Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
 
  34#include <linux/syscalls.h>
 
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
 
 
 
 
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/page_idle.h>
  41#include <linux/page_owner.h>
 
 
 
  42
  43#include <asm/tlbflush.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/migrate.h>
  47
  48#include "internal.h"
  49
  50/*
  51 * migrate_prep() needs to be called before we start compiling a list of pages
  52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  53 * undesirable, use migrate_prep_local()
  54 */
  55int migrate_prep(void)
  56{
 
 
  57	/*
  58	 * Clear the LRU lists so pages can be isolated.
  59	 * Note that pages may be moved off the LRU after we have
  60	 * drained them. Those pages will fail to migrate like other
  61	 * pages that may be busy.
 
 
 
  62	 */
  63	lru_add_drain_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65	return 0;
 
 
 
 
 
 
 
  66}
  67
  68/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  69int migrate_prep_local(void)
  70{
  71	lru_add_drain();
  72
  73	return 0;
 
 
  74}
  75
  76/*
  77 * Put previously isolated pages back onto the appropriate lists
  78 * from where they were once taken off for compaction/migration.
  79 *
  80 * This function shall be used whenever the isolated pageset has been
  81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  82 * and isolate_huge_page().
  83 */
  84void putback_movable_pages(struct list_head *l)
  85{
  86	struct page *page;
  87	struct page *page2;
  88
  89	list_for_each_entry_safe(page, page2, l, lru) {
  90		if (unlikely(PageHuge(page))) {
  91			putback_active_hugepage(page);
  92			continue;
  93		}
  94		list_del(&page->lru);
  95		dec_zone_page_state(page, NR_ISOLATED_ANON +
  96				page_is_file_cache(page));
  97		if (unlikely(isolated_balloon_page(page)))
  98			balloon_page_putback(page);
  99		else
 
 
 
 
 
 
 
 
 
 
 
 
 100			putback_lru_page(page);
 
 101	}
 102}
 103
 104/*
 105 * Restore a potential migration pte to a working pte entry
 106 */
 107static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 108				 unsigned long addr, void *old)
 109{
 110	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 111	swp_entry_t entry;
 112 	pmd_t *pmd;
 113	pte_t *ptep, pte;
 114 	spinlock_t *ptl;
 115
 116	if (unlikely(PageHuge(new))) {
 117		ptep = huge_pte_offset(mm, addr);
 118		if (!ptep)
 119			goto out;
 120		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 121	} else {
 122		pmd = mm_find_pmd(mm, addr);
 123		if (!pmd)
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 
 
 
 
 
 
 
 
 
 
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 
 
 
 
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 151
 152	/* Recheck VMA as permissions can change since migration started  */
 153	if (is_write_migration_entry(entry))
 154		pte = maybe_mkwrite(pte, vma);
 155
 156#ifdef CONFIG_HUGETLB_PAGE
 157	if (PageHuge(new)) {
 158		pte = pte_mkhuge(pte);
 159		pte = arch_make_huge_pte(pte, vma, new, 0);
 160	}
 161#endif
 162	flush_dcache_page(new);
 163	set_pte_at(mm, addr, ptep, pte);
 164
 165	if (PageHuge(new)) {
 166		if (PageAnon(new))
 167			hugepage_add_anon_rmap(new, vma, addr);
 168		else
 169			page_dup_rmap(new, true);
 170	} else if (PageAnon(new))
 171		page_add_anon_rmap(new, vma, addr, false);
 172	else
 173		page_add_file_rmap(new);
 174
 175	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 176		mlock_vma_page(new);
 177
 178	/* No need to invalidate - it was non-present before */
 179	update_mmu_cache(vma, addr, ptep);
 180unlock:
 181	pte_unmap_unlock(ptep, ptl);
 182out:
 183	return SWAP_AGAIN;
 184}
 185
 186/*
 187 * Get rid of all migration entries and replace them by
 188 * references to the indicated page.
 189 */
 190void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 191{
 192	struct rmap_walk_control rwc = {
 193		.rmap_one = remove_migration_pte,
 194		.arg = old,
 195	};
 196
 197	if (locked)
 198		rmap_walk_locked(new, &rwc);
 199	else
 200		rmap_walk(new, &rwc);
 201}
 202
 203/*
 204 * Something used the pte of a page under migration. We need to
 205 * get to the page and wait until migration is finished.
 206 * When we return from this function the fault will be retried.
 207 */
 208void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 209				spinlock_t *ptl)
 210{
 211	pte_t pte;
 212	swp_entry_t entry;
 213	struct page *page;
 214
 215	spin_lock(ptl);
 216	pte = *ptep;
 217	if (!is_swap_pte(pte))
 218		goto out;
 219
 220	entry = pte_to_swp_entry(pte);
 221	if (!is_migration_entry(entry))
 222		goto out;
 223
 224	page = migration_entry_to_page(entry);
 
 225
 226	/*
 227	 * Once radix-tree replacement of page migration started, page_count
 228	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 229	 * against a page without get_page().
 230	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 231	 * will occur again.
 232	 */
 233	if (!get_page_unless_zero(page))
 234		goto out;
 235	pte_unmap_unlock(ptep, ptl);
 236	wait_on_page_locked(page);
 237	put_page(page);
 238	return;
 239out:
 240	pte_unmap_unlock(ptep, ptl);
 241}
 242
 243void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 244				unsigned long address)
 245{
 246	spinlock_t *ptl = pte_lockptr(mm, pmd);
 247	pte_t *ptep = pte_offset_map(pmd, address);
 248	__migration_entry_wait(mm, ptep, ptl);
 249}
 250
 251void migration_entry_wait_huge(struct vm_area_struct *vma,
 252		struct mm_struct *mm, pte_t *pte)
 253{
 254	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 255	__migration_entry_wait(mm, pte, ptl);
 256}
 257
 258#ifdef CONFIG_BLOCK
 259/* Returns true if all buffers are successfully locked */
 260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 261							enum migrate_mode mode)
 262{
 263	struct buffer_head *bh = head;
 264
 265	/* Simple case, sync compaction */
 266	if (mode != MIGRATE_ASYNC) {
 267		do {
 268			get_bh(bh);
 269			lock_buffer(bh);
 270			bh = bh->b_this_page;
 271
 272		} while (bh != head);
 
 
 
 
 
 
 
 
 
 
 
 
 273
 274		return true;
 275	}
 
 276
 277	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 278	do {
 279		get_bh(bh);
 280		if (!trylock_buffer(bh)) {
 281			/*
 282			 * We failed to lock the buffer and cannot stall in
 283			 * async migration. Release the taken locks
 284			 */
 285			struct buffer_head *failed_bh = bh;
 286			put_bh(failed_bh);
 287			bh = head;
 288			while (bh != failed_bh) {
 289				unlock_buffer(bh);
 290				put_bh(bh);
 291				bh = bh->b_this_page;
 292			}
 293			return false;
 294		}
 295
 296		bh = bh->b_this_page;
 297	} while (bh != head);
 298	return true;
 299}
 300#else
 301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 302							enum migrate_mode mode)
 303{
 304	return true;
 305}
 306#endif /* CONFIG_BLOCK */
 307
 308/*
 309 * Replace the page in the mapping.
 310 *
 311 * The number of remaining references must be:
 312 * 1 for anonymous pages without a mapping
 313 * 2 for pages with a mapping
 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 315 */
 316int migrate_page_move_mapping(struct address_space *mapping,
 317		struct page *newpage, struct page *page,
 318		struct buffer_head *head, enum migrate_mode mode,
 319		int extra_count)
 320{
 
 321	struct zone *oldzone, *newzone;
 322	int dirty;
 323	int expected_count = 1 + extra_count;
 324	void **pslot;
 325
 326	if (!mapping) {
 327		/* Anonymous page without mapping */
 328		if (page_count(page) != expected_count)
 329			return -EAGAIN;
 330
 331		/* No turning back from here */
 332		newpage->index = page->index;
 333		newpage->mapping = page->mapping;
 334		if (PageSwapBacked(page))
 335			SetPageSwapBacked(newpage);
 336
 337		return MIGRATEPAGE_SUCCESS;
 338	}
 339
 340	oldzone = page_zone(page);
 341	newzone = page_zone(newpage);
 342
 343	spin_lock_irq(&mapping->tree_lock);
 344
 345	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 346 					page_index(page));
 347
 348	expected_count += 1 + page_has_private(page);
 349	if (page_count(page) != expected_count ||
 350		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 351		spin_unlock_irq(&mapping->tree_lock);
 352		return -EAGAIN;
 353	}
 354
 355	if (!page_ref_freeze(page, expected_count)) {
 356		spin_unlock_irq(&mapping->tree_lock);
 357		return -EAGAIN;
 358	}
 359
 360	/*
 361	 * In the async migration case of moving a page with buffers, lock the
 362	 * buffers using trylock before the mapping is moved. If the mapping
 363	 * was moved, we later failed to lock the buffers and could not move
 364	 * the mapping back due to an elevated page count, we would have to
 365	 * block waiting on other references to be dropped.
 366	 */
 367	if (mode == MIGRATE_ASYNC && head &&
 368			!buffer_migrate_lock_buffers(head, mode)) {
 369		page_ref_unfreeze(page, expected_count);
 370		spin_unlock_irq(&mapping->tree_lock);
 371		return -EAGAIN;
 372	}
 373
 374	/*
 375	 * Now we know that no one else is looking at the page:
 376	 * no turning back from here.
 377	 */
 378	newpage->index = page->index;
 379	newpage->mapping = page->mapping;
 380	if (PageSwapBacked(page))
 381		SetPageSwapBacked(newpage);
 382
 383	get_page(newpage);	/* add cache reference */
 384	if (PageSwapCache(page)) {
 385		SetPageSwapCache(newpage);
 386		set_page_private(newpage, page_private(page));
 
 
 387	}
 388
 389	/* Move dirty while page refs frozen and newpage not yet exposed */
 390	dirty = PageDirty(page);
 391	if (dirty) {
 392		ClearPageDirty(page);
 393		SetPageDirty(newpage);
 394	}
 395
 396	radix_tree_replace_slot(pslot, newpage);
 
 
 
 
 
 
 
 
 397
 398	/*
 399	 * Drop cache reference from old page by unfreezing
 400	 * to one less reference.
 401	 * We know this isn't the last reference.
 402	 */
 403	page_ref_unfreeze(page, expected_count - 1);
 404
 405	spin_unlock(&mapping->tree_lock);
 406	/* Leave irq disabled to prevent preemption while updating stats */
 407
 408	/*
 409	 * If moved to a different zone then also account
 410	 * the page for that zone. Other VM counters will be
 411	 * taken care of when we establish references to the
 412	 * new page and drop references to the old page.
 413	 *
 414	 * Note that anonymous pages are accounted for
 415	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 416	 * are mapped to swap space.
 417	 */
 418	if (newzone != oldzone) {
 419		__dec_zone_state(oldzone, NR_FILE_PAGES);
 420		__inc_zone_state(newzone, NR_FILE_PAGES);
 
 
 
 
 
 
 
 421		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 422			__dec_zone_state(oldzone, NR_SHMEM);
 423			__inc_zone_state(newzone, NR_SHMEM);
 424		}
 425		if (dirty && mapping_cap_account_dirty(mapping)) {
 426			__dec_zone_state(oldzone, NR_FILE_DIRTY);
 427			__inc_zone_state(newzone, NR_FILE_DIRTY);
 
 
 
 
 
 
 
 
 428		}
 429	}
 430	local_irq_enable();
 431
 432	return MIGRATEPAGE_SUCCESS;
 433}
 
 434
 435/*
 436 * The expected number of remaining references is the same as that
 437 * of migrate_page_move_mapping().
 438 */
 439int migrate_huge_page_move_mapping(struct address_space *mapping,
 440				   struct page *newpage, struct page *page)
 441{
 
 442	int expected_count;
 443	void **pslot;
 444
 445	spin_lock_irq(&mapping->tree_lock);
 446
 447	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 448					page_index(page));
 449
 
 450	expected_count = 2 + page_has_private(page);
 451	if (page_count(page) != expected_count ||
 452		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 457	if (!page_ref_freeze(page, expected_count)) {
 458		spin_unlock_irq(&mapping->tree_lock);
 459		return -EAGAIN;
 460	}
 461
 462	newpage->index = page->index;
 463	newpage->mapping = page->mapping;
 464
 465	get_page(newpage);
 466
 467	radix_tree_replace_slot(pslot, newpage);
 468
 469	page_ref_unfreeze(page, expected_count - 1);
 470
 471	spin_unlock_irq(&mapping->tree_lock);
 472
 473	return MIGRATEPAGE_SUCCESS;
 474}
 475
 476/*
 477 * Gigantic pages are so large that we do not guarantee that page++ pointer
 478 * arithmetic will work across the entire page.  We need something more
 479 * specialized.
 480 */
 481static void __copy_gigantic_page(struct page *dst, struct page *src,
 482				int nr_pages)
 483{
 484	int i;
 485	struct page *dst_base = dst;
 486	struct page *src_base = src;
 487
 488	for (i = 0; i < nr_pages; ) {
 489		cond_resched();
 490		copy_highpage(dst, src);
 491
 492		i++;
 493		dst = mem_map_next(dst, dst_base, i);
 494		src = mem_map_next(src, src_base, i);
 495	}
 496}
 497
 498static void copy_huge_page(struct page *dst, struct page *src)
 499{
 500	int i;
 501	int nr_pages;
 502
 503	if (PageHuge(src)) {
 504		/* hugetlbfs page */
 505		struct hstate *h = page_hstate(src);
 506		nr_pages = pages_per_huge_page(h);
 507
 508		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 509			__copy_gigantic_page(dst, src, nr_pages);
 510			return;
 511		}
 512	} else {
 513		/* thp page */
 514		BUG_ON(!PageTransHuge(src));
 515		nr_pages = hpage_nr_pages(src);
 516	}
 517
 518	for (i = 0; i < nr_pages; i++) {
 519		cond_resched();
 520		copy_highpage(dst + i, src + i);
 521	}
 522}
 523
 524/*
 525 * Copy the page to its new location
 526 */
 527void migrate_page_copy(struct page *newpage, struct page *page)
 528{
 529	int cpupid;
 530
 531	if (PageHuge(page) || PageTransHuge(page))
 532		copy_huge_page(newpage, page);
 533	else
 534		copy_highpage(newpage, page);
 535
 536	if (PageError(page))
 537		SetPageError(newpage);
 538	if (PageReferenced(page))
 539		SetPageReferenced(newpage);
 540	if (PageUptodate(page))
 541		SetPageUptodate(newpage);
 542	if (TestClearPageActive(page)) {
 543		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 544		SetPageActive(newpage);
 545	} else if (TestClearPageUnevictable(page))
 546		SetPageUnevictable(newpage);
 
 
 547	if (PageChecked(page))
 548		SetPageChecked(newpage);
 549	if (PageMappedToDisk(page))
 550		SetPageMappedToDisk(newpage);
 551
 552	/* Move dirty on pages not done by migrate_page_move_mapping() */
 553	if (PageDirty(page))
 554		SetPageDirty(newpage);
 555
 556	if (page_is_young(page))
 557		set_page_young(newpage);
 558	if (page_is_idle(page))
 559		set_page_idle(newpage);
 560
 561	/*
 562	 * Copy NUMA information to the new page, to prevent over-eager
 563	 * future migrations of this same page.
 564	 */
 565	cpupid = page_cpupid_xchg_last(page, -1);
 566	page_cpupid_xchg_last(newpage, cpupid);
 567
 568	ksm_migrate_page(newpage, page);
 569	/*
 570	 * Please do not reorder this without considering how mm/ksm.c's
 571	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 572	 */
 573	if (PageSwapCache(page))
 574		ClearPageSwapCache(page);
 575	ClearPagePrivate(page);
 576	set_page_private(page, 0);
 
 
 
 577
 578	/*
 579	 * If any waiters have accumulated on the new page then
 580	 * wake them up.
 581	 */
 582	if (PageWriteback(newpage))
 583		end_page_writeback(newpage);
 584
 
 
 
 
 
 
 
 
 585	copy_page_owner(page, newpage);
 586
 587	mem_cgroup_migrate(page, newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 588}
 
 589
 590/************************************************************
 591 *                    Migration functions
 592 ***********************************************************/
 593
 594/*
 595 * Common logic to directly migrate a single page suitable for
 596 * pages that do not use PagePrivate/PagePrivate2.
 597 *
 598 * Pages are locked upon entry and exit.
 599 */
 600int migrate_page(struct address_space *mapping,
 601		struct page *newpage, struct page *page,
 602		enum migrate_mode mode)
 603{
 604	int rc;
 605
 606	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 607
 608	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 609
 610	if (rc != MIGRATEPAGE_SUCCESS)
 611		return rc;
 612
 613	migrate_page_copy(newpage, page);
 
 
 
 614	return MIGRATEPAGE_SUCCESS;
 615}
 616EXPORT_SYMBOL(migrate_page);
 617
 618#ifdef CONFIG_BLOCK
 619/*
 620 * Migration function for pages with buffers. This function can only be used
 621 * if the underlying filesystem guarantees that no other references to "page"
 622 * exist.
 623 */
 624int buffer_migrate_page(struct address_space *mapping,
 625		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct buffer_head *bh, *head;
 628	int rc;
 
 629
 630	if (!page_has_buffers(page))
 631		return migrate_page(mapping, newpage, page, mode);
 632
 
 
 
 
 
 633	head = page_buffers(page);
 
 
 634
 635	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 
 637	if (rc != MIGRATEPAGE_SUCCESS)
 638		return rc;
 639
 640	/*
 641	 * In the async case, migrate_page_move_mapping locked the buffers
 642	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 643	 * need to be locked now
 644	 */
 645	if (mode != MIGRATE_ASYNC)
 646		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 647
 648	ClearPagePrivate(page);
 649	set_page_private(newpage, page_private(page));
 650	set_page_private(page, 0);
 651	put_page(page);
 652	get_page(newpage);
 653
 654	bh = head;
 655	do {
 656		set_bh_page(bh, newpage, bh_offset(bh));
 657		bh = bh->b_this_page;
 658
 659	} while (bh != head);
 660
 661	SetPagePrivate(newpage);
 662
 663	migrate_page_copy(newpage, page);
 
 664
 
 
 
 
 665	bh = head;
 666	do {
 667		unlock_buffer(bh);
 668 		put_bh(bh);
 669		bh = bh->b_this_page;
 670
 671	} while (bh != head);
 672
 673	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 674}
 675EXPORT_SYMBOL(buffer_migrate_page);
 
 
 
 
 
 
 
 
 
 
 
 
 676#endif
 677
 678/*
 679 * Writeback a page to clean the dirty state
 680 */
 681static int writeout(struct address_space *mapping, struct page *page)
 682{
 683	struct writeback_control wbc = {
 684		.sync_mode = WB_SYNC_NONE,
 685		.nr_to_write = 1,
 686		.range_start = 0,
 687		.range_end = LLONG_MAX,
 688		.for_reclaim = 1
 689	};
 690	int rc;
 691
 692	if (!mapping->a_ops->writepage)
 693		/* No write method for the address space */
 694		return -EINVAL;
 695
 696	if (!clear_page_dirty_for_io(page))
 697		/* Someone else already triggered a write */
 698		return -EAGAIN;
 699
 700	/*
 701	 * A dirty page may imply that the underlying filesystem has
 702	 * the page on some queue. So the page must be clean for
 703	 * migration. Writeout may mean we loose the lock and the
 704	 * page state is no longer what we checked for earlier.
 705	 * At this point we know that the migration attempt cannot
 706	 * be successful.
 707	 */
 708	remove_migration_ptes(page, page, false);
 709
 710	rc = mapping->a_ops->writepage(page, &wbc);
 711
 712	if (rc != AOP_WRITEPAGE_ACTIVATE)
 713		/* unlocked. Relock */
 714		lock_page(page);
 715
 716	return (rc < 0) ? -EIO : -EAGAIN;
 717}
 718
 719/*
 720 * Default handling if a filesystem does not provide a migration function.
 721 */
 722static int fallback_migrate_page(struct address_space *mapping,
 723	struct page *newpage, struct page *page, enum migrate_mode mode)
 724{
 725	if (PageDirty(page)) {
 726		/* Only writeback pages in full synchronous migration */
 727		if (mode != MIGRATE_SYNC)
 
 
 
 
 728			return -EBUSY;
 
 729		return writeout(mapping, page);
 730	}
 731
 732	/*
 733	 * Buffers may be managed in a filesystem specific way.
 734	 * We must have no buffers or drop them.
 735	 */
 736	if (page_has_private(page) &&
 737	    !try_to_release_page(page, GFP_KERNEL))
 738		return -EAGAIN;
 739
 740	return migrate_page(mapping, newpage, page, mode);
 741}
 742
 743/*
 744 * Move a page to a newly allocated page
 745 * The page is locked and all ptes have been successfully removed.
 746 *
 747 * The new page will have replaced the old page if this function
 748 * is successful.
 749 *
 750 * Return value:
 751 *   < 0 - error code
 752 *  MIGRATEPAGE_SUCCESS - success
 753 */
 754static int move_to_new_page(struct page *newpage, struct page *page,
 755				enum migrate_mode mode)
 756{
 757	struct address_space *mapping;
 758	int rc;
 
 759
 760	VM_BUG_ON_PAGE(!PageLocked(page), page);
 761	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 762
 763	mapping = page_mapping(page);
 764	if (!mapping)
 765		rc = migrate_page(mapping, newpage, page, mode);
 766	else if (mapping->a_ops->migratepage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767		/*
 768		 * Most pages have a mapping and most filesystems provide a
 769		 * migratepage callback. Anonymous pages are part of swap
 770		 * space which also has its own migratepage callback. This
 771		 * is the most common path for page migration.
 772		 */
 773		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
 774	else
 775		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 
 
 
 776
 777	/*
 778	 * When successful, old pagecache page->mapping must be cleared before
 779	 * page is freed; but stats require that PageAnon be left as PageAnon.
 780	 */
 781	if (rc == MIGRATEPAGE_SUCCESS) {
 782		if (!PageAnon(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783			page->mapping = NULL;
 
 
 
 
 784	}
 
 785	return rc;
 786}
 787
 788static int __unmap_and_move(struct page *page, struct page *newpage,
 789				int force, enum migrate_mode mode)
 790{
 791	int rc = -EAGAIN;
 792	int page_was_mapped = 0;
 793	struct anon_vma *anon_vma = NULL;
 
 794
 795	if (!trylock_page(page)) {
 796		if (!force || mode == MIGRATE_ASYNC)
 797			goto out;
 798
 799		/*
 800		 * It's not safe for direct compaction to call lock_page.
 801		 * For example, during page readahead pages are added locked
 802		 * to the LRU. Later, when the IO completes the pages are
 803		 * marked uptodate and unlocked. However, the queueing
 804		 * could be merging multiple pages for one bio (e.g.
 805		 * mpage_readpages). If an allocation happens for the
 806		 * second or third page, the process can end up locking
 807		 * the same page twice and deadlocking. Rather than
 808		 * trying to be clever about what pages can be locked,
 809		 * avoid the use of lock_page for direct compaction
 810		 * altogether.
 811		 */
 812		if (current->flags & PF_MEMALLOC)
 813			goto out;
 814
 815		lock_page(page);
 816	}
 817
 818	if (PageWriteback(page)) {
 819		/*
 820		 * Only in the case of a full synchronous migration is it
 821		 * necessary to wait for PageWriteback. In the async case,
 822		 * the retry loop is too short and in the sync-light case,
 823		 * the overhead of stalling is too much
 824		 */
 825		if (mode != MIGRATE_SYNC) {
 
 
 
 
 826			rc = -EBUSY;
 827			goto out_unlock;
 828		}
 829		if (!force)
 830			goto out_unlock;
 831		wait_on_page_writeback(page);
 832	}
 833
 834	/*
 835	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 836	 * we cannot notice that anon_vma is freed while we migrates a page.
 837	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 838	 * of migration. File cache pages are no problem because of page_lock()
 839	 * File Caches may use write_page() or lock_page() in migration, then,
 840	 * just care Anon page here.
 841	 *
 842	 * Only page_get_anon_vma() understands the subtleties of
 843	 * getting a hold on an anon_vma from outside one of its mms.
 844	 * But if we cannot get anon_vma, then we won't need it anyway,
 845	 * because that implies that the anon page is no longer mapped
 846	 * (and cannot be remapped so long as we hold the page lock).
 847	 */
 848	if (PageAnon(page) && !PageKsm(page))
 849		anon_vma = page_get_anon_vma(page);
 850
 851	/*
 852	 * Block others from accessing the new page when we get around to
 853	 * establishing additional references. We are usually the only one
 854	 * holding a reference to newpage at this point. We used to have a BUG
 855	 * here if trylock_page(newpage) fails, but would like to allow for
 856	 * cases where there might be a race with the previous use of newpage.
 857	 * This is much like races on refcount of oldpage: just don't BUG().
 858	 */
 859	if (unlikely(!trylock_page(newpage)))
 860		goto out_unlock;
 861
 862	if (unlikely(isolated_balloon_page(page))) {
 863		/*
 864		 * A ballooned page does not need any special attention from
 865		 * physical to virtual reverse mapping procedures.
 866		 * Skip any attempt to unmap PTEs or to remap swap cache,
 867		 * in order to avoid burning cycles at rmap level, and perform
 868		 * the page migration right away (proteced by page lock).
 869		 */
 870		rc = balloon_page_migrate(newpage, page, mode);
 871		goto out_unlock_both;
 872	}
 873
 874	/*
 875	 * Corner case handling:
 876	 * 1. When a new swap-cache page is read into, it is added to the LRU
 877	 * and treated as swapcache but it has no rmap yet.
 878	 * Calling try_to_unmap() against a page->mapping==NULL page will
 879	 * trigger a BUG.  So handle it here.
 880	 * 2. An orphaned page (see truncate_complete_page) might have
 881	 * fs-private metadata. The page can be picked up due to memory
 882	 * offlining.  Everywhere else except page reclaim, the page is
 883	 * invisible to the vm, so the page can not be migrated.  So try to
 884	 * free the metadata, so the page can be freed.
 885	 */
 886	if (!page->mapping) {
 887		VM_BUG_ON_PAGE(PageAnon(page), page);
 888		if (page_has_private(page)) {
 889			try_to_free_buffers(page);
 890			goto out_unlock_both;
 891		}
 892	} else if (page_mapped(page)) {
 893		/* Establish migration ptes */
 894		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 895				page);
 896		try_to_unmap(page,
 897			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 898		page_was_mapped = 1;
 899	}
 900
 901	if (!page_mapped(page))
 902		rc = move_to_new_page(newpage, page, mode);
 903
 904	if (page_was_mapped)
 905		remove_migration_ptes(page,
 906			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
 907
 908out_unlock_both:
 909	unlock_page(newpage);
 910out_unlock:
 911	/* Drop an anon_vma reference if we took one */
 912	if (anon_vma)
 913		put_anon_vma(anon_vma);
 914	unlock_page(page);
 915out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916	return rc;
 917}
 918
 919/*
 920 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 921 * around it.
 922 */
 923#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
 924#define ICE_noinline noinline
 925#else
 926#define ICE_noinline
 927#endif
 928
 929/*
 930 * Obtain the lock on page, remove all ptes and migrate the page
 931 * to the newly allocated page in newpage.
 932 */
 933static ICE_noinline int unmap_and_move(new_page_t get_new_page,
 934				   free_page_t put_new_page,
 935				   unsigned long private, struct page *page,
 936				   int force, enum migrate_mode mode,
 937				   enum migrate_reason reason)
 
 938{
 939	int rc = MIGRATEPAGE_SUCCESS;
 940	int *result = NULL;
 941	struct page *newpage;
 942
 943	newpage = get_new_page(page, private, &result);
 944	if (!newpage)
 945		return -ENOMEM;
 946
 947	if (page_count(page) == 1) {
 948		/* page was freed from under us. So we are done. */
 
 
 
 
 
 
 
 
 949		goto out;
 950	}
 951
 952	if (unlikely(PageTransHuge(page))) {
 953		lock_page(page);
 954		rc = split_huge_page(page);
 955		unlock_page(page);
 956		if (rc)
 957			goto out;
 958	}
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 961	if (rc == MIGRATEPAGE_SUCCESS) {
 962		put_new_page = NULL;
 963		set_page_owner_migrate_reason(newpage, reason);
 964	}
 965
 966out:
 967	if (rc != -EAGAIN) {
 968		/*
 969		 * A page that has been migrated has all references
 970		 * removed and will be freed. A page that has not been
 971		 * migrated will have kepts its references and be
 972		 * restored.
 973		 */
 974		list_del(&page->lru);
 975		dec_zone_page_state(page, NR_ISOLATED_ANON +
 976				page_is_file_cache(page));
 977		/* Soft-offlined page shouldn't go through lru cache list */
 978		if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
 979			/*
 980			 * With this release, we free successfully migrated
 981			 * page and set PG_HWPoison on just freed page
 982			 * intentionally. Although it's rather weird, it's how
 983			 * HWPoison flag works at the moment.
 984			 */
 985			put_page(page);
 986			if (!test_set_page_hwpoison(page))
 987				num_poisoned_pages_inc();
 988		} else
 989			putback_lru_page(page);
 990	}
 991
 992	/*
 993	 * If migration was not successful and there's a freeing callback, use
 994	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
 995	 * during isolation.
 996	 */
 997	if (put_new_page)
 998		put_new_page(newpage, private);
 999	else if (unlikely(__is_movable_balloon_page(newpage))) {
1000		/* drop our reference, page already in the balloon */
1001		put_page(newpage);
1002	} else
1003		putback_lru_page(newpage);
 
 
 
 
 
 
 
 
 
 
 
1004
1005	if (result) {
1006		if (rc)
1007			*result = rc;
1008		else
1009			*result = page_to_nid(newpage);
1010	}
 
1011	return rc;
1012}
1013
1014/*
1015 * Counterpart of unmap_and_move_page() for hugepage migration.
1016 *
1017 * This function doesn't wait the completion of hugepage I/O
1018 * because there is no race between I/O and migration for hugepage.
1019 * Note that currently hugepage I/O occurs only in direct I/O
1020 * where no lock is held and PG_writeback is irrelevant,
1021 * and writeback status of all subpages are counted in the reference
1022 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1023 * under direct I/O, the reference of the head page is 512 and a bit more.)
1024 * This means that when we try to migrate hugepage whose subpages are
1025 * doing direct I/O, some references remain after try_to_unmap() and
1026 * hugepage migration fails without data corruption.
1027 *
1028 * There is also no race when direct I/O is issued on the page under migration,
1029 * because then pte is replaced with migration swap entry and direct I/O code
1030 * will wait in the page fault for migration to complete.
1031 */
1032static int unmap_and_move_huge_page(new_page_t get_new_page,
1033				free_page_t put_new_page, unsigned long private,
1034				struct page *hpage, int force,
1035				enum migrate_mode mode, int reason)
 
1036{
1037	int rc = -EAGAIN;
1038	int *result = NULL;
1039	int page_was_mapped = 0;
1040	struct page *new_hpage;
1041	struct anon_vma *anon_vma = NULL;
 
1042
1043	/*
1044	 * Movability of hugepages depends on architectures and hugepage size.
1045	 * This check is necessary because some callers of hugepage migration
1046	 * like soft offline and memory hotremove don't walk through page
1047	 * tables or check whether the hugepage is pmd-based or not before
1048	 * kicking migration.
1049	 */
1050	if (!hugepage_migration_supported(page_hstate(hpage))) {
1051		putback_active_hugepage(hpage);
1052		return -ENOSYS;
1053	}
1054
1055	new_hpage = get_new_page(hpage, private, &result);
 
 
 
 
 
 
1056	if (!new_hpage)
1057		return -ENOMEM;
1058
1059	if (!trylock_page(hpage)) {
1060		if (!force || mode != MIGRATE_SYNC)
 
 
 
 
 
 
1061			goto out;
 
1062		lock_page(hpage);
1063	}
1064
 
 
 
 
 
 
 
 
 
 
1065	if (PageAnon(hpage))
1066		anon_vma = page_get_anon_vma(hpage);
1067
1068	if (unlikely(!trylock_page(new_hpage)))
1069		goto put_anon;
1070
1071	if (page_mapped(hpage)) {
1072		try_to_unmap(hpage,
1073			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074		page_was_mapped = 1;
 
 
 
1075	}
1076
1077	if (!page_mapped(hpage))
1078		rc = move_to_new_page(new_hpage, hpage, mode);
1079
1080	if (page_was_mapped)
1081		remove_migration_ptes(hpage,
1082			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1083
 
1084	unlock_page(new_hpage);
1085
1086put_anon:
1087	if (anon_vma)
1088		put_anon_vma(anon_vma);
1089
1090	if (rc == MIGRATEPAGE_SUCCESS) {
1091		hugetlb_cgroup_migrate(hpage, new_hpage);
1092		put_new_page = NULL;
1093		set_page_owner_migrate_reason(new_hpage, reason);
1094	}
1095
 
1096	unlock_page(hpage);
1097out:
1098	if (rc != -EAGAIN)
1099		putback_active_hugepage(hpage);
 
 
1100
1101	/*
1102	 * If migration was not successful and there's a freeing callback, use
1103	 * it.  Otherwise, put_page() will drop the reference grabbed during
1104	 * isolation.
1105	 */
1106	if (put_new_page)
1107		put_new_page(new_hpage, private);
1108	else
1109		putback_active_hugepage(new_hpage);
1110
1111	if (result) {
1112		if (rc)
1113			*result = rc;
1114		else
1115			*result = page_to_nid(new_hpage);
1116	}
 
 
 
 
 
 
 
 
1117	return rc;
1118}
1119
1120/*
1121 * migrate_pages - migrate the pages specified in a list, to the free pages
1122 *		   supplied as the target for the page migration
1123 *
1124 * @from:		The list of pages to be migrated.
1125 * @get_new_page:	The function used to allocate free pages to be used
1126 *			as the target of the page migration.
1127 * @put_new_page:	The function used to free target pages if migration
1128 *			fails, or NULL if no special handling is necessary.
1129 * @private:		Private data to be passed on to get_new_page()
1130 * @mode:		The migration mode that specifies the constraints for
1131 *			page migration, if any.
1132 * @reason:		The reason for page migration.
1133 *
1134 * The function returns after 10 attempts or if no pages are movable any more
1135 * because the list has become empty or no retryable pages exist any more.
1136 * The caller should call putback_movable_pages() to return pages to the LRU
1137 * or free list only if ret != 0.
1138 *
1139 * Returns the number of pages that were not migrated, or an error code.
1140 */
1141int migrate_pages(struct list_head *from, new_page_t get_new_page,
1142		free_page_t put_new_page, unsigned long private,
1143		enum migrate_mode mode, int reason)
1144{
1145	int retry = 1;
 
1146	int nr_failed = 0;
1147	int nr_succeeded = 0;
 
 
 
1148	int pass = 0;
 
1149	struct page *page;
1150	struct page *page2;
1151	int swapwrite = current->flags & PF_SWAPWRITE;
1152	int rc;
 
 
 
 
1153
1154	if (!swapwrite)
1155		current->flags |= PF_SWAPWRITE;
1156
1157	for(pass = 0; pass < 10 && retry; pass++) {
1158		retry = 0;
 
1159
1160		list_for_each_entry_safe(page, page2, from, lru) {
 
 
 
 
 
 
 
 
1161			cond_resched();
1162
1163			if (PageHuge(page))
1164				rc = unmap_and_move_huge_page(get_new_page,
1165						put_new_page, private, page,
1166						pass > 2, mode, reason);
 
1167			else
1168				rc = unmap_and_move(get_new_page, put_new_page,
1169						private, page, pass > 2, mode,
1170						reason);
1171
 
 
 
 
 
 
 
 
1172			switch(rc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173			case -ENOMEM:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174				goto out;
1175			case -EAGAIN:
 
 
 
 
1176				retry++;
1177				break;
1178			case MIGRATEPAGE_SUCCESS:
 
 
 
 
 
1179				nr_succeeded++;
1180				break;
1181			default:
1182				/*
1183				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1184				 * unlike -EAGAIN case, the failed page is
1185				 * removed from migration page list and not
1186				 * retried in the next outer loop.
1187				 */
 
 
 
 
 
1188				nr_failed++;
1189				break;
1190			}
1191		}
1192	}
1193	nr_failed += retry;
 
1194	rc = nr_failed;
1195out:
1196	if (nr_succeeded)
1197		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1198	if (nr_failed)
1199		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1200	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
 
 
 
 
 
 
 
 
1201
1202	if (!swapwrite)
1203		current->flags &= ~PF_SWAPWRITE;
1204
1205	return rc;
1206}
1207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208#ifdef CONFIG_NUMA
1209/*
1210 * Move a list of individual pages
1211 */
1212struct page_to_node {
1213	unsigned long addr;
1214	struct page *page;
1215	int node;
1216	int status;
1217};
1218
1219static struct page *new_page_node(struct page *p, unsigned long private,
1220		int **result)
1221{
1222	struct page_to_node *pm = (struct page_to_node *)private;
1223
1224	while (pm->node != MAX_NUMNODES && pm->page != p)
1225		pm++;
 
1226
1227	if (pm->node == MAX_NUMNODES)
1228		return NULL;
1229
1230	*result = &pm->status;
 
 
 
 
 
 
 
1231
1232	if (PageHuge(p))
1233		return alloc_huge_page_node(page_hstate(compound_head(p)),
1234					pm->node);
1235	else
1236		return __alloc_pages_node(pm->node,
1237				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1238}
1239
1240/*
1241 * Move a set of pages as indicated in the pm array. The addr
1242 * field must be set to the virtual address of the page to be moved
1243 * and the node number must contain a valid target node.
1244 * The pm array ends with node = MAX_NUMNODES.
 
 
 
1245 */
1246static int do_move_page_to_node_array(struct mm_struct *mm,
1247				      struct page_to_node *pm,
1248				      int migrate_all)
1249{
 
 
 
1250	int err;
1251	struct page_to_node *pp;
1252	LIST_HEAD(pagelist);
1253
1254	down_read(&mm->mmap_sem);
 
 
 
 
1255
1256	/*
1257	 * Build a list of pages to migrate
1258	 */
1259	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1260		struct vm_area_struct *vma;
1261		struct page *page;
1262
1263		err = -EFAULT;
1264		vma = find_vma(mm, pp->addr);
1265		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1266			goto set_status;
1267
1268		/* FOLL_DUMP to ignore special (like zero) pages */
1269		page = follow_page(vma, pp->addr,
1270				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1271
1272		err = PTR_ERR(page);
1273		if (IS_ERR(page))
1274			goto set_status;
1275
1276		err = -ENOENT;
1277		if (!page)
1278			goto set_status;
 
 
 
 
 
 
 
 
1279
1280		pp->page = page;
1281		err = page_to_nid(page);
 
 
1282
1283		if (err == pp->node)
1284			/*
1285			 * Node already in the right place
1286			 */
1287			goto put_and_set;
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289		err = -EACCES;
1290		if (page_mapcount(page) > 1 &&
1291				!migrate_all)
1292			goto put_and_set;
1293
1294		if (PageHuge(page)) {
1295			if (PageHead(page))
1296				isolate_huge_page(page, &pagelist);
1297			goto put_and_set;
1298		}
1299
1300		err = isolate_lru_page(page);
1301		if (!err) {
1302			list_add_tail(&page->lru, &pagelist);
1303			inc_zone_page_state(page, NR_ISOLATED_ANON +
1304					    page_is_file_cache(page));
1305		}
1306put_and_set:
1307		/*
1308		 * Either remove the duplicate refcount from
1309		 * isolate_lru_page() or drop the page ref if it was
1310		 * not isolated.
 
 
 
1311		 */
1312		put_page(page);
1313set_status:
1314		pp->status = err;
1315	}
1316
1317	err = 0;
1318	if (!list_empty(&pagelist)) {
1319		err = migrate_pages(&pagelist, new_page_node, NULL,
1320				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1321		if (err)
1322			putback_movable_pages(&pagelist);
1323	}
1324
1325	up_read(&mm->mmap_sem);
1326	return err;
1327}
1328
1329/*
1330 * Migrate an array of page address onto an array of nodes and fill
1331 * the corresponding array of status.
1332 */
1333static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1334			 unsigned long nr_pages,
1335			 const void __user * __user *pages,
1336			 const int __user *nodes,
1337			 int __user *status, int flags)
1338{
1339	struct page_to_node *pm;
1340	unsigned long chunk_nr_pages;
1341	unsigned long chunk_start;
1342	int err;
1343
1344	err = -ENOMEM;
1345	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1346	if (!pm)
1347		goto out;
1348
1349	migrate_prep();
1350
1351	/*
1352	 * Store a chunk of page_to_node array in a page,
1353	 * but keep the last one as a marker
1354	 */
1355	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1356
1357	for (chunk_start = 0;
1358	     chunk_start < nr_pages;
1359	     chunk_start += chunk_nr_pages) {
1360		int j;
1361
1362		if (chunk_start + chunk_nr_pages > nr_pages)
1363			chunk_nr_pages = nr_pages - chunk_start;
1364
1365		/* fill the chunk pm with addrs and nodes from user-space */
1366		for (j = 0; j < chunk_nr_pages; j++) {
1367			const void __user *p;
1368			int node;
1369
1370			err = -EFAULT;
1371			if (get_user(p, pages + j + chunk_start))
1372				goto out_pm;
1373			pm[j].addr = (unsigned long) p;
1374
1375			if (get_user(node, nodes + j + chunk_start))
1376				goto out_pm;
 
 
 
 
 
 
 
 
 
 
1377
1378			err = -ENODEV;
1379			if (node < 0 || node >= MAX_NUMNODES)
1380				goto out_pm;
1381
1382			if (!node_state(node, N_MEMORY))
1383				goto out_pm;
 
 
 
 
 
 
 
 
 
1384
1385			err = -EACCES;
1386			if (!node_isset(node, task_nodes))
1387				goto out_pm;
 
 
 
1388
1389			pm[j].node = node;
 
 
1390		}
1391
1392		/* End marker for this chunk */
1393		pm[chunk_nr_pages].node = MAX_NUMNODES;
1394
1395		/* Migrate this chunk */
1396		err = do_move_page_to_node_array(mm, pm,
1397						 flags & MPOL_MF_MOVE_ALL);
1398		if (err < 0)
1399			goto out_pm;
1400
1401		/* Return status information */
1402		for (j = 0; j < chunk_nr_pages; j++)
1403			if (put_user(pm[j].status, status + j + chunk_start)) {
1404				err = -EFAULT;
1405				goto out_pm;
1406			}
1407	}
1408	err = 0;
1409
1410out_pm:
1411	free_page((unsigned long)pm);
 
 
1412out:
 
1413	return err;
1414}
1415
1416/*
1417 * Determine the nodes of an array of pages and store it in an array of status.
1418 */
1419static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1420				const void __user **pages, int *status)
1421{
1422	unsigned long i;
1423
1424	down_read(&mm->mmap_sem);
1425
1426	for (i = 0; i < nr_pages; i++) {
1427		unsigned long addr = (unsigned long)(*pages);
1428		struct vm_area_struct *vma;
1429		struct page *page;
1430		int err = -EFAULT;
1431
1432		vma = find_vma(mm, addr);
1433		if (!vma || addr < vma->vm_start)
1434			goto set_status;
1435
1436		/* FOLL_DUMP to ignore special (like zero) pages */
1437		page = follow_page(vma, addr, FOLL_DUMP);
1438
1439		err = PTR_ERR(page);
1440		if (IS_ERR(page))
1441			goto set_status;
1442
1443		err = page ? page_to_nid(page) : -ENOENT;
1444set_status:
1445		*status = err;
1446
1447		pages++;
1448		status++;
1449	}
1450
1451	up_read(&mm->mmap_sem);
1452}
1453
1454/*
1455 * Determine the nodes of a user array of pages and store it in
1456 * a user array of status.
1457 */
1458static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1459			 const void __user * __user *pages,
1460			 int __user *status)
1461{
1462#define DO_PAGES_STAT_CHUNK_NR 16
1463	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1464	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1465
1466	while (nr_pages) {
1467		unsigned long chunk_nr;
1468
1469		chunk_nr = nr_pages;
1470		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1471			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1472
1473		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1474			break;
1475
1476		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1477
1478		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1479			break;
1480
1481		pages += chunk_nr;
1482		status += chunk_nr;
1483		nr_pages -= chunk_nr;
1484	}
1485	return nr_pages ? -EFAULT : 0;
1486}
1487
1488/*
1489 * Move a list of pages in the address space of the currently executing
1490 * process.
1491 */
1492SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1493		const void __user * __user *, pages,
1494		const int __user *, nodes,
1495		int __user *, status, int, flags)
1496{
1497	const struct cred *cred = current_cred(), *tcred;
1498	struct task_struct *task;
1499	struct mm_struct *mm;
1500	int err;
1501	nodemask_t task_nodes;
1502
1503	/* Check flags */
1504	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1505		return -EINVAL;
1506
1507	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1508		return -EPERM;
 
 
 
 
 
 
 
1509
1510	/* Find the mm_struct */
1511	rcu_read_lock();
1512	task = pid ? find_task_by_vpid(pid) : current;
1513	if (!task) {
1514		rcu_read_unlock();
1515		return -ESRCH;
1516	}
1517	get_task_struct(task);
1518
1519	/*
1520	 * Check if this process has the right to modify the specified
1521	 * process. The right exists if the process has administrative
1522	 * capabilities, superuser privileges or the same
1523	 * userid as the target process.
1524	 */
1525	tcred = __task_cred(task);
1526	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1527	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1528	    !capable(CAP_SYS_NICE)) {
1529		rcu_read_unlock();
1530		err = -EPERM;
1531		goto out;
1532	}
1533	rcu_read_unlock();
1534
1535 	err = security_task_movememory(task);
1536 	if (err)
1537		goto out;
1538
1539	task_nodes = cpuset_mems_allowed(task);
1540	mm = get_task_mm(task);
 
1541	put_task_struct(task);
1542
1543	if (!mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544		return -EINVAL;
1545
 
 
 
 
 
 
 
1546	if (nodes)
1547		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1548				    nodes, status, flags);
1549	else
1550		err = do_pages_stat(mm, nr_pages, pages, status);
1551
1552	mmput(mm);
1553	return err;
 
1554
1555out:
1556	put_task_struct(task);
1557	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558}
 
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561/*
1562 * Returns true if this is a safe migration target node for misplaced NUMA
1563 * pages. Currently it only checks the watermarks which crude
1564 */
1565static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566				   unsigned long nr_migrate_pages)
1567{
1568	int z;
 
1569	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1570		struct zone *zone = pgdat->node_zones + z;
1571
1572		if (!populated_zone(zone))
1573			continue;
1574
1575		if (!zone_reclaimable(zone))
1576			continue;
1577
1578		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1579		if (!zone_watermark_ok(zone, 0,
1580				       high_wmark_pages(zone) +
1581				       nr_migrate_pages,
1582				       0, 0))
1583			continue;
1584		return true;
1585	}
1586	return false;
1587}
1588
1589static struct page *alloc_misplaced_dst_page(struct page *page,
1590					   unsigned long data,
1591					   int **result)
1592{
1593	int nid = (int) data;
1594	struct page *newpage;
1595
1596	newpage = __alloc_pages_node(nid,
1597					 (GFP_HIGHUSER_MOVABLE |
1598					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1599					  __GFP_NORETRY | __GFP_NOWARN) &
1600					 ~__GFP_RECLAIM, 0);
1601
1602	return newpage;
1603}
1604
1605/*
1606 * page migration rate limiting control.
1607 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1608 * window of time. Default here says do not migrate more than 1280M per second.
1609 */
1610static unsigned int migrate_interval_millisecs __read_mostly = 100;
1611static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1612
1613/* Returns true if the node is migrate rate-limited after the update */
1614static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1615					unsigned long nr_pages)
1616{
1617	/*
1618	 * Rate-limit the amount of data that is being migrated to a node.
1619	 * Optimal placement is no good if the memory bus is saturated and
1620	 * all the time is being spent migrating!
1621	 */
1622	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1623		spin_lock(&pgdat->numabalancing_migrate_lock);
1624		pgdat->numabalancing_migrate_nr_pages = 0;
1625		pgdat->numabalancing_migrate_next_window = jiffies +
1626			msecs_to_jiffies(migrate_interval_millisecs);
1627		spin_unlock(&pgdat->numabalancing_migrate_lock);
1628	}
1629	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1630		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1631								nr_pages);
1632		return true;
1633	}
1634
1635	/*
1636	 * This is an unlocked non-atomic update so errors are possible.
1637	 * The consequences are failing to migrate when we potentiall should
1638	 * have which is not severe enough to warrant locking. If it is ever
1639	 * a problem, it can be converted to a per-cpu counter.
1640	 */
1641	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1642	return false;
 
1643}
1644
1645static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1646{
1647	int page_lru;
1648
1649	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1650
1651	/* Avoid migrating to a node that is nearly full */
1652	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1653		return 0;
1654
1655	if (isolate_lru_page(page))
 
1656		return 0;
1657
1658	/*
1659	 * migrate_misplaced_transhuge_page() skips page migration's usual
1660	 * check on page_count(), so we must do it here, now that the page
1661	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1662	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1663	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1664	 */
1665	if (PageTransHuge(page) && page_count(page) != 3) {
1666		putback_lru_page(page);
1667		return 0;
1668	}
1669
1670	page_lru = page_is_file_cache(page);
1671	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1672				hpage_nr_pages(page));
1673
1674	/*
1675	 * Isolating the page has taken another reference, so the
1676	 * caller's reference can be safely dropped without the page
1677	 * disappearing underneath us during migration.
1678	 */
1679	put_page(page);
1680	return 1;
1681}
1682
1683bool pmd_trans_migrating(pmd_t pmd)
1684{
1685	struct page *page = pmd_page(pmd);
1686	return PageLocked(page);
1687}
1688
1689/*
1690 * Attempt to migrate a misplaced page to the specified destination
1691 * node. Caller is expected to have an elevated reference count on
1692 * the page that will be dropped by this function before returning.
1693 */
1694int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1695			   int node)
1696{
1697	pg_data_t *pgdat = NODE_DATA(node);
1698	int isolated;
1699	int nr_remaining;
1700	LIST_HEAD(migratepages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701
1702	/*
1703	 * Don't migrate file pages that are mapped in multiple processes
1704	 * with execute permissions as they are probably shared libraries.
1705	 */
1706	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1707	    (vma->vm_flags & VM_EXEC))
1708		goto out;
1709
1710	/*
1711	 * Rate-limit the amount of data that is being migrated to a node.
1712	 * Optimal placement is no good if the memory bus is saturated and
1713	 * all the time is being spent migrating!
1714	 */
1715	if (numamigrate_update_ratelimit(pgdat, 1))
1716		goto out;
1717
1718	isolated = numamigrate_isolate_page(pgdat, page);
1719	if (!isolated)
1720		goto out;
1721
1722	list_add(&page->lru, &migratepages);
1723	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1724				     NULL, node, MIGRATE_ASYNC,
1725				     MR_NUMA_MISPLACED);
1726	if (nr_remaining) {
1727		if (!list_empty(&migratepages)) {
1728			list_del(&page->lru);
1729			dec_zone_page_state(page, NR_ISOLATED_ANON +
1730					page_is_file_cache(page));
1731			putback_lru_page(page);
1732		}
1733		isolated = 0;
1734	} else
1735		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1736	BUG_ON(!list_empty(&migratepages));
1737	return isolated;
1738
1739out:
1740	put_page(page);
1741	return 0;
1742}
1743#endif /* CONFIG_NUMA_BALANCING */
 
1744
1745#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1746/*
1747 * Migrates a THP to a given target node. page must be locked and is unlocked
1748 * before returning.
1749 */
1750int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1751				struct vm_area_struct *vma,
1752				pmd_t *pmd, pmd_t entry,
1753				unsigned long address,
1754				struct page *page, int node)
1755{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	spinlock_t *ptl;
1757	pg_data_t *pgdat = NODE_DATA(node);
1758	int isolated = 0;
1759	struct page *new_page = NULL;
1760	int page_lru = page_is_file_cache(page);
1761	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1762	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1763	pmd_t orig_entry;
1764
1765	/*
1766	 * Rate-limit the amount of data that is being migrated to a node.
1767	 * Optimal placement is no good if the memory bus is saturated and
1768	 * all the time is being spent migrating!
1769	 */
1770	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1771		goto out_dropref;
1772
1773	new_page = alloc_pages_node(node,
1774		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1775		HPAGE_PMD_ORDER);
1776	if (!new_page)
1777		goto out_fail;
1778	prep_transhuge_page(new_page);
1779
1780	isolated = numamigrate_isolate_page(pgdat, page);
1781	if (!isolated) {
1782		put_page(new_page);
1783		goto out_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	/*
1786	 * We are not sure a pending tlb flush here is for a huge page
1787	 * mapping or not. Hence use the tlb range variant
 
1788	 */
1789	if (mm_tlb_flush_pending(mm))
1790		flush_tlb_range(vma, mmun_start, mmun_end);
 
 
1791
1792	/* Prepare a page as a migration target */
1793	__SetPageLocked(new_page);
1794	SetPageSwapBacked(new_page);
1795
1796	/* anon mapping, we can simply copy page->mapping to the new page: */
1797	new_page->mapping = page->mapping;
1798	new_page->index = page->index;
1799	migrate_page_copy(new_page, page);
1800	WARN_ON(PageLRU(new_page));
1801
1802	/* Recheck the target PMD */
1803	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1804	ptl = pmd_lock(mm, pmd);
1805	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1806fail_putback:
1807		spin_unlock(ptl);
1808		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1809
1810		/* Reverse changes made by migrate_page_copy() */
1811		if (TestClearPageActive(new_page))
1812			SetPageActive(page);
1813		if (TestClearPageUnevictable(new_page))
1814			SetPageUnevictable(page);
 
 
 
1815
1816		unlock_page(new_page);
1817		put_page(new_page);		/* Free it */
 
 
 
 
 
1818
1819		/* Retake the callers reference and putback on LRU */
1820		get_page(page);
1821		putback_lru_page(page);
1822		mod_zone_page_state(page_zone(page),
1823			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
 
 
1824
1825		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826	}
1827
1828	orig_entry = *pmd;
1829	entry = mk_pmd(new_page, vma->vm_page_prot);
1830	entry = pmd_mkhuge(entry);
1831	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1832
1833	/*
1834	 * Clear the old entry under pagetable lock and establish the new PTE.
1835	 * Any parallel GUP will either observe the old page blocking on the
1836	 * page lock, block on the page table lock or observe the new page.
1837	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1838	 * guarantee the copy is visible before the pagetable update.
1839	 */
1840	flush_cache_range(vma, mmun_start, mmun_end);
1841	page_add_anon_rmap(new_page, vma, mmun_start, true);
1842	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1843	set_pmd_at(mm, mmun_start, pmd, entry);
1844	update_mmu_cache_pmd(vma, address, &entry);
1845
1846	if (page_count(page) != 2) {
1847		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1848		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1849		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1850		update_mmu_cache_pmd(vma, address, &entry);
1851		page_remove_rmap(new_page, true);
1852		goto fail_putback;
1853	}
1854
1855	mlock_migrate_page(new_page, page);
1856	page_remove_rmap(page, true);
1857	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1858
1859	spin_unlock(ptl);
1860	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1861
1862	/* Take an "isolate" reference and put new page on the LRU. */
1863	get_page(new_page);
1864	putback_lru_page(new_page);
1865
1866	unlock_page(new_page);
1867	unlock_page(page);
1868	put_page(page);			/* Drop the rmap reference */
1869	put_page(page);			/* Drop the LRU isolation reference */
 
 
1870
1871	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1872	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873
1874	mod_zone_page_state(page_zone(page),
1875			NR_ISOLATED_ANON + page_lru,
1876			-HPAGE_PMD_NR);
1877	return isolated;
1878
1879out_fail:
1880	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1881out_dropref:
1882	ptl = pmd_lock(mm, pmd);
1883	if (pmd_same(*pmd, entry)) {
1884		entry = pmd_modify(entry, vma->vm_page_prot);
1885		set_pmd_at(mm, mmun_start, pmd, entry);
1886		update_mmu_cache_pmd(vma, address, &entry);
 
 
 
 
 
 
 
 
1887	}
1888	spin_unlock(ptl);
1889
1890out_unlock:
1891	unlock_page(page);
1892	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	return 0;
 
1894}
1895#endif /* CONFIG_NUMA_BALANCING */
1896
1897#endif /* CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60int isolate_movable_page(struct page *page, isolate_mode_t mode)
 
 
 
 
 
  61{
  62	struct address_space *mapping;
  63
  64	/*
  65	 * Avoid burning cycles with pages that are yet under __free_pages(),
  66	 * or just got freed under us.
  67	 *
  68	 * In case we 'win' a race for a movable page being freed under us and
  69	 * raise its refcount preventing __free_pages() from doing its job
  70	 * the put_page() at the end of this block will take care of
  71	 * release this page, thus avoiding a nasty leakage.
  72	 */
  73	if (unlikely(!get_page_unless_zero(page)))
  74		goto out;
  75
  76	/*
  77	 * Check PageMovable before holding a PG_lock because page's owner
  78	 * assumes anybody doesn't touch PG_lock of newly allocated page
  79	 * so unconditionally grabbing the lock ruins page's owner side.
  80	 */
  81	if (unlikely(!__PageMovable(page)))
  82		goto out_putpage;
  83	/*
  84	 * As movable pages are not isolated from LRU lists, concurrent
  85	 * compaction threads can race against page migration functions
  86	 * as well as race against the releasing a page.
  87	 *
  88	 * In order to avoid having an already isolated movable page
  89	 * being (wrongly) re-isolated while it is under migration,
  90	 * or to avoid attempting to isolate pages being released,
  91	 * lets be sure we have the page lock
  92	 * before proceeding with the movable page isolation steps.
  93	 */
  94	if (unlikely(!trylock_page(page)))
  95		goto out_putpage;
  96
  97	if (!PageMovable(page) || PageIsolated(page))
  98		goto out_no_isolated;
  99
 100	mapping = page_mapping(page);
 101	VM_BUG_ON_PAGE(!mapping, page);
 102
 103	if (!mapping->a_ops->isolate_page(page, mode))
 104		goto out_no_isolated;
 105
 106	/* Driver shouldn't use PG_isolated bit of page->flags */
 107	WARN_ON_ONCE(PageIsolated(page));
 108	__SetPageIsolated(page);
 109	unlock_page(page);
 110
 111	return 0;
 112
 113out_no_isolated:
 114	unlock_page(page);
 115out_putpage:
 116	put_page(page);
 117out:
 118	return -EBUSY;
 119}
 120
 121static void putback_movable_page(struct page *page)
 
 122{
 123	struct address_space *mapping;
 124
 125	mapping = page_mapping(page);
 126	mapping->a_ops->putback_page(page);
 127	__ClearPageIsolated(page);
 128}
 129
 130/*
 131 * Put previously isolated pages back onto the appropriate lists
 132 * from where they were once taken off for compaction/migration.
 133 *
 134 * This function shall be used whenever the isolated pageset has been
 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 136 * and isolate_huge_page().
 137 */
 138void putback_movable_pages(struct list_head *l)
 139{
 140	struct page *page;
 141	struct page *page2;
 142
 143	list_for_each_entry_safe(page, page2, l, lru) {
 144		if (unlikely(PageHuge(page))) {
 145			putback_active_hugepage(page);
 146			continue;
 147		}
 148		list_del(&page->lru);
 149		/*
 150		 * We isolated non-lru movable page so here we can use
 151		 * __PageMovable because LRU page's mapping cannot have
 152		 * PAGE_MAPPING_MOVABLE.
 153		 */
 154		if (unlikely(__PageMovable(page))) {
 155			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 156			lock_page(page);
 157			if (PageMovable(page))
 158				putback_movable_page(page);
 159			else
 160				__ClearPageIsolated(page);
 161			unlock_page(page);
 162			put_page(page);
 163		} else {
 164			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 165					page_is_file_lru(page), -thp_nr_pages(page));
 166			putback_lru_page(page);
 167		}
 168	}
 169}
 170
 171/*
 172 * Restore a potential migration pte to a working pte entry
 173 */
 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 175				 unsigned long addr, void *old)
 176{
 177	struct page_vma_mapped_walk pvmw = {
 178		.page = old,
 179		.vma = vma,
 180		.address = addr,
 181		.flags = PVMW_SYNC | PVMW_MIGRATION,
 182	};
 183	struct page *new;
 184	pte_t pte;
 185	swp_entry_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 186
 187	VM_BUG_ON_PAGE(PageTail(page), page);
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		if (PageKsm(page))
 190			new = page;
 191		else
 192			new = page - pvmw.page->index +
 193				linear_page_index(vma, pvmw.address);
 194
 195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 196		/* PMD-mapped THP migration entry */
 197		if (!pvmw.pte) {
 198			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 199			remove_migration_pmd(&pvmw, new);
 200			continue;
 201		}
 202#endif
 203
 204		get_page(new);
 205		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 206		if (pte_swp_soft_dirty(*pvmw.pte))
 207			pte = pte_mksoft_dirty(pte);
 208
 209		/*
 210		 * Recheck VMA as permissions can change since migration started
 
 211		 */
 212		entry = pte_to_swp_entry(*pvmw.pte);
 213		if (is_writable_migration_entry(entry))
 214			pte = maybe_mkwrite(pte, vma);
 215		else if (pte_swp_uffd_wp(*pvmw.pte))
 216			pte = pte_mkuffd_wp(pte);
 217
 218		if (unlikely(is_device_private_page(new))) {
 219			if (pte_write(pte))
 220				entry = make_writable_device_private_entry(
 221							page_to_pfn(new));
 222			else
 223				entry = make_readable_device_private_entry(
 224							page_to_pfn(new));
 225			pte = swp_entry_to_pte(entry);
 226			if (pte_swp_soft_dirty(*pvmw.pte))
 227				pte = pte_swp_mksoft_dirty(pte);
 228			if (pte_swp_uffd_wp(*pvmw.pte))
 229				pte = pte_swp_mkuffd_wp(pte);
 230		}
 231
 232#ifdef CONFIG_HUGETLB_PAGE
 233		if (PageHuge(new)) {
 234			unsigned int shift = huge_page_shift(hstate_vma(vma));
 
 
 
 
 235
 236			pte = pte_mkhuge(pte);
 237			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 238			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 239			if (PageAnon(new))
 240				hugepage_add_anon_rmap(new, vma, pvmw.address);
 241			else
 242				page_dup_rmap(new, true);
 243		} else
 244#endif
 245		{
 246			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 247
 248			if (PageAnon(new))
 249				page_add_anon_rmap(new, vma, pvmw.address, false);
 250			else
 251				page_add_file_rmap(new, false);
 252		}
 253		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 254			mlock_vma_page(new);
 255
 256		if (PageTransHuge(page) && PageMlocked(page))
 257			clear_page_mlock(page);
 
 
 
 
 
 
 258
 259		/* No need to invalidate - it was non-present before */
 260		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 
 
 261	}
 
 
 
 262
 263	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264}
 265
 266/*
 267 * Get rid of all migration entries and replace them by
 268 * references to the indicated page.
 269 */
 270void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 271{
 272	struct rmap_walk_control rwc = {
 273		.rmap_one = remove_migration_pte,
 274		.arg = old,
 275	};
 276
 277	if (locked)
 278		rmap_walk_locked(new, &rwc);
 279	else
 280		rmap_walk(new, &rwc);
 281}
 282
 283/*
 284 * Something used the pte of a page under migration. We need to
 285 * get to the page and wait until migration is finished.
 286 * When we return from this function the fault will be retried.
 287 */
 288void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 289				spinlock_t *ptl)
 290{
 291	pte_t pte;
 292	swp_entry_t entry;
 293	struct page *page;
 294
 295	spin_lock(ptl);
 296	pte = *ptep;
 297	if (!is_swap_pte(pte))
 298		goto out;
 299
 300	entry = pte_to_swp_entry(pte);
 301	if (!is_migration_entry(entry))
 302		goto out;
 303
 304	page = pfn_swap_entry_to_page(entry);
 305	page = compound_head(page);
 306
 307	/*
 308	 * Once page cache replacement of page migration started, page_count
 309	 * is zero; but we must not call put_and_wait_on_page_locked() without
 310	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 
 
 311	 */
 312	if (!get_page_unless_zero(page))
 313		goto out;
 314	pte_unmap_unlock(ptep, ptl);
 315	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 
 316	return;
 317out:
 318	pte_unmap_unlock(ptep, ptl);
 319}
 320
 321void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 322				unsigned long address)
 323{
 324	spinlock_t *ptl = pte_lockptr(mm, pmd);
 325	pte_t *ptep = pte_offset_map(pmd, address);
 326	__migration_entry_wait(mm, ptep, ptl);
 327}
 328
 329void migration_entry_wait_huge(struct vm_area_struct *vma,
 330		struct mm_struct *mm, pte_t *pte)
 331{
 332	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 333	__migration_entry_wait(mm, pte, ptl);
 334}
 335
 336#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 337void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 
 
 338{
 339	spinlock_t *ptl;
 340	struct page *page;
 
 
 
 
 
 
 341
 342	ptl = pmd_lock(mm, pmd);
 343	if (!is_pmd_migration_entry(*pmd))
 344		goto unlock;
 345	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
 346	if (!get_page_unless_zero(page))
 347		goto unlock;
 348	spin_unlock(ptl);
 349	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 350	return;
 351unlock:
 352	spin_unlock(ptl);
 353}
 354#endif
 355
 356static int expected_page_refs(struct address_space *mapping, struct page *page)
 357{
 358	int expected_count = 1;
 359
 360	/*
 361	 * Device private pages have an extra refcount as they are
 362	 * ZONE_DEVICE pages.
 363	 */
 364	expected_count += is_device_private_page(page);
 365	if (mapping)
 366		expected_count += thp_nr_pages(page) + page_has_private(page);
 
 
 
 
 
 
 
 
 
 
 
 367
 368	return expected_count;
 
 
 
 
 
 
 
 
 369}
 
 370
 371/*
 372 * Replace the page in the mapping.
 373 *
 374 * The number of remaining references must be:
 375 * 1 for anonymous pages without a mapping
 376 * 2 for pages with a mapping
 377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 378 */
 379int migrate_page_move_mapping(struct address_space *mapping,
 380		struct page *newpage, struct page *page, int extra_count)
 
 
 381{
 382	XA_STATE(xas, &mapping->i_pages, page_index(page));
 383	struct zone *oldzone, *newzone;
 384	int dirty;
 385	int expected_count = expected_page_refs(mapping, page) + extra_count;
 386	int nr = thp_nr_pages(page);
 387
 388	if (!mapping) {
 389		/* Anonymous page without mapping */
 390		if (page_count(page) != expected_count)
 391			return -EAGAIN;
 392
 393		/* No turning back from here */
 394		newpage->index = page->index;
 395		newpage->mapping = page->mapping;
 396		if (PageSwapBacked(page))
 397			__SetPageSwapBacked(newpage);
 398
 399		return MIGRATEPAGE_SUCCESS;
 400	}
 401
 402	oldzone = page_zone(page);
 403	newzone = page_zone(newpage);
 404
 405	xas_lock_irq(&xas);
 406	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 407		xas_unlock_irq(&xas);
 
 
 
 
 
 
 408		return -EAGAIN;
 409	}
 410
 411	if (!page_ref_freeze(page, expected_count)) {
 412		xas_unlock_irq(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413		return -EAGAIN;
 414	}
 415
 416	/*
 417	 * Now we know that no one else is looking at the page:
 418	 * no turning back from here.
 419	 */
 420	newpage->index = page->index;
 421	newpage->mapping = page->mapping;
 422	page_ref_add(newpage, nr); /* add cache reference */
 423	if (PageSwapBacked(page)) {
 424		__SetPageSwapBacked(newpage);
 425		if (PageSwapCache(page)) {
 426			SetPageSwapCache(newpage);
 427			set_page_private(newpage, page_private(page));
 428		}
 429	} else {
 430		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 431	}
 432
 433	/* Move dirty while page refs frozen and newpage not yet exposed */
 434	dirty = PageDirty(page);
 435	if (dirty) {
 436		ClearPageDirty(page);
 437		SetPageDirty(newpage);
 438	}
 439
 440	xas_store(&xas, newpage);
 441	if (PageTransHuge(page)) {
 442		int i;
 443
 444		for (i = 1; i < nr; i++) {
 445			xas_next(&xas);
 446			xas_store(&xas, newpage);
 447		}
 448	}
 449
 450	/*
 451	 * Drop cache reference from old page by unfreezing
 452	 * to one less reference.
 453	 * We know this isn't the last reference.
 454	 */
 455	page_ref_unfreeze(page, expected_count - nr);
 456
 457	xas_unlock(&xas);
 458	/* Leave irq disabled to prevent preemption while updating stats */
 459
 460	/*
 461	 * If moved to a different zone then also account
 462	 * the page for that zone. Other VM counters will be
 463	 * taken care of when we establish references to the
 464	 * new page and drop references to the old page.
 465	 *
 466	 * Note that anonymous pages are accounted for
 467	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 468	 * are mapped to swap space.
 469	 */
 470	if (newzone != oldzone) {
 471		struct lruvec *old_lruvec, *new_lruvec;
 472		struct mem_cgroup *memcg;
 473
 474		memcg = page_memcg(page);
 475		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 476		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 477
 478		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 479		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 480		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 481			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 482			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 483		}
 484#ifdef CONFIG_SWAP
 485		if (PageSwapCache(page)) {
 486			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 487			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 488		}
 489#endif
 490		if (dirty && mapping_can_writeback(mapping)) {
 491			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 492			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 493			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 494			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 495		}
 496	}
 497	local_irq_enable();
 498
 499	return MIGRATEPAGE_SUCCESS;
 500}
 501EXPORT_SYMBOL(migrate_page_move_mapping);
 502
 503/*
 504 * The expected number of remaining references is the same as that
 505 * of migrate_page_move_mapping().
 506 */
 507int migrate_huge_page_move_mapping(struct address_space *mapping,
 508				   struct page *newpage, struct page *page)
 509{
 510	XA_STATE(xas, &mapping->i_pages, page_index(page));
 511	int expected_count;
 
 
 
 
 
 
 512
 513	xas_lock_irq(&xas);
 514	expected_count = 2 + page_has_private(page);
 515	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 516		xas_unlock_irq(&xas);
 
 517		return -EAGAIN;
 518	}
 519
 520	if (!page_ref_freeze(page, expected_count)) {
 521		xas_unlock_irq(&xas);
 522		return -EAGAIN;
 523	}
 524
 525	newpage->index = page->index;
 526	newpage->mapping = page->mapping;
 527
 528	get_page(newpage);
 529
 530	xas_store(&xas, newpage);
 531
 532	page_ref_unfreeze(page, expected_count - 1);
 533
 534	xas_unlock_irq(&xas);
 535
 536	return MIGRATEPAGE_SUCCESS;
 537}
 538
 539/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540 * Copy the page to its new location
 541 */
 542void migrate_page_states(struct page *newpage, struct page *page)
 543{
 544	int cpupid;
 545
 
 
 
 
 
 546	if (PageError(page))
 547		SetPageError(newpage);
 548	if (PageReferenced(page))
 549		SetPageReferenced(newpage);
 550	if (PageUptodate(page))
 551		SetPageUptodate(newpage);
 552	if (TestClearPageActive(page)) {
 553		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 554		SetPageActive(newpage);
 555	} else if (TestClearPageUnevictable(page))
 556		SetPageUnevictable(newpage);
 557	if (PageWorkingset(page))
 558		SetPageWorkingset(newpage);
 559	if (PageChecked(page))
 560		SetPageChecked(newpage);
 561	if (PageMappedToDisk(page))
 562		SetPageMappedToDisk(newpage);
 563
 564	/* Move dirty on pages not done by migrate_page_move_mapping() */
 565	if (PageDirty(page))
 566		SetPageDirty(newpage);
 567
 568	if (page_is_young(page))
 569		set_page_young(newpage);
 570	if (page_is_idle(page))
 571		set_page_idle(newpage);
 572
 573	/*
 574	 * Copy NUMA information to the new page, to prevent over-eager
 575	 * future migrations of this same page.
 576	 */
 577	cpupid = page_cpupid_xchg_last(page, -1);
 578	page_cpupid_xchg_last(newpage, cpupid);
 579
 580	ksm_migrate_page(newpage, page);
 581	/*
 582	 * Please do not reorder this without considering how mm/ksm.c's
 583	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 584	 */
 585	if (PageSwapCache(page))
 586		ClearPageSwapCache(page);
 587	ClearPagePrivate(page);
 588
 589	/* page->private contains hugetlb specific flags */
 590	if (!PageHuge(page))
 591		set_page_private(page, 0);
 592
 593	/*
 594	 * If any waiters have accumulated on the new page then
 595	 * wake them up.
 596	 */
 597	if (PageWriteback(newpage))
 598		end_page_writeback(newpage);
 599
 600	/*
 601	 * PG_readahead shares the same bit with PG_reclaim.  The above
 602	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 603	 * bit after that.
 604	 */
 605	if (PageReadahead(page))
 606		SetPageReadahead(newpage);
 607
 608	copy_page_owner(page, newpage);
 609
 610	if (!PageHuge(page))
 611		mem_cgroup_migrate(page, newpage);
 612}
 613EXPORT_SYMBOL(migrate_page_states);
 614
 615void migrate_page_copy(struct page *newpage, struct page *page)
 616{
 617	if (PageHuge(page) || PageTransHuge(page))
 618		copy_huge_page(newpage, page);
 619	else
 620		copy_highpage(newpage, page);
 621
 622	migrate_page_states(newpage, page);
 623}
 624EXPORT_SYMBOL(migrate_page_copy);
 625
 626/************************************************************
 627 *                    Migration functions
 628 ***********************************************************/
 629
 630/*
 631 * Common logic to directly migrate a single LRU page suitable for
 632 * pages that do not use PagePrivate/PagePrivate2.
 633 *
 634 * Pages are locked upon entry and exit.
 635 */
 636int migrate_page(struct address_space *mapping,
 637		struct page *newpage, struct page *page,
 638		enum migrate_mode mode)
 639{
 640	int rc;
 641
 642	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 643
 644	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 645
 646	if (rc != MIGRATEPAGE_SUCCESS)
 647		return rc;
 648
 649	if (mode != MIGRATE_SYNC_NO_COPY)
 650		migrate_page_copy(newpage, page);
 651	else
 652		migrate_page_states(newpage, page);
 653	return MIGRATEPAGE_SUCCESS;
 654}
 655EXPORT_SYMBOL(migrate_page);
 656
 657#ifdef CONFIG_BLOCK
 658/* Returns true if all buffers are successfully locked */
 659static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 660							enum migrate_mode mode)
 661{
 662	struct buffer_head *bh = head;
 663
 664	/* Simple case, sync compaction */
 665	if (mode != MIGRATE_ASYNC) {
 666		do {
 667			lock_buffer(bh);
 668			bh = bh->b_this_page;
 669
 670		} while (bh != head);
 671
 672		return true;
 673	}
 674
 675	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 676	do {
 677		if (!trylock_buffer(bh)) {
 678			/*
 679			 * We failed to lock the buffer and cannot stall in
 680			 * async migration. Release the taken locks
 681			 */
 682			struct buffer_head *failed_bh = bh;
 683			bh = head;
 684			while (bh != failed_bh) {
 685				unlock_buffer(bh);
 686				bh = bh->b_this_page;
 687			}
 688			return false;
 689		}
 690
 691		bh = bh->b_this_page;
 692	} while (bh != head);
 693	return true;
 694}
 695
 696static int __buffer_migrate_page(struct address_space *mapping,
 697		struct page *newpage, struct page *page, enum migrate_mode mode,
 698		bool check_refs)
 699{
 700	struct buffer_head *bh, *head;
 701	int rc;
 702	int expected_count;
 703
 704	if (!page_has_buffers(page))
 705		return migrate_page(mapping, newpage, page, mode);
 706
 707	/* Check whether page does not have extra refs before we do more work */
 708	expected_count = expected_page_refs(mapping, page);
 709	if (page_count(page) != expected_count)
 710		return -EAGAIN;
 711
 712	head = page_buffers(page);
 713	if (!buffer_migrate_lock_buffers(head, mode))
 714		return -EAGAIN;
 715
 716	if (check_refs) {
 717		bool busy;
 718		bool invalidated = false;
 719
 720recheck_buffers:
 721		busy = false;
 722		spin_lock(&mapping->private_lock);
 723		bh = head;
 724		do {
 725			if (atomic_read(&bh->b_count)) {
 726				busy = true;
 727				break;
 728			}
 729			bh = bh->b_this_page;
 730		} while (bh != head);
 731		if (busy) {
 732			if (invalidated) {
 733				rc = -EAGAIN;
 734				goto unlock_buffers;
 735			}
 736			spin_unlock(&mapping->private_lock);
 737			invalidate_bh_lrus();
 738			invalidated = true;
 739			goto recheck_buffers;
 740		}
 741	}
 742
 743	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 744	if (rc != MIGRATEPAGE_SUCCESS)
 745		goto unlock_buffers;
 
 
 
 
 
 
 
 
 746
 747	attach_page_private(newpage, detach_page_private(page));
 
 
 
 
 748
 749	bh = head;
 750	do {
 751		set_bh_page(bh, newpage, bh_offset(bh));
 752		bh = bh->b_this_page;
 753
 754	} while (bh != head);
 755
 756	if (mode != MIGRATE_SYNC_NO_COPY)
 757		migrate_page_copy(newpage, page);
 758	else
 759		migrate_page_states(newpage, page);
 760
 761	rc = MIGRATEPAGE_SUCCESS;
 762unlock_buffers:
 763	if (check_refs)
 764		spin_unlock(&mapping->private_lock);
 765	bh = head;
 766	do {
 767		unlock_buffer(bh);
 
 768		bh = bh->b_this_page;
 769
 770	} while (bh != head);
 771
 772	return rc;
 773}
 774
 775/*
 776 * Migration function for pages with buffers. This function can only be used
 777 * if the underlying filesystem guarantees that no other references to "page"
 778 * exist. For example attached buffer heads are accessed only under page lock.
 779 */
 780int buffer_migrate_page(struct address_space *mapping,
 781		struct page *newpage, struct page *page, enum migrate_mode mode)
 782{
 783	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 784}
 785EXPORT_SYMBOL(buffer_migrate_page);
 786
 787/*
 788 * Same as above except that this variant is more careful and checks that there
 789 * are also no buffer head references. This function is the right one for
 790 * mappings where buffer heads are directly looked up and referenced (such as
 791 * block device mappings).
 792 */
 793int buffer_migrate_page_norefs(struct address_space *mapping,
 794		struct page *newpage, struct page *page, enum migrate_mode mode)
 795{
 796	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 797}
 798#endif
 799
 800/*
 801 * Writeback a page to clean the dirty state
 802 */
 803static int writeout(struct address_space *mapping, struct page *page)
 804{
 805	struct writeback_control wbc = {
 806		.sync_mode = WB_SYNC_NONE,
 807		.nr_to_write = 1,
 808		.range_start = 0,
 809		.range_end = LLONG_MAX,
 810		.for_reclaim = 1
 811	};
 812	int rc;
 813
 814	if (!mapping->a_ops->writepage)
 815		/* No write method for the address space */
 816		return -EINVAL;
 817
 818	if (!clear_page_dirty_for_io(page))
 819		/* Someone else already triggered a write */
 820		return -EAGAIN;
 821
 822	/*
 823	 * A dirty page may imply that the underlying filesystem has
 824	 * the page on some queue. So the page must be clean for
 825	 * migration. Writeout may mean we loose the lock and the
 826	 * page state is no longer what we checked for earlier.
 827	 * At this point we know that the migration attempt cannot
 828	 * be successful.
 829	 */
 830	remove_migration_ptes(page, page, false);
 831
 832	rc = mapping->a_ops->writepage(page, &wbc);
 833
 834	if (rc != AOP_WRITEPAGE_ACTIVATE)
 835		/* unlocked. Relock */
 836		lock_page(page);
 837
 838	return (rc < 0) ? -EIO : -EAGAIN;
 839}
 840
 841/*
 842 * Default handling if a filesystem does not provide a migration function.
 843 */
 844static int fallback_migrate_page(struct address_space *mapping,
 845	struct page *newpage, struct page *page, enum migrate_mode mode)
 846{
 847	if (PageDirty(page)) {
 848		/* Only writeback pages in full synchronous migration */
 849		switch (mode) {
 850		case MIGRATE_SYNC:
 851		case MIGRATE_SYNC_NO_COPY:
 852			break;
 853		default:
 854			return -EBUSY;
 855		}
 856		return writeout(mapping, page);
 857	}
 858
 859	/*
 860	 * Buffers may be managed in a filesystem specific way.
 861	 * We must have no buffers or drop them.
 862	 */
 863	if (page_has_private(page) &&
 864	    !try_to_release_page(page, GFP_KERNEL))
 865		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 866
 867	return migrate_page(mapping, newpage, page, mode);
 868}
 869
 870/*
 871 * Move a page to a newly allocated page
 872 * The page is locked and all ptes have been successfully removed.
 873 *
 874 * The new page will have replaced the old page if this function
 875 * is successful.
 876 *
 877 * Return value:
 878 *   < 0 - error code
 879 *  MIGRATEPAGE_SUCCESS - success
 880 */
 881static int move_to_new_page(struct page *newpage, struct page *page,
 882				enum migrate_mode mode)
 883{
 884	struct address_space *mapping;
 885	int rc = -EAGAIN;
 886	bool is_lru = !__PageMovable(page);
 887
 888	VM_BUG_ON_PAGE(!PageLocked(page), page);
 889	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 890
 891	mapping = page_mapping(page);
 892
 893	if (likely(is_lru)) {
 894		if (!mapping)
 895			rc = migrate_page(mapping, newpage, page, mode);
 896		else if (mapping->a_ops->migratepage)
 897			/*
 898			 * Most pages have a mapping and most filesystems
 899			 * provide a migratepage callback. Anonymous pages
 900			 * are part of swap space which also has its own
 901			 * migratepage callback. This is the most common path
 902			 * for page migration.
 903			 */
 904			rc = mapping->a_ops->migratepage(mapping, newpage,
 905							page, mode);
 906		else
 907			rc = fallback_migrate_page(mapping, newpage,
 908							page, mode);
 909	} else {
 910		/*
 911		 * In case of non-lru page, it could be released after
 912		 * isolation step. In that case, we shouldn't try migration.
 
 
 913		 */
 914		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 915		if (!PageMovable(page)) {
 916			rc = MIGRATEPAGE_SUCCESS;
 917			__ClearPageIsolated(page);
 918			goto out;
 919		}
 920
 921		rc = mapping->a_ops->migratepage(mapping, newpage,
 922						page, mode);
 923		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 924			!PageIsolated(page));
 925	}
 926
 927	/*
 928	 * When successful, old pagecache page->mapping must be cleared before
 929	 * page is freed; but stats require that PageAnon be left as PageAnon.
 930	 */
 931	if (rc == MIGRATEPAGE_SUCCESS) {
 932		if (__PageMovable(page)) {
 933			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 934
 935			/*
 936			 * We clear PG_movable under page_lock so any compactor
 937			 * cannot try to migrate this page.
 938			 */
 939			__ClearPageIsolated(page);
 940		}
 941
 942		/*
 943		 * Anonymous and movable page->mapping will be cleared by
 944		 * free_pages_prepare so don't reset it here for keeping
 945		 * the type to work PageAnon, for example.
 946		 */
 947		if (!PageMappingFlags(page))
 948			page->mapping = NULL;
 949
 950		if (likely(!is_zone_device_page(newpage)))
 951			flush_dcache_page(newpage);
 952
 953	}
 954out:
 955	return rc;
 956}
 957
 958static int __unmap_and_move(struct page *page, struct page *newpage,
 959				int force, enum migrate_mode mode)
 960{
 961	int rc = -EAGAIN;
 962	int page_was_mapped = 0;
 963	struct anon_vma *anon_vma = NULL;
 964	bool is_lru = !__PageMovable(page);
 965
 966	if (!trylock_page(page)) {
 967		if (!force || mode == MIGRATE_ASYNC)
 968			goto out;
 969
 970		/*
 971		 * It's not safe for direct compaction to call lock_page.
 972		 * For example, during page readahead pages are added locked
 973		 * to the LRU. Later, when the IO completes the pages are
 974		 * marked uptodate and unlocked. However, the queueing
 975		 * could be merging multiple pages for one bio (e.g.
 976		 * mpage_readahead). If an allocation happens for the
 977		 * second or third page, the process can end up locking
 978		 * the same page twice and deadlocking. Rather than
 979		 * trying to be clever about what pages can be locked,
 980		 * avoid the use of lock_page for direct compaction
 981		 * altogether.
 982		 */
 983		if (current->flags & PF_MEMALLOC)
 984			goto out;
 985
 986		lock_page(page);
 987	}
 988
 989	if (PageWriteback(page)) {
 990		/*
 991		 * Only in the case of a full synchronous migration is it
 992		 * necessary to wait for PageWriteback. In the async case,
 993		 * the retry loop is too short and in the sync-light case,
 994		 * the overhead of stalling is too much
 995		 */
 996		switch (mode) {
 997		case MIGRATE_SYNC:
 998		case MIGRATE_SYNC_NO_COPY:
 999			break;
1000		default:
1001			rc = -EBUSY;
1002			goto out_unlock;
1003		}
1004		if (!force)
1005			goto out_unlock;
1006		wait_on_page_writeback(page);
1007	}
1008
1009	/*
1010	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1011	 * we cannot notice that anon_vma is freed while we migrates a page.
1012	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1013	 * of migration. File cache pages are no problem because of page_lock()
1014	 * File Caches may use write_page() or lock_page() in migration, then,
1015	 * just care Anon page here.
1016	 *
1017	 * Only page_get_anon_vma() understands the subtleties of
1018	 * getting a hold on an anon_vma from outside one of its mms.
1019	 * But if we cannot get anon_vma, then we won't need it anyway,
1020	 * because that implies that the anon page is no longer mapped
1021	 * (and cannot be remapped so long as we hold the page lock).
1022	 */
1023	if (PageAnon(page) && !PageKsm(page))
1024		anon_vma = page_get_anon_vma(page);
1025
1026	/*
1027	 * Block others from accessing the new page when we get around to
1028	 * establishing additional references. We are usually the only one
1029	 * holding a reference to newpage at this point. We used to have a BUG
1030	 * here if trylock_page(newpage) fails, but would like to allow for
1031	 * cases where there might be a race with the previous use of newpage.
1032	 * This is much like races on refcount of oldpage: just don't BUG().
1033	 */
1034	if (unlikely(!trylock_page(newpage)))
1035		goto out_unlock;
1036
1037	if (unlikely(!is_lru)) {
1038		rc = move_to_new_page(newpage, page, mode);
 
 
 
 
 
 
 
1039		goto out_unlock_both;
1040	}
1041
1042	/*
1043	 * Corner case handling:
1044	 * 1. When a new swap-cache page is read into, it is added to the LRU
1045	 * and treated as swapcache but it has no rmap yet.
1046	 * Calling try_to_unmap() against a page->mapping==NULL page will
1047	 * trigger a BUG.  So handle it here.
1048	 * 2. An orphaned page (see truncate_cleanup_page) might have
1049	 * fs-private metadata. The page can be picked up due to memory
1050	 * offlining.  Everywhere else except page reclaim, the page is
1051	 * invisible to the vm, so the page can not be migrated.  So try to
1052	 * free the metadata, so the page can be freed.
1053	 */
1054	if (!page->mapping) {
1055		VM_BUG_ON_PAGE(PageAnon(page), page);
1056		if (page_has_private(page)) {
1057			try_to_free_buffers(page);
1058			goto out_unlock_both;
1059		}
1060	} else if (page_mapped(page)) {
1061		/* Establish migration ptes */
1062		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063				page);
1064		try_to_migrate(page, 0);
 
1065		page_was_mapped = 1;
1066	}
1067
1068	if (!page_mapped(page))
1069		rc = move_to_new_page(newpage, page, mode);
1070
1071	if (page_was_mapped)
1072		remove_migration_ptes(page,
1073			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074
1075out_unlock_both:
1076	unlock_page(newpage);
1077out_unlock:
1078	/* Drop an anon_vma reference if we took one */
1079	if (anon_vma)
1080		put_anon_vma(anon_vma);
1081	unlock_page(page);
1082out:
1083	/*
1084	 * If migration is successful, decrease refcount of the newpage
1085	 * which will not free the page because new page owner increased
1086	 * refcounter. As well, if it is LRU page, add the page to LRU
1087	 * list in here. Use the old state of the isolated source page to
1088	 * determine if we migrated a LRU page. newpage was already unlocked
1089	 * and possibly modified by its owner - don't rely on the page
1090	 * state.
1091	 */
1092	if (rc == MIGRATEPAGE_SUCCESS) {
1093		if (unlikely(!is_lru))
1094			put_page(newpage);
1095		else
1096			putback_lru_page(newpage);
1097	}
1098
1099	return rc;
1100}
1101
1102/*
 
 
 
 
 
 
 
 
 
 
1103 * Obtain the lock on page, remove all ptes and migrate the page
1104 * to the newly allocated page in newpage.
1105 */
1106static int unmap_and_move(new_page_t get_new_page,
1107				   free_page_t put_new_page,
1108				   unsigned long private, struct page *page,
1109				   int force, enum migrate_mode mode,
1110				   enum migrate_reason reason,
1111				   struct list_head *ret)
1112{
1113	int rc = MIGRATEPAGE_SUCCESS;
1114	struct page *newpage = NULL;
 
1115
1116	if (!thp_migration_supported() && PageTransHuge(page))
1117		return -ENOSYS;
 
1118
1119	if (page_count(page) == 1) {
1120		/* page was freed from under us. So we are done. */
1121		ClearPageActive(page);
1122		ClearPageUnevictable(page);
1123		if (unlikely(__PageMovable(page))) {
1124			lock_page(page);
1125			if (!PageMovable(page))
1126				__ClearPageIsolated(page);
1127			unlock_page(page);
1128		}
1129		goto out;
1130	}
1131
1132	newpage = get_new_page(page, private);
1133	if (!newpage)
1134		return -ENOMEM;
 
 
 
 
1135
1136	rc = __unmap_and_move(page, newpage, force, mode);
1137	if (rc == MIGRATEPAGE_SUCCESS)
 
1138		set_page_owner_migrate_reason(newpage, reason);
 
1139
1140out:
1141	if (rc != -EAGAIN) {
1142		/*
1143		 * A page that has been migrated has all references
1144		 * removed and will be freed. A page that has not been
1145		 * migrated will have kept its references and be restored.
 
1146		 */
1147		list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	}
1149
1150	/*
1151	 * If migration is successful, releases reference grabbed during
1152	 * isolation. Otherwise, restore the page to right list unless
1153	 * we want to retry.
1154	 */
1155	if (rc == MIGRATEPAGE_SUCCESS) {
1156		/*
1157		 * Compaction can migrate also non-LRU pages which are
1158		 * not accounted to NR_ISOLATED_*. They can be recognized
1159		 * as __PageMovable
1160		 */
1161		if (likely(!__PageMovable(page)))
1162			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1163					page_is_file_lru(page), -thp_nr_pages(page));
1164
1165		if (reason != MR_MEMORY_FAILURE)
1166			/*
1167			 * We release the page in page_handle_poison.
1168			 */
1169			put_page(page);
1170	} else {
1171		if (rc != -EAGAIN)
1172			list_add_tail(&page->lru, ret);
1173
1174		if (put_new_page)
1175			put_new_page(newpage, private);
 
1176		else
1177			put_page(newpage);
1178	}
1179
1180	return rc;
1181}
1182
1183/*
1184 * Counterpart of unmap_and_move_page() for hugepage migration.
1185 *
1186 * This function doesn't wait the completion of hugepage I/O
1187 * because there is no race between I/O and migration for hugepage.
1188 * Note that currently hugepage I/O occurs only in direct I/O
1189 * where no lock is held and PG_writeback is irrelevant,
1190 * and writeback status of all subpages are counted in the reference
1191 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192 * under direct I/O, the reference of the head page is 512 and a bit more.)
1193 * This means that when we try to migrate hugepage whose subpages are
1194 * doing direct I/O, some references remain after try_to_unmap() and
1195 * hugepage migration fails without data corruption.
1196 *
1197 * There is also no race when direct I/O is issued on the page under migration,
1198 * because then pte is replaced with migration swap entry and direct I/O code
1199 * will wait in the page fault for migration to complete.
1200 */
1201static int unmap_and_move_huge_page(new_page_t get_new_page,
1202				free_page_t put_new_page, unsigned long private,
1203				struct page *hpage, int force,
1204				enum migrate_mode mode, int reason,
1205				struct list_head *ret)
1206{
1207	int rc = -EAGAIN;
 
1208	int page_was_mapped = 0;
1209	struct page *new_hpage;
1210	struct anon_vma *anon_vma = NULL;
1211	struct address_space *mapping = NULL;
1212
1213	/*
1214	 * Migratability of hugepages depends on architectures and their size.
1215	 * This check is necessary because some callers of hugepage migration
1216	 * like soft offline and memory hotremove don't walk through page
1217	 * tables or check whether the hugepage is pmd-based or not before
1218	 * kicking migration.
1219	 */
1220	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221		list_move_tail(&hpage->lru, ret);
1222		return -ENOSYS;
1223	}
1224
1225	if (page_count(hpage) == 1) {
1226		/* page was freed from under us. So we are done. */
1227		putback_active_hugepage(hpage);
1228		return MIGRATEPAGE_SUCCESS;
1229	}
1230
1231	new_hpage = get_new_page(hpage, private);
1232	if (!new_hpage)
1233		return -ENOMEM;
1234
1235	if (!trylock_page(hpage)) {
1236		if (!force)
1237			goto out;
1238		switch (mode) {
1239		case MIGRATE_SYNC:
1240		case MIGRATE_SYNC_NO_COPY:
1241			break;
1242		default:
1243			goto out;
1244		}
1245		lock_page(hpage);
1246	}
1247
1248	/*
1249	 * Check for pages which are in the process of being freed.  Without
1250	 * page_mapping() set, hugetlbfs specific move page routine will not
1251	 * be called and we could leak usage counts for subpools.
1252	 */
1253	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1254		rc = -EBUSY;
1255		goto out_unlock;
1256	}
1257
1258	if (PageAnon(hpage))
1259		anon_vma = page_get_anon_vma(hpage);
1260
1261	if (unlikely(!trylock_page(new_hpage)))
1262		goto put_anon;
1263
1264	if (page_mapped(hpage)) {
1265		bool mapping_locked = false;
1266		enum ttu_flags ttu = 0;
1267
1268		if (!PageAnon(hpage)) {
1269			/*
1270			 * In shared mappings, try_to_unmap could potentially
1271			 * call huge_pmd_unshare.  Because of this, take
1272			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1273			 * to let lower levels know we have taken the lock.
1274			 */
1275			mapping = hugetlb_page_mapping_lock_write(hpage);
1276			if (unlikely(!mapping))
1277				goto unlock_put_anon;
1278
1279			mapping_locked = true;
1280			ttu |= TTU_RMAP_LOCKED;
1281		}
1282
1283		try_to_migrate(hpage, ttu);
1284		page_was_mapped = 1;
1285
1286		if (mapping_locked)
1287			i_mmap_unlock_write(mapping);
1288	}
1289
1290	if (!page_mapped(hpage))
1291		rc = move_to_new_page(new_hpage, hpage, mode);
1292
1293	if (page_was_mapped)
1294		remove_migration_ptes(hpage,
1295			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1296
1297unlock_put_anon:
1298	unlock_page(new_hpage);
1299
1300put_anon:
1301	if (anon_vma)
1302		put_anon_vma(anon_vma);
1303
1304	if (rc == MIGRATEPAGE_SUCCESS) {
1305		move_hugetlb_state(hpage, new_hpage, reason);
1306		put_new_page = NULL;
 
1307	}
1308
1309out_unlock:
1310	unlock_page(hpage);
1311out:
1312	if (rc == MIGRATEPAGE_SUCCESS)
1313		putback_active_hugepage(hpage);
1314	else if (rc != -EAGAIN)
1315		list_move_tail(&hpage->lru, ret);
1316
1317	/*
1318	 * If migration was not successful and there's a freeing callback, use
1319	 * it.  Otherwise, put_page() will drop the reference grabbed during
1320	 * isolation.
1321	 */
1322	if (put_new_page)
1323		put_new_page(new_hpage, private);
1324	else
1325		putback_active_hugepage(new_hpage);
1326
1327	return rc;
1328}
1329
1330static inline int try_split_thp(struct page *page, struct page **page2,
1331				struct list_head *from)
1332{
1333	int rc = 0;
1334
1335	lock_page(page);
1336	rc = split_huge_page_to_list(page, from);
1337	unlock_page(page);
1338	if (!rc)
1339		list_safe_reset_next(page, *page2, lru);
1340
1341	return rc;
1342}
1343
1344/*
1345 * migrate_pages - migrate the pages specified in a list, to the free pages
1346 *		   supplied as the target for the page migration
1347 *
1348 * @from:		The list of pages to be migrated.
1349 * @get_new_page:	The function used to allocate free pages to be used
1350 *			as the target of the page migration.
1351 * @put_new_page:	The function used to free target pages if migration
1352 *			fails, or NULL if no special handling is necessary.
1353 * @private:		Private data to be passed on to get_new_page()
1354 * @mode:		The migration mode that specifies the constraints for
1355 *			page migration, if any.
1356 * @reason:		The reason for page migration.
1357 *
1358 * The function returns after 10 attempts or if no pages are movable any more
1359 * because the list has become empty or no retryable pages exist any more.
1360 * It is caller's responsibility to call putback_movable_pages() to return pages
1361 * to the LRU or free list only if ret != 0.
1362 *
1363 * Returns the number of pages that were not migrated, or an error code.
1364 */
1365int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366		free_page_t put_new_page, unsigned long private,
1367		enum migrate_mode mode, int reason)
1368{
1369	int retry = 1;
1370	int thp_retry = 1;
1371	int nr_failed = 0;
1372	int nr_succeeded = 0;
1373	int nr_thp_succeeded = 0;
1374	int nr_thp_failed = 0;
1375	int nr_thp_split = 0;
1376	int pass = 0;
1377	bool is_thp = false;
1378	struct page *page;
1379	struct page *page2;
1380	int swapwrite = current->flags & PF_SWAPWRITE;
1381	int rc, nr_subpages;
1382	LIST_HEAD(ret_pages);
1383	bool nosplit = (reason == MR_NUMA_MISPLACED);
1384
1385	trace_mm_migrate_pages_start(mode, reason);
1386
1387	if (!swapwrite)
1388		current->flags |= PF_SWAPWRITE;
1389
1390	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1391		retry = 0;
1392		thp_retry = 0;
1393
1394		list_for_each_entry_safe(page, page2, from, lru) {
1395retry:
1396			/*
1397			 * THP statistics is based on the source huge page.
1398			 * Capture required information that might get lost
1399			 * during migration.
1400			 */
1401			is_thp = PageTransHuge(page) && !PageHuge(page);
1402			nr_subpages = thp_nr_pages(page);
1403			cond_resched();
1404
1405			if (PageHuge(page))
1406				rc = unmap_and_move_huge_page(get_new_page,
1407						put_new_page, private, page,
1408						pass > 2, mode, reason,
1409						&ret_pages);
1410			else
1411				rc = unmap_and_move(get_new_page, put_new_page,
1412						private, page, pass > 2, mode,
1413						reason, &ret_pages);
1414			/*
1415			 * The rules are:
1416			 *	Success: non hugetlb page will be freed, hugetlb
1417			 *		 page will be put back
1418			 *	-EAGAIN: stay on the from list
1419			 *	-ENOMEM: stay on the from list
1420			 *	Other errno: put on ret_pages list then splice to
1421			 *		     from list
1422			 */
1423			switch(rc) {
1424			/*
1425			 * THP migration might be unsupported or the
1426			 * allocation could've failed so we should
1427			 * retry on the same page with the THP split
1428			 * to base pages.
1429			 *
1430			 * Head page is retried immediately and tail
1431			 * pages are added to the tail of the list so
1432			 * we encounter them after the rest of the list
1433			 * is processed.
1434			 */
1435			case -ENOSYS:
1436				/* THP migration is unsupported */
1437				if (is_thp) {
1438					if (!try_split_thp(page, &page2, from)) {
1439						nr_thp_split++;
1440						goto retry;
1441					}
1442
1443					nr_thp_failed++;
1444					nr_failed += nr_subpages;
1445					break;
1446				}
1447
1448				/* Hugetlb migration is unsupported */
1449				nr_failed++;
1450				break;
1451			case -ENOMEM:
1452				/*
1453				 * When memory is low, don't bother to try to migrate
1454				 * other pages, just exit.
1455				 * THP NUMA faulting doesn't split THP to retry.
1456				 */
1457				if (is_thp && !nosplit) {
1458					if (!try_split_thp(page, &page2, from)) {
1459						nr_thp_split++;
1460						goto retry;
1461					}
1462
1463					nr_thp_failed++;
1464					nr_failed += nr_subpages;
1465					goto out;
1466				}
1467				nr_failed++;
1468				goto out;
1469			case -EAGAIN:
1470				if (is_thp) {
1471					thp_retry++;
1472					break;
1473				}
1474				retry++;
1475				break;
1476			case MIGRATEPAGE_SUCCESS:
1477				if (is_thp) {
1478					nr_thp_succeeded++;
1479					nr_succeeded += nr_subpages;
1480					break;
1481				}
1482				nr_succeeded++;
1483				break;
1484			default:
1485				/*
1486				 * Permanent failure (-EBUSY, etc.):
1487				 * unlike -EAGAIN case, the failed page is
1488				 * removed from migration page list and not
1489				 * retried in the next outer loop.
1490				 */
1491				if (is_thp) {
1492					nr_thp_failed++;
1493					nr_failed += nr_subpages;
1494					break;
1495				}
1496				nr_failed++;
1497				break;
1498			}
1499		}
1500	}
1501	nr_failed += retry + thp_retry;
1502	nr_thp_failed += thp_retry;
1503	rc = nr_failed;
1504out:
1505	/*
1506	 * Put the permanent failure page back to migration list, they
1507	 * will be put back to the right list by the caller.
1508	 */
1509	list_splice(&ret_pages, from);
1510
1511	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1512	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1513	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1514	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1515	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1516	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1517			       nr_thp_failed, nr_thp_split, mode, reason);
1518
1519	if (!swapwrite)
1520		current->flags &= ~PF_SWAPWRITE;
1521
1522	return rc;
1523}
1524
1525struct page *alloc_migration_target(struct page *page, unsigned long private)
1526{
1527	struct migration_target_control *mtc;
1528	gfp_t gfp_mask;
1529	unsigned int order = 0;
1530	struct page *new_page = NULL;
1531	int nid;
1532	int zidx;
1533
1534	mtc = (struct migration_target_control *)private;
1535	gfp_mask = mtc->gfp_mask;
1536	nid = mtc->nid;
1537	if (nid == NUMA_NO_NODE)
1538		nid = page_to_nid(page);
1539
1540	if (PageHuge(page)) {
1541		struct hstate *h = page_hstate(compound_head(page));
1542
1543		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1544		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1545	}
1546
1547	if (PageTransHuge(page)) {
1548		/*
1549		 * clear __GFP_RECLAIM to make the migration callback
1550		 * consistent with regular THP allocations.
1551		 */
1552		gfp_mask &= ~__GFP_RECLAIM;
1553		gfp_mask |= GFP_TRANSHUGE;
1554		order = HPAGE_PMD_ORDER;
1555	}
1556	zidx = zone_idx(page_zone(page));
1557	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1558		gfp_mask |= __GFP_HIGHMEM;
1559
1560	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1561
1562	if (new_page && PageTransHuge(new_page))
1563		prep_transhuge_page(new_page);
1564
1565	return new_page;
1566}
1567
1568#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
1569
1570static int store_status(int __user *status, int start, int value, int nr)
 
1571{
1572	while (nr-- > 0) {
1573		if (put_user(value, status + start))
1574			return -EFAULT;
1575		start++;
1576	}
1577
1578	return 0;
1579}
1580
1581static int do_move_pages_to_node(struct mm_struct *mm,
1582		struct list_head *pagelist, int node)
1583{
1584	int err;
1585	struct migration_target_control mtc = {
1586		.nid = node,
1587		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1588	};
1589
1590	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1591			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1592	if (err)
1593		putback_movable_pages(pagelist);
1594	return err;
 
1595}
1596
1597/*
1598 * Resolves the given address to a struct page, isolates it from the LRU and
1599 * puts it to the given pagelist.
1600 * Returns:
1601 *     errno - if the page cannot be found/isolated
1602 *     0 - when it doesn't have to be migrated because it is already on the
1603 *         target node
1604 *     1 - when it has been queued
1605 */
1606static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1607		int node, struct list_head *pagelist, bool migrate_all)
 
1608{
1609	struct vm_area_struct *vma;
1610	struct page *page;
1611	unsigned int follflags;
1612	int err;
 
 
1613
1614	mmap_read_lock(mm);
1615	err = -EFAULT;
1616	vma = find_vma(mm, addr);
1617	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1618		goto out;
1619
1620	/* FOLL_DUMP to ignore special (like zero) pages */
1621	follflags = FOLL_GET | FOLL_DUMP;
1622	page = follow_page(vma, addr, follflags);
 
 
 
1623
1624	err = PTR_ERR(page);
1625	if (IS_ERR(page))
1626		goto out;
 
1627
1628	err = -ENOENT;
1629	if (!page)
1630		goto out;
1631
1632	err = 0;
1633	if (page_to_nid(page) == node)
1634		goto out_putpage;
1635
1636	err = -EACCES;
1637	if (page_mapcount(page) > 1 && !migrate_all)
1638		goto out_putpage;
1639
1640	if (PageHuge(page)) {
1641		if (PageHead(page)) {
1642			isolate_huge_page(page, pagelist);
1643			err = 1;
1644		}
1645	} else {
1646		struct page *head;
1647
1648		head = compound_head(page);
1649		err = isolate_lru_page(head);
1650		if (err)
1651			goto out_putpage;
1652
1653		err = 1;
1654		list_add_tail(&head->lru, pagelist);
1655		mod_node_page_state(page_pgdat(head),
1656			NR_ISOLATED_ANON + page_is_file_lru(head),
1657			thp_nr_pages(head));
1658	}
1659out_putpage:
1660	/*
1661	 * Either remove the duplicate refcount from
1662	 * isolate_lru_page() or drop the page ref if it was
1663	 * not isolated.
1664	 */
1665	put_page(page);
1666out:
1667	mmap_read_unlock(mm);
1668	return err;
1669}
1670
1671static int move_pages_and_store_status(struct mm_struct *mm, int node,
1672		struct list_head *pagelist, int __user *status,
1673		int start, int i, unsigned long nr_pages)
1674{
1675	int err;
1676
1677	if (list_empty(pagelist))
1678		return 0;
1679
1680	err = do_move_pages_to_node(mm, pagelist, node);
1681	if (err) {
 
 
 
 
 
 
 
1682		/*
1683		 * Positive err means the number of failed
1684		 * pages to migrate.  Since we are going to
1685		 * abort and return the number of non-migrated
1686		 * pages, so need to include the rest of the
1687		 * nr_pages that have not been attempted as
1688		 * well.
1689		 */
1690		if (err > 0)
1691			err += nr_pages - i - 1;
1692		return err;
1693	}
1694	return store_status(status, start, node, i - start);
 
 
 
 
 
 
 
 
 
 
1695}
1696
1697/*
1698 * Migrate an array of page address onto an array of nodes and fill
1699 * the corresponding array of status.
1700 */
1701static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1702			 unsigned long nr_pages,
1703			 const void __user * __user *pages,
1704			 const int __user *nodes,
1705			 int __user *status, int flags)
1706{
1707	int current_node = NUMA_NO_NODE;
1708	LIST_HEAD(pagelist);
1709	int start, i;
1710	int err = 0, err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712	lru_cache_disable();
 
 
 
1713
1714	for (i = start = 0; i < nr_pages; i++) {
1715		const void __user *p;
1716		unsigned long addr;
1717		int node;
1718
1719		err = -EFAULT;
1720		if (get_user(p, pages + i))
1721			goto out_flush;
1722		if (get_user(node, nodes + i))
1723			goto out_flush;
1724		addr = (unsigned long)untagged_addr(p);
1725
1726		err = -ENODEV;
1727		if (node < 0 || node >= MAX_NUMNODES)
1728			goto out_flush;
1729		if (!node_state(node, N_MEMORY))
1730			goto out_flush;
1731
1732		err = -EACCES;
1733		if (!node_isset(node, task_nodes))
1734			goto out_flush;
1735
1736		if (current_node == NUMA_NO_NODE) {
1737			current_node = node;
1738			start = i;
1739		} else if (node != current_node) {
1740			err = move_pages_and_store_status(mm, current_node,
1741					&pagelist, status, start, i, nr_pages);
1742			if (err)
1743				goto out;
1744			start = i;
1745			current_node = node;
1746		}
1747
1748		/*
1749		 * Errors in the page lookup or isolation are not fatal and we simply
1750		 * report them via status
1751		 */
1752		err = add_page_for_migration(mm, addr, current_node,
1753				&pagelist, flags & MPOL_MF_MOVE_ALL);
1754
1755		if (err > 0) {
1756			/* The page is successfully queued for migration */
1757			continue;
1758		}
1759
1760		/*
1761		 * If the page is already on the target node (!err), store the
1762		 * node, otherwise, store the err.
1763		 */
1764		err = store_status(status, i, err ? : current_node, 1);
1765		if (err)
1766			goto out_flush;
 
1767
1768		err = move_pages_and_store_status(mm, current_node, &pagelist,
1769				status, start, i, nr_pages);
1770		if (err)
1771			goto out;
1772		current_node = NUMA_NO_NODE;
 
1773	}
1774out_flush:
1775	/* Make sure we do not overwrite the existing error */
1776	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777				status, start, i, nr_pages);
1778	if (err >= 0)
1779		err = err1;
1780out:
1781	lru_cache_enable();
1782	return err;
1783}
1784
1785/*
1786 * Determine the nodes of an array of pages and store it in an array of status.
1787 */
1788static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789				const void __user **pages, int *status)
1790{
1791	unsigned long i;
1792
1793	mmap_read_lock(mm);
1794
1795	for (i = 0; i < nr_pages; i++) {
1796		unsigned long addr = (unsigned long)(*pages);
1797		struct vm_area_struct *vma;
1798		struct page *page;
1799		int err = -EFAULT;
1800
1801		vma = vma_lookup(mm, addr);
1802		if (!vma)
1803			goto set_status;
1804
1805		/* FOLL_DUMP to ignore special (like zero) pages */
1806		page = follow_page(vma, addr, FOLL_DUMP);
1807
1808		err = PTR_ERR(page);
1809		if (IS_ERR(page))
1810			goto set_status;
1811
1812		err = page ? page_to_nid(page) : -ENOENT;
1813set_status:
1814		*status = err;
1815
1816		pages++;
1817		status++;
1818	}
1819
1820	mmap_read_unlock(mm);
1821}
1822
1823/*
1824 * Determine the nodes of a user array of pages and store it in
1825 * a user array of status.
1826 */
1827static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1828			 const void __user * __user *pages,
1829			 int __user *status)
1830{
1831#define DO_PAGES_STAT_CHUNK_NR 16
1832	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1833	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1834
1835	while (nr_pages) {
1836		unsigned long chunk_nr;
1837
1838		chunk_nr = nr_pages;
1839		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1840			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1841
1842		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1843			break;
1844
1845		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1846
1847		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1848			break;
1849
1850		pages += chunk_nr;
1851		status += chunk_nr;
1852		nr_pages -= chunk_nr;
1853	}
1854	return nr_pages ? -EFAULT : 0;
1855}
1856
1857static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 
 
 
 
 
 
 
1858{
 
1859	struct task_struct *task;
1860	struct mm_struct *mm;
 
 
 
 
 
 
1861
1862	/*
1863	 * There is no need to check if current process has the right to modify
1864	 * the specified process when they are same.
1865	 */
1866	if (!pid) {
1867		mmget(current->mm);
1868		*mem_nodes = cpuset_mems_allowed(current);
1869		return current->mm;
1870	}
1871
1872	/* Find the mm_struct */
1873	rcu_read_lock();
1874	task = find_task_by_vpid(pid);
1875	if (!task) {
1876		rcu_read_unlock();
1877		return ERR_PTR(-ESRCH);
1878	}
1879	get_task_struct(task);
1880
1881	/*
1882	 * Check if this process has the right to modify the specified
1883	 * process. Use the regular "ptrace_may_access()" checks.
1884	 */
1885	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1886		rcu_read_unlock();
1887		mm = ERR_PTR(-EPERM);
1888		goto out;
1889	}
1890	rcu_read_unlock();
1891
1892	mm = ERR_PTR(security_task_movememory(task));
1893	if (IS_ERR(mm))
1894		goto out;
1895	*mem_nodes = cpuset_mems_allowed(task);
 
1896	mm = get_task_mm(task);
1897out:
1898	put_task_struct(task);
 
1899	if (!mm)
1900		mm = ERR_PTR(-EINVAL);
1901	return mm;
1902}
1903
1904/*
1905 * Move a list of pages in the address space of the currently executing
1906 * process.
1907 */
1908static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1909			     const void __user * __user *pages,
1910			     const int __user *nodes,
1911			     int __user *status, int flags)
1912{
1913	struct mm_struct *mm;
1914	int err;
1915	nodemask_t task_nodes;
1916
1917	/* Check flags */
1918	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1919		return -EINVAL;
1920
1921	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1922		return -EPERM;
1923
1924	mm = find_mm_struct(pid, &task_nodes);
1925	if (IS_ERR(mm))
1926		return PTR_ERR(mm);
1927
1928	if (nodes)
1929		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1930				    nodes, status, flags);
1931	else
1932		err = do_pages_stat(mm, nr_pages, pages, status);
1933
1934	mmput(mm);
1935	return err;
1936}
1937
1938SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939		const void __user * __user *, pages,
1940		const int __user *, nodes,
1941		int __user *, status, int, flags)
1942{
1943	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948		       compat_uptr_t __user *, pages32,
1949		       const int __user *, nodes,
1950		       int __user *, status,
1951		       int, flags)
1952{
1953	const void __user * __user *pages;
1954	int i;
1955
1956	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957	for (i = 0; i < nr_pages; i++) {
1958		compat_uptr_t p;
1959
1960		if (get_user(p, pages32 + i) ||
1961			put_user(compat_ptr(p), pages + i))
1962			return -EFAULT;
1963	}
1964	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965}
1966#endif /* CONFIG_COMPAT */
1967
1968#ifdef CONFIG_NUMA_BALANCING
1969/*
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1972 */
1973static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974				   unsigned long nr_migrate_pages)
1975{
1976	int z;
1977
1978	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979		struct zone *zone = pgdat->node_zones + z;
1980
1981		if (!populated_zone(zone))
1982			continue;
1983
 
 
 
1984		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985		if (!zone_watermark_ok(zone, 0,
1986				       high_wmark_pages(zone) +
1987				       nr_migrate_pages,
1988				       ZONE_MOVABLE, 0))
1989			continue;
1990		return true;
1991	}
1992	return false;
1993}
1994
1995static struct page *alloc_misplaced_dst_page(struct page *page,
1996					   unsigned long data)
 
1997{
1998	int nid = (int) data;
1999	struct page *newpage;
2000
2001	newpage = __alloc_pages_node(nid,
2002					 (GFP_HIGHUSER_MOVABLE |
2003					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004					  __GFP_NORETRY | __GFP_NOWARN) &
2005					 ~__GFP_RECLAIM, 0);
2006
2007	return newpage;
2008}
2009
2010static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2011						 unsigned long data)
2012{
2013	int nid = (int) data;
2014	struct page *newpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015
2016	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017				   HPAGE_PMD_ORDER);
2018	if (!newpage)
2019		goto out;
2020
2021	prep_transhuge_page(newpage);
2022
2023out:
2024	return newpage;
2025}
2026
2027static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028{
2029	int page_lru;
2030
2031	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032
2033	/* Do not migrate THP mapped by multiple processes */
2034	if (PageTransHuge(page) && total_mapcount(page) > 1)
2035		return 0;
2036
2037	/* Avoid migrating to a node that is nearly full */
2038	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039		return 0;
2040
2041	if (isolate_lru_page(page))
 
 
 
 
 
 
 
 
2042		return 0;
 
2043
2044	page_lru = page_is_file_lru(page);
2045	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2046				thp_nr_pages(page));
2047
2048	/*
2049	 * Isolating the page has taken another reference, so the
2050	 * caller's reference can be safely dropped without the page
2051	 * disappearing underneath us during migration.
2052	 */
2053	put_page(page);
2054	return 1;
2055}
2056
 
 
 
 
 
 
2057/*
2058 * Attempt to migrate a misplaced page to the specified destination
2059 * node. Caller is expected to have an elevated reference count on
2060 * the page that will be dropped by this function before returning.
2061 */
2062int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2063			   int node)
2064{
2065	pg_data_t *pgdat = NODE_DATA(node);
2066	int isolated;
2067	int nr_remaining;
2068	LIST_HEAD(migratepages);
2069	new_page_t *new;
2070	bool compound;
2071	int nr_pages = thp_nr_pages(page);
2072
2073	/*
2074	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2075	 * be either base page or THP.  And it must be head page if it is
2076	 * THP.
2077	 */
2078	compound = PageTransHuge(page);
2079
2080	if (compound)
2081		new = alloc_misplaced_dst_page_thp;
2082	else
2083		new = alloc_misplaced_dst_page;
2084
2085	/*
2086	 * Don't migrate file pages that are mapped in multiple processes
2087	 * with execute permissions as they are probably shared libraries.
2088	 */
2089	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2090	    (vma->vm_flags & VM_EXEC))
2091		goto out;
2092
2093	/*
2094	 * Also do not migrate dirty pages as not all filesystems can move
2095	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
 
2096	 */
2097	if (page_is_file_lru(page) && PageDirty(page))
2098		goto out;
2099
2100	isolated = numamigrate_isolate_page(pgdat, page);
2101	if (!isolated)
2102		goto out;
2103
2104	list_add(&page->lru, &migratepages);
2105	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2106				     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
2107	if (nr_remaining) {
2108		if (!list_empty(&migratepages)) {
2109			list_del(&page->lru);
2110			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2111					page_is_file_lru(page), -nr_pages);
2112			putback_lru_page(page);
2113		}
2114		isolated = 0;
2115	} else
2116		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2117	BUG_ON(!list_empty(&migratepages));
2118	return isolated;
2119
2120out:
2121	put_page(page);
2122	return 0;
2123}
2124#endif /* CONFIG_NUMA_BALANCING */
2125#endif /* CONFIG_NUMA */
2126
2127#ifdef CONFIG_DEVICE_PRIVATE
2128static int migrate_vma_collect_skip(unsigned long start,
2129				    unsigned long end,
2130				    struct mm_walk *walk)
 
 
 
 
 
 
2131{
2132	struct migrate_vma *migrate = walk->private;
2133	unsigned long addr;
2134
2135	for (addr = start; addr < end; addr += PAGE_SIZE) {
2136		migrate->dst[migrate->npages] = 0;
2137		migrate->src[migrate->npages++] = 0;
2138	}
2139
2140	return 0;
2141}
2142
2143static int migrate_vma_collect_hole(unsigned long start,
2144				    unsigned long end,
2145				    __always_unused int depth,
2146				    struct mm_walk *walk)
2147{
2148	struct migrate_vma *migrate = walk->private;
2149	unsigned long addr;
2150
2151	/* Only allow populating anonymous memory. */
2152	if (!vma_is_anonymous(walk->vma))
2153		return migrate_vma_collect_skip(start, end, walk);
2154
2155	for (addr = start; addr < end; addr += PAGE_SIZE) {
2156		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2157		migrate->dst[migrate->npages] = 0;
2158		migrate->npages++;
2159		migrate->cpages++;
2160	}
2161
2162	return 0;
2163}
2164
2165static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166				   unsigned long start,
2167				   unsigned long end,
2168				   struct mm_walk *walk)
2169{
2170	struct migrate_vma *migrate = walk->private;
2171	struct vm_area_struct *vma = walk->vma;
2172	struct mm_struct *mm = vma->vm_mm;
2173	unsigned long addr = start, unmapped = 0;
2174	spinlock_t *ptl;
2175	pte_t *ptep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176
2177again:
2178	if (pmd_none(*pmdp))
2179		return migrate_vma_collect_hole(start, end, -1, walk);
2180
2181	if (pmd_trans_huge(*pmdp)) {
2182		struct page *page;
2183
2184		ptl = pmd_lock(mm, pmdp);
2185		if (unlikely(!pmd_trans_huge(*pmdp))) {
2186			spin_unlock(ptl);
2187			goto again;
2188		}
2189
2190		page = pmd_page(*pmdp);
2191		if (is_huge_zero_page(page)) {
2192			spin_unlock(ptl);
2193			split_huge_pmd(vma, pmdp, addr);
2194			if (pmd_trans_unstable(pmdp))
2195				return migrate_vma_collect_skip(start, end,
2196								walk);
2197		} else {
2198			int ret;
2199
2200			get_page(page);
2201			spin_unlock(ptl);
2202			if (unlikely(!trylock_page(page)))
2203				return migrate_vma_collect_skip(start, end,
2204								walk);
2205			ret = split_huge_page(page);
2206			unlock_page(page);
2207			put_page(page);
2208			if (ret)
2209				return migrate_vma_collect_skip(start, end,
2210								walk);
2211			if (pmd_none(*pmdp))
2212				return migrate_vma_collect_hole(start, end, -1,
2213								walk);
2214		}
2215	}
2216
2217	if (unlikely(pmd_bad(*pmdp)))
2218		return migrate_vma_collect_skip(start, end, walk);
2219
2220	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221	arch_enter_lazy_mmu_mode();
2222
2223	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224		unsigned long mpfn = 0, pfn;
2225		struct page *page;
2226		swp_entry_t entry;
2227		pte_t pte;
2228
2229		pte = *ptep;
2230
2231		if (pte_none(pte)) {
2232			if (vma_is_anonymous(vma)) {
2233				mpfn = MIGRATE_PFN_MIGRATE;
2234				migrate->cpages++;
2235			}
2236			goto next;
2237		}
2238
2239		if (!pte_present(pte)) {
2240			/*
2241			 * Only care about unaddressable device page special
2242			 * page table entry. Other special swap entries are not
2243			 * migratable, and we ignore regular swapped page.
2244			 */
2245			entry = pte_to_swp_entry(pte);
2246			if (!is_device_private_entry(entry))
2247				goto next;
2248
2249			page = pfn_swap_entry_to_page(entry);
2250			if (!(migrate->flags &
2251				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2252			    page->pgmap->owner != migrate->pgmap_owner)
2253				goto next;
2254
2255			mpfn = migrate_pfn(page_to_pfn(page)) |
2256					MIGRATE_PFN_MIGRATE;
2257			if (is_writable_device_private_entry(entry))
2258				mpfn |= MIGRATE_PFN_WRITE;
2259		} else {
2260			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2261				goto next;
2262			pfn = pte_pfn(pte);
2263			if (is_zero_pfn(pfn)) {
2264				mpfn = MIGRATE_PFN_MIGRATE;
2265				migrate->cpages++;
2266				goto next;
2267			}
2268			page = vm_normal_page(migrate->vma, addr, pte);
2269			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271		}
2272
2273		/* FIXME support THP */
2274		if (!page || !page->mapping || PageTransCompound(page)) {
2275			mpfn = 0;
2276			goto next;
2277		}
2278
2279		/*
2280		 * By getting a reference on the page we pin it and that blocks
2281		 * any kind of migration. Side effect is that it "freezes" the
2282		 * pte.
2283		 *
2284		 * We drop this reference after isolating the page from the lru
2285		 * for non device page (device page are not on the lru and thus
2286		 * can't be dropped from it).
2287		 */
2288		get_page(page);
2289		migrate->cpages++;
2290
2291		/*
2292		 * Optimize for the common case where page is only mapped once
2293		 * in one process. If we can lock the page, then we can safely
2294		 * set up a special migration page table entry now.
2295		 */
2296		if (trylock_page(page)) {
2297			pte_t swp_pte;
2298
2299			mpfn |= MIGRATE_PFN_LOCKED;
2300			ptep_get_and_clear(mm, addr, ptep);
2301
2302			/* Setup special migration page table entry */
2303			if (mpfn & MIGRATE_PFN_WRITE)
2304				entry = make_writable_migration_entry(
2305							page_to_pfn(page));
2306			else
2307				entry = make_readable_migration_entry(
2308							page_to_pfn(page));
2309			swp_pte = swp_entry_to_pte(entry);
2310			if (pte_present(pte)) {
2311				if (pte_soft_dirty(pte))
2312					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313				if (pte_uffd_wp(pte))
2314					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315			} else {
2316				if (pte_swp_soft_dirty(pte))
2317					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2318				if (pte_swp_uffd_wp(pte))
2319					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2320			}
2321			set_pte_at(mm, addr, ptep, swp_pte);
2322
2323			/*
2324			 * This is like regular unmap: we remove the rmap and
2325			 * drop page refcount. Page won't be freed, as we took
2326			 * a reference just above.
2327			 */
2328			page_remove_rmap(page, false);
2329			put_page(page);
2330
2331			if (pte_present(pte))
2332				unmapped++;
2333		}
2334
2335next:
2336		migrate->dst[migrate->npages] = 0;
2337		migrate->src[migrate->npages++] = mpfn;
2338	}
2339	arch_leave_lazy_mmu_mode();
2340	pte_unmap_unlock(ptep - 1, ptl);
2341
2342	/* Only flush the TLB if we actually modified any entries */
2343	if (unmapped)
2344		flush_tlb_range(walk->vma, start, end);
2345
2346	return 0;
2347}
2348
2349static const struct mm_walk_ops migrate_vma_walk_ops = {
2350	.pmd_entry		= migrate_vma_collect_pmd,
2351	.pte_hole		= migrate_vma_collect_hole,
2352};
2353
2354/*
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2357 *
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2361 */
2362static void migrate_vma_collect(struct migrate_vma *migrate)
2363{
2364	struct mmu_notifier_range range;
2365
2366	/*
2367	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2368	 * that the registered device driver can skip invalidating device
2369	 * private page mappings that won't be migrated.
2370	 */
2371	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2372		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2373		migrate->pgmap_owner);
2374	mmu_notifier_invalidate_range_start(&range);
2375
2376	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2377			&migrate_vma_walk_ops, migrate);
 
2378
2379	mmu_notifier_invalidate_range_end(&range);
2380	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2381}
 
 
2382
2383/*
2384 * migrate_vma_check_page() - check if page is pinned or not
2385 * @page: struct page to check
2386 *
2387 * Pinned pages cannot be migrated. This is the same test as in
2388 * migrate_page_move_mapping(), except that here we allow migration of a
2389 * ZONE_DEVICE page.
2390 */
2391static bool migrate_vma_check_page(struct page *page)
2392{
2393	/*
2394	 * One extra ref because caller holds an extra reference, either from
2395	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2396	 * a device page.
2397	 */
2398	int extra = 1;
2399
2400	/*
2401	 * FIXME support THP (transparent huge page), it is bit more complex to
2402	 * check them than regular pages, because they can be mapped with a pmd
2403	 * or with a pte (split pte mapping).
2404	 */
2405	if (PageCompound(page))
2406		return false;
2407
2408	/* Page from ZONE_DEVICE have one extra reference */
2409	if (is_zone_device_page(page)) {
2410		/*
2411		 * Private page can never be pin as they have no valid pte and
2412		 * GUP will fail for those. Yet if there is a pending migration
2413		 * a thread might try to wait on the pte migration entry and
2414		 * will bump the page reference count. Sadly there is no way to
2415		 * differentiate a regular pin from migration wait. Hence to
2416		 * avoid 2 racing thread trying to migrate back to CPU to enter
2417		 * infinite loop (one stopping migration because the other is
2418		 * waiting on pte migration entry). We always return true here.
2419		 *
2420		 * FIXME proper solution is to rework migration_entry_wait() so
2421		 * it does not need to take a reference on page.
2422		 */
2423		return is_device_private_page(page);
2424	}
2425
2426	/* For file back page */
2427	if (page_mapping(page))
2428		extra += 1 + page_has_private(page);
2429
2430	if ((page_count(page) - extra) > page_mapcount(page))
2431		return false;
2432
2433	return true;
2434}
2435
2436/*
2437 * migrate_vma_prepare() - lock pages and isolate them from the lru
2438 * @migrate: migrate struct containing all migration information
2439 *
2440 * This locks pages that have been collected by migrate_vma_collect(). Once each
2441 * page is locked it is isolated from the lru (for non-device pages). Finally,
2442 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2443 * migrated by concurrent kernel threads.
2444 */
2445static void migrate_vma_prepare(struct migrate_vma *migrate)
2446{
2447	const unsigned long npages = migrate->npages;
2448	const unsigned long start = migrate->start;
2449	unsigned long addr, i, restore = 0;
2450	bool allow_drain = true;
2451
2452	lru_add_drain();
2453
2454	for (i = 0; (i < npages) && migrate->cpages; i++) {
2455		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2456		bool remap = true;
2457
2458		if (!page)
2459			continue;
2460
2461		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2462			/*
2463			 * Because we are migrating several pages there can be
2464			 * a deadlock between 2 concurrent migration where each
2465			 * are waiting on each other page lock.
2466			 *
2467			 * Make migrate_vma() a best effort thing and backoff
2468			 * for any page we can not lock right away.
2469			 */
2470			if (!trylock_page(page)) {
2471				migrate->src[i] = 0;
2472				migrate->cpages--;
2473				put_page(page);
2474				continue;
2475			}
2476			remap = false;
2477			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2478		}
2479
2480		/* ZONE_DEVICE pages are not on LRU */
2481		if (!is_zone_device_page(page)) {
2482			if (!PageLRU(page) && allow_drain) {
2483				/* Drain CPU's pagevec */
2484				lru_add_drain_all();
2485				allow_drain = false;
2486			}
2487
2488			if (isolate_lru_page(page)) {
2489				if (remap) {
2490					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491					migrate->cpages--;
2492					restore++;
2493				} else {
2494					migrate->src[i] = 0;
2495					unlock_page(page);
2496					migrate->cpages--;
2497					put_page(page);
2498				}
2499				continue;
2500			}
2501
2502			/* Drop the reference we took in collect */
2503			put_page(page);
2504		}
2505
2506		if (!migrate_vma_check_page(page)) {
2507			if (remap) {
2508				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2509				migrate->cpages--;
2510				restore++;
2511
2512				if (!is_zone_device_page(page)) {
2513					get_page(page);
2514					putback_lru_page(page);
2515				}
2516			} else {
2517				migrate->src[i] = 0;
2518				unlock_page(page);
2519				migrate->cpages--;
2520
2521				if (!is_zone_device_page(page))
2522					putback_lru_page(page);
2523				else
2524					put_page(page);
2525			}
2526		}
2527	}
2528
2529	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2530		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533			continue;
2534
2535		remove_migration_pte(page, migrate->vma, addr, page);
 
 
2536
2537		migrate->src[i] = 0;
2538		unlock_page(page);
2539		put_page(page);
2540		restore--;
2541	}
2542}
2543
2544/*
2545 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2546 * @migrate: migrate struct containing all migration information
2547 *
2548 * Replace page mapping (CPU page table pte) with a special migration pte entry
2549 * and check again if it has been pinned. Pinned pages are restored because we
2550 * cannot migrate them.
2551 *
2552 * This is the last step before we call the device driver callback to allocate
2553 * destination memory and copy contents of original page over to new page.
2554 */
2555static void migrate_vma_unmap(struct migrate_vma *migrate)
2556{
2557	const unsigned long npages = migrate->npages;
2558	const unsigned long start = migrate->start;
2559	unsigned long addr, i, restore = 0;
2560
2561	for (i = 0; i < npages; i++) {
2562		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 
 
2563
2564		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565			continue;
2566
2567		if (page_mapped(page)) {
2568			try_to_migrate(page, 0);
2569			if (page_mapped(page))
2570				goto restore;
2571		}
2572
2573		if (migrate_vma_check_page(page))
2574			continue;
2575
2576restore:
2577		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2578		migrate->cpages--;
2579		restore++;
2580	}
 
2581
2582	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2583		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586			continue;
2587
2588		remove_migration_ptes(page, page, false);
2589
2590		migrate->src[i] = 0;
2591		unlock_page(page);
2592		restore--;
2593
2594		if (is_zone_device_page(page))
2595			put_page(page);
2596		else
2597			putback_lru_page(page);
2598	}
2599}
2600
2601/**
2602 * migrate_vma_setup() - prepare to migrate a range of memory
2603 * @args: contains the vma, start, and pfns arrays for the migration
2604 *
2605 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2606 * without an error.
2607 *
2608 * Prepare to migrate a range of memory virtual address range by collecting all
2609 * the pages backing each virtual address in the range, saving them inside the
2610 * src array.  Then lock those pages and unmap them. Once the pages are locked
2611 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2612 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2613 * corresponding src array entry.  Then restores any pages that are pinned, by
2614 * remapping and unlocking those pages.
2615 *
2616 * The caller should then allocate destination memory and copy source memory to
2617 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2618 * flag set).  Once these are allocated and copied, the caller must update each
2619 * corresponding entry in the dst array with the pfn value of the destination
2620 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2621 * (destination pages must have their struct pages locked, via lock_page()).
2622 *
2623 * Note that the caller does not have to migrate all the pages that are marked
2624 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2625 * device memory to system memory.  If the caller cannot migrate a device page
2626 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2627 * consequences for the userspace process, so it must be avoided if at all
2628 * possible.
2629 *
2630 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2631 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2632 * allowing the caller to allocate device memory for those unbacked virtual
2633 * addresses.  For this the caller simply has to allocate device memory and
2634 * properly set the destination entry like for regular migration.  Note that
2635 * this can still fail, and thus inside the device driver you must check if the
2636 * migration was successful for those entries after calling migrate_vma_pages(),
2637 * just like for regular migration.
2638 *
2639 * After that, the callers must call migrate_vma_pages() to go over each entry
2640 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2641 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2642 * then migrate_vma_pages() to migrate struct page information from the source
2643 * struct page to the destination struct page.  If it fails to migrate the
2644 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2645 * src array.
2646 *
2647 * At this point all successfully migrated pages have an entry in the src
2648 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2649 * array entry with MIGRATE_PFN_VALID flag set.
2650 *
2651 * Once migrate_vma_pages() returns the caller may inspect which pages were
2652 * successfully migrated, and which were not.  Successfully migrated pages will
2653 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2654 *
2655 * It is safe to update device page table after migrate_vma_pages() because
2656 * both destination and source page are still locked, and the mmap_lock is held
2657 * in read mode (hence no one can unmap the range being migrated).
2658 *
2659 * Once the caller is done cleaning up things and updating its page table (if it
2660 * chose to do so, this is not an obligation) it finally calls
2661 * migrate_vma_finalize() to update the CPU page table to point to new pages
2662 * for successfully migrated pages or otherwise restore the CPU page table to
2663 * point to the original source pages.
2664 */
2665int migrate_vma_setup(struct migrate_vma *args)
2666{
2667	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2668
2669	args->start &= PAGE_MASK;
2670	args->end &= PAGE_MASK;
2671	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2672	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2673		return -EINVAL;
2674	if (nr_pages <= 0)
2675		return -EINVAL;
2676	if (args->start < args->vma->vm_start ||
2677	    args->start >= args->vma->vm_end)
2678		return -EINVAL;
2679	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2680		return -EINVAL;
2681	if (!args->src || !args->dst)
2682		return -EINVAL;
2683
2684	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2685	args->cpages = 0;
2686	args->npages = 0;
2687
2688	migrate_vma_collect(args);
2689
2690	if (args->cpages)
2691		migrate_vma_prepare(args);
2692	if (args->cpages)
2693		migrate_vma_unmap(args);
2694
2695	/*
2696	 * At this point pages are locked and unmapped, and thus they have
2697	 * stable content and can safely be copied to destination memory that
2698	 * is allocated by the drivers.
2699	 */
2700	return 0;
2701
2702}
2703EXPORT_SYMBOL(migrate_vma_setup);
2704
2705/*
2706 * This code closely matches the code in:
2707 *   __handle_mm_fault()
2708 *     handle_pte_fault()
2709 *       do_anonymous_page()
2710 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2711 * private page.
2712 */
2713static void migrate_vma_insert_page(struct migrate_vma *migrate,
2714				    unsigned long addr,
2715				    struct page *page,
2716				    unsigned long *src)
2717{
2718	struct vm_area_struct *vma = migrate->vma;
2719	struct mm_struct *mm = vma->vm_mm;
2720	bool flush = false;
2721	spinlock_t *ptl;
2722	pte_t entry;
2723	pgd_t *pgdp;
2724	p4d_t *p4dp;
2725	pud_t *pudp;
2726	pmd_t *pmdp;
2727	pte_t *ptep;
2728
2729	/* Only allow populating anonymous memory */
2730	if (!vma_is_anonymous(vma))
2731		goto abort;
2732
2733	pgdp = pgd_offset(mm, addr);
2734	p4dp = p4d_alloc(mm, pgdp, addr);
2735	if (!p4dp)
2736		goto abort;
2737	pudp = pud_alloc(mm, p4dp, addr);
2738	if (!pudp)
2739		goto abort;
2740	pmdp = pmd_alloc(mm, pudp, addr);
2741	if (!pmdp)
2742		goto abort;
2743
2744	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2745		goto abort;
2746
2747	/*
2748	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2749	 * pte_offset_map() on pmds where a huge pmd might be created
2750	 * from a different thread.
2751	 *
2752	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2753	 * parallel threads are excluded by other means.
2754	 *
2755	 * Here we only have mmap_read_lock(mm).
2756	 */
2757	if (pte_alloc(mm, pmdp))
2758		goto abort;
2759
2760	/* See the comment in pte_alloc_one_map() */
2761	if (unlikely(pmd_trans_unstable(pmdp)))
2762		goto abort;
2763
2764	if (unlikely(anon_vma_prepare(vma)))
2765		goto abort;
2766	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2767		goto abort;
2768
2769	/*
2770	 * The memory barrier inside __SetPageUptodate makes sure that
2771	 * preceding stores to the page contents become visible before
2772	 * the set_pte_at() write.
2773	 */
2774	__SetPageUptodate(page);
2775
2776	if (is_zone_device_page(page)) {
2777		if (is_device_private_page(page)) {
2778			swp_entry_t swp_entry;
2779
2780			if (vma->vm_flags & VM_WRITE)
2781				swp_entry = make_writable_device_private_entry(
2782							page_to_pfn(page));
2783			else
2784				swp_entry = make_readable_device_private_entry(
2785							page_to_pfn(page));
2786			entry = swp_entry_to_pte(swp_entry);
2787		} else {
2788			/*
2789			 * For now we only support migrating to un-addressable
2790			 * device memory.
2791			 */
2792			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2793			goto abort;
2794		}
2795	} else {
2796		entry = mk_pte(page, vma->vm_page_prot);
2797		if (vma->vm_flags & VM_WRITE)
2798			entry = pte_mkwrite(pte_mkdirty(entry));
2799	}
2800
2801	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803	if (check_stable_address_space(mm))
2804		goto unlock_abort;
2805
2806	if (pte_present(*ptep)) {
2807		unsigned long pfn = pte_pfn(*ptep);
2808
2809		if (!is_zero_pfn(pfn))
2810			goto unlock_abort;
2811		flush = true;
2812	} else if (!pte_none(*ptep))
2813		goto unlock_abort;
2814
2815	/*
2816	 * Check for userfaultfd but do not deliver the fault. Instead,
2817	 * just back off.
2818	 */
2819	if (userfaultfd_missing(vma))
2820		goto unlock_abort;
2821
2822	inc_mm_counter(mm, MM_ANONPAGES);
2823	page_add_new_anon_rmap(page, vma, addr, false);
2824	if (!is_zone_device_page(page))
2825		lru_cache_add_inactive_or_unevictable(page, vma);
2826	get_page(page);
2827
2828	if (flush) {
2829		flush_cache_page(vma, addr, pte_pfn(*ptep));
2830		ptep_clear_flush_notify(vma, addr, ptep);
2831		set_pte_at_notify(mm, addr, ptep, entry);
2832		update_mmu_cache(vma, addr, ptep);
2833	} else {
2834		/* No need to invalidate - it was non-present before */
2835		set_pte_at(mm, addr, ptep, entry);
2836		update_mmu_cache(vma, addr, ptep);
2837	}
2838
2839	pte_unmap_unlock(ptep, ptl);
2840	*src = MIGRATE_PFN_MIGRATE;
2841	return;
2842
2843unlock_abort:
2844	pte_unmap_unlock(ptep, ptl);
2845abort:
2846	*src &= ~MIGRATE_PFN_MIGRATE;
2847}
2848
2849/**
2850 * migrate_vma_pages() - migrate meta-data from src page to dst page
2851 * @migrate: migrate struct containing all migration information
2852 *
2853 * This migrates struct page meta-data from source struct page to destination
2854 * struct page. This effectively finishes the migration from source page to the
2855 * destination page.
2856 */
2857void migrate_vma_pages(struct migrate_vma *migrate)
2858{
2859	const unsigned long npages = migrate->npages;
2860	const unsigned long start = migrate->start;
2861	struct mmu_notifier_range range;
2862	unsigned long addr, i;
2863	bool notified = false;
2864
2865	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868		struct address_space *mapping;
2869		int r;
2870
2871		if (!newpage) {
2872			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873			continue;
2874		}
2875
2876		if (!page) {
2877			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878				continue;
2879			if (!notified) {
2880				notified = true;
2881
2882				mmu_notifier_range_init_owner(&range,
2883					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2884					migrate->vma->vm_mm, addr, migrate->end,
2885					migrate->pgmap_owner);
2886				mmu_notifier_invalidate_range_start(&range);
2887			}
2888			migrate_vma_insert_page(migrate, addr, newpage,
2889						&migrate->src[i]);
2890			continue;
2891		}
2892
2893		mapping = page_mapping(page);
2894
2895		if (is_zone_device_page(newpage)) {
2896			if (is_device_private_page(newpage)) {
2897				/*
2898				 * For now only support private anonymous when
2899				 * migrating to un-addressable device memory.
2900				 */
2901				if (mapping) {
2902					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2903					continue;
2904				}
2905			} else {
2906				/*
2907				 * Other types of ZONE_DEVICE page are not
2908				 * supported.
2909				 */
2910				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911				continue;
2912			}
2913		}
2914
2915		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2916		if (r != MIGRATEPAGE_SUCCESS)
2917			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918	}
2919
2920	/*
2921	 * No need to double call mmu_notifier->invalidate_range() callback as
2922	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2923	 * did already call it.
2924	 */
2925	if (notified)
2926		mmu_notifier_invalidate_range_only_end(&range);
2927}
2928EXPORT_SYMBOL(migrate_vma_pages);
2929
2930/**
2931 * migrate_vma_finalize() - restore CPU page table entry
2932 * @migrate: migrate struct containing all migration information
2933 *
2934 * This replaces the special migration pte entry with either a mapping to the
2935 * new page if migration was successful for that page, or to the original page
2936 * otherwise.
2937 *
2938 * This also unlocks the pages and puts them back on the lru, or drops the extra
2939 * refcount, for device pages.
2940 */
2941void migrate_vma_finalize(struct migrate_vma *migrate)
2942{
2943	const unsigned long npages = migrate->npages;
2944	unsigned long i;
2945
2946	for (i = 0; i < npages; i++) {
2947		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2948		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2949
2950		if (!page) {
2951			if (newpage) {
2952				unlock_page(newpage);
2953				put_page(newpage);
2954			}
2955			continue;
2956		}
2957
2958		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2959			if (newpage) {
2960				unlock_page(newpage);
2961				put_page(newpage);
2962			}
2963			newpage = page;
2964		}
2965
2966		remove_migration_ptes(page, newpage, false);
2967		unlock_page(page);
2968
2969		if (is_zone_device_page(page))
2970			put_page(page);
2971		else
2972			putback_lru_page(page);
2973
2974		if (newpage != page) {
2975			unlock_page(newpage);
2976			if (is_zone_device_page(newpage))
2977				put_page(newpage);
2978			else
2979				putback_lru_page(newpage);
2980		}
2981	}
2982}
2983EXPORT_SYMBOL(migrate_vma_finalize);
2984#endif /* CONFIG_DEVICE_PRIVATE */