Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/init.h>
  25#include <linux/kexec.h>
  26#include <linux/of_fdt.h>
  27#include <linux/cpu.h>
  28#include <linux/interrupt.h>
  29#include <linux/smp.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
  32#include <linux/bug.h>
  33#include <linux/compiler.h>
  34#include <linux/sort.h>
  35#include <linux/psci.h>
  36
  37#include <asm/unified.h>
  38#include <asm/cp15.h>
  39#include <asm/cpu.h>
  40#include <asm/cputype.h>
  41#include <asm/efi.h>
  42#include <asm/elf.h>
  43#include <asm/early_ioremap.h>
  44#include <asm/fixmap.h>
  45#include <asm/procinfo.h>
  46#include <asm/psci.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/smp_plat.h>
  50#include <asm/mach-types.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cachetype.h>
  53#include <asm/tlbflush.h>
  54#include <asm/xen/hypervisor.h>
  55
  56#include <asm/prom.h>
  57#include <asm/mach/arch.h>
  58#include <asm/mach/irq.h>
  59#include <asm/mach/time.h>
  60#include <asm/system_info.h>
  61#include <asm/system_misc.h>
  62#include <asm/traps.h>
  63#include <asm/unwind.h>
  64#include <asm/memblock.h>
  65#include <asm/virt.h>
  66
  67#include "atags.h"
  68
  69
  70#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  71char fpe_type[8];
  72
  73static int __init fpe_setup(char *line)
  74{
  75	memcpy(fpe_type, line, 8);
  76	return 1;
  77}
  78
  79__setup("fpe=", fpe_setup);
  80#endif
  81
  82extern void init_default_cache_policy(unsigned long);
  83extern void paging_init(const struct machine_desc *desc);
  84extern void early_paging_init(const struct machine_desc *);
  85extern void sanity_check_meminfo(void);
  86extern enum reboot_mode reboot_mode;
  87extern void setup_dma_zone(const struct machine_desc *desc);
  88
  89unsigned int processor_id;
  90EXPORT_SYMBOL(processor_id);
  91unsigned int __machine_arch_type __read_mostly;
  92EXPORT_SYMBOL(__machine_arch_type);
  93unsigned int cacheid __read_mostly;
  94EXPORT_SYMBOL(cacheid);
  95
  96unsigned int __atags_pointer __initdata;
  97
  98unsigned int system_rev;
  99EXPORT_SYMBOL(system_rev);
 100
 101const char *system_serial;
 102EXPORT_SYMBOL(system_serial);
 103
 104unsigned int system_serial_low;
 105EXPORT_SYMBOL(system_serial_low);
 106
 107unsigned int system_serial_high;
 108EXPORT_SYMBOL(system_serial_high);
 109
 110unsigned int elf_hwcap __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap);
 112
 113unsigned int elf_hwcap2 __read_mostly;
 114EXPORT_SYMBOL(elf_hwcap2);
 115
 116
 117#ifdef MULTI_CPU
 118struct processor processor __read_mostly;
 119#endif
 120#ifdef MULTI_TLB
 121struct cpu_tlb_fns cpu_tlb __read_mostly;
 122#endif
 123#ifdef MULTI_USER
 124struct cpu_user_fns cpu_user __read_mostly;
 125#endif
 126#ifdef MULTI_CACHE
 127struct cpu_cache_fns cpu_cache __read_mostly;
 128#endif
 129#ifdef CONFIG_OUTER_CACHE
 130struct outer_cache_fns outer_cache __read_mostly;
 131EXPORT_SYMBOL(outer_cache);
 132#endif
 133
 134/*
 135 * Cached cpu_architecture() result for use by assembler code.
 136 * C code should use the cpu_architecture() function instead of accessing this
 137 * variable directly.
 138 */
 139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 140
 141struct stack {
 142	u32 irq[3];
 143	u32 abt[3];
 144	u32 und[3];
 145	u32 fiq[3];
 146} ____cacheline_aligned;
 147
 148#ifndef CONFIG_CPU_V7M
 149static struct stack stacks[NR_CPUS];
 150#endif
 151
 152char elf_platform[ELF_PLATFORM_SIZE];
 153EXPORT_SYMBOL(elf_platform);
 154
 155static const char *cpu_name;
 156static const char *machine_name;
 157static char __initdata cmd_line[COMMAND_LINE_SIZE];
 158const struct machine_desc *machine_desc __initdata;
 159
 160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 161#define ENDIANNESS ((char)endian_test.l)
 162
 163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 164
 165/*
 166 * Standard memory resources
 167 */
 168static struct resource mem_res[] = {
 169	{
 170		.name = "Video RAM",
 171		.start = 0,
 172		.end = 0,
 173		.flags = IORESOURCE_MEM
 174	},
 175	{
 176		.name = "Kernel code",
 177		.start = 0,
 178		.end = 0,
 179		.flags = IORESOURCE_SYSTEM_RAM
 180	},
 181	{
 182		.name = "Kernel data",
 183		.start = 0,
 184		.end = 0,
 185		.flags = IORESOURCE_SYSTEM_RAM
 186	}
 187};
 188
 189#define video_ram   mem_res[0]
 190#define kernel_code mem_res[1]
 191#define kernel_data mem_res[2]
 192
 193static struct resource io_res[] = {
 194	{
 195		.name = "reserved",
 196		.start = 0x3bc,
 197		.end = 0x3be,
 198		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 199	},
 200	{
 201		.name = "reserved",
 202		.start = 0x378,
 203		.end = 0x37f,
 204		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 205	},
 206	{
 207		.name = "reserved",
 208		.start = 0x278,
 209		.end = 0x27f,
 210		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 211	}
 212};
 213
 214#define lp0 io_res[0]
 215#define lp1 io_res[1]
 216#define lp2 io_res[2]
 217
 218static const char *proc_arch[] = {
 219	"undefined/unknown",
 220	"3",
 221	"4",
 222	"4T",
 223	"5",
 224	"5T",
 225	"5TE",
 226	"5TEJ",
 227	"6TEJ",
 228	"7",
 229	"7M",
 230	"?(12)",
 231	"?(13)",
 232	"?(14)",
 233	"?(15)",
 234	"?(16)",
 235	"?(17)",
 236};
 237
 238#ifdef CONFIG_CPU_V7M
 239static int __get_cpu_architecture(void)
 240{
 241	return CPU_ARCH_ARMv7M;
 242}
 243#else
 244static int __get_cpu_architecture(void)
 245{
 246	int cpu_arch;
 247
 248	if ((read_cpuid_id() & 0x0008f000) == 0) {
 249		cpu_arch = CPU_ARCH_UNKNOWN;
 250	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 251		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 252	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 253		cpu_arch = (read_cpuid_id() >> 16) & 7;
 254		if (cpu_arch)
 255			cpu_arch += CPU_ARCH_ARMv3;
 256	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 257		/* Revised CPUID format. Read the Memory Model Feature
 258		 * Register 0 and check for VMSAv7 or PMSAv7 */
 259		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 260		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 261		    (mmfr0 & 0x000000f0) >= 0x00000030)
 262			cpu_arch = CPU_ARCH_ARMv7;
 263		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 264			 (mmfr0 & 0x000000f0) == 0x00000020)
 265			cpu_arch = CPU_ARCH_ARMv6;
 266		else
 267			cpu_arch = CPU_ARCH_UNKNOWN;
 268	} else
 269		cpu_arch = CPU_ARCH_UNKNOWN;
 270
 271	return cpu_arch;
 272}
 273#endif
 274
 275int __pure cpu_architecture(void)
 276{
 277	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 278
 279	return __cpu_architecture;
 280}
 281
 282static int cpu_has_aliasing_icache(unsigned int arch)
 283{
 284	int aliasing_icache;
 285	unsigned int id_reg, num_sets, line_size;
 286
 287	/* PIPT caches never alias. */
 288	if (icache_is_pipt())
 289		return 0;
 290
 291	/* arch specifies the register format */
 292	switch (arch) {
 293	case CPU_ARCH_ARMv7:
 294		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 295		    : /* No output operands */
 296		    : "r" (1));
 297		isb();
 298		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 299		    : "=r" (id_reg));
 300		line_size = 4 << ((id_reg & 0x7) + 2);
 301		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 302		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 303		break;
 304	case CPU_ARCH_ARMv6:
 305		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 306		break;
 307	default:
 308		/* I-cache aliases will be handled by D-cache aliasing code */
 309		aliasing_icache = 0;
 310	}
 311
 312	return aliasing_icache;
 313}
 314
 315static void __init cacheid_init(void)
 316{
 317	unsigned int arch = cpu_architecture();
 318
 319	if (arch == CPU_ARCH_ARMv7M) {
 320		cacheid = 0;
 321	} else if (arch >= CPU_ARCH_ARMv6) {
 322		unsigned int cachetype = read_cpuid_cachetype();
 323		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453
 454	if (cpu_architecture() < CPU_ARCH_ARMv7)
 455		return;
 456
 457	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 458	if (block >= 2)
 459		elf_hwcap |= HWCAP_IDIVA;
 460	if (block >= 1)
 461		elf_hwcap |= HWCAP_IDIVT;
 462
 463	/* LPAE implies atomic ldrd/strd instructions */
 464	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 465	if (block >= 5)
 466		elf_hwcap |= HWCAP_LPAE;
 467
 468	/* check for supported v8 Crypto instructions */
 469	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 470
 471	block = cpuid_feature_extract_field(isar5, 4);
 472	if (block >= 2)
 473		elf_hwcap2 |= HWCAP2_PMULL;
 474	if (block >= 1)
 475		elf_hwcap2 |= HWCAP2_AES;
 476
 477	block = cpuid_feature_extract_field(isar5, 8);
 478	if (block >= 1)
 479		elf_hwcap2 |= HWCAP2_SHA1;
 480
 481	block = cpuid_feature_extract_field(isar5, 12);
 482	if (block >= 1)
 483		elf_hwcap2 |= HWCAP2_SHA2;
 484
 485	block = cpuid_feature_extract_field(isar5, 16);
 486	if (block >= 1)
 487		elf_hwcap2 |= HWCAP2_CRC32;
 488}
 489
 490static void __init elf_hwcap_fixup(void)
 491{
 492	unsigned id = read_cpuid_id();
 493
 494	/*
 495	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 496	 * see also kuser_get_tls_init.
 497	 */
 498	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 499	    ((id >> 20) & 3) == 0) {
 500		elf_hwcap &= ~HWCAP_TLS;
 501		return;
 502	}
 503
 504	/* Verify if CPUID scheme is implemented */
 505	if ((id & 0x000f0000) != 0x000f0000)
 506		return;
 507
 508	/*
 509	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 510	 * avoid advertising SWP; it may not be atomic with
 511	 * multiprocessing cores.
 512	 */
 513	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 514	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 515	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 516		elf_hwcap &= ~HWCAP_SWP;
 517}
 518
 519/*
 520 * cpu_init - initialise one CPU.
 521 *
 522 * cpu_init sets up the per-CPU stacks.
 523 */
 524void notrace cpu_init(void)
 525{
 526#ifndef CONFIG_CPU_V7M
 527	unsigned int cpu = smp_processor_id();
 528	struct stack *stk = &stacks[cpu];
 529
 530	if (cpu >= NR_CPUS) {
 531		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 532		BUG();
 533	}
 534
 535	/*
 536	 * This only works on resume and secondary cores. For booting on the
 537	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 538	 */
 539	set_my_cpu_offset(per_cpu_offset(cpu));
 540
 541	cpu_proc_init();
 542
 543	/*
 544	 * Define the placement constraint for the inline asm directive below.
 545	 * In Thumb-2, msr with an immediate value is not allowed.
 546	 */
 547#ifdef CONFIG_THUMB2_KERNEL
 548#define PLC	"r"
 549#else
 550#define PLC	"I"
 551#endif
 552
 553	/*
 554	 * setup stacks for re-entrant exception handlers
 555	 */
 556	__asm__ (
 557	"msr	cpsr_c, %1\n\t"
 558	"add	r14, %0, %2\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %3\n\t"
 561	"add	r14, %0, %4\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %5\n\t"
 564	"add	r14, %0, %6\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %7\n\t"
 567	"add	r14, %0, %8\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %9"
 570	    :
 571	    : "r" (stk),
 572	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 573	      "I" (offsetof(struct stack, irq[0])),
 574	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 575	      "I" (offsetof(struct stack, abt[0])),
 576	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 577	      "I" (offsetof(struct stack, und[0])),
 578	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 579	      "I" (offsetof(struct stack, fiq[0])),
 580	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 581	    : "r14");
 582#endif
 583}
 584
 585u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 586
 587void __init smp_setup_processor_id(void)
 588{
 589	int i;
 590	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 591	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 592
 593	cpu_logical_map(0) = cpu;
 594	for (i = 1; i < nr_cpu_ids; ++i)
 595		cpu_logical_map(i) = i == cpu ? 0 : i;
 596
 597	/*
 598	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 599	 * using percpu variable early, for example, lockdep will
 600	 * access percpu variable inside lock_release
 601	 */
 602	set_my_cpu_offset(0);
 603
 604	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 605}
 606
 607struct mpidr_hash mpidr_hash;
 608#ifdef CONFIG_SMP
 609/**
 610 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 611 *			  level in order to build a linear index from an
 612 *			  MPIDR value. Resulting algorithm is a collision
 613 *			  free hash carried out through shifting and ORing
 614 */
 615static void __init smp_build_mpidr_hash(void)
 616{
 617	u32 i, affinity;
 618	u32 fs[3], bits[3], ls, mask = 0;
 619	/*
 620	 * Pre-scan the list of MPIDRS and filter out bits that do
 621	 * not contribute to affinity levels, ie they never toggle.
 622	 */
 623	for_each_possible_cpu(i)
 624		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 625	pr_debug("mask of set bits 0x%x\n", mask);
 626	/*
 627	 * Find and stash the last and first bit set at all affinity levels to
 628	 * check how many bits are required to represent them.
 629	 */
 630	for (i = 0; i < 3; i++) {
 631		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 632		/*
 633		 * Find the MSB bit and LSB bits position
 634		 * to determine how many bits are required
 635		 * to express the affinity level.
 636		 */
 637		ls = fls(affinity);
 638		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 639		bits[i] = ls - fs[i];
 640	}
 641	/*
 642	 * An index can be created from the MPIDR by isolating the
 643	 * significant bits at each affinity level and by shifting
 644	 * them in order to compress the 24 bits values space to a
 645	 * compressed set of values. This is equivalent to hashing
 646	 * the MPIDR through shifting and ORing. It is a collision free
 647	 * hash though not minimal since some levels might contain a number
 648	 * of CPUs that is not an exact power of 2 and their bit
 649	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 650	 */
 651	mpidr_hash.shift_aff[0] = fs[0];
 652	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 653	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 654						(bits[1] + bits[0]);
 655	mpidr_hash.mask = mask;
 656	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 657	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 658				mpidr_hash.shift_aff[0],
 659				mpidr_hash.shift_aff[1],
 660				mpidr_hash.shift_aff[2],
 661				mpidr_hash.mask,
 662				mpidr_hash.bits);
 663	/*
 664	 * 4x is an arbitrary value used to warn on a hash table much bigger
 665	 * than expected on most systems.
 666	 */
 667	if (mpidr_hash_size() > 4 * num_possible_cpus())
 668		pr_warn("Large number of MPIDR hash buckets detected\n");
 669	sync_cache_w(&mpidr_hash);
 670}
 671#endif
 672
 673static void __init setup_processor(void)
 674{
 675	struct proc_info_list *list;
 676
 677	/*
 678	 * locate processor in the list of supported processor
 679	 * types.  The linker builds this table for us from the
 680	 * entries in arch/arm/mm/proc-*.S
 681	 */
 682	list = lookup_processor_type(read_cpuid_id());
 683	if (!list) {
 684		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 685		       read_cpuid_id());
 686		while (1);
 687	}
 688
 689	cpu_name = list->cpu_name;
 690	__cpu_architecture = __get_cpu_architecture();
 691
 692#ifdef MULTI_CPU
 693	processor = *list->proc;
 694#endif
 695#ifdef MULTI_TLB
 696	cpu_tlb = *list->tlb;
 697#endif
 698#ifdef MULTI_USER
 699	cpu_user = *list->user;
 700#endif
 701#ifdef MULTI_CACHE
 702	cpu_cache = *list->cache;
 703#endif
 704
 705	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 706		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 707		proc_arch[cpu_architecture()], get_cr());
 708
 709	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 710		 list->arch_name, ENDIANNESS);
 711	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 712		 list->elf_name, ENDIANNESS);
 713	elf_hwcap = list->elf_hwcap;
 714
 715	cpuid_init_hwcaps();
 716	patch_aeabi_idiv();
 717
 718#ifndef CONFIG_ARM_THUMB
 719	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 720#endif
 721#ifdef CONFIG_MMU
 722	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 723#endif
 724	erratum_a15_798181_init();
 725
 726	elf_hwcap_fixup();
 727
 728	cacheid_init();
 729	cpu_init();
 730}
 731
 732void __init dump_machine_table(void)
 733{
 734	const struct machine_desc *p;
 735
 736	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 737	for_each_machine_desc(p)
 738		early_print("%08x\t%s\n", p->nr, p->name);
 739
 740	early_print("\nPlease check your kernel config and/or bootloader.\n");
 741
 742	while (true)
 743		/* can't use cpu_relax() here as it may require MMU setup */;
 744}
 745
 746int __init arm_add_memory(u64 start, u64 size)
 747{
 748	u64 aligned_start;
 749
 750	/*
 751	 * Ensure that start/size are aligned to a page boundary.
 752	 * Size is rounded down, start is rounded up.
 753	 */
 754	aligned_start = PAGE_ALIGN(start);
 755	if (aligned_start > start + size)
 756		size = 0;
 757	else
 758		size -= aligned_start - start;
 759
 760#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 761	if (aligned_start > ULONG_MAX) {
 762		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 763			(long long)start);
 764		return -EINVAL;
 765	}
 766
 767	if (aligned_start + size > ULONG_MAX) {
 768		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 769			(long long)start);
 770		/*
 771		 * To ensure bank->start + bank->size is representable in
 772		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 773		 * This means we lose a page after masking.
 774		 */
 775		size = ULONG_MAX - aligned_start;
 776	}
 777#endif
 778
 779	if (aligned_start < PHYS_OFFSET) {
 780		if (aligned_start + size <= PHYS_OFFSET) {
 781			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 782				aligned_start, aligned_start + size);
 783			return -EINVAL;
 784		}
 785
 786		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 787			aligned_start, (u64)PHYS_OFFSET);
 788
 789		size -= PHYS_OFFSET - aligned_start;
 790		aligned_start = PHYS_OFFSET;
 791	}
 792
 793	start = aligned_start;
 794	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 795
 796	/*
 797	 * Check whether this memory region has non-zero size or
 798	 * invalid node number.
 799	 */
 800	if (size == 0)
 801		return -EINVAL;
 802
 803	memblock_add(start, size);
 804	return 0;
 805}
 806
 807/*
 808 * Pick out the memory size.  We look for mem=size@start,
 809 * where start and size are "size[KkMm]"
 810 */
 811
 812static int __init early_mem(char *p)
 813{
 814	static int usermem __initdata = 0;
 815	u64 size;
 816	u64 start;
 817	char *endp;
 818
 819	/*
 820	 * If the user specifies memory size, we
 821	 * blow away any automatically generated
 822	 * size.
 823	 */
 824	if (usermem == 0) {
 825		usermem = 1;
 826		memblock_remove(memblock_start_of_DRAM(),
 827			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 828	}
 829
 830	start = PHYS_OFFSET;
 831	size  = memparse(p, &endp);
 832	if (*endp == '@')
 833		start = memparse(endp + 1, NULL);
 834
 835	arm_add_memory(start, size);
 836
 837	return 0;
 838}
 839early_param("mem", early_mem);
 840
 841static void __init request_standard_resources(const struct machine_desc *mdesc)
 842{
 843	struct memblock_region *region;
 844	struct resource *res;
 845
 846	kernel_code.start   = virt_to_phys(_text);
 847	kernel_code.end     = virt_to_phys(_etext - 1);
 848	kernel_data.start   = virt_to_phys(_sdata);
 849	kernel_data.end     = virt_to_phys(_end - 1);
 850
 851	for_each_memblock(memory, region) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852		res = memblock_virt_alloc(sizeof(*res), 0);
 853		res->name  = "System RAM";
 854		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 855		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 856		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 857
 858		request_resource(&iomem_resource, res);
 859
 860		if (kernel_code.start >= res->start &&
 861		    kernel_code.end <= res->end)
 862			request_resource(res, &kernel_code);
 863		if (kernel_data.start >= res->start &&
 864		    kernel_data.end <= res->end)
 865			request_resource(res, &kernel_data);
 866	}
 867
 868	if (mdesc->video_start) {
 869		video_ram.start = mdesc->video_start;
 870		video_ram.end   = mdesc->video_end;
 871		request_resource(&iomem_resource, &video_ram);
 872	}
 873
 874	/*
 875	 * Some machines don't have the possibility of ever
 876	 * possessing lp0, lp1 or lp2
 877	 */
 878	if (mdesc->reserve_lp0)
 879		request_resource(&ioport_resource, &lp0);
 880	if (mdesc->reserve_lp1)
 881		request_resource(&ioport_resource, &lp1);
 882	if (mdesc->reserve_lp2)
 883		request_resource(&ioport_resource, &lp2);
 884}
 885
 886#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 
 887struct screen_info screen_info = {
 888 .orig_video_lines	= 30,
 889 .orig_video_cols	= 80,
 890 .orig_video_mode	= 0,
 891 .orig_video_ega_bx	= 0,
 892 .orig_video_isVGA	= 1,
 893 .orig_video_points	= 8
 894};
 895#endif
 896
 897static int __init customize_machine(void)
 898{
 899	/*
 900	 * customizes platform devices, or adds new ones
 901	 * On DT based machines, we fall back to populating the
 902	 * machine from the device tree, if no callback is provided,
 903	 * otherwise we would always need an init_machine callback.
 904	 */
 905	of_iommu_init();
 906	if (machine_desc->init_machine)
 907		machine_desc->init_machine();
 908#ifdef CONFIG_OF
 909	else
 910		of_platform_populate(NULL, of_default_bus_match_table,
 911					NULL, NULL);
 912#endif
 913	return 0;
 914}
 915arch_initcall(customize_machine);
 916
 917static int __init init_machine_late(void)
 918{
 919	struct device_node *root;
 920	int ret;
 921
 922	if (machine_desc->init_late)
 923		machine_desc->init_late();
 924
 925	root = of_find_node_by_path("/");
 926	if (root) {
 927		ret = of_property_read_string(root, "serial-number",
 928					      &system_serial);
 929		if (ret)
 930			system_serial = NULL;
 931	}
 932
 933	if (!system_serial)
 934		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 935					  system_serial_high,
 936					  system_serial_low);
 937
 938	return 0;
 939}
 940late_initcall(init_machine_late);
 941
 942#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 943static inline unsigned long long get_total_mem(void)
 944{
 945	unsigned long total;
 946
 947	total = max_low_pfn - min_low_pfn;
 948	return total << PAGE_SHIFT;
 949}
 950
 951/**
 952 * reserve_crashkernel() - reserves memory are for crash kernel
 953 *
 954 * This function reserves memory area given in "crashkernel=" kernel command
 955 * line parameter. The memory reserved is used by a dump capture kernel when
 956 * primary kernel is crashing.
 957 */
 958static void __init reserve_crashkernel(void)
 959{
 960	unsigned long long crash_size, crash_base;
 961	unsigned long long total_mem;
 962	int ret;
 963
 964	total_mem = get_total_mem();
 965	ret = parse_crashkernel(boot_command_line, total_mem,
 966				&crash_size, &crash_base);
 967	if (ret)
 968		return;
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970	ret = memblock_reserve(crash_base, crash_size);
 971	if (ret < 0) {
 972		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 973			(unsigned long)crash_base);
 974		return;
 975	}
 976
 977	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 978		(unsigned long)(crash_size >> 20),
 979		(unsigned long)(crash_base >> 20),
 980		(unsigned long)(total_mem >> 20));
 981
 
 982	crashk_res.start = crash_base;
 983	crashk_res.end = crash_base + crash_size - 1;
 984	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985}
 986#else
 987static inline void reserve_crashkernel(void) {}
 988#endif /* CONFIG_KEXEC */
 989
 990void __init hyp_mode_check(void)
 991{
 992#ifdef CONFIG_ARM_VIRT_EXT
 993	sync_boot_mode();
 994
 995	if (is_hyp_mode_available()) {
 996		pr_info("CPU: All CPU(s) started in HYP mode.\n");
 997		pr_info("CPU: Virtualization extensions available.\n");
 998	} else if (is_hyp_mode_mismatched()) {
 999		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000			__boot_cpu_mode & MODE_MASK);
1001		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002	} else
1003		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1004#endif
1005}
1006
1007void __init setup_arch(char **cmdline_p)
1008{
1009	const struct machine_desc *mdesc;
1010
1011	setup_processor();
1012	mdesc = setup_machine_fdt(__atags_pointer);
1013	if (!mdesc)
1014		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
 
 
 
 
 
 
 
 
 
 
1015	machine_desc = mdesc;
1016	machine_name = mdesc->name;
1017	dump_stack_set_arch_desc("%s", mdesc->name);
1018
1019	if (mdesc->reboot_mode != REBOOT_HARD)
1020		reboot_mode = mdesc->reboot_mode;
1021
1022	init_mm.start_code = (unsigned long) _text;
1023	init_mm.end_code   = (unsigned long) _etext;
1024	init_mm.end_data   = (unsigned long) _edata;
1025	init_mm.brk	   = (unsigned long) _end;
1026
1027	/* populate cmd_line too for later use, preserving boot_command_line */
1028	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029	*cmdline_p = cmd_line;
1030
1031	early_fixmap_init();
1032	early_ioremap_init();
1033
1034	parse_early_param();
1035
1036#ifdef CONFIG_MMU
1037	early_paging_init(mdesc);
1038#endif
1039	setup_dma_zone(mdesc);
 
1040	efi_init();
1041	sanity_check_meminfo();
 
 
 
 
1042	arm_memblock_init(mdesc);
 
 
1043
1044	early_ioremap_reset();
1045
1046	paging_init(mdesc);
1047	request_standard_resources(mdesc);
1048
1049	if (mdesc->restart)
1050		arm_pm_restart = mdesc->restart;
1051
1052	unflatten_device_tree();
1053
1054	arm_dt_init_cpu_maps();
1055	psci_dt_init();
1056	xen_early_init();
1057#ifdef CONFIG_SMP
1058	if (is_smp()) {
1059		if (!mdesc->smp_init || !mdesc->smp_init()) {
1060			if (psci_smp_available())
1061				smp_set_ops(&psci_smp_ops);
1062			else if (mdesc->smp)
1063				smp_set_ops(mdesc->smp);
1064		}
1065		smp_init_cpus();
1066		smp_build_mpidr_hash();
1067	}
1068#endif
1069
1070	if (!is_smp())
1071		hyp_mode_check();
1072
1073	reserve_crashkernel();
1074
1075#ifdef CONFIG_MULTI_IRQ_HANDLER
1076	handle_arch_irq = mdesc->handle_irq;
1077#endif
1078
1079#ifdef CONFIG_VT
1080#if defined(CONFIG_VGA_CONSOLE)
1081	conswitchp = &vga_con;
1082#elif defined(CONFIG_DUMMY_CONSOLE)
1083	conswitchp = &dummy_con;
1084#endif
1085#endif
1086
1087	if (mdesc->init_early)
1088		mdesc->init_early();
1089}
1090
1091
1092static int __init topology_init(void)
1093{
1094	int cpu;
1095
1096	for_each_possible_cpu(cpu) {
1097		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099		register_cpu(&cpuinfo->cpu, cpu);
1100	}
1101
1102	return 0;
1103}
1104subsys_initcall(topology_init);
1105
1106#ifdef CONFIG_HAVE_PROC_CPU
1107static int __init proc_cpu_init(void)
1108{
1109	struct proc_dir_entry *res;
1110
1111	res = proc_mkdir("cpu", NULL);
1112	if (!res)
1113		return -ENOMEM;
1114	return 0;
1115}
1116fs_initcall(proc_cpu_init);
1117#endif
1118
1119static const char *hwcap_str[] = {
1120	"swp",
1121	"half",
1122	"thumb",
1123	"26bit",
1124	"fastmult",
1125	"fpa",
1126	"vfp",
1127	"edsp",
1128	"java",
1129	"iwmmxt",
1130	"crunch",
1131	"thumbee",
1132	"neon",
1133	"vfpv3",
1134	"vfpv3d16",
1135	"tls",
1136	"vfpv4",
1137	"idiva",
1138	"idivt",
1139	"vfpd32",
1140	"lpae",
1141	"evtstrm",
1142	NULL
1143};
1144
1145static const char *hwcap2_str[] = {
1146	"aes",
1147	"pmull",
1148	"sha1",
1149	"sha2",
1150	"crc32",
1151	NULL
1152};
1153
1154static int c_show(struct seq_file *m, void *v)
1155{
1156	int i, j;
1157	u32 cpuid;
1158
1159	for_each_online_cpu(i) {
1160		/*
1161		 * glibc reads /proc/cpuinfo to determine the number of
1162		 * online processors, looking for lines beginning with
1163		 * "processor".  Give glibc what it expects.
1164		 */
1165		seq_printf(m, "processor\t: %d\n", i);
1166		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168			   cpu_name, cpuid & 15, elf_platform);
1169
1170#if defined(CONFIG_SMP)
1171		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174#else
1175		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176			   loops_per_jiffy / (500000/HZ),
1177			   (loops_per_jiffy / (5000/HZ)) % 100);
1178#endif
1179		/* dump out the processor features */
1180		seq_puts(m, "Features\t: ");
1181
1182		for (j = 0; hwcap_str[j]; j++)
1183			if (elf_hwcap & (1 << j))
1184				seq_printf(m, "%s ", hwcap_str[j]);
1185
1186		for (j = 0; hwcap2_str[j]; j++)
1187			if (elf_hwcap2 & (1 << j))
1188				seq_printf(m, "%s ", hwcap2_str[j]);
1189
1190		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191		seq_printf(m, "CPU architecture: %s\n",
1192			   proc_arch[cpu_architecture()]);
1193
1194		if ((cpuid & 0x0008f000) == 0x00000000) {
1195			/* pre-ARM7 */
1196			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1197		} else {
1198			if ((cpuid & 0x0008f000) == 0x00007000) {
1199				/* ARM7 */
1200				seq_printf(m, "CPU variant\t: 0x%02x\n",
1201					   (cpuid >> 16) & 127);
1202			} else {
1203				/* post-ARM7 */
1204				seq_printf(m, "CPU variant\t: 0x%x\n",
1205					   (cpuid >> 20) & 15);
1206			}
1207			seq_printf(m, "CPU part\t: 0x%03x\n",
1208				   (cpuid >> 4) & 0xfff);
1209		}
1210		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1211	}
1212
1213	seq_printf(m, "Hardware\t: %s\n", machine_name);
1214	seq_printf(m, "Revision\t: %04x\n", system_rev);
1215	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1216
1217	return 0;
1218}
1219
1220static void *c_start(struct seq_file *m, loff_t *pos)
1221{
1222	return *pos < 1 ? (void *)1 : NULL;
1223}
1224
1225static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226{
1227	++*pos;
1228	return NULL;
1229}
1230
1231static void c_stop(struct seq_file *m, void *v)
1232{
1233}
1234
1235const struct seq_operations cpuinfo_op = {
1236	.start	= c_start,
1237	.next	= c_next,
1238	.stop	= c_stop,
1239	.show	= c_show
1240};
v4.17
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
 
  22#include <linux/of_platform.h>
  23#include <linux/init.h>
  24#include <linux/kexec.h>
  25#include <linux/of_fdt.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34#include <linux/psci.h>
  35
  36#include <asm/unified.h>
  37#include <asm/cp15.h>
  38#include <asm/cpu.h>
  39#include <asm/cputype.h>
  40#include <asm/efi.h>
  41#include <asm/elf.h>
  42#include <asm/early_ioremap.h>
  43#include <asm/fixmap.h>
  44#include <asm/procinfo.h>
  45#include <asm/psci.h>
  46#include <asm/sections.h>
  47#include <asm/setup.h>
  48#include <asm/smp_plat.h>
  49#include <asm/mach-types.h>
  50#include <asm/cacheflush.h>
  51#include <asm/cachetype.h>
  52#include <asm/tlbflush.h>
  53#include <asm/xen/hypervisor.h>
  54
  55#include <asm/prom.h>
  56#include <asm/mach/arch.h>
  57#include <asm/mach/irq.h>
  58#include <asm/mach/time.h>
  59#include <asm/system_info.h>
  60#include <asm/system_misc.h>
  61#include <asm/traps.h>
  62#include <asm/unwind.h>
  63#include <asm/memblock.h>
  64#include <asm/virt.h>
  65
  66#include "atags.h"
  67
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void init_default_cache_policy(unsigned long);
  82extern void paging_init(const struct machine_desc *desc);
  83extern void early_mm_init(const struct machine_desc *);
  84extern void adjust_lowmem_bounds(void);
  85extern enum reboot_mode reboot_mode;
  86extern void setup_dma_zone(const struct machine_desc *desc);
  87
  88unsigned int processor_id;
  89EXPORT_SYMBOL(processor_id);
  90unsigned int __machine_arch_type __read_mostly;
  91EXPORT_SYMBOL(__machine_arch_type);
  92unsigned int cacheid __read_mostly;
  93EXPORT_SYMBOL(cacheid);
  94
  95unsigned int __atags_pointer __initdata;
  96
  97unsigned int system_rev;
  98EXPORT_SYMBOL(system_rev);
  99
 100const char *system_serial;
 101EXPORT_SYMBOL(system_serial);
 102
 103unsigned int system_serial_low;
 104EXPORT_SYMBOL(system_serial_low);
 105
 106unsigned int system_serial_high;
 107EXPORT_SYMBOL(system_serial_high);
 108
 109unsigned int elf_hwcap __read_mostly;
 110EXPORT_SYMBOL(elf_hwcap);
 111
 112unsigned int elf_hwcap2 __read_mostly;
 113EXPORT_SYMBOL(elf_hwcap2);
 114
 115
 116#ifdef MULTI_CPU
 117struct processor processor __ro_after_init;
 118#endif
 119#ifdef MULTI_TLB
 120struct cpu_tlb_fns cpu_tlb __ro_after_init;
 121#endif
 122#ifdef MULTI_USER
 123struct cpu_user_fns cpu_user __ro_after_init;
 124#endif
 125#ifdef MULTI_CACHE
 126struct cpu_cache_fns cpu_cache __ro_after_init;
 127#endif
 128#ifdef CONFIG_OUTER_CACHE
 129struct outer_cache_fns outer_cache __ro_after_init;
 130EXPORT_SYMBOL(outer_cache);
 131#endif
 132
 133/*
 134 * Cached cpu_architecture() result for use by assembler code.
 135 * C code should use the cpu_architecture() function instead of accessing this
 136 * variable directly.
 137 */
 138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 139
 140struct stack {
 141	u32 irq[3];
 142	u32 abt[3];
 143	u32 und[3];
 144	u32 fiq[3];
 145} ____cacheline_aligned;
 146
 147#ifndef CONFIG_CPU_V7M
 148static struct stack stacks[NR_CPUS];
 149#endif
 150
 151char elf_platform[ELF_PLATFORM_SIZE];
 152EXPORT_SYMBOL(elf_platform);
 153
 154static const char *cpu_name;
 155static const char *machine_name;
 156static char __initdata cmd_line[COMMAND_LINE_SIZE];
 157const struct machine_desc *machine_desc __initdata;
 158
 159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 160#define ENDIANNESS ((char)endian_test.l)
 161
 162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 163
 164/*
 165 * Standard memory resources
 166 */
 167static struct resource mem_res[] = {
 168	{
 169		.name = "Video RAM",
 170		.start = 0,
 171		.end = 0,
 172		.flags = IORESOURCE_MEM
 173	},
 174	{
 175		.name = "Kernel code",
 176		.start = 0,
 177		.end = 0,
 178		.flags = IORESOURCE_SYSTEM_RAM
 179	},
 180	{
 181		.name = "Kernel data",
 182		.start = 0,
 183		.end = 0,
 184		.flags = IORESOURCE_SYSTEM_RAM
 185	}
 186};
 187
 188#define video_ram   mem_res[0]
 189#define kernel_code mem_res[1]
 190#define kernel_data mem_res[2]
 191
 192static struct resource io_res[] = {
 193	{
 194		.name = "reserved",
 195		.start = 0x3bc,
 196		.end = 0x3be,
 197		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 198	},
 199	{
 200		.name = "reserved",
 201		.start = 0x378,
 202		.end = 0x37f,
 203		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 204	},
 205	{
 206		.name = "reserved",
 207		.start = 0x278,
 208		.end = 0x27f,
 209		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 210	}
 211};
 212
 213#define lp0 io_res[0]
 214#define lp1 io_res[1]
 215#define lp2 io_res[2]
 216
 217static const char *proc_arch[] = {
 218	"undefined/unknown",
 219	"3",
 220	"4",
 221	"4T",
 222	"5",
 223	"5T",
 224	"5TE",
 225	"5TEJ",
 226	"6TEJ",
 227	"7",
 228	"7M",
 229	"?(12)",
 230	"?(13)",
 231	"?(14)",
 232	"?(15)",
 233	"?(16)",
 234	"?(17)",
 235};
 236
 237#ifdef CONFIG_CPU_V7M
 238static int __get_cpu_architecture(void)
 239{
 240	return CPU_ARCH_ARMv7M;
 241}
 242#else
 243static int __get_cpu_architecture(void)
 244{
 245	int cpu_arch;
 246
 247	if ((read_cpuid_id() & 0x0008f000) == 0) {
 248		cpu_arch = CPU_ARCH_UNKNOWN;
 249	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 250		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 252		cpu_arch = (read_cpuid_id() >> 16) & 7;
 253		if (cpu_arch)
 254			cpu_arch += CPU_ARCH_ARMv3;
 255	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 256		/* Revised CPUID format. Read the Memory Model Feature
 257		 * Register 0 and check for VMSAv7 or PMSAv7 */
 258		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 259		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 260		    (mmfr0 & 0x000000f0) >= 0x00000030)
 261			cpu_arch = CPU_ARCH_ARMv7;
 262		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 263			 (mmfr0 & 0x000000f0) == 0x00000020)
 264			cpu_arch = CPU_ARCH_ARMv6;
 265		else
 266			cpu_arch = CPU_ARCH_UNKNOWN;
 267	} else
 268		cpu_arch = CPU_ARCH_UNKNOWN;
 269
 270	return cpu_arch;
 271}
 272#endif
 273
 274int __pure cpu_architecture(void)
 275{
 276	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 277
 278	return __cpu_architecture;
 279}
 280
 281static int cpu_has_aliasing_icache(unsigned int arch)
 282{
 283	int aliasing_icache;
 284	unsigned int id_reg, num_sets, line_size;
 285
 286	/* PIPT caches never alias. */
 287	if (icache_is_pipt())
 288		return 0;
 289
 290	/* arch specifies the register format */
 291	switch (arch) {
 292	case CPU_ARCH_ARMv7:
 293		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 294		isb();
 295		id_reg = read_ccsidr();
 
 296		line_size = 4 << ((id_reg & 0x7) + 2);
 297		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 298		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 299		break;
 300	case CPU_ARCH_ARMv6:
 301		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 302		break;
 303	default:
 304		/* I-cache aliases will be handled by D-cache aliasing code */
 305		aliasing_icache = 0;
 306	}
 307
 308	return aliasing_icache;
 309}
 310
 311static void __init cacheid_init(void)
 312{
 313	unsigned int arch = cpu_architecture();
 314
 315	if (arch >= CPU_ARCH_ARMv6) {
 
 
 316		unsigned int cachetype = read_cpuid_cachetype();
 317
 318		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 319			cacheid = 0;
 320		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 321			/* ARMv7 register format */
 322			arch = CPU_ARCH_ARMv7;
 323			cacheid = CACHEID_VIPT_NONALIASING;
 324			switch (cachetype & (3 << 14)) {
 325			case (1 << 14):
 326				cacheid |= CACHEID_ASID_TAGGED;
 327				break;
 328			case (3 << 14):
 329				cacheid |= CACHEID_PIPT;
 330				break;
 331			}
 332		} else {
 333			arch = CPU_ARCH_ARMv6;
 334			if (cachetype & (1 << 23))
 335				cacheid = CACHEID_VIPT_ALIASING;
 336			else
 337				cacheid = CACHEID_VIPT_NONALIASING;
 338		}
 339		if (cpu_has_aliasing_icache(arch))
 340			cacheid |= CACHEID_VIPT_I_ALIASING;
 341	} else {
 342		cacheid = CACHEID_VIVT;
 343	}
 344
 345	pr_info("CPU: %s data cache, %s instruction cache\n",
 346		cache_is_vivt() ? "VIVT" :
 347		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 349		cache_is_vivt() ? "VIVT" :
 350		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 351		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 352		icache_is_pipt() ? "PIPT" :
 353		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 354}
 355
 356/*
 357 * These functions re-use the assembly code in head.S, which
 358 * already provide the required functionality.
 359 */
 360extern struct proc_info_list *lookup_processor_type(unsigned int);
 361
 362void __init early_print(const char *str, ...)
 363{
 364	extern void printascii(const char *);
 365	char buf[256];
 366	va_list ap;
 367
 368	va_start(ap, str);
 369	vsnprintf(buf, sizeof(buf), str, ap);
 370	va_end(ap);
 371
 372#ifdef CONFIG_DEBUG_LL
 373	printascii(buf);
 374#endif
 375	printk("%s", buf);
 376}
 377
 378#ifdef CONFIG_ARM_PATCH_IDIV
 379
 380static inline u32 __attribute_const__ sdiv_instruction(void)
 381{
 382	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 383		/* "sdiv r0, r0, r1" */
 384		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 385		return __opcode_to_mem_thumb32(insn);
 386	}
 387
 388	/* "sdiv r0, r0, r1" */
 389	return __opcode_to_mem_arm(0xe710f110);
 390}
 391
 392static inline u32 __attribute_const__ udiv_instruction(void)
 393{
 394	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 395		/* "udiv r0, r0, r1" */
 396		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 397		return __opcode_to_mem_thumb32(insn);
 398	}
 399
 400	/* "udiv r0, r0, r1" */
 401	return __opcode_to_mem_arm(0xe730f110);
 402}
 403
 404static inline u32 __attribute_const__ bx_lr_instruction(void)
 405{
 406	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 407		/* "bx lr; nop" */
 408		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 409		return __opcode_to_mem_thumb32(insn);
 410	}
 411
 412	/* "bx lr" */
 413	return __opcode_to_mem_arm(0xe12fff1e);
 414}
 415
 416static void __init patch_aeabi_idiv(void)
 417{
 418	extern void __aeabi_uidiv(void);
 419	extern void __aeabi_idiv(void);
 420	uintptr_t fn_addr;
 421	unsigned int mask;
 422
 423	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 424	if (!(elf_hwcap & mask))
 425		return;
 426
 427	pr_info("CPU: div instructions available: patching division code\n");
 428
 429	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 430	asm ("" : "+g" (fn_addr));
 431	((u32 *)fn_addr)[0] = udiv_instruction();
 432	((u32 *)fn_addr)[1] = bx_lr_instruction();
 433	flush_icache_range(fn_addr, fn_addr + 8);
 434
 435	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 436	asm ("" : "+g" (fn_addr));
 437	((u32 *)fn_addr)[0] = sdiv_instruction();
 438	((u32 *)fn_addr)[1] = bx_lr_instruction();
 439	flush_icache_range(fn_addr, fn_addr + 8);
 440}
 441
 442#else
 443static inline void patch_aeabi_idiv(void) { }
 444#endif
 445
 446static void __init cpuid_init_hwcaps(void)
 447{
 448	int block;
 449	u32 isar5;
 450
 451	if (cpu_architecture() < CPU_ARCH_ARMv7)
 452		return;
 453
 454	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 455	if (block >= 2)
 456		elf_hwcap |= HWCAP_IDIVA;
 457	if (block >= 1)
 458		elf_hwcap |= HWCAP_IDIVT;
 459
 460	/* LPAE implies atomic ldrd/strd instructions */
 461	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 462	if (block >= 5)
 463		elf_hwcap |= HWCAP_LPAE;
 464
 465	/* check for supported v8 Crypto instructions */
 466	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 467
 468	block = cpuid_feature_extract_field(isar5, 4);
 469	if (block >= 2)
 470		elf_hwcap2 |= HWCAP2_PMULL;
 471	if (block >= 1)
 472		elf_hwcap2 |= HWCAP2_AES;
 473
 474	block = cpuid_feature_extract_field(isar5, 8);
 475	if (block >= 1)
 476		elf_hwcap2 |= HWCAP2_SHA1;
 477
 478	block = cpuid_feature_extract_field(isar5, 12);
 479	if (block >= 1)
 480		elf_hwcap2 |= HWCAP2_SHA2;
 481
 482	block = cpuid_feature_extract_field(isar5, 16);
 483	if (block >= 1)
 484		elf_hwcap2 |= HWCAP2_CRC32;
 485}
 486
 487static void __init elf_hwcap_fixup(void)
 488{
 489	unsigned id = read_cpuid_id();
 490
 491	/*
 492	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 493	 * see also kuser_get_tls_init.
 494	 */
 495	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 496	    ((id >> 20) & 3) == 0) {
 497		elf_hwcap &= ~HWCAP_TLS;
 498		return;
 499	}
 500
 501	/* Verify if CPUID scheme is implemented */
 502	if ((id & 0x000f0000) != 0x000f0000)
 503		return;
 504
 505	/*
 506	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 507	 * avoid advertising SWP; it may not be atomic with
 508	 * multiprocessing cores.
 509	 */
 510	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 511	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 512	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 513		elf_hwcap &= ~HWCAP_SWP;
 514}
 515
 516/*
 517 * cpu_init - initialise one CPU.
 518 *
 519 * cpu_init sets up the per-CPU stacks.
 520 */
 521void notrace cpu_init(void)
 522{
 523#ifndef CONFIG_CPU_V7M
 524	unsigned int cpu = smp_processor_id();
 525	struct stack *stk = &stacks[cpu];
 526
 527	if (cpu >= NR_CPUS) {
 528		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 529		BUG();
 530	}
 531
 532	/*
 533	 * This only works on resume and secondary cores. For booting on the
 534	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 535	 */
 536	set_my_cpu_offset(per_cpu_offset(cpu));
 537
 538	cpu_proc_init();
 539
 540	/*
 541	 * Define the placement constraint for the inline asm directive below.
 542	 * In Thumb-2, msr with an immediate value is not allowed.
 543	 */
 544#ifdef CONFIG_THUMB2_KERNEL
 545#define PLC	"r"
 546#else
 547#define PLC	"I"
 548#endif
 549
 550	/*
 551	 * setup stacks for re-entrant exception handlers
 552	 */
 553	__asm__ (
 554	"msr	cpsr_c, %1\n\t"
 555	"add	r14, %0, %2\n\t"
 556	"mov	sp, r14\n\t"
 557	"msr	cpsr_c, %3\n\t"
 558	"add	r14, %0, %4\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %5\n\t"
 561	"add	r14, %0, %6\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %7\n\t"
 564	"add	r14, %0, %8\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %9"
 567	    :
 568	    : "r" (stk),
 569	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 570	      "I" (offsetof(struct stack, irq[0])),
 571	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 572	      "I" (offsetof(struct stack, abt[0])),
 573	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 574	      "I" (offsetof(struct stack, und[0])),
 575	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 576	      "I" (offsetof(struct stack, fiq[0])),
 577	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 578	    : "r14");
 579#endif
 580}
 581
 582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 583
 584void __init smp_setup_processor_id(void)
 585{
 586	int i;
 587	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 588	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 589
 590	cpu_logical_map(0) = cpu;
 591	for (i = 1; i < nr_cpu_ids; ++i)
 592		cpu_logical_map(i) = i == cpu ? 0 : i;
 593
 594	/*
 595	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 596	 * using percpu variable early, for example, lockdep will
 597	 * access percpu variable inside lock_release
 598	 */
 599	set_my_cpu_offset(0);
 600
 601	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 602}
 603
 604struct mpidr_hash mpidr_hash;
 605#ifdef CONFIG_SMP
 606/**
 607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 608 *			  level in order to build a linear index from an
 609 *			  MPIDR value. Resulting algorithm is a collision
 610 *			  free hash carried out through shifting and ORing
 611 */
 612static void __init smp_build_mpidr_hash(void)
 613{
 614	u32 i, affinity;
 615	u32 fs[3], bits[3], ls, mask = 0;
 616	/*
 617	 * Pre-scan the list of MPIDRS and filter out bits that do
 618	 * not contribute to affinity levels, ie they never toggle.
 619	 */
 620	for_each_possible_cpu(i)
 621		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 622	pr_debug("mask of set bits 0x%x\n", mask);
 623	/*
 624	 * Find and stash the last and first bit set at all affinity levels to
 625	 * check how many bits are required to represent them.
 626	 */
 627	for (i = 0; i < 3; i++) {
 628		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 629		/*
 630		 * Find the MSB bit and LSB bits position
 631		 * to determine how many bits are required
 632		 * to express the affinity level.
 633		 */
 634		ls = fls(affinity);
 635		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 636		bits[i] = ls - fs[i];
 637	}
 638	/*
 639	 * An index can be created from the MPIDR by isolating the
 640	 * significant bits at each affinity level and by shifting
 641	 * them in order to compress the 24 bits values space to a
 642	 * compressed set of values. This is equivalent to hashing
 643	 * the MPIDR through shifting and ORing. It is a collision free
 644	 * hash though not minimal since some levels might contain a number
 645	 * of CPUs that is not an exact power of 2 and their bit
 646	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 647	 */
 648	mpidr_hash.shift_aff[0] = fs[0];
 649	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 650	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 651						(bits[1] + bits[0]);
 652	mpidr_hash.mask = mask;
 653	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 654	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 655				mpidr_hash.shift_aff[0],
 656				mpidr_hash.shift_aff[1],
 657				mpidr_hash.shift_aff[2],
 658				mpidr_hash.mask,
 659				mpidr_hash.bits);
 660	/*
 661	 * 4x is an arbitrary value used to warn on a hash table much bigger
 662	 * than expected on most systems.
 663	 */
 664	if (mpidr_hash_size() > 4 * num_possible_cpus())
 665		pr_warn("Large number of MPIDR hash buckets detected\n");
 666	sync_cache_w(&mpidr_hash);
 667}
 668#endif
 669
 670static void __init setup_processor(void)
 671{
 672	struct proc_info_list *list;
 673
 674	/*
 675	 * locate processor in the list of supported processor
 676	 * types.  The linker builds this table for us from the
 677	 * entries in arch/arm/mm/proc-*.S
 678	 */
 679	list = lookup_processor_type(read_cpuid_id());
 680	if (!list) {
 681		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 682		       read_cpuid_id());
 683		while (1);
 684	}
 685
 686	cpu_name = list->cpu_name;
 687	__cpu_architecture = __get_cpu_architecture();
 688
 689#ifdef MULTI_CPU
 690	processor = *list->proc;
 691#endif
 692#ifdef MULTI_TLB
 693	cpu_tlb = *list->tlb;
 694#endif
 695#ifdef MULTI_USER
 696	cpu_user = *list->user;
 697#endif
 698#ifdef MULTI_CACHE
 699	cpu_cache = *list->cache;
 700#endif
 701
 702	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 703		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 704		proc_arch[cpu_architecture()], get_cr());
 705
 706	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 707		 list->arch_name, ENDIANNESS);
 708	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 709		 list->elf_name, ENDIANNESS);
 710	elf_hwcap = list->elf_hwcap;
 711
 712	cpuid_init_hwcaps();
 713	patch_aeabi_idiv();
 714
 715#ifndef CONFIG_ARM_THUMB
 716	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 717#endif
 718#ifdef CONFIG_MMU
 719	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 720#endif
 721	erratum_a15_798181_init();
 722
 723	elf_hwcap_fixup();
 724
 725	cacheid_init();
 726	cpu_init();
 727}
 728
 729void __init dump_machine_table(void)
 730{
 731	const struct machine_desc *p;
 732
 733	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 734	for_each_machine_desc(p)
 735		early_print("%08x\t%s\n", p->nr, p->name);
 736
 737	early_print("\nPlease check your kernel config and/or bootloader.\n");
 738
 739	while (true)
 740		/* can't use cpu_relax() here as it may require MMU setup */;
 741}
 742
 743int __init arm_add_memory(u64 start, u64 size)
 744{
 745	u64 aligned_start;
 746
 747	/*
 748	 * Ensure that start/size are aligned to a page boundary.
 749	 * Size is rounded down, start is rounded up.
 750	 */
 751	aligned_start = PAGE_ALIGN(start);
 752	if (aligned_start > start + size)
 753		size = 0;
 754	else
 755		size -= aligned_start - start;
 756
 757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 758	if (aligned_start > ULONG_MAX) {
 759		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 760			(long long)start);
 761		return -EINVAL;
 762	}
 763
 764	if (aligned_start + size > ULONG_MAX) {
 765		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 766			(long long)start);
 767		/*
 768		 * To ensure bank->start + bank->size is representable in
 769		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 770		 * This means we lose a page after masking.
 771		 */
 772		size = ULONG_MAX - aligned_start;
 773	}
 774#endif
 775
 776	if (aligned_start < PHYS_OFFSET) {
 777		if (aligned_start + size <= PHYS_OFFSET) {
 778			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 779				aligned_start, aligned_start + size);
 780			return -EINVAL;
 781		}
 782
 783		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 784			aligned_start, (u64)PHYS_OFFSET);
 785
 786		size -= PHYS_OFFSET - aligned_start;
 787		aligned_start = PHYS_OFFSET;
 788	}
 789
 790	start = aligned_start;
 791	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 792
 793	/*
 794	 * Check whether this memory region has non-zero size or
 795	 * invalid node number.
 796	 */
 797	if (size == 0)
 798		return -EINVAL;
 799
 800	memblock_add(start, size);
 801	return 0;
 802}
 803
 804/*
 805 * Pick out the memory size.  We look for mem=size@start,
 806 * where start and size are "size[KkMm]"
 807 */
 808
 809static int __init early_mem(char *p)
 810{
 811	static int usermem __initdata = 0;
 812	u64 size;
 813	u64 start;
 814	char *endp;
 815
 816	/*
 817	 * If the user specifies memory size, we
 818	 * blow away any automatically generated
 819	 * size.
 820	 */
 821	if (usermem == 0) {
 822		usermem = 1;
 823		memblock_remove(memblock_start_of_DRAM(),
 824			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 825	}
 826
 827	start = PHYS_OFFSET;
 828	size  = memparse(p, &endp);
 829	if (*endp == '@')
 830		start = memparse(endp + 1, NULL);
 831
 832	arm_add_memory(start, size);
 833
 834	return 0;
 835}
 836early_param("mem", early_mem);
 837
 838static void __init request_standard_resources(const struct machine_desc *mdesc)
 839{
 840	struct memblock_region *region;
 841	struct resource *res;
 842
 843	kernel_code.start   = virt_to_phys(_text);
 844	kernel_code.end     = virt_to_phys(__init_begin - 1);
 845	kernel_data.start   = virt_to_phys(_sdata);
 846	kernel_data.end     = virt_to_phys(_end - 1);
 847
 848	for_each_memblock(memory, region) {
 849		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 850		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 851		unsigned long boot_alias_start;
 852
 853		/*
 854		 * Some systems have a special memory alias which is only
 855		 * used for booting.  We need to advertise this region to
 856		 * kexec-tools so they know where bootable RAM is located.
 857		 */
 858		boot_alias_start = phys_to_idmap(start);
 859		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 860			res = memblock_virt_alloc(sizeof(*res), 0);
 861			res->name = "System RAM (boot alias)";
 862			res->start = boot_alias_start;
 863			res->end = phys_to_idmap(end);
 864			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 865			request_resource(&iomem_resource, res);
 866		}
 867
 868		res = memblock_virt_alloc(sizeof(*res), 0);
 869		res->name  = "System RAM";
 870		res->start = start;
 871		res->end = end;
 872		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 873
 874		request_resource(&iomem_resource, res);
 875
 876		if (kernel_code.start >= res->start &&
 877		    kernel_code.end <= res->end)
 878			request_resource(res, &kernel_code);
 879		if (kernel_data.start >= res->start &&
 880		    kernel_data.end <= res->end)
 881			request_resource(res, &kernel_data);
 882	}
 883
 884	if (mdesc->video_start) {
 885		video_ram.start = mdesc->video_start;
 886		video_ram.end   = mdesc->video_end;
 887		request_resource(&iomem_resource, &video_ram);
 888	}
 889
 890	/*
 891	 * Some machines don't have the possibility of ever
 892	 * possessing lp0, lp1 or lp2
 893	 */
 894	if (mdesc->reserve_lp0)
 895		request_resource(&ioport_resource, &lp0);
 896	if (mdesc->reserve_lp1)
 897		request_resource(&ioport_resource, &lp1);
 898	if (mdesc->reserve_lp2)
 899		request_resource(&ioport_resource, &lp2);
 900}
 901
 902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 903    defined(CONFIG_EFI)
 904struct screen_info screen_info = {
 905 .orig_video_lines	= 30,
 906 .orig_video_cols	= 80,
 907 .orig_video_mode	= 0,
 908 .orig_video_ega_bx	= 0,
 909 .orig_video_isVGA	= 1,
 910 .orig_video_points	= 8
 911};
 912#endif
 913
 914static int __init customize_machine(void)
 915{
 916	/*
 917	 * customizes platform devices, or adds new ones
 918	 * On DT based machines, we fall back to populating the
 919	 * machine from the device tree, if no callback is provided,
 920	 * otherwise we would always need an init_machine callback.
 921	 */
 
 922	if (machine_desc->init_machine)
 923		machine_desc->init_machine();
 924
 
 
 
 
 925	return 0;
 926}
 927arch_initcall(customize_machine);
 928
 929static int __init init_machine_late(void)
 930{
 931	struct device_node *root;
 932	int ret;
 933
 934	if (machine_desc->init_late)
 935		machine_desc->init_late();
 936
 937	root = of_find_node_by_path("/");
 938	if (root) {
 939		ret = of_property_read_string(root, "serial-number",
 940					      &system_serial);
 941		if (ret)
 942			system_serial = NULL;
 943	}
 944
 945	if (!system_serial)
 946		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 947					  system_serial_high,
 948					  system_serial_low);
 949
 950	return 0;
 951}
 952late_initcall(init_machine_late);
 953
 954#ifdef CONFIG_KEXEC
 955/*
 956 * The crash region must be aligned to 128MB to avoid
 957 * zImage relocating below the reserved region.
 958 */
 959#define CRASH_ALIGN	(128 << 20)
 960
 961static inline unsigned long long get_total_mem(void)
 962{
 963	unsigned long total;
 964
 965	total = max_low_pfn - min_low_pfn;
 966	return total << PAGE_SHIFT;
 967}
 968
 969/**
 970 * reserve_crashkernel() - reserves memory are for crash kernel
 971 *
 972 * This function reserves memory area given in "crashkernel=" kernel command
 973 * line parameter. The memory reserved is used by a dump capture kernel when
 974 * primary kernel is crashing.
 975 */
 976static void __init reserve_crashkernel(void)
 977{
 978	unsigned long long crash_size, crash_base;
 979	unsigned long long total_mem;
 980	int ret;
 981
 982	total_mem = get_total_mem();
 983	ret = parse_crashkernel(boot_command_line, total_mem,
 984				&crash_size, &crash_base);
 985	if (ret)
 986		return;
 987
 988	if (crash_base <= 0) {
 989		unsigned long long crash_max = idmap_to_phys((u32)~0);
 990		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
 991		if (crash_max > lowmem_max)
 992			crash_max = lowmem_max;
 993		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
 994						    crash_size, CRASH_ALIGN);
 995		if (!crash_base) {
 996			pr_err("crashkernel reservation failed - No suitable area found.\n");
 997			return;
 998		}
 999	} else {
1000		unsigned long long start;
1001
1002		start = memblock_find_in_range(crash_base,
1003					       crash_base + crash_size,
1004					       crash_size, SECTION_SIZE);
1005		if (start != crash_base) {
1006			pr_err("crashkernel reservation failed - memory is in use.\n");
1007			return;
1008		}
1009	}
1010
1011	ret = memblock_reserve(crash_base, crash_size);
1012	if (ret < 0) {
1013		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1014			(unsigned long)crash_base);
1015		return;
1016	}
1017
1018	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1019		(unsigned long)(crash_size >> 20),
1020		(unsigned long)(crash_base >> 20),
1021		(unsigned long)(total_mem >> 20));
1022
1023	/* The crashk resource must always be located in normal mem */
1024	crashk_res.start = crash_base;
1025	crashk_res.end = crash_base + crash_size - 1;
1026	insert_resource(&iomem_resource, &crashk_res);
1027
1028	if (arm_has_idmap_alias()) {
1029		/*
1030		 * If we have a special RAM alias for use at boot, we
1031		 * need to advertise to kexec tools where the alias is.
1032		 */
1033		static struct resource crashk_boot_res = {
1034			.name = "Crash kernel (boot alias)",
1035			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1036		};
1037
1038		crashk_boot_res.start = phys_to_idmap(crash_base);
1039		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1040		insert_resource(&iomem_resource, &crashk_boot_res);
1041	}
1042}
1043#else
1044static inline void reserve_crashkernel(void) {}
1045#endif /* CONFIG_KEXEC */
1046
1047void __init hyp_mode_check(void)
1048{
1049#ifdef CONFIG_ARM_VIRT_EXT
1050	sync_boot_mode();
1051
1052	if (is_hyp_mode_available()) {
1053		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1054		pr_info("CPU: Virtualization extensions available.\n");
1055	} else if (is_hyp_mode_mismatched()) {
1056		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1057			__boot_cpu_mode & MODE_MASK);
1058		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1059	} else
1060		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1061#endif
1062}
1063
1064void __init setup_arch(char **cmdline_p)
1065{
1066	const struct machine_desc *mdesc;
1067
1068	setup_processor();
1069	mdesc = setup_machine_fdt(__atags_pointer);
1070	if (!mdesc)
1071		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1072	if (!mdesc) {
1073		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1074		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1075			    __atags_pointer);
1076		if (__atags_pointer)
1077			early_print("  r2[]=%*ph\n", 16,
1078				    phys_to_virt(__atags_pointer));
1079		dump_machine_table();
1080	}
1081
1082	machine_desc = mdesc;
1083	machine_name = mdesc->name;
1084	dump_stack_set_arch_desc("%s", mdesc->name);
1085
1086	if (mdesc->reboot_mode != REBOOT_HARD)
1087		reboot_mode = mdesc->reboot_mode;
1088
1089	init_mm.start_code = (unsigned long) _text;
1090	init_mm.end_code   = (unsigned long) _etext;
1091	init_mm.end_data   = (unsigned long) _edata;
1092	init_mm.brk	   = (unsigned long) _end;
1093
1094	/* populate cmd_line too for later use, preserving boot_command_line */
1095	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1096	*cmdline_p = cmd_line;
1097
1098	early_fixmap_init();
1099	early_ioremap_init();
1100
1101	parse_early_param();
1102
1103#ifdef CONFIG_MMU
1104	early_mm_init(mdesc);
1105#endif
1106	setup_dma_zone(mdesc);
1107	xen_early_init();
1108	efi_init();
1109	/*
1110	 * Make sure the calculation for lowmem/highmem is set appropriately
1111	 * before reserving/allocating any mmeory
1112	 */
1113	adjust_lowmem_bounds();
1114	arm_memblock_init(mdesc);
1115	/* Memory may have been removed so recalculate the bounds. */
1116	adjust_lowmem_bounds();
1117
1118	early_ioremap_reset();
1119
1120	paging_init(mdesc);
1121	request_standard_resources(mdesc);
1122
1123	if (mdesc->restart)
1124		arm_pm_restart = mdesc->restart;
1125
1126	unflatten_device_tree();
1127
1128	arm_dt_init_cpu_maps();
1129	psci_dt_init();
 
1130#ifdef CONFIG_SMP
1131	if (is_smp()) {
1132		if (!mdesc->smp_init || !mdesc->smp_init()) {
1133			if (psci_smp_available())
1134				smp_set_ops(&psci_smp_ops);
1135			else if (mdesc->smp)
1136				smp_set_ops(mdesc->smp);
1137		}
1138		smp_init_cpus();
1139		smp_build_mpidr_hash();
1140	}
1141#endif
1142
1143	if (!is_smp())
1144		hyp_mode_check();
1145
1146	reserve_crashkernel();
1147
1148#ifdef CONFIG_MULTI_IRQ_HANDLER
1149	handle_arch_irq = mdesc->handle_irq;
1150#endif
1151
1152#ifdef CONFIG_VT
1153#if defined(CONFIG_VGA_CONSOLE)
1154	conswitchp = &vga_con;
1155#elif defined(CONFIG_DUMMY_CONSOLE)
1156	conswitchp = &dummy_con;
1157#endif
1158#endif
1159
1160	if (mdesc->init_early)
1161		mdesc->init_early();
1162}
1163
1164
1165static int __init topology_init(void)
1166{
1167	int cpu;
1168
1169	for_each_possible_cpu(cpu) {
1170		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1171		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1172		register_cpu(&cpuinfo->cpu, cpu);
1173	}
1174
1175	return 0;
1176}
1177subsys_initcall(topology_init);
1178
1179#ifdef CONFIG_HAVE_PROC_CPU
1180static int __init proc_cpu_init(void)
1181{
1182	struct proc_dir_entry *res;
1183
1184	res = proc_mkdir("cpu", NULL);
1185	if (!res)
1186		return -ENOMEM;
1187	return 0;
1188}
1189fs_initcall(proc_cpu_init);
1190#endif
1191
1192static const char *hwcap_str[] = {
1193	"swp",
1194	"half",
1195	"thumb",
1196	"26bit",
1197	"fastmult",
1198	"fpa",
1199	"vfp",
1200	"edsp",
1201	"java",
1202	"iwmmxt",
1203	"crunch",
1204	"thumbee",
1205	"neon",
1206	"vfpv3",
1207	"vfpv3d16",
1208	"tls",
1209	"vfpv4",
1210	"idiva",
1211	"idivt",
1212	"vfpd32",
1213	"lpae",
1214	"evtstrm",
1215	NULL
1216};
1217
1218static const char *hwcap2_str[] = {
1219	"aes",
1220	"pmull",
1221	"sha1",
1222	"sha2",
1223	"crc32",
1224	NULL
1225};
1226
1227static int c_show(struct seq_file *m, void *v)
1228{
1229	int i, j;
1230	u32 cpuid;
1231
1232	for_each_online_cpu(i) {
1233		/*
1234		 * glibc reads /proc/cpuinfo to determine the number of
1235		 * online processors, looking for lines beginning with
1236		 * "processor".  Give glibc what it expects.
1237		 */
1238		seq_printf(m, "processor\t: %d\n", i);
1239		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1240		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1241			   cpu_name, cpuid & 15, elf_platform);
1242
1243#if defined(CONFIG_SMP)
1244		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1245			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1246			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1247#else
1248		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1249			   loops_per_jiffy / (500000/HZ),
1250			   (loops_per_jiffy / (5000/HZ)) % 100);
1251#endif
1252		/* dump out the processor features */
1253		seq_puts(m, "Features\t: ");
1254
1255		for (j = 0; hwcap_str[j]; j++)
1256			if (elf_hwcap & (1 << j))
1257				seq_printf(m, "%s ", hwcap_str[j]);
1258
1259		for (j = 0; hwcap2_str[j]; j++)
1260			if (elf_hwcap2 & (1 << j))
1261				seq_printf(m, "%s ", hwcap2_str[j]);
1262
1263		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1264		seq_printf(m, "CPU architecture: %s\n",
1265			   proc_arch[cpu_architecture()]);
1266
1267		if ((cpuid & 0x0008f000) == 0x00000000) {
1268			/* pre-ARM7 */
1269			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1270		} else {
1271			if ((cpuid & 0x0008f000) == 0x00007000) {
1272				/* ARM7 */
1273				seq_printf(m, "CPU variant\t: 0x%02x\n",
1274					   (cpuid >> 16) & 127);
1275			} else {
1276				/* post-ARM7 */
1277				seq_printf(m, "CPU variant\t: 0x%x\n",
1278					   (cpuid >> 20) & 15);
1279			}
1280			seq_printf(m, "CPU part\t: 0x%03x\n",
1281				   (cpuid >> 4) & 0xfff);
1282		}
1283		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1284	}
1285
1286	seq_printf(m, "Hardware\t: %s\n", machine_name);
1287	seq_printf(m, "Revision\t: %04x\n", system_rev);
1288	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1289
1290	return 0;
1291}
1292
1293static void *c_start(struct seq_file *m, loff_t *pos)
1294{
1295	return *pos < 1 ? (void *)1 : NULL;
1296}
1297
1298static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1299{
1300	++*pos;
1301	return NULL;
1302}
1303
1304static void c_stop(struct seq_file *m, void *v)
1305{
1306}
1307
1308const struct seq_operations cpuinfo_op = {
1309	.start	= c_start,
1310	.next	= c_next,
1311	.stop	= c_stop,
1312	.show	= c_show
1313};