#ifdef MULTI_USER
 108struct cpu_user_fns cpu_user __read_mostly;
 109#endif
 110#ifdef MULTI_CACHE
 111struct cpu_cache_fns cpu_cache __read_mostly;
 112#endif
 113#ifdef CONFIG_OUTER_CACHE
 114struct outer_cache_fns outer_cache __read_mostly;
 115EXPORT_SYMBOL(outer_cache);
 116#endif
 117
 
 
 
 
 
 
 
 118struct stack {
 119	u32 irq[3];
 120	u32 abt[3];
 121	u32 und[3];
 
 122} ____cacheline_aligned;
 123
 
 124static struct stack stacks[NR_CPUS];
 
 125
 126char elf_platform[ELF_PLATFORM_SIZE];
 127EXPORT_SYMBOL(elf_platform);
 128
 129static const char *cpu_name;
 130static const char *machine_name;
 131static char __initdata cmd_line[COMMAND_LINE_SIZE];
 132struct machine_desc *machine_desc __initdata;
 133
 134static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 135static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 136#define ENDIANNESS ((char)endian_test.l)
 137
 138DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 139
 140/*
 141 * Standard memory resources
 142 */
 143static struct resource mem_res[] = {
 144	{
 145		.name = "Video RAM",
 146		.start = 0,
 147		.end = 0,
 148		.flags = IORESOURCE_MEM
 149	},
 150	{
 151		.name = "Kernel text",
 152		.start = 0,
 153		.end = 0,
 154		.flags = IORESOURCE_MEM
 155	},
 156	{
 157		.name = "Kernel data",
 158		.start = 0,
 159		.end = 0,
 160		.flags = IORESOURCE_MEM
 161	}
 162};
 163
 164#define video_ram   mem_res[0]
 165#define kernel_code mem_res[1]
 166#define kernel_data mem_res[2]
 167
 168static struct resource io_res[] = {
 169	{
 170		.name = "reserved",
 171		.start = 0x3bc,
 172		.end = 0x3be,
 173		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 174	},
 175	{
 176		.name = "reserved",
 177		.start = 0x378,
 178		.end = 0x37f,
 179		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 180	},
 181	{
 182		.name = "reserved",
 183		.start = 0x278,
 184		.end = 0x27f,
 185		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 186	}
 187};
 188
 189#define lp0 io_res[0]
 190#define lp1 io_res[1]
 191#define lp2 io_res[2]
 192
 193static const char *proc_arch[] = {
 194	"undefined/unknown",
 195	"3",
 196	"4",
 197	"4T",
 198	"5",
 199	"5T",
 200	"5TE",
 201	"5TEJ",
 202	"6TEJ",
 203	"7",
 204	"?(11)",
 205	"?(12)",
 206	"?(13)",
 207	"?(14)",
 208	"?(15)",
 209	"?(16)",
 210	"?(17)",
 211};
 212
 213int cpu_architecture(void)
 
 
 
 
 
 
 214{
 215	int cpu_arch;
 216
 217	if ((read_cpuid_id() & 0x0008f000) == 0) {
 218		cpu_arch = CPU_ARCH_UNKNOWN;
 219	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 220		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 221	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 222		cpu_arch = (read_cpuid_id() >> 16) & 7;
 223		if (cpu_arch)
 224			cpu_arch += CPU_ARCH_ARMv3;
 225	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 226		unsigned int mmfr0;
 227
 228		/* Revised CPUID format. Read the Memory Model Feature
 229		 * Register 0 and check for VMSAv7 or PMSAv7 */
 230		asm("mrc	p15, 0, %0, c0, c1, 4"
 231		    : "=r" (mmfr0));
 232		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 233		    (mmfr0 & 0x000000f0) >= 0x00000030)
 234			cpu_arch = CPU_ARCH_ARMv7;
 235		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 236			 (mmfr0 & 0x000000f0) == 0x00000020)
 237			cpu_arch = CPU_ARCH_ARMv6;
 238		else
 239			cpu_arch = CPU_ARCH_UNKNOWN;
 240	} else
 241		cpu_arch = CPU_ARCH_UNKNOWN;
 242
 243	return cpu_arch;
 244}
 
 
 
 
 
 
 
 
 245
 246static int cpu_has_aliasing_icache(unsigned int arch)
 247{
 248	int aliasing_icache;
 249	unsigned int id_reg, num_sets, line_size;
 250
 
 
 
 
 251	/* arch specifies the register format */
 252	switch (arch) {
 253	case CPU_ARCH_ARMv7:
 254		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 255		    : /* No output operands */
 256		    : "r" (1));
 257		isb();
 258		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 259		    : "=r" (id_reg));
 260		line_size = 4 << ((id_reg & 0x7) + 2);
 261		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 262		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 263		break;
 264	case CPU_ARCH_ARMv6:
 265		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 266		break;
 267	default:
 268		/* I-cache aliases will be handled by D-cache aliasing code */
 269		aliasing_icache = 0;
 270	}
 271
 272	return aliasing_icache;
 273}
 274
 275static void __init cacheid_init(void)
 276{
 277	unsigned int cachetype = read_cpuid_cachetype();
 278	unsigned int arch = cpu_architecture();
 279
 280	if (arch >= CPU_ARCH_ARMv6) {
 
 
 
 281		if ((cachetype & (7 << 29)) == 4 << 29) {
 282			/* ARMv7 register format */
 283			arch = CPU_ARCH_ARMv7;
 284			cacheid = CACHEID_VIPT_NONALIASING;
 285			if ((cachetype & (3 << 14)) == 1 << 14)
 
 286				cacheid |= CACHEID_ASID_TAGGED;
 
 
 
 
 
 287		} else {
 288			arch = CPU_ARCH_ARMv6;
 289			if (cachetype & (1 << 23))
 290				cacheid = CACHEID_VIPT_ALIASING;
 291			else
 292				cacheid = CACHEID_VIPT_NONALIASING;
 293		}
 294		if (cpu_has_aliasing_icache(arch))
 295			cacheid |= CACHEID_VIPT_I_ALIASING;
 296	} else {
 297		cacheid = CACHEID_VIVT;
 298	}
 299
 300	printk("CPU: %s data cache, %s instruction cache\n",
 301		cache_is_vivt() ? "VIVT" :
 302		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 303		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
 304		cache_is_vivt() ? "VIVT" :
 305		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 306		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 
 307		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 308}
 309
 310/*
 311 * These functions re-use the assembly code in head.S, which
 312 * already provide the required functionality.
 313 */
 314extern struct proc_info_list *lookup_processor_type(unsigned int);
 315
 316void __init early_print(const char *str, ...)
 317{
 318	extern void printascii(const char *);
 319	char buf[256];
 320	va_list ap;
 321
 322	va_start(ap, str);
 323	vsnprintf(buf, sizeof(buf), str, ap);
 324	va_end(ap);
 325
 326#ifdef CONFIG_DEBUG_LL
 327	printascii(buf);
 328#endif
 329	printk("%s", buf);
 330}
 331
 332static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333{
 334	int id = read_cpuid_id();
 
 335
 336	if ((id & 0xff0f0000) != 0x41070000)
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	/*
 340	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 341	 * see also kuser_get_tls_init.
 342	 */
 343	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 344		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347/*
 348 * cpu_init - initialise one CPU.
 349 *
 350 * cpu_init sets up the per-CPU stacks.
 351 */
 352void cpu_init(void)
 353{
 
 354	unsigned int cpu = smp_processor_id();
 355	struct stack *stk = &stacks[cpu];
 356
 357	if (cpu >= NR_CPUS) {
 358		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 359		BUG();
 360	}
 361
 
 
 
 
 
 
 362	cpu_proc_init();
 363
 364	/*
 365	 * Define the placement constraint for the inline asm directive below.
 366	 * In Thumb-2, msr with an immediate value is not allowed.
 367	 */
 368#ifdef CONFIG_THUMB2_KERNEL
 369#define PLC	"r"
 370#else
 371#define PLC	"I"
 372#endif
 373
 374	/*
 375	 * setup stacks for re-entrant exception handlers
 376	 */
 377	__asm__ (
 378	"msr	cpsr_c, %1\n\t"
 379	"add	r14, %0, %2\n\t"
 380	"mov	sp, r14\n\t"
 381	"msr	cpsr_c, %3\n\t"
 382	"add	r14, %0, %4\n\t"
 383	"mov	sp, r14\n\t"
 384	"msr	cpsr_c, %5\n\t"
 385	"add	r14, %0, %6\n\t"
 386	"mov	sp, r14\n\t"
 387	"msr	cpsr_c, %7"
 
 
 
 388	    :
 389	    : "r" (stk),
 390	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 391	      "I" (offsetof(struct stack, irq[0])),
 392	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 393	      "I" (offsetof(struct stack, abt[0])),
 394	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 395	      "I" (offsetof(struct stack, und[0])),
 
 
 396	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 397	    : "r14");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 
 399
 400static void __init setup_processor(void)
 401{
 402	struct proc_info_list *list;
 403
 404	/*
 405	 * locate processor in the list of supported processor
 406	 * types.  The linker builds this table for us from the
 407	 * entries in arch/arm/mm/proc-*.S
 408	 */
 409	list = lookup_processor_type(read_cpuid_id());
 410	if (!list) {
 411		printk("CPU configuration botched (ID %08x), unable "
 412		       "to continue.\n", read_cpuid_id());
 413		while (1);
 414	}
 415
 416	cpu_name = list->cpu_name;
 
 417
 418#ifdef MULTI_CPU
 419	processor = *list->proc;
 420#endif
 421#ifdef MULTI_TLB
 422	cpu_tlb = *list->tlb;
 423#endif
 424#ifdef MULTI_USER
 425	cpu_user = *list->user;
 426#endif
 427#ifdef MULTI_CACHE
 428	cpu_cache = *list->cache;
 429#endif
 430
 431	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 432	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 433	       proc_arch[cpu_architecture()], cr_alignment);
 
 
 
 
 
 
 
 
 
 434
 435	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
 436	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 437	elf_hwcap = list->elf_hwcap;
 438#ifndef CONFIG_ARM_THUMB
 439	elf_hwcap &= ~HWCAP_THUMB;
 
 
 
 440#endif
 
 441
 442	feat_v6_fixup();
 443
 444	cacheid_init();
 445	cpu_init();
 446}
 447
 448void __init dump_machine_table(void)
 449{
 450	struct machine_desc *p;
 451
 452	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 453	for_each_machine_desc(p)
 454		early_print("%08x\t%s\n", p->nr, p->name);
 455
 456	early_print("\nPlease check your kernel config and/or bootloader.\n");
 457
 458	while (true)
 459		/* can't use cpu_relax() here as it may require MMU setup */;
 460}
 461
 462int __init arm_add_memory(phys_addr_t start, unsigned long size)
 463{
 464	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 465
 466	if (meminfo.nr_banks >= NR_BANKS) {
 467		printk(KERN_CRIT "NR_BANKS too low, "
 468			"ignoring memory at 0x%08llx\n", (long long)start);
 
 
 
 
 
 
 
 
 
 
 
 469		return -EINVAL;
 470	}
 471
 472	/*
 473	 * Ensure that start/size are aligned to a page boundary.
 474	 * Size is appropriately rounded down, start is rounded up.
 475	 */
 476	size -= start & ~PAGE_MASK;
 477	bank->start = PAGE_ALIGN(start);
 478	bank->size  = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * Check whether this memory region has non-zero size or
 482	 * invalid node number.
 483	 */
 484	if (bank->size == 0)
 485		return -EINVAL;
 486
 487	meminfo.nr_banks++;
 488	return 0;
 489}
 490
 491/*
 492 * Pick out the memory size.  We look for mem=size@start,
 493 * where start and size are "size[KkMm]"
 494 */
 
 495static int __init early_mem(char *p)
 496{
 497	static int usermem __initdata = 0;
 498	unsigned long size;
 499	phys_addr_t start;
 500	char *endp;
 501
 502	/*
 503	 * If the user specifies memory size, we
 504	 * blow away any automatically generated
 505	 * size.
 506	 */
 507	if (usermem == 0) {
 508		usermem = 1;
 509		meminfo.nr_banks = 0;
 
 510	}
 511
 512	start = PHYS_OFFSET;
 513	size  = memparse(p, &endp);
 514	if (*endp == '@')
 515		start = memparse(endp + 1, NULL);
 516
 517	arm_add_memory(start, size);
 518
 519	return 0;
 520}
 521early_param("mem", early_mem);
 522
 523static void __init
 524setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 525{
 526#ifdef CONFIG_BLK_DEV_RAM
 527	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 528
 529	rd_image_start = image_start;
 530	rd_prompt = prompt;
 531	rd_doload = doload;
 532
 533	if (rd_sz)
 534		rd_size = rd_sz;
 535#endif
 536}
 537
 538static void __init request_standard_resources(struct machine_desc *mdesc)
 539{
 540	struct memblock_region *region;
 541	struct resource *res;
 542
 543	kernel_code.start   = virt_to_phys(_text);
 544	kernel_code.end     = virt_to_phys(_etext - 1);
 545	kernel_data.start   = virt_to_phys(_sdata);
 546	kernel_data.end     = virt_to_phys(_end - 1);
 547
 548	for_each_memblock(memory, region) {
 549		res = alloc_bootmem_low(sizeof(*res));
 550		res->name  = "System RAM";
 551		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 552		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 553		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 554
 555		request_resource(&iomem_resource, res);
 556
 557		if (kernel_code.start >= res->start &&
 558		    kernel_code.end <= res->end)
 559			request_resource(res, &kernel_code);
 560		if (kernel_data.start >= res->start &&
 561		    kernel_data.end <= res->end)
 562			request_resource(res, &kernel_data);
 563	}
 564
 565	if (mdesc->video_start) {
 566		video_ram.start = mdesc->video_start;
 567		video_ram.end   = mdesc->video_end;
 568		request_resource(&iomem_resource, &video_ram);
 569	}
 570
 571	/*
 572	 * Some machines don't have the possibility of ever
 573	 * possessing lp0, lp1 or lp2
 574	 */
 575	if (mdesc->reserve_lp0)
 576		request_resource(&ioport_resource, &lp0);
 577	if (mdesc->reserve_lp1)
 578		request_resource(&ioport_resource, &lp1);
 579	if (mdesc->reserve_lp2)
 580		request_resource(&ioport_resource, &lp2);
 581}
 582
 583/*
 584 *  Tag parsing.
 585 *
 586 * This is the new way of passing data to the kernel at boot time.  Rather
 587 * than passing a fixed inflexible structure to the kernel, we pass a list
 588 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 589 * tag for the list to be recognised (to distinguish the tagged list from
 590 * a param_struct).  The list is terminated with a zero-length tag (this tag
 591 * is not parsed in any way).
 592 */
 593static int __init parse_tag_core(const struct tag *tag)
 594{
 595	if (tag->hdr.size > 2) {
 596		if ((tag->u.core.flags & 1) == 0)
 597			root_mountflags &= ~MS_RDONLY;
 598		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 599	}
 600	return 0;
 601}
 602
 603__tagtable(ATAG_CORE, parse_tag_core);
 604
 605static int __init parse_tag_mem32(const struct tag *tag)
 606{
 607	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 608}
 609
 610__tagtable(ATAG_MEM, parse_tag_mem32);
 611
 612#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 613struct screen_info screen_info = {
 614 .orig_video_lines	= 30,
 615 .orig_video_cols	= 80,
 616 .orig_video_mode	= 0,
 617 .orig_video_ega_bx	= 0,
 618 .orig_video_isVGA	= 1,
 619 .orig_video_points	= 8
 620};
 621
 622static int __init parse_tag_videotext(const struct tag *tag)
 623{
 624	screen_info.orig_x            = tag->u.videotext.x;
 625	screen_info.orig_y            = tag->u.videotext.y;
 626	screen_info.orig_video_page   = tag->u.videotext.video_page;
 627	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 628	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 629	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 630	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 631	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 632	screen_info.orig_video_points = tag->u.videotext.video_points;
 633	return 0;
 634}
 635
 636__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 637#endif
 638
 639static int __init parse_tag_ramdisk(const struct tag *tag)
 640{
 641	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 642		      (tag->u.ramdisk.flags & 2) == 0,
 643		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 644	return 0;
 645}
 646
 647__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 648
 649static int __init parse_tag_serialnr(const struct tag *tag)
 650{
 651	system_serial_low = tag->u.serialnr.low;
 652	system_serial_high = tag->u.serialnr.high;
 653	return 0;
 654}
 655
 656__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 657
 658static int __init parse_tag_revision(const struct tag *tag)
 659{
 660	system_rev = tag->u.revision.rev;
 661	return 0;
 662}
 663
 664__tagtable(ATAG_REVISION, parse_tag_revision);
 665
 666static int __init parse_tag_cmdline(const struct tag *tag)
 667{
 668#if defined(CONFIG_CMDLINE_EXTEND)
 669	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 670	strlcat(default_command_line, tag->u.cmdline.cmdline,
 671		COMMAND_LINE_SIZE);
 672#elif defined(CONFIG_CMDLINE_FORCE)
 673	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 674#else
 675	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 676		COMMAND_LINE_SIZE);
 677#endif
 678	return 0;
 679}
 
 680
 681__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 682
 683/*
 684 * Scan the tag table for this tag, and call its parse function.
 685 * The tag table is built by the linker from all the __tagtable
 686 * declarations.
 687 */
 688static int __init parse_tag(const struct tag *tag)
 689{
 690	extern struct tagtable __tagtable_begin, __tagtable_end;
 691	struct tagtable *t;
 692
 693	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 694		if (tag->hdr.tag == t->tag) {
 695			t->parse(tag);
 696			break;
 697		}
 698
 699	return t < &__tagtable_end;
 700}
 
 
 
 
 
 701
 702/*
 703 * Parse all tags in the list, checking both the global and architecture
 704 * specific tag tables.
 705 */
 706static void __init parse_tags(const struct tag *t)
 707{
 708	for (; t->hdr.size; t = tag_next(t))
 709		if (!parse_tag(t))
 710			printk(KERN_WARNING
 711				"Ignoring unrecognised tag 0x%08x\n",
 712				t->hdr.tag);
 713}
 714
 715/*
 716 * This holds our defaults.
 717 */
 718static struct init_tags {
 719	struct tag_header hdr1;
 720	struct tag_core   core;
 721	struct tag_header hdr2;
 722	struct tag_mem32  mem;
 723	struct tag_header hdr3;
 724} init_tags __initdata = {
 725	{ tag_size(tag_core), ATAG_CORE },
 726	{ 1, PAGE_SIZE, 0xff },
 727	{ tag_size(tag_mem32), ATAG_MEM },
 728	{ MEM_SIZE },
 729	{ 0, ATAG_NONE }
 730};
 731
 732static int __init customize_machine(void)
 733{
 734	/* customizes platform devices, or adds new ones */
 735	if (machine_desc->init_machine)
 736		machine_desc->init_machine();
 737	return 0;
 738}
 739arch_initcall(customize_machine);
 740
 741#ifdef CONFIG_KEXEC
 742static inline unsigned long long get_total_mem(void)
 743{
 744	unsigned long total;
 745
 746	total = max_low_pfn - min_low_pfn;
 747	return total << PAGE_SHIFT;
 748}
 749
 750/**
 751 * reserve_crashkernel() - reserves memory are for crash kernel
 752 *
 753 * This function reserves memory area given in "crashkernel=" kernel command
 754 * line parameter. The memory reserved is used by a dump capture kernel when
 755 * primary kernel is crashing.
 756 */
 757static void __init reserve_crashkernel(void)
 758{
 759	unsigned long long crash_size, crash_base;
 760	unsigned long long total_mem;
 761	int ret;
 762
 763	total_mem = get_total_mem();
 764	ret = parse_crashkernel(boot_command_line, total_mem,
 765				&crash_size, &crash_base);
 766	if (ret)
 767		return;
 768
 769	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 770	if (ret < 0) {
 771		printk(KERN_WARNING "crashkernel reservation failed - "
 772		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 773		return;
 774	}
 775
 776	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 777	       "for crashkernel (System RAM: %ldMB)\n",
 778	       (unsigned long)(crash_size >> 20),
 779	       (unsigned long)(crash_base >> 20),
 780	       (unsigned long)(total_mem >> 20));
 781
 782	crashk_res.start = crash_base;
 783	crashk_res.end = crash_base + crash_size - 1;
 784	insert_resource(&iomem_resource, &crashk_res);
 785}
 786#else
 787static inline void reserve_crashkernel(void) {}
 788#endif /* CONFIG_KEXEC */
 789
 790static void __init squash_mem_tags(struct tag *tag)
 791{
 792	for (; tag->hdr.size; tag = tag_next(tag))
 793		if (tag->hdr.tag == ATAG_MEM)
 794			tag->hdr.tag = ATAG_NONE;
 795}
 796
 797static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 798{
 799	struct tag *tags = (struct tag *)&init_tags;
 800	struct machine_desc *mdesc = NULL, *p;
 801	char *from = default_command_line;
 802
 803	init_tags.mem.start = PHYS_OFFSET;
 804
 805	/*
 806	 * locate machine in the list of supported machines.
 807	 */
 808	for_each_machine_desc(p)
 809		if (nr == p->nr) {
 810			printk("Machine: %s\n", p->name);
 811			mdesc = p;
 812			break;
 813		}
 814
 815	if (!mdesc) {
 816		early_print("\nError: unrecognized/unsupported machine ID"
 817			" (r1 = 0x%08x).\n\n", nr);
 818		dump_machine_table(); /* does not return */
 819	}
 820
 821	if (__atags_pointer)
 822		tags = phys_to_virt(__atags_pointer);
 823	else if (mdesc->boot_params) {
 824#ifdef CONFIG_MMU
 825		/*
 826		 * We still are executing with a minimal MMU mapping created
 827		 * with the presumption that the machine default for this
 828		 * is located in the first MB of RAM.  Anything else will
 829		 * fault and silently hang the kernel at this point.
 830		 */
 831		if (mdesc->boot_params < PHYS_OFFSET ||
 832		    mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
 833			printk(KERN_WARNING
 834			       "Default boot params at physical 0x%08lx out of reach\n",
 835			       mdesc->boot_params);
 836		} else
 837#endif
 838		{
 839			tags = phys_to_virt(mdesc->boot_params);
 840		}
 841	}
 842
 843#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 844	/*
 845	 * If we have the old style parameters, convert them to
 846	 * a tag list.
 847	 */
 848	if (tags->hdr.tag != ATAG_CORE)
 849		convert_to_tag_list(tags);
 850#endif
 851
 852	if (tags->hdr.tag != ATAG_CORE) {
 853#if defined(CONFIG_OF)
 854		/*
 855		 * If CONFIG_OF is set, then assume this is a reasonably
 856		 * modern system that should pass boot parameters
 857		 */
 858		early_print("Warning: Neither atags nor dtb found\n");
 859#endif
 860		tags = (struct tag *)&init_tags;
 861	}
 862
 863	if (mdesc->fixup)
 864		mdesc->fixup(mdesc, tags, &from, &meminfo);
 865
 866	if (tags->hdr.tag == ATAG_CORE) {
 867		if (meminfo.nr_banks != 0)
 868			squash_mem_tags(tags);
 869		save_atags(tags);
 870		parse_tags(tags);
 871	}
 872
 873	/* parse_early_param needs a boot_command_line */
 874	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 875
 876	return mdesc;
 877}
 878
 879
 880void __init setup_arch(char **cmdline_p)
 881{
 882	struct machine_desc *mdesc;
 883
 884	unwind_init();
 885
 886	setup_processor();
 887	mdesc = setup_machine_fdt(__atags_pointer);
 888	if (!mdesc)
 889		mdesc = setup_machine_tags(machine_arch_type);
 890	machine_desc = mdesc;
 891	machine_name = mdesc->name;
 
 892
 893	if (mdesc->soft_reboot)
 894		reboot_setup("s");
 895
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code   = (unsigned long) _etext;
 898	init_mm.end_data   = (unsigned long) _edata;
 899	init_mm.brk	   = (unsigned long) _end;
 900
 901	/* populate cmd_line too for later use, preserving boot_command_line */
 902	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 903	*cmdline_p = cmd_line;
 904
 
 
 
 905	parse_early_param();
 906
 
 
 
 
 
 907	sanity_check_meminfo();
 908	arm_memblock_init(&meminfo, mdesc);
 
 
 909
 910	paging_init(mdesc);
 911	request_standard_resources(mdesc);
 912
 
 
 
 913	unflatten_device_tree();
 914
 
 
 
 915#ifdef CONFIG_SMP
 916	if (is_smp())
 
 
 
 
 
 
 917		smp_init_cpus();
 
 
 918#endif
 
 
 
 
 919	reserve_crashkernel();
 920
 921	tcm_init();
 922
 923#ifdef CONFIG_ZONE_DMA
 924	if (mdesc->dma_zone_size) {
 925		extern unsigned long arm_dma_zone_size;
 926		arm_dma_zone_size = mdesc->dma_zone_size;
 927	}
 928#endif
 929#ifdef CONFIG_MULTI_IRQ_HANDLER
 930	handle_arch_irq = mdesc->handle_irq;
 931#endif
 932
 933#ifdef CONFIG_VT
 934#if defined(CONFIG_VGA_CONSOLE)
 935	conswitchp = &vga_con;
 936#elif defined(CONFIG_DUMMY_CONSOLE)
 937	conswitchp = &dummy_con;
 938#endif
 939#endif
 940	early_trap_init();
 941
 942	if (mdesc->init_early)
 943		mdesc->init_early();
 944}
 945
 946
 947static int __init topology_init(void)
 948{
 949	int cpu;
 950
 951	for_each_possible_cpu(cpu) {
 952		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 953		cpuinfo->cpu.hotpluggable = 1;
 954		register_cpu(&cpuinfo->cpu, cpu);
 955	}
 956
 957	return 0;
 958}
 959subsys_initcall(topology_init);
 960
 961#ifdef CONFIG_HAVE_PROC_CPU
 962static int __init proc_cpu_init(void)
 963{
 964	struct proc_dir_entry *res;
 965
 966	res = proc_mkdir("cpu", NULL);
 967	if (!res)
 968		return -ENOMEM;
 969	return 0;
 970}
 971fs_initcall(proc_cpu_init);
 972#endif
 973
 974static const char *hwcap_str[] = {
 975	"swp",
 976	"half",
 977	"thumb",
 978	"26bit",
 979	"fastmult",
 980	"fpa",
 981	"vfp",
 982	"edsp",
 983	"java",
 984	"iwmmxt",
 985	"crunch",
 986	"thumbee",
 987	"neon",
 988	"vfpv3",
 989	"vfpv3d16",
 990	"tls",
 991	"vfpv4",
 992	"idiva",
 993	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 994	NULL
 995};
 996
 997static int c_show(struct seq_file *m, void *v)
 998{
 999	int i;
 
1000
1001	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1002		   cpu_name, read_cpuid_id() & 15, elf_platform);
1003
1004#if defined(CONFIG_SMP)
1005	for_each_online_cpu(i) {
1006		/*
1007		 * glibc reads /proc/cpuinfo to determine the number of
1008		 * online processors, looking for lines beginning with
1009		 * "processor".  Give glibc what it expects.
1010		 */
1011		seq_printf(m, "processor\t: %d\n", i);
1012		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1013			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1014			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1015	}
1016#else /* CONFIG_SMP */
1017	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1018		   loops_per_jiffy / (500000/HZ),
1019		   (loops_per_jiffy / (5000/HZ)) % 100);
1020#endif
1021
1022	/* dump out the processor features */
1023	seq_puts(m, "Features\t: ");
1024
1025	for (i = 0; hwcap_str[i]; i++)
1026		if (elf_hwcap & (1 << i))
1027			seq_printf(m, "%s ", hwcap_str[i]);
1028
1029	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1030	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1031
1032	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1033		/* pre-ARM7 */
1034		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1035	} else {
1036		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1037			/* ARM7 */
1038			seq_printf(m, "CPU variant\t: 0x%02x\n",
1039				   (read_cpuid_id() >> 16) & 127);
1040		} else {
1041			/* post-ARM7 */
1042			seq_printf(m, "CPU variant\t: 0x%x\n",
1043				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1044		}
1045		seq_printf(m, "CPU part\t: 0x%03x\n",
1046			   (read_cpuid_id() >> 4) & 0xfff);
1047	}
1048	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1049
1050	seq_puts(m, "\n");
1051
1052	seq_printf(m, "Hardware\t: %s\n", machine_name);
1053	seq_printf(m, "Revision\t: %04x\n", system_rev);
1054	seq_printf(m, "Serial\t\t: %08x%08x\n",
1055		   system_serial_high, system_serial_low);
1056
1057	return 0;
1058}
1059
1060static void *c_start(struct seq_file *m, loff_t *pos)
1061{
1062	return *pos < 1 ? (void *)1 : NULL;
1063}
1064
1065static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1066{
1067	++*pos;
1068	return NULL;
1069}
1070
1071static void c_stop(struct seq_file *m, void *v)
1072{
1073}
1074
1075const struct seq_operations cpuinfo_op = {
1076	.start	= c_start,
1077	.next	= c_next,
1078	.stop	= c_stop,
1079	.show	= c_show
1080};