Loading...
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34#include "drm_atomic.h"
35#include "drm_atomic_helper.h"
36#include "drm_crtc_helper.h"
37#include "linux/clk.h"
38#include "drm_fb_cma_helper.h"
39#include "linux/component.h"
40#include "linux/of_device.h"
41#include "vc4_drv.h"
42#include "vc4_regs.h"
43
44struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Which HVS channel we're using for our CRTC. */
50 int channel;
51
52 struct drm_pending_vblank_event *event;
53};
54
55struct vc4_crtc_state {
56 struct drm_crtc_state base;
57 /* Dlist area for this CRTC configuration. */
58 struct drm_mm_node mm;
59};
60
61static inline struct vc4_crtc *
62to_vc4_crtc(struct drm_crtc *crtc)
63{
64 return (struct vc4_crtc *)crtc;
65}
66
67static inline struct vc4_crtc_state *
68to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
69{
70 return (struct vc4_crtc_state *)crtc_state;
71}
72
73struct vc4_crtc_data {
74 /* Which channel of the HVS this pixelvalve sources from. */
75 int hvs_channel;
76
77 enum vc4_encoder_type encoder0_type;
78 enum vc4_encoder_type encoder1_type;
79};
80
81#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
82#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
83
84#define CRTC_REG(reg) { reg, #reg }
85static const struct {
86 u32 reg;
87 const char *name;
88} crtc_regs[] = {
89 CRTC_REG(PV_CONTROL),
90 CRTC_REG(PV_V_CONTROL),
91 CRTC_REG(PV_VSYNCD_EVEN),
92 CRTC_REG(PV_HORZA),
93 CRTC_REG(PV_HORZB),
94 CRTC_REG(PV_VERTA),
95 CRTC_REG(PV_VERTB),
96 CRTC_REG(PV_VERTA_EVEN),
97 CRTC_REG(PV_VERTB_EVEN),
98 CRTC_REG(PV_INTEN),
99 CRTC_REG(PV_INTSTAT),
100 CRTC_REG(PV_STAT),
101 CRTC_REG(PV_HACT_ACT),
102};
103
104static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105{
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109 DRM_INFO("0x%04x (%s): 0x%08x\n",
110 crtc_regs[i].reg, crtc_regs[i].name,
111 CRTC_READ(crtc_regs[i].reg));
112 }
113}
114
115#ifdef CONFIG_DEBUG_FS
116int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117{
118 struct drm_info_node *node = (struct drm_info_node *)m->private;
119 struct drm_device *dev = node->minor->dev;
120 int crtc_index = (uintptr_t)node->info_ent->data;
121 struct drm_crtc *crtc;
122 struct vc4_crtc *vc4_crtc;
123 int i;
124
125 i = 0;
126 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127 if (i == crtc_index)
128 break;
129 i++;
130 }
131 if (!crtc)
132 return 0;
133 vc4_crtc = to_vc4_crtc(crtc);
134
135 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136 seq_printf(m, "%s (0x%04x): 0x%08x\n",
137 crtc_regs[i].name, crtc_regs[i].reg,
138 CRTC_READ(crtc_regs[i].reg));
139 }
140
141 return 0;
142}
143#endif
144
145static void vc4_crtc_destroy(struct drm_crtc *crtc)
146{
147 drm_crtc_cleanup(crtc);
148}
149
150static u32 vc4_get_fifo_full_level(u32 format)
151{
152 static const u32 fifo_len_bytes = 64;
153 static const u32 hvs_latency_pix = 6;
154
155 switch (format) {
156 case PV_CONTROL_FORMAT_DSIV_16:
157 case PV_CONTROL_FORMAT_DSIC_16:
158 return fifo_len_bytes - 2 * hvs_latency_pix;
159 case PV_CONTROL_FORMAT_DSIV_18:
160 return fifo_len_bytes - 14;
161 case PV_CONTROL_FORMAT_24:
162 case PV_CONTROL_FORMAT_DSIV_24:
163 default:
164 return fifo_len_bytes - 3 * hvs_latency_pix;
165 }
166}
167
168/*
169 * Returns the clock select bit for the connector attached to the
170 * CRTC.
171 */
172static int vc4_get_clock_select(struct drm_crtc *crtc)
173{
174 struct drm_connector *connector;
175
176 drm_for_each_connector(connector, crtc->dev) {
177 if (connector->state->crtc == crtc) {
178 struct drm_encoder *encoder = connector->encoder;
179 struct vc4_encoder *vc4_encoder =
180 to_vc4_encoder(encoder);
181
182 return vc4_encoder->clock_select;
183 }
184 }
185
186 return -1;
187}
188
189static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190{
191 struct drm_device *dev = crtc->dev;
192 struct vc4_dev *vc4 = to_vc4_dev(dev);
193 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194 struct drm_crtc_state *state = crtc->state;
195 struct drm_display_mode *mode = &state->adjusted_mode;
196 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198 u32 format = PV_CONTROL_FORMAT_24;
199 bool debug_dump_regs = false;
200 int clock_select = vc4_get_clock_select(crtc);
201
202 if (debug_dump_regs) {
203 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204 vc4_crtc_dump_regs(vc4_crtc);
205 }
206
207 /* Reset the PV fifo. */
208 CRTC_WRITE(PV_CONTROL, 0);
209 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210 CRTC_WRITE(PV_CONTROL, 0);
211
212 CRTC_WRITE(PV_HORZA,
213 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
214 PV_HORZA_HBP) |
215 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
216 PV_HORZA_HSYNC));
217 CRTC_WRITE(PV_HORZB,
218 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
219 PV_HORZB_HFP) |
220 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
221
222 CRTC_WRITE(PV_VERTA,
223 VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224 PV_VERTA_VBP) |
225 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226 PV_VERTA_VSYNC));
227 CRTC_WRITE(PV_VERTB,
228 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229 PV_VERTB_VFP) |
230 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231
232 if (interlace) {
233 CRTC_WRITE(PV_VERTA_EVEN,
234 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
235 PV_VERTA_VBP) |
236 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
237 PV_VERTA_VSYNC));
238 CRTC_WRITE(PV_VERTB_EVEN,
239 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
240 PV_VERTB_VFP) |
241 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242 }
243
244 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
245
246 CRTC_WRITE(PV_V_CONTROL,
247 PV_VCONTROL_CONTINUOUS |
248 (interlace ? PV_VCONTROL_INTERLACE : 0));
249
250 CRTC_WRITE(PV_CONTROL,
251 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253 PV_CONTROL_FIFO_LEVEL) |
254 PV_CONTROL_CLR_AT_START |
255 PV_CONTROL_TRIGGER_UNDERFLOW |
256 PV_CONTROL_WAIT_HSTART |
257 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
258 PV_CONTROL_FIFO_CLR |
259 PV_CONTROL_EN);
260
261 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262 SCALER_DISPBKGND_AUTOHS |
263 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264
265 if (debug_dump_regs) {
266 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267 vc4_crtc_dump_regs(vc4_crtc);
268 }
269}
270
271static void require_hvs_enabled(struct drm_device *dev)
272{
273 struct vc4_dev *vc4 = to_vc4_dev(dev);
274
275 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276 SCALER_DISPCTRL_ENABLE);
277}
278
279static void vc4_crtc_disable(struct drm_crtc *crtc)
280{
281 struct drm_device *dev = crtc->dev;
282 struct vc4_dev *vc4 = to_vc4_dev(dev);
283 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284 u32 chan = vc4_crtc->channel;
285 int ret;
286 require_hvs_enabled(dev);
287
288 CRTC_WRITE(PV_V_CONTROL,
289 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292
293 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294 SCALER_DISPCTRLX_ENABLE) {
295 HVS_WRITE(SCALER_DISPCTRLX(chan),
296 SCALER_DISPCTRLX_RESET);
297
298 /* While the docs say that reset is self-clearing, it
299 * seems it doesn't actually.
300 */
301 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
302 }
303
304 /* Once we leave, the scaler should be disabled and its fifo empty. */
305
306 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
307
308 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309 SCALER_DISPSTATX_MODE) !=
310 SCALER_DISPSTATX_MODE_DISABLED);
311
312 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314 SCALER_DISPSTATX_EMPTY);
315}
316
317static void vc4_crtc_enable(struct drm_crtc *crtc)
318{
319 struct drm_device *dev = crtc->dev;
320 struct vc4_dev *vc4 = to_vc4_dev(dev);
321 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322 struct drm_crtc_state *state = crtc->state;
323 struct drm_display_mode *mode = &state->adjusted_mode;
324
325 require_hvs_enabled(dev);
326
327 /* Turn on the scaler, which will wait for vstart to start
328 * compositing.
329 */
330 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333 SCALER_DISPCTRLX_ENABLE);
334
335 /* Turn on the pixel valve, which will emit the vstart signal. */
336 CRTC_WRITE(PV_V_CONTROL,
337 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
338}
339
340static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341 struct drm_crtc_state *state)
342{
343 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344 struct drm_device *dev = crtc->dev;
345 struct vc4_dev *vc4 = to_vc4_dev(dev);
346 struct drm_plane *plane;
347 unsigned long flags;
348 u32 dlist_count = 0;
349 int ret;
350
351 /* The pixelvalve can only feed one encoder (and encoders are
352 * 1:1 with connectors.)
353 */
354 if (hweight32(state->connector_mask) > 1)
355 return -EINVAL;
356
357 drm_atomic_crtc_state_for_each_plane(plane, state) {
358 struct drm_plane_state *plane_state =
359 state->state->plane_states[drm_plane_index(plane)];
360
361 /* plane might not have changed, in which case take
362 * current state:
363 */
364 if (!plane_state)
365 plane_state = plane->state;
366
367 dlist_count += vc4_plane_dlist_size(plane_state);
368 }
369
370 dlist_count++; /* Account for SCALER_CTL0_END. */
371
372 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374 dlist_count, 1, 0);
375 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376 if (ret)
377 return ret;
378
379 return 0;
380}
381
382static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383 struct drm_crtc_state *old_state)
384{
385 struct drm_device *dev = crtc->dev;
386 struct vc4_dev *vc4 = to_vc4_dev(dev);
387 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389 struct drm_plane *plane;
390 bool debug_dump_regs = false;
391 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392 u32 __iomem *dlist_next = dlist_start;
393
394 if (debug_dump_regs) {
395 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396 vc4_hvs_dump_state(dev);
397 }
398
399 /* Copy all the active planes' dlist contents to the hardware dlist. */
400 drm_atomic_crtc_for_each_plane(plane, crtc) {
401 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402 }
403
404 writel(SCALER_CTL0_END, dlist_next);
405 dlist_next++;
406
407 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
408
409 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410 vc4_state->mm.start);
411
412 if (debug_dump_regs) {
413 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414 vc4_hvs_dump_state(dev);
415 }
416
417 if (crtc->state->event) {
418 unsigned long flags;
419
420 crtc->state->event->pipe = drm_crtc_index(crtc);
421
422 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
423
424 spin_lock_irqsave(&dev->event_lock, flags);
425 vc4_crtc->event = crtc->state->event;
426 spin_unlock_irqrestore(&dev->event_lock, flags);
427 crtc->state->event = NULL;
428 }
429}
430
431int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432{
433 struct vc4_dev *vc4 = to_vc4_dev(dev);
434 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435
436 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437
438 return 0;
439}
440
441void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442{
443 struct vc4_dev *vc4 = to_vc4_dev(dev);
444 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445
446 CRTC_WRITE(PV_INTEN, 0);
447}
448
449static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450{
451 struct drm_crtc *crtc = &vc4_crtc->base;
452 struct drm_device *dev = crtc->dev;
453 unsigned long flags;
454
455 spin_lock_irqsave(&dev->event_lock, flags);
456 if (vc4_crtc->event) {
457 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458 vc4_crtc->event = NULL;
459 }
460 spin_unlock_irqrestore(&dev->event_lock, flags);
461}
462
463static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464{
465 struct vc4_crtc *vc4_crtc = data;
466 u32 stat = CRTC_READ(PV_INTSTAT);
467 irqreturn_t ret = IRQ_NONE;
468
469 if (stat & PV_INT_VFP_START) {
470 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471 drm_crtc_handle_vblank(&vc4_crtc->base);
472 vc4_crtc_handle_page_flip(vc4_crtc);
473 ret = IRQ_HANDLED;
474 }
475
476 return ret;
477}
478
479struct vc4_async_flip_state {
480 struct drm_crtc *crtc;
481 struct drm_framebuffer *fb;
482 struct drm_pending_vblank_event *event;
483
484 struct vc4_seqno_cb cb;
485};
486
487/* Called when the V3D execution for the BO being flipped to is done, so that
488 * we can actually update the plane's address to point to it.
489 */
490static void
491vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492{
493 struct vc4_async_flip_state *flip_state =
494 container_of(cb, struct vc4_async_flip_state, cb);
495 struct drm_crtc *crtc = flip_state->crtc;
496 struct drm_device *dev = crtc->dev;
497 struct vc4_dev *vc4 = to_vc4_dev(dev);
498 struct drm_plane *plane = crtc->primary;
499
500 vc4_plane_async_set_fb(plane, flip_state->fb);
501 if (flip_state->event) {
502 unsigned long flags;
503
504 spin_lock_irqsave(&dev->event_lock, flags);
505 drm_crtc_send_vblank_event(crtc, flip_state->event);
506 spin_unlock_irqrestore(&dev->event_lock, flags);
507 }
508
509 drm_framebuffer_unreference(flip_state->fb);
510 kfree(flip_state);
511
512 up(&vc4->async_modeset);
513}
514
515/* Implements async (non-vblank-synced) page flips.
516 *
517 * The page flip ioctl needs to return immediately, so we grab the
518 * modeset semaphore on the pipe, and queue the address update for
519 * when V3D is done with the BO being flipped to.
520 */
521static int vc4_async_page_flip(struct drm_crtc *crtc,
522 struct drm_framebuffer *fb,
523 struct drm_pending_vblank_event *event,
524 uint32_t flags)
525{
526 struct drm_device *dev = crtc->dev;
527 struct vc4_dev *vc4 = to_vc4_dev(dev);
528 struct drm_plane *plane = crtc->primary;
529 int ret = 0;
530 struct vc4_async_flip_state *flip_state;
531 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533
534 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535 if (!flip_state)
536 return -ENOMEM;
537
538 drm_framebuffer_reference(fb);
539 flip_state->fb = fb;
540 flip_state->crtc = crtc;
541 flip_state->event = event;
542
543 /* Make sure all other async modesetes have landed. */
544 ret = down_interruptible(&vc4->async_modeset);
545 if (ret) {
546 drm_framebuffer_unreference(fb);
547 kfree(flip_state);
548 return ret;
549 }
550
551 /* Immediately update the plane's legacy fb pointer, so that later
552 * modeset prep sees the state that will be present when the semaphore
553 * is released.
554 */
555 drm_atomic_set_fb_for_plane(plane->state, fb);
556 plane->fb = fb;
557
558 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559 vc4_async_page_flip_complete);
560
561 /* Driver takes ownership of state on successful async commit. */
562 return 0;
563}
564
565static int vc4_page_flip(struct drm_crtc *crtc,
566 struct drm_framebuffer *fb,
567 struct drm_pending_vblank_event *event,
568 uint32_t flags)
569{
570 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571 return vc4_async_page_flip(crtc, fb, event, flags);
572 else
573 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574}
575
576static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577{
578 struct vc4_crtc_state *vc4_state;
579
580 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581 if (!vc4_state)
582 return NULL;
583
584 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585 return &vc4_state->base;
586}
587
588static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589 struct drm_crtc_state *state)
590{
591 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593
594 if (vc4_state->mm.allocated) {
595 unsigned long flags;
596
597 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598 drm_mm_remove_node(&vc4_state->mm);
599 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600
601 }
602
603 __drm_atomic_helper_crtc_destroy_state(crtc, state);
604}
605
606static const struct drm_crtc_funcs vc4_crtc_funcs = {
607 .set_config = drm_atomic_helper_set_config,
608 .destroy = vc4_crtc_destroy,
609 .page_flip = vc4_page_flip,
610 .set_property = NULL,
611 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613 .reset = drm_atomic_helper_crtc_reset,
614 .atomic_duplicate_state = vc4_crtc_duplicate_state,
615 .atomic_destroy_state = vc4_crtc_destroy_state,
616};
617
618static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619 .mode_set_nofb = vc4_crtc_mode_set_nofb,
620 .disable = vc4_crtc_disable,
621 .enable = vc4_crtc_enable,
622 .atomic_check = vc4_crtc_atomic_check,
623 .atomic_flush = vc4_crtc_atomic_flush,
624};
625
626static const struct vc4_crtc_data pv0_data = {
627 .hvs_channel = 0,
628 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
629 .encoder1_type = VC4_ENCODER_TYPE_DPI,
630};
631
632static const struct vc4_crtc_data pv1_data = {
633 .hvs_channel = 2,
634 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
635 .encoder1_type = VC4_ENCODER_TYPE_SMI,
636};
637
638static const struct vc4_crtc_data pv2_data = {
639 .hvs_channel = 1,
640 .encoder0_type = VC4_ENCODER_TYPE_VEC,
641 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
642};
643
644static const struct of_device_id vc4_crtc_dt_match[] = {
645 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
648 {}
649};
650
651static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652 struct drm_crtc *crtc)
653{
654 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
655 struct drm_encoder *encoder;
656
657 drm_for_each_encoder(encoder, drm) {
658 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
659
660 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661 vc4_encoder->clock_select = 0;
662 encoder->possible_crtcs |= drm_crtc_mask(crtc);
663 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664 vc4_encoder->clock_select = 1;
665 encoder->possible_crtcs |= drm_crtc_mask(crtc);
666 }
667 }
668}
669
670static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
671{
672 struct platform_device *pdev = to_platform_device(dev);
673 struct drm_device *drm = dev_get_drvdata(master);
674 struct vc4_dev *vc4 = to_vc4_dev(drm);
675 struct vc4_crtc *vc4_crtc;
676 struct drm_crtc *crtc;
677 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678 const struct of_device_id *match;
679 int ret, i;
680
681 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682 if (!vc4_crtc)
683 return -ENOMEM;
684 crtc = &vc4_crtc->base;
685
686 match = of_match_device(vc4_crtc_dt_match, dev);
687 if (!match)
688 return -ENODEV;
689 vc4_crtc->data = match->data;
690
691 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692 if (IS_ERR(vc4_crtc->regs))
693 return PTR_ERR(vc4_crtc->regs);
694
695 /* For now, we create just the primary and the legacy cursor
696 * planes. We should be able to stack more planes on easily,
697 * but to do that we would need to compute the bandwidth
698 * requirement of the plane configuration, and reject ones
699 * that will take too much.
700 */
701 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702 if (IS_ERR(primary_plane)) {
703 dev_err(dev, "failed to construct primary plane\n");
704 ret = PTR_ERR(primary_plane);
705 goto err;
706 }
707
708 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709 &vc4_crtc_funcs, NULL);
710 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711 primary_plane->crtc = crtc;
712 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
714
715 /* Set up some arbitrary number of planes. We're not limited
716 * by a set number of physical registers, just the space in
717 * the HVS (16k) and how small an plane can be (28 bytes).
718 * However, each plane we set up takes up some memory, and
719 * increases the cost of looping over planes, which atomic
720 * modesetting does quite a bit. As a result, we pick a
721 * modest number of planes to expose, that should hopefully
722 * still cover any sane usecase.
723 */
724 for (i = 0; i < 8; i++) {
725 struct drm_plane *plane =
726 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727
728 if (IS_ERR(plane))
729 continue;
730
731 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
732 }
733
734 /* Set up the legacy cursor after overlay initialization,
735 * since we overlay planes on the CRTC in the order they were
736 * initialized.
737 */
738 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739 if (!IS_ERR(cursor_plane)) {
740 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741 cursor_plane->crtc = crtc;
742 crtc->cursor = cursor_plane;
743 }
744
745 CRTC_WRITE(PV_INTEN, 0);
746 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
749 if (ret)
750 goto err_destroy_planes;
751
752 vc4_set_crtc_possible_masks(drm, crtc);
753
754 platform_set_drvdata(pdev, vc4_crtc);
755
756 return 0;
757
758err_destroy_planes:
759 list_for_each_entry_safe(destroy_plane, temp,
760 &drm->mode_config.plane_list, head) {
761 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762 destroy_plane->funcs->destroy(destroy_plane);
763 }
764err:
765 return ret;
766}
767
768static void vc4_crtc_unbind(struct device *dev, struct device *master,
769 void *data)
770{
771 struct platform_device *pdev = to_platform_device(dev);
772 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773
774 vc4_crtc_destroy(&vc4_crtc->base);
775
776 CRTC_WRITE(PV_INTEN, 0);
777
778 platform_set_drvdata(pdev, NULL);
779}
780
781static const struct component_ops vc4_crtc_ops = {
782 .bind = vc4_crtc_bind,
783 .unbind = vc4_crtc_unbind,
784};
785
786static int vc4_crtc_dev_probe(struct platform_device *pdev)
787{
788 return component_add(&pdev->dev, &vc4_crtc_ops);
789}
790
791static int vc4_crtc_dev_remove(struct platform_device *pdev)
792{
793 component_del(&pdev->dev, &vc4_crtc_ops);
794 return 0;
795}
796
797struct platform_driver vc4_crtc_driver = {
798 .probe = vc4_crtc_dev_probe,
799 .remove = vc4_crtc_dev_remove,
800 .driver = {
801 .name = "vc4_crtc",
802 .of_match_table = vc4_crtc_dt_match,
803 },
804};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35#include <linux/pm_runtime.h>
36
37#include <drm/drm_atomic.h>
38#include <drm/drm_atomic_helper.h>
39#include <drm/drm_atomic_uapi.h>
40#include <drm/drm_fb_dma_helper.h>
41#include <drm/drm_framebuffer.h>
42#include <drm/drm_drv.h>
43#include <drm/drm_print.h>
44#include <drm/drm_probe_helper.h>
45#include <drm/drm_vblank.h>
46
47#include "vc4_drv.h"
48#include "vc4_hdmi.h"
49#include "vc4_regs.h"
50
51#define HVS_FIFO_LATENCY_PIX 6
52
53#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
54#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
55
56static const struct debugfs_reg32 crtc_regs[] = {
57 VC4_REG32(PV_CONTROL),
58 VC4_REG32(PV_V_CONTROL),
59 VC4_REG32(PV_VSYNCD_EVEN),
60 VC4_REG32(PV_HORZA),
61 VC4_REG32(PV_HORZB),
62 VC4_REG32(PV_VERTA),
63 VC4_REG32(PV_VERTB),
64 VC4_REG32(PV_VERTA_EVEN),
65 VC4_REG32(PV_VERTB_EVEN),
66 VC4_REG32(PV_INTEN),
67 VC4_REG32(PV_INTSTAT),
68 VC4_REG32(PV_STAT),
69 VC4_REG32(PV_HACT_ACT),
70};
71
72static unsigned int
73vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
74{
75 struct vc4_hvs *hvs = vc4->hvs;
76 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
77 /* Top/base are supposed to be 4-pixel aligned, but the
78 * Raspberry Pi firmware fills the low bits (which are
79 * presumably ignored).
80 */
81 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
82 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
83
84 return top - base + 4;
85}
86
87static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
88 bool in_vblank_irq,
89 int *vpos, int *hpos,
90 ktime_t *stime, ktime_t *etime,
91 const struct drm_display_mode *mode)
92{
93 struct drm_device *dev = crtc->dev;
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95 struct vc4_hvs *hvs = vc4->hvs;
96 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
97 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
98 unsigned int cob_size;
99 u32 val;
100 int fifo_lines;
101 int vblank_lines;
102 bool ret = false;
103
104 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
105
106 /* Get optional system timestamp before query. */
107 if (stime)
108 *stime = ktime_get();
109
110 /*
111 * Read vertical scanline which is currently composed for our
112 * pixelvalve by the HVS, and also the scaler status.
113 */
114 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
115
116 /* Get optional system timestamp after query. */
117 if (etime)
118 *etime = ktime_get();
119
120 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
121
122 /* Vertical position of hvs composed scanline. */
123 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
124 *hpos = 0;
125
126 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
127 *vpos /= 2;
128
129 /* Use hpos to correct for field offset in interlaced mode. */
130 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
131 *hpos += mode->crtc_htotal / 2;
132 }
133
134 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
135 /* This is the offset we need for translating hvs -> pv scanout pos. */
136 fifo_lines = cob_size / mode->crtc_hdisplay;
137
138 if (fifo_lines > 0)
139 ret = true;
140
141 /* HVS more than fifo_lines into frame for compositing? */
142 if (*vpos > fifo_lines) {
143 /*
144 * We are in active scanout and can get some meaningful results
145 * from HVS. The actual PV scanout can not trail behind more
146 * than fifo_lines as that is the fifo's capacity. Assume that
147 * in active scanout the HVS and PV work in lockstep wrt. HVS
148 * refilling the fifo and PV consuming from the fifo, ie.
149 * whenever the PV consumes and frees up a scanline in the
150 * fifo, the HVS will immediately refill it, therefore
151 * incrementing vpos. Therefore we choose HVS read position -
152 * fifo size in scanlines as a estimate of the real scanout
153 * position of the PV.
154 */
155 *vpos -= fifo_lines + 1;
156
157 return ret;
158 }
159
160 /*
161 * Less: This happens when we are in vblank and the HVS, after getting
162 * the VSTART restart signal from the PV, just started refilling its
163 * fifo with new lines from the top-most lines of the new framebuffers.
164 * The PV does not scan out in vblank, so does not remove lines from
165 * the fifo, so the fifo will be full quickly and the HVS has to pause.
166 * We can't get meaningful readings wrt. scanline position of the PV
167 * and need to make things up in a approximative but consistent way.
168 */
169 vblank_lines = mode->vtotal - mode->vdisplay;
170
171 if (in_vblank_irq) {
172 /*
173 * Assume the irq handler got called close to first
174 * line of vblank, so PV has about a full vblank
175 * scanlines to go, and as a base timestamp use the
176 * one taken at entry into vblank irq handler, so it
177 * is not affected by random delays due to lock
178 * contention on event_lock or vblank_time lock in
179 * the core.
180 */
181 *vpos = -vblank_lines;
182
183 if (stime)
184 *stime = vc4_crtc->t_vblank;
185 if (etime)
186 *etime = vc4_crtc->t_vblank;
187
188 /*
189 * If the HVS fifo is not yet full then we know for certain
190 * we are at the very beginning of vblank, as the hvs just
191 * started refilling, and the stime and etime timestamps
192 * truly correspond to start of vblank.
193 *
194 * Unfortunately there's no way to report this to upper levels
195 * and make it more useful.
196 */
197 } else {
198 /*
199 * No clue where we are inside vblank. Return a vpos of zero,
200 * which will cause calling code to just return the etime
201 * timestamp uncorrected. At least this is no worse than the
202 * standard fallback.
203 */
204 *vpos = 0;
205 }
206
207 return ret;
208}
209
210static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
211{
212 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
213 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
214 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
215 u32 fifo_len_bytes = pv_data->fifo_depth;
216
217 /*
218 * Pixels are pulled from the HVS if the number of bytes is
219 * lower than the FIFO full level.
220 *
221 * The latency of the pixel fetch mechanism is 6 pixels, so we
222 * need to convert those 6 pixels in bytes, depending on the
223 * format, and then subtract that from the length of the FIFO
224 * to make sure we never end up in a situation where the FIFO
225 * is full.
226 */
227 switch (format) {
228 case PV_CONTROL_FORMAT_DSIV_16:
229 case PV_CONTROL_FORMAT_DSIC_16:
230 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
231 case PV_CONTROL_FORMAT_DSIV_18:
232 return fifo_len_bytes - 14;
233 case PV_CONTROL_FORMAT_24:
234 case PV_CONTROL_FORMAT_DSIV_24:
235 default:
236 /*
237 * For some reason, the pixelvalve4 doesn't work with
238 * the usual formula and will only work with 32.
239 */
240 if (crtc_data->hvs_output == 5)
241 return 32;
242
243 /*
244 * It looks like in some situations, we will overflow
245 * the PixelValve FIFO (with the bit 10 of PV stat being
246 * set) and stall the HVS / PV, eventually resulting in
247 * a page flip timeout.
248 *
249 * Displaying the video overlay during a playback with
250 * Kodi on an RPi3 seems to be a great solution with a
251 * failure rate around 50%.
252 *
253 * Removing 1 from the FIFO full level however
254 * seems to completely remove that issue.
255 */
256 if (!vc4->is_vc5)
257 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
258
259 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
260 }
261}
262
263static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
264 u32 format)
265{
266 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
267 u32 ret = 0;
268
269 ret |= VC4_SET_FIELD((level >> 6),
270 PV5_CONTROL_FIFO_LEVEL_HIGH);
271
272 return ret | VC4_SET_FIELD(level & 0x3f,
273 PV_CONTROL_FIFO_LEVEL);
274}
275
276/*
277 * Returns the encoder attached to the CRTC.
278 *
279 * VC4 can only scan out to one encoder at a time, while the DRM core
280 * allows drivers to push pixels to more than one encoder from the
281 * same CRTC.
282 */
283struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
284 struct drm_crtc_state *state)
285{
286 struct drm_encoder *encoder;
287
288 WARN_ON(hweight32(state->encoder_mask) > 1);
289
290 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
291 return encoder;
292
293 return NULL;
294}
295
296static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
297{
298 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299 struct drm_device *dev = crtc->dev;
300 int idx;
301
302 if (!drm_dev_enter(dev, &idx))
303 return;
304
305 /* The PV needs to be disabled before it can be flushed */
306 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
307 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
308
309 drm_dev_exit(idx);
310}
311
312static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
313 struct drm_atomic_state *state)
314{
315 struct drm_device *dev = crtc->dev;
316 struct vc4_dev *vc4 = to_vc4_dev(dev);
317 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
320 struct drm_crtc_state *crtc_state = crtc->state;
321 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
322 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
323 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
324 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
325 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
326 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
327 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
328 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
329 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
330 u8 ppc = pv_data->pixels_per_clock;
331 bool debug_dump_regs = false;
332 int idx;
333
334 if (!drm_dev_enter(dev, &idx))
335 return;
336
337 if (debug_dump_regs) {
338 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
339 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
340 drm_crtc_index(crtc));
341 drm_print_regset32(&p, &vc4_crtc->regset);
342 }
343
344 vc4_crtc_pixelvalve_reset(crtc);
345
346 CRTC_WRITE(PV_HORZA,
347 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
348 PV_HORZA_HBP) |
349 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
350 PV_HORZA_HSYNC));
351
352 CRTC_WRITE(PV_HORZB,
353 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
354 PV_HORZB_HFP) |
355 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
356 PV_HORZB_HACTIVE));
357
358 CRTC_WRITE(PV_VERTA,
359 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
360 interlace,
361 PV_VERTA_VBP) |
362 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
363 PV_VERTA_VSYNC));
364 CRTC_WRITE(PV_VERTB,
365 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
366 PV_VERTB_VFP) |
367 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368
369 if (interlace) {
370 CRTC_WRITE(PV_VERTA_EVEN,
371 VC4_SET_FIELD(mode->crtc_vtotal -
372 mode->crtc_vsync_end,
373 PV_VERTA_VBP) |
374 VC4_SET_FIELD(mode->crtc_vsync_end -
375 mode->crtc_vsync_start,
376 PV_VERTA_VSYNC));
377 CRTC_WRITE(PV_VERTB_EVEN,
378 VC4_SET_FIELD(mode->crtc_vsync_start -
379 mode->crtc_vdisplay,
380 PV_VERTB_VFP) |
381 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
382
383 /* We set up first field even mode for HDMI. VEC's
384 * NTSC mode would want first field odd instead, once
385 * we support it (to do so, set ODD_FIRST and put the
386 * delay in VSYNCD_EVEN instead).
387 */
388 CRTC_WRITE(PV_V_CONTROL,
389 PV_VCONTROL_CONTINUOUS |
390 (is_dsi ? PV_VCONTROL_DSI : 0) |
391 PV_VCONTROL_INTERLACE |
392 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
393 PV_VCONTROL_ODD_DELAY));
394 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
395 } else {
396 CRTC_WRITE(PV_V_CONTROL,
397 PV_VCONTROL_CONTINUOUS |
398 (is_dsi ? PV_VCONTROL_DSI : 0));
399 }
400
401 if (is_dsi)
402 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
403
404 if (vc4->is_vc5)
405 CRTC_WRITE(PV_MUX_CFG,
406 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
407 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
408
409 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
410 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
411 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
413 PV_CONTROL_CLR_AT_START |
414 PV_CONTROL_TRIGGER_UNDERFLOW |
415 PV_CONTROL_WAIT_HSTART |
416 VC4_SET_FIELD(vc4_encoder->clock_select,
417 PV_CONTROL_CLK_SELECT));
418
419 if (debug_dump_regs) {
420 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
421 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
422 drm_crtc_index(crtc));
423 drm_print_regset32(&p, &vc4_crtc->regset);
424 }
425
426 drm_dev_exit(idx);
427}
428
429static void require_hvs_enabled(struct drm_device *dev)
430{
431 struct vc4_dev *vc4 = to_vc4_dev(dev);
432 struct vc4_hvs *hvs = vc4->hvs;
433
434 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
435 SCALER_DISPCTRL_ENABLE);
436}
437
438static int vc4_crtc_disable(struct drm_crtc *crtc,
439 struct drm_encoder *encoder,
440 struct drm_atomic_state *state,
441 unsigned int channel)
442{
443 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
444 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
445 struct drm_device *dev = crtc->dev;
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
447 int idx, ret;
448
449 if (!drm_dev_enter(dev, &idx))
450 return -ENODEV;
451
452 CRTC_WRITE(PV_V_CONTROL,
453 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
454 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
455 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
456
457 /*
458 * This delay is needed to avoid to get a pixel stuck in an
459 * unflushable FIFO between the pixelvalve and the HDMI
460 * controllers on the BCM2711.
461 *
462 * Timing is fairly sensitive here, so mdelay is the safest
463 * approach.
464 *
465 * If it was to be reworked, the stuck pixel happens on a
466 * BCM2711 when changing mode with a good probability, so a
467 * script that changes mode on a regular basis should trigger
468 * the bug after less than 10 attempts. It manifests itself with
469 * every pixels being shifted by one to the right, and thus the
470 * last pixel of a line actually being displayed as the first
471 * pixel on the next line.
472 */
473 mdelay(20);
474
475 if (vc4_encoder && vc4_encoder->post_crtc_disable)
476 vc4_encoder->post_crtc_disable(encoder, state);
477
478 vc4_crtc_pixelvalve_reset(crtc);
479 vc4_hvs_stop_channel(vc4->hvs, channel);
480
481 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
482 vc4_encoder->post_crtc_powerdown(encoder, state);
483
484 drm_dev_exit(idx);
485
486 return 0;
487}
488
489static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
490 enum vc4_encoder_type type)
491{
492 struct drm_encoder *encoder;
493
494 drm_for_each_encoder(encoder, crtc->dev) {
495 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
496
497 if (vc4_encoder->type == type)
498 return encoder;
499 }
500
501 return NULL;
502}
503
504int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
505{
506 struct drm_device *drm = crtc->dev;
507 struct vc4_dev *vc4 = to_vc4_dev(drm);
508 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
509 enum vc4_encoder_type encoder_type;
510 const struct vc4_pv_data *pv_data;
511 struct drm_encoder *encoder;
512 struct vc4_hdmi *vc4_hdmi;
513 unsigned encoder_sel;
514 int channel;
515 int ret;
516
517 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
518 "brcm,bcm2711-pixelvalve2") ||
519 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
520 "brcm,bcm2711-pixelvalve4")))
521 return 0;
522
523 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
524 return 0;
525
526 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
527 return 0;
528
529 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
530 if (channel < 0)
531 return 0;
532
533 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
534 if (WARN_ON(encoder_sel != 0))
535 return 0;
536
537 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
538 encoder_type = pv_data->encoder_types[encoder_sel];
539 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
540 if (WARN_ON(!encoder))
541 return 0;
542
543 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
544 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
545 if (ret)
546 return ret;
547
548 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
549 if (ret)
550 return ret;
551
552 /*
553 * post_crtc_powerdown will have called pm_runtime_put, so we
554 * don't need it here otherwise we'll get the reference counting
555 * wrong.
556 */
557
558 return 0;
559}
560
561void vc4_crtc_send_vblank(struct drm_crtc *crtc)
562{
563 struct drm_device *dev = crtc->dev;
564 unsigned long flags;
565
566 if (!crtc->state || !crtc->state->event)
567 return;
568
569 spin_lock_irqsave(&dev->event_lock, flags);
570 drm_crtc_send_vblank_event(crtc, crtc->state->event);
571 crtc->state->event = NULL;
572 spin_unlock_irqrestore(&dev->event_lock, flags);
573}
574
575static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
576 struct drm_atomic_state *state)
577{
578 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
579 crtc);
580 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
581 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
582 struct drm_device *dev = crtc->dev;
583
584 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
585 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
586
587 require_hvs_enabled(dev);
588
589 /* Disable vblank irq handling before crtc is disabled. */
590 drm_crtc_vblank_off(crtc);
591
592 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
593
594 /*
595 * Make sure we issue a vblank event after disabling the CRTC if
596 * someone was waiting it.
597 */
598 vc4_crtc_send_vblank(crtc);
599}
600
601static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
602 struct drm_atomic_state *state)
603{
604 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
605 crtc);
606 struct drm_device *dev = crtc->dev;
607 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
608 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
609 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
610 int idx;
611
612 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
613 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
614
615 if (!drm_dev_enter(dev, &idx))
616 return;
617
618 require_hvs_enabled(dev);
619
620 /* Enable vblank irq handling before crtc is started otherwise
621 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
622 */
623 drm_crtc_vblank_on(crtc);
624
625 vc4_hvs_atomic_enable(crtc, state);
626
627 if (vc4_encoder->pre_crtc_configure)
628 vc4_encoder->pre_crtc_configure(encoder, state);
629
630 vc4_crtc_config_pv(crtc, encoder, state);
631
632 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
633
634 if (vc4_encoder->pre_crtc_enable)
635 vc4_encoder->pre_crtc_enable(encoder, state);
636
637 /* When feeding the transposer block the pixelvalve is unneeded and
638 * should not be enabled.
639 */
640 CRTC_WRITE(PV_V_CONTROL,
641 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
642
643 if (vc4_encoder->post_crtc_enable)
644 vc4_encoder->post_crtc_enable(encoder, state);
645
646 drm_dev_exit(idx);
647}
648
649static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
650 const struct drm_display_mode *mode)
651{
652 /* Do not allow doublescan modes from user space */
653 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
654 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
655 crtc->base.id);
656 return MODE_NO_DBLESCAN;
657 }
658
659 return MODE_OK;
660}
661
662void vc4_crtc_get_margins(struct drm_crtc_state *state,
663 unsigned int *left, unsigned int *right,
664 unsigned int *top, unsigned int *bottom)
665{
666 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
667 struct drm_connector_state *conn_state;
668 struct drm_connector *conn;
669 int i;
670
671 *left = vc4_state->margins.left;
672 *right = vc4_state->margins.right;
673 *top = vc4_state->margins.top;
674 *bottom = vc4_state->margins.bottom;
675
676 /* We have to interate over all new connector states because
677 * vc4_crtc_get_margins() might be called before
678 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
679 * might be outdated.
680 */
681 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
682 if (conn_state->crtc != state->crtc)
683 continue;
684
685 *left = conn_state->tv.margins.left;
686 *right = conn_state->tv.margins.right;
687 *top = conn_state->tv.margins.top;
688 *bottom = conn_state->tv.margins.bottom;
689 break;
690 }
691}
692
693static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
694 struct drm_atomic_state *state)
695{
696 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
697 crtc);
698 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
699 struct drm_connector *conn;
700 struct drm_connector_state *conn_state;
701 struct drm_encoder *encoder;
702 int ret, i;
703
704 ret = vc4_hvs_atomic_check(crtc, state);
705 if (ret)
706 return ret;
707
708 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
709 if (encoder) {
710 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
711 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
712
713 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
714 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
715 mode->clock * 9 / 10) * 1000;
716 } else {
717 vc4_state->hvs_load = mode->clock * 1000;
718 }
719 }
720
721 for_each_new_connector_in_state(state, conn, conn_state,
722 i) {
723 if (conn_state->crtc != crtc)
724 continue;
725
726 vc4_state->margins.left = conn_state->tv.margins.left;
727 vc4_state->margins.right = conn_state->tv.margins.right;
728 vc4_state->margins.top = conn_state->tv.margins.top;
729 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
730 break;
731 }
732
733 return 0;
734}
735
736static int vc4_enable_vblank(struct drm_crtc *crtc)
737{
738 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
739 struct drm_device *dev = crtc->dev;
740 int idx;
741
742 if (!drm_dev_enter(dev, &idx))
743 return -ENODEV;
744
745 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
746
747 drm_dev_exit(idx);
748
749 return 0;
750}
751
752static void vc4_disable_vblank(struct drm_crtc *crtc)
753{
754 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
755 struct drm_device *dev = crtc->dev;
756 int idx;
757
758 if (!drm_dev_enter(dev, &idx))
759 return;
760
761 CRTC_WRITE(PV_INTEN, 0);
762
763 drm_dev_exit(idx);
764}
765
766static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
767{
768 struct drm_crtc *crtc = &vc4_crtc->base;
769 struct drm_device *dev = crtc->dev;
770 struct vc4_dev *vc4 = to_vc4_dev(dev);
771 struct vc4_hvs *hvs = vc4->hvs;
772 u32 chan = vc4_crtc->current_hvs_channel;
773 unsigned long flags;
774
775 spin_lock_irqsave(&dev->event_lock, flags);
776 spin_lock(&vc4_crtc->irq_lock);
777 if (vc4_crtc->event &&
778 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
779 vc4_crtc->feeds_txp)) {
780 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
781 vc4_crtc->event = NULL;
782 drm_crtc_vblank_put(crtc);
783
784 /* Wait for the page flip to unmask the underrun to ensure that
785 * the display list was updated by the hardware. Before that
786 * happens, the HVS will be using the previous display list with
787 * the CRTC and encoder already reconfigured, leading to
788 * underruns. This can be seen when reconfiguring the CRTC.
789 */
790 vc4_hvs_unmask_underrun(hvs, chan);
791 }
792 spin_unlock(&vc4_crtc->irq_lock);
793 spin_unlock_irqrestore(&dev->event_lock, flags);
794}
795
796void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
797{
798 crtc->t_vblank = ktime_get();
799 drm_crtc_handle_vblank(&crtc->base);
800 vc4_crtc_handle_page_flip(crtc);
801}
802
803static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
804{
805 struct vc4_crtc *vc4_crtc = data;
806 u32 stat = CRTC_READ(PV_INTSTAT);
807 irqreturn_t ret = IRQ_NONE;
808
809 if (stat & PV_INT_VFP_START) {
810 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 vc4_crtc_handle_vblank(vc4_crtc);
812 ret = IRQ_HANDLED;
813 }
814
815 return ret;
816}
817
818struct vc4_async_flip_state {
819 struct drm_crtc *crtc;
820 struct drm_framebuffer *fb;
821 struct drm_framebuffer *old_fb;
822 struct drm_pending_vblank_event *event;
823
824 union {
825 struct dma_fence_cb fence;
826 struct vc4_seqno_cb seqno;
827 } cb;
828};
829
830/* Called when the V3D execution for the BO being flipped to is done, so that
831 * we can actually update the plane's address to point to it.
832 */
833static void
834vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
835{
836 struct drm_crtc *crtc = flip_state->crtc;
837 struct drm_device *dev = crtc->dev;
838 struct drm_plane *plane = crtc->primary;
839
840 vc4_plane_async_set_fb(plane, flip_state->fb);
841 if (flip_state->event) {
842 unsigned long flags;
843
844 spin_lock_irqsave(&dev->event_lock, flags);
845 drm_crtc_send_vblank_event(crtc, flip_state->event);
846 spin_unlock_irqrestore(&dev->event_lock, flags);
847 }
848
849 drm_crtc_vblank_put(crtc);
850 drm_framebuffer_put(flip_state->fb);
851
852 if (flip_state->old_fb)
853 drm_framebuffer_put(flip_state->old_fb);
854
855 kfree(flip_state);
856}
857
858static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
859{
860 struct vc4_async_flip_state *flip_state =
861 container_of(cb, struct vc4_async_flip_state, cb.seqno);
862 struct vc4_bo *bo = NULL;
863
864 if (flip_state->old_fb) {
865 struct drm_gem_dma_object *dma_bo =
866 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
867 bo = to_vc4_bo(&dma_bo->base);
868 }
869
870 vc4_async_page_flip_complete(flip_state);
871
872 /*
873 * Decrement the BO usecnt in order to keep the inc/dec
874 * calls balanced when the planes are updated through
875 * the async update path.
876 *
877 * FIXME: we should move to generic async-page-flip when
878 * it's available, so that we can get rid of this
879 * hand-made cleanup_fb() logic.
880 */
881 if (bo)
882 vc4_bo_dec_usecnt(bo);
883}
884
885static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
886 struct dma_fence_cb *cb)
887{
888 struct vc4_async_flip_state *flip_state =
889 container_of(cb, struct vc4_async_flip_state, cb.fence);
890
891 vc4_async_page_flip_complete(flip_state);
892 dma_fence_put(fence);
893}
894
895static int vc4_async_set_fence_cb(struct drm_device *dev,
896 struct vc4_async_flip_state *flip_state)
897{
898 struct drm_framebuffer *fb = flip_state->fb;
899 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
900 struct vc4_dev *vc4 = to_vc4_dev(dev);
901 struct dma_fence *fence;
902 int ret;
903
904 if (!vc4->is_vc5) {
905 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
906
907 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
908 vc4_async_page_flip_seqno_complete);
909 }
910
911 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
912 if (ret)
913 return ret;
914
915 /* If there's no fence, complete the page flip immediately */
916 if (!fence) {
917 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
918 return 0;
919 }
920
921 /* If the fence has already been completed, complete the page flip */
922 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
923 vc4_async_page_flip_fence_complete))
924 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
925
926 return 0;
927}
928
929static int
930vc4_async_page_flip_common(struct drm_crtc *crtc,
931 struct drm_framebuffer *fb,
932 struct drm_pending_vblank_event *event,
933 uint32_t flags)
934{
935 struct drm_device *dev = crtc->dev;
936 struct drm_plane *plane = crtc->primary;
937 struct vc4_async_flip_state *flip_state;
938
939 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
940 if (!flip_state)
941 return -ENOMEM;
942
943 drm_framebuffer_get(fb);
944 flip_state->fb = fb;
945 flip_state->crtc = crtc;
946 flip_state->event = event;
947
948 /* Save the current FB before it's replaced by the new one in
949 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
950 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
951 * it consistent.
952 * FIXME: we should move to generic async-page-flip when it's
953 * available, so that we can get rid of this hand-made cleanup_fb()
954 * logic.
955 */
956 flip_state->old_fb = plane->state->fb;
957 if (flip_state->old_fb)
958 drm_framebuffer_get(flip_state->old_fb);
959
960 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
961
962 /* Immediately update the plane's legacy fb pointer, so that later
963 * modeset prep sees the state that will be present when the semaphore
964 * is released.
965 */
966 drm_atomic_set_fb_for_plane(plane->state, fb);
967
968 vc4_async_set_fence_cb(dev, flip_state);
969
970 /* Driver takes ownership of state on successful async commit. */
971 return 0;
972}
973
974/* Implements async (non-vblank-synced) page flips.
975 *
976 * The page flip ioctl needs to return immediately, so we grab the
977 * modeset semaphore on the pipe, and queue the address update for
978 * when V3D is done with the BO being flipped to.
979 */
980static int vc4_async_page_flip(struct drm_crtc *crtc,
981 struct drm_framebuffer *fb,
982 struct drm_pending_vblank_event *event,
983 uint32_t flags)
984{
985 struct drm_device *dev = crtc->dev;
986 struct vc4_dev *vc4 = to_vc4_dev(dev);
987 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
988 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
989 int ret;
990
991 if (WARN_ON_ONCE(vc4->is_vc5))
992 return -ENODEV;
993
994 /*
995 * Increment the BO usecnt here, so that we never end up with an
996 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
997 * plane is later updated through the non-async path.
998 *
999 * FIXME: we should move to generic async-page-flip when
1000 * it's available, so that we can get rid of this
1001 * hand-made prepare_fb() logic.
1002 */
1003 ret = vc4_bo_inc_usecnt(bo);
1004 if (ret)
1005 return ret;
1006
1007 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1008 if (ret) {
1009 vc4_bo_dec_usecnt(bo);
1010 return ret;
1011 }
1012
1013 return 0;
1014}
1015
1016static int vc5_async_page_flip(struct drm_crtc *crtc,
1017 struct drm_framebuffer *fb,
1018 struct drm_pending_vblank_event *event,
1019 uint32_t flags)
1020{
1021 return vc4_async_page_flip_common(crtc, fb, event, flags);
1022}
1023
1024int vc4_page_flip(struct drm_crtc *crtc,
1025 struct drm_framebuffer *fb,
1026 struct drm_pending_vblank_event *event,
1027 uint32_t flags,
1028 struct drm_modeset_acquire_ctx *ctx)
1029{
1030 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1031 struct drm_device *dev = crtc->dev;
1032 struct vc4_dev *vc4 = to_vc4_dev(dev);
1033
1034 if (vc4->is_vc5)
1035 return vc5_async_page_flip(crtc, fb, event, flags);
1036 else
1037 return vc4_async_page_flip(crtc, fb, event, flags);
1038 } else {
1039 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1040 }
1041}
1042
1043struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1044{
1045 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1046
1047 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1048 if (!vc4_state)
1049 return NULL;
1050
1051 old_vc4_state = to_vc4_crtc_state(crtc->state);
1052 vc4_state->margins = old_vc4_state->margins;
1053 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1054
1055 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1056 return &vc4_state->base;
1057}
1058
1059void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1060 struct drm_crtc_state *state)
1061{
1062 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1063 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1064
1065 if (drm_mm_node_allocated(&vc4_state->mm)) {
1066 unsigned long flags;
1067
1068 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1069 drm_mm_remove_node(&vc4_state->mm);
1070 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1071
1072 }
1073
1074 drm_atomic_helper_crtc_destroy_state(crtc, state);
1075}
1076
1077void vc4_crtc_reset(struct drm_crtc *crtc)
1078{
1079 struct vc4_crtc_state *vc4_crtc_state;
1080
1081 if (crtc->state)
1082 vc4_crtc_destroy_state(crtc, crtc->state);
1083
1084 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1085 if (!vc4_crtc_state) {
1086 crtc->state = NULL;
1087 return;
1088 }
1089
1090 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1091 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1092}
1093
1094int vc4_crtc_late_register(struct drm_crtc *crtc)
1095{
1096 struct drm_device *drm = crtc->dev;
1097 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1098 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1099 int ret;
1100
1101 ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name,
1102 &vc4_crtc->regset);
1103 if (ret)
1104 return ret;
1105
1106 return 0;
1107}
1108
1109static const struct drm_crtc_funcs vc4_crtc_funcs = {
1110 .set_config = drm_atomic_helper_set_config,
1111 .page_flip = vc4_page_flip,
1112 .set_property = NULL,
1113 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1114 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1115 .reset = vc4_crtc_reset,
1116 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1117 .atomic_destroy_state = vc4_crtc_destroy_state,
1118 .enable_vblank = vc4_enable_vblank,
1119 .disable_vblank = vc4_disable_vblank,
1120 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1121 .late_register = vc4_crtc_late_register,
1122};
1123
1124static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1125 .mode_valid = vc4_crtc_mode_valid,
1126 .atomic_check = vc4_crtc_atomic_check,
1127 .atomic_begin = vc4_hvs_atomic_begin,
1128 .atomic_flush = vc4_hvs_atomic_flush,
1129 .atomic_enable = vc4_crtc_atomic_enable,
1130 .atomic_disable = vc4_crtc_atomic_disable,
1131 .get_scanout_position = vc4_crtc_get_scanout_position,
1132};
1133
1134static const struct vc4_pv_data bcm2835_pv0_data = {
1135 .base = {
1136 .debugfs_name = "crtc0_regs",
1137 .hvs_available_channels = BIT(0),
1138 .hvs_output = 0,
1139 },
1140 .fifo_depth = 64,
1141 .pixels_per_clock = 1,
1142 .encoder_types = {
1143 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1144 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1145 },
1146};
1147
1148static const struct vc4_pv_data bcm2835_pv1_data = {
1149 .base = {
1150 .debugfs_name = "crtc1_regs",
1151 .hvs_available_channels = BIT(2),
1152 .hvs_output = 2,
1153 },
1154 .fifo_depth = 64,
1155 .pixels_per_clock = 1,
1156 .encoder_types = {
1157 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1158 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1159 },
1160};
1161
1162static const struct vc4_pv_data bcm2835_pv2_data = {
1163 .base = {
1164 .debugfs_name = "crtc2_regs",
1165 .hvs_available_channels = BIT(1),
1166 .hvs_output = 1,
1167 },
1168 .fifo_depth = 64,
1169 .pixels_per_clock = 1,
1170 .encoder_types = {
1171 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1172 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1173 },
1174};
1175
1176static const struct vc4_pv_data bcm2711_pv0_data = {
1177 .base = {
1178 .debugfs_name = "crtc0_regs",
1179 .hvs_available_channels = BIT(0),
1180 .hvs_output = 0,
1181 },
1182 .fifo_depth = 64,
1183 .pixels_per_clock = 1,
1184 .encoder_types = {
1185 [0] = VC4_ENCODER_TYPE_DSI0,
1186 [1] = VC4_ENCODER_TYPE_DPI,
1187 },
1188};
1189
1190static const struct vc4_pv_data bcm2711_pv1_data = {
1191 .base = {
1192 .debugfs_name = "crtc1_regs",
1193 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1194 .hvs_output = 3,
1195 },
1196 .fifo_depth = 64,
1197 .pixels_per_clock = 1,
1198 .encoder_types = {
1199 [0] = VC4_ENCODER_TYPE_DSI1,
1200 [1] = VC4_ENCODER_TYPE_SMI,
1201 },
1202};
1203
1204static const struct vc4_pv_data bcm2711_pv2_data = {
1205 .base = {
1206 .debugfs_name = "crtc2_regs",
1207 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208 .hvs_output = 4,
1209 },
1210 .fifo_depth = 256,
1211 .pixels_per_clock = 2,
1212 .encoder_types = {
1213 [0] = VC4_ENCODER_TYPE_HDMI0,
1214 },
1215};
1216
1217static const struct vc4_pv_data bcm2711_pv3_data = {
1218 .base = {
1219 .debugfs_name = "crtc3_regs",
1220 .hvs_available_channels = BIT(1),
1221 .hvs_output = 1,
1222 },
1223 .fifo_depth = 64,
1224 .pixels_per_clock = 1,
1225 .encoder_types = {
1226 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1227 },
1228};
1229
1230static const struct vc4_pv_data bcm2711_pv4_data = {
1231 .base = {
1232 .debugfs_name = "crtc4_regs",
1233 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1234 .hvs_output = 5,
1235 },
1236 .fifo_depth = 64,
1237 .pixels_per_clock = 2,
1238 .encoder_types = {
1239 [0] = VC4_ENCODER_TYPE_HDMI1,
1240 },
1241};
1242
1243static const struct of_device_id vc4_crtc_dt_match[] = {
1244 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1245 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1246 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1247 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1248 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1249 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1250 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1251 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1252 {}
1253};
1254
1255static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1256 struct drm_crtc *crtc)
1257{
1258 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1259 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1260 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1261 struct drm_encoder *encoder;
1262
1263 drm_for_each_encoder(encoder, drm) {
1264 struct vc4_encoder *vc4_encoder;
1265 int i;
1266
1267 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1268 continue;
1269
1270 vc4_encoder = to_vc4_encoder(encoder);
1271 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1272 if (vc4_encoder->type == encoder_types[i]) {
1273 vc4_encoder->clock_select = i;
1274 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1275 break;
1276 }
1277 }
1278 }
1279}
1280
1281int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1282 const struct drm_crtc_funcs *crtc_funcs,
1283 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1284{
1285 struct vc4_dev *vc4 = to_vc4_dev(drm);
1286 struct drm_crtc *crtc = &vc4_crtc->base;
1287 struct drm_plane *primary_plane;
1288 unsigned int i;
1289 int ret;
1290
1291 /* For now, we create just the primary and the legacy cursor
1292 * planes. We should be able to stack more planes on easily,
1293 * but to do that we would need to compute the bandwidth
1294 * requirement of the plane configuration, and reject ones
1295 * that will take too much.
1296 */
1297 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1298 if (IS_ERR(primary_plane)) {
1299 dev_err(drm->dev, "failed to construct primary plane\n");
1300 return PTR_ERR(primary_plane);
1301 }
1302
1303 spin_lock_init(&vc4_crtc->irq_lock);
1304 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1305 crtc_funcs, NULL);
1306 if (ret)
1307 return ret;
1308
1309 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1310
1311 if (!vc4->is_vc5) {
1312 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1313
1314 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1315
1316 /* We support CTM, but only for one CRTC at a time. It's therefore
1317 * implemented as private driver state in vc4_kms, not here.
1318 */
1319 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1320 }
1321
1322 for (i = 0; i < crtc->gamma_size; i++) {
1323 vc4_crtc->lut_r[i] = i;
1324 vc4_crtc->lut_g[i] = i;
1325 vc4_crtc->lut_b[i] = i;
1326 }
1327
1328 return 0;
1329}
1330
1331static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1332{
1333 struct platform_device *pdev = to_platform_device(dev);
1334 struct drm_device *drm = dev_get_drvdata(master);
1335 const struct vc4_pv_data *pv_data;
1336 struct vc4_crtc *vc4_crtc;
1337 struct drm_crtc *crtc;
1338 int ret;
1339
1340 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1341 if (!vc4_crtc)
1342 return -ENOMEM;
1343 crtc = &vc4_crtc->base;
1344
1345 pv_data = of_device_get_match_data(dev);
1346 if (!pv_data)
1347 return -ENODEV;
1348 vc4_crtc->data = &pv_data->base;
1349 vc4_crtc->pdev = pdev;
1350
1351 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1352 if (IS_ERR(vc4_crtc->regs))
1353 return PTR_ERR(vc4_crtc->regs);
1354
1355 vc4_crtc->regset.base = vc4_crtc->regs;
1356 vc4_crtc->regset.regs = crtc_regs;
1357 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1358
1359 ret = vc4_crtc_init(drm, vc4_crtc,
1360 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1361 if (ret)
1362 return ret;
1363 vc4_set_crtc_possible_masks(drm, crtc);
1364
1365 CRTC_WRITE(PV_INTEN, 0);
1366 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1367 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1368 vc4_crtc_irq_handler,
1369 IRQF_SHARED,
1370 "vc4 crtc", vc4_crtc);
1371 if (ret)
1372 return ret;
1373
1374 platform_set_drvdata(pdev, vc4_crtc);
1375
1376 return 0;
1377}
1378
1379static void vc4_crtc_unbind(struct device *dev, struct device *master,
1380 void *data)
1381{
1382 struct platform_device *pdev = to_platform_device(dev);
1383 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1384
1385 CRTC_WRITE(PV_INTEN, 0);
1386
1387 platform_set_drvdata(pdev, NULL);
1388}
1389
1390static const struct component_ops vc4_crtc_ops = {
1391 .bind = vc4_crtc_bind,
1392 .unbind = vc4_crtc_unbind,
1393};
1394
1395static int vc4_crtc_dev_probe(struct platform_device *pdev)
1396{
1397 return component_add(&pdev->dev, &vc4_crtc_ops);
1398}
1399
1400static int vc4_crtc_dev_remove(struct platform_device *pdev)
1401{
1402 component_del(&pdev->dev, &vc4_crtc_ops);
1403 return 0;
1404}
1405
1406struct platform_driver vc4_crtc_driver = {
1407 .probe = vc4_crtc_dev_probe,
1408 .remove = vc4_crtc_dev_remove,
1409 .driver = {
1410 .name = "vc4_crtc",
1411 .of_match_table = vc4_crtc_dt_match,
1412 },
1413};