Loading...
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34#include "drm_atomic.h"
35#include "drm_atomic_helper.h"
36#include "drm_crtc_helper.h"
37#include "linux/clk.h"
38#include "drm_fb_cma_helper.h"
39#include "linux/component.h"
40#include "linux/of_device.h"
41#include "vc4_drv.h"
42#include "vc4_regs.h"
43
44struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Which HVS channel we're using for our CRTC. */
50 int channel;
51
52 struct drm_pending_vblank_event *event;
53};
54
55struct vc4_crtc_state {
56 struct drm_crtc_state base;
57 /* Dlist area for this CRTC configuration. */
58 struct drm_mm_node mm;
59};
60
61static inline struct vc4_crtc *
62to_vc4_crtc(struct drm_crtc *crtc)
63{
64 return (struct vc4_crtc *)crtc;
65}
66
67static inline struct vc4_crtc_state *
68to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
69{
70 return (struct vc4_crtc_state *)crtc_state;
71}
72
73struct vc4_crtc_data {
74 /* Which channel of the HVS this pixelvalve sources from. */
75 int hvs_channel;
76
77 enum vc4_encoder_type encoder0_type;
78 enum vc4_encoder_type encoder1_type;
79};
80
81#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
82#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
83
84#define CRTC_REG(reg) { reg, #reg }
85static const struct {
86 u32 reg;
87 const char *name;
88} crtc_regs[] = {
89 CRTC_REG(PV_CONTROL),
90 CRTC_REG(PV_V_CONTROL),
91 CRTC_REG(PV_VSYNCD_EVEN),
92 CRTC_REG(PV_HORZA),
93 CRTC_REG(PV_HORZB),
94 CRTC_REG(PV_VERTA),
95 CRTC_REG(PV_VERTB),
96 CRTC_REG(PV_VERTA_EVEN),
97 CRTC_REG(PV_VERTB_EVEN),
98 CRTC_REG(PV_INTEN),
99 CRTC_REG(PV_INTSTAT),
100 CRTC_REG(PV_STAT),
101 CRTC_REG(PV_HACT_ACT),
102};
103
104static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105{
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109 DRM_INFO("0x%04x (%s): 0x%08x\n",
110 crtc_regs[i].reg, crtc_regs[i].name,
111 CRTC_READ(crtc_regs[i].reg));
112 }
113}
114
115#ifdef CONFIG_DEBUG_FS
116int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117{
118 struct drm_info_node *node = (struct drm_info_node *)m->private;
119 struct drm_device *dev = node->minor->dev;
120 int crtc_index = (uintptr_t)node->info_ent->data;
121 struct drm_crtc *crtc;
122 struct vc4_crtc *vc4_crtc;
123 int i;
124
125 i = 0;
126 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127 if (i == crtc_index)
128 break;
129 i++;
130 }
131 if (!crtc)
132 return 0;
133 vc4_crtc = to_vc4_crtc(crtc);
134
135 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136 seq_printf(m, "%s (0x%04x): 0x%08x\n",
137 crtc_regs[i].name, crtc_regs[i].reg,
138 CRTC_READ(crtc_regs[i].reg));
139 }
140
141 return 0;
142}
143#endif
144
145static void vc4_crtc_destroy(struct drm_crtc *crtc)
146{
147 drm_crtc_cleanup(crtc);
148}
149
150static u32 vc4_get_fifo_full_level(u32 format)
151{
152 static const u32 fifo_len_bytes = 64;
153 static const u32 hvs_latency_pix = 6;
154
155 switch (format) {
156 case PV_CONTROL_FORMAT_DSIV_16:
157 case PV_CONTROL_FORMAT_DSIC_16:
158 return fifo_len_bytes - 2 * hvs_latency_pix;
159 case PV_CONTROL_FORMAT_DSIV_18:
160 return fifo_len_bytes - 14;
161 case PV_CONTROL_FORMAT_24:
162 case PV_CONTROL_FORMAT_DSIV_24:
163 default:
164 return fifo_len_bytes - 3 * hvs_latency_pix;
165 }
166}
167
168/*
169 * Returns the clock select bit for the connector attached to the
170 * CRTC.
171 */
172static int vc4_get_clock_select(struct drm_crtc *crtc)
173{
174 struct drm_connector *connector;
175
176 drm_for_each_connector(connector, crtc->dev) {
177 if (connector->state->crtc == crtc) {
178 struct drm_encoder *encoder = connector->encoder;
179 struct vc4_encoder *vc4_encoder =
180 to_vc4_encoder(encoder);
181
182 return vc4_encoder->clock_select;
183 }
184 }
185
186 return -1;
187}
188
189static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190{
191 struct drm_device *dev = crtc->dev;
192 struct vc4_dev *vc4 = to_vc4_dev(dev);
193 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194 struct drm_crtc_state *state = crtc->state;
195 struct drm_display_mode *mode = &state->adjusted_mode;
196 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198 u32 format = PV_CONTROL_FORMAT_24;
199 bool debug_dump_regs = false;
200 int clock_select = vc4_get_clock_select(crtc);
201
202 if (debug_dump_regs) {
203 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204 vc4_crtc_dump_regs(vc4_crtc);
205 }
206
207 /* Reset the PV fifo. */
208 CRTC_WRITE(PV_CONTROL, 0);
209 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210 CRTC_WRITE(PV_CONTROL, 0);
211
212 CRTC_WRITE(PV_HORZA,
213 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
214 PV_HORZA_HBP) |
215 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
216 PV_HORZA_HSYNC));
217 CRTC_WRITE(PV_HORZB,
218 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
219 PV_HORZB_HFP) |
220 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
221
222 CRTC_WRITE(PV_VERTA,
223 VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224 PV_VERTA_VBP) |
225 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226 PV_VERTA_VSYNC));
227 CRTC_WRITE(PV_VERTB,
228 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229 PV_VERTB_VFP) |
230 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231
232 if (interlace) {
233 CRTC_WRITE(PV_VERTA_EVEN,
234 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
235 PV_VERTA_VBP) |
236 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
237 PV_VERTA_VSYNC));
238 CRTC_WRITE(PV_VERTB_EVEN,
239 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
240 PV_VERTB_VFP) |
241 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242 }
243
244 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
245
246 CRTC_WRITE(PV_V_CONTROL,
247 PV_VCONTROL_CONTINUOUS |
248 (interlace ? PV_VCONTROL_INTERLACE : 0));
249
250 CRTC_WRITE(PV_CONTROL,
251 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253 PV_CONTROL_FIFO_LEVEL) |
254 PV_CONTROL_CLR_AT_START |
255 PV_CONTROL_TRIGGER_UNDERFLOW |
256 PV_CONTROL_WAIT_HSTART |
257 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
258 PV_CONTROL_FIFO_CLR |
259 PV_CONTROL_EN);
260
261 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262 SCALER_DISPBKGND_AUTOHS |
263 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264
265 if (debug_dump_regs) {
266 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267 vc4_crtc_dump_regs(vc4_crtc);
268 }
269}
270
271static void require_hvs_enabled(struct drm_device *dev)
272{
273 struct vc4_dev *vc4 = to_vc4_dev(dev);
274
275 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276 SCALER_DISPCTRL_ENABLE);
277}
278
279static void vc4_crtc_disable(struct drm_crtc *crtc)
280{
281 struct drm_device *dev = crtc->dev;
282 struct vc4_dev *vc4 = to_vc4_dev(dev);
283 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284 u32 chan = vc4_crtc->channel;
285 int ret;
286 require_hvs_enabled(dev);
287
288 CRTC_WRITE(PV_V_CONTROL,
289 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292
293 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294 SCALER_DISPCTRLX_ENABLE) {
295 HVS_WRITE(SCALER_DISPCTRLX(chan),
296 SCALER_DISPCTRLX_RESET);
297
298 /* While the docs say that reset is self-clearing, it
299 * seems it doesn't actually.
300 */
301 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
302 }
303
304 /* Once we leave, the scaler should be disabled and its fifo empty. */
305
306 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
307
308 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309 SCALER_DISPSTATX_MODE) !=
310 SCALER_DISPSTATX_MODE_DISABLED);
311
312 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314 SCALER_DISPSTATX_EMPTY);
315}
316
317static void vc4_crtc_enable(struct drm_crtc *crtc)
318{
319 struct drm_device *dev = crtc->dev;
320 struct vc4_dev *vc4 = to_vc4_dev(dev);
321 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322 struct drm_crtc_state *state = crtc->state;
323 struct drm_display_mode *mode = &state->adjusted_mode;
324
325 require_hvs_enabled(dev);
326
327 /* Turn on the scaler, which will wait for vstart to start
328 * compositing.
329 */
330 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333 SCALER_DISPCTRLX_ENABLE);
334
335 /* Turn on the pixel valve, which will emit the vstart signal. */
336 CRTC_WRITE(PV_V_CONTROL,
337 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
338}
339
340static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341 struct drm_crtc_state *state)
342{
343 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344 struct drm_device *dev = crtc->dev;
345 struct vc4_dev *vc4 = to_vc4_dev(dev);
346 struct drm_plane *plane;
347 unsigned long flags;
348 u32 dlist_count = 0;
349 int ret;
350
351 /* The pixelvalve can only feed one encoder (and encoders are
352 * 1:1 with connectors.)
353 */
354 if (hweight32(state->connector_mask) > 1)
355 return -EINVAL;
356
357 drm_atomic_crtc_state_for_each_plane(plane, state) {
358 struct drm_plane_state *plane_state =
359 state->state->plane_states[drm_plane_index(plane)];
360
361 /* plane might not have changed, in which case take
362 * current state:
363 */
364 if (!plane_state)
365 plane_state = plane->state;
366
367 dlist_count += vc4_plane_dlist_size(plane_state);
368 }
369
370 dlist_count++; /* Account for SCALER_CTL0_END. */
371
372 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374 dlist_count, 1, 0);
375 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376 if (ret)
377 return ret;
378
379 return 0;
380}
381
382static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383 struct drm_crtc_state *old_state)
384{
385 struct drm_device *dev = crtc->dev;
386 struct vc4_dev *vc4 = to_vc4_dev(dev);
387 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389 struct drm_plane *plane;
390 bool debug_dump_regs = false;
391 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392 u32 __iomem *dlist_next = dlist_start;
393
394 if (debug_dump_regs) {
395 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396 vc4_hvs_dump_state(dev);
397 }
398
399 /* Copy all the active planes' dlist contents to the hardware dlist. */
400 drm_atomic_crtc_for_each_plane(plane, crtc) {
401 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402 }
403
404 writel(SCALER_CTL0_END, dlist_next);
405 dlist_next++;
406
407 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
408
409 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410 vc4_state->mm.start);
411
412 if (debug_dump_regs) {
413 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414 vc4_hvs_dump_state(dev);
415 }
416
417 if (crtc->state->event) {
418 unsigned long flags;
419
420 crtc->state->event->pipe = drm_crtc_index(crtc);
421
422 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
423
424 spin_lock_irqsave(&dev->event_lock, flags);
425 vc4_crtc->event = crtc->state->event;
426 spin_unlock_irqrestore(&dev->event_lock, flags);
427 crtc->state->event = NULL;
428 }
429}
430
431int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432{
433 struct vc4_dev *vc4 = to_vc4_dev(dev);
434 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435
436 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437
438 return 0;
439}
440
441void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442{
443 struct vc4_dev *vc4 = to_vc4_dev(dev);
444 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445
446 CRTC_WRITE(PV_INTEN, 0);
447}
448
449static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450{
451 struct drm_crtc *crtc = &vc4_crtc->base;
452 struct drm_device *dev = crtc->dev;
453 unsigned long flags;
454
455 spin_lock_irqsave(&dev->event_lock, flags);
456 if (vc4_crtc->event) {
457 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458 vc4_crtc->event = NULL;
459 }
460 spin_unlock_irqrestore(&dev->event_lock, flags);
461}
462
463static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464{
465 struct vc4_crtc *vc4_crtc = data;
466 u32 stat = CRTC_READ(PV_INTSTAT);
467 irqreturn_t ret = IRQ_NONE;
468
469 if (stat & PV_INT_VFP_START) {
470 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471 drm_crtc_handle_vblank(&vc4_crtc->base);
472 vc4_crtc_handle_page_flip(vc4_crtc);
473 ret = IRQ_HANDLED;
474 }
475
476 return ret;
477}
478
479struct vc4_async_flip_state {
480 struct drm_crtc *crtc;
481 struct drm_framebuffer *fb;
482 struct drm_pending_vblank_event *event;
483
484 struct vc4_seqno_cb cb;
485};
486
487/* Called when the V3D execution for the BO being flipped to is done, so that
488 * we can actually update the plane's address to point to it.
489 */
490static void
491vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492{
493 struct vc4_async_flip_state *flip_state =
494 container_of(cb, struct vc4_async_flip_state, cb);
495 struct drm_crtc *crtc = flip_state->crtc;
496 struct drm_device *dev = crtc->dev;
497 struct vc4_dev *vc4 = to_vc4_dev(dev);
498 struct drm_plane *plane = crtc->primary;
499
500 vc4_plane_async_set_fb(plane, flip_state->fb);
501 if (flip_state->event) {
502 unsigned long flags;
503
504 spin_lock_irqsave(&dev->event_lock, flags);
505 drm_crtc_send_vblank_event(crtc, flip_state->event);
506 spin_unlock_irqrestore(&dev->event_lock, flags);
507 }
508
509 drm_framebuffer_unreference(flip_state->fb);
510 kfree(flip_state);
511
512 up(&vc4->async_modeset);
513}
514
515/* Implements async (non-vblank-synced) page flips.
516 *
517 * The page flip ioctl needs to return immediately, so we grab the
518 * modeset semaphore on the pipe, and queue the address update for
519 * when V3D is done with the BO being flipped to.
520 */
521static int vc4_async_page_flip(struct drm_crtc *crtc,
522 struct drm_framebuffer *fb,
523 struct drm_pending_vblank_event *event,
524 uint32_t flags)
525{
526 struct drm_device *dev = crtc->dev;
527 struct vc4_dev *vc4 = to_vc4_dev(dev);
528 struct drm_plane *plane = crtc->primary;
529 int ret = 0;
530 struct vc4_async_flip_state *flip_state;
531 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533
534 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535 if (!flip_state)
536 return -ENOMEM;
537
538 drm_framebuffer_reference(fb);
539 flip_state->fb = fb;
540 flip_state->crtc = crtc;
541 flip_state->event = event;
542
543 /* Make sure all other async modesetes have landed. */
544 ret = down_interruptible(&vc4->async_modeset);
545 if (ret) {
546 drm_framebuffer_unreference(fb);
547 kfree(flip_state);
548 return ret;
549 }
550
551 /* Immediately update the plane's legacy fb pointer, so that later
552 * modeset prep sees the state that will be present when the semaphore
553 * is released.
554 */
555 drm_atomic_set_fb_for_plane(plane->state, fb);
556 plane->fb = fb;
557
558 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559 vc4_async_page_flip_complete);
560
561 /* Driver takes ownership of state on successful async commit. */
562 return 0;
563}
564
565static int vc4_page_flip(struct drm_crtc *crtc,
566 struct drm_framebuffer *fb,
567 struct drm_pending_vblank_event *event,
568 uint32_t flags)
569{
570 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571 return vc4_async_page_flip(crtc, fb, event, flags);
572 else
573 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574}
575
576static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577{
578 struct vc4_crtc_state *vc4_state;
579
580 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581 if (!vc4_state)
582 return NULL;
583
584 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585 return &vc4_state->base;
586}
587
588static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589 struct drm_crtc_state *state)
590{
591 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593
594 if (vc4_state->mm.allocated) {
595 unsigned long flags;
596
597 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598 drm_mm_remove_node(&vc4_state->mm);
599 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600
601 }
602
603 __drm_atomic_helper_crtc_destroy_state(crtc, state);
604}
605
606static const struct drm_crtc_funcs vc4_crtc_funcs = {
607 .set_config = drm_atomic_helper_set_config,
608 .destroy = vc4_crtc_destroy,
609 .page_flip = vc4_page_flip,
610 .set_property = NULL,
611 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613 .reset = drm_atomic_helper_crtc_reset,
614 .atomic_duplicate_state = vc4_crtc_duplicate_state,
615 .atomic_destroy_state = vc4_crtc_destroy_state,
616};
617
618static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619 .mode_set_nofb = vc4_crtc_mode_set_nofb,
620 .disable = vc4_crtc_disable,
621 .enable = vc4_crtc_enable,
622 .atomic_check = vc4_crtc_atomic_check,
623 .atomic_flush = vc4_crtc_atomic_flush,
624};
625
626static const struct vc4_crtc_data pv0_data = {
627 .hvs_channel = 0,
628 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
629 .encoder1_type = VC4_ENCODER_TYPE_DPI,
630};
631
632static const struct vc4_crtc_data pv1_data = {
633 .hvs_channel = 2,
634 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
635 .encoder1_type = VC4_ENCODER_TYPE_SMI,
636};
637
638static const struct vc4_crtc_data pv2_data = {
639 .hvs_channel = 1,
640 .encoder0_type = VC4_ENCODER_TYPE_VEC,
641 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
642};
643
644static const struct of_device_id vc4_crtc_dt_match[] = {
645 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
648 {}
649};
650
651static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652 struct drm_crtc *crtc)
653{
654 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
655 struct drm_encoder *encoder;
656
657 drm_for_each_encoder(encoder, drm) {
658 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
659
660 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661 vc4_encoder->clock_select = 0;
662 encoder->possible_crtcs |= drm_crtc_mask(crtc);
663 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664 vc4_encoder->clock_select = 1;
665 encoder->possible_crtcs |= drm_crtc_mask(crtc);
666 }
667 }
668}
669
670static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
671{
672 struct platform_device *pdev = to_platform_device(dev);
673 struct drm_device *drm = dev_get_drvdata(master);
674 struct vc4_dev *vc4 = to_vc4_dev(drm);
675 struct vc4_crtc *vc4_crtc;
676 struct drm_crtc *crtc;
677 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678 const struct of_device_id *match;
679 int ret, i;
680
681 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682 if (!vc4_crtc)
683 return -ENOMEM;
684 crtc = &vc4_crtc->base;
685
686 match = of_match_device(vc4_crtc_dt_match, dev);
687 if (!match)
688 return -ENODEV;
689 vc4_crtc->data = match->data;
690
691 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692 if (IS_ERR(vc4_crtc->regs))
693 return PTR_ERR(vc4_crtc->regs);
694
695 /* For now, we create just the primary and the legacy cursor
696 * planes. We should be able to stack more planes on easily,
697 * but to do that we would need to compute the bandwidth
698 * requirement of the plane configuration, and reject ones
699 * that will take too much.
700 */
701 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702 if (IS_ERR(primary_plane)) {
703 dev_err(dev, "failed to construct primary plane\n");
704 ret = PTR_ERR(primary_plane);
705 goto err;
706 }
707
708 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709 &vc4_crtc_funcs, NULL);
710 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711 primary_plane->crtc = crtc;
712 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
714
715 /* Set up some arbitrary number of planes. We're not limited
716 * by a set number of physical registers, just the space in
717 * the HVS (16k) and how small an plane can be (28 bytes).
718 * However, each plane we set up takes up some memory, and
719 * increases the cost of looping over planes, which atomic
720 * modesetting does quite a bit. As a result, we pick a
721 * modest number of planes to expose, that should hopefully
722 * still cover any sane usecase.
723 */
724 for (i = 0; i < 8; i++) {
725 struct drm_plane *plane =
726 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727
728 if (IS_ERR(plane))
729 continue;
730
731 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
732 }
733
734 /* Set up the legacy cursor after overlay initialization,
735 * since we overlay planes on the CRTC in the order they were
736 * initialized.
737 */
738 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739 if (!IS_ERR(cursor_plane)) {
740 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741 cursor_plane->crtc = crtc;
742 crtc->cursor = cursor_plane;
743 }
744
745 CRTC_WRITE(PV_INTEN, 0);
746 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
749 if (ret)
750 goto err_destroy_planes;
751
752 vc4_set_crtc_possible_masks(drm, crtc);
753
754 platform_set_drvdata(pdev, vc4_crtc);
755
756 return 0;
757
758err_destroy_planes:
759 list_for_each_entry_safe(destroy_plane, temp,
760 &drm->mode_config.plane_list, head) {
761 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762 destroy_plane->funcs->destroy(destroy_plane);
763 }
764err:
765 return ret;
766}
767
768static void vc4_crtc_unbind(struct device *dev, struct device *master,
769 void *data)
770{
771 struct platform_device *pdev = to_platform_device(dev);
772 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773
774 vc4_crtc_destroy(&vc4_crtc->base);
775
776 CRTC_WRITE(PV_INTEN, 0);
777
778 platform_set_drvdata(pdev, NULL);
779}
780
781static const struct component_ops vc4_crtc_ops = {
782 .bind = vc4_crtc_bind,
783 .unbind = vc4_crtc_unbind,
784};
785
786static int vc4_crtc_dev_probe(struct platform_device *pdev)
787{
788 return component_add(&pdev->dev, &vc4_crtc_ops);
789}
790
791static int vc4_crtc_dev_remove(struct platform_device *pdev)
792{
793 component_del(&pdev->dev, &vc4_crtc_ops);
794 return 0;
795}
796
797struct platform_driver vc4_crtc_driver = {
798 .probe = vc4_crtc_dev_probe,
799 .remove = vc4_crtc_dev_remove,
800 .driver = {
801 .name = "vc4_crtc",
802 .of_match_table = vc4_crtc_dt_match,
803 },
804};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35
36#include <drm/drm_atomic.h>
37#include <drm/drm_atomic_helper.h>
38#include <drm/drm_atomic_uapi.h>
39#include <drm/drm_fb_cma_helper.h>
40#include <drm/drm_print.h>
41#include <drm/drm_probe_helper.h>
42#include <drm/drm_vblank.h>
43
44#include "vc4_drv.h"
45#include "vc4_regs.h"
46
47#define HVS_FIFO_LATENCY_PIX 6
48
49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52static const struct debugfs_reg32 crtc_regs[] = {
53 VC4_REG32(PV_CONTROL),
54 VC4_REG32(PV_V_CONTROL),
55 VC4_REG32(PV_VSYNCD_EVEN),
56 VC4_REG32(PV_HORZA),
57 VC4_REG32(PV_HORZB),
58 VC4_REG32(PV_VERTA),
59 VC4_REG32(PV_VERTB),
60 VC4_REG32(PV_VERTA_EVEN),
61 VC4_REG32(PV_VERTB_EVEN),
62 VC4_REG32(PV_INTEN),
63 VC4_REG32(PV_INTSTAT),
64 VC4_REG32(PV_STAT),
65 VC4_REG32(PV_HACT_ACT),
66};
67
68static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
69 bool in_vblank_irq,
70 int *vpos, int *hpos,
71 ktime_t *stime, ktime_t *etime,
72 const struct drm_display_mode *mode)
73{
74 struct drm_device *dev = crtc->dev;
75 struct vc4_dev *vc4 = to_vc4_dev(dev);
76 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
77 u32 val;
78 int fifo_lines;
79 int vblank_lines;
80 bool ret = false;
81
82 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
83
84 /* Get optional system timestamp before query. */
85 if (stime)
86 *stime = ktime_get();
87
88 /*
89 * Read vertical scanline which is currently composed for our
90 * pixelvalve by the HVS, and also the scaler status.
91 */
92 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
93
94 /* Get optional system timestamp after query. */
95 if (etime)
96 *etime = ktime_get();
97
98 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
99
100 /* Vertical position of hvs composed scanline. */
101 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
102 *hpos = 0;
103
104 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
105 *vpos /= 2;
106
107 /* Use hpos to correct for field offset in interlaced mode. */
108 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
109 *hpos += mode->crtc_htotal / 2;
110 }
111
112 /* This is the offset we need for translating hvs -> pv scanout pos. */
113 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
114
115 if (fifo_lines > 0)
116 ret = true;
117
118 /* HVS more than fifo_lines into frame for compositing? */
119 if (*vpos > fifo_lines) {
120 /*
121 * We are in active scanout and can get some meaningful results
122 * from HVS. The actual PV scanout can not trail behind more
123 * than fifo_lines as that is the fifo's capacity. Assume that
124 * in active scanout the HVS and PV work in lockstep wrt. HVS
125 * refilling the fifo and PV consuming from the fifo, ie.
126 * whenever the PV consumes and frees up a scanline in the
127 * fifo, the HVS will immediately refill it, therefore
128 * incrementing vpos. Therefore we choose HVS read position -
129 * fifo size in scanlines as a estimate of the real scanout
130 * position of the PV.
131 */
132 *vpos -= fifo_lines + 1;
133
134 return ret;
135 }
136
137 /*
138 * Less: This happens when we are in vblank and the HVS, after getting
139 * the VSTART restart signal from the PV, just started refilling its
140 * fifo with new lines from the top-most lines of the new framebuffers.
141 * The PV does not scan out in vblank, so does not remove lines from
142 * the fifo, so the fifo will be full quickly and the HVS has to pause.
143 * We can't get meaningful readings wrt. scanline position of the PV
144 * and need to make things up in a approximative but consistent way.
145 */
146 vblank_lines = mode->vtotal - mode->vdisplay;
147
148 if (in_vblank_irq) {
149 /*
150 * Assume the irq handler got called close to first
151 * line of vblank, so PV has about a full vblank
152 * scanlines to go, and as a base timestamp use the
153 * one taken at entry into vblank irq handler, so it
154 * is not affected by random delays due to lock
155 * contention on event_lock or vblank_time lock in
156 * the core.
157 */
158 *vpos = -vblank_lines;
159
160 if (stime)
161 *stime = vc4_crtc->t_vblank;
162 if (etime)
163 *etime = vc4_crtc->t_vblank;
164
165 /*
166 * If the HVS fifo is not yet full then we know for certain
167 * we are at the very beginning of vblank, as the hvs just
168 * started refilling, and the stime and etime timestamps
169 * truly correspond to start of vblank.
170 *
171 * Unfortunately there's no way to report this to upper levels
172 * and make it more useful.
173 */
174 } else {
175 /*
176 * No clue where we are inside vblank. Return a vpos of zero,
177 * which will cause calling code to just return the etime
178 * timestamp uncorrected. At least this is no worse than the
179 * standard fallback.
180 */
181 *vpos = 0;
182 }
183
184 return ret;
185}
186
187void vc4_crtc_destroy(struct drm_crtc *crtc)
188{
189 drm_crtc_cleanup(crtc);
190}
191
192static u32 vc4_get_fifo_full_level(u32 format)
193{
194 static const u32 fifo_len_bytes = 64;
195
196 switch (format) {
197 case PV_CONTROL_FORMAT_DSIV_16:
198 case PV_CONTROL_FORMAT_DSIC_16:
199 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
200 case PV_CONTROL_FORMAT_DSIV_18:
201 return fifo_len_bytes - 14;
202 case PV_CONTROL_FORMAT_24:
203 case PV_CONTROL_FORMAT_DSIV_24:
204 default:
205 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
206 }
207}
208
209/*
210 * Returns the encoder attached to the CRTC.
211 *
212 * VC4 can only scan out to one encoder at a time, while the DRM core
213 * allows drivers to push pixels to more than one encoder from the
214 * same CRTC.
215 */
216static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
217{
218 struct drm_connector *connector;
219 struct drm_connector_list_iter conn_iter;
220
221 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
222 drm_for_each_connector_iter(connector, &conn_iter) {
223 if (connector->state->crtc == crtc) {
224 drm_connector_list_iter_end(&conn_iter);
225 return connector->encoder;
226 }
227 }
228 drm_connector_list_iter_end(&conn_iter);
229
230 return NULL;
231}
232
233static void vc4_crtc_config_pv(struct drm_crtc *crtc)
234{
235 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
236 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 struct drm_crtc_state *state = crtc->state;
239 struct drm_display_mode *mode = &state->adjusted_mode;
240 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
242 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
243 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
244 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
245
246 /* Reset the PV fifo. */
247 CRTC_WRITE(PV_CONTROL, 0);
248 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
249 CRTC_WRITE(PV_CONTROL, 0);
250
251 CRTC_WRITE(PV_HORZA,
252 VC4_SET_FIELD((mode->htotal -
253 mode->hsync_end) * pixel_rep,
254 PV_HORZA_HBP) |
255 VC4_SET_FIELD((mode->hsync_end -
256 mode->hsync_start) * pixel_rep,
257 PV_HORZA_HSYNC));
258 CRTC_WRITE(PV_HORZB,
259 VC4_SET_FIELD((mode->hsync_start -
260 mode->hdisplay) * pixel_rep,
261 PV_HORZB_HFP) |
262 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
263
264 CRTC_WRITE(PV_VERTA,
265 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
266 PV_VERTA_VBP) |
267 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
268 PV_VERTA_VSYNC));
269 CRTC_WRITE(PV_VERTB,
270 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
271 PV_VERTB_VFP) |
272 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
273
274 if (interlace) {
275 CRTC_WRITE(PV_VERTA_EVEN,
276 VC4_SET_FIELD(mode->crtc_vtotal -
277 mode->crtc_vsync_end - 1,
278 PV_VERTA_VBP) |
279 VC4_SET_FIELD(mode->crtc_vsync_end -
280 mode->crtc_vsync_start,
281 PV_VERTA_VSYNC));
282 CRTC_WRITE(PV_VERTB_EVEN,
283 VC4_SET_FIELD(mode->crtc_vsync_start -
284 mode->crtc_vdisplay,
285 PV_VERTB_VFP) |
286 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
287
288 /* We set up first field even mode for HDMI. VEC's
289 * NTSC mode would want first field odd instead, once
290 * we support it (to do so, set ODD_FIRST and put the
291 * delay in VSYNCD_EVEN instead).
292 */
293 CRTC_WRITE(PV_V_CONTROL,
294 PV_VCONTROL_CONTINUOUS |
295 (is_dsi ? PV_VCONTROL_DSI : 0) |
296 PV_VCONTROL_INTERLACE |
297 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
298 PV_VCONTROL_ODD_DELAY));
299 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
300 } else {
301 CRTC_WRITE(PV_V_CONTROL,
302 PV_VCONTROL_CONTINUOUS |
303 (is_dsi ? PV_VCONTROL_DSI : 0));
304 }
305
306 if (is_dsi)
307 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
308
309 CRTC_WRITE(PV_CONTROL,
310 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
311 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
312 PV_CONTROL_FIFO_LEVEL) |
313 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
314 PV_CONTROL_CLR_AT_START |
315 PV_CONTROL_TRIGGER_UNDERFLOW |
316 PV_CONTROL_WAIT_HSTART |
317 VC4_SET_FIELD(vc4_encoder->clock_select,
318 PV_CONTROL_CLK_SELECT) |
319 PV_CONTROL_FIFO_CLR |
320 PV_CONTROL_EN);
321}
322
323static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
324{
325 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326 bool debug_dump_regs = false;
327
328 if (debug_dump_regs) {
329 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
330 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
331 drm_crtc_index(crtc));
332 drm_print_regset32(&p, &vc4_crtc->regset);
333 }
334
335 vc4_crtc_config_pv(crtc);
336
337 vc4_hvs_mode_set_nofb(crtc);
338
339 if (debug_dump_regs) {
340 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
341 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
342 drm_crtc_index(crtc));
343 drm_print_regset32(&p, &vc4_crtc->regset);
344 }
345}
346
347static void require_hvs_enabled(struct drm_device *dev)
348{
349 struct vc4_dev *vc4 = to_vc4_dev(dev);
350
351 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
352 SCALER_DISPCTRL_ENABLE);
353}
354
355static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
356 struct drm_crtc_state *old_state)
357{
358 struct drm_device *dev = crtc->dev;
359 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
360 int ret;
361
362 require_hvs_enabled(dev);
363
364 /* Disable vblank irq handling before crtc is disabled. */
365 drm_crtc_vblank_off(crtc);
366
367 CRTC_WRITE(PV_V_CONTROL,
368 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
369 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
370 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
371
372 vc4_hvs_atomic_disable(crtc, old_state);
373
374 /*
375 * Make sure we issue a vblank event after disabling the CRTC if
376 * someone was waiting it.
377 */
378 if (crtc->state->event) {
379 unsigned long flags;
380
381 spin_lock_irqsave(&dev->event_lock, flags);
382 drm_crtc_send_vblank_event(crtc, crtc->state->event);
383 crtc->state->event = NULL;
384 spin_unlock_irqrestore(&dev->event_lock, flags);
385 }
386}
387
388static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
389 struct drm_crtc_state *old_state)
390{
391 struct drm_device *dev = crtc->dev;
392 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
393
394 require_hvs_enabled(dev);
395
396 /* Enable vblank irq handling before crtc is started otherwise
397 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
398 */
399 drm_crtc_vblank_on(crtc);
400
401 vc4_hvs_atomic_enable(crtc, old_state);
402
403 /* When feeding the transposer block the pixelvalve is unneeded and
404 * should not be enabled.
405 */
406 CRTC_WRITE(PV_V_CONTROL,
407 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
408}
409
410static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
411 const struct drm_display_mode *mode)
412{
413 /* Do not allow doublescan modes from user space */
414 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
415 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
416 crtc->base.id);
417 return MODE_NO_DBLESCAN;
418 }
419
420 return MODE_OK;
421}
422
423void vc4_crtc_get_margins(struct drm_crtc_state *state,
424 unsigned int *left, unsigned int *right,
425 unsigned int *top, unsigned int *bottom)
426{
427 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
428 struct drm_connector_state *conn_state;
429 struct drm_connector *conn;
430 int i;
431
432 *left = vc4_state->margins.left;
433 *right = vc4_state->margins.right;
434 *top = vc4_state->margins.top;
435 *bottom = vc4_state->margins.bottom;
436
437 /* We have to interate over all new connector states because
438 * vc4_crtc_get_margins() might be called before
439 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
440 * might be outdated.
441 */
442 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
443 if (conn_state->crtc != state->crtc)
444 continue;
445
446 *left = conn_state->tv.margins.left;
447 *right = conn_state->tv.margins.right;
448 *top = conn_state->tv.margins.top;
449 *bottom = conn_state->tv.margins.bottom;
450 break;
451 }
452}
453
454static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
455 struct drm_crtc_state *state)
456{
457 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
458 struct drm_connector *conn;
459 struct drm_connector_state *conn_state;
460 int ret, i;
461
462 ret = vc4_hvs_atomic_check(crtc, state);
463 if (ret)
464 return ret;
465
466 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
467 if (conn_state->crtc != crtc)
468 continue;
469
470 vc4_state->margins.left = conn_state->tv.margins.left;
471 vc4_state->margins.right = conn_state->tv.margins.right;
472 vc4_state->margins.top = conn_state->tv.margins.top;
473 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
474 break;
475 }
476
477 return 0;
478}
479
480static int vc4_enable_vblank(struct drm_crtc *crtc)
481{
482 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
483
484 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
485
486 return 0;
487}
488
489static void vc4_disable_vblank(struct drm_crtc *crtc)
490{
491 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492
493 CRTC_WRITE(PV_INTEN, 0);
494}
495
496static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
497{
498 struct drm_crtc *crtc = &vc4_crtc->base;
499 struct drm_device *dev = crtc->dev;
500 struct vc4_dev *vc4 = to_vc4_dev(dev);
501 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502 u32 chan = vc4_crtc->channel;
503 unsigned long flags;
504
505 spin_lock_irqsave(&dev->event_lock, flags);
506 if (vc4_crtc->event &&
507 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
508 vc4_state->feed_txp)) {
509 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
510 vc4_crtc->event = NULL;
511 drm_crtc_vblank_put(crtc);
512
513 /* Wait for the page flip to unmask the underrun to ensure that
514 * the display list was updated by the hardware. Before that
515 * happens, the HVS will be using the previous display list with
516 * the CRTC and encoder already reconfigured, leading to
517 * underruns. This can be seen when reconfiguring the CRTC.
518 */
519 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
520 }
521 spin_unlock_irqrestore(&dev->event_lock, flags);
522}
523
524void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
525{
526 crtc->t_vblank = ktime_get();
527 drm_crtc_handle_vblank(&crtc->base);
528 vc4_crtc_handle_page_flip(crtc);
529}
530
531static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
532{
533 struct vc4_crtc *vc4_crtc = data;
534 u32 stat = CRTC_READ(PV_INTSTAT);
535 irqreturn_t ret = IRQ_NONE;
536
537 if (stat & PV_INT_VFP_START) {
538 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
539 vc4_crtc_handle_vblank(vc4_crtc);
540 ret = IRQ_HANDLED;
541 }
542
543 return ret;
544}
545
546struct vc4_async_flip_state {
547 struct drm_crtc *crtc;
548 struct drm_framebuffer *fb;
549 struct drm_framebuffer *old_fb;
550 struct drm_pending_vblank_event *event;
551
552 struct vc4_seqno_cb cb;
553};
554
555/* Called when the V3D execution for the BO being flipped to is done, so that
556 * we can actually update the plane's address to point to it.
557 */
558static void
559vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
560{
561 struct vc4_async_flip_state *flip_state =
562 container_of(cb, struct vc4_async_flip_state, cb);
563 struct drm_crtc *crtc = flip_state->crtc;
564 struct drm_device *dev = crtc->dev;
565 struct vc4_dev *vc4 = to_vc4_dev(dev);
566 struct drm_plane *plane = crtc->primary;
567
568 vc4_plane_async_set_fb(plane, flip_state->fb);
569 if (flip_state->event) {
570 unsigned long flags;
571
572 spin_lock_irqsave(&dev->event_lock, flags);
573 drm_crtc_send_vblank_event(crtc, flip_state->event);
574 spin_unlock_irqrestore(&dev->event_lock, flags);
575 }
576
577 drm_crtc_vblank_put(crtc);
578 drm_framebuffer_put(flip_state->fb);
579
580 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
581 * when the planes are updated through the async update path.
582 * FIXME: we should move to generic async-page-flip when it's
583 * available, so that we can get rid of this hand-made cleanup_fb()
584 * logic.
585 */
586 if (flip_state->old_fb) {
587 struct drm_gem_cma_object *cma_bo;
588 struct vc4_bo *bo;
589
590 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
591 bo = to_vc4_bo(&cma_bo->base);
592 vc4_bo_dec_usecnt(bo);
593 drm_framebuffer_put(flip_state->old_fb);
594 }
595
596 kfree(flip_state);
597
598 up(&vc4->async_modeset);
599}
600
601/* Implements async (non-vblank-synced) page flips.
602 *
603 * The page flip ioctl needs to return immediately, so we grab the
604 * modeset semaphore on the pipe, and queue the address update for
605 * when V3D is done with the BO being flipped to.
606 */
607static int vc4_async_page_flip(struct drm_crtc *crtc,
608 struct drm_framebuffer *fb,
609 struct drm_pending_vblank_event *event,
610 uint32_t flags)
611{
612 struct drm_device *dev = crtc->dev;
613 struct vc4_dev *vc4 = to_vc4_dev(dev);
614 struct drm_plane *plane = crtc->primary;
615 int ret = 0;
616 struct vc4_async_flip_state *flip_state;
617 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
618 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
619
620 /* Increment the BO usecnt here, so that we never end up with an
621 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
622 * plane is later updated through the non-async path.
623 * FIXME: we should move to generic async-page-flip when it's
624 * available, so that we can get rid of this hand-made prepare_fb()
625 * logic.
626 */
627 ret = vc4_bo_inc_usecnt(bo);
628 if (ret)
629 return ret;
630
631 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
632 if (!flip_state) {
633 vc4_bo_dec_usecnt(bo);
634 return -ENOMEM;
635 }
636
637 drm_framebuffer_get(fb);
638 flip_state->fb = fb;
639 flip_state->crtc = crtc;
640 flip_state->event = event;
641
642 /* Make sure all other async modesetes have landed. */
643 ret = down_interruptible(&vc4->async_modeset);
644 if (ret) {
645 drm_framebuffer_put(fb);
646 vc4_bo_dec_usecnt(bo);
647 kfree(flip_state);
648 return ret;
649 }
650
651 /* Save the current FB before it's replaced by the new one in
652 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
653 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
654 * it consistent.
655 * FIXME: we should move to generic async-page-flip when it's
656 * available, so that we can get rid of this hand-made cleanup_fb()
657 * logic.
658 */
659 flip_state->old_fb = plane->state->fb;
660 if (flip_state->old_fb)
661 drm_framebuffer_get(flip_state->old_fb);
662
663 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
664
665 /* Immediately update the plane's legacy fb pointer, so that later
666 * modeset prep sees the state that will be present when the semaphore
667 * is released.
668 */
669 drm_atomic_set_fb_for_plane(plane->state, fb);
670
671 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
672 vc4_async_page_flip_complete);
673
674 /* Driver takes ownership of state on successful async commit. */
675 return 0;
676}
677
678int vc4_page_flip(struct drm_crtc *crtc,
679 struct drm_framebuffer *fb,
680 struct drm_pending_vblank_event *event,
681 uint32_t flags,
682 struct drm_modeset_acquire_ctx *ctx)
683{
684 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
685 return vc4_async_page_flip(crtc, fb, event, flags);
686 else
687 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
688}
689
690struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
691{
692 struct vc4_crtc_state *vc4_state, *old_vc4_state;
693
694 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
695 if (!vc4_state)
696 return NULL;
697
698 old_vc4_state = to_vc4_crtc_state(crtc->state);
699 vc4_state->feed_txp = old_vc4_state->feed_txp;
700 vc4_state->margins = old_vc4_state->margins;
701
702 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
703 return &vc4_state->base;
704}
705
706void vc4_crtc_destroy_state(struct drm_crtc *crtc,
707 struct drm_crtc_state *state)
708{
709 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
710 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
711
712 if (drm_mm_node_allocated(&vc4_state->mm)) {
713 unsigned long flags;
714
715 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
716 drm_mm_remove_node(&vc4_state->mm);
717 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
718
719 }
720
721 drm_atomic_helper_crtc_destroy_state(crtc, state);
722}
723
724void vc4_crtc_reset(struct drm_crtc *crtc)
725{
726 if (crtc->state)
727 vc4_crtc_destroy_state(crtc, crtc->state);
728 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
729 if (crtc->state)
730 __drm_atomic_helper_crtc_reset(crtc, crtc->state);
731}
732
733static const struct drm_crtc_funcs vc4_crtc_funcs = {
734 .set_config = drm_atomic_helper_set_config,
735 .destroy = vc4_crtc_destroy,
736 .page_flip = vc4_page_flip,
737 .set_property = NULL,
738 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
739 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
740 .reset = vc4_crtc_reset,
741 .atomic_duplicate_state = vc4_crtc_duplicate_state,
742 .atomic_destroy_state = vc4_crtc_destroy_state,
743 .gamma_set = drm_atomic_helper_legacy_gamma_set,
744 .enable_vblank = vc4_enable_vblank,
745 .disable_vblank = vc4_disable_vblank,
746 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
747};
748
749static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
750 .mode_set_nofb = vc4_crtc_mode_set_nofb,
751 .mode_valid = vc4_crtc_mode_valid,
752 .atomic_check = vc4_crtc_atomic_check,
753 .atomic_flush = vc4_hvs_atomic_flush,
754 .atomic_enable = vc4_crtc_atomic_enable,
755 .atomic_disable = vc4_crtc_atomic_disable,
756 .get_scanout_position = vc4_crtc_get_scanout_position,
757};
758
759static const struct vc4_pv_data bcm2835_pv0_data = {
760 .base = {
761 .hvs_channel = 0,
762 },
763 .debugfs_name = "crtc0_regs",
764 .encoder_types = {
765 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
766 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
767 },
768};
769
770static const struct vc4_pv_data bcm2835_pv1_data = {
771 .base = {
772 .hvs_channel = 2,
773 },
774 .debugfs_name = "crtc1_regs",
775 .encoder_types = {
776 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
777 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
778 },
779};
780
781static const struct vc4_pv_data bcm2835_pv2_data = {
782 .base = {
783 .hvs_channel = 1,
784 },
785 .debugfs_name = "crtc2_regs",
786 .encoder_types = {
787 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
788 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
789 },
790};
791
792static const struct of_device_id vc4_crtc_dt_match[] = {
793 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
794 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
795 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
796 {}
797};
798
799static void vc4_set_crtc_possible_masks(struct drm_device *drm,
800 struct drm_crtc *crtc)
801{
802 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
803 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
804 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
805 struct drm_encoder *encoder;
806
807 drm_for_each_encoder(encoder, drm) {
808 struct vc4_encoder *vc4_encoder;
809 int i;
810
811 vc4_encoder = to_vc4_encoder(encoder);
812 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
813 if (vc4_encoder->type == encoder_types[i]) {
814 vc4_encoder->clock_select = i;
815 encoder->possible_crtcs |= drm_crtc_mask(crtc);
816 break;
817 }
818 }
819 }
820}
821
822static void
823vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
824{
825 struct drm_device *drm = vc4_crtc->base.dev;
826 struct vc4_dev *vc4 = to_vc4_dev(drm);
827 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
828 /* Top/base are supposed to be 4-pixel aligned, but the
829 * Raspberry Pi firmware fills the low bits (which are
830 * presumably ignored).
831 */
832 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
833 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
834
835 vc4_crtc->cob_size = top - base + 4;
836}
837
838int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
839 const struct drm_crtc_funcs *crtc_funcs,
840 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
841{
842 struct drm_crtc *crtc = &vc4_crtc->base;
843 struct drm_plane *primary_plane;
844 unsigned int i;
845
846 /* For now, we create just the primary and the legacy cursor
847 * planes. We should be able to stack more planes on easily,
848 * but to do that we would need to compute the bandwidth
849 * requirement of the plane configuration, and reject ones
850 * that will take too much.
851 */
852 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
853 if (IS_ERR(primary_plane)) {
854 dev_err(drm->dev, "failed to construct primary plane\n");
855 return PTR_ERR(primary_plane);
856 }
857
858 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
859 crtc_funcs, NULL);
860 drm_crtc_helper_add(crtc, crtc_helper_funcs);
861 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
862 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
863 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
864
865 /* We support CTM, but only for one CRTC at a time. It's therefore
866 * implemented as private driver state in vc4_kms, not here.
867 */
868 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
869 vc4_crtc_get_cob_allocation(vc4_crtc);
870
871 for (i = 0; i < crtc->gamma_size; i++) {
872 vc4_crtc->lut_r[i] = i;
873 vc4_crtc->lut_g[i] = i;
874 vc4_crtc->lut_b[i] = i;
875 }
876
877 return 0;
878}
879
880static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
881{
882 struct platform_device *pdev = to_platform_device(dev);
883 struct drm_device *drm = dev_get_drvdata(master);
884 const struct vc4_pv_data *pv_data;
885 struct vc4_crtc *vc4_crtc;
886 struct drm_crtc *crtc;
887 struct drm_plane *destroy_plane, *temp;
888 int ret;
889
890 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
891 if (!vc4_crtc)
892 return -ENOMEM;
893 crtc = &vc4_crtc->base;
894
895 pv_data = of_device_get_match_data(dev);
896 if (!pv_data)
897 return -ENODEV;
898 vc4_crtc->data = &pv_data->base;
899 vc4_crtc->pdev = pdev;
900
901 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
902 if (IS_ERR(vc4_crtc->regs))
903 return PTR_ERR(vc4_crtc->regs);
904
905 vc4_crtc->regset.base = vc4_crtc->regs;
906 vc4_crtc->regset.regs = crtc_regs;
907 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
908
909 ret = vc4_crtc_init(drm, vc4_crtc,
910 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
911 if (ret)
912 return ret;
913 vc4_set_crtc_possible_masks(drm, crtc);
914
915 CRTC_WRITE(PV_INTEN, 0);
916 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
917 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
918 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
919 if (ret)
920 goto err_destroy_planes;
921
922 platform_set_drvdata(pdev, vc4_crtc);
923
924 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
925 &vc4_crtc->regset);
926
927 return 0;
928
929err_destroy_planes:
930 list_for_each_entry_safe(destroy_plane, temp,
931 &drm->mode_config.plane_list, head) {
932 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
933 destroy_plane->funcs->destroy(destroy_plane);
934 }
935
936 return ret;
937}
938
939static void vc4_crtc_unbind(struct device *dev, struct device *master,
940 void *data)
941{
942 struct platform_device *pdev = to_platform_device(dev);
943 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
944
945 vc4_crtc_destroy(&vc4_crtc->base);
946
947 CRTC_WRITE(PV_INTEN, 0);
948
949 platform_set_drvdata(pdev, NULL);
950}
951
952static const struct component_ops vc4_crtc_ops = {
953 .bind = vc4_crtc_bind,
954 .unbind = vc4_crtc_unbind,
955};
956
957static int vc4_crtc_dev_probe(struct platform_device *pdev)
958{
959 return component_add(&pdev->dev, &vc4_crtc_ops);
960}
961
962static int vc4_crtc_dev_remove(struct platform_device *pdev)
963{
964 component_del(&pdev->dev, &vc4_crtc_ops);
965 return 0;
966}
967
968struct platform_driver vc4_crtc_driver = {
969 .probe = vc4_crtc_dev_probe,
970 .remove = vc4_crtc_dev_remove,
971 .driver = {
972 .name = "vc4_crtc",
973 .of_match_table = vc4_crtc_dt_match,
974 },
975};