Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (C) 2015 Broadcom
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8
  9/**
 10 * DOC: VC4 CRTC module
 11 *
 12 * In VC4, the Pixel Valve is what most closely corresponds to the
 13 * DRM's concept of a CRTC.  The PV generates video timings from the
 14 * output's clock plus its configuration.  It pulls scaled pixels from
 15 * the HVS at that timing, and feeds it to the encoder.
 16 *
 17 * However, the DRM CRTC also collects the configuration of all the
 18 * DRM planes attached to it.  As a result, this file also manages
 19 * setup of the VC4 HVS's display elements on the CRTC.
 
 20 *
 21 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 23 * image domain can feed either HDMI or the SDTV controller.  The
 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 25 * SDTV, etc.) according to which output type is chosen in the mux.
 26 *
 27 * For power management, the pixel valve's registers are all clocked
 28 * by the AXI clock, while the timings and FIFOs make use of the
 29 * output-specific clock.  Since the encoders also directly consume
 30 * the CPRMAN clocks, and know what timings they need, they are the
 31 * ones that set the clock.
 32 */
 33
 34#include "drm_atomic.h"
 35#include "drm_atomic_helper.h"
 36#include "drm_crtc_helper.h"
 37#include "linux/clk.h"
 38#include "drm_fb_cma_helper.h"
 39#include "linux/component.h"
 40#include "linux/of_device.h"
 41#include "vc4_drv.h"
 42#include "vc4_regs.h"
 43
 44struct vc4_crtc {
 45	struct drm_crtc base;
 46	const struct vc4_crtc_data *data;
 47	void __iomem *regs;
 48
 
 
 
 49	/* Which HVS channel we're using for our CRTC. */
 50	int channel;
 51
 
 
 
 
 
 
 52	struct drm_pending_vblank_event *event;
 53};
 54
 55struct vc4_crtc_state {
 56	struct drm_crtc_state base;
 57	/* Dlist area for this CRTC configuration. */
 58	struct drm_mm_node mm;
 59};
 60
 61static inline struct vc4_crtc *
 62to_vc4_crtc(struct drm_crtc *crtc)
 63{
 64	return (struct vc4_crtc *)crtc;
 65}
 66
 67static inline struct vc4_crtc_state *
 68to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
 69{
 70	return (struct vc4_crtc_state *)crtc_state;
 71}
 72
 73struct vc4_crtc_data {
 74	/* Which channel of the HVS this pixelvalve sources from. */
 75	int hvs_channel;
 76
 77	enum vc4_encoder_type encoder0_type;
 78	enum vc4_encoder_type encoder1_type;
 79};
 80
 81#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
 82#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
 83
 84#define CRTC_REG(reg) { reg, #reg }
 85static const struct {
 86	u32 reg;
 87	const char *name;
 88} crtc_regs[] = {
 89	CRTC_REG(PV_CONTROL),
 90	CRTC_REG(PV_V_CONTROL),
 91	CRTC_REG(PV_VSYNCD_EVEN),
 92	CRTC_REG(PV_HORZA),
 93	CRTC_REG(PV_HORZB),
 94	CRTC_REG(PV_VERTA),
 95	CRTC_REG(PV_VERTB),
 96	CRTC_REG(PV_VERTA_EVEN),
 97	CRTC_REG(PV_VERTB_EVEN),
 98	CRTC_REG(PV_INTEN),
 99	CRTC_REG(PV_INTSTAT),
100	CRTC_REG(PV_STAT),
101	CRTC_REG(PV_HACT_ACT),
102};
103
104static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105{
106	int i;
107
108	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109		DRM_INFO("0x%04x (%s): 0x%08x\n",
110			 crtc_regs[i].reg, crtc_regs[i].name,
111			 CRTC_READ(crtc_regs[i].reg));
112	}
113}
114
115#ifdef CONFIG_DEBUG_FS
116int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117{
118	struct drm_info_node *node = (struct drm_info_node *)m->private;
119	struct drm_device *dev = node->minor->dev;
120	int crtc_index = (uintptr_t)node->info_ent->data;
121	struct drm_crtc *crtc;
122	struct vc4_crtc *vc4_crtc;
123	int i;
124
125	i = 0;
126	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127		if (i == crtc_index)
128			break;
129		i++;
130	}
131	if (!crtc)
132		return 0;
133	vc4_crtc = to_vc4_crtc(crtc);
134
135	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136		seq_printf(m, "%s (0x%04x): 0x%08x\n",
137			   crtc_regs[i].name, crtc_regs[i].reg,
138			   CRTC_READ(crtc_regs[i].reg));
139	}
140
141	return 0;
142}
143#endif
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145static void vc4_crtc_destroy(struct drm_crtc *crtc)
146{
147	drm_crtc_cleanup(crtc);
148}
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150static u32 vc4_get_fifo_full_level(u32 format)
151{
152	static const u32 fifo_len_bytes = 64;
153	static const u32 hvs_latency_pix = 6;
154
155	switch (format) {
156	case PV_CONTROL_FORMAT_DSIV_16:
157	case PV_CONTROL_FORMAT_DSIC_16:
158		return fifo_len_bytes - 2 * hvs_latency_pix;
159	case PV_CONTROL_FORMAT_DSIV_18:
160		return fifo_len_bytes - 14;
161	case PV_CONTROL_FORMAT_24:
162	case PV_CONTROL_FORMAT_DSIV_24:
163	default:
164		return fifo_len_bytes - 3 * hvs_latency_pix;
165	}
166}
167
168/*
169 * Returns the clock select bit for the connector attached to the
170 * CRTC.
 
 
 
171 */
172static int vc4_get_clock_select(struct drm_crtc *crtc)
173{
174	struct drm_connector *connector;
 
175
176	drm_for_each_connector(connector, crtc->dev) {
 
177		if (connector->state->crtc == crtc) {
178			struct drm_encoder *encoder = connector->encoder;
179			struct vc4_encoder *vc4_encoder =
180				to_vc4_encoder(encoder);
181
182			return vc4_encoder->clock_select;
183		}
184	}
 
185
186	return -1;
187}
188
189static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190{
191	struct drm_device *dev = crtc->dev;
192	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 
193	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194	struct drm_crtc_state *state = crtc->state;
195	struct drm_display_mode *mode = &state->adjusted_mode;
196	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198	u32 format = PV_CONTROL_FORMAT_24;
 
 
199	bool debug_dump_regs = false;
200	int clock_select = vc4_get_clock_select(crtc);
201
202	if (debug_dump_regs) {
203		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204		vc4_crtc_dump_regs(vc4_crtc);
205	}
206
207	/* Reset the PV fifo. */
208	CRTC_WRITE(PV_CONTROL, 0);
209	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210	CRTC_WRITE(PV_CONTROL, 0);
211
212	CRTC_WRITE(PV_HORZA,
213		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
 
214				 PV_HORZA_HBP) |
215		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
 
216				 PV_HORZA_HSYNC));
217	CRTC_WRITE(PV_HORZB,
218		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
 
219				 PV_HORZB_HFP) |
220		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
221
222	CRTC_WRITE(PV_VERTA,
223		   VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224				 PV_VERTA_VBP) |
225		   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226				 PV_VERTA_VSYNC));
227	CRTC_WRITE(PV_VERTB,
228		   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229				 PV_VERTB_VFP) |
230		   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231
232	if (interlace) {
233		CRTC_WRITE(PV_VERTA_EVEN,
234			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
 
235					 PV_VERTA_VBP) |
236			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
 
237					 PV_VERTA_VSYNC));
238		CRTC_WRITE(PV_VERTB_EVEN,
239			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
 
240					 PV_VERTB_VFP) |
241			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242	}
243
244	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
246	CRTC_WRITE(PV_V_CONTROL,
247		   PV_VCONTROL_CONTINUOUS |
248		   (interlace ? PV_VCONTROL_INTERLACE : 0));
249
250	CRTC_WRITE(PV_CONTROL,
251		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253				 PV_CONTROL_FIFO_LEVEL) |
 
254		   PV_CONTROL_CLR_AT_START |
255		   PV_CONTROL_TRIGGER_UNDERFLOW |
256		   PV_CONTROL_WAIT_HSTART |
257		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
 
258		   PV_CONTROL_FIFO_CLR |
259		   PV_CONTROL_EN);
260
261	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262		  SCALER_DISPBKGND_AUTOHS |
 
263		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264
 
 
 
 
 
265	if (debug_dump_regs) {
266		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267		vc4_crtc_dump_regs(vc4_crtc);
268	}
269}
270
271static void require_hvs_enabled(struct drm_device *dev)
272{
273	struct vc4_dev *vc4 = to_vc4_dev(dev);
274
275	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276		     SCALER_DISPCTRL_ENABLE);
277}
278
279static void vc4_crtc_disable(struct drm_crtc *crtc)
 
280{
281	struct drm_device *dev = crtc->dev;
282	struct vc4_dev *vc4 = to_vc4_dev(dev);
283	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284	u32 chan = vc4_crtc->channel;
285	int ret;
286	require_hvs_enabled(dev);
287
 
 
 
288	CRTC_WRITE(PV_V_CONTROL,
289		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292
293	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294	    SCALER_DISPCTRLX_ENABLE) {
295		HVS_WRITE(SCALER_DISPCTRLX(chan),
296			  SCALER_DISPCTRLX_RESET);
297
298		/* While the docs say that reset is self-clearing, it
299		 * seems it doesn't actually.
300		 */
301		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
302	}
303
304	/* Once we leave, the scaler should be disabled and its fifo empty. */
305
306	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
307
308	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309				   SCALER_DISPSTATX_MODE) !=
310		     SCALER_DISPSTATX_MODE_DISABLED);
311
312	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314		     SCALER_DISPSTATX_EMPTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315}
316
317static void vc4_crtc_enable(struct drm_crtc *crtc)
 
318{
319	struct drm_device *dev = crtc->dev;
320	struct vc4_dev *vc4 = to_vc4_dev(dev);
321	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322	struct drm_crtc_state *state = crtc->state;
323	struct drm_display_mode *mode = &state->adjusted_mode;
324
325	require_hvs_enabled(dev);
326
 
 
 
 
 
 
327	/* Turn on the scaler, which will wait for vstart to start
328	 * compositing.
329	 */
330	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333		  SCALER_DISPCTRLX_ENABLE);
334
335	/* Turn on the pixel valve, which will emit the vstart signal. */
336	CRTC_WRITE(PV_V_CONTROL,
337		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
338}
339
 
 
 
 
 
 
 
 
 
 
 
 
 
340static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341				 struct drm_crtc_state *state)
342{
343	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344	struct drm_device *dev = crtc->dev;
345	struct vc4_dev *vc4 = to_vc4_dev(dev);
346	struct drm_plane *plane;
347	unsigned long flags;
 
348	u32 dlist_count = 0;
349	int ret;
350
351	/* The pixelvalve can only feed one encoder (and encoders are
352	 * 1:1 with connectors.)
353	 */
354	if (hweight32(state->connector_mask) > 1)
355		return -EINVAL;
356
357	drm_atomic_crtc_state_for_each_plane(plane, state) {
358		struct drm_plane_state *plane_state =
359			state->state->plane_states[drm_plane_index(plane)];
360
361		/* plane might not have changed, in which case take
362		 * current state:
363		 */
364		if (!plane_state)
365			plane_state = plane->state;
366
367		dlist_count += vc4_plane_dlist_size(plane_state);
368	}
369
370	dlist_count++; /* Account for SCALER_CTL0_END. */
371
372	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374				 dlist_count, 1, 0);
375	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376	if (ret)
377		return ret;
378
379	return 0;
380}
381
382static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383				  struct drm_crtc_state *old_state)
384{
385	struct drm_device *dev = crtc->dev;
386	struct vc4_dev *vc4 = to_vc4_dev(dev);
387	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389	struct drm_plane *plane;
 
390	bool debug_dump_regs = false;
 
391	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392	u32 __iomem *dlist_next = dlist_start;
393
394	if (debug_dump_regs) {
395		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396		vc4_hvs_dump_state(dev);
397	}
398
399	/* Copy all the active planes' dlist contents to the hardware dlist. */
400	drm_atomic_crtc_for_each_plane(plane, crtc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402	}
403
404	writel(SCALER_CTL0_END, dlist_next);
405	dlist_next++;
406
407	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
408
409	HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410		  vc4_state->mm.start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411
412	if (debug_dump_regs) {
413		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414		vc4_hvs_dump_state(dev);
415	}
416
417	if (crtc->state->event) {
418		unsigned long flags;
419
420		crtc->state->event->pipe = drm_crtc_index(crtc);
421
422		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
423
424		spin_lock_irqsave(&dev->event_lock, flags);
425		vc4_crtc->event = crtc->state->event;
426		spin_unlock_irqrestore(&dev->event_lock, flags);
427		crtc->state->event = NULL;
428	}
429}
430
431int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432{
433	struct vc4_dev *vc4 = to_vc4_dev(dev);
434	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435
436	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437
438	return 0;
439}
440
441void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442{
443	struct vc4_dev *vc4 = to_vc4_dev(dev);
444	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445
446	CRTC_WRITE(PV_INTEN, 0);
447}
448
449static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450{
451	struct drm_crtc *crtc = &vc4_crtc->base;
452	struct drm_device *dev = crtc->dev;
 
 
 
453	unsigned long flags;
454
455	spin_lock_irqsave(&dev->event_lock, flags);
456	if (vc4_crtc->event) {
 
457		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458		vc4_crtc->event = NULL;
 
459	}
460	spin_unlock_irqrestore(&dev->event_lock, flags);
461}
462
463static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464{
465	struct vc4_crtc *vc4_crtc = data;
466	u32 stat = CRTC_READ(PV_INTSTAT);
467	irqreturn_t ret = IRQ_NONE;
468
469	if (stat & PV_INT_VFP_START) {
 
470		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471		drm_crtc_handle_vblank(&vc4_crtc->base);
472		vc4_crtc_handle_page_flip(vc4_crtc);
473		ret = IRQ_HANDLED;
474	}
475
476	return ret;
477}
478
479struct vc4_async_flip_state {
480	struct drm_crtc *crtc;
481	struct drm_framebuffer *fb;
 
482	struct drm_pending_vblank_event *event;
483
484	struct vc4_seqno_cb cb;
485};
486
487/* Called when the V3D execution for the BO being flipped to is done, so that
488 * we can actually update the plane's address to point to it.
489 */
490static void
491vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492{
493	struct vc4_async_flip_state *flip_state =
494		container_of(cb, struct vc4_async_flip_state, cb);
495	struct drm_crtc *crtc = flip_state->crtc;
496	struct drm_device *dev = crtc->dev;
497	struct vc4_dev *vc4 = to_vc4_dev(dev);
498	struct drm_plane *plane = crtc->primary;
499
500	vc4_plane_async_set_fb(plane, flip_state->fb);
501	if (flip_state->event) {
502		unsigned long flags;
503
504		spin_lock_irqsave(&dev->event_lock, flags);
505		drm_crtc_send_vblank_event(crtc, flip_state->event);
506		spin_unlock_irqrestore(&dev->event_lock, flags);
507	}
508
509	drm_framebuffer_unreference(flip_state->fb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510	kfree(flip_state);
511
512	up(&vc4->async_modeset);
513}
514
515/* Implements async (non-vblank-synced) page flips.
516 *
517 * The page flip ioctl needs to return immediately, so we grab the
518 * modeset semaphore on the pipe, and queue the address update for
519 * when V3D is done with the BO being flipped to.
520 */
521static int vc4_async_page_flip(struct drm_crtc *crtc,
522			       struct drm_framebuffer *fb,
523			       struct drm_pending_vblank_event *event,
524			       uint32_t flags)
525{
526	struct drm_device *dev = crtc->dev;
527	struct vc4_dev *vc4 = to_vc4_dev(dev);
528	struct drm_plane *plane = crtc->primary;
529	int ret = 0;
530	struct vc4_async_flip_state *flip_state;
531	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533
 
 
 
 
 
 
 
 
 
 
 
534	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535	if (!flip_state)
 
536		return -ENOMEM;
 
537
538	drm_framebuffer_reference(fb);
539	flip_state->fb = fb;
540	flip_state->crtc = crtc;
541	flip_state->event = event;
542
543	/* Make sure all other async modesetes have landed. */
544	ret = down_interruptible(&vc4->async_modeset);
545	if (ret) {
546		drm_framebuffer_unreference(fb);
 
547		kfree(flip_state);
548		return ret;
549	}
550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551	/* Immediately update the plane's legacy fb pointer, so that later
552	 * modeset prep sees the state that will be present when the semaphore
553	 * is released.
554	 */
555	drm_atomic_set_fb_for_plane(plane->state, fb);
556	plane->fb = fb;
557
558	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559			   vc4_async_page_flip_complete);
560
561	/* Driver takes ownership of state on successful async commit. */
562	return 0;
563}
564
565static int vc4_page_flip(struct drm_crtc *crtc,
566			 struct drm_framebuffer *fb,
567			 struct drm_pending_vblank_event *event,
568			 uint32_t flags)
 
569{
570	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571		return vc4_async_page_flip(crtc, fb, event, flags);
572	else
573		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574}
575
576static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577{
578	struct vc4_crtc_state *vc4_state;
579
580	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581	if (!vc4_state)
582		return NULL;
583
584	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585	return &vc4_state->base;
586}
587
588static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589				   struct drm_crtc_state *state)
590{
591	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593
594	if (vc4_state->mm.allocated) {
595		unsigned long flags;
596
597		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598		drm_mm_remove_node(&vc4_state->mm);
599		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600
601	}
602
603	__drm_atomic_helper_crtc_destroy_state(crtc, state);
 
 
 
 
 
 
 
 
 
 
 
604}
605
606static const struct drm_crtc_funcs vc4_crtc_funcs = {
607	.set_config = drm_atomic_helper_set_config,
608	.destroy = vc4_crtc_destroy,
609	.page_flip = vc4_page_flip,
610	.set_property = NULL,
611	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613	.reset = drm_atomic_helper_crtc_reset,
614	.atomic_duplicate_state = vc4_crtc_duplicate_state,
615	.atomic_destroy_state = vc4_crtc_destroy_state,
 
 
 
616};
617
618static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619	.mode_set_nofb = vc4_crtc_mode_set_nofb,
620	.disable = vc4_crtc_disable,
621	.enable = vc4_crtc_enable,
622	.atomic_check = vc4_crtc_atomic_check,
623	.atomic_flush = vc4_crtc_atomic_flush,
 
 
624};
625
626static const struct vc4_crtc_data pv0_data = {
627	.hvs_channel = 0,
628	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
629	.encoder1_type = VC4_ENCODER_TYPE_DPI,
 
 
630};
631
632static const struct vc4_crtc_data pv1_data = {
633	.hvs_channel = 2,
634	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
635	.encoder1_type = VC4_ENCODER_TYPE_SMI,
 
 
636};
637
638static const struct vc4_crtc_data pv2_data = {
639	.hvs_channel = 1,
640	.encoder0_type = VC4_ENCODER_TYPE_VEC,
641	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
 
 
642};
643
644static const struct of_device_id vc4_crtc_dt_match[] = {
645	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
648	{}
649};
650
651static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652					struct drm_crtc *crtc)
653{
654	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
655	struct drm_encoder *encoder;
656
657	drm_for_each_encoder(encoder, drm) {
658		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 
659
660		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661			vc4_encoder->clock_select = 0;
662			encoder->possible_crtcs |= drm_crtc_mask(crtc);
663		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664			vc4_encoder->clock_select = 1;
665			encoder->possible_crtcs |= drm_crtc_mask(crtc);
666		}
667	}
668}
669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
671{
672	struct platform_device *pdev = to_platform_device(dev);
673	struct drm_device *drm = dev_get_drvdata(master);
674	struct vc4_dev *vc4 = to_vc4_dev(drm);
675	struct vc4_crtc *vc4_crtc;
676	struct drm_crtc *crtc;
677	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678	const struct of_device_id *match;
679	int ret, i;
680
681	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682	if (!vc4_crtc)
683		return -ENOMEM;
684	crtc = &vc4_crtc->base;
685
686	match = of_match_device(vc4_crtc_dt_match, dev);
687	if (!match)
688		return -ENODEV;
689	vc4_crtc->data = match->data;
690
691	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692	if (IS_ERR(vc4_crtc->regs))
693		return PTR_ERR(vc4_crtc->regs);
694
695	/* For now, we create just the primary and the legacy cursor
696	 * planes.  We should be able to stack more planes on easily,
697	 * but to do that we would need to compute the bandwidth
698	 * requirement of the plane configuration, and reject ones
699	 * that will take too much.
700	 */
701	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702	if (IS_ERR(primary_plane)) {
703		dev_err(dev, "failed to construct primary plane\n");
704		ret = PTR_ERR(primary_plane);
705		goto err;
706	}
707
708	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709				  &vc4_crtc_funcs, NULL);
710	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711	primary_plane->crtc = crtc;
712	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
 
714
715	/* Set up some arbitrary number of planes.  We're not limited
716	 * by a set number of physical registers, just the space in
717	 * the HVS (16k) and how small an plane can be (28 bytes).
718	 * However, each plane we set up takes up some memory, and
719	 * increases the cost of looping over planes, which atomic
720	 * modesetting does quite a bit.  As a result, we pick a
721	 * modest number of planes to expose, that should hopefully
722	 * still cover any sane usecase.
723	 */
724	for (i = 0; i < 8; i++) {
725		struct drm_plane *plane =
726			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727
728		if (IS_ERR(plane))
729			continue;
730
731		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
732	}
733
734	/* Set up the legacy cursor after overlay initialization,
735	 * since we overlay planes on the CRTC in the order they were
736	 * initialized.
737	 */
738	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739	if (!IS_ERR(cursor_plane)) {
740		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741		cursor_plane->crtc = crtc;
742		crtc->cursor = cursor_plane;
743	}
744
 
 
745	CRTC_WRITE(PV_INTEN, 0);
746	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
749	if (ret)
750		goto err_destroy_planes;
751
752	vc4_set_crtc_possible_masks(drm, crtc);
 
 
 
 
 
 
753
754	platform_set_drvdata(pdev, vc4_crtc);
755
756	return 0;
757
758err_destroy_planes:
759	list_for_each_entry_safe(destroy_plane, temp,
760				 &drm->mode_config.plane_list, head) {
761		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762		    destroy_plane->funcs->destroy(destroy_plane);
763	}
764err:
765	return ret;
766}
767
768static void vc4_crtc_unbind(struct device *dev, struct device *master,
769			    void *data)
770{
771	struct platform_device *pdev = to_platform_device(dev);
772	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773
774	vc4_crtc_destroy(&vc4_crtc->base);
775
776	CRTC_WRITE(PV_INTEN, 0);
777
778	platform_set_drvdata(pdev, NULL);
779}
780
781static const struct component_ops vc4_crtc_ops = {
782	.bind   = vc4_crtc_bind,
783	.unbind = vc4_crtc_unbind,
784};
785
786static int vc4_crtc_dev_probe(struct platform_device *pdev)
787{
788	return component_add(&pdev->dev, &vc4_crtc_ops);
789}
790
791static int vc4_crtc_dev_remove(struct platform_device *pdev)
792{
793	component_del(&pdev->dev, &vc4_crtc_ops);
794	return 0;
795}
796
797struct platform_driver vc4_crtc_driver = {
798	.probe = vc4_crtc_dev_probe,
799	.remove = vc4_crtc_dev_remove,
800	.driver = {
801		.name = "vc4_crtc",
802		.of_match_table = vc4_crtc_dt_match,
803	},
804};
v4.17
   1/*
   2 * Copyright (C) 2015 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 */
   8
   9/**
  10 * DOC: VC4 CRTC module
  11 *
  12 * In VC4, the Pixel Valve is what most closely corresponds to the
  13 * DRM's concept of a CRTC.  The PV generates video timings from the
  14 * encoder's clock plus its configuration.  It pulls scaled pixels from
  15 * the HVS at that timing, and feeds it to the encoder.
  16 *
  17 * However, the DRM CRTC also collects the configuration of all the
  18 * DRM planes attached to it.  As a result, the CRTC is also
  19 * responsible for writing the display list for the HVS channel that
  20 * the CRTC will use.
  21 *
  22 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  24 * image domain can feed either HDMI or the SDTV controller.  The
  25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  26 * SDTV, etc.) according to which output type is chosen in the mux.
  27 *
  28 * For power management, the pixel valve's registers are all clocked
  29 * by the AXI clock, while the timings and FIFOs make use of the
  30 * output-specific clock.  Since the encoders also directly consume
  31 * the CPRMAN clocks, and know what timings they need, they are the
  32 * ones that set the clock.
  33 */
  34
  35#include <drm/drm_atomic.h>
  36#include <drm/drm_atomic_helper.h>
  37#include <drm/drm_crtc_helper.h>
  38#include <linux/clk.h>
  39#include <drm/drm_fb_cma_helper.h>
  40#include <linux/component.h>
  41#include <linux/of_device.h>
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45struct vc4_crtc {
  46	struct drm_crtc base;
  47	const struct vc4_crtc_data *data;
  48	void __iomem *regs;
  49
  50	/* Timestamp at start of vblank irq - unaffected by lock delays. */
  51	ktime_t t_vblank;
  52
  53	/* Which HVS channel we're using for our CRTC. */
  54	int channel;
  55
  56	u8 lut_r[256];
  57	u8 lut_g[256];
  58	u8 lut_b[256];
  59	/* Size in pixels of the COB memory allocated to this CRTC. */
  60	u32 cob_size;
  61
  62	struct drm_pending_vblank_event *event;
  63};
  64
  65struct vc4_crtc_state {
  66	struct drm_crtc_state base;
  67	/* Dlist area for this CRTC configuration. */
  68	struct drm_mm_node mm;
  69};
  70
  71static inline struct vc4_crtc *
  72to_vc4_crtc(struct drm_crtc *crtc)
  73{
  74	return (struct vc4_crtc *)crtc;
  75}
  76
  77static inline struct vc4_crtc_state *
  78to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  79{
  80	return (struct vc4_crtc_state *)crtc_state;
  81}
  82
  83struct vc4_crtc_data {
  84	/* Which channel of the HVS this pixelvalve sources from. */
  85	int hvs_channel;
  86
  87	enum vc4_encoder_type encoder_types[4];
 
  88};
  89
  90#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  91#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  92
  93#define CRTC_REG(reg) { reg, #reg }
  94static const struct {
  95	u32 reg;
  96	const char *name;
  97} crtc_regs[] = {
  98	CRTC_REG(PV_CONTROL),
  99	CRTC_REG(PV_V_CONTROL),
 100	CRTC_REG(PV_VSYNCD_EVEN),
 101	CRTC_REG(PV_HORZA),
 102	CRTC_REG(PV_HORZB),
 103	CRTC_REG(PV_VERTA),
 104	CRTC_REG(PV_VERTB),
 105	CRTC_REG(PV_VERTA_EVEN),
 106	CRTC_REG(PV_VERTB_EVEN),
 107	CRTC_REG(PV_INTEN),
 108	CRTC_REG(PV_INTSTAT),
 109	CRTC_REG(PV_STAT),
 110	CRTC_REG(PV_HACT_ACT),
 111};
 112
 113static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
 114{
 115	int i;
 116
 117	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 118		DRM_INFO("0x%04x (%s): 0x%08x\n",
 119			 crtc_regs[i].reg, crtc_regs[i].name,
 120			 CRTC_READ(crtc_regs[i].reg));
 121	}
 122}
 123
 124#ifdef CONFIG_DEBUG_FS
 125int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
 126{
 127	struct drm_info_node *node = (struct drm_info_node *)m->private;
 128	struct drm_device *dev = node->minor->dev;
 129	int crtc_index = (uintptr_t)node->info_ent->data;
 130	struct drm_crtc *crtc;
 131	struct vc4_crtc *vc4_crtc;
 132	int i;
 133
 134	i = 0;
 135	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 136		if (i == crtc_index)
 137			break;
 138		i++;
 139	}
 140	if (!crtc)
 141		return 0;
 142	vc4_crtc = to_vc4_crtc(crtc);
 143
 144	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 145		seq_printf(m, "%s (0x%04x): 0x%08x\n",
 146			   crtc_regs[i].name, crtc_regs[i].reg,
 147			   CRTC_READ(crtc_regs[i].reg));
 148	}
 149
 150	return 0;
 151}
 152#endif
 153
 154bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
 155			     bool in_vblank_irq, int *vpos, int *hpos,
 156			     ktime_t *stime, ktime_t *etime,
 157			     const struct drm_display_mode *mode)
 158{
 159	struct vc4_dev *vc4 = to_vc4_dev(dev);
 160	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
 161	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 162	u32 val;
 163	int fifo_lines;
 164	int vblank_lines;
 165	bool ret = false;
 166
 167	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 168
 169	/* Get optional system timestamp before query. */
 170	if (stime)
 171		*stime = ktime_get();
 172
 173	/*
 174	 * Read vertical scanline which is currently composed for our
 175	 * pixelvalve by the HVS, and also the scaler status.
 176	 */
 177	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 178
 179	/* Get optional system timestamp after query. */
 180	if (etime)
 181		*etime = ktime_get();
 182
 183	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 184
 185	/* Vertical position of hvs composed scanline. */
 186	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 187	*hpos = 0;
 188
 189	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 190		*vpos /= 2;
 191
 192		/* Use hpos to correct for field offset in interlaced mode. */
 193		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 194			*hpos += mode->crtc_htotal / 2;
 195	}
 196
 197	/* This is the offset we need for translating hvs -> pv scanout pos. */
 198	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 199
 200	if (fifo_lines > 0)
 201		ret = true;
 202
 203	/* HVS more than fifo_lines into frame for compositing? */
 204	if (*vpos > fifo_lines) {
 205		/*
 206		 * We are in active scanout and can get some meaningful results
 207		 * from HVS. The actual PV scanout can not trail behind more
 208		 * than fifo_lines as that is the fifo's capacity. Assume that
 209		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 210		 * refilling the fifo and PV consuming from the fifo, ie.
 211		 * whenever the PV consumes and frees up a scanline in the
 212		 * fifo, the HVS will immediately refill it, therefore
 213		 * incrementing vpos. Therefore we choose HVS read position -
 214		 * fifo size in scanlines as a estimate of the real scanout
 215		 * position of the PV.
 216		 */
 217		*vpos -= fifo_lines + 1;
 218
 219		return ret;
 220	}
 221
 222	/*
 223	 * Less: This happens when we are in vblank and the HVS, after getting
 224	 * the VSTART restart signal from the PV, just started refilling its
 225	 * fifo with new lines from the top-most lines of the new framebuffers.
 226	 * The PV does not scan out in vblank, so does not remove lines from
 227	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 228	 * We can't get meaningful readings wrt. scanline position of the PV
 229	 * and need to make things up in a approximative but consistent way.
 230	 */
 231	vblank_lines = mode->vtotal - mode->vdisplay;
 232
 233	if (in_vblank_irq) {
 234		/*
 235		 * Assume the irq handler got called close to first
 236		 * line of vblank, so PV has about a full vblank
 237		 * scanlines to go, and as a base timestamp use the
 238		 * one taken at entry into vblank irq handler, so it
 239		 * is not affected by random delays due to lock
 240		 * contention on event_lock or vblank_time lock in
 241		 * the core.
 242		 */
 243		*vpos = -vblank_lines;
 244
 245		if (stime)
 246			*stime = vc4_crtc->t_vblank;
 247		if (etime)
 248			*etime = vc4_crtc->t_vblank;
 249
 250		/*
 251		 * If the HVS fifo is not yet full then we know for certain
 252		 * we are at the very beginning of vblank, as the hvs just
 253		 * started refilling, and the stime and etime timestamps
 254		 * truly correspond to start of vblank.
 255		 *
 256		 * Unfortunately there's no way to report this to upper levels
 257		 * and make it more useful.
 258		 */
 259	} else {
 260		/*
 261		 * No clue where we are inside vblank. Return a vpos of zero,
 262		 * which will cause calling code to just return the etime
 263		 * timestamp uncorrected. At least this is no worse than the
 264		 * standard fallback.
 265		 */
 266		*vpos = 0;
 267	}
 268
 269	return ret;
 270}
 271
 272static void vc4_crtc_destroy(struct drm_crtc *crtc)
 273{
 274	drm_crtc_cleanup(crtc);
 275}
 276
 277static void
 278vc4_crtc_lut_load(struct drm_crtc *crtc)
 279{
 280	struct drm_device *dev = crtc->dev;
 281	struct vc4_dev *vc4 = to_vc4_dev(dev);
 282	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 283	u32 i;
 284
 285	/* The LUT memory is laid out with each HVS channel in order,
 286	 * each of which takes 256 writes for R, 256 for G, then 256
 287	 * for B.
 288	 */
 289	HVS_WRITE(SCALER_GAMADDR,
 290		  SCALER_GAMADDR_AUTOINC |
 291		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 292
 293	for (i = 0; i < crtc->gamma_size; i++)
 294		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 295	for (i = 0; i < crtc->gamma_size; i++)
 296		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 297	for (i = 0; i < crtc->gamma_size; i++)
 298		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 299}
 300
 301static int
 302vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
 303		   uint32_t size,
 304		   struct drm_modeset_acquire_ctx *ctx)
 305{
 306	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 307	u32 i;
 308
 309	for (i = 0; i < size; i++) {
 310		vc4_crtc->lut_r[i] = r[i] >> 8;
 311		vc4_crtc->lut_g[i] = g[i] >> 8;
 312		vc4_crtc->lut_b[i] = b[i] >> 8;
 313	}
 314
 315	vc4_crtc_lut_load(crtc);
 316
 317	return 0;
 318}
 319
 320static u32 vc4_get_fifo_full_level(u32 format)
 321{
 322	static const u32 fifo_len_bytes = 64;
 323	static const u32 hvs_latency_pix = 6;
 324
 325	switch (format) {
 326	case PV_CONTROL_FORMAT_DSIV_16:
 327	case PV_CONTROL_FORMAT_DSIC_16:
 328		return fifo_len_bytes - 2 * hvs_latency_pix;
 329	case PV_CONTROL_FORMAT_DSIV_18:
 330		return fifo_len_bytes - 14;
 331	case PV_CONTROL_FORMAT_24:
 332	case PV_CONTROL_FORMAT_DSIV_24:
 333	default:
 334		return fifo_len_bytes - 3 * hvs_latency_pix;
 335	}
 336}
 337
 338/*
 339 * Returns the encoder attached to the CRTC.
 340 *
 341 * VC4 can only scan out to one encoder at a time, while the DRM core
 342 * allows drivers to push pixels to more than one encoder from the
 343 * same CRTC.
 344 */
 345static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 346{
 347	struct drm_connector *connector;
 348	struct drm_connector_list_iter conn_iter;
 349
 350	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 351	drm_for_each_connector_iter(connector, &conn_iter) {
 352		if (connector->state->crtc == crtc) {
 353			drm_connector_list_iter_end(&conn_iter);
 354			return connector->encoder;
 
 
 
 355		}
 356	}
 357	drm_connector_list_iter_end(&conn_iter);
 358
 359	return NULL;
 360}
 361
 362static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 363{
 364	struct drm_device *dev = crtc->dev;
 365	struct vc4_dev *vc4 = to_vc4_dev(dev);
 366	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 367	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 368	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 369	struct drm_crtc_state *state = crtc->state;
 370	struct drm_display_mode *mode = &state->adjusted_mode;
 371	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 372	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 373	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 374		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 375	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 376	bool debug_dump_regs = false;
 
 377
 378	if (debug_dump_regs) {
 379		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
 380		vc4_crtc_dump_regs(vc4_crtc);
 381	}
 382
 383	/* Reset the PV fifo. */
 384	CRTC_WRITE(PV_CONTROL, 0);
 385	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 386	CRTC_WRITE(PV_CONTROL, 0);
 387
 388	CRTC_WRITE(PV_HORZA,
 389		   VC4_SET_FIELD((mode->htotal -
 390				  mode->hsync_end) * pixel_rep,
 391				 PV_HORZA_HBP) |
 392		   VC4_SET_FIELD((mode->hsync_end -
 393				  mode->hsync_start) * pixel_rep,
 394				 PV_HORZA_HSYNC));
 395	CRTC_WRITE(PV_HORZB,
 396		   VC4_SET_FIELD((mode->hsync_start -
 397				  mode->hdisplay) * pixel_rep,
 398				 PV_HORZB_HFP) |
 399		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 400
 401	CRTC_WRITE(PV_VERTA,
 402		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 403				 PV_VERTA_VBP) |
 404		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 405				 PV_VERTA_VSYNC));
 406	CRTC_WRITE(PV_VERTB,
 407		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 408				 PV_VERTB_VFP) |
 409		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 410
 411	if (interlace) {
 412		CRTC_WRITE(PV_VERTA_EVEN,
 413			   VC4_SET_FIELD(mode->crtc_vtotal -
 414					 mode->crtc_vsync_end - 1,
 415					 PV_VERTA_VBP) |
 416			   VC4_SET_FIELD(mode->crtc_vsync_end -
 417					 mode->crtc_vsync_start,
 418					 PV_VERTA_VSYNC));
 419		CRTC_WRITE(PV_VERTB_EVEN,
 420			   VC4_SET_FIELD(mode->crtc_vsync_start -
 421					 mode->crtc_vdisplay,
 422					 PV_VERTB_VFP) |
 423			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 
 424
 425		/* We set up first field even mode for HDMI.  VEC's
 426		 * NTSC mode would want first field odd instead, once
 427		 * we support it (to do so, set ODD_FIRST and put the
 428		 * delay in VSYNCD_EVEN instead).
 429		 */
 430		CRTC_WRITE(PV_V_CONTROL,
 431			   PV_VCONTROL_CONTINUOUS |
 432			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 433			   PV_VCONTROL_INTERLACE |
 434			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 435					 PV_VCONTROL_ODD_DELAY));
 436		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 437	} else {
 438		CRTC_WRITE(PV_V_CONTROL,
 439			   PV_VCONTROL_CONTINUOUS |
 440			   (is_dsi ? PV_VCONTROL_DSI : 0));
 441	}
 442
 443	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 
 
 444
 445	CRTC_WRITE(PV_CONTROL,
 446		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 447		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 448				 PV_CONTROL_FIFO_LEVEL) |
 449		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 450		   PV_CONTROL_CLR_AT_START |
 451		   PV_CONTROL_TRIGGER_UNDERFLOW |
 452		   PV_CONTROL_WAIT_HSTART |
 453		   VC4_SET_FIELD(vc4_encoder->clock_select,
 454				 PV_CONTROL_CLK_SELECT) |
 455		   PV_CONTROL_FIFO_CLR |
 456		   PV_CONTROL_EN);
 457
 458	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 459		  SCALER_DISPBKGND_AUTOHS |
 460		  SCALER_DISPBKGND_GAMMA |
 461		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 462
 463	/* Reload the LUT, since the SRAMs would have been disabled if
 464	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 465	 */
 466	vc4_crtc_lut_load(crtc);
 467
 468	if (debug_dump_regs) {
 469		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
 470		vc4_crtc_dump_regs(vc4_crtc);
 471	}
 472}
 473
 474static void require_hvs_enabled(struct drm_device *dev)
 475{
 476	struct vc4_dev *vc4 = to_vc4_dev(dev);
 477
 478	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 479		     SCALER_DISPCTRL_ENABLE);
 480}
 481
 482static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 483				    struct drm_crtc_state *old_state)
 484{
 485	struct drm_device *dev = crtc->dev;
 486	struct vc4_dev *vc4 = to_vc4_dev(dev);
 487	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 488	u32 chan = vc4_crtc->channel;
 489	int ret;
 490	require_hvs_enabled(dev);
 491
 492	/* Disable vblank irq handling before crtc is disabled. */
 493	drm_crtc_vblank_off(crtc);
 494
 495	CRTC_WRITE(PV_V_CONTROL,
 496		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 497	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 498	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 499
 500	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 501	    SCALER_DISPCTRLX_ENABLE) {
 502		HVS_WRITE(SCALER_DISPCTRLX(chan),
 503			  SCALER_DISPCTRLX_RESET);
 504
 505		/* While the docs say that reset is self-clearing, it
 506		 * seems it doesn't actually.
 507		 */
 508		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 509	}
 510
 511	/* Once we leave, the scaler should be disabled and its fifo empty. */
 512
 513	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 514
 515	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 516				   SCALER_DISPSTATX_MODE) !=
 517		     SCALER_DISPSTATX_MODE_DISABLED);
 518
 519	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 520		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 521		     SCALER_DISPSTATX_EMPTY);
 522
 523	/*
 524	 * Make sure we issue a vblank event after disabling the CRTC if
 525	 * someone was waiting it.
 526	 */
 527	if (crtc->state->event) {
 528		unsigned long flags;
 529
 530		spin_lock_irqsave(&dev->event_lock, flags);
 531		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 532		crtc->state->event = NULL;
 533		spin_unlock_irqrestore(&dev->event_lock, flags);
 534	}
 535}
 536
 537static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 538{
 539	struct drm_device *dev = crtc->dev;
 540	struct vc4_dev *vc4 = to_vc4_dev(dev);
 541	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 542	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 543
 544	if (crtc->state->event) {
 545		unsigned long flags;
 546
 547		crtc->state->event->pipe = drm_crtc_index(crtc);
 548
 549		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 550
 551		spin_lock_irqsave(&dev->event_lock, flags);
 552		vc4_crtc->event = crtc->state->event;
 553		crtc->state->event = NULL;
 554
 555		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 556			  vc4_state->mm.start);
 557
 558		spin_unlock_irqrestore(&dev->event_lock, flags);
 559	} else {
 560		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 561			  vc4_state->mm.start);
 562	}
 563}
 564
 565static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 566				   struct drm_crtc_state *old_state)
 567{
 568	struct drm_device *dev = crtc->dev;
 569	struct vc4_dev *vc4 = to_vc4_dev(dev);
 570	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 571	struct drm_crtc_state *state = crtc->state;
 572	struct drm_display_mode *mode = &state->adjusted_mode;
 573
 574	require_hvs_enabled(dev);
 575
 576	/* Enable vblank irq handling before crtc is started otherwise
 577	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 578	 */
 579	drm_crtc_vblank_on(crtc);
 580	vc4_crtc_update_dlist(crtc);
 581
 582	/* Turn on the scaler, which will wait for vstart to start
 583	 * compositing.
 584	 */
 585	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 586		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 587		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 588		  SCALER_DISPCTRLX_ENABLE);
 589
 590	/* Turn on the pixel valve, which will emit the vstart signal. */
 591	CRTC_WRITE(PV_V_CONTROL,
 592		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 593}
 594
 595static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 596						const struct drm_display_mode *mode)
 597{
 598	/* Do not allow doublescan modes from user space */
 599	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 600		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 601			      crtc->base.id);
 602		return MODE_NO_DBLESCAN;
 603	}
 604
 605	return MODE_OK;
 606}
 607
 608static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 609				 struct drm_crtc_state *state)
 610{
 611	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 612	struct drm_device *dev = crtc->dev;
 613	struct vc4_dev *vc4 = to_vc4_dev(dev);
 614	struct drm_plane *plane;
 615	unsigned long flags;
 616	const struct drm_plane_state *plane_state;
 617	u32 dlist_count = 0;
 618	int ret;
 619
 620	/* The pixelvalve can only feed one encoder (and encoders are
 621	 * 1:1 with connectors.)
 622	 */
 623	if (hweight32(state->connector_mask) > 1)
 624		return -EINVAL;
 625
 626	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 
 
 
 
 
 
 
 
 
 627		dlist_count += vc4_plane_dlist_size(plane_state);
 
 628
 629	dlist_count++; /* Account for SCALER_CTL0_END. */
 630
 631	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 632	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 633				 dlist_count);
 634	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 635	if (ret)
 636		return ret;
 637
 638	return 0;
 639}
 640
 641static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 642				  struct drm_crtc_state *old_state)
 643{
 644	struct drm_device *dev = crtc->dev;
 645	struct vc4_dev *vc4 = to_vc4_dev(dev);
 646	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 647	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 648	struct drm_plane *plane;
 649	struct vc4_plane_state *vc4_plane_state;
 650	bool debug_dump_regs = false;
 651	bool enable_bg_fill = false;
 652	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 653	u32 __iomem *dlist_next = dlist_start;
 654
 655	if (debug_dump_regs) {
 656		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 657		vc4_hvs_dump_state(dev);
 658	}
 659
 660	/* Copy all the active planes' dlist contents to the hardware dlist. */
 661	drm_atomic_crtc_for_each_plane(plane, crtc) {
 662		/* Is this the first active plane? */
 663		if (dlist_next == dlist_start) {
 664			/* We need to enable background fill when a plane
 665			 * could be alpha blending from the background, i.e.
 666			 * where no other plane is underneath. It suffices to
 667			 * consider the first active plane here since we set
 668			 * needs_bg_fill such that either the first plane
 669			 * already needs it or all planes on top blend from
 670			 * the first or a lower plane.
 671			 */
 672			vc4_plane_state = to_vc4_plane_state(plane->state);
 673			enable_bg_fill = vc4_plane_state->needs_bg_fill;
 674		}
 675
 676		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 677	}
 678
 679	writel(SCALER_CTL0_END, dlist_next);
 680	dlist_next++;
 681
 682	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 683
 684	if (enable_bg_fill)
 685		/* This sets a black background color fill, as is the case
 686		 * with other DRM drivers.
 687		 */
 688		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 689			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 690			  SCALER_DISPBKGND_FILL);
 691
 692	/* Only update DISPLIST if the CRTC was already running and is not
 693	 * being disabled.
 694	 * vc4_crtc_enable() takes care of updating the dlist just after
 695	 * re-enabling VBLANK interrupts and before enabling the engine.
 696	 * If the CRTC is being disabled, there's no point in updating this
 697	 * information.
 698	 */
 699	if (crtc->state->active && old_state->active)
 700		vc4_crtc_update_dlist(crtc);
 701
 702	if (debug_dump_regs) {
 703		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 704		vc4_hvs_dump_state(dev);
 705	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 706}
 707
 708static int vc4_enable_vblank(struct drm_crtc *crtc)
 709{
 710	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 711
 712	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 713
 714	return 0;
 715}
 716
 717static void vc4_disable_vblank(struct drm_crtc *crtc)
 718{
 719	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 720
 721	CRTC_WRITE(PV_INTEN, 0);
 722}
 723
 724static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 725{
 726	struct drm_crtc *crtc = &vc4_crtc->base;
 727	struct drm_device *dev = crtc->dev;
 728	struct vc4_dev *vc4 = to_vc4_dev(dev);
 729	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 730	u32 chan = vc4_crtc->channel;
 731	unsigned long flags;
 732
 733	spin_lock_irqsave(&dev->event_lock, flags);
 734	if (vc4_crtc->event &&
 735	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
 736		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 737		vc4_crtc->event = NULL;
 738		drm_crtc_vblank_put(crtc);
 739	}
 740	spin_unlock_irqrestore(&dev->event_lock, flags);
 741}
 742
 743static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 744{
 745	struct vc4_crtc *vc4_crtc = data;
 746	u32 stat = CRTC_READ(PV_INTSTAT);
 747	irqreturn_t ret = IRQ_NONE;
 748
 749	if (stat & PV_INT_VFP_START) {
 750		vc4_crtc->t_vblank = ktime_get();
 751		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 752		drm_crtc_handle_vblank(&vc4_crtc->base);
 753		vc4_crtc_handle_page_flip(vc4_crtc);
 754		ret = IRQ_HANDLED;
 755	}
 756
 757	return ret;
 758}
 759
 760struct vc4_async_flip_state {
 761	struct drm_crtc *crtc;
 762	struct drm_framebuffer *fb;
 763	struct drm_framebuffer *old_fb;
 764	struct drm_pending_vblank_event *event;
 765
 766	struct vc4_seqno_cb cb;
 767};
 768
 769/* Called when the V3D execution for the BO being flipped to is done, so that
 770 * we can actually update the plane's address to point to it.
 771 */
 772static void
 773vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 774{
 775	struct vc4_async_flip_state *flip_state =
 776		container_of(cb, struct vc4_async_flip_state, cb);
 777	struct drm_crtc *crtc = flip_state->crtc;
 778	struct drm_device *dev = crtc->dev;
 779	struct vc4_dev *vc4 = to_vc4_dev(dev);
 780	struct drm_plane *plane = crtc->primary;
 781
 782	vc4_plane_async_set_fb(plane, flip_state->fb);
 783	if (flip_state->event) {
 784		unsigned long flags;
 785
 786		spin_lock_irqsave(&dev->event_lock, flags);
 787		drm_crtc_send_vblank_event(crtc, flip_state->event);
 788		spin_unlock_irqrestore(&dev->event_lock, flags);
 789	}
 790
 791	drm_crtc_vblank_put(crtc);
 792	drm_framebuffer_put(flip_state->fb);
 793
 794	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 795	 * when the planes are updated through the async update path.
 796	 * FIXME: we should move to generic async-page-flip when it's
 797	 * available, so that we can get rid of this hand-made cleanup_fb()
 798	 * logic.
 799	 */
 800	if (flip_state->old_fb) {
 801		struct drm_gem_cma_object *cma_bo;
 802		struct vc4_bo *bo;
 803
 804		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 805		bo = to_vc4_bo(&cma_bo->base);
 806		vc4_bo_dec_usecnt(bo);
 807		drm_framebuffer_put(flip_state->old_fb);
 808	}
 809
 810	kfree(flip_state);
 811
 812	up(&vc4->async_modeset);
 813}
 814
 815/* Implements async (non-vblank-synced) page flips.
 816 *
 817 * The page flip ioctl needs to return immediately, so we grab the
 818 * modeset semaphore on the pipe, and queue the address update for
 819 * when V3D is done with the BO being flipped to.
 820 */
 821static int vc4_async_page_flip(struct drm_crtc *crtc,
 822			       struct drm_framebuffer *fb,
 823			       struct drm_pending_vblank_event *event,
 824			       uint32_t flags)
 825{
 826	struct drm_device *dev = crtc->dev;
 827	struct vc4_dev *vc4 = to_vc4_dev(dev);
 828	struct drm_plane *plane = crtc->primary;
 829	int ret = 0;
 830	struct vc4_async_flip_state *flip_state;
 831	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 832	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 833
 834	/* Increment the BO usecnt here, so that we never end up with an
 835	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 836	 * plane is later updated through the non-async path.
 837	 * FIXME: we should move to generic async-page-flip when it's
 838	 * available, so that we can get rid of this hand-made prepare_fb()
 839	 * logic.
 840	 */
 841	ret = vc4_bo_inc_usecnt(bo);
 842	if (ret)
 843		return ret;
 844
 845	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 846	if (!flip_state) {
 847		vc4_bo_dec_usecnt(bo);
 848		return -ENOMEM;
 849	}
 850
 851	drm_framebuffer_get(fb);
 852	flip_state->fb = fb;
 853	flip_state->crtc = crtc;
 854	flip_state->event = event;
 855
 856	/* Make sure all other async modesetes have landed. */
 857	ret = down_interruptible(&vc4->async_modeset);
 858	if (ret) {
 859		drm_framebuffer_put(fb);
 860		vc4_bo_dec_usecnt(bo);
 861		kfree(flip_state);
 862		return ret;
 863	}
 864
 865	/* Save the current FB before it's replaced by the new one in
 866	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 867	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 868	 * it consistent.
 869	 * FIXME: we should move to generic async-page-flip when it's
 870	 * available, so that we can get rid of this hand-made cleanup_fb()
 871	 * logic.
 872	 */
 873	flip_state->old_fb = plane->state->fb;
 874	if (flip_state->old_fb)
 875		drm_framebuffer_get(flip_state->old_fb);
 876
 877	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 878
 879	/* Immediately update the plane's legacy fb pointer, so that later
 880	 * modeset prep sees the state that will be present when the semaphore
 881	 * is released.
 882	 */
 883	drm_atomic_set_fb_for_plane(plane->state, fb);
 884	plane->fb = fb;
 885
 886	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 887			   vc4_async_page_flip_complete);
 888
 889	/* Driver takes ownership of state on successful async commit. */
 890	return 0;
 891}
 892
 893static int vc4_page_flip(struct drm_crtc *crtc,
 894			 struct drm_framebuffer *fb,
 895			 struct drm_pending_vblank_event *event,
 896			 uint32_t flags,
 897			 struct drm_modeset_acquire_ctx *ctx)
 898{
 899	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 900		return vc4_async_page_flip(crtc, fb, event, flags);
 901	else
 902		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 903}
 904
 905static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 906{
 907	struct vc4_crtc_state *vc4_state;
 908
 909	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 910	if (!vc4_state)
 911		return NULL;
 912
 913	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 914	return &vc4_state->base;
 915}
 916
 917static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 918				   struct drm_crtc_state *state)
 919{
 920	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 921	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 922
 923	if (vc4_state->mm.allocated) {
 924		unsigned long flags;
 925
 926		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 927		drm_mm_remove_node(&vc4_state->mm);
 928		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 929
 930	}
 931
 932	drm_atomic_helper_crtc_destroy_state(crtc, state);
 933}
 934
 935static void
 936vc4_crtc_reset(struct drm_crtc *crtc)
 937{
 938	if (crtc->state)
 939		__drm_atomic_helper_crtc_destroy_state(crtc->state);
 940
 941	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
 942	if (crtc->state)
 943		crtc->state->crtc = crtc;
 944}
 945
 946static const struct drm_crtc_funcs vc4_crtc_funcs = {
 947	.set_config = drm_atomic_helper_set_config,
 948	.destroy = vc4_crtc_destroy,
 949	.page_flip = vc4_page_flip,
 950	.set_property = NULL,
 951	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 952	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 953	.reset = vc4_crtc_reset,
 954	.atomic_duplicate_state = vc4_crtc_duplicate_state,
 955	.atomic_destroy_state = vc4_crtc_destroy_state,
 956	.gamma_set = vc4_crtc_gamma_set,
 957	.enable_vblank = vc4_enable_vblank,
 958	.disable_vblank = vc4_disable_vblank,
 959};
 960
 961static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 962	.mode_set_nofb = vc4_crtc_mode_set_nofb,
 963	.mode_valid = vc4_crtc_mode_valid,
 
 964	.atomic_check = vc4_crtc_atomic_check,
 965	.atomic_flush = vc4_crtc_atomic_flush,
 966	.atomic_enable = vc4_crtc_atomic_enable,
 967	.atomic_disable = vc4_crtc_atomic_disable,
 968};
 969
 970static const struct vc4_crtc_data pv0_data = {
 971	.hvs_channel = 0,
 972	.encoder_types = {
 973		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
 974		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
 975	},
 976};
 977
 978static const struct vc4_crtc_data pv1_data = {
 979	.hvs_channel = 2,
 980	.encoder_types = {
 981		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
 982		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
 983	},
 984};
 985
 986static const struct vc4_crtc_data pv2_data = {
 987	.hvs_channel = 1,
 988	.encoder_types = {
 989		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
 990		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
 991	},
 992};
 993
 994static const struct of_device_id vc4_crtc_dt_match[] = {
 995	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
 996	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
 997	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 998	{}
 999};
1000
1001static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1002					struct drm_crtc *crtc)
1003{
1004	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1005	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1006	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1007	struct drm_encoder *encoder;
1008
1009	drm_for_each_encoder(encoder, drm) {
1010		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
1011		int i;
1012
1013		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1014			if (vc4_encoder->type == encoder_types[i]) {
1015				vc4_encoder->clock_select = i;
1016				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1017				break;
1018			}
1019		}
1020	}
1021}
1022
1023static void
1024vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1025{
1026	struct drm_device *drm = vc4_crtc->base.dev;
1027	struct vc4_dev *vc4 = to_vc4_dev(drm);
1028	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1029	/* Top/base are supposed to be 4-pixel aligned, but the
1030	 * Raspberry Pi firmware fills the low bits (which are
1031	 * presumably ignored).
1032	 */
1033	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1034	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1035
1036	vc4_crtc->cob_size = top - base + 4;
1037}
1038
1039static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1040{
1041	struct platform_device *pdev = to_platform_device(dev);
1042	struct drm_device *drm = dev_get_drvdata(master);
 
1043	struct vc4_crtc *vc4_crtc;
1044	struct drm_crtc *crtc;
1045	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1046	const struct of_device_id *match;
1047	int ret, i;
1048
1049	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1050	if (!vc4_crtc)
1051		return -ENOMEM;
1052	crtc = &vc4_crtc->base;
1053
1054	match = of_match_device(vc4_crtc_dt_match, dev);
1055	if (!match)
1056		return -ENODEV;
1057	vc4_crtc->data = match->data;
1058
1059	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1060	if (IS_ERR(vc4_crtc->regs))
1061		return PTR_ERR(vc4_crtc->regs);
1062
1063	/* For now, we create just the primary and the legacy cursor
1064	 * planes.  We should be able to stack more planes on easily,
1065	 * but to do that we would need to compute the bandwidth
1066	 * requirement of the plane configuration, and reject ones
1067	 * that will take too much.
1068	 */
1069	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1070	if (IS_ERR(primary_plane)) {
1071		dev_err(dev, "failed to construct primary plane\n");
1072		ret = PTR_ERR(primary_plane);
1073		goto err;
1074	}
1075
1076	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1077				  &vc4_crtc_funcs, NULL);
1078	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1079	primary_plane->crtc = crtc;
 
1080	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1081	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1082
1083	/* Set up some arbitrary number of planes.  We're not limited
1084	 * by a set number of physical registers, just the space in
1085	 * the HVS (16k) and how small an plane can be (28 bytes).
1086	 * However, each plane we set up takes up some memory, and
1087	 * increases the cost of looping over planes, which atomic
1088	 * modesetting does quite a bit.  As a result, we pick a
1089	 * modest number of planes to expose, that should hopefully
1090	 * still cover any sane usecase.
1091	 */
1092	for (i = 0; i < 8; i++) {
1093		struct drm_plane *plane =
1094			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1095
1096		if (IS_ERR(plane))
1097			continue;
1098
1099		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1100	}
1101
1102	/* Set up the legacy cursor after overlay initialization,
1103	 * since we overlay planes on the CRTC in the order they were
1104	 * initialized.
1105	 */
1106	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1107	if (!IS_ERR(cursor_plane)) {
1108		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1109		cursor_plane->crtc = crtc;
1110		crtc->cursor = cursor_plane;
1111	}
1112
1113	vc4_crtc_get_cob_allocation(vc4_crtc);
1114
1115	CRTC_WRITE(PV_INTEN, 0);
1116	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1117	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1118			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1119	if (ret)
1120		goto err_destroy_planes;
1121
1122	vc4_set_crtc_possible_masks(drm, crtc);
1123
1124	for (i = 0; i < crtc->gamma_size; i++) {
1125		vc4_crtc->lut_r[i] = i;
1126		vc4_crtc->lut_g[i] = i;
1127		vc4_crtc->lut_b[i] = i;
1128	}
1129
1130	platform_set_drvdata(pdev, vc4_crtc);
1131
1132	return 0;
1133
1134err_destroy_planes:
1135	list_for_each_entry_safe(destroy_plane, temp,
1136				 &drm->mode_config.plane_list, head) {
1137		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1138		    destroy_plane->funcs->destroy(destroy_plane);
1139	}
1140err:
1141	return ret;
1142}
1143
1144static void vc4_crtc_unbind(struct device *dev, struct device *master,
1145			    void *data)
1146{
1147	struct platform_device *pdev = to_platform_device(dev);
1148	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1149
1150	vc4_crtc_destroy(&vc4_crtc->base);
1151
1152	CRTC_WRITE(PV_INTEN, 0);
1153
1154	platform_set_drvdata(pdev, NULL);
1155}
1156
1157static const struct component_ops vc4_crtc_ops = {
1158	.bind   = vc4_crtc_bind,
1159	.unbind = vc4_crtc_unbind,
1160};
1161
1162static int vc4_crtc_dev_probe(struct platform_device *pdev)
1163{
1164	return component_add(&pdev->dev, &vc4_crtc_ops);
1165}
1166
1167static int vc4_crtc_dev_remove(struct platform_device *pdev)
1168{
1169	component_del(&pdev->dev, &vc4_crtc_ops);
1170	return 0;
1171}
1172
1173struct platform_driver vc4_crtc_driver = {
1174	.probe = vc4_crtc_dev_probe,
1175	.remove = vc4_crtc_dev_remove,
1176	.driver = {
1177		.name = "vc4_crtc",
1178		.of_match_table = vc4_crtc_dt_match,
1179	},
1180};