Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2015 Broadcom
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8
  9/**
 10 * DOC: VC4 CRTC module
 11 *
 12 * In VC4, the Pixel Valve is what most closely corresponds to the
 13 * DRM's concept of a CRTC.  The PV generates video timings from the
 14 * output's clock plus its configuration.  It pulls scaled pixels from
 15 * the HVS at that timing, and feeds it to the encoder.
 16 *
 17 * However, the DRM CRTC also collects the configuration of all the
 18 * DRM planes attached to it.  As a result, this file also manages
 19 * setup of the VC4 HVS's display elements on the CRTC.
 
 20 *
 21 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 23 * image domain can feed either HDMI or the SDTV controller.  The
 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 25 * SDTV, etc.) according to which output type is chosen in the mux.
 26 *
 27 * For power management, the pixel valve's registers are all clocked
 28 * by the AXI clock, while the timings and FIFOs make use of the
 29 * output-specific clock.  Since the encoders also directly consume
 30 * the CPRMAN clocks, and know what timings they need, they are the
 31 * ones that set the clock.
 32 */
 33
 34#include "drm_atomic.h"
 35#include "drm_atomic_helper.h"
 36#include "drm_crtc_helper.h"
 37#include "linux/clk.h"
 38#include "drm_fb_cma_helper.h"
 39#include "linux/component.h"
 40#include "linux/of_device.h"
 
 
 
 
 
 41#include "vc4_drv.h"
 42#include "vc4_regs.h"
 43
 44struct vc4_crtc {
 45	struct drm_crtc base;
 46	const struct vc4_crtc_data *data;
 47	void __iomem *regs;
 48
 49	/* Which HVS channel we're using for our CRTC. */
 50	int channel;
 51
 52	struct drm_pending_vblank_event *event;
 53};
 54
 55struct vc4_crtc_state {
 56	struct drm_crtc_state base;
 57	/* Dlist area for this CRTC configuration. */
 58	struct drm_mm_node mm;
 59};
 60
 61static inline struct vc4_crtc *
 62to_vc4_crtc(struct drm_crtc *crtc)
 63{
 64	return (struct vc4_crtc *)crtc;
 65}
 66
 67static inline struct vc4_crtc_state *
 68to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
 69{
 70	return (struct vc4_crtc_state *)crtc_state;
 71}
 72
 73struct vc4_crtc_data {
 74	/* Which channel of the HVS this pixelvalve sources from. */
 75	int hvs_channel;
 76
 77	enum vc4_encoder_type encoder0_type;
 78	enum vc4_encoder_type encoder1_type;
 79};
 80
 81#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
 82#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
 83
 84#define CRTC_REG(reg) { reg, #reg }
 85static const struct {
 86	u32 reg;
 87	const char *name;
 88} crtc_regs[] = {
 89	CRTC_REG(PV_CONTROL),
 90	CRTC_REG(PV_V_CONTROL),
 91	CRTC_REG(PV_VSYNCD_EVEN),
 92	CRTC_REG(PV_HORZA),
 93	CRTC_REG(PV_HORZB),
 94	CRTC_REG(PV_VERTA),
 95	CRTC_REG(PV_VERTB),
 96	CRTC_REG(PV_VERTA_EVEN),
 97	CRTC_REG(PV_VERTB_EVEN),
 98	CRTC_REG(PV_INTEN),
 99	CRTC_REG(PV_INTSTAT),
100	CRTC_REG(PV_STAT),
101	CRTC_REG(PV_HACT_ACT),
102};
103
104static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
 
105{
106	int i;
 
 
 
 
 
 
107
108	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109		DRM_INFO("0x%04x (%s): 0x%08x\n",
110			 crtc_regs[i].reg, crtc_regs[i].name,
111			 CRTC_READ(crtc_regs[i].reg));
112	}
113}
114
115#ifdef CONFIG_DEBUG_FS
116int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
 
 
 
117{
118	struct drm_info_node *node = (struct drm_info_node *)m->private;
119	struct drm_device *dev = node->minor->dev;
120	int crtc_index = (uintptr_t)node->info_ent->data;
121	struct drm_crtc *crtc;
122	struct vc4_crtc *vc4_crtc;
123	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125	i = 0;
126	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127		if (i == crtc_index)
128			break;
129		i++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130	}
131	if (!crtc)
132		return 0;
133	vc4_crtc = to_vc4_crtc(crtc);
134
135	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136		seq_printf(m, "%s (0x%04x): 0x%08x\n",
137			   crtc_regs[i].name, crtc_regs[i].reg,
138			   CRTC_READ(crtc_regs[i].reg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139	}
140
141	return 0;
142}
143#endif
144
145static void vc4_crtc_destroy(struct drm_crtc *crtc)
146{
147	drm_crtc_cleanup(crtc);
148}
149
150static u32 vc4_get_fifo_full_level(u32 format)
151{
152	static const u32 fifo_len_bytes = 64;
153	static const u32 hvs_latency_pix = 6;
154
 
 
 
 
 
 
 
 
 
 
 
 
155	switch (format) {
156	case PV_CONTROL_FORMAT_DSIV_16:
157	case PV_CONTROL_FORMAT_DSIC_16:
158		return fifo_len_bytes - 2 * hvs_latency_pix;
159	case PV_CONTROL_FORMAT_DSIV_18:
160		return fifo_len_bytes - 14;
161	case PV_CONTROL_FORMAT_24:
162	case PV_CONTROL_FORMAT_DSIV_24:
163	default:
164		return fifo_len_bytes - 3 * hvs_latency_pix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165	}
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
168/*
169 * Returns the clock select bit for the connector attached to the
170 * CRTC.
 
 
 
171 */
172static int vc4_get_clock_select(struct drm_crtc *crtc)
 
 
 
173{
174	struct drm_connector *connector;
 
175
176	drm_for_each_connector(connector, crtc->dev) {
177		if (connector->state->crtc == crtc) {
178			struct drm_encoder *encoder = connector->encoder;
179			struct vc4_encoder *vc4_encoder =
180				to_vc4_encoder(encoder);
181
182			return vc4_encoder->clock_select;
 
 
 
 
 
183		}
184	}
 
 
 
 
185
186	return -1;
 
 
 
 
 
 
187}
188
189static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190{
191	struct drm_device *dev = crtc->dev;
192	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 
 
193	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194	struct drm_crtc_state *state = crtc->state;
195	struct drm_display_mode *mode = &state->adjusted_mode;
 
196	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198	u32 format = PV_CONTROL_FORMAT_24;
 
 
 
199	bool debug_dump_regs = false;
200	int clock_select = vc4_get_clock_select(crtc);
201
202	if (debug_dump_regs) {
203		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204		vc4_crtc_dump_regs(vc4_crtc);
 
 
205	}
206
207	/* Reset the PV fifo. */
208	CRTC_WRITE(PV_CONTROL, 0);
209	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210	CRTC_WRITE(PV_CONTROL, 0);
211
212	CRTC_WRITE(PV_HORZA,
213		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
214				 PV_HORZA_HBP) |
215		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
216				 PV_HORZA_HSYNC));
 
217	CRTC_WRITE(PV_HORZB,
218		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
219				 PV_HORZB_HFP) |
220		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
 
221
222	CRTC_WRITE(PV_VERTA,
223		   VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224				 PV_VERTA_VBP) |
225		   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226				 PV_VERTA_VSYNC));
227	CRTC_WRITE(PV_VERTB,
228		   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229				 PV_VERTB_VFP) |
230		   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231
232	if (interlace) {
233		CRTC_WRITE(PV_VERTA_EVEN,
234			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
 
235					 PV_VERTA_VBP) |
236			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
 
237					 PV_VERTA_VSYNC));
238		CRTC_WRITE(PV_VERTB_EVEN,
239			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
 
240					 PV_VERTB_VFP) |
241			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242	}
243
244	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
245
246	CRTC_WRITE(PV_V_CONTROL,
247		   PV_VCONTROL_CONTINUOUS |
248		   (interlace ? PV_VCONTROL_INTERLACE : 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
250	CRTC_WRITE(PV_CONTROL,
 
251		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253				 PV_CONTROL_FIFO_LEVEL) |
254		   PV_CONTROL_CLR_AT_START |
255		   PV_CONTROL_TRIGGER_UNDERFLOW |
256		   PV_CONTROL_WAIT_HSTART |
257		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
258		   PV_CONTROL_FIFO_CLR |
259		   PV_CONTROL_EN);
260
261	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262		  SCALER_DISPBKGND_AUTOHS |
263		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264
265	if (debug_dump_regs) {
266		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267		vc4_crtc_dump_regs(vc4_crtc);
 
 
268	}
269}
270
271static void require_hvs_enabled(struct drm_device *dev)
272{
273	struct vc4_dev *vc4 = to_vc4_dev(dev);
274
275	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276		     SCALER_DISPCTRL_ENABLE);
277}
278
279static void vc4_crtc_disable(struct drm_crtc *crtc)
 
 
 
280{
281	struct drm_device *dev = crtc->dev;
282	struct vc4_dev *vc4 = to_vc4_dev(dev);
283	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284	u32 chan = vc4_crtc->channel;
285	int ret;
286	require_hvs_enabled(dev);
287
288	CRTC_WRITE(PV_V_CONTROL,
289		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292
293	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294	    SCALER_DISPCTRLX_ENABLE) {
295		HVS_WRITE(SCALER_DISPCTRLX(chan),
296			  SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298		/* While the docs say that reset is self-clearing, it
299		 * seems it doesn't actually.
300		 */
301		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302	}
303
304	/* Once we leave, the scaler should be disabled and its fifo empty. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
306	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 
 
307
308	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309				   SCALER_DISPSTATX_MODE) !=
310		     SCALER_DISPSTATX_MODE_DISABLED);
 
 
311
312	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314		     SCALER_DISPSTATX_EMPTY);
315}
316
317static void vc4_crtc_enable(struct drm_crtc *crtc)
 
318{
 
 
 
 
 
319	struct drm_device *dev = crtc->dev;
320	struct vc4_dev *vc4 = to_vc4_dev(dev);
321	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322	struct drm_crtc_state *state = crtc->state;
323	struct drm_display_mode *mode = &state->adjusted_mode;
324
325	require_hvs_enabled(dev);
326
327	/* Turn on the scaler, which will wait for vstart to start
328	 * compositing.
 
 
 
 
 
 
329	 */
330	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333		  SCALER_DISPCTRLX_ENABLE);
334
335	/* Turn on the pixel valve, which will emit the vstart signal. */
336	CRTC_WRITE(PV_V_CONTROL,
337		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 
 
338}
339
340static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341				 struct drm_crtc_state *state)
342{
343	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344	struct drm_device *dev = crtc->dev;
345	struct vc4_dev *vc4 = to_vc4_dev(dev);
346	struct drm_plane *plane;
347	unsigned long flags;
348	u32 dlist_count = 0;
349	int ret;
 
350
351	/* The pixelvalve can only feed one encoder (and encoders are
352	 * 1:1 with connectors.)
353	 */
354	if (hweight32(state->connector_mask) > 1)
355		return -EINVAL;
356
357	drm_atomic_crtc_state_for_each_plane(plane, state) {
358		struct drm_plane_state *plane_state =
359			state->state->plane_states[drm_plane_index(plane)];
360
361		/* plane might not have changed, in which case take
362		 * current state:
363		 */
364		if (!plane_state)
365			plane_state = plane->state;
366
367		dlist_count += vc4_plane_dlist_size(plane_state);
368	}
369
370	dlist_count++; /* Account for SCALER_CTL0_END. */
371
372	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374				 dlist_count, 1, 0);
375	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376	if (ret)
377		return ret;
378
379	return 0;
 
 
 
 
 
 
 
380}
381
382static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383				  struct drm_crtc_state *old_state)
384{
385	struct drm_device *dev = crtc->dev;
386	struct vc4_dev *vc4 = to_vc4_dev(dev);
387	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389	struct drm_plane *plane;
390	bool debug_dump_regs = false;
391	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392	u32 __iomem *dlist_next = dlist_start;
393
394	if (debug_dump_regs) {
395		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396		vc4_hvs_dump_state(dev);
397	}
398
399	/* Copy all the active planes' dlist contents to the hardware dlist. */
400	drm_atomic_crtc_for_each_plane(plane, crtc) {
401		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402	}
403
404	writel(SCALER_CTL0_END, dlist_next);
405	dlist_next++;
406
407	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 
 
 
 
 
 
 
408
409	HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410		  vc4_state->mm.start);
 
 
 
 
 
 
 
 
 
 
 
411
412	if (debug_dump_regs) {
413		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414		vc4_hvs_dump_state(dev);
 
 
415	}
 
416
417	if (crtc->state->event) {
418		unsigned long flags;
 
 
 
 
 
 
 
419
420		crtc->state->event->pipe = drm_crtc_index(crtc);
 
 
421
422		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 
 
 
423
424		spin_lock_irqsave(&dev->event_lock, flags);
425		vc4_crtc->event = crtc->state->event;
426		spin_unlock_irqrestore(&dev->event_lock, flags);
427		crtc->state->event = NULL;
 
428	}
 
 
429}
430
431int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432{
433	struct vc4_dev *vc4 = to_vc4_dev(dev);
434	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435
436	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437
438	return 0;
439}
440
441void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442{
443	struct vc4_dev *vc4 = to_vc4_dev(dev);
444	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445
446	CRTC_WRITE(PV_INTEN, 0);
447}
448
449static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450{
451	struct drm_crtc *crtc = &vc4_crtc->base;
452	struct drm_device *dev = crtc->dev;
 
 
 
453	unsigned long flags;
454
455	spin_lock_irqsave(&dev->event_lock, flags);
456	if (vc4_crtc->event) {
 
 
457		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458		vc4_crtc->event = NULL;
 
 
 
 
 
 
 
 
 
459	}
460	spin_unlock_irqrestore(&dev->event_lock, flags);
461}
462
 
 
 
 
 
 
 
463static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464{
465	struct vc4_crtc *vc4_crtc = data;
466	u32 stat = CRTC_READ(PV_INTSTAT);
467	irqreturn_t ret = IRQ_NONE;
468
469	if (stat & PV_INT_VFP_START) {
470		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471		drm_crtc_handle_vblank(&vc4_crtc->base);
472		vc4_crtc_handle_page_flip(vc4_crtc);
473		ret = IRQ_HANDLED;
474	}
475
476	return ret;
477}
478
479struct vc4_async_flip_state {
480	struct drm_crtc *crtc;
481	struct drm_framebuffer *fb;
 
482	struct drm_pending_vblank_event *event;
483
484	struct vc4_seqno_cb cb;
485};
486
487/* Called when the V3D execution for the BO being flipped to is done, so that
488 * we can actually update the plane's address to point to it.
489 */
490static void
491vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492{
493	struct vc4_async_flip_state *flip_state =
494		container_of(cb, struct vc4_async_flip_state, cb);
495	struct drm_crtc *crtc = flip_state->crtc;
496	struct drm_device *dev = crtc->dev;
497	struct vc4_dev *vc4 = to_vc4_dev(dev);
498	struct drm_plane *plane = crtc->primary;
499
500	vc4_plane_async_set_fb(plane, flip_state->fb);
501	if (flip_state->event) {
502		unsigned long flags;
503
504		spin_lock_irqsave(&dev->event_lock, flags);
505		drm_crtc_send_vblank_event(crtc, flip_state->event);
506		spin_unlock_irqrestore(&dev->event_lock, flags);
507	}
508
509	drm_framebuffer_unreference(flip_state->fb);
510	kfree(flip_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511
512	up(&vc4->async_modeset);
513}
514
515/* Implements async (non-vblank-synced) page flips.
516 *
517 * The page flip ioctl needs to return immediately, so we grab the
518 * modeset semaphore on the pipe, and queue the address update for
519 * when V3D is done with the BO being flipped to.
520 */
521static int vc4_async_page_flip(struct drm_crtc *crtc,
522			       struct drm_framebuffer *fb,
523			       struct drm_pending_vblank_event *event,
524			       uint32_t flags)
525{
526	struct drm_device *dev = crtc->dev;
527	struct vc4_dev *vc4 = to_vc4_dev(dev);
528	struct drm_plane *plane = crtc->primary;
529	int ret = 0;
530	struct vc4_async_flip_state *flip_state;
531	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533
 
 
 
 
 
 
 
 
 
 
 
534	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535	if (!flip_state)
 
536		return -ENOMEM;
 
537
538	drm_framebuffer_reference(fb);
539	flip_state->fb = fb;
540	flip_state->crtc = crtc;
541	flip_state->event = event;
542
543	/* Make sure all other async modesetes have landed. */
544	ret = down_interruptible(&vc4->async_modeset);
545	if (ret) {
546		drm_framebuffer_unreference(fb);
547		kfree(flip_state);
548		return ret;
549	}
 
 
 
 
 
 
550
551	/* Immediately update the plane's legacy fb pointer, so that later
552	 * modeset prep sees the state that will be present when the semaphore
553	 * is released.
554	 */
555	drm_atomic_set_fb_for_plane(plane->state, fb);
556	plane->fb = fb;
557
558	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559			   vc4_async_page_flip_complete);
560
561	/* Driver takes ownership of state on successful async commit. */
562	return 0;
563}
564
565static int vc4_page_flip(struct drm_crtc *crtc,
566			 struct drm_framebuffer *fb,
567			 struct drm_pending_vblank_event *event,
568			 uint32_t flags)
 
569{
570	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571		return vc4_async_page_flip(crtc, fb, event, flags);
572	else
573		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574}
575
576static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577{
578	struct vc4_crtc_state *vc4_state;
579
580	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581	if (!vc4_state)
582		return NULL;
583
 
 
 
 
 
584	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585	return &vc4_state->base;
586}
587
588static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589				   struct drm_crtc_state *state)
590{
591	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593
594	if (vc4_state->mm.allocated) {
595		unsigned long flags;
596
597		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598		drm_mm_remove_node(&vc4_state->mm);
599		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600
601	}
602
603	__drm_atomic_helper_crtc_destroy_state(crtc, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604}
605
606static const struct drm_crtc_funcs vc4_crtc_funcs = {
607	.set_config = drm_atomic_helper_set_config,
608	.destroy = vc4_crtc_destroy,
609	.page_flip = vc4_page_flip,
610	.set_property = NULL,
611	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613	.reset = drm_atomic_helper_crtc_reset,
614	.atomic_duplicate_state = vc4_crtc_duplicate_state,
615	.atomic_destroy_state = vc4_crtc_destroy_state,
 
 
 
616};
617
618static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619	.mode_set_nofb = vc4_crtc_mode_set_nofb,
620	.disable = vc4_crtc_disable,
621	.enable = vc4_crtc_enable,
622	.atomic_check = vc4_crtc_atomic_check,
623	.atomic_flush = vc4_crtc_atomic_flush,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624};
625
626static const struct vc4_crtc_data pv0_data = {
627	.hvs_channel = 0,
628	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
629	.encoder1_type = VC4_ENCODER_TYPE_DPI,
 
 
 
 
 
 
 
630};
631
632static const struct vc4_crtc_data pv1_data = {
633	.hvs_channel = 2,
634	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
635	.encoder1_type = VC4_ENCODER_TYPE_SMI,
 
 
 
 
 
 
 
636};
637
638static const struct vc4_crtc_data pv2_data = {
639	.hvs_channel = 1,
640	.encoder0_type = VC4_ENCODER_TYPE_VEC,
641	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
 
 
 
 
 
 
 
642};
643
644static const struct of_device_id vc4_crtc_dt_match[] = {
645	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 
 
 
 
 
648	{}
649};
650
651static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652					struct drm_crtc *crtc)
653{
654	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
655	struct drm_encoder *encoder;
656
657	drm_for_each_encoder(encoder, drm) {
658		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 
 
 
 
659
660		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661			vc4_encoder->clock_select = 0;
662			encoder->possible_crtcs |= drm_crtc_mask(crtc);
663		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664			vc4_encoder->clock_select = 1;
665			encoder->possible_crtcs |= drm_crtc_mask(crtc);
 
666		}
667	}
668}
669
670static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
 
 
671{
672	struct platform_device *pdev = to_platform_device(dev);
673	struct drm_device *drm = dev_get_drvdata(master);
674	struct vc4_dev *vc4 = to_vc4_dev(drm);
675	struct vc4_crtc *vc4_crtc;
676	struct drm_crtc *crtc;
677	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678	const struct of_device_id *match;
679	int ret, i;
680
681	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682	if (!vc4_crtc)
683		return -ENOMEM;
684	crtc = &vc4_crtc->base;
685
686	match = of_match_device(vc4_crtc_dt_match, dev);
687	if (!match)
688		return -ENODEV;
689	vc4_crtc->data = match->data;
690
691	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692	if (IS_ERR(vc4_crtc->regs))
693		return PTR_ERR(vc4_crtc->regs);
694
695	/* For now, we create just the primary and the legacy cursor
696	 * planes.  We should be able to stack more planes on easily,
697	 * but to do that we would need to compute the bandwidth
698	 * requirement of the plane configuration, and reject ones
699	 * that will take too much.
700	 */
701	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702	if (IS_ERR(primary_plane)) {
703		dev_err(dev, "failed to construct primary plane\n");
704		ret = PTR_ERR(primary_plane);
705		goto err;
706	}
707
708	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709				  &vc4_crtc_funcs, NULL);
710	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711	primary_plane->crtc = crtc;
712	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
714
715	/* Set up some arbitrary number of planes.  We're not limited
716	 * by a set number of physical registers, just the space in
717	 * the HVS (16k) and how small an plane can be (28 bytes).
718	 * However, each plane we set up takes up some memory, and
719	 * increases the cost of looping over planes, which atomic
720	 * modesetting does quite a bit.  As a result, we pick a
721	 * modest number of planes to expose, that should hopefully
722	 * still cover any sane usecase.
723	 */
724	for (i = 0; i < 8; i++) {
725		struct drm_plane *plane =
726			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727
728		if (IS_ERR(plane))
729			continue;
 
 
730
731		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
 
 
 
732	}
733
734	/* Set up the legacy cursor after overlay initialization,
735	 * since we overlay planes on the CRTC in the order they were
736	 * initialized.
737	 */
738	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739	if (!IS_ERR(cursor_plane)) {
740		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741		cursor_plane->crtc = crtc;
742		crtc->cursor = cursor_plane;
743	}
744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745	CRTC_WRITE(PV_INTEN, 0);
746	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 
 
749	if (ret)
750		goto err_destroy_planes;
751
752	vc4_set_crtc_possible_masks(drm, crtc);
753
754	platform_set_drvdata(pdev, vc4_crtc);
755
 
 
 
756	return 0;
757
758err_destroy_planes:
759	list_for_each_entry_safe(destroy_plane, temp,
760				 &drm->mode_config.plane_list, head) {
761		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762		    destroy_plane->funcs->destroy(destroy_plane);
763	}
764err:
765	return ret;
766}
767
768static void vc4_crtc_unbind(struct device *dev, struct device *master,
769			    void *data)
770{
771	struct platform_device *pdev = to_platform_device(dev);
772	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773
774	vc4_crtc_destroy(&vc4_crtc->base);
775
776	CRTC_WRITE(PV_INTEN, 0);
777
778	platform_set_drvdata(pdev, NULL);
779}
780
781static const struct component_ops vc4_crtc_ops = {
782	.bind   = vc4_crtc_bind,
783	.unbind = vc4_crtc_unbind,
784};
785
786static int vc4_crtc_dev_probe(struct platform_device *pdev)
787{
788	return component_add(&pdev->dev, &vc4_crtc_ops);
789}
790
791static int vc4_crtc_dev_remove(struct platform_device *pdev)
792{
793	component_del(&pdev->dev, &vc4_crtc_ops);
794	return 0;
795}
796
797struct platform_driver vc4_crtc_driver = {
798	.probe = vc4_crtc_dev_probe,
799	.remove = vc4_crtc_dev_remove,
800	.driver = {
801		.name = "vc4_crtc",
802		.of_match_table = vc4_crtc_dt_match,
803	},
804};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
 
 
 
 
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of_device.h>
  35
  36#include <drm/drm_atomic.h>
  37#include <drm/drm_atomic_helper.h>
  38#include <drm/drm_atomic_uapi.h>
  39#include <drm/drm_fb_cma_helper.h>
  40#include <drm/drm_print.h>
  41#include <drm/drm_probe_helper.h>
  42#include <drm/drm_vblank.h>
  43
  44#include "vc4_drv.h"
  45#include "vc4_regs.h"
  46
  47#define HVS_FIFO_LATENCY_PIX	6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  51
  52static const struct debugfs_reg32 crtc_regs[] = {
  53	VC4_REG32(PV_CONTROL),
  54	VC4_REG32(PV_V_CONTROL),
  55	VC4_REG32(PV_VSYNCD_EVEN),
  56	VC4_REG32(PV_HORZA),
  57	VC4_REG32(PV_HORZB),
  58	VC4_REG32(PV_VERTA),
  59	VC4_REG32(PV_VERTB),
  60	VC4_REG32(PV_VERTA_EVEN),
  61	VC4_REG32(PV_VERTB_EVEN),
  62	VC4_REG32(PV_INTEN),
  63	VC4_REG32(PV_INTSTAT),
  64	VC4_REG32(PV_STAT),
  65	VC4_REG32(PV_HACT_ACT),
 
 
 
 
  66};
  67
  68static unsigned int
  69vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
  70{
  71	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
  72	/* Top/base are supposed to be 4-pixel aligned, but the
  73	 * Raspberry Pi firmware fills the low bits (which are
  74	 * presumably ignored).
  75	 */
  76	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  77	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  78
  79	return top - base + 4;
 
 
 
 
  80}
  81
  82static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
  83					  bool in_vblank_irq,
  84					  int *vpos, int *hpos,
  85					  ktime_t *stime, ktime_t *etime,
  86					  const struct drm_display_mode *mode)
  87{
  88	struct drm_device *dev = crtc->dev;
  89	struct vc4_dev *vc4 = to_vc4_dev(dev);
  90	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  91	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
  92	unsigned int cob_size;
  93	u32 val;
  94	int fifo_lines;
  95	int vblank_lines;
  96	bool ret = false;
  97
  98	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  99
 100	/* Get optional system timestamp before query. */
 101	if (stime)
 102		*stime = ktime_get();
 103
 104	/*
 105	 * Read vertical scanline which is currently composed for our
 106	 * pixelvalve by the HVS, and also the scaler status.
 107	 */
 108	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
 109
 110	/* Get optional system timestamp after query. */
 111	if (etime)
 112		*etime = ktime_get();
 113
 114	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 115
 116	/* Vertical position of hvs composed scanline. */
 117	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 118	*hpos = 0;
 119
 120	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 121		*vpos /= 2;
 122
 123		/* Use hpos to correct for field offset in interlaced mode. */
 124		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 125			*hpos += mode->crtc_htotal / 2;
 126	}
 127
 128	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
 129	/* This is the offset we need for translating hvs -> pv scanout pos. */
 130	fifo_lines = cob_size / mode->crtc_hdisplay;
 131
 132	if (fifo_lines > 0)
 133		ret = true;
 134
 135	/* HVS more than fifo_lines into frame for compositing? */
 136	if (*vpos > fifo_lines) {
 137		/*
 138		 * We are in active scanout and can get some meaningful results
 139		 * from HVS. The actual PV scanout can not trail behind more
 140		 * than fifo_lines as that is the fifo's capacity. Assume that
 141		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 142		 * refilling the fifo and PV consuming from the fifo, ie.
 143		 * whenever the PV consumes and frees up a scanline in the
 144		 * fifo, the HVS will immediately refill it, therefore
 145		 * incrementing vpos. Therefore we choose HVS read position -
 146		 * fifo size in scanlines as a estimate of the real scanout
 147		 * position of the PV.
 148		 */
 149		*vpos -= fifo_lines + 1;
 150
 151		return ret;
 152	}
 
 
 
 153
 154	/*
 155	 * Less: This happens when we are in vblank and the HVS, after getting
 156	 * the VSTART restart signal from the PV, just started refilling its
 157	 * fifo with new lines from the top-most lines of the new framebuffers.
 158	 * The PV does not scan out in vblank, so does not remove lines from
 159	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 160	 * We can't get meaningful readings wrt. scanline position of the PV
 161	 * and need to make things up in a approximative but consistent way.
 162	 */
 163	vblank_lines = mode->vtotal - mode->vdisplay;
 164
 165	if (in_vblank_irq) {
 166		/*
 167		 * Assume the irq handler got called close to first
 168		 * line of vblank, so PV has about a full vblank
 169		 * scanlines to go, and as a base timestamp use the
 170		 * one taken at entry into vblank irq handler, so it
 171		 * is not affected by random delays due to lock
 172		 * contention on event_lock or vblank_time lock in
 173		 * the core.
 174		 */
 175		*vpos = -vblank_lines;
 176
 177		if (stime)
 178			*stime = vc4_crtc->t_vblank;
 179		if (etime)
 180			*etime = vc4_crtc->t_vblank;
 181
 182		/*
 183		 * If the HVS fifo is not yet full then we know for certain
 184		 * we are at the very beginning of vblank, as the hvs just
 185		 * started refilling, and the stime and etime timestamps
 186		 * truly correspond to start of vblank.
 187		 *
 188		 * Unfortunately there's no way to report this to upper levels
 189		 * and make it more useful.
 190		 */
 191	} else {
 192		/*
 193		 * No clue where we are inside vblank. Return a vpos of zero,
 194		 * which will cause calling code to just return the etime
 195		 * timestamp uncorrected. At least this is no worse than the
 196		 * standard fallback.
 197		 */
 198		*vpos = 0;
 199	}
 200
 201	return ret;
 202}
 
 203
 204void vc4_crtc_destroy(struct drm_crtc *crtc)
 205{
 206	drm_crtc_cleanup(crtc);
 207}
 208
 209static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
 210{
 211	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
 212	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 213	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
 214	u32 fifo_len_bytes = pv_data->fifo_depth;
 215
 216	/*
 217	 * Pixels are pulled from the HVS if the number of bytes is
 218	 * lower than the FIFO full level.
 219	 *
 220	 * The latency of the pixel fetch mechanism is 6 pixels, so we
 221	 * need to convert those 6 pixels in bytes, depending on the
 222	 * format, and then subtract that from the length of the FIFO
 223	 * to make sure we never end up in a situation where the FIFO
 224	 * is full.
 225	 */
 226	switch (format) {
 227	case PV_CONTROL_FORMAT_DSIV_16:
 228	case PV_CONTROL_FORMAT_DSIC_16:
 229		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
 230	case PV_CONTROL_FORMAT_DSIV_18:
 231		return fifo_len_bytes - 14;
 232	case PV_CONTROL_FORMAT_24:
 233	case PV_CONTROL_FORMAT_DSIV_24:
 234	default:
 235		/*
 236		 * For some reason, the pixelvalve4 doesn't work with
 237		 * the usual formula and will only work with 32.
 238		 */
 239		if (crtc_data->hvs_output == 5)
 240			return 32;
 241
 242		/*
 243		 * It looks like in some situations, we will overflow
 244		 * the PixelValve FIFO (with the bit 10 of PV stat being
 245		 * set) and stall the HVS / PV, eventually resulting in
 246		 * a page flip timeout.
 247		 *
 248		 * Displaying the video overlay during a playback with
 249		 * Kodi on an RPi3 seems to be a great solution with a
 250		 * failure rate around 50%.
 251		 *
 252		 * Removing 1 from the FIFO full level however
 253		 * seems to completely remove that issue.
 254		 */
 255		if (!vc4->hvs->hvs5)
 256			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
 257
 258		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
 259	}
 260}
 261
 262static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
 263					     u32 format)
 264{
 265	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
 266	u32 ret = 0;
 267
 268	ret |= VC4_SET_FIELD((level >> 6),
 269			     PV5_CONTROL_FIFO_LEVEL_HIGH);
 270
 271	return ret | VC4_SET_FIELD(level & 0x3f,
 272				   PV_CONTROL_FIFO_LEVEL);
 273}
 274
 275/*
 276 * Returns the encoder attached to the CRTC.
 277 *
 278 * VC4 can only scan out to one encoder at a time, while the DRM core
 279 * allows drivers to push pixels to more than one encoder from the
 280 * same CRTC.
 281 */
 282static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
 283						struct drm_atomic_state *state,
 284						struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
 285											 struct drm_connector *connector))
 286{
 287	struct drm_connector *connector;
 288	struct drm_connector_list_iter conn_iter;
 289
 290	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 291	drm_for_each_connector_iter(connector, &conn_iter) {
 292		struct drm_connector_state *conn_state = get_state(state, connector);
 
 
 293
 294		if (!conn_state)
 295			continue;
 296
 297		if (conn_state->crtc == crtc) {
 298			drm_connector_list_iter_end(&conn_iter);
 299			return connector->encoder;
 300		}
 301	}
 302	drm_connector_list_iter_end(&conn_iter);
 303
 304	return NULL;
 305}
 306
 307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
 308{
 309	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 310
 311	/* The PV needs to be disabled before it can be flushed */
 312	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
 313	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
 314}
 315
 316static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
 317{
 318	struct drm_device *dev = crtc->dev;
 319	struct vc4_dev *vc4 = to_vc4_dev(dev);
 320	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 321							   drm_atomic_get_new_connector_state);
 322	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 323	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 324	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 325	struct drm_crtc_state *crtc_state = crtc->state;
 326	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 327	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 328	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 329	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 330		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 331	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 332	u8 ppc = pv_data->pixels_per_clock;
 333	bool debug_dump_regs = false;
 
 334
 335	if (debug_dump_regs) {
 336		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 337		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 338			 drm_crtc_index(crtc));
 339		drm_print_regset32(&p, &vc4_crtc->regset);
 340	}
 341
 342	vc4_crtc_pixelvalve_reset(crtc);
 
 
 
 343
 344	CRTC_WRITE(PV_HORZA,
 345		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
 346				 PV_HORZA_HBP) |
 347		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
 348				 PV_HORZA_HSYNC));
 349
 350	CRTC_WRITE(PV_HORZB,
 351		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
 352				 PV_HORZB_HFP) |
 353		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
 354				 PV_HORZB_HACTIVE));
 355
 356	CRTC_WRITE(PV_VERTA,
 357		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 358				 PV_VERTA_VBP) |
 359		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 360				 PV_VERTA_VSYNC));
 361	CRTC_WRITE(PV_VERTB,
 362		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 363				 PV_VERTB_VFP) |
 364		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 365
 366	if (interlace) {
 367		CRTC_WRITE(PV_VERTA_EVEN,
 368			   VC4_SET_FIELD(mode->crtc_vtotal -
 369					 mode->crtc_vsync_end - 1,
 370					 PV_VERTA_VBP) |
 371			   VC4_SET_FIELD(mode->crtc_vsync_end -
 372					 mode->crtc_vsync_start,
 373					 PV_VERTA_VSYNC));
 374		CRTC_WRITE(PV_VERTB_EVEN,
 375			   VC4_SET_FIELD(mode->crtc_vsync_start -
 376					 mode->crtc_vdisplay,
 377					 PV_VERTB_VFP) |
 378			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 
 
 
 379
 380		/* We set up first field even mode for HDMI.  VEC's
 381		 * NTSC mode would want first field odd instead, once
 382		 * we support it (to do so, set ODD_FIRST and put the
 383		 * delay in VSYNCD_EVEN instead).
 384		 */
 385		CRTC_WRITE(PV_V_CONTROL,
 386			   PV_VCONTROL_CONTINUOUS |
 387			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 388			   PV_VCONTROL_INTERLACE |
 389			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 390					 PV_VCONTROL_ODD_DELAY));
 391		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 392	} else {
 393		CRTC_WRITE(PV_V_CONTROL,
 394			   PV_VCONTROL_CONTINUOUS |
 395			   (is_dsi ? PV_VCONTROL_DSI : 0));
 396	}
 397
 398	if (is_dsi)
 399		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 400
 401	if (vc4->hvs->hvs5)
 402		CRTC_WRITE(PV_MUX_CFG,
 403			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
 404					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
 405
 406	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
 407		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
 408		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 409		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 
 410		   PV_CONTROL_CLR_AT_START |
 411		   PV_CONTROL_TRIGGER_UNDERFLOW |
 412		   PV_CONTROL_WAIT_HSTART |
 413		   VC4_SET_FIELD(vc4_encoder->clock_select,
 414				 PV_CONTROL_CLK_SELECT));
 
 
 
 
 
 415
 416	if (debug_dump_regs) {
 417		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 418		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 419			 drm_crtc_index(crtc));
 420		drm_print_regset32(&p, &vc4_crtc->regset);
 421	}
 422}
 423
 424static void require_hvs_enabled(struct drm_device *dev)
 425{
 426	struct vc4_dev *vc4 = to_vc4_dev(dev);
 427
 428	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 429		     SCALER_DISPCTRL_ENABLE);
 430}
 431
 432static int vc4_crtc_disable(struct drm_crtc *crtc,
 433			    struct drm_encoder *encoder,
 434			    struct drm_atomic_state *state,
 435			    unsigned int channel)
 436{
 437	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 
 438	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 439	struct drm_device *dev = crtc->dev;
 440	int ret;
 
 441
 442	CRTC_WRITE(PV_V_CONTROL,
 443		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 444	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 445	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 446
 447	/*
 448	 * This delay is needed to avoid to get a pixel stuck in an
 449	 * unflushable FIFO between the pixelvalve and the HDMI
 450	 * controllers on the BCM2711.
 451	 *
 452	 * Timing is fairly sensitive here, so mdelay is the safest
 453	 * approach.
 454	 *
 455	 * If it was to be reworked, the stuck pixel happens on a
 456	 * BCM2711 when changing mode with a good probability, so a
 457	 * script that changes mode on a regular basis should trigger
 458	 * the bug after less than 10 attempts. It manifests itself with
 459	 * every pixels being shifted by one to the right, and thus the
 460	 * last pixel of a line actually being displayed as the first
 461	 * pixel on the next line.
 462	 */
 463	mdelay(20);
 464
 465	if (vc4_encoder && vc4_encoder->post_crtc_disable)
 466		vc4_encoder->post_crtc_disable(encoder, state);
 467
 468	vc4_crtc_pixelvalve_reset(crtc);
 469	vc4_hvs_stop_channel(dev, channel);
 470
 471	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
 472		vc4_encoder->post_crtc_powerdown(encoder, state);
 473
 474	return 0;
 475}
 476
 477static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
 478							enum vc4_encoder_type type)
 479{
 480	struct drm_encoder *encoder;
 481
 482	drm_for_each_encoder(encoder, crtc->dev) {
 483		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 484
 485		if (vc4_encoder->type == type)
 486			return encoder;
 487	}
 488
 489	return NULL;
 490}
 491
 492int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
 493{
 494	struct drm_device *drm = crtc->dev;
 495	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 496	enum vc4_encoder_type encoder_type;
 497	const struct vc4_pv_data *pv_data;
 498	struct drm_encoder *encoder;
 499	unsigned encoder_sel;
 500	int channel;
 501
 502	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 503				      "brcm,bcm2711-pixelvalve2") ||
 504	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 505				      "brcm,bcm2711-pixelvalve4")))
 506		return 0;
 507
 508	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
 509		return 0;
 510
 511	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
 512		return 0;
 513
 514	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
 515	if (channel < 0)
 516		return 0;
 517
 518	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
 519	if (WARN_ON(encoder_sel != 0))
 520		return 0;
 521
 522	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 523	encoder_type = pv_data->encoder_types[encoder_sel];
 524	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
 525	if (WARN_ON(!encoder))
 526		return 0;
 527
 528	return vc4_crtc_disable(crtc, encoder, NULL, channel);
 
 
 529}
 530
 531static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 532				    struct drm_atomic_state *state)
 533{
 534	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 535									 crtc);
 536	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
 537	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 538							   drm_atomic_get_old_connector_state);
 539	struct drm_device *dev = crtc->dev;
 
 
 
 
 540
 541	require_hvs_enabled(dev);
 542
 543	/* Disable vblank irq handling before crtc is disabled. */
 544	drm_crtc_vblank_off(crtc);
 545
 546	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
 547
 548	/*
 549	 * Make sure we issue a vblank event after disabling the CRTC if
 550	 * someone was waiting it.
 551	 */
 552	if (crtc->state->event) {
 553		unsigned long flags;
 
 
 554
 555		spin_lock_irqsave(&dev->event_lock, flags);
 556		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 557		crtc->state->event = NULL;
 558		spin_unlock_irqrestore(&dev->event_lock, flags);
 559	}
 560}
 561
 562static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 563				   struct drm_atomic_state *state)
 564{
 
 565	struct drm_device *dev = crtc->dev;
 566	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 567	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
 568							   drm_atomic_get_new_connector_state);
 569	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 570
 571	require_hvs_enabled(dev);
 572
 573	/* Enable vblank irq handling before crtc is started otherwise
 574	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 575	 */
 576	drm_crtc_vblank_on(crtc);
 
 577
 578	vc4_hvs_atomic_enable(crtc, state);
 
 
 579
 580	if (vc4_encoder->pre_crtc_configure)
 581		vc4_encoder->pre_crtc_configure(encoder, state);
 
 
 
 582
 583	vc4_crtc_config_pv(crtc, state);
 
 584
 585	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
 586
 587	if (vc4_encoder->pre_crtc_enable)
 588		vc4_encoder->pre_crtc_enable(encoder, state);
 
 
 
 
 589
 590	/* When feeding the transposer block the pixelvalve is unneeded and
 591	 * should not be enabled.
 592	 */
 593	CRTC_WRITE(PV_V_CONTROL,
 594		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 595
 596	if (vc4_encoder->post_crtc_enable)
 597		vc4_encoder->post_crtc_enable(encoder, state);
 598}
 599
 600static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 601						const struct drm_display_mode *mode)
 602{
 603	/* Do not allow doublescan modes from user space */
 604	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 605		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 606			      crtc->base.id);
 607		return MODE_NO_DBLESCAN;
 
 
 
 
 
 
 
 
 
 
 
 
 608	}
 609
 610	return MODE_OK;
 611}
 612
 613void vc4_crtc_get_margins(struct drm_crtc_state *state,
 614			  unsigned int *left, unsigned int *right,
 615			  unsigned int *top, unsigned int *bottom)
 616{
 617	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 618	struct drm_connector_state *conn_state;
 619	struct drm_connector *conn;
 620	int i;
 621
 622	*left = vc4_state->margins.left;
 623	*right = vc4_state->margins.right;
 624	*top = vc4_state->margins.top;
 625	*bottom = vc4_state->margins.bottom;
 626
 627	/* We have to interate over all new connector states because
 628	 * vc4_crtc_get_margins() might be called before
 629	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 630	 * might be outdated.
 631	 */
 632	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 633		if (conn_state->crtc != state->crtc)
 634			continue;
 635
 636		*left = conn_state->tv.margins.left;
 637		*right = conn_state->tv.margins.right;
 638		*top = conn_state->tv.margins.top;
 639		*bottom = conn_state->tv.margins.bottom;
 640		break;
 641	}
 642}
 643
 644static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 645				 struct drm_atomic_state *state)
 646{
 647	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 648									  crtc);
 649	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 650	struct drm_connector *conn;
 651	struct drm_connector_state *conn_state;
 652	int ret, i;
 653
 654	ret = vc4_hvs_atomic_check(crtc, state);
 655	if (ret)
 656		return ret;
 657
 658	for_each_new_connector_in_state(state, conn, conn_state,
 659					i) {
 660		if (conn_state->crtc != crtc)
 661			continue;
 662
 663		vc4_state->margins.left = conn_state->tv.margins.left;
 664		vc4_state->margins.right = conn_state->tv.margins.right;
 665		vc4_state->margins.top = conn_state->tv.margins.top;
 666		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 667		break;
 668	}
 669
 670	return 0;
 671}
 672
 673static int vc4_enable_vblank(struct drm_crtc *crtc)
 674{
 675	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 676
 677	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 678
 679	return 0;
 680}
 681
 682static void vc4_disable_vblank(struct drm_crtc *crtc)
 683{
 684	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 685
 686	CRTC_WRITE(PV_INTEN, 0);
 687}
 688
 689static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 690{
 691	struct drm_crtc *crtc = &vc4_crtc->base;
 692	struct drm_device *dev = crtc->dev;
 693	struct vc4_dev *vc4 = to_vc4_dev(dev);
 694	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 695	u32 chan = vc4_state->assigned_channel;
 696	unsigned long flags;
 697
 698	spin_lock_irqsave(&dev->event_lock, flags);
 699	if (vc4_crtc->event &&
 700	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 701	     vc4_state->feed_txp)) {
 702		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 703		vc4_crtc->event = NULL;
 704		drm_crtc_vblank_put(crtc);
 705
 706		/* Wait for the page flip to unmask the underrun to ensure that
 707		 * the display list was updated by the hardware. Before that
 708		 * happens, the HVS will be using the previous display list with
 709		 * the CRTC and encoder already reconfigured, leading to
 710		 * underruns. This can be seen when reconfiguring the CRTC.
 711		 */
 712		vc4_hvs_unmask_underrun(dev, chan);
 713	}
 714	spin_unlock_irqrestore(&dev->event_lock, flags);
 715}
 716
 717void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 718{
 719	crtc->t_vblank = ktime_get();
 720	drm_crtc_handle_vblank(&crtc->base);
 721	vc4_crtc_handle_page_flip(crtc);
 722}
 723
 724static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 725{
 726	struct vc4_crtc *vc4_crtc = data;
 727	u32 stat = CRTC_READ(PV_INTSTAT);
 728	irqreturn_t ret = IRQ_NONE;
 729
 730	if (stat & PV_INT_VFP_START) {
 731		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 732		vc4_crtc_handle_vblank(vc4_crtc);
 
 733		ret = IRQ_HANDLED;
 734	}
 735
 736	return ret;
 737}
 738
 739struct vc4_async_flip_state {
 740	struct drm_crtc *crtc;
 741	struct drm_framebuffer *fb;
 742	struct drm_framebuffer *old_fb;
 743	struct drm_pending_vblank_event *event;
 744
 745	struct vc4_seqno_cb cb;
 746};
 747
 748/* Called when the V3D execution for the BO being flipped to is done, so that
 749 * we can actually update the plane's address to point to it.
 750 */
 751static void
 752vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 753{
 754	struct vc4_async_flip_state *flip_state =
 755		container_of(cb, struct vc4_async_flip_state, cb);
 756	struct drm_crtc *crtc = flip_state->crtc;
 757	struct drm_device *dev = crtc->dev;
 
 758	struct drm_plane *plane = crtc->primary;
 759
 760	vc4_plane_async_set_fb(plane, flip_state->fb);
 761	if (flip_state->event) {
 762		unsigned long flags;
 763
 764		spin_lock_irqsave(&dev->event_lock, flags);
 765		drm_crtc_send_vblank_event(crtc, flip_state->event);
 766		spin_unlock_irqrestore(&dev->event_lock, flags);
 767	}
 768
 769	drm_crtc_vblank_put(crtc);
 770	drm_framebuffer_put(flip_state->fb);
 771
 772	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 773	 * when the planes are updated through the async update path.
 774	 * FIXME: we should move to generic async-page-flip when it's
 775	 * available, so that we can get rid of this hand-made cleanup_fb()
 776	 * logic.
 777	 */
 778	if (flip_state->old_fb) {
 779		struct drm_gem_cma_object *cma_bo;
 780		struct vc4_bo *bo;
 781
 782		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 783		bo = to_vc4_bo(&cma_bo->base);
 784		vc4_bo_dec_usecnt(bo);
 785		drm_framebuffer_put(flip_state->old_fb);
 786	}
 787
 788	kfree(flip_state);
 789}
 790
 791/* Implements async (non-vblank-synced) page flips.
 792 *
 793 * The page flip ioctl needs to return immediately, so we grab the
 794 * modeset semaphore on the pipe, and queue the address update for
 795 * when V3D is done with the BO being flipped to.
 796 */
 797static int vc4_async_page_flip(struct drm_crtc *crtc,
 798			       struct drm_framebuffer *fb,
 799			       struct drm_pending_vblank_event *event,
 800			       uint32_t flags)
 801{
 802	struct drm_device *dev = crtc->dev;
 
 803	struct drm_plane *plane = crtc->primary;
 804	int ret = 0;
 805	struct vc4_async_flip_state *flip_state;
 806	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 807	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 808
 809	/* Increment the BO usecnt here, so that we never end up with an
 810	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 811	 * plane is later updated through the non-async path.
 812	 * FIXME: we should move to generic async-page-flip when it's
 813	 * available, so that we can get rid of this hand-made prepare_fb()
 814	 * logic.
 815	 */
 816	ret = vc4_bo_inc_usecnt(bo);
 817	if (ret)
 818		return ret;
 819
 820	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 821	if (!flip_state) {
 822		vc4_bo_dec_usecnt(bo);
 823		return -ENOMEM;
 824	}
 825
 826	drm_framebuffer_get(fb);
 827	flip_state->fb = fb;
 828	flip_state->crtc = crtc;
 829	flip_state->event = event;
 830
 831	/* Save the current FB before it's replaced by the new one in
 832	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 833	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 834	 * it consistent.
 835	 * FIXME: we should move to generic async-page-flip when it's
 836	 * available, so that we can get rid of this hand-made cleanup_fb()
 837	 * logic.
 838	 */
 839	flip_state->old_fb = plane->state->fb;
 840	if (flip_state->old_fb)
 841		drm_framebuffer_get(flip_state->old_fb);
 842
 843	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 844
 845	/* Immediately update the plane's legacy fb pointer, so that later
 846	 * modeset prep sees the state that will be present when the semaphore
 847	 * is released.
 848	 */
 849	drm_atomic_set_fb_for_plane(plane->state, fb);
 
 850
 851	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 852			   vc4_async_page_flip_complete);
 853
 854	/* Driver takes ownership of state on successful async commit. */
 855	return 0;
 856}
 857
 858int vc4_page_flip(struct drm_crtc *crtc,
 859		  struct drm_framebuffer *fb,
 860		  struct drm_pending_vblank_event *event,
 861		  uint32_t flags,
 862		  struct drm_modeset_acquire_ctx *ctx)
 863{
 864	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 865		return vc4_async_page_flip(crtc, fb, event, flags);
 866	else
 867		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 868}
 869
 870struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 871{
 872	struct vc4_crtc_state *vc4_state, *old_vc4_state;
 873
 874	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 875	if (!vc4_state)
 876		return NULL;
 877
 878	old_vc4_state = to_vc4_crtc_state(crtc->state);
 879	vc4_state->feed_txp = old_vc4_state->feed_txp;
 880	vc4_state->margins = old_vc4_state->margins;
 881	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
 882
 883	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 884	return &vc4_state->base;
 885}
 886
 887void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 888			    struct drm_crtc_state *state)
 889{
 890	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 891	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 892
 893	if (drm_mm_node_allocated(&vc4_state->mm)) {
 894		unsigned long flags;
 895
 896		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 897		drm_mm_remove_node(&vc4_state->mm);
 898		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 899
 900	}
 901
 902	drm_atomic_helper_crtc_destroy_state(crtc, state);
 903}
 904
 905void vc4_crtc_reset(struct drm_crtc *crtc)
 906{
 907	struct vc4_crtc_state *vc4_crtc_state;
 908
 909	if (crtc->state)
 910		vc4_crtc_destroy_state(crtc, crtc->state);
 911
 912	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
 913	if (!vc4_crtc_state) {
 914		crtc->state = NULL;
 915		return;
 916	}
 917
 918	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
 919	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
 920}
 921
 922static const struct drm_crtc_funcs vc4_crtc_funcs = {
 923	.set_config = drm_atomic_helper_set_config,
 924	.destroy = vc4_crtc_destroy,
 925	.page_flip = vc4_page_flip,
 926	.set_property = NULL,
 927	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 928	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 929	.reset = vc4_crtc_reset,
 930	.atomic_duplicate_state = vc4_crtc_duplicate_state,
 931	.atomic_destroy_state = vc4_crtc_destroy_state,
 932	.enable_vblank = vc4_enable_vblank,
 933	.disable_vblank = vc4_disable_vblank,
 934	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
 935};
 936
 937static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 938	.mode_valid = vc4_crtc_mode_valid,
 
 
 939	.atomic_check = vc4_crtc_atomic_check,
 940	.atomic_flush = vc4_hvs_atomic_flush,
 941	.atomic_enable = vc4_crtc_atomic_enable,
 942	.atomic_disable = vc4_crtc_atomic_disable,
 943	.get_scanout_position = vc4_crtc_get_scanout_position,
 944};
 945
 946static const struct vc4_pv_data bcm2835_pv0_data = {
 947	.base = {
 948		.hvs_available_channels = BIT(0),
 949		.hvs_output = 0,
 950	},
 951	.debugfs_name = "crtc0_regs",
 952	.fifo_depth = 64,
 953	.pixels_per_clock = 1,
 954	.encoder_types = {
 955		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
 956		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
 957	},
 958};
 959
 960static const struct vc4_pv_data bcm2835_pv1_data = {
 961	.base = {
 962		.hvs_available_channels = BIT(2),
 963		.hvs_output = 2,
 964	},
 965	.debugfs_name = "crtc1_regs",
 966	.fifo_depth = 64,
 967	.pixels_per_clock = 1,
 968	.encoder_types = {
 969		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
 970		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
 971	},
 972};
 973
 974static const struct vc4_pv_data bcm2835_pv2_data = {
 975	.base = {
 976		.hvs_available_channels = BIT(1),
 977		.hvs_output = 1,
 978	},
 979	.debugfs_name = "crtc2_regs",
 980	.fifo_depth = 64,
 981	.pixels_per_clock = 1,
 982	.encoder_types = {
 983		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
 984		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
 985	},
 986};
 987
 988static const struct vc4_pv_data bcm2711_pv0_data = {
 989	.base = {
 990		.hvs_available_channels = BIT(0),
 991		.hvs_output = 0,
 992	},
 993	.debugfs_name = "crtc0_regs",
 994	.fifo_depth = 64,
 995	.pixels_per_clock = 1,
 996	.encoder_types = {
 997		[0] = VC4_ENCODER_TYPE_DSI0,
 998		[1] = VC4_ENCODER_TYPE_DPI,
 999	},
1000};
1001
1002static const struct vc4_pv_data bcm2711_pv1_data = {
1003	.base = {
1004		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1005		.hvs_output = 3,
1006	},
1007	.debugfs_name = "crtc1_regs",
1008	.fifo_depth = 64,
1009	.pixels_per_clock = 1,
1010	.encoder_types = {
1011		[0] = VC4_ENCODER_TYPE_DSI1,
1012		[1] = VC4_ENCODER_TYPE_SMI,
1013	},
1014};
1015
1016static const struct vc4_pv_data bcm2711_pv2_data = {
1017	.base = {
1018		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1019		.hvs_output = 4,
1020	},
1021	.debugfs_name = "crtc2_regs",
1022	.fifo_depth = 256,
1023	.pixels_per_clock = 2,
1024	.encoder_types = {
1025		[0] = VC4_ENCODER_TYPE_HDMI0,
1026	},
1027};
1028
1029static const struct vc4_pv_data bcm2711_pv3_data = {
1030	.base = {
1031		.hvs_available_channels = BIT(1),
1032		.hvs_output = 1,
1033	},
1034	.debugfs_name = "crtc3_regs",
1035	.fifo_depth = 64,
1036	.pixels_per_clock = 1,
1037	.encoder_types = {
1038		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1039	},
1040};
1041
1042static const struct vc4_pv_data bcm2711_pv4_data = {
1043	.base = {
1044		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045		.hvs_output = 5,
1046	},
1047	.debugfs_name = "crtc4_regs",
1048	.fifo_depth = 64,
1049	.pixels_per_clock = 2,
1050	.encoder_types = {
1051		[0] = VC4_ENCODER_TYPE_HDMI1,
1052	},
1053};
1054
1055static const struct of_device_id vc4_crtc_dt_match[] = {
1056	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1057	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1058	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1059	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1060	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1061	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1062	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1063	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1064	{}
1065};
1066
1067static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1068					struct drm_crtc *crtc)
1069{
1070	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1071	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1072	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1073	struct drm_encoder *encoder;
1074
1075	drm_for_each_encoder(encoder, drm) {
1076		struct vc4_encoder *vc4_encoder;
1077		int i;
1078
1079		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1080			continue;
1081
1082		vc4_encoder = to_vc4_encoder(encoder);
1083		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1084			if (vc4_encoder->type == encoder_types[i]) {
1085				vc4_encoder->clock_select = i;
1086				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087				break;
1088			}
1089		}
1090	}
1091}
1092
1093int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1094		  const struct drm_crtc_funcs *crtc_funcs,
1095		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1096{
 
 
1097	struct vc4_dev *vc4 = to_vc4_dev(drm);
1098	struct drm_crtc *crtc = &vc4_crtc->base;
1099	struct drm_plane *primary_plane;
1100	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	/* For now, we create just the primary and the legacy cursor
1103	 * planes.  We should be able to stack more planes on easily,
1104	 * but to do that we would need to compute the bandwidth
1105	 * requirement of the plane configuration, and reject ones
1106	 * that will take too much.
1107	 */
1108	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1109	if (IS_ERR(primary_plane)) {
1110		dev_err(drm->dev, "failed to construct primary plane\n");
1111		return PTR_ERR(primary_plane);
 
1112	}
1113
1114	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1115				  crtc_funcs, NULL);
1116	drm_crtc_helper_add(crtc, crtc_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118	if (!vc4->hvs->hvs5) {
1119		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1120
1121		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1122
1123		/* We support CTM, but only for one CRTC at a time. It's therefore
1124		 * implemented as private driver state in vc4_kms, not here.
1125		 */
1126		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1127	}
1128
1129	for (i = 0; i < crtc->gamma_size; i++) {
1130		vc4_crtc->lut_r[i] = i;
1131		vc4_crtc->lut_g[i] = i;
1132		vc4_crtc->lut_b[i] = i;
 
 
 
 
 
1133	}
1134
1135	return 0;
1136}
1137
1138static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1139{
1140	struct platform_device *pdev = to_platform_device(dev);
1141	struct drm_device *drm = dev_get_drvdata(master);
1142	const struct vc4_pv_data *pv_data;
1143	struct vc4_crtc *vc4_crtc;
1144	struct drm_crtc *crtc;
1145	struct drm_plane *destroy_plane, *temp;
1146	int ret;
1147
1148	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1149	if (!vc4_crtc)
1150		return -ENOMEM;
1151	crtc = &vc4_crtc->base;
1152
1153	pv_data = of_device_get_match_data(dev);
1154	if (!pv_data)
1155		return -ENODEV;
1156	vc4_crtc->data = &pv_data->base;
1157	vc4_crtc->pdev = pdev;
1158
1159	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1160	if (IS_ERR(vc4_crtc->regs))
1161		return PTR_ERR(vc4_crtc->regs);
1162
1163	vc4_crtc->regset.base = vc4_crtc->regs;
1164	vc4_crtc->regset.regs = crtc_regs;
1165	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1166
1167	ret = vc4_crtc_init(drm, vc4_crtc,
1168			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1169	if (ret)
1170		return ret;
1171	vc4_set_crtc_possible_masks(drm, crtc);
1172
1173	CRTC_WRITE(PV_INTEN, 0);
1174	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1175	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1176			       vc4_crtc_irq_handler,
1177			       IRQF_SHARED,
1178			       "vc4 crtc", vc4_crtc);
1179	if (ret)
1180		goto err_destroy_planes;
1181
 
 
1182	platform_set_drvdata(pdev, vc4_crtc);
1183
1184	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1185				 &vc4_crtc->regset);
1186
1187	return 0;
1188
1189err_destroy_planes:
1190	list_for_each_entry_safe(destroy_plane, temp,
1191				 &drm->mode_config.plane_list, head) {
1192		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1193		    destroy_plane->funcs->destroy(destroy_plane);
1194	}
1195
1196	return ret;
1197}
1198
1199static void vc4_crtc_unbind(struct device *dev, struct device *master,
1200			    void *data)
1201{
1202	struct platform_device *pdev = to_platform_device(dev);
1203	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1204
1205	vc4_crtc_destroy(&vc4_crtc->base);
1206
1207	CRTC_WRITE(PV_INTEN, 0);
1208
1209	platform_set_drvdata(pdev, NULL);
1210}
1211
1212static const struct component_ops vc4_crtc_ops = {
1213	.bind   = vc4_crtc_bind,
1214	.unbind = vc4_crtc_unbind,
1215};
1216
1217static int vc4_crtc_dev_probe(struct platform_device *pdev)
1218{
1219	return component_add(&pdev->dev, &vc4_crtc_ops);
1220}
1221
1222static int vc4_crtc_dev_remove(struct platform_device *pdev)
1223{
1224	component_del(&pdev->dev, &vc4_crtc_ops);
1225	return 0;
1226}
1227
1228struct platform_driver vc4_crtc_driver = {
1229	.probe = vc4_crtc_dev_probe,
1230	.remove = vc4_crtc_dev_remove,
1231	.driver = {
1232		.name = "vc4_crtc",
1233		.of_match_table = vc4_crtc_dt_match,
1234	},
1235};