Loading...
1/*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/efi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/stddef.h>
14#include <linux/ioport.h>
15#include <linux/delay.h>
16#include <linux/utsname.h>
17#include <linux/initrd.h>
18#include <linux/console.h>
19#include <linux/bootmem.h>
20#include <linux/seq_file.h>
21#include <linux/screen_info.h>
22#include <linux/of_iommu.h>
23#include <linux/of_platform.h>
24#include <linux/init.h>
25#include <linux/kexec.h>
26#include <linux/of_fdt.h>
27#include <linux/cpu.h>
28#include <linux/interrupt.h>
29#include <linux/smp.h>
30#include <linux/proc_fs.h>
31#include <linux/memblock.h>
32#include <linux/bug.h>
33#include <linux/compiler.h>
34#include <linux/sort.h>
35#include <linux/psci.h>
36
37#include <asm/unified.h>
38#include <asm/cp15.h>
39#include <asm/cpu.h>
40#include <asm/cputype.h>
41#include <asm/efi.h>
42#include <asm/elf.h>
43#include <asm/early_ioremap.h>
44#include <asm/fixmap.h>
45#include <asm/procinfo.h>
46#include <asm/psci.h>
47#include <asm/sections.h>
48#include <asm/setup.h>
49#include <asm/smp_plat.h>
50#include <asm/mach-types.h>
51#include <asm/cacheflush.h>
52#include <asm/cachetype.h>
53#include <asm/tlbflush.h>
54#include <asm/xen/hypervisor.h>
55
56#include <asm/prom.h>
57#include <asm/mach/arch.h>
58#include <asm/mach/irq.h>
59#include <asm/mach/time.h>
60#include <asm/system_info.h>
61#include <asm/system_misc.h>
62#include <asm/traps.h>
63#include <asm/unwind.h>
64#include <asm/memblock.h>
65#include <asm/virt.h>
66
67#include "atags.h"
68
69
70#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
71char fpe_type[8];
72
73static int __init fpe_setup(char *line)
74{
75 memcpy(fpe_type, line, 8);
76 return 1;
77}
78
79__setup("fpe=", fpe_setup);
80#endif
81
82extern void init_default_cache_policy(unsigned long);
83extern void paging_init(const struct machine_desc *desc);
84extern void early_paging_init(const struct machine_desc *);
85extern void sanity_check_meminfo(void);
86extern enum reboot_mode reboot_mode;
87extern void setup_dma_zone(const struct machine_desc *desc);
88
89unsigned int processor_id;
90EXPORT_SYMBOL(processor_id);
91unsigned int __machine_arch_type __read_mostly;
92EXPORT_SYMBOL(__machine_arch_type);
93unsigned int cacheid __read_mostly;
94EXPORT_SYMBOL(cacheid);
95
96unsigned int __atags_pointer __initdata;
97
98unsigned int system_rev;
99EXPORT_SYMBOL(system_rev);
100
101const char *system_serial;
102EXPORT_SYMBOL(system_serial);
103
104unsigned int system_serial_low;
105EXPORT_SYMBOL(system_serial_low);
106
107unsigned int system_serial_high;
108EXPORT_SYMBOL(system_serial_high);
109
110unsigned int elf_hwcap __read_mostly;
111EXPORT_SYMBOL(elf_hwcap);
112
113unsigned int elf_hwcap2 __read_mostly;
114EXPORT_SYMBOL(elf_hwcap2);
115
116
117#ifdef MULTI_CPU
118struct processor processor __read_mostly;
119#endif
120#ifdef MULTI_TLB
121struct cpu_tlb_fns cpu_tlb __read_mostly;
122#endif
123#ifdef MULTI_USER
124struct cpu_user_fns cpu_user __read_mostly;
125#endif
126#ifdef MULTI_CACHE
127struct cpu_cache_fns cpu_cache __read_mostly;
128#endif
129#ifdef CONFIG_OUTER_CACHE
130struct outer_cache_fns outer_cache __read_mostly;
131EXPORT_SYMBOL(outer_cache);
132#endif
133
134/*
135 * Cached cpu_architecture() result for use by assembler code.
136 * C code should use the cpu_architecture() function instead of accessing this
137 * variable directly.
138 */
139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
140
141struct stack {
142 u32 irq[3];
143 u32 abt[3];
144 u32 und[3];
145 u32 fiq[3];
146} ____cacheline_aligned;
147
148#ifndef CONFIG_CPU_V7M
149static struct stack stacks[NR_CPUS];
150#endif
151
152char elf_platform[ELF_PLATFORM_SIZE];
153EXPORT_SYMBOL(elf_platform);
154
155static const char *cpu_name;
156static const char *machine_name;
157static char __initdata cmd_line[COMMAND_LINE_SIZE];
158const struct machine_desc *machine_desc __initdata;
159
160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
161#define ENDIANNESS ((char)endian_test.l)
162
163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
164
165/*
166 * Standard memory resources
167 */
168static struct resource mem_res[] = {
169 {
170 .name = "Video RAM",
171 .start = 0,
172 .end = 0,
173 .flags = IORESOURCE_MEM
174 },
175 {
176 .name = "Kernel code",
177 .start = 0,
178 .end = 0,
179 .flags = IORESOURCE_SYSTEM_RAM
180 },
181 {
182 .name = "Kernel data",
183 .start = 0,
184 .end = 0,
185 .flags = IORESOURCE_SYSTEM_RAM
186 }
187};
188
189#define video_ram mem_res[0]
190#define kernel_code mem_res[1]
191#define kernel_data mem_res[2]
192
193static struct resource io_res[] = {
194 {
195 .name = "reserved",
196 .start = 0x3bc,
197 .end = 0x3be,
198 .flags = IORESOURCE_IO | IORESOURCE_BUSY
199 },
200 {
201 .name = "reserved",
202 .start = 0x378,
203 .end = 0x37f,
204 .flags = IORESOURCE_IO | IORESOURCE_BUSY
205 },
206 {
207 .name = "reserved",
208 .start = 0x278,
209 .end = 0x27f,
210 .flags = IORESOURCE_IO | IORESOURCE_BUSY
211 }
212};
213
214#define lp0 io_res[0]
215#define lp1 io_res[1]
216#define lp2 io_res[2]
217
218static const char *proc_arch[] = {
219 "undefined/unknown",
220 "3",
221 "4",
222 "4T",
223 "5",
224 "5T",
225 "5TE",
226 "5TEJ",
227 "6TEJ",
228 "7",
229 "7M",
230 "?(12)",
231 "?(13)",
232 "?(14)",
233 "?(15)",
234 "?(16)",
235 "?(17)",
236};
237
238#ifdef CONFIG_CPU_V7M
239static int __get_cpu_architecture(void)
240{
241 return CPU_ARCH_ARMv7M;
242}
243#else
244static int __get_cpu_architecture(void)
245{
246 int cpu_arch;
247
248 if ((read_cpuid_id() & 0x0008f000) == 0) {
249 cpu_arch = CPU_ARCH_UNKNOWN;
250 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
251 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
252 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
253 cpu_arch = (read_cpuid_id() >> 16) & 7;
254 if (cpu_arch)
255 cpu_arch += CPU_ARCH_ARMv3;
256 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
257 /* Revised CPUID format. Read the Memory Model Feature
258 * Register 0 and check for VMSAv7 or PMSAv7 */
259 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
260 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
261 (mmfr0 & 0x000000f0) >= 0x00000030)
262 cpu_arch = CPU_ARCH_ARMv7;
263 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
264 (mmfr0 & 0x000000f0) == 0x00000020)
265 cpu_arch = CPU_ARCH_ARMv6;
266 else
267 cpu_arch = CPU_ARCH_UNKNOWN;
268 } else
269 cpu_arch = CPU_ARCH_UNKNOWN;
270
271 return cpu_arch;
272}
273#endif
274
275int __pure cpu_architecture(void)
276{
277 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
278
279 return __cpu_architecture;
280}
281
282static int cpu_has_aliasing_icache(unsigned int arch)
283{
284 int aliasing_icache;
285 unsigned int id_reg, num_sets, line_size;
286
287 /* PIPT caches never alias. */
288 if (icache_is_pipt())
289 return 0;
290
291 /* arch specifies the register format */
292 switch (arch) {
293 case CPU_ARCH_ARMv7:
294 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
295 : /* No output operands */
296 : "r" (1));
297 isb();
298 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
299 : "=r" (id_reg));
300 line_size = 4 << ((id_reg & 0x7) + 2);
301 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
302 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
303 break;
304 case CPU_ARCH_ARMv6:
305 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
306 break;
307 default:
308 /* I-cache aliases will be handled by D-cache aliasing code */
309 aliasing_icache = 0;
310 }
311
312 return aliasing_icache;
313}
314
315static void __init cacheid_init(void)
316{
317 unsigned int arch = cpu_architecture();
318
319 if (arch == CPU_ARCH_ARMv7M) {
320 cacheid = 0;
321 } else if (arch >= CPU_ARCH_ARMv6) {
322 unsigned int cachetype = read_cpuid_cachetype();
323 if ((cachetype & (7 << 29)) == 4 << 29) {
324 /* ARMv7 register format */
325 arch = CPU_ARCH_ARMv7;
326 cacheid = CACHEID_VIPT_NONALIASING;
327 switch (cachetype & (3 << 14)) {
328 case (1 << 14):
329 cacheid |= CACHEID_ASID_TAGGED;
330 break;
331 case (3 << 14):
332 cacheid |= CACHEID_PIPT;
333 break;
334 }
335 } else {
336 arch = CPU_ARCH_ARMv6;
337 if (cachetype & (1 << 23))
338 cacheid = CACHEID_VIPT_ALIASING;
339 else
340 cacheid = CACHEID_VIPT_NONALIASING;
341 }
342 if (cpu_has_aliasing_icache(arch))
343 cacheid |= CACHEID_VIPT_I_ALIASING;
344 } else {
345 cacheid = CACHEID_VIVT;
346 }
347
348 pr_info("CPU: %s data cache, %s instruction cache\n",
349 cache_is_vivt() ? "VIVT" :
350 cache_is_vipt_aliasing() ? "VIPT aliasing" :
351 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
352 cache_is_vivt() ? "VIVT" :
353 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
354 icache_is_vipt_aliasing() ? "VIPT aliasing" :
355 icache_is_pipt() ? "PIPT" :
356 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
357}
358
359/*
360 * These functions re-use the assembly code in head.S, which
361 * already provide the required functionality.
362 */
363extern struct proc_info_list *lookup_processor_type(unsigned int);
364
365void __init early_print(const char *str, ...)
366{
367 extern void printascii(const char *);
368 char buf[256];
369 va_list ap;
370
371 va_start(ap, str);
372 vsnprintf(buf, sizeof(buf), str, ap);
373 va_end(ap);
374
375#ifdef CONFIG_DEBUG_LL
376 printascii(buf);
377#endif
378 printk("%s", buf);
379}
380
381#ifdef CONFIG_ARM_PATCH_IDIV
382
383static inline u32 __attribute_const__ sdiv_instruction(void)
384{
385 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
386 /* "sdiv r0, r0, r1" */
387 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
388 return __opcode_to_mem_thumb32(insn);
389 }
390
391 /* "sdiv r0, r0, r1" */
392 return __opcode_to_mem_arm(0xe710f110);
393}
394
395static inline u32 __attribute_const__ udiv_instruction(void)
396{
397 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
398 /* "udiv r0, r0, r1" */
399 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
400 return __opcode_to_mem_thumb32(insn);
401 }
402
403 /* "udiv r0, r0, r1" */
404 return __opcode_to_mem_arm(0xe730f110);
405}
406
407static inline u32 __attribute_const__ bx_lr_instruction(void)
408{
409 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
410 /* "bx lr; nop" */
411 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
412 return __opcode_to_mem_thumb32(insn);
413 }
414
415 /* "bx lr" */
416 return __opcode_to_mem_arm(0xe12fff1e);
417}
418
419static void __init patch_aeabi_idiv(void)
420{
421 extern void __aeabi_uidiv(void);
422 extern void __aeabi_idiv(void);
423 uintptr_t fn_addr;
424 unsigned int mask;
425
426 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
427 if (!(elf_hwcap & mask))
428 return;
429
430 pr_info("CPU: div instructions available: patching division code\n");
431
432 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
433 asm ("" : "+g" (fn_addr));
434 ((u32 *)fn_addr)[0] = udiv_instruction();
435 ((u32 *)fn_addr)[1] = bx_lr_instruction();
436 flush_icache_range(fn_addr, fn_addr + 8);
437
438 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
439 asm ("" : "+g" (fn_addr));
440 ((u32 *)fn_addr)[0] = sdiv_instruction();
441 ((u32 *)fn_addr)[1] = bx_lr_instruction();
442 flush_icache_range(fn_addr, fn_addr + 8);
443}
444
445#else
446static inline void patch_aeabi_idiv(void) { }
447#endif
448
449static void __init cpuid_init_hwcaps(void)
450{
451 int block;
452 u32 isar5;
453
454 if (cpu_architecture() < CPU_ARCH_ARMv7)
455 return;
456
457 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
458 if (block >= 2)
459 elf_hwcap |= HWCAP_IDIVA;
460 if (block >= 1)
461 elf_hwcap |= HWCAP_IDIVT;
462
463 /* LPAE implies atomic ldrd/strd instructions */
464 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
465 if (block >= 5)
466 elf_hwcap |= HWCAP_LPAE;
467
468 /* check for supported v8 Crypto instructions */
469 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
470
471 block = cpuid_feature_extract_field(isar5, 4);
472 if (block >= 2)
473 elf_hwcap2 |= HWCAP2_PMULL;
474 if (block >= 1)
475 elf_hwcap2 |= HWCAP2_AES;
476
477 block = cpuid_feature_extract_field(isar5, 8);
478 if (block >= 1)
479 elf_hwcap2 |= HWCAP2_SHA1;
480
481 block = cpuid_feature_extract_field(isar5, 12);
482 if (block >= 1)
483 elf_hwcap2 |= HWCAP2_SHA2;
484
485 block = cpuid_feature_extract_field(isar5, 16);
486 if (block >= 1)
487 elf_hwcap2 |= HWCAP2_CRC32;
488}
489
490static void __init elf_hwcap_fixup(void)
491{
492 unsigned id = read_cpuid_id();
493
494 /*
495 * HWCAP_TLS is available only on 1136 r1p0 and later,
496 * see also kuser_get_tls_init.
497 */
498 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
499 ((id >> 20) & 3) == 0) {
500 elf_hwcap &= ~HWCAP_TLS;
501 return;
502 }
503
504 /* Verify if CPUID scheme is implemented */
505 if ((id & 0x000f0000) != 0x000f0000)
506 return;
507
508 /*
509 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
510 * avoid advertising SWP; it may not be atomic with
511 * multiprocessing cores.
512 */
513 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
514 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
515 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
516 elf_hwcap &= ~HWCAP_SWP;
517}
518
519/*
520 * cpu_init - initialise one CPU.
521 *
522 * cpu_init sets up the per-CPU stacks.
523 */
524void notrace cpu_init(void)
525{
526#ifndef CONFIG_CPU_V7M
527 unsigned int cpu = smp_processor_id();
528 struct stack *stk = &stacks[cpu];
529
530 if (cpu >= NR_CPUS) {
531 pr_crit("CPU%u: bad primary CPU number\n", cpu);
532 BUG();
533 }
534
535 /*
536 * This only works on resume and secondary cores. For booting on the
537 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
538 */
539 set_my_cpu_offset(per_cpu_offset(cpu));
540
541 cpu_proc_init();
542
543 /*
544 * Define the placement constraint for the inline asm directive below.
545 * In Thumb-2, msr with an immediate value is not allowed.
546 */
547#ifdef CONFIG_THUMB2_KERNEL
548#define PLC "r"
549#else
550#define PLC "I"
551#endif
552
553 /*
554 * setup stacks for re-entrant exception handlers
555 */
556 __asm__ (
557 "msr cpsr_c, %1\n\t"
558 "add r14, %0, %2\n\t"
559 "mov sp, r14\n\t"
560 "msr cpsr_c, %3\n\t"
561 "add r14, %0, %4\n\t"
562 "mov sp, r14\n\t"
563 "msr cpsr_c, %5\n\t"
564 "add r14, %0, %6\n\t"
565 "mov sp, r14\n\t"
566 "msr cpsr_c, %7\n\t"
567 "add r14, %0, %8\n\t"
568 "mov sp, r14\n\t"
569 "msr cpsr_c, %9"
570 :
571 : "r" (stk),
572 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
573 "I" (offsetof(struct stack, irq[0])),
574 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
575 "I" (offsetof(struct stack, abt[0])),
576 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
577 "I" (offsetof(struct stack, und[0])),
578 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
579 "I" (offsetof(struct stack, fiq[0])),
580 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
581 : "r14");
582#endif
583}
584
585u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
586
587void __init smp_setup_processor_id(void)
588{
589 int i;
590 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
591 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
592
593 cpu_logical_map(0) = cpu;
594 for (i = 1; i < nr_cpu_ids; ++i)
595 cpu_logical_map(i) = i == cpu ? 0 : i;
596
597 /*
598 * clear __my_cpu_offset on boot CPU to avoid hang caused by
599 * using percpu variable early, for example, lockdep will
600 * access percpu variable inside lock_release
601 */
602 set_my_cpu_offset(0);
603
604 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
605}
606
607struct mpidr_hash mpidr_hash;
608#ifdef CONFIG_SMP
609/**
610 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
611 * level in order to build a linear index from an
612 * MPIDR value. Resulting algorithm is a collision
613 * free hash carried out through shifting and ORing
614 */
615static void __init smp_build_mpidr_hash(void)
616{
617 u32 i, affinity;
618 u32 fs[3], bits[3], ls, mask = 0;
619 /*
620 * Pre-scan the list of MPIDRS and filter out bits that do
621 * not contribute to affinity levels, ie they never toggle.
622 */
623 for_each_possible_cpu(i)
624 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
625 pr_debug("mask of set bits 0x%x\n", mask);
626 /*
627 * Find and stash the last and first bit set at all affinity levels to
628 * check how many bits are required to represent them.
629 */
630 for (i = 0; i < 3; i++) {
631 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
632 /*
633 * Find the MSB bit and LSB bits position
634 * to determine how many bits are required
635 * to express the affinity level.
636 */
637 ls = fls(affinity);
638 fs[i] = affinity ? ffs(affinity) - 1 : 0;
639 bits[i] = ls - fs[i];
640 }
641 /*
642 * An index can be created from the MPIDR by isolating the
643 * significant bits at each affinity level and by shifting
644 * them in order to compress the 24 bits values space to a
645 * compressed set of values. This is equivalent to hashing
646 * the MPIDR through shifting and ORing. It is a collision free
647 * hash though not minimal since some levels might contain a number
648 * of CPUs that is not an exact power of 2 and their bit
649 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
650 */
651 mpidr_hash.shift_aff[0] = fs[0];
652 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
653 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
654 (bits[1] + bits[0]);
655 mpidr_hash.mask = mask;
656 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
657 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
658 mpidr_hash.shift_aff[0],
659 mpidr_hash.shift_aff[1],
660 mpidr_hash.shift_aff[2],
661 mpidr_hash.mask,
662 mpidr_hash.bits);
663 /*
664 * 4x is an arbitrary value used to warn on a hash table much bigger
665 * than expected on most systems.
666 */
667 if (mpidr_hash_size() > 4 * num_possible_cpus())
668 pr_warn("Large number of MPIDR hash buckets detected\n");
669 sync_cache_w(&mpidr_hash);
670}
671#endif
672
673static void __init setup_processor(void)
674{
675 struct proc_info_list *list;
676
677 /*
678 * locate processor in the list of supported processor
679 * types. The linker builds this table for us from the
680 * entries in arch/arm/mm/proc-*.S
681 */
682 list = lookup_processor_type(read_cpuid_id());
683 if (!list) {
684 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
685 read_cpuid_id());
686 while (1);
687 }
688
689 cpu_name = list->cpu_name;
690 __cpu_architecture = __get_cpu_architecture();
691
692#ifdef MULTI_CPU
693 processor = *list->proc;
694#endif
695#ifdef MULTI_TLB
696 cpu_tlb = *list->tlb;
697#endif
698#ifdef MULTI_USER
699 cpu_user = *list->user;
700#endif
701#ifdef MULTI_CACHE
702 cpu_cache = *list->cache;
703#endif
704
705 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
706 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
707 proc_arch[cpu_architecture()], get_cr());
708
709 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
710 list->arch_name, ENDIANNESS);
711 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
712 list->elf_name, ENDIANNESS);
713 elf_hwcap = list->elf_hwcap;
714
715 cpuid_init_hwcaps();
716 patch_aeabi_idiv();
717
718#ifndef CONFIG_ARM_THUMB
719 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
720#endif
721#ifdef CONFIG_MMU
722 init_default_cache_policy(list->__cpu_mm_mmu_flags);
723#endif
724 erratum_a15_798181_init();
725
726 elf_hwcap_fixup();
727
728 cacheid_init();
729 cpu_init();
730}
731
732void __init dump_machine_table(void)
733{
734 const struct machine_desc *p;
735
736 early_print("Available machine support:\n\nID (hex)\tNAME\n");
737 for_each_machine_desc(p)
738 early_print("%08x\t%s\n", p->nr, p->name);
739
740 early_print("\nPlease check your kernel config and/or bootloader.\n");
741
742 while (true)
743 /* can't use cpu_relax() here as it may require MMU setup */;
744}
745
746int __init arm_add_memory(u64 start, u64 size)
747{
748 u64 aligned_start;
749
750 /*
751 * Ensure that start/size are aligned to a page boundary.
752 * Size is rounded down, start is rounded up.
753 */
754 aligned_start = PAGE_ALIGN(start);
755 if (aligned_start > start + size)
756 size = 0;
757 else
758 size -= aligned_start - start;
759
760#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
761 if (aligned_start > ULONG_MAX) {
762 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
763 (long long)start);
764 return -EINVAL;
765 }
766
767 if (aligned_start + size > ULONG_MAX) {
768 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
769 (long long)start);
770 /*
771 * To ensure bank->start + bank->size is representable in
772 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
773 * This means we lose a page after masking.
774 */
775 size = ULONG_MAX - aligned_start;
776 }
777#endif
778
779 if (aligned_start < PHYS_OFFSET) {
780 if (aligned_start + size <= PHYS_OFFSET) {
781 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
782 aligned_start, aligned_start + size);
783 return -EINVAL;
784 }
785
786 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
787 aligned_start, (u64)PHYS_OFFSET);
788
789 size -= PHYS_OFFSET - aligned_start;
790 aligned_start = PHYS_OFFSET;
791 }
792
793 start = aligned_start;
794 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
795
796 /*
797 * Check whether this memory region has non-zero size or
798 * invalid node number.
799 */
800 if (size == 0)
801 return -EINVAL;
802
803 memblock_add(start, size);
804 return 0;
805}
806
807/*
808 * Pick out the memory size. We look for mem=size@start,
809 * where start and size are "size[KkMm]"
810 */
811
812static int __init early_mem(char *p)
813{
814 static int usermem __initdata = 0;
815 u64 size;
816 u64 start;
817 char *endp;
818
819 /*
820 * If the user specifies memory size, we
821 * blow away any automatically generated
822 * size.
823 */
824 if (usermem == 0) {
825 usermem = 1;
826 memblock_remove(memblock_start_of_DRAM(),
827 memblock_end_of_DRAM() - memblock_start_of_DRAM());
828 }
829
830 start = PHYS_OFFSET;
831 size = memparse(p, &endp);
832 if (*endp == '@')
833 start = memparse(endp + 1, NULL);
834
835 arm_add_memory(start, size);
836
837 return 0;
838}
839early_param("mem", early_mem);
840
841static void __init request_standard_resources(const struct machine_desc *mdesc)
842{
843 struct memblock_region *region;
844 struct resource *res;
845
846 kernel_code.start = virt_to_phys(_text);
847 kernel_code.end = virt_to_phys(_etext - 1);
848 kernel_data.start = virt_to_phys(_sdata);
849 kernel_data.end = virt_to_phys(_end - 1);
850
851 for_each_memblock(memory, region) {
852 res = memblock_virt_alloc(sizeof(*res), 0);
853 res->name = "System RAM";
854 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
855 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
856 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
857
858 request_resource(&iomem_resource, res);
859
860 if (kernel_code.start >= res->start &&
861 kernel_code.end <= res->end)
862 request_resource(res, &kernel_code);
863 if (kernel_data.start >= res->start &&
864 kernel_data.end <= res->end)
865 request_resource(res, &kernel_data);
866 }
867
868 if (mdesc->video_start) {
869 video_ram.start = mdesc->video_start;
870 video_ram.end = mdesc->video_end;
871 request_resource(&iomem_resource, &video_ram);
872 }
873
874 /*
875 * Some machines don't have the possibility of ever
876 * possessing lp0, lp1 or lp2
877 */
878 if (mdesc->reserve_lp0)
879 request_resource(&ioport_resource, &lp0);
880 if (mdesc->reserve_lp1)
881 request_resource(&ioport_resource, &lp1);
882 if (mdesc->reserve_lp2)
883 request_resource(&ioport_resource, &lp2);
884}
885
886#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
887struct screen_info screen_info = {
888 .orig_video_lines = 30,
889 .orig_video_cols = 80,
890 .orig_video_mode = 0,
891 .orig_video_ega_bx = 0,
892 .orig_video_isVGA = 1,
893 .orig_video_points = 8
894};
895#endif
896
897static int __init customize_machine(void)
898{
899 /*
900 * customizes platform devices, or adds new ones
901 * On DT based machines, we fall back to populating the
902 * machine from the device tree, if no callback is provided,
903 * otherwise we would always need an init_machine callback.
904 */
905 of_iommu_init();
906 if (machine_desc->init_machine)
907 machine_desc->init_machine();
908#ifdef CONFIG_OF
909 else
910 of_platform_populate(NULL, of_default_bus_match_table,
911 NULL, NULL);
912#endif
913 return 0;
914}
915arch_initcall(customize_machine);
916
917static int __init init_machine_late(void)
918{
919 struct device_node *root;
920 int ret;
921
922 if (machine_desc->init_late)
923 machine_desc->init_late();
924
925 root = of_find_node_by_path("/");
926 if (root) {
927 ret = of_property_read_string(root, "serial-number",
928 &system_serial);
929 if (ret)
930 system_serial = NULL;
931 }
932
933 if (!system_serial)
934 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
935 system_serial_high,
936 system_serial_low);
937
938 return 0;
939}
940late_initcall(init_machine_late);
941
942#ifdef CONFIG_KEXEC
943static inline unsigned long long get_total_mem(void)
944{
945 unsigned long total;
946
947 total = max_low_pfn - min_low_pfn;
948 return total << PAGE_SHIFT;
949}
950
951/**
952 * reserve_crashkernel() - reserves memory are for crash kernel
953 *
954 * This function reserves memory area given in "crashkernel=" kernel command
955 * line parameter. The memory reserved is used by a dump capture kernel when
956 * primary kernel is crashing.
957 */
958static void __init reserve_crashkernel(void)
959{
960 unsigned long long crash_size, crash_base;
961 unsigned long long total_mem;
962 int ret;
963
964 total_mem = get_total_mem();
965 ret = parse_crashkernel(boot_command_line, total_mem,
966 &crash_size, &crash_base);
967 if (ret)
968 return;
969
970 ret = memblock_reserve(crash_base, crash_size);
971 if (ret < 0) {
972 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
973 (unsigned long)crash_base);
974 return;
975 }
976
977 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
978 (unsigned long)(crash_size >> 20),
979 (unsigned long)(crash_base >> 20),
980 (unsigned long)(total_mem >> 20));
981
982 crashk_res.start = crash_base;
983 crashk_res.end = crash_base + crash_size - 1;
984 insert_resource(&iomem_resource, &crashk_res);
985}
986#else
987static inline void reserve_crashkernel(void) {}
988#endif /* CONFIG_KEXEC */
989
990void __init hyp_mode_check(void)
991{
992#ifdef CONFIG_ARM_VIRT_EXT
993 sync_boot_mode();
994
995 if (is_hyp_mode_available()) {
996 pr_info("CPU: All CPU(s) started in HYP mode.\n");
997 pr_info("CPU: Virtualization extensions available.\n");
998 } else if (is_hyp_mode_mismatched()) {
999 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000 __boot_cpu_mode & MODE_MASK);
1001 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002 } else
1003 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1004#endif
1005}
1006
1007void __init setup_arch(char **cmdline_p)
1008{
1009 const struct machine_desc *mdesc;
1010
1011 setup_processor();
1012 mdesc = setup_machine_fdt(__atags_pointer);
1013 if (!mdesc)
1014 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1015 machine_desc = mdesc;
1016 machine_name = mdesc->name;
1017 dump_stack_set_arch_desc("%s", mdesc->name);
1018
1019 if (mdesc->reboot_mode != REBOOT_HARD)
1020 reboot_mode = mdesc->reboot_mode;
1021
1022 init_mm.start_code = (unsigned long) _text;
1023 init_mm.end_code = (unsigned long) _etext;
1024 init_mm.end_data = (unsigned long) _edata;
1025 init_mm.brk = (unsigned long) _end;
1026
1027 /* populate cmd_line too for later use, preserving boot_command_line */
1028 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029 *cmdline_p = cmd_line;
1030
1031 early_fixmap_init();
1032 early_ioremap_init();
1033
1034 parse_early_param();
1035
1036#ifdef CONFIG_MMU
1037 early_paging_init(mdesc);
1038#endif
1039 setup_dma_zone(mdesc);
1040 efi_init();
1041 sanity_check_meminfo();
1042 arm_memblock_init(mdesc);
1043
1044 early_ioremap_reset();
1045
1046 paging_init(mdesc);
1047 request_standard_resources(mdesc);
1048
1049 if (mdesc->restart)
1050 arm_pm_restart = mdesc->restart;
1051
1052 unflatten_device_tree();
1053
1054 arm_dt_init_cpu_maps();
1055 psci_dt_init();
1056 xen_early_init();
1057#ifdef CONFIG_SMP
1058 if (is_smp()) {
1059 if (!mdesc->smp_init || !mdesc->smp_init()) {
1060 if (psci_smp_available())
1061 smp_set_ops(&psci_smp_ops);
1062 else if (mdesc->smp)
1063 smp_set_ops(mdesc->smp);
1064 }
1065 smp_init_cpus();
1066 smp_build_mpidr_hash();
1067 }
1068#endif
1069
1070 if (!is_smp())
1071 hyp_mode_check();
1072
1073 reserve_crashkernel();
1074
1075#ifdef CONFIG_MULTI_IRQ_HANDLER
1076 handle_arch_irq = mdesc->handle_irq;
1077#endif
1078
1079#ifdef CONFIG_VT
1080#if defined(CONFIG_VGA_CONSOLE)
1081 conswitchp = &vga_con;
1082#elif defined(CONFIG_DUMMY_CONSOLE)
1083 conswitchp = &dummy_con;
1084#endif
1085#endif
1086
1087 if (mdesc->init_early)
1088 mdesc->init_early();
1089}
1090
1091
1092static int __init topology_init(void)
1093{
1094 int cpu;
1095
1096 for_each_possible_cpu(cpu) {
1097 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099 register_cpu(&cpuinfo->cpu, cpu);
1100 }
1101
1102 return 0;
1103}
1104subsys_initcall(topology_init);
1105
1106#ifdef CONFIG_HAVE_PROC_CPU
1107static int __init proc_cpu_init(void)
1108{
1109 struct proc_dir_entry *res;
1110
1111 res = proc_mkdir("cpu", NULL);
1112 if (!res)
1113 return -ENOMEM;
1114 return 0;
1115}
1116fs_initcall(proc_cpu_init);
1117#endif
1118
1119static const char *hwcap_str[] = {
1120 "swp",
1121 "half",
1122 "thumb",
1123 "26bit",
1124 "fastmult",
1125 "fpa",
1126 "vfp",
1127 "edsp",
1128 "java",
1129 "iwmmxt",
1130 "crunch",
1131 "thumbee",
1132 "neon",
1133 "vfpv3",
1134 "vfpv3d16",
1135 "tls",
1136 "vfpv4",
1137 "idiva",
1138 "idivt",
1139 "vfpd32",
1140 "lpae",
1141 "evtstrm",
1142 NULL
1143};
1144
1145static const char *hwcap2_str[] = {
1146 "aes",
1147 "pmull",
1148 "sha1",
1149 "sha2",
1150 "crc32",
1151 NULL
1152};
1153
1154static int c_show(struct seq_file *m, void *v)
1155{
1156 int i, j;
1157 u32 cpuid;
1158
1159 for_each_online_cpu(i) {
1160 /*
1161 * glibc reads /proc/cpuinfo to determine the number of
1162 * online processors, looking for lines beginning with
1163 * "processor". Give glibc what it expects.
1164 */
1165 seq_printf(m, "processor\t: %d\n", i);
1166 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168 cpu_name, cpuid & 15, elf_platform);
1169
1170#if defined(CONFIG_SMP)
1171 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174#else
1175 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176 loops_per_jiffy / (500000/HZ),
1177 (loops_per_jiffy / (5000/HZ)) % 100);
1178#endif
1179 /* dump out the processor features */
1180 seq_puts(m, "Features\t: ");
1181
1182 for (j = 0; hwcap_str[j]; j++)
1183 if (elf_hwcap & (1 << j))
1184 seq_printf(m, "%s ", hwcap_str[j]);
1185
1186 for (j = 0; hwcap2_str[j]; j++)
1187 if (elf_hwcap2 & (1 << j))
1188 seq_printf(m, "%s ", hwcap2_str[j]);
1189
1190 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191 seq_printf(m, "CPU architecture: %s\n",
1192 proc_arch[cpu_architecture()]);
1193
1194 if ((cpuid & 0x0008f000) == 0x00000000) {
1195 /* pre-ARM7 */
1196 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1197 } else {
1198 if ((cpuid & 0x0008f000) == 0x00007000) {
1199 /* ARM7 */
1200 seq_printf(m, "CPU variant\t: 0x%02x\n",
1201 (cpuid >> 16) & 127);
1202 } else {
1203 /* post-ARM7 */
1204 seq_printf(m, "CPU variant\t: 0x%x\n",
1205 (cpuid >> 20) & 15);
1206 }
1207 seq_printf(m, "CPU part\t: 0x%03x\n",
1208 (cpuid >> 4) & 0xfff);
1209 }
1210 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1211 }
1212
1213 seq_printf(m, "Hardware\t: %s\n", machine_name);
1214 seq_printf(m, "Revision\t: %04x\n", system_rev);
1215 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1216
1217 return 0;
1218}
1219
1220static void *c_start(struct seq_file *m, loff_t *pos)
1221{
1222 return *pos < 1 ? (void *)1 : NULL;
1223}
1224
1225static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226{
1227 ++*pos;
1228 return NULL;
1229}
1230
1231static void c_stop(struct seq_file *m, void *v)
1232{
1233}
1234
1235const struct seq_operations cpuinfo_op = {
1236 .start = c_start,
1237 .next = c_next,
1238 .stop = c_stop,
1239 .show = c_show
1240};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 */
7#include <linux/efi.h>
8#include <linux/export.h>
9#include <linux/kernel.h>
10#include <linux/stddef.h>
11#include <linux/ioport.h>
12#include <linux/delay.h>
13#include <linux/utsname.h>
14#include <linux/initrd.h>
15#include <linux/console.h>
16#include <linux/seq_file.h>
17#include <linux/screen_info.h>
18#include <linux/of_platform.h>
19#include <linux/init.h>
20#include <linux/kexec.h>
21#include <linux/libfdt.h>
22#include <linux/of_fdt.h>
23#include <linux/cpu.h>
24#include <linux/interrupt.h>
25#include <linux/smp.h>
26#include <linux/proc_fs.h>
27#include <linux/memblock.h>
28#include <linux/bug.h>
29#include <linux/compiler.h>
30#include <linux/sort.h>
31#include <linux/psci.h>
32
33#include <asm/unified.h>
34#include <asm/cp15.h>
35#include <asm/cpu.h>
36#include <asm/cputype.h>
37#include <asm/efi.h>
38#include <asm/elf.h>
39#include <asm/early_ioremap.h>
40#include <asm/fixmap.h>
41#include <asm/procinfo.h>
42#include <asm/psci.h>
43#include <asm/sections.h>
44#include <asm/setup.h>
45#include <asm/smp_plat.h>
46#include <asm/mach-types.h>
47#include <asm/cacheflush.h>
48#include <asm/cachetype.h>
49#include <asm/tlbflush.h>
50#include <asm/xen/hypervisor.h>
51
52#include <asm/prom.h>
53#include <asm/mach/arch.h>
54#include <asm/mach/irq.h>
55#include <asm/mach/time.h>
56#include <asm/system_info.h>
57#include <asm/system_misc.h>
58#include <asm/traps.h>
59#include <asm/unwind.h>
60#include <asm/memblock.h>
61#include <asm/virt.h>
62#include <asm/kasan.h>
63
64#include "atags.h"
65
66
67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68char fpe_type[8];
69
70static int __init fpe_setup(char *line)
71{
72 memcpy(fpe_type, line, 8);
73 return 1;
74}
75
76__setup("fpe=", fpe_setup);
77#endif
78
79extern void init_default_cache_policy(unsigned long);
80extern void paging_init(const struct machine_desc *desc);
81extern void early_mm_init(const struct machine_desc *);
82extern void adjust_lowmem_bounds(void);
83extern enum reboot_mode reboot_mode;
84extern void setup_dma_zone(const struct machine_desc *desc);
85
86unsigned int processor_id;
87EXPORT_SYMBOL(processor_id);
88unsigned int __machine_arch_type __read_mostly;
89EXPORT_SYMBOL(__machine_arch_type);
90unsigned int cacheid __read_mostly;
91EXPORT_SYMBOL(cacheid);
92
93unsigned int __atags_pointer __initdata;
94
95unsigned int system_rev;
96EXPORT_SYMBOL(system_rev);
97
98const char *system_serial;
99EXPORT_SYMBOL(system_serial);
100
101unsigned int system_serial_low;
102EXPORT_SYMBOL(system_serial_low);
103
104unsigned int system_serial_high;
105EXPORT_SYMBOL(system_serial_high);
106
107unsigned int elf_hwcap __read_mostly;
108EXPORT_SYMBOL(elf_hwcap);
109
110unsigned int elf_hwcap2 __read_mostly;
111EXPORT_SYMBOL(elf_hwcap2);
112
113
114#ifdef MULTI_CPU
115struct processor processor __ro_after_init;
116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
117struct processor *cpu_vtable[NR_CPUS] = {
118 [0] = &processor,
119};
120#endif
121#endif
122#ifdef MULTI_TLB
123struct cpu_tlb_fns cpu_tlb __ro_after_init;
124#endif
125#ifdef MULTI_USER
126struct cpu_user_fns cpu_user __ro_after_init;
127#endif
128#ifdef MULTI_CACHE
129struct cpu_cache_fns cpu_cache __ro_after_init;
130#endif
131#ifdef CONFIG_OUTER_CACHE
132struct outer_cache_fns outer_cache __ro_after_init;
133EXPORT_SYMBOL(outer_cache);
134#endif
135
136/*
137 * Cached cpu_architecture() result for use by assembler code.
138 * C code should use the cpu_architecture() function instead of accessing this
139 * variable directly.
140 */
141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
142
143struct stack {
144 u32 irq[4];
145 u32 abt[4];
146 u32 und[4];
147 u32 fiq[4];
148} ____cacheline_aligned;
149
150#ifndef CONFIG_CPU_V7M
151static struct stack stacks[NR_CPUS];
152#endif
153
154char elf_platform[ELF_PLATFORM_SIZE];
155EXPORT_SYMBOL(elf_platform);
156
157static const char *cpu_name;
158static const char *machine_name;
159static char __initdata cmd_line[COMMAND_LINE_SIZE];
160const struct machine_desc *machine_desc __initdata;
161
162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
163#define ENDIANNESS ((char)endian_test.l)
164
165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
166
167/*
168 * Standard memory resources
169 */
170static struct resource mem_res[] = {
171 {
172 .name = "Video RAM",
173 .start = 0,
174 .end = 0,
175 .flags = IORESOURCE_MEM
176 },
177 {
178 .name = "Kernel code",
179 .start = 0,
180 .end = 0,
181 .flags = IORESOURCE_SYSTEM_RAM
182 },
183 {
184 .name = "Kernel data",
185 .start = 0,
186 .end = 0,
187 .flags = IORESOURCE_SYSTEM_RAM
188 }
189};
190
191#define video_ram mem_res[0]
192#define kernel_code mem_res[1]
193#define kernel_data mem_res[2]
194
195static struct resource io_res[] = {
196 {
197 .name = "reserved",
198 .start = 0x3bc,
199 .end = 0x3be,
200 .flags = IORESOURCE_IO | IORESOURCE_BUSY
201 },
202 {
203 .name = "reserved",
204 .start = 0x378,
205 .end = 0x37f,
206 .flags = IORESOURCE_IO | IORESOURCE_BUSY
207 },
208 {
209 .name = "reserved",
210 .start = 0x278,
211 .end = 0x27f,
212 .flags = IORESOURCE_IO | IORESOURCE_BUSY
213 }
214};
215
216#define lp0 io_res[0]
217#define lp1 io_res[1]
218#define lp2 io_res[2]
219
220static const char *proc_arch[] = {
221 "undefined/unknown",
222 "3",
223 "4",
224 "4T",
225 "5",
226 "5T",
227 "5TE",
228 "5TEJ",
229 "6TEJ",
230 "7",
231 "7M",
232 "?(12)",
233 "?(13)",
234 "?(14)",
235 "?(15)",
236 "?(16)",
237 "?(17)",
238};
239
240#ifdef CONFIG_CPU_V7M
241static int __get_cpu_architecture(void)
242{
243 return CPU_ARCH_ARMv7M;
244}
245#else
246static int __get_cpu_architecture(void)
247{
248 int cpu_arch;
249
250 if ((read_cpuid_id() & 0x0008f000) == 0) {
251 cpu_arch = CPU_ARCH_UNKNOWN;
252 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
253 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
254 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
255 cpu_arch = (read_cpuid_id() >> 16) & 7;
256 if (cpu_arch)
257 cpu_arch += CPU_ARCH_ARMv3;
258 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
259 /* Revised CPUID format. Read the Memory Model Feature
260 * Register 0 and check for VMSAv7 or PMSAv7 */
261 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
262 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
263 (mmfr0 & 0x000000f0) >= 0x00000030)
264 cpu_arch = CPU_ARCH_ARMv7;
265 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
266 (mmfr0 & 0x000000f0) == 0x00000020)
267 cpu_arch = CPU_ARCH_ARMv6;
268 else
269 cpu_arch = CPU_ARCH_UNKNOWN;
270 } else
271 cpu_arch = CPU_ARCH_UNKNOWN;
272
273 return cpu_arch;
274}
275#endif
276
277int __pure cpu_architecture(void)
278{
279 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
280
281 return __cpu_architecture;
282}
283
284static int cpu_has_aliasing_icache(unsigned int arch)
285{
286 int aliasing_icache;
287 unsigned int id_reg, num_sets, line_size;
288
289 /* PIPT caches never alias. */
290 if (icache_is_pipt())
291 return 0;
292
293 /* arch specifies the register format */
294 switch (arch) {
295 case CPU_ARCH_ARMv7:
296 set_csselr(CSSELR_ICACHE | CSSELR_L1);
297 isb();
298 id_reg = read_ccsidr();
299 line_size = 4 << ((id_reg & 0x7) + 2);
300 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
301 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
302 break;
303 case CPU_ARCH_ARMv6:
304 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
305 break;
306 default:
307 /* I-cache aliases will be handled by D-cache aliasing code */
308 aliasing_icache = 0;
309 }
310
311 return aliasing_icache;
312}
313
314static void __init cacheid_init(void)
315{
316 unsigned int arch = cpu_architecture();
317
318 if (arch >= CPU_ARCH_ARMv6) {
319 unsigned int cachetype = read_cpuid_cachetype();
320
321 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
322 cacheid = 0;
323 } else if ((cachetype & (7 << 29)) == 4 << 29) {
324 /* ARMv7 register format */
325 arch = CPU_ARCH_ARMv7;
326 cacheid = CACHEID_VIPT_NONALIASING;
327 switch (cachetype & (3 << 14)) {
328 case (1 << 14):
329 cacheid |= CACHEID_ASID_TAGGED;
330 break;
331 case (3 << 14):
332 cacheid |= CACHEID_PIPT;
333 break;
334 }
335 } else {
336 arch = CPU_ARCH_ARMv6;
337 if (cachetype & (1 << 23))
338 cacheid = CACHEID_VIPT_ALIASING;
339 else
340 cacheid = CACHEID_VIPT_NONALIASING;
341 }
342 if (cpu_has_aliasing_icache(arch))
343 cacheid |= CACHEID_VIPT_I_ALIASING;
344 } else {
345 cacheid = CACHEID_VIVT;
346 }
347
348 pr_info("CPU: %s data cache, %s instruction cache\n",
349 cache_is_vivt() ? "VIVT" :
350 cache_is_vipt_aliasing() ? "VIPT aliasing" :
351 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
352 cache_is_vivt() ? "VIVT" :
353 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
354 icache_is_vipt_aliasing() ? "VIPT aliasing" :
355 icache_is_pipt() ? "PIPT" :
356 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
357}
358
359/*
360 * These functions re-use the assembly code in head.S, which
361 * already provide the required functionality.
362 */
363extern struct proc_info_list *lookup_processor_type(unsigned int);
364
365void __init early_print(const char *str, ...)
366{
367 extern void printascii(const char *);
368 char buf[256];
369 va_list ap;
370
371 va_start(ap, str);
372 vsnprintf(buf, sizeof(buf), str, ap);
373 va_end(ap);
374
375#ifdef CONFIG_DEBUG_LL
376 printascii(buf);
377#endif
378 printk("%s", buf);
379}
380
381#ifdef CONFIG_ARM_PATCH_IDIV
382
383static inline u32 __attribute_const__ sdiv_instruction(void)
384{
385 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
386 /* "sdiv r0, r0, r1" */
387 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
388 return __opcode_to_mem_thumb32(insn);
389 }
390
391 /* "sdiv r0, r0, r1" */
392 return __opcode_to_mem_arm(0xe710f110);
393}
394
395static inline u32 __attribute_const__ udiv_instruction(void)
396{
397 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
398 /* "udiv r0, r0, r1" */
399 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
400 return __opcode_to_mem_thumb32(insn);
401 }
402
403 /* "udiv r0, r0, r1" */
404 return __opcode_to_mem_arm(0xe730f110);
405}
406
407static inline u32 __attribute_const__ bx_lr_instruction(void)
408{
409 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
410 /* "bx lr; nop" */
411 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
412 return __opcode_to_mem_thumb32(insn);
413 }
414
415 /* "bx lr" */
416 return __opcode_to_mem_arm(0xe12fff1e);
417}
418
419static void __init patch_aeabi_idiv(void)
420{
421 extern void __aeabi_uidiv(void);
422 extern void __aeabi_idiv(void);
423 uintptr_t fn_addr;
424 unsigned int mask;
425
426 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
427 if (!(elf_hwcap & mask))
428 return;
429
430 pr_info("CPU: div instructions available: patching division code\n");
431
432 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
433 asm ("" : "+g" (fn_addr));
434 ((u32 *)fn_addr)[0] = udiv_instruction();
435 ((u32 *)fn_addr)[1] = bx_lr_instruction();
436 flush_icache_range(fn_addr, fn_addr + 8);
437
438 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
439 asm ("" : "+g" (fn_addr));
440 ((u32 *)fn_addr)[0] = sdiv_instruction();
441 ((u32 *)fn_addr)[1] = bx_lr_instruction();
442 flush_icache_range(fn_addr, fn_addr + 8);
443}
444
445#else
446static inline void patch_aeabi_idiv(void) { }
447#endif
448
449static void __init cpuid_init_hwcaps(void)
450{
451 int block;
452 u32 isar5;
453 u32 isar6;
454 u32 pfr2;
455
456 if (cpu_architecture() < CPU_ARCH_ARMv7)
457 return;
458
459 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
460 if (block >= 2)
461 elf_hwcap |= HWCAP_IDIVA;
462 if (block >= 1)
463 elf_hwcap |= HWCAP_IDIVT;
464
465 /* LPAE implies atomic ldrd/strd instructions */
466 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
467 if (block >= 5)
468 elf_hwcap |= HWCAP_LPAE;
469
470 /* check for supported v8 Crypto instructions */
471 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
472
473 block = cpuid_feature_extract_field(isar5, 4);
474 if (block >= 2)
475 elf_hwcap2 |= HWCAP2_PMULL;
476 if (block >= 1)
477 elf_hwcap2 |= HWCAP2_AES;
478
479 block = cpuid_feature_extract_field(isar5, 8);
480 if (block >= 1)
481 elf_hwcap2 |= HWCAP2_SHA1;
482
483 block = cpuid_feature_extract_field(isar5, 12);
484 if (block >= 1)
485 elf_hwcap2 |= HWCAP2_SHA2;
486
487 block = cpuid_feature_extract_field(isar5, 16);
488 if (block >= 1)
489 elf_hwcap2 |= HWCAP2_CRC32;
490
491 /* Check for Speculation barrier instruction */
492 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
493 block = cpuid_feature_extract_field(isar6, 12);
494 if (block >= 1)
495 elf_hwcap2 |= HWCAP2_SB;
496
497 /* Check for Speculative Store Bypassing control */
498 pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
499 block = cpuid_feature_extract_field(pfr2, 4);
500 if (block >= 1)
501 elf_hwcap2 |= HWCAP2_SSBS;
502}
503
504static void __init elf_hwcap_fixup(void)
505{
506 unsigned id = read_cpuid_id();
507
508 /*
509 * HWCAP_TLS is available only on 1136 r1p0 and later,
510 * see also kuser_get_tls_init.
511 */
512 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
513 ((id >> 20) & 3) == 0) {
514 elf_hwcap &= ~HWCAP_TLS;
515 return;
516 }
517
518 /* Verify if CPUID scheme is implemented */
519 if ((id & 0x000f0000) != 0x000f0000)
520 return;
521
522 /*
523 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
524 * avoid advertising SWP; it may not be atomic with
525 * multiprocessing cores.
526 */
527 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
528 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
529 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
530 elf_hwcap &= ~HWCAP_SWP;
531}
532
533/*
534 * cpu_init - initialise one CPU.
535 *
536 * cpu_init sets up the per-CPU stacks.
537 */
538void notrace cpu_init(void)
539{
540#ifndef CONFIG_CPU_V7M
541 unsigned int cpu = smp_processor_id();
542 struct stack *stk = &stacks[cpu];
543
544 if (cpu >= NR_CPUS) {
545 pr_crit("CPU%u: bad primary CPU number\n", cpu);
546 BUG();
547 }
548
549 /*
550 * This only works on resume and secondary cores. For booting on the
551 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
552 */
553 set_my_cpu_offset(per_cpu_offset(cpu));
554
555 cpu_proc_init();
556
557 /*
558 * Define the placement constraint for the inline asm directive below.
559 * In Thumb-2, msr with an immediate value is not allowed.
560 */
561#ifdef CONFIG_THUMB2_KERNEL
562#define PLC_l "l"
563#define PLC_r "r"
564#else
565#define PLC_l "I"
566#define PLC_r "I"
567#endif
568
569 /*
570 * setup stacks for re-entrant exception handlers
571 */
572 __asm__ (
573 "msr cpsr_c, %1\n\t"
574 "add r14, %0, %2\n\t"
575 "mov sp, r14\n\t"
576 "msr cpsr_c, %3\n\t"
577 "add r14, %0, %4\n\t"
578 "mov sp, r14\n\t"
579 "msr cpsr_c, %5\n\t"
580 "add r14, %0, %6\n\t"
581 "mov sp, r14\n\t"
582 "msr cpsr_c, %7\n\t"
583 "add r14, %0, %8\n\t"
584 "mov sp, r14\n\t"
585 "msr cpsr_c, %9"
586 :
587 : "r" (stk),
588 PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
589 "I" (offsetof(struct stack, irq[0])),
590 PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
591 "I" (offsetof(struct stack, abt[0])),
592 PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
593 "I" (offsetof(struct stack, und[0])),
594 PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
595 "I" (offsetof(struct stack, fiq[0])),
596 PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
597 : "r14");
598#endif
599}
600
601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
602
603void __init smp_setup_processor_id(void)
604{
605 int i;
606 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
607 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
608
609 cpu_logical_map(0) = cpu;
610 for (i = 1; i < nr_cpu_ids; ++i)
611 cpu_logical_map(i) = i == cpu ? 0 : i;
612
613 /*
614 * clear __my_cpu_offset on boot CPU to avoid hang caused by
615 * using percpu variable early, for example, lockdep will
616 * access percpu variable inside lock_release
617 */
618 set_my_cpu_offset(0);
619
620 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
621}
622
623struct mpidr_hash mpidr_hash;
624#ifdef CONFIG_SMP
625/**
626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
627 * level in order to build a linear index from an
628 * MPIDR value. Resulting algorithm is a collision
629 * free hash carried out through shifting and ORing
630 */
631static void __init smp_build_mpidr_hash(void)
632{
633 u32 i, affinity;
634 u32 fs[3], bits[3], ls, mask = 0;
635 /*
636 * Pre-scan the list of MPIDRS and filter out bits that do
637 * not contribute to affinity levels, ie they never toggle.
638 */
639 for_each_possible_cpu(i)
640 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
641 pr_debug("mask of set bits 0x%x\n", mask);
642 /*
643 * Find and stash the last and first bit set at all affinity levels to
644 * check how many bits are required to represent them.
645 */
646 for (i = 0; i < 3; i++) {
647 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
648 /*
649 * Find the MSB bit and LSB bits position
650 * to determine how many bits are required
651 * to express the affinity level.
652 */
653 ls = fls(affinity);
654 fs[i] = affinity ? ffs(affinity) - 1 : 0;
655 bits[i] = ls - fs[i];
656 }
657 /*
658 * An index can be created from the MPIDR by isolating the
659 * significant bits at each affinity level and by shifting
660 * them in order to compress the 24 bits values space to a
661 * compressed set of values. This is equivalent to hashing
662 * the MPIDR through shifting and ORing. It is a collision free
663 * hash though not minimal since some levels might contain a number
664 * of CPUs that is not an exact power of 2 and their bit
665 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
666 */
667 mpidr_hash.shift_aff[0] = fs[0];
668 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
669 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
670 (bits[1] + bits[0]);
671 mpidr_hash.mask = mask;
672 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
673 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
674 mpidr_hash.shift_aff[0],
675 mpidr_hash.shift_aff[1],
676 mpidr_hash.shift_aff[2],
677 mpidr_hash.mask,
678 mpidr_hash.bits);
679 /*
680 * 4x is an arbitrary value used to warn on a hash table much bigger
681 * than expected on most systems.
682 */
683 if (mpidr_hash_size() > 4 * num_possible_cpus())
684 pr_warn("Large number of MPIDR hash buckets detected\n");
685 sync_cache_w(&mpidr_hash);
686}
687#endif
688
689/*
690 * locate processor in the list of supported processor types. The linker
691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
692 */
693struct proc_info_list *lookup_processor(u32 midr)
694{
695 struct proc_info_list *list = lookup_processor_type(midr);
696
697 if (!list) {
698 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
699 smp_processor_id(), midr);
700 while (1)
701 /* can't use cpu_relax() here as it may require MMU setup */;
702 }
703
704 return list;
705}
706
707static void __init setup_processor(void)
708{
709 unsigned int midr = read_cpuid_id();
710 struct proc_info_list *list = lookup_processor(midr);
711
712 cpu_name = list->cpu_name;
713 __cpu_architecture = __get_cpu_architecture();
714
715 init_proc_vtable(list->proc);
716#ifdef MULTI_TLB
717 cpu_tlb = *list->tlb;
718#endif
719#ifdef MULTI_USER
720 cpu_user = *list->user;
721#endif
722#ifdef MULTI_CACHE
723 cpu_cache = *list->cache;
724#endif
725
726 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
727 list->cpu_name, midr, midr & 15,
728 proc_arch[cpu_architecture()], get_cr());
729
730 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
731 list->arch_name, ENDIANNESS);
732 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
733 list->elf_name, ENDIANNESS);
734 elf_hwcap = list->elf_hwcap;
735
736 cpuid_init_hwcaps();
737 patch_aeabi_idiv();
738
739#ifndef CONFIG_ARM_THUMB
740 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
741#endif
742#ifdef CONFIG_MMU
743 init_default_cache_policy(list->__cpu_mm_mmu_flags);
744#endif
745 erratum_a15_798181_init();
746
747 elf_hwcap_fixup();
748
749 cacheid_init();
750 cpu_init();
751}
752
753void __init dump_machine_table(void)
754{
755 const struct machine_desc *p;
756
757 early_print("Available machine support:\n\nID (hex)\tNAME\n");
758 for_each_machine_desc(p)
759 early_print("%08x\t%s\n", p->nr, p->name);
760
761 early_print("\nPlease check your kernel config and/or bootloader.\n");
762
763 while (true)
764 /* can't use cpu_relax() here as it may require MMU setup */;
765}
766
767int __init arm_add_memory(u64 start, u64 size)
768{
769 u64 aligned_start;
770
771 /*
772 * Ensure that start/size are aligned to a page boundary.
773 * Size is rounded down, start is rounded up.
774 */
775 aligned_start = PAGE_ALIGN(start);
776 if (aligned_start > start + size)
777 size = 0;
778 else
779 size -= aligned_start - start;
780
781#ifndef CONFIG_PHYS_ADDR_T_64BIT
782 if (aligned_start > ULONG_MAX) {
783 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
784 start);
785 return -EINVAL;
786 }
787
788 if (aligned_start + size > ULONG_MAX) {
789 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
790 (long long)start);
791 /*
792 * To ensure bank->start + bank->size is representable in
793 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
794 * This means we lose a page after masking.
795 */
796 size = ULONG_MAX - aligned_start;
797 }
798#endif
799
800 if (aligned_start < PHYS_OFFSET) {
801 if (aligned_start + size <= PHYS_OFFSET) {
802 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
803 aligned_start, aligned_start + size);
804 return -EINVAL;
805 }
806
807 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
808 aligned_start, (u64)PHYS_OFFSET);
809
810 size -= PHYS_OFFSET - aligned_start;
811 aligned_start = PHYS_OFFSET;
812 }
813
814 start = aligned_start;
815 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
816
817 /*
818 * Check whether this memory region has non-zero size or
819 * invalid node number.
820 */
821 if (size == 0)
822 return -EINVAL;
823
824 memblock_add(start, size);
825 return 0;
826}
827
828/*
829 * Pick out the memory size. We look for mem=size@start,
830 * where start and size are "size[KkMm]"
831 */
832
833static int __init early_mem(char *p)
834{
835 static int usermem __initdata = 0;
836 u64 size;
837 u64 start;
838 char *endp;
839
840 /*
841 * If the user specifies memory size, we
842 * blow away any automatically generated
843 * size.
844 */
845 if (usermem == 0) {
846 usermem = 1;
847 memblock_remove(memblock_start_of_DRAM(),
848 memblock_end_of_DRAM() - memblock_start_of_DRAM());
849 }
850
851 start = PHYS_OFFSET;
852 size = memparse(p, &endp);
853 if (*endp == '@')
854 start = memparse(endp + 1, NULL);
855
856 arm_add_memory(start, size);
857
858 return 0;
859}
860early_param("mem", early_mem);
861
862static void __init request_standard_resources(const struct machine_desc *mdesc)
863{
864 phys_addr_t start, end, res_end;
865 struct resource *res;
866 u64 i;
867
868 kernel_code.start = virt_to_phys(_text);
869 kernel_code.end = virt_to_phys(__init_begin - 1);
870 kernel_data.start = virt_to_phys(_sdata);
871 kernel_data.end = virt_to_phys(_end - 1);
872
873 for_each_mem_range(i, &start, &end) {
874 unsigned long boot_alias_start;
875
876 /*
877 * In memblock, end points to the first byte after the
878 * range while in resourses, end points to the last byte in
879 * the range.
880 */
881 res_end = end - 1;
882
883 /*
884 * Some systems have a special memory alias which is only
885 * used for booting. We need to advertise this region to
886 * kexec-tools so they know where bootable RAM is located.
887 */
888 boot_alias_start = phys_to_idmap(start);
889 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
890 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
891 if (!res)
892 panic("%s: Failed to allocate %zu bytes\n",
893 __func__, sizeof(*res));
894 res->name = "System RAM (boot alias)";
895 res->start = boot_alias_start;
896 res->end = phys_to_idmap(res_end);
897 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
898 request_resource(&iomem_resource, res);
899 }
900
901 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
902 if (!res)
903 panic("%s: Failed to allocate %zu bytes\n", __func__,
904 sizeof(*res));
905 res->name = "System RAM";
906 res->start = start;
907 res->end = res_end;
908 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
909
910 request_resource(&iomem_resource, res);
911
912 if (kernel_code.start >= res->start &&
913 kernel_code.end <= res->end)
914 request_resource(res, &kernel_code);
915 if (kernel_data.start >= res->start &&
916 kernel_data.end <= res->end)
917 request_resource(res, &kernel_data);
918 }
919
920 if (mdesc->video_start) {
921 video_ram.start = mdesc->video_start;
922 video_ram.end = mdesc->video_end;
923 request_resource(&iomem_resource, &video_ram);
924 }
925
926 /*
927 * Some machines don't have the possibility of ever
928 * possessing lp0, lp1 or lp2
929 */
930 if (mdesc->reserve_lp0)
931 request_resource(&ioport_resource, &lp0);
932 if (mdesc->reserve_lp1)
933 request_resource(&ioport_resource, &lp1);
934 if (mdesc->reserve_lp2)
935 request_resource(&ioport_resource, &lp2);
936}
937
938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
939 defined(CONFIG_EFI)
940struct screen_info screen_info = {
941 .orig_video_lines = 30,
942 .orig_video_cols = 80,
943 .orig_video_mode = 0,
944 .orig_video_ega_bx = 0,
945 .orig_video_isVGA = 1,
946 .orig_video_points = 8
947};
948#endif
949
950static int __init customize_machine(void)
951{
952 /*
953 * customizes platform devices, or adds new ones
954 * On DT based machines, we fall back to populating the
955 * machine from the device tree, if no callback is provided,
956 * otherwise we would always need an init_machine callback.
957 */
958 if (machine_desc->init_machine)
959 machine_desc->init_machine();
960
961 return 0;
962}
963arch_initcall(customize_machine);
964
965static int __init init_machine_late(void)
966{
967 struct device_node *root;
968 int ret;
969
970 if (machine_desc->init_late)
971 machine_desc->init_late();
972
973 root = of_find_node_by_path("/");
974 if (root) {
975 ret = of_property_read_string(root, "serial-number",
976 &system_serial);
977 if (ret)
978 system_serial = NULL;
979 }
980
981 if (!system_serial)
982 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
983 system_serial_high,
984 system_serial_low);
985
986 return 0;
987}
988late_initcall(init_machine_late);
989
990#ifdef CONFIG_KEXEC
991/*
992 * The crash region must be aligned to 128MB to avoid
993 * zImage relocating below the reserved region.
994 */
995#define CRASH_ALIGN (128 << 20)
996
997static inline unsigned long long get_total_mem(void)
998{
999 unsigned long total;
1000
1001 total = max_low_pfn - min_low_pfn;
1002 return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014 unsigned long long crash_size, crash_base;
1015 unsigned long long total_mem;
1016 int ret;
1017
1018 total_mem = get_total_mem();
1019 ret = parse_crashkernel(boot_command_line, total_mem,
1020 &crash_size, &crash_base);
1021 /* invalid value specified or crashkernel=0 */
1022 if (ret || !crash_size)
1023 return;
1024
1025 if (crash_base <= 0) {
1026 unsigned long long crash_max = idmap_to_phys((u32)~0);
1027 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028 if (crash_max > lowmem_max)
1029 crash_max = lowmem_max;
1030
1031 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032 CRASH_ALIGN, crash_max);
1033 if (!crash_base) {
1034 pr_err("crashkernel reservation failed - No suitable area found.\n");
1035 return;
1036 }
1037 } else {
1038 unsigned long long crash_max = crash_base + crash_size;
1039 unsigned long long start;
1040
1041 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042 crash_base, crash_max);
1043 if (!start) {
1044 pr_err("crashkernel reservation failed - memory is in use.\n");
1045 return;
1046 }
1047 }
1048
1049 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050 (unsigned long)(crash_size >> 20),
1051 (unsigned long)(crash_base >> 20),
1052 (unsigned long)(total_mem >> 20));
1053
1054 /* The crashk resource must always be located in normal mem */
1055 crashk_res.start = crash_base;
1056 crashk_res.end = crash_base + crash_size - 1;
1057 insert_resource(&iomem_resource, &crashk_res);
1058
1059 if (arm_has_idmap_alias()) {
1060 /*
1061 * If we have a special RAM alias for use at boot, we
1062 * need to advertise to kexec tools where the alias is.
1063 */
1064 static struct resource crashk_boot_res = {
1065 .name = "Crash kernel (boot alias)",
1066 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067 };
1068
1069 crashk_boot_res.start = phys_to_idmap(crash_base);
1070 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071 insert_resource(&iomem_resource, &crashk_boot_res);
1072 }
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
1078void __init hyp_mode_check(void)
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081 sync_boot_mode();
1082
1083 if (is_hyp_mode_available()) {
1084 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085 pr_info("CPU: Virtualization extensions available.\n");
1086 } else if (is_hyp_mode_mismatched()) {
1087 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088 __boot_cpu_mode & MODE_MASK);
1089 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090 } else
1091 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1092#endif
1093}
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098 void *data)
1099{
1100 __arm_pm_restart(action, data);
1101 return NOTIFY_DONE;
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105 .notifier_call = arm_restart,
1106 .priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111 const struct machine_desc *mdesc = NULL;
1112 void *atags_vaddr = NULL;
1113
1114 if (__atags_pointer)
1115 atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117 setup_processor();
1118 if (atags_vaddr) {
1119 mdesc = setup_machine_fdt(atags_vaddr);
1120 if (mdesc)
1121 memblock_reserve(__atags_pointer,
1122 fdt_totalsize(atags_vaddr));
1123 }
1124 if (!mdesc)
1125 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126 if (!mdesc) {
1127 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129 __atags_pointer);
1130 if (__atags_pointer)
1131 early_print(" r2[]=%*ph\n", 16, atags_vaddr);
1132 dump_machine_table();
1133 }
1134
1135 machine_desc = mdesc;
1136 machine_name = mdesc->name;
1137 dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139 if (mdesc->reboot_mode != REBOOT_HARD)
1140 reboot_mode = mdesc->reboot_mode;
1141
1142 setup_initial_init_mm(_text, _etext, _edata, _end);
1143
1144 /* populate cmd_line too for later use, preserving boot_command_line */
1145 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146 *cmdline_p = cmd_line;
1147
1148 early_fixmap_init();
1149 early_ioremap_init();
1150
1151 parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154 early_mm_init(mdesc);
1155#endif
1156 setup_dma_zone(mdesc);
1157 xen_early_init();
1158 arm_efi_init();
1159 /*
1160 * Make sure the calculation for lowmem/highmem is set appropriately
1161 * before reserving/allocating any memory
1162 */
1163 adjust_lowmem_bounds();
1164 arm_memblock_init(mdesc);
1165 /* Memory may have been removed so recalculate the bounds. */
1166 adjust_lowmem_bounds();
1167
1168 early_ioremap_reset();
1169
1170 paging_init(mdesc);
1171 kasan_init();
1172 request_standard_resources(mdesc);
1173
1174 if (mdesc->restart) {
1175 __arm_pm_restart = mdesc->restart;
1176 register_restart_handler(&arm_restart_nb);
1177 }
1178
1179 unflatten_device_tree();
1180
1181 arm_dt_init_cpu_maps();
1182 psci_dt_init();
1183#ifdef CONFIG_SMP
1184 if (is_smp()) {
1185 if (!mdesc->smp_init || !mdesc->smp_init()) {
1186 if (psci_smp_available())
1187 smp_set_ops(&psci_smp_ops);
1188 else if (mdesc->smp)
1189 smp_set_ops(mdesc->smp);
1190 }
1191 smp_init_cpus();
1192 smp_build_mpidr_hash();
1193 }
1194#endif
1195
1196 if (!is_smp())
1197 hyp_mode_check();
1198
1199 reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1202 handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207 conswitchp = &vga_con;
1208#endif
1209#endif
1210
1211 if (mdesc->init_early)
1212 mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218 int cpu;
1219
1220 for_each_possible_cpu(cpu) {
1221 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223 register_cpu(&cpuinfo->cpu, cpu);
1224 }
1225
1226 return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233 struct proc_dir_entry *res;
1234
1235 res = proc_mkdir("cpu", NULL);
1236 if (!res)
1237 return -ENOMEM;
1238 return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244 "swp",
1245 "half",
1246 "thumb",
1247 "26bit",
1248 "fastmult",
1249 "fpa",
1250 "vfp",
1251 "edsp",
1252 "java",
1253 "iwmmxt",
1254 "crunch",
1255 "thumbee",
1256 "neon",
1257 "vfpv3",
1258 "vfpv3d16",
1259 "tls",
1260 "vfpv4",
1261 "idiva",
1262 "idivt",
1263 "vfpd32",
1264 "lpae",
1265 "evtstrm",
1266 "fphp",
1267 "asimdhp",
1268 "asimddp",
1269 "asimdfhm",
1270 "asimdbf16",
1271 "i8mm",
1272 NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276 "aes",
1277 "pmull",
1278 "sha1",
1279 "sha2",
1280 "crc32",
1281 "sb",
1282 "ssbs",
1283 NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288 int i, j;
1289 u32 cpuid;
1290
1291 for_each_online_cpu(i) {
1292 /*
1293 * glibc reads /proc/cpuinfo to determine the number of
1294 * online processors, looking for lines beginning with
1295 * "processor". Give glibc what it expects.
1296 */
1297 seq_printf(m, "processor\t: %d\n", i);
1298 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300 cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308 loops_per_jiffy / (500000/HZ),
1309 (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311 /* dump out the processor features */
1312 seq_puts(m, "Features\t: ");
1313
1314 for (j = 0; hwcap_str[j]; j++)
1315 if (elf_hwcap & (1 << j))
1316 seq_printf(m, "%s ", hwcap_str[j]);
1317
1318 for (j = 0; hwcap2_str[j]; j++)
1319 if (elf_hwcap2 & (1 << j))
1320 seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323 seq_printf(m, "CPU architecture: %s\n",
1324 proc_arch[cpu_architecture()]);
1325
1326 if ((cpuid & 0x0008f000) == 0x00000000) {
1327 /* pre-ARM7 */
1328 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1329 } else {
1330 if ((cpuid & 0x0008f000) == 0x00007000) {
1331 /* ARM7 */
1332 seq_printf(m, "CPU variant\t: 0x%02x\n",
1333 (cpuid >> 16) & 127);
1334 } else {
1335 /* post-ARM7 */
1336 seq_printf(m, "CPU variant\t: 0x%x\n",
1337 (cpuid >> 20) & 15);
1338 }
1339 seq_printf(m, "CPU part\t: 0x%03x\n",
1340 (cpuid >> 4) & 0xfff);
1341 }
1342 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1343 }
1344
1345 seq_printf(m, "Hardware\t: %s\n", machine_name);
1346 seq_printf(m, "Revision\t: %04x\n", system_rev);
1347 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1348
1349 return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354 return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359 ++*pos;
1360 return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368 .start = c_start,
1369 .next = c_next,
1370 .stop = c_stop,
1371 .show = c_show
1372};