Loading...
1/*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/backing-dev.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/hugetlb_cgroup.h>
37#include <linux/gfp.h>
38#include <linux/balloon_compaction.h>
39#include <linux/mmu_notifier.h>
40#include <linux/page_idle.h>
41#include <linux/page_owner.h>
42
43#include <asm/tlbflush.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/migrate.h>
47
48#include "internal.h"
49
50/*
51 * migrate_prep() needs to be called before we start compiling a list of pages
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
54 */
55int migrate_prep(void)
56{
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66}
67
68/* Do the necessary work of migrate_prep but not if it involves other CPUs */
69int migrate_prep_local(void)
70{
71 lru_add_drain();
72
73 return 0;
74}
75
76/*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
83 */
84void putback_movable_pages(struct list_head *l)
85{
86 struct page *page;
87 struct page *page2;
88
89 list_for_each_entry_safe(page, page2, l, lru) {
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
94 list_del(&page->lru);
95 dec_zone_page_state(page, NR_ISOLATED_ANON +
96 page_is_file_cache(page));
97 if (unlikely(isolated_balloon_page(page)))
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
101 }
102}
103
104/*
105 * Restore a potential migration pte to a working pte entry
106 */
107static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
109{
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 } else {
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
155
156#ifdef CONFIG_HUGETLB_PAGE
157 if (PageHuge(new)) {
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
161#endif
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
164
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
169 page_dup_rmap(new, true);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr, false);
172 else
173 page_add_file_rmap(new);
174
175 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
176 mlock_vma_page(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, ptep);
180unlock:
181 pte_unmap_unlock(ptep, ptl);
182out:
183 return SWAP_AGAIN;
184}
185
186/*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
190void remove_migration_ptes(struct page *old, struct page *new, bool locked)
191{
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
197 if (locked)
198 rmap_walk_locked(new, &rwc);
199 else
200 rmap_walk(new, &rwc);
201}
202
203/*
204 * Something used the pte of a page under migration. We need to
205 * get to the page and wait until migration is finished.
206 * When we return from this function the fault will be retried.
207 */
208void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
209 spinlock_t *ptl)
210{
211 pte_t pte;
212 swp_entry_t entry;
213 struct page *page;
214
215 spin_lock(ptl);
216 pte = *ptep;
217 if (!is_swap_pte(pte))
218 goto out;
219
220 entry = pte_to_swp_entry(pte);
221 if (!is_migration_entry(entry))
222 goto out;
223
224 page = migration_entry_to_page(entry);
225
226 /*
227 * Once radix-tree replacement of page migration started, page_count
228 * *must* be zero. And, we don't want to call wait_on_page_locked()
229 * against a page without get_page().
230 * So, we use get_page_unless_zero(), here. Even failed, page fault
231 * will occur again.
232 */
233 if (!get_page_unless_zero(page))
234 goto out;
235 pte_unmap_unlock(ptep, ptl);
236 wait_on_page_locked(page);
237 put_page(page);
238 return;
239out:
240 pte_unmap_unlock(ptep, ptl);
241}
242
243void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
244 unsigned long address)
245{
246 spinlock_t *ptl = pte_lockptr(mm, pmd);
247 pte_t *ptep = pte_offset_map(pmd, address);
248 __migration_entry_wait(mm, ptep, ptl);
249}
250
251void migration_entry_wait_huge(struct vm_area_struct *vma,
252 struct mm_struct *mm, pte_t *pte)
253{
254 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
255 __migration_entry_wait(mm, pte, ptl);
256}
257
258#ifdef CONFIG_BLOCK
259/* Returns true if all buffers are successfully locked */
260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 enum migrate_mode mode)
262{
263 struct buffer_head *bh = head;
264
265 /* Simple case, sync compaction */
266 if (mode != MIGRATE_ASYNC) {
267 do {
268 get_bh(bh);
269 lock_buffer(bh);
270 bh = bh->b_this_page;
271
272 } while (bh != head);
273
274 return true;
275 }
276
277 /* async case, we cannot block on lock_buffer so use trylock_buffer */
278 do {
279 get_bh(bh);
280 if (!trylock_buffer(bh)) {
281 /*
282 * We failed to lock the buffer and cannot stall in
283 * async migration. Release the taken locks
284 */
285 struct buffer_head *failed_bh = bh;
286 put_bh(failed_bh);
287 bh = head;
288 while (bh != failed_bh) {
289 unlock_buffer(bh);
290 put_bh(bh);
291 bh = bh->b_this_page;
292 }
293 return false;
294 }
295
296 bh = bh->b_this_page;
297 } while (bh != head);
298 return true;
299}
300#else
301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 enum migrate_mode mode)
303{
304 return true;
305}
306#endif /* CONFIG_BLOCK */
307
308/*
309 * Replace the page in the mapping.
310 *
311 * The number of remaining references must be:
312 * 1 for anonymous pages without a mapping
313 * 2 for pages with a mapping
314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315 */
316int migrate_page_move_mapping(struct address_space *mapping,
317 struct page *newpage, struct page *page,
318 struct buffer_head *head, enum migrate_mode mode,
319 int extra_count)
320{
321 struct zone *oldzone, *newzone;
322 int dirty;
323 int expected_count = 1 + extra_count;
324 void **pslot;
325
326 if (!mapping) {
327 /* Anonymous page without mapping */
328 if (page_count(page) != expected_count)
329 return -EAGAIN;
330
331 /* No turning back from here */
332 newpage->index = page->index;
333 newpage->mapping = page->mapping;
334 if (PageSwapBacked(page))
335 SetPageSwapBacked(newpage);
336
337 return MIGRATEPAGE_SUCCESS;
338 }
339
340 oldzone = page_zone(page);
341 newzone = page_zone(newpage);
342
343 spin_lock_irq(&mapping->tree_lock);
344
345 pslot = radix_tree_lookup_slot(&mapping->page_tree,
346 page_index(page));
347
348 expected_count += 1 + page_has_private(page);
349 if (page_count(page) != expected_count ||
350 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
353 }
354
355 if (!page_ref_freeze(page, expected_count)) {
356 spin_unlock_irq(&mapping->tree_lock);
357 return -EAGAIN;
358 }
359
360 /*
361 * In the async migration case of moving a page with buffers, lock the
362 * buffers using trylock before the mapping is moved. If the mapping
363 * was moved, we later failed to lock the buffers and could not move
364 * the mapping back due to an elevated page count, we would have to
365 * block waiting on other references to be dropped.
366 */
367 if (mode == MIGRATE_ASYNC && head &&
368 !buffer_migrate_lock_buffers(head, mode)) {
369 page_ref_unfreeze(page, expected_count);
370 spin_unlock_irq(&mapping->tree_lock);
371 return -EAGAIN;
372 }
373
374 /*
375 * Now we know that no one else is looking at the page:
376 * no turning back from here.
377 */
378 newpage->index = page->index;
379 newpage->mapping = page->mapping;
380 if (PageSwapBacked(page))
381 SetPageSwapBacked(newpage);
382
383 get_page(newpage); /* add cache reference */
384 if (PageSwapCache(page)) {
385 SetPageSwapCache(newpage);
386 set_page_private(newpage, page_private(page));
387 }
388
389 /* Move dirty while page refs frozen and newpage not yet exposed */
390 dirty = PageDirty(page);
391 if (dirty) {
392 ClearPageDirty(page);
393 SetPageDirty(newpage);
394 }
395
396 radix_tree_replace_slot(pslot, newpage);
397
398 /*
399 * Drop cache reference from old page by unfreezing
400 * to one less reference.
401 * We know this isn't the last reference.
402 */
403 page_ref_unfreeze(page, expected_count - 1);
404
405 spin_unlock(&mapping->tree_lock);
406 /* Leave irq disabled to prevent preemption while updating stats */
407
408 /*
409 * If moved to a different zone then also account
410 * the page for that zone. Other VM counters will be
411 * taken care of when we establish references to the
412 * new page and drop references to the old page.
413 *
414 * Note that anonymous pages are accounted for
415 * via NR_FILE_PAGES and NR_ANON_PAGES if they
416 * are mapped to swap space.
417 */
418 if (newzone != oldzone) {
419 __dec_zone_state(oldzone, NR_FILE_PAGES);
420 __inc_zone_state(newzone, NR_FILE_PAGES);
421 if (PageSwapBacked(page) && !PageSwapCache(page)) {
422 __dec_zone_state(oldzone, NR_SHMEM);
423 __inc_zone_state(newzone, NR_SHMEM);
424 }
425 if (dirty && mapping_cap_account_dirty(mapping)) {
426 __dec_zone_state(oldzone, NR_FILE_DIRTY);
427 __inc_zone_state(newzone, NR_FILE_DIRTY);
428 }
429 }
430 local_irq_enable();
431
432 return MIGRATEPAGE_SUCCESS;
433}
434
435/*
436 * The expected number of remaining references is the same as that
437 * of migrate_page_move_mapping().
438 */
439int migrate_huge_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page)
441{
442 int expected_count;
443 void **pslot;
444
445 spin_lock_irq(&mapping->tree_lock);
446
447 pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 page_index(page));
449
450 expected_count = 2 + page_has_private(page);
451 if (page_count(page) != expected_count ||
452 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
453 spin_unlock_irq(&mapping->tree_lock);
454 return -EAGAIN;
455 }
456
457 if (!page_ref_freeze(page, expected_count)) {
458 spin_unlock_irq(&mapping->tree_lock);
459 return -EAGAIN;
460 }
461
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464
465 get_page(newpage);
466
467 radix_tree_replace_slot(pslot, newpage);
468
469 page_ref_unfreeze(page, expected_count - 1);
470
471 spin_unlock_irq(&mapping->tree_lock);
472
473 return MIGRATEPAGE_SUCCESS;
474}
475
476/*
477 * Gigantic pages are so large that we do not guarantee that page++ pointer
478 * arithmetic will work across the entire page. We need something more
479 * specialized.
480 */
481static void __copy_gigantic_page(struct page *dst, struct page *src,
482 int nr_pages)
483{
484 int i;
485 struct page *dst_base = dst;
486 struct page *src_base = src;
487
488 for (i = 0; i < nr_pages; ) {
489 cond_resched();
490 copy_highpage(dst, src);
491
492 i++;
493 dst = mem_map_next(dst, dst_base, i);
494 src = mem_map_next(src, src_base, i);
495 }
496}
497
498static void copy_huge_page(struct page *dst, struct page *src)
499{
500 int i;
501 int nr_pages;
502
503 if (PageHuge(src)) {
504 /* hugetlbfs page */
505 struct hstate *h = page_hstate(src);
506 nr_pages = pages_per_huge_page(h);
507
508 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
509 __copy_gigantic_page(dst, src, nr_pages);
510 return;
511 }
512 } else {
513 /* thp page */
514 BUG_ON(!PageTransHuge(src));
515 nr_pages = hpage_nr_pages(src);
516 }
517
518 for (i = 0; i < nr_pages; i++) {
519 cond_resched();
520 copy_highpage(dst + i, src + i);
521 }
522}
523
524/*
525 * Copy the page to its new location
526 */
527void migrate_page_copy(struct page *newpage, struct page *page)
528{
529 int cpupid;
530
531 if (PageHuge(page) || PageTransHuge(page))
532 copy_huge_page(newpage, page);
533 else
534 copy_highpage(newpage, page);
535
536 if (PageError(page))
537 SetPageError(newpage);
538 if (PageReferenced(page))
539 SetPageReferenced(newpage);
540 if (PageUptodate(page))
541 SetPageUptodate(newpage);
542 if (TestClearPageActive(page)) {
543 VM_BUG_ON_PAGE(PageUnevictable(page), page);
544 SetPageActive(newpage);
545 } else if (TestClearPageUnevictable(page))
546 SetPageUnevictable(newpage);
547 if (PageChecked(page))
548 SetPageChecked(newpage);
549 if (PageMappedToDisk(page))
550 SetPageMappedToDisk(newpage);
551
552 /* Move dirty on pages not done by migrate_page_move_mapping() */
553 if (PageDirty(page))
554 SetPageDirty(newpage);
555
556 if (page_is_young(page))
557 set_page_young(newpage);
558 if (page_is_idle(page))
559 set_page_idle(newpage);
560
561 /*
562 * Copy NUMA information to the new page, to prevent over-eager
563 * future migrations of this same page.
564 */
565 cpupid = page_cpupid_xchg_last(page, -1);
566 page_cpupid_xchg_last(newpage, cpupid);
567
568 ksm_migrate_page(newpage, page);
569 /*
570 * Please do not reorder this without considering how mm/ksm.c's
571 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
572 */
573 if (PageSwapCache(page))
574 ClearPageSwapCache(page);
575 ClearPagePrivate(page);
576 set_page_private(page, 0);
577
578 /*
579 * If any waiters have accumulated on the new page then
580 * wake them up.
581 */
582 if (PageWriteback(newpage))
583 end_page_writeback(newpage);
584
585 copy_page_owner(page, newpage);
586
587 mem_cgroup_migrate(page, newpage);
588}
589
590/************************************************************
591 * Migration functions
592 ***********************************************************/
593
594/*
595 * Common logic to directly migrate a single page suitable for
596 * pages that do not use PagePrivate/PagePrivate2.
597 *
598 * Pages are locked upon entry and exit.
599 */
600int migrate_page(struct address_space *mapping,
601 struct page *newpage, struct page *page,
602 enum migrate_mode mode)
603{
604 int rc;
605
606 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
607
608 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
609
610 if (rc != MIGRATEPAGE_SUCCESS)
611 return rc;
612
613 migrate_page_copy(newpage, page);
614 return MIGRATEPAGE_SUCCESS;
615}
616EXPORT_SYMBOL(migrate_page);
617
618#ifdef CONFIG_BLOCK
619/*
620 * Migration function for pages with buffers. This function can only be used
621 * if the underlying filesystem guarantees that no other references to "page"
622 * exist.
623 */
624int buffer_migrate_page(struct address_space *mapping,
625 struct page *newpage, struct page *page, enum migrate_mode mode)
626{
627 struct buffer_head *bh, *head;
628 int rc;
629
630 if (!page_has_buffers(page))
631 return migrate_page(mapping, newpage, page, mode);
632
633 head = page_buffers(page);
634
635 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
636
637 if (rc != MIGRATEPAGE_SUCCESS)
638 return rc;
639
640 /*
641 * In the async case, migrate_page_move_mapping locked the buffers
642 * with an IRQ-safe spinlock held. In the sync case, the buffers
643 * need to be locked now
644 */
645 if (mode != MIGRATE_ASYNC)
646 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
647
648 ClearPagePrivate(page);
649 set_page_private(newpage, page_private(page));
650 set_page_private(page, 0);
651 put_page(page);
652 get_page(newpage);
653
654 bh = head;
655 do {
656 set_bh_page(bh, newpage, bh_offset(bh));
657 bh = bh->b_this_page;
658
659 } while (bh != head);
660
661 SetPagePrivate(newpage);
662
663 migrate_page_copy(newpage, page);
664
665 bh = head;
666 do {
667 unlock_buffer(bh);
668 put_bh(bh);
669 bh = bh->b_this_page;
670
671 } while (bh != head);
672
673 return MIGRATEPAGE_SUCCESS;
674}
675EXPORT_SYMBOL(buffer_migrate_page);
676#endif
677
678/*
679 * Writeback a page to clean the dirty state
680 */
681static int writeout(struct address_space *mapping, struct page *page)
682{
683 struct writeback_control wbc = {
684 .sync_mode = WB_SYNC_NONE,
685 .nr_to_write = 1,
686 .range_start = 0,
687 .range_end = LLONG_MAX,
688 .for_reclaim = 1
689 };
690 int rc;
691
692 if (!mapping->a_ops->writepage)
693 /* No write method for the address space */
694 return -EINVAL;
695
696 if (!clear_page_dirty_for_io(page))
697 /* Someone else already triggered a write */
698 return -EAGAIN;
699
700 /*
701 * A dirty page may imply that the underlying filesystem has
702 * the page on some queue. So the page must be clean for
703 * migration. Writeout may mean we loose the lock and the
704 * page state is no longer what we checked for earlier.
705 * At this point we know that the migration attempt cannot
706 * be successful.
707 */
708 remove_migration_ptes(page, page, false);
709
710 rc = mapping->a_ops->writepage(page, &wbc);
711
712 if (rc != AOP_WRITEPAGE_ACTIVATE)
713 /* unlocked. Relock */
714 lock_page(page);
715
716 return (rc < 0) ? -EIO : -EAGAIN;
717}
718
719/*
720 * Default handling if a filesystem does not provide a migration function.
721 */
722static int fallback_migrate_page(struct address_space *mapping,
723 struct page *newpage, struct page *page, enum migrate_mode mode)
724{
725 if (PageDirty(page)) {
726 /* Only writeback pages in full synchronous migration */
727 if (mode != MIGRATE_SYNC)
728 return -EBUSY;
729 return writeout(mapping, page);
730 }
731
732 /*
733 * Buffers may be managed in a filesystem specific way.
734 * We must have no buffers or drop them.
735 */
736 if (page_has_private(page) &&
737 !try_to_release_page(page, GFP_KERNEL))
738 return -EAGAIN;
739
740 return migrate_page(mapping, newpage, page, mode);
741}
742
743/*
744 * Move a page to a newly allocated page
745 * The page is locked and all ptes have been successfully removed.
746 *
747 * The new page will have replaced the old page if this function
748 * is successful.
749 *
750 * Return value:
751 * < 0 - error code
752 * MIGRATEPAGE_SUCCESS - success
753 */
754static int move_to_new_page(struct page *newpage, struct page *page,
755 enum migrate_mode mode)
756{
757 struct address_space *mapping;
758 int rc;
759
760 VM_BUG_ON_PAGE(!PageLocked(page), page);
761 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
762
763 mapping = page_mapping(page);
764 if (!mapping)
765 rc = migrate_page(mapping, newpage, page, mode);
766 else if (mapping->a_ops->migratepage)
767 /*
768 * Most pages have a mapping and most filesystems provide a
769 * migratepage callback. Anonymous pages are part of swap
770 * space which also has its own migratepage callback. This
771 * is the most common path for page migration.
772 */
773 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
774 else
775 rc = fallback_migrate_page(mapping, newpage, page, mode);
776
777 /*
778 * When successful, old pagecache page->mapping must be cleared before
779 * page is freed; but stats require that PageAnon be left as PageAnon.
780 */
781 if (rc == MIGRATEPAGE_SUCCESS) {
782 if (!PageAnon(page))
783 page->mapping = NULL;
784 }
785 return rc;
786}
787
788static int __unmap_and_move(struct page *page, struct page *newpage,
789 int force, enum migrate_mode mode)
790{
791 int rc = -EAGAIN;
792 int page_was_mapped = 0;
793 struct anon_vma *anon_vma = NULL;
794
795 if (!trylock_page(page)) {
796 if (!force || mode == MIGRATE_ASYNC)
797 goto out;
798
799 /*
800 * It's not safe for direct compaction to call lock_page.
801 * For example, during page readahead pages are added locked
802 * to the LRU. Later, when the IO completes the pages are
803 * marked uptodate and unlocked. However, the queueing
804 * could be merging multiple pages for one bio (e.g.
805 * mpage_readpages). If an allocation happens for the
806 * second or third page, the process can end up locking
807 * the same page twice and deadlocking. Rather than
808 * trying to be clever about what pages can be locked,
809 * avoid the use of lock_page for direct compaction
810 * altogether.
811 */
812 if (current->flags & PF_MEMALLOC)
813 goto out;
814
815 lock_page(page);
816 }
817
818 if (PageWriteback(page)) {
819 /*
820 * Only in the case of a full synchronous migration is it
821 * necessary to wait for PageWriteback. In the async case,
822 * the retry loop is too short and in the sync-light case,
823 * the overhead of stalling is too much
824 */
825 if (mode != MIGRATE_SYNC) {
826 rc = -EBUSY;
827 goto out_unlock;
828 }
829 if (!force)
830 goto out_unlock;
831 wait_on_page_writeback(page);
832 }
833
834 /*
835 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
836 * we cannot notice that anon_vma is freed while we migrates a page.
837 * This get_anon_vma() delays freeing anon_vma pointer until the end
838 * of migration. File cache pages are no problem because of page_lock()
839 * File Caches may use write_page() or lock_page() in migration, then,
840 * just care Anon page here.
841 *
842 * Only page_get_anon_vma() understands the subtleties of
843 * getting a hold on an anon_vma from outside one of its mms.
844 * But if we cannot get anon_vma, then we won't need it anyway,
845 * because that implies that the anon page is no longer mapped
846 * (and cannot be remapped so long as we hold the page lock).
847 */
848 if (PageAnon(page) && !PageKsm(page))
849 anon_vma = page_get_anon_vma(page);
850
851 /*
852 * Block others from accessing the new page when we get around to
853 * establishing additional references. We are usually the only one
854 * holding a reference to newpage at this point. We used to have a BUG
855 * here if trylock_page(newpage) fails, but would like to allow for
856 * cases where there might be a race with the previous use of newpage.
857 * This is much like races on refcount of oldpage: just don't BUG().
858 */
859 if (unlikely(!trylock_page(newpage)))
860 goto out_unlock;
861
862 if (unlikely(isolated_balloon_page(page))) {
863 /*
864 * A ballooned page does not need any special attention from
865 * physical to virtual reverse mapping procedures.
866 * Skip any attempt to unmap PTEs or to remap swap cache,
867 * in order to avoid burning cycles at rmap level, and perform
868 * the page migration right away (proteced by page lock).
869 */
870 rc = balloon_page_migrate(newpage, page, mode);
871 goto out_unlock_both;
872 }
873
874 /*
875 * Corner case handling:
876 * 1. When a new swap-cache page is read into, it is added to the LRU
877 * and treated as swapcache but it has no rmap yet.
878 * Calling try_to_unmap() against a page->mapping==NULL page will
879 * trigger a BUG. So handle it here.
880 * 2. An orphaned page (see truncate_complete_page) might have
881 * fs-private metadata. The page can be picked up due to memory
882 * offlining. Everywhere else except page reclaim, the page is
883 * invisible to the vm, so the page can not be migrated. So try to
884 * free the metadata, so the page can be freed.
885 */
886 if (!page->mapping) {
887 VM_BUG_ON_PAGE(PageAnon(page), page);
888 if (page_has_private(page)) {
889 try_to_free_buffers(page);
890 goto out_unlock_both;
891 }
892 } else if (page_mapped(page)) {
893 /* Establish migration ptes */
894 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
895 page);
896 try_to_unmap(page,
897 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
898 page_was_mapped = 1;
899 }
900
901 if (!page_mapped(page))
902 rc = move_to_new_page(newpage, page, mode);
903
904 if (page_was_mapped)
905 remove_migration_ptes(page,
906 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
907
908out_unlock_both:
909 unlock_page(newpage);
910out_unlock:
911 /* Drop an anon_vma reference if we took one */
912 if (anon_vma)
913 put_anon_vma(anon_vma);
914 unlock_page(page);
915out:
916 return rc;
917}
918
919/*
920 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
921 * around it.
922 */
923#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
924#define ICE_noinline noinline
925#else
926#define ICE_noinline
927#endif
928
929/*
930 * Obtain the lock on page, remove all ptes and migrate the page
931 * to the newly allocated page in newpage.
932 */
933static ICE_noinline int unmap_and_move(new_page_t get_new_page,
934 free_page_t put_new_page,
935 unsigned long private, struct page *page,
936 int force, enum migrate_mode mode,
937 enum migrate_reason reason)
938{
939 int rc = MIGRATEPAGE_SUCCESS;
940 int *result = NULL;
941 struct page *newpage;
942
943 newpage = get_new_page(page, private, &result);
944 if (!newpage)
945 return -ENOMEM;
946
947 if (page_count(page) == 1) {
948 /* page was freed from under us. So we are done. */
949 goto out;
950 }
951
952 if (unlikely(PageTransHuge(page))) {
953 lock_page(page);
954 rc = split_huge_page(page);
955 unlock_page(page);
956 if (rc)
957 goto out;
958 }
959
960 rc = __unmap_and_move(page, newpage, force, mode);
961 if (rc == MIGRATEPAGE_SUCCESS) {
962 put_new_page = NULL;
963 set_page_owner_migrate_reason(newpage, reason);
964 }
965
966out:
967 if (rc != -EAGAIN) {
968 /*
969 * A page that has been migrated has all references
970 * removed and will be freed. A page that has not been
971 * migrated will have kepts its references and be
972 * restored.
973 */
974 list_del(&page->lru);
975 dec_zone_page_state(page, NR_ISOLATED_ANON +
976 page_is_file_cache(page));
977 /* Soft-offlined page shouldn't go through lru cache list */
978 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
979 /*
980 * With this release, we free successfully migrated
981 * page and set PG_HWPoison on just freed page
982 * intentionally. Although it's rather weird, it's how
983 * HWPoison flag works at the moment.
984 */
985 put_page(page);
986 if (!test_set_page_hwpoison(page))
987 num_poisoned_pages_inc();
988 } else
989 putback_lru_page(page);
990 }
991
992 /*
993 * If migration was not successful and there's a freeing callback, use
994 * it. Otherwise, putback_lru_page() will drop the reference grabbed
995 * during isolation.
996 */
997 if (put_new_page)
998 put_new_page(newpage, private);
999 else if (unlikely(__is_movable_balloon_page(newpage))) {
1000 /* drop our reference, page already in the balloon */
1001 put_page(newpage);
1002 } else
1003 putback_lru_page(newpage);
1004
1005 if (result) {
1006 if (rc)
1007 *result = rc;
1008 else
1009 *result = page_to_nid(newpage);
1010 }
1011 return rc;
1012}
1013
1014/*
1015 * Counterpart of unmap_and_move_page() for hugepage migration.
1016 *
1017 * This function doesn't wait the completion of hugepage I/O
1018 * because there is no race between I/O and migration for hugepage.
1019 * Note that currently hugepage I/O occurs only in direct I/O
1020 * where no lock is held and PG_writeback is irrelevant,
1021 * and writeback status of all subpages are counted in the reference
1022 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1023 * under direct I/O, the reference of the head page is 512 and a bit more.)
1024 * This means that when we try to migrate hugepage whose subpages are
1025 * doing direct I/O, some references remain after try_to_unmap() and
1026 * hugepage migration fails without data corruption.
1027 *
1028 * There is also no race when direct I/O is issued on the page under migration,
1029 * because then pte is replaced with migration swap entry and direct I/O code
1030 * will wait in the page fault for migration to complete.
1031 */
1032static int unmap_and_move_huge_page(new_page_t get_new_page,
1033 free_page_t put_new_page, unsigned long private,
1034 struct page *hpage, int force,
1035 enum migrate_mode mode, int reason)
1036{
1037 int rc = -EAGAIN;
1038 int *result = NULL;
1039 int page_was_mapped = 0;
1040 struct page *new_hpage;
1041 struct anon_vma *anon_vma = NULL;
1042
1043 /*
1044 * Movability of hugepages depends on architectures and hugepage size.
1045 * This check is necessary because some callers of hugepage migration
1046 * like soft offline and memory hotremove don't walk through page
1047 * tables or check whether the hugepage is pmd-based or not before
1048 * kicking migration.
1049 */
1050 if (!hugepage_migration_supported(page_hstate(hpage))) {
1051 putback_active_hugepage(hpage);
1052 return -ENOSYS;
1053 }
1054
1055 new_hpage = get_new_page(hpage, private, &result);
1056 if (!new_hpage)
1057 return -ENOMEM;
1058
1059 if (!trylock_page(hpage)) {
1060 if (!force || mode != MIGRATE_SYNC)
1061 goto out;
1062 lock_page(hpage);
1063 }
1064
1065 if (PageAnon(hpage))
1066 anon_vma = page_get_anon_vma(hpage);
1067
1068 if (unlikely(!trylock_page(new_hpage)))
1069 goto put_anon;
1070
1071 if (page_mapped(hpage)) {
1072 try_to_unmap(hpage,
1073 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1074 page_was_mapped = 1;
1075 }
1076
1077 if (!page_mapped(hpage))
1078 rc = move_to_new_page(new_hpage, hpage, mode);
1079
1080 if (page_was_mapped)
1081 remove_migration_ptes(hpage,
1082 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1083
1084 unlock_page(new_hpage);
1085
1086put_anon:
1087 if (anon_vma)
1088 put_anon_vma(anon_vma);
1089
1090 if (rc == MIGRATEPAGE_SUCCESS) {
1091 hugetlb_cgroup_migrate(hpage, new_hpage);
1092 put_new_page = NULL;
1093 set_page_owner_migrate_reason(new_hpage, reason);
1094 }
1095
1096 unlock_page(hpage);
1097out:
1098 if (rc != -EAGAIN)
1099 putback_active_hugepage(hpage);
1100
1101 /*
1102 * If migration was not successful and there's a freeing callback, use
1103 * it. Otherwise, put_page() will drop the reference grabbed during
1104 * isolation.
1105 */
1106 if (put_new_page)
1107 put_new_page(new_hpage, private);
1108 else
1109 putback_active_hugepage(new_hpage);
1110
1111 if (result) {
1112 if (rc)
1113 *result = rc;
1114 else
1115 *result = page_to_nid(new_hpage);
1116 }
1117 return rc;
1118}
1119
1120/*
1121 * migrate_pages - migrate the pages specified in a list, to the free pages
1122 * supplied as the target for the page migration
1123 *
1124 * @from: The list of pages to be migrated.
1125 * @get_new_page: The function used to allocate free pages to be used
1126 * as the target of the page migration.
1127 * @put_new_page: The function used to free target pages if migration
1128 * fails, or NULL if no special handling is necessary.
1129 * @private: Private data to be passed on to get_new_page()
1130 * @mode: The migration mode that specifies the constraints for
1131 * page migration, if any.
1132 * @reason: The reason for page migration.
1133 *
1134 * The function returns after 10 attempts or if no pages are movable any more
1135 * because the list has become empty or no retryable pages exist any more.
1136 * The caller should call putback_movable_pages() to return pages to the LRU
1137 * or free list only if ret != 0.
1138 *
1139 * Returns the number of pages that were not migrated, or an error code.
1140 */
1141int migrate_pages(struct list_head *from, new_page_t get_new_page,
1142 free_page_t put_new_page, unsigned long private,
1143 enum migrate_mode mode, int reason)
1144{
1145 int retry = 1;
1146 int nr_failed = 0;
1147 int nr_succeeded = 0;
1148 int pass = 0;
1149 struct page *page;
1150 struct page *page2;
1151 int swapwrite = current->flags & PF_SWAPWRITE;
1152 int rc;
1153
1154 if (!swapwrite)
1155 current->flags |= PF_SWAPWRITE;
1156
1157 for(pass = 0; pass < 10 && retry; pass++) {
1158 retry = 0;
1159
1160 list_for_each_entry_safe(page, page2, from, lru) {
1161 cond_resched();
1162
1163 if (PageHuge(page))
1164 rc = unmap_and_move_huge_page(get_new_page,
1165 put_new_page, private, page,
1166 pass > 2, mode, reason);
1167 else
1168 rc = unmap_and_move(get_new_page, put_new_page,
1169 private, page, pass > 2, mode,
1170 reason);
1171
1172 switch(rc) {
1173 case -ENOMEM:
1174 goto out;
1175 case -EAGAIN:
1176 retry++;
1177 break;
1178 case MIGRATEPAGE_SUCCESS:
1179 nr_succeeded++;
1180 break;
1181 default:
1182 /*
1183 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1184 * unlike -EAGAIN case, the failed page is
1185 * removed from migration page list and not
1186 * retried in the next outer loop.
1187 */
1188 nr_failed++;
1189 break;
1190 }
1191 }
1192 }
1193 nr_failed += retry;
1194 rc = nr_failed;
1195out:
1196 if (nr_succeeded)
1197 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1198 if (nr_failed)
1199 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1200 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1201
1202 if (!swapwrite)
1203 current->flags &= ~PF_SWAPWRITE;
1204
1205 return rc;
1206}
1207
1208#ifdef CONFIG_NUMA
1209/*
1210 * Move a list of individual pages
1211 */
1212struct page_to_node {
1213 unsigned long addr;
1214 struct page *page;
1215 int node;
1216 int status;
1217};
1218
1219static struct page *new_page_node(struct page *p, unsigned long private,
1220 int **result)
1221{
1222 struct page_to_node *pm = (struct page_to_node *)private;
1223
1224 while (pm->node != MAX_NUMNODES && pm->page != p)
1225 pm++;
1226
1227 if (pm->node == MAX_NUMNODES)
1228 return NULL;
1229
1230 *result = &pm->status;
1231
1232 if (PageHuge(p))
1233 return alloc_huge_page_node(page_hstate(compound_head(p)),
1234 pm->node);
1235 else
1236 return __alloc_pages_node(pm->node,
1237 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1238}
1239
1240/*
1241 * Move a set of pages as indicated in the pm array. The addr
1242 * field must be set to the virtual address of the page to be moved
1243 * and the node number must contain a valid target node.
1244 * The pm array ends with node = MAX_NUMNODES.
1245 */
1246static int do_move_page_to_node_array(struct mm_struct *mm,
1247 struct page_to_node *pm,
1248 int migrate_all)
1249{
1250 int err;
1251 struct page_to_node *pp;
1252 LIST_HEAD(pagelist);
1253
1254 down_read(&mm->mmap_sem);
1255
1256 /*
1257 * Build a list of pages to migrate
1258 */
1259 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1260 struct vm_area_struct *vma;
1261 struct page *page;
1262
1263 err = -EFAULT;
1264 vma = find_vma(mm, pp->addr);
1265 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1266 goto set_status;
1267
1268 /* FOLL_DUMP to ignore special (like zero) pages */
1269 page = follow_page(vma, pp->addr,
1270 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1271
1272 err = PTR_ERR(page);
1273 if (IS_ERR(page))
1274 goto set_status;
1275
1276 err = -ENOENT;
1277 if (!page)
1278 goto set_status;
1279
1280 pp->page = page;
1281 err = page_to_nid(page);
1282
1283 if (err == pp->node)
1284 /*
1285 * Node already in the right place
1286 */
1287 goto put_and_set;
1288
1289 err = -EACCES;
1290 if (page_mapcount(page) > 1 &&
1291 !migrate_all)
1292 goto put_and_set;
1293
1294 if (PageHuge(page)) {
1295 if (PageHead(page))
1296 isolate_huge_page(page, &pagelist);
1297 goto put_and_set;
1298 }
1299
1300 err = isolate_lru_page(page);
1301 if (!err) {
1302 list_add_tail(&page->lru, &pagelist);
1303 inc_zone_page_state(page, NR_ISOLATED_ANON +
1304 page_is_file_cache(page));
1305 }
1306put_and_set:
1307 /*
1308 * Either remove the duplicate refcount from
1309 * isolate_lru_page() or drop the page ref if it was
1310 * not isolated.
1311 */
1312 put_page(page);
1313set_status:
1314 pp->status = err;
1315 }
1316
1317 err = 0;
1318 if (!list_empty(&pagelist)) {
1319 err = migrate_pages(&pagelist, new_page_node, NULL,
1320 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1321 if (err)
1322 putback_movable_pages(&pagelist);
1323 }
1324
1325 up_read(&mm->mmap_sem);
1326 return err;
1327}
1328
1329/*
1330 * Migrate an array of page address onto an array of nodes and fill
1331 * the corresponding array of status.
1332 */
1333static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1334 unsigned long nr_pages,
1335 const void __user * __user *pages,
1336 const int __user *nodes,
1337 int __user *status, int flags)
1338{
1339 struct page_to_node *pm;
1340 unsigned long chunk_nr_pages;
1341 unsigned long chunk_start;
1342 int err;
1343
1344 err = -ENOMEM;
1345 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1346 if (!pm)
1347 goto out;
1348
1349 migrate_prep();
1350
1351 /*
1352 * Store a chunk of page_to_node array in a page,
1353 * but keep the last one as a marker
1354 */
1355 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1356
1357 for (chunk_start = 0;
1358 chunk_start < nr_pages;
1359 chunk_start += chunk_nr_pages) {
1360 int j;
1361
1362 if (chunk_start + chunk_nr_pages > nr_pages)
1363 chunk_nr_pages = nr_pages - chunk_start;
1364
1365 /* fill the chunk pm with addrs and nodes from user-space */
1366 for (j = 0; j < chunk_nr_pages; j++) {
1367 const void __user *p;
1368 int node;
1369
1370 err = -EFAULT;
1371 if (get_user(p, pages + j + chunk_start))
1372 goto out_pm;
1373 pm[j].addr = (unsigned long) p;
1374
1375 if (get_user(node, nodes + j + chunk_start))
1376 goto out_pm;
1377
1378 err = -ENODEV;
1379 if (node < 0 || node >= MAX_NUMNODES)
1380 goto out_pm;
1381
1382 if (!node_state(node, N_MEMORY))
1383 goto out_pm;
1384
1385 err = -EACCES;
1386 if (!node_isset(node, task_nodes))
1387 goto out_pm;
1388
1389 pm[j].node = node;
1390 }
1391
1392 /* End marker for this chunk */
1393 pm[chunk_nr_pages].node = MAX_NUMNODES;
1394
1395 /* Migrate this chunk */
1396 err = do_move_page_to_node_array(mm, pm,
1397 flags & MPOL_MF_MOVE_ALL);
1398 if (err < 0)
1399 goto out_pm;
1400
1401 /* Return status information */
1402 for (j = 0; j < chunk_nr_pages; j++)
1403 if (put_user(pm[j].status, status + j + chunk_start)) {
1404 err = -EFAULT;
1405 goto out_pm;
1406 }
1407 }
1408 err = 0;
1409
1410out_pm:
1411 free_page((unsigned long)pm);
1412out:
1413 return err;
1414}
1415
1416/*
1417 * Determine the nodes of an array of pages and store it in an array of status.
1418 */
1419static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1420 const void __user **pages, int *status)
1421{
1422 unsigned long i;
1423
1424 down_read(&mm->mmap_sem);
1425
1426 for (i = 0; i < nr_pages; i++) {
1427 unsigned long addr = (unsigned long)(*pages);
1428 struct vm_area_struct *vma;
1429 struct page *page;
1430 int err = -EFAULT;
1431
1432 vma = find_vma(mm, addr);
1433 if (!vma || addr < vma->vm_start)
1434 goto set_status;
1435
1436 /* FOLL_DUMP to ignore special (like zero) pages */
1437 page = follow_page(vma, addr, FOLL_DUMP);
1438
1439 err = PTR_ERR(page);
1440 if (IS_ERR(page))
1441 goto set_status;
1442
1443 err = page ? page_to_nid(page) : -ENOENT;
1444set_status:
1445 *status = err;
1446
1447 pages++;
1448 status++;
1449 }
1450
1451 up_read(&mm->mmap_sem);
1452}
1453
1454/*
1455 * Determine the nodes of a user array of pages and store it in
1456 * a user array of status.
1457 */
1458static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1459 const void __user * __user *pages,
1460 int __user *status)
1461{
1462#define DO_PAGES_STAT_CHUNK_NR 16
1463 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1464 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1465
1466 while (nr_pages) {
1467 unsigned long chunk_nr;
1468
1469 chunk_nr = nr_pages;
1470 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1471 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1472
1473 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1474 break;
1475
1476 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1477
1478 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1479 break;
1480
1481 pages += chunk_nr;
1482 status += chunk_nr;
1483 nr_pages -= chunk_nr;
1484 }
1485 return nr_pages ? -EFAULT : 0;
1486}
1487
1488/*
1489 * Move a list of pages in the address space of the currently executing
1490 * process.
1491 */
1492SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1493 const void __user * __user *, pages,
1494 const int __user *, nodes,
1495 int __user *, status, int, flags)
1496{
1497 const struct cred *cred = current_cred(), *tcred;
1498 struct task_struct *task;
1499 struct mm_struct *mm;
1500 int err;
1501 nodemask_t task_nodes;
1502
1503 /* Check flags */
1504 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1505 return -EINVAL;
1506
1507 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1508 return -EPERM;
1509
1510 /* Find the mm_struct */
1511 rcu_read_lock();
1512 task = pid ? find_task_by_vpid(pid) : current;
1513 if (!task) {
1514 rcu_read_unlock();
1515 return -ESRCH;
1516 }
1517 get_task_struct(task);
1518
1519 /*
1520 * Check if this process has the right to modify the specified
1521 * process. The right exists if the process has administrative
1522 * capabilities, superuser privileges or the same
1523 * userid as the target process.
1524 */
1525 tcred = __task_cred(task);
1526 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1527 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1528 !capable(CAP_SYS_NICE)) {
1529 rcu_read_unlock();
1530 err = -EPERM;
1531 goto out;
1532 }
1533 rcu_read_unlock();
1534
1535 err = security_task_movememory(task);
1536 if (err)
1537 goto out;
1538
1539 task_nodes = cpuset_mems_allowed(task);
1540 mm = get_task_mm(task);
1541 put_task_struct(task);
1542
1543 if (!mm)
1544 return -EINVAL;
1545
1546 if (nodes)
1547 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1548 nodes, status, flags);
1549 else
1550 err = do_pages_stat(mm, nr_pages, pages, status);
1551
1552 mmput(mm);
1553 return err;
1554
1555out:
1556 put_task_struct(task);
1557 return err;
1558}
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561/*
1562 * Returns true if this is a safe migration target node for misplaced NUMA
1563 * pages. Currently it only checks the watermarks which crude
1564 */
1565static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566 unsigned long nr_migrate_pages)
1567{
1568 int z;
1569 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1570 struct zone *zone = pgdat->node_zones + z;
1571
1572 if (!populated_zone(zone))
1573 continue;
1574
1575 if (!zone_reclaimable(zone))
1576 continue;
1577
1578 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1579 if (!zone_watermark_ok(zone, 0,
1580 high_wmark_pages(zone) +
1581 nr_migrate_pages,
1582 0, 0))
1583 continue;
1584 return true;
1585 }
1586 return false;
1587}
1588
1589static struct page *alloc_misplaced_dst_page(struct page *page,
1590 unsigned long data,
1591 int **result)
1592{
1593 int nid = (int) data;
1594 struct page *newpage;
1595
1596 newpage = __alloc_pages_node(nid,
1597 (GFP_HIGHUSER_MOVABLE |
1598 __GFP_THISNODE | __GFP_NOMEMALLOC |
1599 __GFP_NORETRY | __GFP_NOWARN) &
1600 ~__GFP_RECLAIM, 0);
1601
1602 return newpage;
1603}
1604
1605/*
1606 * page migration rate limiting control.
1607 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1608 * window of time. Default here says do not migrate more than 1280M per second.
1609 */
1610static unsigned int migrate_interval_millisecs __read_mostly = 100;
1611static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1612
1613/* Returns true if the node is migrate rate-limited after the update */
1614static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1615 unsigned long nr_pages)
1616{
1617 /*
1618 * Rate-limit the amount of data that is being migrated to a node.
1619 * Optimal placement is no good if the memory bus is saturated and
1620 * all the time is being spent migrating!
1621 */
1622 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1623 spin_lock(&pgdat->numabalancing_migrate_lock);
1624 pgdat->numabalancing_migrate_nr_pages = 0;
1625 pgdat->numabalancing_migrate_next_window = jiffies +
1626 msecs_to_jiffies(migrate_interval_millisecs);
1627 spin_unlock(&pgdat->numabalancing_migrate_lock);
1628 }
1629 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1630 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1631 nr_pages);
1632 return true;
1633 }
1634
1635 /*
1636 * This is an unlocked non-atomic update so errors are possible.
1637 * The consequences are failing to migrate when we potentiall should
1638 * have which is not severe enough to warrant locking. If it is ever
1639 * a problem, it can be converted to a per-cpu counter.
1640 */
1641 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1642 return false;
1643}
1644
1645static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1646{
1647 int page_lru;
1648
1649 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1650
1651 /* Avoid migrating to a node that is nearly full */
1652 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1653 return 0;
1654
1655 if (isolate_lru_page(page))
1656 return 0;
1657
1658 /*
1659 * migrate_misplaced_transhuge_page() skips page migration's usual
1660 * check on page_count(), so we must do it here, now that the page
1661 * has been isolated: a GUP pin, or any other pin, prevents migration.
1662 * The expected page count is 3: 1 for page's mapcount and 1 for the
1663 * caller's pin and 1 for the reference taken by isolate_lru_page().
1664 */
1665 if (PageTransHuge(page) && page_count(page) != 3) {
1666 putback_lru_page(page);
1667 return 0;
1668 }
1669
1670 page_lru = page_is_file_cache(page);
1671 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1672 hpage_nr_pages(page));
1673
1674 /*
1675 * Isolating the page has taken another reference, so the
1676 * caller's reference can be safely dropped without the page
1677 * disappearing underneath us during migration.
1678 */
1679 put_page(page);
1680 return 1;
1681}
1682
1683bool pmd_trans_migrating(pmd_t pmd)
1684{
1685 struct page *page = pmd_page(pmd);
1686 return PageLocked(page);
1687}
1688
1689/*
1690 * Attempt to migrate a misplaced page to the specified destination
1691 * node. Caller is expected to have an elevated reference count on
1692 * the page that will be dropped by this function before returning.
1693 */
1694int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1695 int node)
1696{
1697 pg_data_t *pgdat = NODE_DATA(node);
1698 int isolated;
1699 int nr_remaining;
1700 LIST_HEAD(migratepages);
1701
1702 /*
1703 * Don't migrate file pages that are mapped in multiple processes
1704 * with execute permissions as they are probably shared libraries.
1705 */
1706 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1707 (vma->vm_flags & VM_EXEC))
1708 goto out;
1709
1710 /*
1711 * Rate-limit the amount of data that is being migrated to a node.
1712 * Optimal placement is no good if the memory bus is saturated and
1713 * all the time is being spent migrating!
1714 */
1715 if (numamigrate_update_ratelimit(pgdat, 1))
1716 goto out;
1717
1718 isolated = numamigrate_isolate_page(pgdat, page);
1719 if (!isolated)
1720 goto out;
1721
1722 list_add(&page->lru, &migratepages);
1723 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1724 NULL, node, MIGRATE_ASYNC,
1725 MR_NUMA_MISPLACED);
1726 if (nr_remaining) {
1727 if (!list_empty(&migratepages)) {
1728 list_del(&page->lru);
1729 dec_zone_page_state(page, NR_ISOLATED_ANON +
1730 page_is_file_cache(page));
1731 putback_lru_page(page);
1732 }
1733 isolated = 0;
1734 } else
1735 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1736 BUG_ON(!list_empty(&migratepages));
1737 return isolated;
1738
1739out:
1740 put_page(page);
1741 return 0;
1742}
1743#endif /* CONFIG_NUMA_BALANCING */
1744
1745#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1746/*
1747 * Migrates a THP to a given target node. page must be locked and is unlocked
1748 * before returning.
1749 */
1750int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1751 struct vm_area_struct *vma,
1752 pmd_t *pmd, pmd_t entry,
1753 unsigned long address,
1754 struct page *page, int node)
1755{
1756 spinlock_t *ptl;
1757 pg_data_t *pgdat = NODE_DATA(node);
1758 int isolated = 0;
1759 struct page *new_page = NULL;
1760 int page_lru = page_is_file_cache(page);
1761 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1762 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1763 pmd_t orig_entry;
1764
1765 /*
1766 * Rate-limit the amount of data that is being migrated to a node.
1767 * Optimal placement is no good if the memory bus is saturated and
1768 * all the time is being spent migrating!
1769 */
1770 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1771 goto out_dropref;
1772
1773 new_page = alloc_pages_node(node,
1774 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1775 HPAGE_PMD_ORDER);
1776 if (!new_page)
1777 goto out_fail;
1778 prep_transhuge_page(new_page);
1779
1780 isolated = numamigrate_isolate_page(pgdat, page);
1781 if (!isolated) {
1782 put_page(new_page);
1783 goto out_fail;
1784 }
1785 /*
1786 * We are not sure a pending tlb flush here is for a huge page
1787 * mapping or not. Hence use the tlb range variant
1788 */
1789 if (mm_tlb_flush_pending(mm))
1790 flush_tlb_range(vma, mmun_start, mmun_end);
1791
1792 /* Prepare a page as a migration target */
1793 __SetPageLocked(new_page);
1794 SetPageSwapBacked(new_page);
1795
1796 /* anon mapping, we can simply copy page->mapping to the new page: */
1797 new_page->mapping = page->mapping;
1798 new_page->index = page->index;
1799 migrate_page_copy(new_page, page);
1800 WARN_ON(PageLRU(new_page));
1801
1802 /* Recheck the target PMD */
1803 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1804 ptl = pmd_lock(mm, pmd);
1805 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1806fail_putback:
1807 spin_unlock(ptl);
1808 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1809
1810 /* Reverse changes made by migrate_page_copy() */
1811 if (TestClearPageActive(new_page))
1812 SetPageActive(page);
1813 if (TestClearPageUnevictable(new_page))
1814 SetPageUnevictable(page);
1815
1816 unlock_page(new_page);
1817 put_page(new_page); /* Free it */
1818
1819 /* Retake the callers reference and putback on LRU */
1820 get_page(page);
1821 putback_lru_page(page);
1822 mod_zone_page_state(page_zone(page),
1823 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1824
1825 goto out_unlock;
1826 }
1827
1828 orig_entry = *pmd;
1829 entry = mk_pmd(new_page, vma->vm_page_prot);
1830 entry = pmd_mkhuge(entry);
1831 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1832
1833 /*
1834 * Clear the old entry under pagetable lock and establish the new PTE.
1835 * Any parallel GUP will either observe the old page blocking on the
1836 * page lock, block on the page table lock or observe the new page.
1837 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1838 * guarantee the copy is visible before the pagetable update.
1839 */
1840 flush_cache_range(vma, mmun_start, mmun_end);
1841 page_add_anon_rmap(new_page, vma, mmun_start, true);
1842 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1843 set_pmd_at(mm, mmun_start, pmd, entry);
1844 update_mmu_cache_pmd(vma, address, &entry);
1845
1846 if (page_count(page) != 2) {
1847 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1848 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1849 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1850 update_mmu_cache_pmd(vma, address, &entry);
1851 page_remove_rmap(new_page, true);
1852 goto fail_putback;
1853 }
1854
1855 mlock_migrate_page(new_page, page);
1856 page_remove_rmap(page, true);
1857 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1858
1859 spin_unlock(ptl);
1860 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1861
1862 /* Take an "isolate" reference and put new page on the LRU. */
1863 get_page(new_page);
1864 putback_lru_page(new_page);
1865
1866 unlock_page(new_page);
1867 unlock_page(page);
1868 put_page(page); /* Drop the rmap reference */
1869 put_page(page); /* Drop the LRU isolation reference */
1870
1871 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1872 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1873
1874 mod_zone_page_state(page_zone(page),
1875 NR_ISOLATED_ANON + page_lru,
1876 -HPAGE_PMD_NR);
1877 return isolated;
1878
1879out_fail:
1880 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1881out_dropref:
1882 ptl = pmd_lock(mm, pmd);
1883 if (pmd_same(*pmd, entry)) {
1884 entry = pmd_modify(entry, vma->vm_page_prot);
1885 set_pmd_at(mm, mmun_start, pmd, entry);
1886 update_mmu_cache_pmd(vma, address, &entry);
1887 }
1888 spin_unlock(ptl);
1889
1890out_unlock:
1891 unlock_page(page);
1892 put_page(page);
1893 return 0;
1894}
1895#endif /* CONFIG_NUMA_BALANCING */
1896
1897#endif /* CONFIG_NUMA */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53#include <linux/memory-tiers.h>
54
55#include <asm/tlbflush.h>
56
57#include <trace/events/migrate.h>
58
59#include "internal.h"
60
61int isolate_movable_page(struct page *page, isolate_mode_t mode)
62{
63 const struct movable_operations *mops;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (unlikely(!get_page_unless_zero(page)))
75 goto out;
76
77 if (unlikely(PageSlab(page)))
78 goto out_putpage;
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 smp_rmb();
81 /*
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
85 */
86 if (unlikely(!__PageMovable(page)))
87 goto out_putpage;
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 smp_rmb();
90 if (unlikely(PageSlab(page)))
91 goto out_putpage;
92
93 /*
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
97 *
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
103 */
104 if (unlikely(!trylock_page(page)))
105 goto out_putpage;
106
107 if (!PageMovable(page) || PageIsolated(page))
108 goto out_no_isolated;
109
110 mops = page_movable_ops(page);
111 VM_BUG_ON_PAGE(!mops, page);
112
113 if (!mops->isolate_page(page, mode))
114 goto out_no_isolated;
115
116 /* Driver shouldn't use PG_isolated bit of page->flags */
117 WARN_ON_ONCE(PageIsolated(page));
118 SetPageIsolated(page);
119 unlock_page(page);
120
121 return 0;
122
123out_no_isolated:
124 unlock_page(page);
125out_putpage:
126 put_page(page);
127out:
128 return -EBUSY;
129}
130
131static void putback_movable_page(struct page *page)
132{
133 const struct movable_operations *mops = page_movable_ops(page);
134
135 mops->putback_page(page);
136 ClearPageIsolated(page);
137}
138
139/*
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
142 *
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
146 */
147void putback_movable_pages(struct list_head *l)
148{
149 struct page *page;
150 struct page *page2;
151
152 list_for_each_entry_safe(page, page2, l, lru) {
153 if (unlikely(PageHuge(page))) {
154 putback_active_hugepage(page);
155 continue;
156 }
157 list_del(&page->lru);
158 /*
159 * We isolated non-lru movable page so here we can use
160 * __PageMovable because LRU page's mapping cannot have
161 * PAGE_MAPPING_MOVABLE.
162 */
163 if (unlikely(__PageMovable(page))) {
164 VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 lock_page(page);
166 if (PageMovable(page))
167 putback_movable_page(page);
168 else
169 ClearPageIsolated(page);
170 unlock_page(page);
171 put_page(page);
172 } else {
173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 page_is_file_lru(page), -thp_nr_pages(page));
175 putback_lru_page(page);
176 }
177 }
178}
179
180/*
181 * Restore a potential migration pte to a working pte entry
182 */
183static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
185{
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
190 pte_t pte;
191 swp_entry_t entry;
192 struct page *new;
193 unsigned long idx = 0;
194
195 /* pgoff is invalid for ksm pages, but they are never large */
196 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 new = folio_page(folio, idx);
199
200#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 /* PMD-mapped THP migration entry */
202 if (!pvmw.pte) {
203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 !folio_test_pmd_mappable(folio), folio);
205 remove_migration_pmd(&pvmw, new);
206 continue;
207 }
208#endif
209
210 folio_get(folio);
211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 if (pte_swp_soft_dirty(*pvmw.pte))
213 pte = pte_mksoft_dirty(pte);
214
215 /*
216 * Recheck VMA as permissions can change since migration started
217 */
218 entry = pte_to_swp_entry(*pvmw.pte);
219 if (!is_migration_entry_young(entry))
220 pte = pte_mkold(pte);
221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 pte = pte_mkdirty(pte);
223 if (is_writable_migration_entry(entry))
224 pte = maybe_mkwrite(pte, vma);
225 else if (pte_swp_uffd_wp(*pvmw.pte))
226 pte = pte_mkuffd_wp(pte);
227 else
228 pte = pte_wrprotect(pte);
229
230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 rmap_flags |= RMAP_EXCLUSIVE;
232
233 if (unlikely(is_device_private_page(new))) {
234 if (pte_write(pte))
235 entry = make_writable_device_private_entry(
236 page_to_pfn(new));
237 else
238 entry = make_readable_device_private_entry(
239 page_to_pfn(new));
240 pte = swp_entry_to_pte(entry);
241 if (pte_swp_soft_dirty(*pvmw.pte))
242 pte = pte_swp_mksoft_dirty(pte);
243 if (pte_swp_uffd_wp(*pvmw.pte))
244 pte = pte_swp_mkuffd_wp(pte);
245 }
246
247#ifdef CONFIG_HUGETLB_PAGE
248 if (folio_test_hugetlb(folio)) {
249 unsigned int shift = huge_page_shift(hstate_vma(vma));
250
251 pte = pte_mkhuge(pte);
252 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
253 if (folio_test_anon(folio))
254 hugepage_add_anon_rmap(new, vma, pvmw.address,
255 rmap_flags);
256 else
257 page_dup_file_rmap(new, true);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 } else
260#endif
261 {
262 if (folio_test_anon(folio))
263 page_add_anon_rmap(new, vma, pvmw.address,
264 rmap_flags);
265 else
266 page_add_file_rmap(new, vma, false);
267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 }
269 if (vma->vm_flags & VM_LOCKED)
270 mlock_page_drain_local();
271
272 trace_remove_migration_pte(pvmw.address, pte_val(pte),
273 compound_order(new));
274
275 /* No need to invalidate - it was non-present before */
276 update_mmu_cache(vma, pvmw.address, pvmw.pte);
277 }
278
279 return true;
280}
281
282/*
283 * Get rid of all migration entries and replace them by
284 * references to the indicated page.
285 */
286void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
287{
288 struct rmap_walk_control rwc = {
289 .rmap_one = remove_migration_pte,
290 .arg = src,
291 };
292
293 if (locked)
294 rmap_walk_locked(dst, &rwc);
295 else
296 rmap_walk(dst, &rwc);
297}
298
299/*
300 * Something used the pte of a page under migration. We need to
301 * get to the page and wait until migration is finished.
302 * When we return from this function the fault will be retried.
303 */
304void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
305 spinlock_t *ptl)
306{
307 pte_t pte;
308 swp_entry_t entry;
309
310 spin_lock(ptl);
311 pte = *ptep;
312 if (!is_swap_pte(pte))
313 goto out;
314
315 entry = pte_to_swp_entry(pte);
316 if (!is_migration_entry(entry))
317 goto out;
318
319 migration_entry_wait_on_locked(entry, ptep, ptl);
320 return;
321out:
322 pte_unmap_unlock(ptep, ptl);
323}
324
325void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
326 unsigned long address)
327{
328 spinlock_t *ptl = pte_lockptr(mm, pmd);
329 pte_t *ptep = pte_offset_map(pmd, address);
330 __migration_entry_wait(mm, ptep, ptl);
331}
332
333#ifdef CONFIG_HUGETLB_PAGE
334void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
335{
336 pte_t pte;
337
338 spin_lock(ptl);
339 pte = huge_ptep_get(ptep);
340
341 if (unlikely(!is_hugetlb_entry_migration(pte)))
342 spin_unlock(ptl);
343 else
344 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
345}
346
347void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
348{
349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
350
351 __migration_entry_wait_huge(pte, ptl);
352}
353#endif
354
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359
360 ptl = pmd_lock(mm, pmd);
361 if (!is_pmd_migration_entry(*pmd))
362 goto unlock;
363 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
364 return;
365unlock:
366 spin_unlock(ptl);
367}
368#endif
369
370static int folio_expected_refs(struct address_space *mapping,
371 struct folio *folio)
372{
373 int refs = 1;
374 if (!mapping)
375 return refs;
376
377 refs += folio_nr_pages(folio);
378 if (folio_test_private(folio))
379 refs++;
380
381 return refs;
382}
383
384/*
385 * Replace the page in the mapping.
386 *
387 * The number of remaining references must be:
388 * 1 for anonymous pages without a mapping
389 * 2 for pages with a mapping
390 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
391 */
392int folio_migrate_mapping(struct address_space *mapping,
393 struct folio *newfolio, struct folio *folio, int extra_count)
394{
395 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
396 struct zone *oldzone, *newzone;
397 int dirty;
398 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
399 long nr = folio_nr_pages(folio);
400
401 if (!mapping) {
402 /* Anonymous page without mapping */
403 if (folio_ref_count(folio) != expected_count)
404 return -EAGAIN;
405
406 /* No turning back from here */
407 newfolio->index = folio->index;
408 newfolio->mapping = folio->mapping;
409 if (folio_test_swapbacked(folio))
410 __folio_set_swapbacked(newfolio);
411
412 return MIGRATEPAGE_SUCCESS;
413 }
414
415 oldzone = folio_zone(folio);
416 newzone = folio_zone(newfolio);
417
418 xas_lock_irq(&xas);
419 if (!folio_ref_freeze(folio, expected_count)) {
420 xas_unlock_irq(&xas);
421 return -EAGAIN;
422 }
423
424 /*
425 * Now we know that no one else is looking at the folio:
426 * no turning back from here.
427 */
428 newfolio->index = folio->index;
429 newfolio->mapping = folio->mapping;
430 folio_ref_add(newfolio, nr); /* add cache reference */
431 if (folio_test_swapbacked(folio)) {
432 __folio_set_swapbacked(newfolio);
433 if (folio_test_swapcache(folio)) {
434 folio_set_swapcache(newfolio);
435 newfolio->private = folio_get_private(folio);
436 }
437 } else {
438 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
439 }
440
441 /* Move dirty while page refs frozen and newpage not yet exposed */
442 dirty = folio_test_dirty(folio);
443 if (dirty) {
444 folio_clear_dirty(folio);
445 folio_set_dirty(newfolio);
446 }
447
448 xas_store(&xas, newfolio);
449
450 /*
451 * Drop cache reference from old page by unfreezing
452 * to one less reference.
453 * We know this isn't the last reference.
454 */
455 folio_ref_unfreeze(folio, expected_count - nr);
456
457 xas_unlock(&xas);
458 /* Leave irq disabled to prevent preemption while updating stats */
459
460 /*
461 * If moved to a different zone then also account
462 * the page for that zone. Other VM counters will be
463 * taken care of when we establish references to the
464 * new page and drop references to the old page.
465 *
466 * Note that anonymous pages are accounted for
467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 * are mapped to swap space.
469 */
470 if (newzone != oldzone) {
471 struct lruvec *old_lruvec, *new_lruvec;
472 struct mem_cgroup *memcg;
473
474 memcg = folio_memcg(folio);
475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 }
484#ifdef CONFIG_SWAP
485 if (folio_test_swapcache(folio)) {
486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 }
489#endif
490 if (dirty && mapping_can_writeback(mapping)) {
491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 }
496 }
497 local_irq_enable();
498
499 return MIGRATEPAGE_SUCCESS;
500}
501EXPORT_SYMBOL(folio_migrate_mapping);
502
503/*
504 * The expected number of remaining references is the same as that
505 * of folio_migrate_mapping().
506 */
507int migrate_huge_page_move_mapping(struct address_space *mapping,
508 struct folio *dst, struct folio *src)
509{
510 XA_STATE(xas, &mapping->i_pages, folio_index(src));
511 int expected_count;
512
513 xas_lock_irq(&xas);
514 expected_count = 2 + folio_has_private(src);
515 if (!folio_ref_freeze(src, expected_count)) {
516 xas_unlock_irq(&xas);
517 return -EAGAIN;
518 }
519
520 dst->index = src->index;
521 dst->mapping = src->mapping;
522
523 folio_get(dst);
524
525 xas_store(&xas, dst);
526
527 folio_ref_unfreeze(src, expected_count - 1);
528
529 xas_unlock_irq(&xas);
530
531 return MIGRATEPAGE_SUCCESS;
532}
533
534/*
535 * Copy the flags and some other ancillary information
536 */
537void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
538{
539 int cpupid;
540
541 if (folio_test_error(folio))
542 folio_set_error(newfolio);
543 if (folio_test_referenced(folio))
544 folio_set_referenced(newfolio);
545 if (folio_test_uptodate(folio))
546 folio_mark_uptodate(newfolio);
547 if (folio_test_clear_active(folio)) {
548 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
549 folio_set_active(newfolio);
550 } else if (folio_test_clear_unevictable(folio))
551 folio_set_unevictable(newfolio);
552 if (folio_test_workingset(folio))
553 folio_set_workingset(newfolio);
554 if (folio_test_checked(folio))
555 folio_set_checked(newfolio);
556 /*
557 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
558 * migration entries. We can still have PG_anon_exclusive set on an
559 * effectively unmapped and unreferenced first sub-pages of an
560 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
561 */
562 if (folio_test_mappedtodisk(folio))
563 folio_set_mappedtodisk(newfolio);
564
565 /* Move dirty on pages not done by folio_migrate_mapping() */
566 if (folio_test_dirty(folio))
567 folio_set_dirty(newfolio);
568
569 if (folio_test_young(folio))
570 folio_set_young(newfolio);
571 if (folio_test_idle(folio))
572 folio_set_idle(newfolio);
573
574 /*
575 * Copy NUMA information to the new page, to prevent over-eager
576 * future migrations of this same page.
577 */
578 cpupid = page_cpupid_xchg_last(&folio->page, -1);
579 /*
580 * For memory tiering mode, when migrate between slow and fast
581 * memory node, reset cpupid, because that is used to record
582 * page access time in slow memory node.
583 */
584 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
585 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
586 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
587
588 if (f_toptier != t_toptier)
589 cpupid = -1;
590 }
591 page_cpupid_xchg_last(&newfolio->page, cpupid);
592
593 folio_migrate_ksm(newfolio, folio);
594 /*
595 * Please do not reorder this without considering how mm/ksm.c's
596 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
597 */
598 if (folio_test_swapcache(folio))
599 folio_clear_swapcache(folio);
600 folio_clear_private(folio);
601
602 /* page->private contains hugetlb specific flags */
603 if (!folio_test_hugetlb(folio))
604 folio->private = NULL;
605
606 /*
607 * If any waiters have accumulated on the new page then
608 * wake them up.
609 */
610 if (folio_test_writeback(newfolio))
611 folio_end_writeback(newfolio);
612
613 /*
614 * PG_readahead shares the same bit with PG_reclaim. The above
615 * end_page_writeback() may clear PG_readahead mistakenly, so set the
616 * bit after that.
617 */
618 if (folio_test_readahead(folio))
619 folio_set_readahead(newfolio);
620
621 folio_copy_owner(newfolio, folio);
622
623 if (!folio_test_hugetlb(folio))
624 mem_cgroup_migrate(folio, newfolio);
625}
626EXPORT_SYMBOL(folio_migrate_flags);
627
628void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
629{
630 folio_copy(newfolio, folio);
631 folio_migrate_flags(newfolio, folio);
632}
633EXPORT_SYMBOL(folio_migrate_copy);
634
635/************************************************************
636 * Migration functions
637 ***********************************************************/
638
639int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
640 struct folio *src, enum migrate_mode mode, int extra_count)
641{
642 int rc;
643
644 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
645
646 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
647
648 if (rc != MIGRATEPAGE_SUCCESS)
649 return rc;
650
651 if (mode != MIGRATE_SYNC_NO_COPY)
652 folio_migrate_copy(dst, src);
653 else
654 folio_migrate_flags(dst, src);
655 return MIGRATEPAGE_SUCCESS;
656}
657
658/**
659 * migrate_folio() - Simple folio migration.
660 * @mapping: The address_space containing the folio.
661 * @dst: The folio to migrate the data to.
662 * @src: The folio containing the current data.
663 * @mode: How to migrate the page.
664 *
665 * Common logic to directly migrate a single LRU folio suitable for
666 * folios that do not use PagePrivate/PagePrivate2.
667 *
668 * Folios are locked upon entry and exit.
669 */
670int migrate_folio(struct address_space *mapping, struct folio *dst,
671 struct folio *src, enum migrate_mode mode)
672{
673 return migrate_folio_extra(mapping, dst, src, mode, 0);
674}
675EXPORT_SYMBOL(migrate_folio);
676
677#ifdef CONFIG_BLOCK
678/* Returns true if all buffers are successfully locked */
679static bool buffer_migrate_lock_buffers(struct buffer_head *head,
680 enum migrate_mode mode)
681{
682 struct buffer_head *bh = head;
683
684 /* Simple case, sync compaction */
685 if (mode != MIGRATE_ASYNC) {
686 do {
687 lock_buffer(bh);
688 bh = bh->b_this_page;
689
690 } while (bh != head);
691
692 return true;
693 }
694
695 /* async case, we cannot block on lock_buffer so use trylock_buffer */
696 do {
697 if (!trylock_buffer(bh)) {
698 /*
699 * We failed to lock the buffer and cannot stall in
700 * async migration. Release the taken locks
701 */
702 struct buffer_head *failed_bh = bh;
703 bh = head;
704 while (bh != failed_bh) {
705 unlock_buffer(bh);
706 bh = bh->b_this_page;
707 }
708 return false;
709 }
710
711 bh = bh->b_this_page;
712 } while (bh != head);
713 return true;
714}
715
716static int __buffer_migrate_folio(struct address_space *mapping,
717 struct folio *dst, struct folio *src, enum migrate_mode mode,
718 bool check_refs)
719{
720 struct buffer_head *bh, *head;
721 int rc;
722 int expected_count;
723
724 head = folio_buffers(src);
725 if (!head)
726 return migrate_folio(mapping, dst, src, mode);
727
728 /* Check whether page does not have extra refs before we do more work */
729 expected_count = folio_expected_refs(mapping, src);
730 if (folio_ref_count(src) != expected_count)
731 return -EAGAIN;
732
733 if (!buffer_migrate_lock_buffers(head, mode))
734 return -EAGAIN;
735
736 if (check_refs) {
737 bool busy;
738 bool invalidated = false;
739
740recheck_buffers:
741 busy = false;
742 spin_lock(&mapping->private_lock);
743 bh = head;
744 do {
745 if (atomic_read(&bh->b_count)) {
746 busy = true;
747 break;
748 }
749 bh = bh->b_this_page;
750 } while (bh != head);
751 if (busy) {
752 if (invalidated) {
753 rc = -EAGAIN;
754 goto unlock_buffers;
755 }
756 spin_unlock(&mapping->private_lock);
757 invalidate_bh_lrus();
758 invalidated = true;
759 goto recheck_buffers;
760 }
761 }
762
763 rc = folio_migrate_mapping(mapping, dst, src, 0);
764 if (rc != MIGRATEPAGE_SUCCESS)
765 goto unlock_buffers;
766
767 folio_attach_private(dst, folio_detach_private(src));
768
769 bh = head;
770 do {
771 set_bh_page(bh, &dst->page, bh_offset(bh));
772 bh = bh->b_this_page;
773 } while (bh != head);
774
775 if (mode != MIGRATE_SYNC_NO_COPY)
776 folio_migrate_copy(dst, src);
777 else
778 folio_migrate_flags(dst, src);
779
780 rc = MIGRATEPAGE_SUCCESS;
781unlock_buffers:
782 if (check_refs)
783 spin_unlock(&mapping->private_lock);
784 bh = head;
785 do {
786 unlock_buffer(bh);
787 bh = bh->b_this_page;
788 } while (bh != head);
789
790 return rc;
791}
792
793/**
794 * buffer_migrate_folio() - Migration function for folios with buffers.
795 * @mapping: The address space containing @src.
796 * @dst: The folio to migrate to.
797 * @src: The folio to migrate from.
798 * @mode: How to migrate the folio.
799 *
800 * This function can only be used if the underlying filesystem guarantees
801 * that no other references to @src exist. For example attached buffer
802 * heads are accessed only under the folio lock. If your filesystem cannot
803 * provide this guarantee, buffer_migrate_folio_norefs() may be more
804 * appropriate.
805 *
806 * Return: 0 on success or a negative errno on failure.
807 */
808int buffer_migrate_folio(struct address_space *mapping,
809 struct folio *dst, struct folio *src, enum migrate_mode mode)
810{
811 return __buffer_migrate_folio(mapping, dst, src, mode, false);
812}
813EXPORT_SYMBOL(buffer_migrate_folio);
814
815/**
816 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
817 * @mapping: The address space containing @src.
818 * @dst: The folio to migrate to.
819 * @src: The folio to migrate from.
820 * @mode: How to migrate the folio.
821 *
822 * Like buffer_migrate_folio() except that this variant is more careful
823 * and checks that there are also no buffer head references. This function
824 * is the right one for mappings where buffer heads are directly looked
825 * up and referenced (such as block device mappings).
826 *
827 * Return: 0 on success or a negative errno on failure.
828 */
829int buffer_migrate_folio_norefs(struct address_space *mapping,
830 struct folio *dst, struct folio *src, enum migrate_mode mode)
831{
832 return __buffer_migrate_folio(mapping, dst, src, mode, true);
833}
834EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
835#endif
836
837int filemap_migrate_folio(struct address_space *mapping,
838 struct folio *dst, struct folio *src, enum migrate_mode mode)
839{
840 int ret;
841
842 ret = folio_migrate_mapping(mapping, dst, src, 0);
843 if (ret != MIGRATEPAGE_SUCCESS)
844 return ret;
845
846 if (folio_get_private(src))
847 folio_attach_private(dst, folio_detach_private(src));
848
849 if (mode != MIGRATE_SYNC_NO_COPY)
850 folio_migrate_copy(dst, src);
851 else
852 folio_migrate_flags(dst, src);
853 return MIGRATEPAGE_SUCCESS;
854}
855EXPORT_SYMBOL_GPL(filemap_migrate_folio);
856
857/*
858 * Writeback a folio to clean the dirty state
859 */
860static int writeout(struct address_space *mapping, struct folio *folio)
861{
862 struct writeback_control wbc = {
863 .sync_mode = WB_SYNC_NONE,
864 .nr_to_write = 1,
865 .range_start = 0,
866 .range_end = LLONG_MAX,
867 .for_reclaim = 1
868 };
869 int rc;
870
871 if (!mapping->a_ops->writepage)
872 /* No write method for the address space */
873 return -EINVAL;
874
875 if (!folio_clear_dirty_for_io(folio))
876 /* Someone else already triggered a write */
877 return -EAGAIN;
878
879 /*
880 * A dirty folio may imply that the underlying filesystem has
881 * the folio on some queue. So the folio must be clean for
882 * migration. Writeout may mean we lose the lock and the
883 * folio state is no longer what we checked for earlier.
884 * At this point we know that the migration attempt cannot
885 * be successful.
886 */
887 remove_migration_ptes(folio, folio, false);
888
889 rc = mapping->a_ops->writepage(&folio->page, &wbc);
890
891 if (rc != AOP_WRITEPAGE_ACTIVATE)
892 /* unlocked. Relock */
893 folio_lock(folio);
894
895 return (rc < 0) ? -EIO : -EAGAIN;
896}
897
898/*
899 * Default handling if a filesystem does not provide a migration function.
900 */
901static int fallback_migrate_folio(struct address_space *mapping,
902 struct folio *dst, struct folio *src, enum migrate_mode mode)
903{
904 if (folio_test_dirty(src)) {
905 /* Only writeback folios in full synchronous migration */
906 switch (mode) {
907 case MIGRATE_SYNC:
908 case MIGRATE_SYNC_NO_COPY:
909 break;
910 default:
911 return -EBUSY;
912 }
913 return writeout(mapping, src);
914 }
915
916 /*
917 * Buffers may be managed in a filesystem specific way.
918 * We must have no buffers or drop them.
919 */
920 if (folio_test_private(src) &&
921 !filemap_release_folio(src, GFP_KERNEL))
922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923
924 return migrate_folio(mapping, dst, src, mode);
925}
926
927/*
928 * Move a page to a newly allocated page
929 * The page is locked and all ptes have been successfully removed.
930 *
931 * The new page will have replaced the old page if this function
932 * is successful.
933 *
934 * Return value:
935 * < 0 - error code
936 * MIGRATEPAGE_SUCCESS - success
937 */
938static int move_to_new_folio(struct folio *dst, struct folio *src,
939 enum migrate_mode mode)
940{
941 int rc = -EAGAIN;
942 bool is_lru = !__PageMovable(&src->page);
943
944 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
945 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
946
947 if (likely(is_lru)) {
948 struct address_space *mapping = folio_mapping(src);
949
950 if (!mapping)
951 rc = migrate_folio(mapping, dst, src, mode);
952 else if (mapping->a_ops->migrate_folio)
953 /*
954 * Most folios have a mapping and most filesystems
955 * provide a migrate_folio callback. Anonymous folios
956 * are part of swap space which also has its own
957 * migrate_folio callback. This is the most common path
958 * for page migration.
959 */
960 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
961 mode);
962 else
963 rc = fallback_migrate_folio(mapping, dst, src, mode);
964 } else {
965 const struct movable_operations *mops;
966
967 /*
968 * In case of non-lru page, it could be released after
969 * isolation step. In that case, we shouldn't try migration.
970 */
971 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
972 if (!folio_test_movable(src)) {
973 rc = MIGRATEPAGE_SUCCESS;
974 folio_clear_isolated(src);
975 goto out;
976 }
977
978 mops = page_movable_ops(&src->page);
979 rc = mops->migrate_page(&dst->page, &src->page, mode);
980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 !folio_test_isolated(src));
982 }
983
984 /*
985 * When successful, old pagecache src->mapping must be cleared before
986 * src is freed; but stats require that PageAnon be left as PageAnon.
987 */
988 if (rc == MIGRATEPAGE_SUCCESS) {
989 if (__PageMovable(&src->page)) {
990 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
991
992 /*
993 * We clear PG_movable under page_lock so any compactor
994 * cannot try to migrate this page.
995 */
996 folio_clear_isolated(src);
997 }
998
999 /*
1000 * Anonymous and movable src->mapping will be cleared by
1001 * free_pages_prepare so don't reset it here for keeping
1002 * the type to work PageAnon, for example.
1003 */
1004 if (!folio_mapping_flags(src))
1005 src->mapping = NULL;
1006
1007 if (likely(!folio_is_zone_device(dst)))
1008 flush_dcache_folio(dst);
1009 }
1010out:
1011 return rc;
1012}
1013
1014static int __unmap_and_move(struct folio *src, struct folio *dst,
1015 int force, enum migrate_mode mode)
1016{
1017 int rc = -EAGAIN;
1018 bool page_was_mapped = false;
1019 struct anon_vma *anon_vma = NULL;
1020 bool is_lru = !__PageMovable(&src->page);
1021
1022 if (!folio_trylock(src)) {
1023 if (!force || mode == MIGRATE_ASYNC)
1024 goto out;
1025
1026 /*
1027 * It's not safe for direct compaction to call lock_page.
1028 * For example, during page readahead pages are added locked
1029 * to the LRU. Later, when the IO completes the pages are
1030 * marked uptodate and unlocked. However, the queueing
1031 * could be merging multiple pages for one bio (e.g.
1032 * mpage_readahead). If an allocation happens for the
1033 * second or third page, the process can end up locking
1034 * the same page twice and deadlocking. Rather than
1035 * trying to be clever about what pages can be locked,
1036 * avoid the use of lock_page for direct compaction
1037 * altogether.
1038 */
1039 if (current->flags & PF_MEMALLOC)
1040 goto out;
1041
1042 folio_lock(src);
1043 }
1044
1045 if (folio_test_writeback(src)) {
1046 /*
1047 * Only in the case of a full synchronous migration is it
1048 * necessary to wait for PageWriteback. In the async case,
1049 * the retry loop is too short and in the sync-light case,
1050 * the overhead of stalling is too much
1051 */
1052 switch (mode) {
1053 case MIGRATE_SYNC:
1054 case MIGRATE_SYNC_NO_COPY:
1055 break;
1056 default:
1057 rc = -EBUSY;
1058 goto out_unlock;
1059 }
1060 if (!force)
1061 goto out_unlock;
1062 folio_wait_writeback(src);
1063 }
1064
1065 /*
1066 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1067 * we cannot notice that anon_vma is freed while we migrate a page.
1068 * This get_anon_vma() delays freeing anon_vma pointer until the end
1069 * of migration. File cache pages are no problem because of page_lock()
1070 * File Caches may use write_page() or lock_page() in migration, then,
1071 * just care Anon page here.
1072 *
1073 * Only folio_get_anon_vma() understands the subtleties of
1074 * getting a hold on an anon_vma from outside one of its mms.
1075 * But if we cannot get anon_vma, then we won't need it anyway,
1076 * because that implies that the anon page is no longer mapped
1077 * (and cannot be remapped so long as we hold the page lock).
1078 */
1079 if (folio_test_anon(src) && !folio_test_ksm(src))
1080 anon_vma = folio_get_anon_vma(src);
1081
1082 /*
1083 * Block others from accessing the new page when we get around to
1084 * establishing additional references. We are usually the only one
1085 * holding a reference to dst at this point. We used to have a BUG
1086 * here if folio_trylock(dst) fails, but would like to allow for
1087 * cases where there might be a race with the previous use of dst.
1088 * This is much like races on refcount of oldpage: just don't BUG().
1089 */
1090 if (unlikely(!folio_trylock(dst)))
1091 goto out_unlock;
1092
1093 if (unlikely(!is_lru)) {
1094 rc = move_to_new_folio(dst, src, mode);
1095 goto out_unlock_both;
1096 }
1097
1098 /*
1099 * Corner case handling:
1100 * 1. When a new swap-cache page is read into, it is added to the LRU
1101 * and treated as swapcache but it has no rmap yet.
1102 * Calling try_to_unmap() against a src->mapping==NULL page will
1103 * trigger a BUG. So handle it here.
1104 * 2. An orphaned page (see truncate_cleanup_page) might have
1105 * fs-private metadata. The page can be picked up due to memory
1106 * offlining. Everywhere else except page reclaim, the page is
1107 * invisible to the vm, so the page can not be migrated. So try to
1108 * free the metadata, so the page can be freed.
1109 */
1110 if (!src->mapping) {
1111 if (folio_test_private(src)) {
1112 try_to_free_buffers(src);
1113 goto out_unlock_both;
1114 }
1115 } else if (folio_mapped(src)) {
1116 /* Establish migration ptes */
1117 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1118 !folio_test_ksm(src) && !anon_vma, src);
1119 try_to_migrate(src, 0);
1120 page_was_mapped = true;
1121 }
1122
1123 if (!folio_mapped(src))
1124 rc = move_to_new_folio(dst, src, mode);
1125
1126 /*
1127 * When successful, push dst to LRU immediately: so that if it
1128 * turns out to be an mlocked page, remove_migration_ptes() will
1129 * automatically build up the correct dst->mlock_count for it.
1130 *
1131 * We would like to do something similar for the old page, when
1132 * unsuccessful, and other cases when a page has been temporarily
1133 * isolated from the unevictable LRU: but this case is the easiest.
1134 */
1135 if (rc == MIGRATEPAGE_SUCCESS) {
1136 folio_add_lru(dst);
1137 if (page_was_mapped)
1138 lru_add_drain();
1139 }
1140
1141 if (page_was_mapped)
1142 remove_migration_ptes(src,
1143 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1144
1145out_unlock_both:
1146 folio_unlock(dst);
1147out_unlock:
1148 /* Drop an anon_vma reference if we took one */
1149 if (anon_vma)
1150 put_anon_vma(anon_vma);
1151 folio_unlock(src);
1152out:
1153 /*
1154 * If migration is successful, decrease refcount of dst,
1155 * which will not free the page because new page owner increased
1156 * refcounter.
1157 */
1158 if (rc == MIGRATEPAGE_SUCCESS)
1159 folio_put(dst);
1160
1161 return rc;
1162}
1163
1164/*
1165 * Obtain the lock on folio, remove all ptes and migrate the folio
1166 * to the newly allocated folio in dst.
1167 */
1168static int unmap_and_move(new_page_t get_new_page,
1169 free_page_t put_new_page,
1170 unsigned long private, struct folio *src,
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason,
1173 struct list_head *ret)
1174{
1175 struct folio *dst;
1176 int rc = MIGRATEPAGE_SUCCESS;
1177 struct page *newpage = NULL;
1178
1179 if (!thp_migration_supported() && folio_test_transhuge(src))
1180 return -ENOSYS;
1181
1182 if (folio_ref_count(src) == 1) {
1183 /* Folio was freed from under us. So we are done. */
1184 folio_clear_active(src);
1185 folio_clear_unevictable(src);
1186 /* free_pages_prepare() will clear PG_isolated. */
1187 goto out;
1188 }
1189
1190 newpage = get_new_page(&src->page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193 dst = page_folio(newpage);
1194
1195 dst->private = NULL;
1196 rc = __unmap_and_move(src, dst, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(&dst->page, reason);
1199
1200out:
1201 if (rc != -EAGAIN) {
1202 /*
1203 * A folio that has been migrated has all references
1204 * removed and will be freed. A folio that has not been
1205 * migrated will have kept its references and be restored.
1206 */
1207 list_del(&src->lru);
1208 }
1209
1210 /*
1211 * If migration is successful, releases reference grabbed during
1212 * isolation. Otherwise, restore the folio to right list unless
1213 * we want to retry.
1214 */
1215 if (rc == MIGRATEPAGE_SUCCESS) {
1216 /*
1217 * Compaction can migrate also non-LRU folios which are
1218 * not accounted to NR_ISOLATED_*. They can be recognized
1219 * as __folio_test_movable
1220 */
1221 if (likely(!__folio_test_movable(src)))
1222 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1223 folio_is_file_lru(src), -folio_nr_pages(src));
1224
1225 if (reason != MR_MEMORY_FAILURE)
1226 /*
1227 * We release the folio in page_handle_poison.
1228 */
1229 folio_put(src);
1230 } else {
1231 if (rc != -EAGAIN)
1232 list_add_tail(&src->lru, ret);
1233
1234 if (put_new_page)
1235 put_new_page(&dst->page, private);
1236 else
1237 folio_put(dst);
1238 }
1239
1240 return rc;
1241}
1242
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
1264 enum migrate_mode mode, int reason,
1265 struct list_head *ret)
1266{
1267 struct folio *dst, *src = page_folio(hpage);
1268 int rc = -EAGAIN;
1269 int page_was_mapped = 0;
1270 struct page *new_hpage;
1271 struct anon_vma *anon_vma = NULL;
1272 struct address_space *mapping = NULL;
1273
1274 /*
1275 * Migratability of hugepages depends on architectures and their size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1280 */
1281 if (!hugepage_migration_supported(page_hstate(hpage)))
1282 return -ENOSYS;
1283
1284 if (folio_ref_count(src) == 1) {
1285 /* page was freed from under us. So we are done. */
1286 putback_active_hugepage(hpage);
1287 return MIGRATEPAGE_SUCCESS;
1288 }
1289
1290 new_hpage = get_new_page(hpage, private);
1291 if (!new_hpage)
1292 return -ENOMEM;
1293 dst = page_folio(new_hpage);
1294
1295 if (!folio_trylock(src)) {
1296 if (!force)
1297 goto out;
1298 switch (mode) {
1299 case MIGRATE_SYNC:
1300 case MIGRATE_SYNC_NO_COPY:
1301 break;
1302 default:
1303 goto out;
1304 }
1305 folio_lock(src);
1306 }
1307
1308 /*
1309 * Check for pages which are in the process of being freed. Without
1310 * folio_mapping() set, hugetlbfs specific move page routine will not
1311 * be called and we could leak usage counts for subpools.
1312 */
1313 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1314 rc = -EBUSY;
1315 goto out_unlock;
1316 }
1317
1318 if (folio_test_anon(src))
1319 anon_vma = folio_get_anon_vma(src);
1320
1321 if (unlikely(!folio_trylock(dst)))
1322 goto put_anon;
1323
1324 if (folio_mapped(src)) {
1325 enum ttu_flags ttu = 0;
1326
1327 if (!folio_test_anon(src)) {
1328 /*
1329 * In shared mappings, try_to_unmap could potentially
1330 * call huge_pmd_unshare. Because of this, take
1331 * semaphore in write mode here and set TTU_RMAP_LOCKED
1332 * to let lower levels know we have taken the lock.
1333 */
1334 mapping = hugetlb_page_mapping_lock_write(hpage);
1335 if (unlikely(!mapping))
1336 goto unlock_put_anon;
1337
1338 ttu = TTU_RMAP_LOCKED;
1339 }
1340
1341 try_to_migrate(src, ttu);
1342 page_was_mapped = 1;
1343
1344 if (ttu & TTU_RMAP_LOCKED)
1345 i_mmap_unlock_write(mapping);
1346 }
1347
1348 if (!folio_mapped(src))
1349 rc = move_to_new_folio(dst, src, mode);
1350
1351 if (page_was_mapped)
1352 remove_migration_ptes(src,
1353 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1354
1355unlock_put_anon:
1356 folio_unlock(dst);
1357
1358put_anon:
1359 if (anon_vma)
1360 put_anon_vma(anon_vma);
1361
1362 if (rc == MIGRATEPAGE_SUCCESS) {
1363 move_hugetlb_state(src, dst, reason);
1364 put_new_page = NULL;
1365 }
1366
1367out_unlock:
1368 folio_unlock(src);
1369out:
1370 if (rc == MIGRATEPAGE_SUCCESS)
1371 putback_active_hugepage(hpage);
1372 else if (rc != -EAGAIN)
1373 list_move_tail(&src->lru, ret);
1374
1375 /*
1376 * If migration was not successful and there's a freeing callback, use
1377 * it. Otherwise, put_page() will drop the reference grabbed during
1378 * isolation.
1379 */
1380 if (put_new_page)
1381 put_new_page(new_hpage, private);
1382 else
1383 putback_active_hugepage(new_hpage);
1384
1385 return rc;
1386}
1387
1388static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1389{
1390 int rc;
1391
1392 folio_lock(folio);
1393 rc = split_folio_to_list(folio, split_folios);
1394 folio_unlock(folio);
1395 if (!rc)
1396 list_move_tail(&folio->lru, split_folios);
1397
1398 return rc;
1399}
1400
1401/*
1402 * migrate_pages - migrate the folios specified in a list, to the free folios
1403 * supplied as the target for the page migration
1404 *
1405 * @from: The list of folios to be migrated.
1406 * @get_new_page: The function used to allocate free folios to be used
1407 * as the target of the folio migration.
1408 * @put_new_page: The function used to free target folios if migration
1409 * fails, or NULL if no special handling is necessary.
1410 * @private: Private data to be passed on to get_new_page()
1411 * @mode: The migration mode that specifies the constraints for
1412 * folio migration, if any.
1413 * @reason: The reason for folio migration.
1414 * @ret_succeeded: Set to the number of folios migrated successfully if
1415 * the caller passes a non-NULL pointer.
1416 *
1417 * The function returns after 10 attempts or if no folios are movable any more
1418 * because the list has become empty or no retryable folios exist any more.
1419 * It is caller's responsibility to call putback_movable_pages() to return folios
1420 * to the LRU or free list only if ret != 0.
1421 *
1422 * Returns the number of {normal folio, large folio, hugetlb} that were not
1423 * migrated, or an error code. The number of large folio splits will be
1424 * considered as the number of non-migrated large folio, no matter how many
1425 * split folios of the large folio are migrated successfully.
1426 */
1427int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428 free_page_t put_new_page, unsigned long private,
1429 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1430{
1431 int retry = 1;
1432 int large_retry = 1;
1433 int thp_retry = 1;
1434 int nr_failed = 0;
1435 int nr_failed_pages = 0;
1436 int nr_retry_pages = 0;
1437 int nr_succeeded = 0;
1438 int nr_thp_succeeded = 0;
1439 int nr_large_failed = 0;
1440 int nr_thp_failed = 0;
1441 int nr_thp_split = 0;
1442 int pass = 0;
1443 bool is_large = false;
1444 bool is_thp = false;
1445 struct folio *folio, *folio2;
1446 int rc, nr_pages;
1447 LIST_HEAD(ret_folios);
1448 LIST_HEAD(split_folios);
1449 bool nosplit = (reason == MR_NUMA_MISPLACED);
1450 bool no_split_folio_counting = false;
1451
1452 trace_mm_migrate_pages_start(mode, reason);
1453
1454split_folio_migration:
1455 for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1456 retry = 0;
1457 large_retry = 0;
1458 thp_retry = 0;
1459 nr_retry_pages = 0;
1460
1461 list_for_each_entry_safe(folio, folio2, from, lru) {
1462 /*
1463 * Large folio statistics is based on the source large
1464 * folio. Capture required information that might get
1465 * lost during migration.
1466 */
1467 is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1468 is_thp = is_large && folio_test_pmd_mappable(folio);
1469 nr_pages = folio_nr_pages(folio);
1470 cond_resched();
1471
1472 if (folio_test_hugetlb(folio))
1473 rc = unmap_and_move_huge_page(get_new_page,
1474 put_new_page, private,
1475 &folio->page, pass > 2, mode,
1476 reason,
1477 &ret_folios);
1478 else
1479 rc = unmap_and_move(get_new_page, put_new_page,
1480 private, folio, pass > 2, mode,
1481 reason, &ret_folios);
1482 /*
1483 * The rules are:
1484 * Success: non hugetlb folio will be freed, hugetlb
1485 * folio will be put back
1486 * -EAGAIN: stay on the from list
1487 * -ENOMEM: stay on the from list
1488 * -ENOSYS: stay on the from list
1489 * Other errno: put on ret_folios list then splice to
1490 * from list
1491 */
1492 switch(rc) {
1493 /*
1494 * Large folio migration might be unsupported or
1495 * the allocation could've failed so we should retry
1496 * on the same folio with the large folio split
1497 * to normal folios.
1498 *
1499 * Split folios are put in split_folios, and
1500 * we will migrate them after the rest of the
1501 * list is processed.
1502 */
1503 case -ENOSYS:
1504 /* Large folio migration is unsupported */
1505 if (is_large) {
1506 nr_large_failed++;
1507 nr_thp_failed += is_thp;
1508 if (!try_split_folio(folio, &split_folios)) {
1509 nr_thp_split += is_thp;
1510 break;
1511 }
1512 /* Hugetlb migration is unsupported */
1513 } else if (!no_split_folio_counting) {
1514 nr_failed++;
1515 }
1516
1517 nr_failed_pages += nr_pages;
1518 list_move_tail(&folio->lru, &ret_folios);
1519 break;
1520 case -ENOMEM:
1521 /*
1522 * When memory is low, don't bother to try to migrate
1523 * other folios, just exit.
1524 */
1525 if (is_large) {
1526 nr_large_failed++;
1527 nr_thp_failed += is_thp;
1528 /* Large folio NUMA faulting doesn't split to retry. */
1529 if (!nosplit) {
1530 int ret = try_split_folio(folio, &split_folios);
1531
1532 if (!ret) {
1533 nr_thp_split += is_thp;
1534 break;
1535 } else if (reason == MR_LONGTERM_PIN &&
1536 ret == -EAGAIN) {
1537 /*
1538 * Try again to split large folio to
1539 * mitigate the failure of longterm pinning.
1540 */
1541 large_retry++;
1542 thp_retry += is_thp;
1543 nr_retry_pages += nr_pages;
1544 break;
1545 }
1546 }
1547 } else if (!no_split_folio_counting) {
1548 nr_failed++;
1549 }
1550
1551 nr_failed_pages += nr_pages + nr_retry_pages;
1552 /*
1553 * There might be some split folios of fail-to-migrate large
1554 * folios left in split_folios list. Move them back to migration
1555 * list so that they could be put back to the right list by
1556 * the caller otherwise the folio refcnt will be leaked.
1557 */
1558 list_splice_init(&split_folios, from);
1559 /* nr_failed isn't updated for not used */
1560 nr_large_failed += large_retry;
1561 nr_thp_failed += thp_retry;
1562 goto out;
1563 case -EAGAIN:
1564 if (is_large) {
1565 large_retry++;
1566 thp_retry += is_thp;
1567 } else if (!no_split_folio_counting) {
1568 retry++;
1569 }
1570 nr_retry_pages += nr_pages;
1571 break;
1572 case MIGRATEPAGE_SUCCESS:
1573 nr_succeeded += nr_pages;
1574 nr_thp_succeeded += is_thp;
1575 break;
1576 default:
1577 /*
1578 * Permanent failure (-EBUSY, etc.):
1579 * unlike -EAGAIN case, the failed folio is
1580 * removed from migration folio list and not
1581 * retried in the next outer loop.
1582 */
1583 if (is_large) {
1584 nr_large_failed++;
1585 nr_thp_failed += is_thp;
1586 } else if (!no_split_folio_counting) {
1587 nr_failed++;
1588 }
1589
1590 nr_failed_pages += nr_pages;
1591 break;
1592 }
1593 }
1594 }
1595 nr_failed += retry;
1596 nr_large_failed += large_retry;
1597 nr_thp_failed += thp_retry;
1598 nr_failed_pages += nr_retry_pages;
1599 /*
1600 * Try to migrate split folios of fail-to-migrate large folios, no
1601 * nr_failed counting in this round, since all split folios of a
1602 * large folio is counted as 1 failure in the first round.
1603 */
1604 if (!list_empty(&split_folios)) {
1605 /*
1606 * Move non-migrated folios (after 10 retries) to ret_folios
1607 * to avoid migrating them again.
1608 */
1609 list_splice_init(from, &ret_folios);
1610 list_splice_init(&split_folios, from);
1611 no_split_folio_counting = true;
1612 retry = 1;
1613 goto split_folio_migration;
1614 }
1615
1616 rc = nr_failed + nr_large_failed;
1617out:
1618 /*
1619 * Put the permanent failure folio back to migration list, they
1620 * will be put back to the right list by the caller.
1621 */
1622 list_splice(&ret_folios, from);
1623
1624 /*
1625 * Return 0 in case all split folios of fail-to-migrate large folios
1626 * are migrated successfully.
1627 */
1628 if (list_empty(from))
1629 rc = 0;
1630
1631 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1632 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1633 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1634 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1635 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1636 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1637 nr_thp_failed, nr_thp_split, mode, reason);
1638
1639 if (ret_succeeded)
1640 *ret_succeeded = nr_succeeded;
1641
1642 return rc;
1643}
1644
1645struct page *alloc_migration_target(struct page *page, unsigned long private)
1646{
1647 struct folio *folio = page_folio(page);
1648 struct migration_target_control *mtc;
1649 gfp_t gfp_mask;
1650 unsigned int order = 0;
1651 struct folio *new_folio = NULL;
1652 int nid;
1653 int zidx;
1654
1655 mtc = (struct migration_target_control *)private;
1656 gfp_mask = mtc->gfp_mask;
1657 nid = mtc->nid;
1658 if (nid == NUMA_NO_NODE)
1659 nid = folio_nid(folio);
1660
1661 if (folio_test_hugetlb(folio)) {
1662 struct hstate *h = folio_hstate(folio);
1663
1664 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1665 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1666 }
1667
1668 if (folio_test_large(folio)) {
1669 /*
1670 * clear __GFP_RECLAIM to make the migration callback
1671 * consistent with regular THP allocations.
1672 */
1673 gfp_mask &= ~__GFP_RECLAIM;
1674 gfp_mask |= GFP_TRANSHUGE;
1675 order = folio_order(folio);
1676 }
1677 zidx = zone_idx(folio_zone(folio));
1678 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1679 gfp_mask |= __GFP_HIGHMEM;
1680
1681 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1682
1683 return &new_folio->page;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static int store_status(int __user *status, int start, int value, int nr)
1689{
1690 while (nr-- > 0) {
1691 if (put_user(value, status + start))
1692 return -EFAULT;
1693 start++;
1694 }
1695
1696 return 0;
1697}
1698
1699static int do_move_pages_to_node(struct mm_struct *mm,
1700 struct list_head *pagelist, int node)
1701{
1702 int err;
1703 struct migration_target_control mtc = {
1704 .nid = node,
1705 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1706 };
1707
1708 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1709 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1710 if (err)
1711 putback_movable_pages(pagelist);
1712 return err;
1713}
1714
1715/*
1716 * Resolves the given address to a struct page, isolates it from the LRU and
1717 * puts it to the given pagelist.
1718 * Returns:
1719 * errno - if the page cannot be found/isolated
1720 * 0 - when it doesn't have to be migrated because it is already on the
1721 * target node
1722 * 1 - when it has been queued
1723 */
1724static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1725 int node, struct list_head *pagelist, bool migrate_all)
1726{
1727 struct vm_area_struct *vma;
1728 struct page *page;
1729 int err;
1730
1731 mmap_read_lock(mm);
1732 err = -EFAULT;
1733 vma = vma_lookup(mm, addr);
1734 if (!vma || !vma_migratable(vma))
1735 goto out;
1736
1737 /* FOLL_DUMP to ignore special (like zero) pages */
1738 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1739
1740 err = PTR_ERR(page);
1741 if (IS_ERR(page))
1742 goto out;
1743
1744 err = -ENOENT;
1745 if (!page)
1746 goto out;
1747
1748 if (is_zone_device_page(page))
1749 goto out_putpage;
1750
1751 err = 0;
1752 if (page_to_nid(page) == node)
1753 goto out_putpage;
1754
1755 err = -EACCES;
1756 if (page_mapcount(page) > 1 && !migrate_all)
1757 goto out_putpage;
1758
1759 if (PageHuge(page)) {
1760 if (PageHead(page)) {
1761 err = isolate_hugetlb(page, pagelist);
1762 if (!err)
1763 err = 1;
1764 }
1765 } else {
1766 struct page *head;
1767
1768 head = compound_head(page);
1769 err = isolate_lru_page(head);
1770 if (err)
1771 goto out_putpage;
1772
1773 err = 1;
1774 list_add_tail(&head->lru, pagelist);
1775 mod_node_page_state(page_pgdat(head),
1776 NR_ISOLATED_ANON + page_is_file_lru(head),
1777 thp_nr_pages(head));
1778 }
1779out_putpage:
1780 /*
1781 * Either remove the duplicate refcount from
1782 * isolate_lru_page() or drop the page ref if it was
1783 * not isolated.
1784 */
1785 put_page(page);
1786out:
1787 mmap_read_unlock(mm);
1788 return err;
1789}
1790
1791static int move_pages_and_store_status(struct mm_struct *mm, int node,
1792 struct list_head *pagelist, int __user *status,
1793 int start, int i, unsigned long nr_pages)
1794{
1795 int err;
1796
1797 if (list_empty(pagelist))
1798 return 0;
1799
1800 err = do_move_pages_to_node(mm, pagelist, node);
1801 if (err) {
1802 /*
1803 * Positive err means the number of failed
1804 * pages to migrate. Since we are going to
1805 * abort and return the number of non-migrated
1806 * pages, so need to include the rest of the
1807 * nr_pages that have not been attempted as
1808 * well.
1809 */
1810 if (err > 0)
1811 err += nr_pages - i;
1812 return err;
1813 }
1814 return store_status(status, start, node, i - start);
1815}
1816
1817/*
1818 * Migrate an array of page address onto an array of nodes and fill
1819 * the corresponding array of status.
1820 */
1821static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1822 unsigned long nr_pages,
1823 const void __user * __user *pages,
1824 const int __user *nodes,
1825 int __user *status, int flags)
1826{
1827 int current_node = NUMA_NO_NODE;
1828 LIST_HEAD(pagelist);
1829 int start, i;
1830 int err = 0, err1;
1831
1832 lru_cache_disable();
1833
1834 for (i = start = 0; i < nr_pages; i++) {
1835 const void __user *p;
1836 unsigned long addr;
1837 int node;
1838
1839 err = -EFAULT;
1840 if (get_user(p, pages + i))
1841 goto out_flush;
1842 if (get_user(node, nodes + i))
1843 goto out_flush;
1844 addr = (unsigned long)untagged_addr(p);
1845
1846 err = -ENODEV;
1847 if (node < 0 || node >= MAX_NUMNODES)
1848 goto out_flush;
1849 if (!node_state(node, N_MEMORY))
1850 goto out_flush;
1851
1852 err = -EACCES;
1853 if (!node_isset(node, task_nodes))
1854 goto out_flush;
1855
1856 if (current_node == NUMA_NO_NODE) {
1857 current_node = node;
1858 start = i;
1859 } else if (node != current_node) {
1860 err = move_pages_and_store_status(mm, current_node,
1861 &pagelist, status, start, i, nr_pages);
1862 if (err)
1863 goto out;
1864 start = i;
1865 current_node = node;
1866 }
1867
1868 /*
1869 * Errors in the page lookup or isolation are not fatal and we simply
1870 * report them via status
1871 */
1872 err = add_page_for_migration(mm, addr, current_node,
1873 &pagelist, flags & MPOL_MF_MOVE_ALL);
1874
1875 if (err > 0) {
1876 /* The page is successfully queued for migration */
1877 continue;
1878 }
1879
1880 /*
1881 * The move_pages() man page does not have an -EEXIST choice, so
1882 * use -EFAULT instead.
1883 */
1884 if (err == -EEXIST)
1885 err = -EFAULT;
1886
1887 /*
1888 * If the page is already on the target node (!err), store the
1889 * node, otherwise, store the err.
1890 */
1891 err = store_status(status, i, err ? : current_node, 1);
1892 if (err)
1893 goto out_flush;
1894
1895 err = move_pages_and_store_status(mm, current_node, &pagelist,
1896 status, start, i, nr_pages);
1897 if (err) {
1898 /* We have accounted for page i */
1899 if (err > 0)
1900 err--;
1901 goto out;
1902 }
1903 current_node = NUMA_NO_NODE;
1904 }
1905out_flush:
1906 /* Make sure we do not overwrite the existing error */
1907 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1908 status, start, i, nr_pages);
1909 if (err >= 0)
1910 err = err1;
1911out:
1912 lru_cache_enable();
1913 return err;
1914}
1915
1916/*
1917 * Determine the nodes of an array of pages and store it in an array of status.
1918 */
1919static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1920 const void __user **pages, int *status)
1921{
1922 unsigned long i;
1923
1924 mmap_read_lock(mm);
1925
1926 for (i = 0; i < nr_pages; i++) {
1927 unsigned long addr = (unsigned long)(*pages);
1928 struct vm_area_struct *vma;
1929 struct page *page;
1930 int err = -EFAULT;
1931
1932 vma = vma_lookup(mm, addr);
1933 if (!vma)
1934 goto set_status;
1935
1936 /* FOLL_DUMP to ignore special (like zero) pages */
1937 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1938
1939 err = PTR_ERR(page);
1940 if (IS_ERR(page))
1941 goto set_status;
1942
1943 err = -ENOENT;
1944 if (!page)
1945 goto set_status;
1946
1947 if (!is_zone_device_page(page))
1948 err = page_to_nid(page);
1949
1950 put_page(page);
1951set_status:
1952 *status = err;
1953
1954 pages++;
1955 status++;
1956 }
1957
1958 mmap_read_unlock(mm);
1959}
1960
1961static int get_compat_pages_array(const void __user *chunk_pages[],
1962 const void __user * __user *pages,
1963 unsigned long chunk_nr)
1964{
1965 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1966 compat_uptr_t p;
1967 int i;
1968
1969 for (i = 0; i < chunk_nr; i++) {
1970 if (get_user(p, pages32 + i))
1971 return -EFAULT;
1972 chunk_pages[i] = compat_ptr(p);
1973 }
1974
1975 return 0;
1976}
1977
1978/*
1979 * Determine the nodes of a user array of pages and store it in
1980 * a user array of status.
1981 */
1982static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1983 const void __user * __user *pages,
1984 int __user *status)
1985{
1986#define DO_PAGES_STAT_CHUNK_NR 16UL
1987 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1988 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1989
1990 while (nr_pages) {
1991 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1992
1993 if (in_compat_syscall()) {
1994 if (get_compat_pages_array(chunk_pages, pages,
1995 chunk_nr))
1996 break;
1997 } else {
1998 if (copy_from_user(chunk_pages, pages,
1999 chunk_nr * sizeof(*chunk_pages)))
2000 break;
2001 }
2002
2003 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2004
2005 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2006 break;
2007
2008 pages += chunk_nr;
2009 status += chunk_nr;
2010 nr_pages -= chunk_nr;
2011 }
2012 return nr_pages ? -EFAULT : 0;
2013}
2014
2015static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2016{
2017 struct task_struct *task;
2018 struct mm_struct *mm;
2019
2020 /*
2021 * There is no need to check if current process has the right to modify
2022 * the specified process when they are same.
2023 */
2024 if (!pid) {
2025 mmget(current->mm);
2026 *mem_nodes = cpuset_mems_allowed(current);
2027 return current->mm;
2028 }
2029
2030 /* Find the mm_struct */
2031 rcu_read_lock();
2032 task = find_task_by_vpid(pid);
2033 if (!task) {
2034 rcu_read_unlock();
2035 return ERR_PTR(-ESRCH);
2036 }
2037 get_task_struct(task);
2038
2039 /*
2040 * Check if this process has the right to modify the specified
2041 * process. Use the regular "ptrace_may_access()" checks.
2042 */
2043 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2044 rcu_read_unlock();
2045 mm = ERR_PTR(-EPERM);
2046 goto out;
2047 }
2048 rcu_read_unlock();
2049
2050 mm = ERR_PTR(security_task_movememory(task));
2051 if (IS_ERR(mm))
2052 goto out;
2053 *mem_nodes = cpuset_mems_allowed(task);
2054 mm = get_task_mm(task);
2055out:
2056 put_task_struct(task);
2057 if (!mm)
2058 mm = ERR_PTR(-EINVAL);
2059 return mm;
2060}
2061
2062/*
2063 * Move a list of pages in the address space of the currently executing
2064 * process.
2065 */
2066static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2067 const void __user * __user *pages,
2068 const int __user *nodes,
2069 int __user *status, int flags)
2070{
2071 struct mm_struct *mm;
2072 int err;
2073 nodemask_t task_nodes;
2074
2075 /* Check flags */
2076 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2077 return -EINVAL;
2078
2079 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2080 return -EPERM;
2081
2082 mm = find_mm_struct(pid, &task_nodes);
2083 if (IS_ERR(mm))
2084 return PTR_ERR(mm);
2085
2086 if (nodes)
2087 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2088 nodes, status, flags);
2089 else
2090 err = do_pages_stat(mm, nr_pages, pages, status);
2091
2092 mmput(mm);
2093 return err;
2094}
2095
2096SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2097 const void __user * __user *, pages,
2098 const int __user *, nodes,
2099 int __user *, status, int, flags)
2100{
2101 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2102}
2103
2104#ifdef CONFIG_NUMA_BALANCING
2105/*
2106 * Returns true if this is a safe migration target node for misplaced NUMA
2107 * pages. Currently it only checks the watermarks which is crude.
2108 */
2109static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2110 unsigned long nr_migrate_pages)
2111{
2112 int z;
2113
2114 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2115 struct zone *zone = pgdat->node_zones + z;
2116
2117 if (!managed_zone(zone))
2118 continue;
2119
2120 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2121 if (!zone_watermark_ok(zone, 0,
2122 high_wmark_pages(zone) +
2123 nr_migrate_pages,
2124 ZONE_MOVABLE, 0))
2125 continue;
2126 return true;
2127 }
2128 return false;
2129}
2130
2131static struct page *alloc_misplaced_dst_page(struct page *page,
2132 unsigned long data)
2133{
2134 int nid = (int) data;
2135 int order = compound_order(page);
2136 gfp_t gfp = __GFP_THISNODE;
2137 struct folio *new;
2138
2139 if (order > 0)
2140 gfp |= GFP_TRANSHUGE_LIGHT;
2141 else {
2142 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2143 __GFP_NOWARN;
2144 gfp &= ~__GFP_RECLAIM;
2145 }
2146 new = __folio_alloc_node(gfp, order, nid);
2147
2148 return &new->page;
2149}
2150
2151static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2152{
2153 int nr_pages = thp_nr_pages(page);
2154 int order = compound_order(page);
2155
2156 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2157
2158 /* Do not migrate THP mapped by multiple processes */
2159 if (PageTransHuge(page) && total_mapcount(page) > 1)
2160 return 0;
2161
2162 /* Avoid migrating to a node that is nearly full */
2163 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2164 int z;
2165
2166 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2167 return 0;
2168 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2169 if (managed_zone(pgdat->node_zones + z))
2170 break;
2171 }
2172 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2173 return 0;
2174 }
2175
2176 if (isolate_lru_page(page))
2177 return 0;
2178
2179 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2180 nr_pages);
2181
2182 /*
2183 * Isolating the page has taken another reference, so the
2184 * caller's reference can be safely dropped without the page
2185 * disappearing underneath us during migration.
2186 */
2187 put_page(page);
2188 return 1;
2189}
2190
2191/*
2192 * Attempt to migrate a misplaced page to the specified destination
2193 * node. Caller is expected to have an elevated reference count on
2194 * the page that will be dropped by this function before returning.
2195 */
2196int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2197 int node)
2198{
2199 pg_data_t *pgdat = NODE_DATA(node);
2200 int isolated;
2201 int nr_remaining;
2202 unsigned int nr_succeeded;
2203 LIST_HEAD(migratepages);
2204 int nr_pages = thp_nr_pages(page);
2205
2206 /*
2207 * Don't migrate file pages that are mapped in multiple processes
2208 * with execute permissions as they are probably shared libraries.
2209 */
2210 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2211 (vma->vm_flags & VM_EXEC))
2212 goto out;
2213
2214 /*
2215 * Also do not migrate dirty pages as not all filesystems can move
2216 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2217 */
2218 if (page_is_file_lru(page) && PageDirty(page))
2219 goto out;
2220
2221 isolated = numamigrate_isolate_page(pgdat, page);
2222 if (!isolated)
2223 goto out;
2224
2225 list_add(&page->lru, &migratepages);
2226 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2227 NULL, node, MIGRATE_ASYNC,
2228 MR_NUMA_MISPLACED, &nr_succeeded);
2229 if (nr_remaining) {
2230 if (!list_empty(&migratepages)) {
2231 list_del(&page->lru);
2232 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2233 page_is_file_lru(page), -nr_pages);
2234 putback_lru_page(page);
2235 }
2236 isolated = 0;
2237 }
2238 if (nr_succeeded) {
2239 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2240 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2241 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2242 nr_succeeded);
2243 }
2244 BUG_ON(!list_empty(&migratepages));
2245 return isolated;
2246
2247out:
2248 put_page(page);
2249 return 0;
2250}
2251#endif /* CONFIG_NUMA_BALANCING */
2252#endif /* CONFIG_NUMA */