Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
 
  34#include <linux/syscalls.h>
 
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/page_idle.h>
  41#include <linux/page_owner.h>
 
 
 
 
 
 
  42
  43#include <asm/tlbflush.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/migrate.h>
  47
  48#include "internal.h"
  49
  50/*
  51 * migrate_prep() needs to be called before we start compiling a list of pages
  52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  53 * undesirable, use migrate_prep_local()
  54 */
  55int migrate_prep(void)
  56{
 
 
 
  57	/*
  58	 * Clear the LRU lists so pages can be isolated.
  59	 * Note that pages may be moved off the LRU after we have
  60	 * drained them. Those pages will fail to migrate like other
  61	 * pages that may be busy.
 
 
 
  62	 */
  63	lru_add_drain_all();
 
  64
  65	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  69int migrate_prep_local(void)
  70{
  71	lru_add_drain();
  72
  73	return 0;
 
  74}
  75
  76/*
  77 * Put previously isolated pages back onto the appropriate lists
  78 * from where they were once taken off for compaction/migration.
  79 *
  80 * This function shall be used whenever the isolated pageset has been
  81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  82 * and isolate_huge_page().
  83 */
  84void putback_movable_pages(struct list_head *l)
  85{
  86	struct page *page;
  87	struct page *page2;
  88
  89	list_for_each_entry_safe(page, page2, l, lru) {
  90		if (unlikely(PageHuge(page))) {
  91			putback_active_hugepage(page);
  92			continue;
  93		}
  94		list_del(&page->lru);
  95		dec_zone_page_state(page, NR_ISOLATED_ANON +
  96				page_is_file_cache(page));
  97		if (unlikely(isolated_balloon_page(page)))
  98			balloon_page_putback(page);
  99		else
 100			putback_lru_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 101	}
 102}
 103
 104/*
 105 * Restore a potential migration pte to a working pte entry
 106 */
 107static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 108				 unsigned long addr, void *old)
 109{
 110	struct mm_struct *mm = vma->vm_mm;
 111	swp_entry_t entry;
 112 	pmd_t *pmd;
 113	pte_t *ptep, pte;
 114 	spinlock_t *ptl;
 115
 116	if (unlikely(PageHuge(new))) {
 117		ptep = huge_pte_offset(mm, addr);
 118		if (!ptep)
 119			goto out;
 120		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 121	} else {
 122		pmd = mm_find_pmd(mm, addr);
 123		if (!pmd)
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 
 
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 151
 152	/* Recheck VMA as permissions can change since migration started  */
 153	if (is_write_migration_entry(entry))
 154		pte = maybe_mkwrite(pte, vma);
 155
 156#ifdef CONFIG_HUGETLB_PAGE
 157	if (PageHuge(new)) {
 158		pte = pte_mkhuge(pte);
 159		pte = arch_make_huge_pte(pte, vma, new, 0);
 160	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161#endif
 162	flush_dcache_page(new);
 163	set_pte_at(mm, addr, ptep, pte);
 
 164
 165	if (PageHuge(new)) {
 166		if (PageAnon(new))
 167			hugepage_add_anon_rmap(new, vma, addr);
 
 
 
 
 
 
 
 
 168		else
 169			page_dup_rmap(new, true);
 170	} else if (PageAnon(new))
 171		page_add_anon_rmap(new, vma, addr, false);
 172	else
 173		page_add_file_rmap(new);
 174
 175	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 176		mlock_vma_page(new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178	/* No need to invalidate - it was non-present before */
 179	update_mmu_cache(vma, addr, ptep);
 180unlock:
 181	pte_unmap_unlock(ptep, ptl);
 182out:
 183	return SWAP_AGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184}
 185
 186/*
 187 * Get rid of all migration entries and replace them by
 188 * references to the indicated page.
 189 */
 190void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 191{
 
 
 
 
 
 192	struct rmap_walk_control rwc = {
 193		.rmap_one = remove_migration_pte,
 194		.arg = old,
 195	};
 196
 197	if (locked)
 198		rmap_walk_locked(new, &rwc);
 
 
 199	else
 200		rmap_walk(new, &rwc);
 201}
 202
 203/*
 204 * Something used the pte of a page under migration. We need to
 205 * get to the page and wait until migration is finished.
 206 * When we return from this function the fault will be retried.
 207 */
 208void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 209				spinlock_t *ptl)
 210{
 
 
 211	pte_t pte;
 212	swp_entry_t entry;
 213	struct page *page;
 214
 215	spin_lock(ptl);
 216	pte = *ptep;
 
 
 
 
 
 217	if (!is_swap_pte(pte))
 218		goto out;
 219
 220	entry = pte_to_swp_entry(pte);
 221	if (!is_migration_entry(entry))
 222		goto out;
 223
 224	page = migration_entry_to_page(entry);
 225
 226	/*
 227	 * Once radix-tree replacement of page migration started, page_count
 228	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 229	 * against a page without get_page().
 230	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 231	 * will occur again.
 232	 */
 233	if (!get_page_unless_zero(page))
 234		goto out;
 235	pte_unmap_unlock(ptep, ptl);
 236	wait_on_page_locked(page);
 237	put_page(page);
 238	return;
 239out:
 240	pte_unmap_unlock(ptep, ptl);
 241}
 242
 243void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 244				unsigned long address)
 
 
 
 
 
 
 245{
 246	spinlock_t *ptl = pte_lockptr(mm, pmd);
 247	pte_t *ptep = pte_offset_map(pmd, address);
 248	__migration_entry_wait(mm, ptep, ptl);
 249}
 250
 251void migration_entry_wait_huge(struct vm_area_struct *vma,
 252		struct mm_struct *mm, pte_t *pte)
 253{
 254	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 255	__migration_entry_wait(mm, pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 256}
 
 257
 258#ifdef CONFIG_BLOCK
 259/* Returns true if all buffers are successfully locked */
 260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 261							enum migrate_mode mode)
 262{
 263	struct buffer_head *bh = head;
 264
 265	/* Simple case, sync compaction */
 266	if (mode != MIGRATE_ASYNC) {
 267		do {
 268			get_bh(bh);
 269			lock_buffer(bh);
 270			bh = bh->b_this_page;
 271
 272		} while (bh != head);
 
 
 
 
 
 
 
 
 273
 274		return true;
 275	}
 
 
 
 
 276
 277	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 278	do {
 279		get_bh(bh);
 280		if (!trylock_buffer(bh)) {
 281			/*
 282			 * We failed to lock the buffer and cannot stall in
 283			 * async migration. Release the taken locks
 284			 */
 285			struct buffer_head *failed_bh = bh;
 286			put_bh(failed_bh);
 287			bh = head;
 288			while (bh != failed_bh) {
 289				unlock_buffer(bh);
 290				put_bh(bh);
 291				bh = bh->b_this_page;
 292			}
 293			return false;
 294		}
 295
 296		bh = bh->b_this_page;
 297	} while (bh != head);
 298	return true;
 299}
 300#else
 301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 302							enum migrate_mode mode)
 303{
 304	return true;
 305}
 306#endif /* CONFIG_BLOCK */
 307
 308/*
 309 * Replace the page in the mapping.
 310 *
 311 * The number of remaining references must be:
 312 * 1 for anonymous pages without a mapping
 313 * 2 for pages with a mapping
 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 315 */
 316int migrate_page_move_mapping(struct address_space *mapping,
 317		struct page *newpage, struct page *page,
 318		struct buffer_head *head, enum migrate_mode mode,
 319		int extra_count)
 320{
 
 321	struct zone *oldzone, *newzone;
 322	int dirty;
 323	int expected_count = 1 + extra_count;
 324	void **pslot;
 325
 326	if (!mapping) {
 327		/* Anonymous page without mapping */
 328		if (page_count(page) != expected_count)
 329			return -EAGAIN;
 
 
 
 
 
 330
 331		/* No turning back from here */
 332		newpage->index = page->index;
 333		newpage->mapping = page->mapping;
 334		if (PageSwapBacked(page))
 335			SetPageSwapBacked(newpage);
 
 
 336
 337		return MIGRATEPAGE_SUCCESS;
 338	}
 339
 340	oldzone = page_zone(page);
 341	newzone = page_zone(newpage);
 342
 343	spin_lock_irq(&mapping->tree_lock);
 344
 345	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 346 					page_index(page));
 347
 348	expected_count += 1 + page_has_private(page);
 349	if (page_count(page) != expected_count ||
 350		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 351		spin_unlock_irq(&mapping->tree_lock);
 352		return -EAGAIN;
 353	}
 354
 355	if (!page_ref_freeze(page, expected_count)) {
 356		spin_unlock_irq(&mapping->tree_lock);
 
 357		return -EAGAIN;
 358	}
 359
 360	/*
 361	 * In the async migration case of moving a page with buffers, lock the
 362	 * buffers using trylock before the mapping is moved. If the mapping
 363	 * was moved, we later failed to lock the buffers and could not move
 364	 * the mapping back due to an elevated page count, we would have to
 365	 * block waiting on other references to be dropped.
 366	 */
 367	if (mode == MIGRATE_ASYNC && head &&
 368			!buffer_migrate_lock_buffers(head, mode)) {
 369		page_ref_unfreeze(page, expected_count);
 370		spin_unlock_irq(&mapping->tree_lock);
 371		return -EAGAIN;
 372	}
 373
 374	/*
 375	 * Now we know that no one else is looking at the page:
 376	 * no turning back from here.
 377	 */
 378	newpage->index = page->index;
 379	newpage->mapping = page->mapping;
 380	if (PageSwapBacked(page))
 381		SetPageSwapBacked(newpage);
 382
 383	get_page(newpage);	/* add cache reference */
 384	if (PageSwapCache(page)) {
 385		SetPageSwapCache(newpage);
 386		set_page_private(newpage, page_private(page));
 
 
 
 
 
 
 387	}
 388
 389	/* Move dirty while page refs frozen and newpage not yet exposed */
 390	dirty = PageDirty(page);
 391	if (dirty) {
 392		ClearPageDirty(page);
 393		SetPageDirty(newpage);
 394	}
 395
 396	radix_tree_replace_slot(pslot, newpage);
 
 
 
 
 397
 398	/*
 399	 * Drop cache reference from old page by unfreezing
 400	 * to one less reference.
 401	 * We know this isn't the last reference.
 402	 */
 403	page_ref_unfreeze(page, expected_count - 1);
 404
 405	spin_unlock(&mapping->tree_lock);
 406	/* Leave irq disabled to prevent preemption while updating stats */
 407
 408	/*
 409	 * If moved to a different zone then also account
 410	 * the page for that zone. Other VM counters will be
 411	 * taken care of when we establish references to the
 412	 * new page and drop references to the old page.
 413	 *
 414	 * Note that anonymous pages are accounted for
 415	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 416	 * are mapped to swap space.
 417	 */
 418	if (newzone != oldzone) {
 419		__dec_zone_state(oldzone, NR_FILE_PAGES);
 420		__inc_zone_state(newzone, NR_FILE_PAGES);
 421		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 422			__dec_zone_state(oldzone, NR_SHMEM);
 423			__inc_zone_state(newzone, NR_SHMEM);
 424		}
 425		if (dirty && mapping_cap_account_dirty(mapping)) {
 426			__dec_zone_state(oldzone, NR_FILE_DIRTY);
 427			__inc_zone_state(newzone, NR_FILE_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428		}
 429	}
 430	local_irq_enable();
 431
 432	return MIGRATEPAGE_SUCCESS;
 433}
 434
 
 
 
 
 
 
 
 
 
 
 
 
 435/*
 436 * The expected number of remaining references is the same as that
 437 * of migrate_page_move_mapping().
 438 */
 439int migrate_huge_page_move_mapping(struct address_space *mapping,
 440				   struct page *newpage, struct page *page)
 441{
 442	int expected_count;
 443	void **pslot;
 444
 445	spin_lock_irq(&mapping->tree_lock);
 446
 447	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 448					page_index(page));
 449
 450	expected_count = 2 + page_has_private(page);
 451	if (page_count(page) != expected_count ||
 452		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 457	if (!page_ref_freeze(page, expected_count)) {
 458		spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 459		return -EAGAIN;
 460	}
 461
 462	newpage->index = page->index;
 463	newpage->mapping = page->mapping;
 464
 465	get_page(newpage);
 466
 467	radix_tree_replace_slot(pslot, newpage);
 468
 469	page_ref_unfreeze(page, expected_count - 1);
 470
 471	spin_unlock_irq(&mapping->tree_lock);
 472
 473	return MIGRATEPAGE_SUCCESS;
 474}
 475
 476/*
 477 * Gigantic pages are so large that we do not guarantee that page++ pointer
 478 * arithmetic will work across the entire page.  We need something more
 479 * specialized.
 480 */
 481static void __copy_gigantic_page(struct page *dst, struct page *src,
 482				int nr_pages)
 483{
 484	int i;
 485	struct page *dst_base = dst;
 486	struct page *src_base = src;
 487
 488	for (i = 0; i < nr_pages; ) {
 489		cond_resched();
 490		copy_highpage(dst, src);
 491
 492		i++;
 493		dst = mem_map_next(dst, dst_base, i);
 494		src = mem_map_next(src, src_base, i);
 495	}
 496}
 497
 498static void copy_huge_page(struct page *dst, struct page *src)
 499{
 500	int i;
 501	int nr_pages;
 502
 503	if (PageHuge(src)) {
 504		/* hugetlbfs page */
 505		struct hstate *h = page_hstate(src);
 506		nr_pages = pages_per_huge_page(h);
 507
 508		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 509			__copy_gigantic_page(dst, src, nr_pages);
 510			return;
 511		}
 512	} else {
 513		/* thp page */
 514		BUG_ON(!PageTransHuge(src));
 515		nr_pages = hpage_nr_pages(src);
 516	}
 517
 518	for (i = 0; i < nr_pages; i++) {
 519		cond_resched();
 520		copy_highpage(dst + i, src + i);
 521	}
 522}
 523
 524/*
 525 * Copy the page to its new location
 526 */
 527void migrate_page_copy(struct page *newpage, struct page *page)
 528{
 529	int cpupid;
 530
 531	if (PageHuge(page) || PageTransHuge(page))
 532		copy_huge_page(newpage, page);
 533	else
 534		copy_highpage(newpage, page);
 535
 536	if (PageError(page))
 537		SetPageError(newpage);
 538	if (PageReferenced(page))
 539		SetPageReferenced(newpage);
 540	if (PageUptodate(page))
 541		SetPageUptodate(newpage);
 542	if (TestClearPageActive(page)) {
 543		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 544		SetPageActive(newpage);
 545	} else if (TestClearPageUnevictable(page))
 546		SetPageUnevictable(newpage);
 547	if (PageChecked(page))
 548		SetPageChecked(newpage);
 549	if (PageMappedToDisk(page))
 550		SetPageMappedToDisk(newpage);
 551
 552	/* Move dirty on pages not done by migrate_page_move_mapping() */
 553	if (PageDirty(page))
 554		SetPageDirty(newpage);
 555
 556	if (page_is_young(page))
 557		set_page_young(newpage);
 558	if (page_is_idle(page))
 559		set_page_idle(newpage);
 
 560
 
 561	/*
 562	 * Copy NUMA information to the new page, to prevent over-eager
 563	 * future migrations of this same page.
 564	 */
 565	cpupid = page_cpupid_xchg_last(page, -1);
 566	page_cpupid_xchg_last(newpage, cpupid);
 
 
 
 
 
 
 
 
 
 
 
 
 567
 568	ksm_migrate_page(newpage, page);
 569	/*
 570	 * Please do not reorder this without considering how mm/ksm.c's
 571	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 
 572	 */
 573	if (PageSwapCache(page))
 574		ClearPageSwapCache(page);
 575	ClearPagePrivate(page);
 576	set_page_private(page, 0);
 
 
 
 577
 578	/*
 579	 * If any waiters have accumulated on the new page then
 580	 * wake them up.
 581	 */
 582	if (PageWriteback(newpage))
 583		end_page_writeback(newpage);
 
 
 
 
 
 
 
 
 584
 585	copy_page_owner(page, newpage);
 
 586
 587	mem_cgroup_migrate(page, newpage);
 588}
 
 589
 590/************************************************************
 591 *                    Migration functions
 592 ***********************************************************/
 593
 594/*
 595 * Common logic to directly migrate a single page suitable for
 596 * pages that do not use PagePrivate/PagePrivate2.
 597 *
 598 * Pages are locked upon entry and exit.
 599 */
 600int migrate_page(struct address_space *mapping,
 601		struct page *newpage, struct page *page,
 602		enum migrate_mode mode)
 603{
 604	int rc;
 605
 606	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 
 
 607
 608	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 
 
 609
 
 610	if (rc != MIGRATEPAGE_SUCCESS)
 611		return rc;
 612
 613	migrate_page_copy(newpage, page);
 
 
 
 614	return MIGRATEPAGE_SUCCESS;
 615}
 616EXPORT_SYMBOL(migrate_page);
 617
 618#ifdef CONFIG_BLOCK
 619/*
 620 * Migration function for pages with buffers. This function can only be used
 621 * if the underlying filesystem guarantees that no other references to "page"
 622 * exist.
 
 
 
 
 
 
 623 */
 624int buffer_migrate_page(struct address_space *mapping,
 625		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct buffer_head *bh, *head;
 628	int rc;
 
 629
 630	if (!page_has_buffers(page))
 631		return migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 632
 633	head = page_buffers(page);
 
 634
 635	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 
 637	if (rc != MIGRATEPAGE_SUCCESS)
 638		return rc;
 639
 640	/*
 641	 * In the async case, migrate_page_move_mapping locked the buffers
 642	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 643	 * need to be locked now
 644	 */
 645	if (mode != MIGRATE_ASYNC)
 646		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 647
 648	ClearPagePrivate(page);
 649	set_page_private(newpage, page_private(page));
 650	set_page_private(page, 0);
 651	put_page(page);
 652	get_page(newpage);
 653
 654	bh = head;
 655	do {
 656		set_bh_page(bh, newpage, bh_offset(bh));
 657		bh = bh->b_this_page;
 658
 659	} while (bh != head);
 660
 661	SetPagePrivate(newpage);
 662
 663	migrate_page_copy(newpage, page);
 664
 665	bh = head;
 666	do {
 667		unlock_buffer(bh);
 668 		put_bh(bh);
 669		bh = bh->b_this_page;
 670
 671	} while (bh != head);
 672
 673	return MIGRATEPAGE_SUCCESS;
 674}
 675EXPORT_SYMBOL(buffer_migrate_page);
 676#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678/*
 679 * Writeback a page to clean the dirty state
 680 */
 681static int writeout(struct address_space *mapping, struct page *page)
 682{
 683	struct writeback_control wbc = {
 684		.sync_mode = WB_SYNC_NONE,
 685		.nr_to_write = 1,
 686		.range_start = 0,
 687		.range_end = LLONG_MAX,
 688		.for_reclaim = 1
 689	};
 690	int rc;
 691
 692	if (!mapping->a_ops->writepage)
 693		/* No write method for the address space */
 694		return -EINVAL;
 695
 696	if (!clear_page_dirty_for_io(page))
 697		/* Someone else already triggered a write */
 698		return -EAGAIN;
 699
 700	/*
 701	 * A dirty page may imply that the underlying filesystem has
 702	 * the page on some queue. So the page must be clean for
 703	 * migration. Writeout may mean we loose the lock and the
 704	 * page state is no longer what we checked for earlier.
 705	 * At this point we know that the migration attempt cannot
 706	 * be successful.
 707	 */
 708	remove_migration_ptes(page, page, false);
 709
 710	rc = mapping->a_ops->writepage(page, &wbc);
 711
 712	if (rc != AOP_WRITEPAGE_ACTIVATE)
 713		/* unlocked. Relock */
 714		lock_page(page);
 715
 716	return (rc < 0) ? -EIO : -EAGAIN;
 717}
 718
 719/*
 720 * Default handling if a filesystem does not provide a migration function.
 721 */
 722static int fallback_migrate_page(struct address_space *mapping,
 723	struct page *newpage, struct page *page, enum migrate_mode mode)
 724{
 725	if (PageDirty(page)) {
 726		/* Only writeback pages in full synchronous migration */
 727		if (mode != MIGRATE_SYNC)
 
 
 
 728			return -EBUSY;
 729		return writeout(mapping, page);
 
 730	}
 731
 732	/*
 733	 * Buffers may be managed in a filesystem specific way.
 734	 * We must have no buffers or drop them.
 735	 */
 736	if (page_has_private(page) &&
 737	    !try_to_release_page(page, GFP_KERNEL))
 738		return -EAGAIN;
 739
 740	return migrate_page(mapping, newpage, page, mode);
 741}
 742
 743/*
 744 * Move a page to a newly allocated page
 745 * The page is locked and all ptes have been successfully removed.
 746 *
 747 * The new page will have replaced the old page if this function
 748 * is successful.
 749 *
 750 * Return value:
 751 *   < 0 - error code
 752 *  MIGRATEPAGE_SUCCESS - success
 753 */
 754static int move_to_new_page(struct page *newpage, struct page *page,
 755				enum migrate_mode mode)
 756{
 757	struct address_space *mapping;
 758	int rc;
 759
 760	VM_BUG_ON_PAGE(!PageLocked(page), page);
 761	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	mapping = page_mapping(page);
 764	if (!mapping)
 765		rc = migrate_page(mapping, newpage, page, mode);
 766	else if (mapping->a_ops->migratepage)
 767		/*
 768		 * Most pages have a mapping and most filesystems provide a
 769		 * migratepage callback. Anonymous pages are part of swap
 770		 * space which also has its own migratepage callback. This
 771		 * is the most common path for page migration.
 772		 */
 773		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
 774	else
 775		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 
 
 
 776
 777	/*
 778	 * When successful, old pagecache page->mapping must be cleared before
 779	 * page is freed; but stats require that PageAnon be left as PageAnon.
 780	 */
 781	if (rc == MIGRATEPAGE_SUCCESS) {
 782		if (!PageAnon(page))
 783			page->mapping = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 
 785	return rc;
 786}
 787
 788static int __unmap_and_move(struct page *page, struct page *newpage,
 789				int force, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790{
 
 791	int rc = -EAGAIN;
 792	int page_was_mapped = 0;
 793	struct anon_vma *anon_vma = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	if (!trylock_page(page)) {
 796		if (!force || mode == MIGRATE_ASYNC)
 
 
 797			goto out;
 798
 799		/*
 800		 * It's not safe for direct compaction to call lock_page.
 801		 * For example, during page readahead pages are added locked
 802		 * to the LRU. Later, when the IO completes the pages are
 803		 * marked uptodate and unlocked. However, the queueing
 804		 * could be merging multiple pages for one bio (e.g.
 805		 * mpage_readpages). If an allocation happens for the
 806		 * second or third page, the process can end up locking
 807		 * the same page twice and deadlocking. Rather than
 808		 * trying to be clever about what pages can be locked,
 809		 * avoid the use of lock_page for direct compaction
 810		 * altogether.
 811		 */
 812		if (current->flags & PF_MEMALLOC)
 813			goto out;
 814
 815		lock_page(page);
 
 
 
 
 
 
 
 
 816	}
 
 
 
 817
 818	if (PageWriteback(page)) {
 819		/*
 820		 * Only in the case of a full synchronous migration is it
 821		 * necessary to wait for PageWriteback. In the async case,
 822		 * the retry loop is too short and in the sync-light case,
 823		 * the overhead of stalling is too much
 824		 */
 825		if (mode != MIGRATE_SYNC) {
 
 
 
 826			rc = -EBUSY;
 827			goto out_unlock;
 828		}
 829		if (!force)
 830			goto out_unlock;
 831		wait_on_page_writeback(page);
 832	}
 833
 834	/*
 835	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 836	 * we cannot notice that anon_vma is freed while we migrates a page.
 837	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 838	 * of migration. File cache pages are no problem because of page_lock()
 839	 * File Caches may use write_page() or lock_page() in migration, then,
 840	 * just care Anon page here.
 841	 *
 842	 * Only page_get_anon_vma() understands the subtleties of
 843	 * getting a hold on an anon_vma from outside one of its mms.
 844	 * But if we cannot get anon_vma, then we won't need it anyway,
 845	 * because that implies that the anon page is no longer mapped
 846	 * (and cannot be remapped so long as we hold the page lock).
 847	 */
 848	if (PageAnon(page) && !PageKsm(page))
 849		anon_vma = page_get_anon_vma(page);
 850
 851	/*
 852	 * Block others from accessing the new page when we get around to
 853	 * establishing additional references. We are usually the only one
 854	 * holding a reference to newpage at this point. We used to have a BUG
 855	 * here if trylock_page(newpage) fails, but would like to allow for
 856	 * cases where there might be a race with the previous use of newpage.
 857	 * This is much like races on refcount of oldpage: just don't BUG().
 858	 */
 859	if (unlikely(!trylock_page(newpage)))
 860		goto out_unlock;
 
 861
 862	if (unlikely(isolated_balloon_page(page))) {
 863		/*
 864		 * A ballooned page does not need any special attention from
 865		 * physical to virtual reverse mapping procedures.
 866		 * Skip any attempt to unmap PTEs or to remap swap cache,
 867		 * in order to avoid burning cycles at rmap level, and perform
 868		 * the page migration right away (proteced by page lock).
 869		 */
 870		rc = balloon_page_migrate(newpage, page, mode);
 871		goto out_unlock_both;
 872	}
 873
 874	/*
 875	 * Corner case handling:
 876	 * 1. When a new swap-cache page is read into, it is added to the LRU
 877	 * and treated as swapcache but it has no rmap yet.
 878	 * Calling try_to_unmap() against a page->mapping==NULL page will
 879	 * trigger a BUG.  So handle it here.
 880	 * 2. An orphaned page (see truncate_complete_page) might have
 881	 * fs-private metadata. The page can be picked up due to memory
 882	 * offlining.  Everywhere else except page reclaim, the page is
 883	 * invisible to the vm, so the page can not be migrated.  So try to
 884	 * free the metadata, so the page can be freed.
 885	 */
 886	if (!page->mapping) {
 887		VM_BUG_ON_PAGE(PageAnon(page), page);
 888		if (page_has_private(page)) {
 889			try_to_free_buffers(page);
 890			goto out_unlock_both;
 891		}
 892	} else if (page_mapped(page)) {
 893		/* Establish migration ptes */
 894		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 895				page);
 896		try_to_unmap(page,
 897			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 898		page_was_mapped = 1;
 899	}
 900
 901	if (!page_mapped(page))
 902		rc = move_to_new_page(newpage, page, mode);
 903
 904	if (page_was_mapped)
 905		remove_migration_ptes(page,
 906			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
 907
 908out_unlock_both:
 909	unlock_page(newpage);
 910out_unlock:
 911	/* Drop an anon_vma reference if we took one */
 912	if (anon_vma)
 913		put_anon_vma(anon_vma);
 914	unlock_page(page);
 915out:
 
 
 
 
 
 
 
 
 
 
 
 916	return rc;
 917}
 918
 919/*
 920 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 921 * around it.
 922 */
 923#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
 924#define ICE_noinline noinline
 925#else
 926#define ICE_noinline
 927#endif
 928
 929/*
 930 * Obtain the lock on page, remove all ptes and migrate the page
 931 * to the newly allocated page in newpage.
 932 */
 933static ICE_noinline int unmap_and_move(new_page_t get_new_page,
 934				   free_page_t put_new_page,
 935				   unsigned long private, struct page *page,
 936				   int force, enum migrate_mode mode,
 937				   enum migrate_reason reason)
 938{
 939	int rc = MIGRATEPAGE_SUCCESS;
 940	int *result = NULL;
 941	struct page *newpage;
 942
 943	newpage = get_new_page(page, private, &result);
 944	if (!newpage)
 945		return -ENOMEM;
 946
 947	if (page_count(page) == 1) {
 948		/* page was freed from under us. So we are done. */
 949		goto out;
 950	}
 951
 952	if (unlikely(PageTransHuge(page))) {
 953		lock_page(page);
 954		rc = split_huge_page(page);
 955		unlock_page(page);
 956		if (rc)
 957			goto out;
 958	}
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 961	if (rc == MIGRATEPAGE_SUCCESS) {
 962		put_new_page = NULL;
 963		set_page_owner_migrate_reason(newpage, reason);
 964	}
 
 
 
 
 
 
 
 965
 966out:
 967	if (rc != -EAGAIN) {
 968		/*
 969		 * A page that has been migrated has all references
 970		 * removed and will be freed. A page that has not been
 971		 * migrated will have kepts its references and be
 972		 * restored.
 973		 */
 974		list_del(&page->lru);
 975		dec_zone_page_state(page, NR_ISOLATED_ANON +
 976				page_is_file_cache(page));
 977		/* Soft-offlined page shouldn't go through lru cache list */
 978		if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
 979			/*
 980			 * With this release, we free successfully migrated
 981			 * page and set PG_HWPoison on just freed page
 982			 * intentionally. Although it's rather weird, it's how
 983			 * HWPoison flag works at the moment.
 984			 */
 985			put_page(page);
 986			if (!test_set_page_hwpoison(page))
 987				num_poisoned_pages_inc();
 988		} else
 989			putback_lru_page(page);
 990	}
 991
 
 
 
 992	/*
 993	 * If migration was not successful and there's a freeing callback, use
 994	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
 995	 * during isolation.
 996	 */
 997	if (put_new_page)
 998		put_new_page(newpage, private);
 999	else if (unlikely(__is_movable_balloon_page(newpage))) {
1000		/* drop our reference, page already in the balloon */
1001		put_page(newpage);
1002	} else
1003		putback_lru_page(newpage);
1004
1005	if (result) {
1006		if (rc)
1007			*result = rc;
1008		else
1009			*result = page_to_nid(newpage);
 
 
 
 
 
 
 
 
 
 
1010	}
 
 
 
 
 
1011	return rc;
1012}
1013
1014/*
1015 * Counterpart of unmap_and_move_page() for hugepage migration.
1016 *
1017 * This function doesn't wait the completion of hugepage I/O
1018 * because there is no race between I/O and migration for hugepage.
1019 * Note that currently hugepage I/O occurs only in direct I/O
1020 * where no lock is held and PG_writeback is irrelevant,
1021 * and writeback status of all subpages are counted in the reference
1022 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1023 * under direct I/O, the reference of the head page is 512 and a bit more.)
1024 * This means that when we try to migrate hugepage whose subpages are
1025 * doing direct I/O, some references remain after try_to_unmap() and
1026 * hugepage migration fails without data corruption.
1027 *
1028 * There is also no race when direct I/O is issued on the page under migration,
1029 * because then pte is replaced with migration swap entry and direct I/O code
1030 * will wait in the page fault for migration to complete.
1031 */
1032static int unmap_and_move_huge_page(new_page_t get_new_page,
1033				free_page_t put_new_page, unsigned long private,
1034				struct page *hpage, int force,
1035				enum migrate_mode mode, int reason)
1036{
 
1037	int rc = -EAGAIN;
1038	int *result = NULL;
1039	int page_was_mapped = 0;
1040	struct page *new_hpage;
1041	struct anon_vma *anon_vma = NULL;
 
1042
1043	/*
1044	 * Movability of hugepages depends on architectures and hugepage size.
1045	 * This check is necessary because some callers of hugepage migration
1046	 * like soft offline and memory hotremove don't walk through page
1047	 * tables or check whether the hugepage is pmd-based or not before
1048	 * kicking migration.
1049	 */
1050	if (!hugepage_migration_supported(page_hstate(hpage))) {
1051		putback_active_hugepage(hpage);
1052		return -ENOSYS;
1053	}
1054
1055	new_hpage = get_new_page(hpage, private, &result);
1056	if (!new_hpage)
1057		return -ENOMEM;
1058
1059	if (!trylock_page(hpage)) {
1060		if (!force || mode != MIGRATE_SYNC)
1061			goto out;
1062		lock_page(hpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	}
1064
1065	if (PageAnon(hpage))
1066		anon_vma = page_get_anon_vma(hpage);
1067
1068	if (unlikely(!trylock_page(new_hpage)))
1069		goto put_anon;
1070
1071	if (page_mapped(hpage)) {
1072		try_to_unmap(hpage,
1073			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074		page_was_mapped = 1;
 
 
 
1075	}
1076
1077	if (!page_mapped(hpage))
1078		rc = move_to_new_page(new_hpage, hpage, mode);
1079
1080	if (page_was_mapped)
1081		remove_migration_ptes(hpage,
1082			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1083
1084	unlock_page(new_hpage);
 
1085
1086put_anon:
1087	if (anon_vma)
1088		put_anon_vma(anon_vma);
1089
1090	if (rc == MIGRATEPAGE_SUCCESS) {
1091		hugetlb_cgroup_migrate(hpage, new_hpage);
1092		put_new_page = NULL;
1093		set_page_owner_migrate_reason(new_hpage, reason);
1094	}
1095
1096	unlock_page(hpage);
 
1097out:
1098	if (rc != -EAGAIN)
1099		putback_active_hugepage(hpage);
 
 
1100
1101	/*
1102	 * If migration was not successful and there's a freeing callback, use
1103	 * it.  Otherwise, put_page() will drop the reference grabbed during
1104	 * isolation.
1105	 */
1106	if (put_new_page)
1107		put_new_page(new_hpage, private);
1108	else
1109		putback_active_hugepage(new_hpage);
1110
1111	if (result) {
1112		if (rc)
1113			*result = rc;
1114		else
1115			*result = page_to_nid(new_hpage);
 
 
 
 
 
 
 
 
1116	}
 
 
 
 
 
1117	return rc;
1118}
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/*
1121 * migrate_pages - migrate the pages specified in a list, to the free pages
1122 *		   supplied as the target for the page migration
1123 *
1124 * @from:		The list of pages to be migrated.
1125 * @get_new_page:	The function used to allocate free pages to be used
1126 *			as the target of the page migration.
1127 * @put_new_page:	The function used to free target pages if migration
1128 *			fails, or NULL if no special handling is necessary.
1129 * @private:		Private data to be passed on to get_new_page()
1130 * @mode:		The migration mode that specifies the constraints for
1131 *			page migration, if any.
1132 * @reason:		The reason for page migration.
1133 *
1134 * The function returns after 10 attempts or if no pages are movable any more
1135 * because the list has become empty or no retryable pages exist any more.
1136 * The caller should call putback_movable_pages() to return pages to the LRU
1137 * or free list only if ret != 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138 *
1139 * Returns the number of pages that were not migrated, or an error code.
1140 */
1141int migrate_pages(struct list_head *from, new_page_t get_new_page,
1142		free_page_t put_new_page, unsigned long private,
1143		enum migrate_mode mode, int reason)
 
 
 
 
 
1144{
1145	int retry = 1;
 
1146	int nr_failed = 0;
1147	int nr_succeeded = 0;
1148	int pass = 0;
1149	struct page *page;
1150	struct page *page2;
1151	int swapwrite = current->flags & PF_SWAPWRITE;
1152	int rc;
 
 
 
1153
1154	if (!swapwrite)
1155		current->flags |= PF_SWAPWRITE;
1156
1157	for(pass = 0; pass < 10 && retry; pass++) {
1158		retry = 0;
 
 
 
 
 
 
 
1159
1160		list_for_each_entry_safe(page, page2, from, lru) {
1161			cond_resched();
1162
1163			if (PageHuge(page))
1164				rc = unmap_and_move_huge_page(get_new_page,
1165						put_new_page, private, page,
1166						pass > 2, mode, reason);
1167			else
1168				rc = unmap_and_move(get_new_page, put_new_page,
1169						private, page, pass > 2, mode,
1170						reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171
 
 
 
 
 
 
 
 
 
 
 
 
1172			switch(rc) {
1173			case -ENOMEM:
1174				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175			case -EAGAIN:
1176				retry++;
 
 
1177				break;
1178			case MIGRATEPAGE_SUCCESS:
1179				nr_succeeded++;
 
 
 
 
 
1180				break;
1181			default:
1182				/*
1183				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1184				 * unlike -EAGAIN case, the failed page is
1185				 * removed from migration page list and not
1186				 * retried in the next outer loop.
1187				 */
1188				nr_failed++;
 
 
1189				break;
1190			}
1191		}
1192	}
1193	nr_failed += retry;
1194	rc = nr_failed;
1195out:
1196	if (nr_succeeded)
1197		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1198	if (nr_failed)
1199		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1200	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1201
1202	if (!swapwrite)
1203		current->flags &= ~PF_SWAPWRITE;
 
 
 
1204
1205	return rc;
1206}
 
 
 
1207
1208#ifdef CONFIG_NUMA
1209/*
1210 * Move a list of individual pages
1211 */
1212struct page_to_node {
1213	unsigned long addr;
1214	struct page *page;
1215	int node;
1216	int status;
1217};
1218
1219static struct page *new_page_node(struct page *p, unsigned long private,
1220		int **result)
1221{
1222	struct page_to_node *pm = (struct page_to_node *)private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224	while (pm->node != MAX_NUMNODES && pm->page != p)
1225		pm++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226
1227	if (pm->node == MAX_NUMNODES)
1228		return NULL;
1229
1230	*result = &pm->status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	if (PageHuge(p))
1233		return alloc_huge_page_node(page_hstate(compound_head(p)),
1234					pm->node);
1235	else
1236		return __alloc_pages_node(pm->node,
1237				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1238}
1239
1240/*
1241 * Move a set of pages as indicated in the pm array. The addr
1242 * field must be set to the virtual address of the page to be moved
1243 * and the node number must contain a valid target node.
1244 * The pm array ends with node = MAX_NUMNODES.
1245 */
1246static int do_move_page_to_node_array(struct mm_struct *mm,
1247				      struct page_to_node *pm,
1248				      int migrate_all)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249{
1250	int err;
1251	struct page_to_node *pp;
1252	LIST_HEAD(pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
1253
1254	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
1255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256	/*
1257	 * Build a list of pages to migrate
 
1258	 */
1259	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1260		struct vm_area_struct *vma;
1261		struct page *page;
1262
1263		err = -EFAULT;
1264		vma = find_vma(mm, pp->addr);
1265		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1266			goto set_status;
 
 
1267
1268		/* FOLL_DUMP to ignore special (like zero) pages */
1269		page = follow_page(vma, pp->addr,
1270				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
 
 
 
 
 
 
1271
1272		err = PTR_ERR(page);
1273		if (IS_ERR(page))
1274			goto set_status;
1275
1276		err = -ENOENT;
1277		if (!page)
1278			goto set_status;
1279
1280		pp->page = page;
1281		err = page_to_nid(page);
 
 
 
 
 
1282
1283		if (err == pp->node)
1284			/*
1285			 * Node already in the right place
1286			 */
1287			goto put_and_set;
1288
1289		err = -EACCES;
1290		if (page_mapcount(page) > 1 &&
1291				!migrate_all)
1292			goto put_and_set;
1293
1294		if (PageHuge(page)) {
1295			if (PageHead(page))
1296				isolate_huge_page(page, &pagelist);
1297			goto put_and_set;
1298		}
1299
1300		err = isolate_lru_page(page);
1301		if (!err) {
1302			list_add_tail(&page->lru, &pagelist);
1303			inc_zone_page_state(page, NR_ISOLATED_ANON +
1304					    page_is_file_cache(page));
1305		}
1306put_and_set:
1307		/*
1308		 * Either remove the duplicate refcount from
1309		 * isolate_lru_page() or drop the page ref if it was
1310		 * not isolated.
1311		 */
1312		put_page(page);
1313set_status:
1314		pp->status = err;
1315	}
 
 
 
1316
1317	err = 0;
1318	if (!list_empty(&pagelist)) {
1319		err = migrate_pages(&pagelist, new_page_node, NULL,
1320				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1321		if (err)
1322			putback_movable_pages(&pagelist);
 
 
 
 
 
1323	}
1324
1325	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326	return err;
1327}
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329/*
1330 * Migrate an array of page address onto an array of nodes and fill
1331 * the corresponding array of status.
1332 */
1333static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1334			 unsigned long nr_pages,
1335			 const void __user * __user *pages,
1336			 const int __user *nodes,
1337			 int __user *status, int flags)
1338{
1339	struct page_to_node *pm;
1340	unsigned long chunk_nr_pages;
1341	unsigned long chunk_start;
1342	int err;
 
1343
1344	err = -ENOMEM;
1345	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1346	if (!pm)
1347		goto out;
1348
1349	migrate_prep();
 
 
1350
1351	/*
1352	 * Store a chunk of page_to_node array in a page,
1353	 * but keep the last one as a marker
1354	 */
1355	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1356
1357	for (chunk_start = 0;
1358	     chunk_start < nr_pages;
1359	     chunk_start += chunk_nr_pages) {
1360		int j;
1361
1362		if (chunk_start + chunk_nr_pages > nr_pages)
1363			chunk_nr_pages = nr_pages - chunk_start;
1364
1365		/* fill the chunk pm with addrs and nodes from user-space */
1366		for (j = 0; j < chunk_nr_pages; j++) {
1367			const void __user *p;
1368			int node;
1369
1370			err = -EFAULT;
1371			if (get_user(p, pages + j + chunk_start))
1372				goto out_pm;
1373			pm[j].addr = (unsigned long) p;
 
 
 
1374
1375			if (get_user(node, nodes + j + chunk_start))
1376				goto out_pm;
 
 
 
1377
1378			err = -ENODEV;
1379			if (node < 0 || node >= MAX_NUMNODES)
1380				goto out_pm;
1381
1382			if (!node_state(node, N_MEMORY))
1383				goto out_pm;
 
 
 
 
 
 
 
 
 
1384
1385			err = -EACCES;
1386			if (!node_isset(node, task_nodes))
1387				goto out_pm;
 
 
 
1388
1389			pm[j].node = node;
 
 
1390		}
1391
1392		/* End marker for this chunk */
1393		pm[chunk_nr_pages].node = MAX_NUMNODES;
 
 
 
 
1394
1395		/* Migrate this chunk */
1396		err = do_move_page_to_node_array(mm, pm,
1397						 flags & MPOL_MF_MOVE_ALL);
1398		if (err < 0)
1399			goto out_pm;
 
 
1400
1401		/* Return status information */
1402		for (j = 0; j < chunk_nr_pages; j++)
1403			if (put_user(pm[j].status, status + j + chunk_start)) {
1404				err = -EFAULT;
1405				goto out_pm;
1406			}
 
 
 
1407	}
1408	err = 0;
1409
1410out_pm:
1411	free_page((unsigned long)pm);
 
 
1412out:
 
1413	return err;
1414}
1415
1416/*
1417 * Determine the nodes of an array of pages and store it in an array of status.
1418 */
1419static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1420				const void __user **pages, int *status)
1421{
1422	unsigned long i;
1423
1424	down_read(&mm->mmap_sem);
1425
1426	for (i = 0; i < nr_pages; i++) {
1427		unsigned long addr = (unsigned long)(*pages);
1428		struct vm_area_struct *vma;
1429		struct page *page;
 
1430		int err = -EFAULT;
1431
1432		vma = find_vma(mm, addr);
1433		if (!vma || addr < vma->vm_start)
1434			goto set_status;
1435
1436		/* FOLL_DUMP to ignore special (like zero) pages */
1437		page = follow_page(vma, addr, FOLL_DUMP);
1438
1439		err = PTR_ERR(page);
1440		if (IS_ERR(page))
1441			goto set_status;
1442
1443		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
1444set_status:
1445		*status = err;
1446
1447		pages++;
1448		status++;
1449	}
1450
1451	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452}
1453
1454/*
1455 * Determine the nodes of a user array of pages and store it in
1456 * a user array of status.
1457 */
1458static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1459			 const void __user * __user *pages,
1460			 int __user *status)
1461{
1462#define DO_PAGES_STAT_CHUNK_NR 16
1463	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1464	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1465
1466	while (nr_pages) {
1467		unsigned long chunk_nr;
1468
1469		chunk_nr = nr_pages;
1470		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1471			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1472
1473		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1474			break;
 
 
 
 
 
 
 
1475
1476		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1477
1478		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1479			break;
1480
1481		pages += chunk_nr;
1482		status += chunk_nr;
1483		nr_pages -= chunk_nr;
1484	}
1485	return nr_pages ? -EFAULT : 0;
1486}
1487
1488/*
1489 * Move a list of pages in the address space of the currently executing
1490 * process.
1491 */
1492SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1493		const void __user * __user *, pages,
1494		const int __user *, nodes,
1495		int __user *, status, int, flags)
1496{
1497	const struct cred *cred = current_cred(), *tcred;
1498	struct task_struct *task;
1499	struct mm_struct *mm;
1500	int err;
1501	nodemask_t task_nodes;
1502
1503	/* Check flags */
1504	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1505		return -EINVAL;
1506
1507	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1508		return -EPERM;
 
 
 
1509
1510	/* Find the mm_struct */
1511	rcu_read_lock();
1512	task = pid ? find_task_by_vpid(pid) : current;
1513	if (!task) {
1514		rcu_read_unlock();
1515		return -ESRCH;
1516	}
1517	get_task_struct(task);
1518
1519	/*
1520	 * Check if this process has the right to modify the specified
1521	 * process. The right exists if the process has administrative
1522	 * capabilities, superuser privileges or the same
1523	 * userid as the target process.
1524	 */
1525	tcred = __task_cred(task);
1526	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1527	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1528	    !capable(CAP_SYS_NICE)) {
1529		rcu_read_unlock();
1530		err = -EPERM;
1531		goto out;
1532	}
1533	rcu_read_unlock();
1534
1535 	err = security_task_movememory(task);
1536 	if (err)
1537		goto out;
1538
1539	task_nodes = cpuset_mems_allowed(task);
1540	mm = get_task_mm(task);
 
1541	put_task_struct(task);
1542
1543	if (!mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544		return -EINVAL;
1545
 
 
 
 
 
 
 
1546	if (nodes)
1547		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1548				    nodes, status, flags);
1549	else
1550		err = do_pages_stat(mm, nr_pages, pages, status);
1551
1552	mmput(mm);
1553	return err;
 
1554
1555out:
1556	put_task_struct(task);
1557	return err;
 
 
 
1558}
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561/*
1562 * Returns true if this is a safe migration target node for misplaced NUMA
1563 * pages. Currently it only checks the watermarks which crude
1564 */
1565static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566				   unsigned long nr_migrate_pages)
1567{
1568	int z;
 
1569	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1570		struct zone *zone = pgdat->node_zones + z;
1571
1572		if (!populated_zone(zone))
1573			continue;
1574
1575		if (!zone_reclaimable(zone))
1576			continue;
1577
1578		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1579		if (!zone_watermark_ok(zone, 0,
1580				       high_wmark_pages(zone) +
1581				       nr_migrate_pages,
1582				       0, 0))
1583			continue;
1584		return true;
1585	}
1586	return false;
1587}
1588
1589static struct page *alloc_misplaced_dst_page(struct page *page,
1590					   unsigned long data,
1591					   int **result)
1592{
1593	int nid = (int) data;
1594	struct page *newpage;
1595
1596	newpage = __alloc_pages_node(nid,
1597					 (GFP_HIGHUSER_MOVABLE |
1598					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1599					  __GFP_NORETRY | __GFP_NOWARN) &
1600					 ~__GFP_RECLAIM, 0);
1601
1602	return newpage;
 
 
 
 
 
 
 
1603}
1604
1605/*
1606 * page migration rate limiting control.
1607 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1608 * window of time. Default here says do not migrate more than 1280M per second.
1609 */
1610static unsigned int migrate_interval_millisecs __read_mostly = 100;
1611static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1612
1613/* Returns true if the node is migrate rate-limited after the update */
1614static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1615					unsigned long nr_pages)
1616{
1617	/*
1618	 * Rate-limit the amount of data that is being migrated to a node.
1619	 * Optimal placement is no good if the memory bus is saturated and
1620	 * all the time is being spent migrating!
1621	 */
1622	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1623		spin_lock(&pgdat->numabalancing_migrate_lock);
1624		pgdat->numabalancing_migrate_nr_pages = 0;
1625		pgdat->numabalancing_migrate_next_window = jiffies +
1626			msecs_to_jiffies(migrate_interval_millisecs);
1627		spin_unlock(&pgdat->numabalancing_migrate_lock);
1628	}
1629	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1630		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1631								nr_pages);
1632		return true;
1633	}
1634
1635	/*
1636	 * This is an unlocked non-atomic update so errors are possible.
1637	 * The consequences are failing to migrate when we potentiall should
1638	 * have which is not severe enough to warrant locking. If it is ever
1639	 * a problem, it can be converted to a per-cpu counter.
1640	 */
1641	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1642	return false;
1643}
1644
1645static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1646{
1647	int page_lru;
 
 
 
 
 
 
 
 
 
1648
1649	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
 
 
 
 
 
 
 
1650
1651	/* Avoid migrating to a node that is nearly full */
1652	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1653		return 0;
1654
1655	if (isolate_lru_page(page))
1656		return 0;
 
 
 
 
1657
1658	/*
1659	 * migrate_misplaced_transhuge_page() skips page migration's usual
1660	 * check on page_count(), so we must do it here, now that the page
1661	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1662	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1663	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1664	 */
1665	if (PageTransHuge(page) && page_count(page) != 3) {
1666		putback_lru_page(page);
1667		return 0;
1668	}
1669
1670	page_lru = page_is_file_cache(page);
1671	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1672				hpage_nr_pages(page));
 
1673
1674	/*
1675	 * Isolating the page has taken another reference, so the
1676	 * caller's reference can be safely dropped without the page
1677	 * disappearing underneath us during migration.
1678	 */
1679	put_page(page);
1680	return 1;
1681}
1682
1683bool pmd_trans_migrating(pmd_t pmd)
1684{
1685	struct page *page = pmd_page(pmd);
1686	return PageLocked(page);
1687}
1688
1689/*
1690 * Attempt to migrate a misplaced page to the specified destination
1691 * node. Caller is expected to have an elevated reference count on
1692 * the page that will be dropped by this function before returning.
 
 
1693 */
1694int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1695			   int node)
1696{
1697	pg_data_t *pgdat = NODE_DATA(node);
1698	int isolated;
1699	int nr_remaining;
 
1700	LIST_HEAD(migratepages);
 
 
1701
1702	/*
1703	 * Don't migrate file pages that are mapped in multiple processes
1704	 * with execute permissions as they are probably shared libraries.
1705	 */
1706	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1707	    (vma->vm_flags & VM_EXEC))
1708		goto out;
1709
1710	/*
1711	 * Rate-limit the amount of data that is being migrated to a node.
1712	 * Optimal placement is no good if the memory bus is saturated and
1713	 * all the time is being spent migrating!
1714	 */
1715	if (numamigrate_update_ratelimit(pgdat, 1))
1716		goto out;
1717
1718	isolated = numamigrate_isolate_page(pgdat, page);
1719	if (!isolated)
1720		goto out;
1721
1722	list_add(&page->lru, &migratepages);
1723	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1724				     NULL, node, MIGRATE_ASYNC,
1725				     MR_NUMA_MISPLACED);
1726	if (nr_remaining) {
1727		if (!list_empty(&migratepages)) {
1728			list_del(&page->lru);
1729			dec_zone_page_state(page, NR_ISOLATED_ANON +
1730					page_is_file_cache(page));
1731			putback_lru_page(page);
1732		}
1733		isolated = 0;
1734	} else
1735		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1736	BUG_ON(!list_empty(&migratepages));
1737	return isolated;
1738
1739out:
1740	put_page(page);
1741	return 0;
1742}
1743#endif /* CONFIG_NUMA_BALANCING */
1744
1745#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1746/*
1747 * Migrates a THP to a given target node. page must be locked and is unlocked
1748 * before returning.
1749 */
1750int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1751				struct vm_area_struct *vma,
1752				pmd_t *pmd, pmd_t entry,
1753				unsigned long address,
1754				struct page *page, int node)
1755{
1756	spinlock_t *ptl;
1757	pg_data_t *pgdat = NODE_DATA(node);
1758	int isolated = 0;
1759	struct page *new_page = NULL;
1760	int page_lru = page_is_file_cache(page);
1761	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1762	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1763	pmd_t orig_entry;
1764
1765	/*
1766	 * Rate-limit the amount of data that is being migrated to a node.
1767	 * Optimal placement is no good if the memory bus is saturated and
1768	 * all the time is being spent migrating!
1769	 */
1770	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1771		goto out_dropref;
1772
1773	new_page = alloc_pages_node(node,
1774		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1775		HPAGE_PMD_ORDER);
1776	if (!new_page)
1777		goto out_fail;
1778	prep_transhuge_page(new_page);
1779
1780	isolated = numamigrate_isolate_page(pgdat, page);
1781	if (!isolated) {
1782		put_page(new_page);
1783		goto out_fail;
1784	}
1785	/*
1786	 * We are not sure a pending tlb flush here is for a huge page
1787	 * mapping or not. Hence use the tlb range variant
1788	 */
1789	if (mm_tlb_flush_pending(mm))
1790		flush_tlb_range(vma, mmun_start, mmun_end);
1791
1792	/* Prepare a page as a migration target */
1793	__SetPageLocked(new_page);
1794	SetPageSwapBacked(new_page);
1795
1796	/* anon mapping, we can simply copy page->mapping to the new page: */
1797	new_page->mapping = page->mapping;
1798	new_page->index = page->index;
1799	migrate_page_copy(new_page, page);
1800	WARN_ON(PageLRU(new_page));
1801
1802	/* Recheck the target PMD */
1803	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1804	ptl = pmd_lock(mm, pmd);
1805	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1806fail_putback:
1807		spin_unlock(ptl);
1808		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1809
1810		/* Reverse changes made by migrate_page_copy() */
1811		if (TestClearPageActive(new_page))
1812			SetPageActive(page);
1813		if (TestClearPageUnevictable(new_page))
1814			SetPageUnevictable(page);
1815
1816		unlock_page(new_page);
1817		put_page(new_page);		/* Free it */
1818
1819		/* Retake the callers reference and putback on LRU */
1820		get_page(page);
1821		putback_lru_page(page);
1822		mod_zone_page_state(page_zone(page),
1823			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1824
1825		goto out_unlock;
1826	}
1827
1828	orig_entry = *pmd;
1829	entry = mk_pmd(new_page, vma->vm_page_prot);
1830	entry = pmd_mkhuge(entry);
1831	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1832
1833	/*
1834	 * Clear the old entry under pagetable lock and establish the new PTE.
1835	 * Any parallel GUP will either observe the old page blocking on the
1836	 * page lock, block on the page table lock or observe the new page.
1837	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1838	 * guarantee the copy is visible before the pagetable update.
1839	 */
1840	flush_cache_range(vma, mmun_start, mmun_end);
1841	page_add_anon_rmap(new_page, vma, mmun_start, true);
1842	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1843	set_pmd_at(mm, mmun_start, pmd, entry);
1844	update_mmu_cache_pmd(vma, address, &entry);
1845
1846	if (page_count(page) != 2) {
1847		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1848		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1849		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1850		update_mmu_cache_pmd(vma, address, &entry);
1851		page_remove_rmap(new_page, true);
1852		goto fail_putback;
1853	}
1854
1855	mlock_migrate_page(new_page, page);
1856	page_remove_rmap(page, true);
1857	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1858
1859	spin_unlock(ptl);
1860	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1861
1862	/* Take an "isolate" reference and put new page on the LRU. */
1863	get_page(new_page);
1864	putback_lru_page(new_page);
1865
1866	unlock_page(new_page);
1867	unlock_page(page);
1868	put_page(page);			/* Drop the rmap reference */
1869	put_page(page);			/* Drop the LRU isolation reference */
1870
1871	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1872	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1873
1874	mod_zone_page_state(page_zone(page),
1875			NR_ISOLATED_ANON + page_lru,
1876			-HPAGE_PMD_NR);
1877	return isolated;
1878
1879out_fail:
1880	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1881out_dropref:
1882	ptl = pmd_lock(mm, pmd);
1883	if (pmd_same(*pmd, entry)) {
1884		entry = pmd_modify(entry, vma->vm_page_prot);
1885		set_pmd_at(mm, mmun_start, pmd, entry);
1886		update_mmu_cache_pmd(vma, address, &entry);
1887	}
1888	spin_unlock(ptl);
1889
1890out_unlock:
1891	unlock_page(page);
1892	put_page(page);
1893	return 0;
1894}
1895#endif /* CONFIG_NUMA_BALANCING */
1896
1897#endif /* CONFIG_NUMA */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
 
 
  23#include <linux/ksm.h>
  24#include <linux/rmap.h>
  25#include <linux/topology.h>
  26#include <linux/cpu.h>
  27#include <linux/cpuset.h>
  28#include <linux/writeback.h>
  29#include <linux/mempolicy.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/backing-dev.h>
  33#include <linux/compaction.h>
  34#include <linux/syscalls.h>
  35#include <linux/compat.h>
  36#include <linux/hugetlb.h>
 
  37#include <linux/gfp.h>
  38#include <linux/pfn_t.h>
 
  39#include <linux/page_idle.h>
  40#include <linux/page_owner.h>
  41#include <linux/sched/mm.h>
  42#include <linux/ptrace.h>
  43#include <linux/memory.h>
  44#include <linux/sched/sysctl.h>
  45#include <linux/memory-tiers.h>
  46#include <linux/pagewalk.h>
  47
  48#include <asm/tlbflush.h>
  49
 
  50#include <trace/events/migrate.h>
  51
  52#include "internal.h"
  53
  54bool isolate_movable_page(struct page *page, isolate_mode_t mode)
 
 
 
 
 
  55{
  56	struct folio *folio = folio_get_nontail_page(page);
  57	const struct movable_operations *mops;
  58
  59	/*
  60	 * Avoid burning cycles with pages that are yet under __free_pages(),
  61	 * or just got freed under us.
  62	 *
  63	 * In case we 'win' a race for a movable page being freed under us and
  64	 * raise its refcount preventing __free_pages() from doing its job
  65	 * the put_page() at the end of this block will take care of
  66	 * release this page, thus avoiding a nasty leakage.
  67	 */
  68	if (!folio)
  69		goto out;
  70
  71	if (unlikely(folio_test_slab(folio)))
  72		goto out_putfolio;
  73	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
  74	smp_rmb();
  75	/*
  76	 * Check movable flag before taking the page lock because
  77	 * we use non-atomic bitops on newly allocated page flags so
  78	 * unconditionally grabbing the lock ruins page's owner side.
  79	 */
  80	if (unlikely(!__folio_test_movable(folio)))
  81		goto out_putfolio;
  82	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
  83	smp_rmb();
  84	if (unlikely(folio_test_slab(folio)))
  85		goto out_putfolio;
  86
  87	/*
  88	 * As movable pages are not isolated from LRU lists, concurrent
  89	 * compaction threads can race against page migration functions
  90	 * as well as race against the releasing a page.
  91	 *
  92	 * In order to avoid having an already isolated movable page
  93	 * being (wrongly) re-isolated while it is under migration,
  94	 * or to avoid attempting to isolate pages being released,
  95	 * lets be sure we have the page lock
  96	 * before proceeding with the movable page isolation steps.
  97	 */
  98	if (unlikely(!folio_trylock(folio)))
  99		goto out_putfolio;
 100
 101	if (!folio_test_movable(folio) || folio_test_isolated(folio))
 102		goto out_no_isolated;
 103
 104	mops = folio_movable_ops(folio);
 105	VM_BUG_ON_FOLIO(!mops, folio);
 106
 107	if (!mops->isolate_page(&folio->page, mode))
 108		goto out_no_isolated;
 109
 110	/* Driver shouldn't use the isolated flag */
 111	WARN_ON_ONCE(folio_test_isolated(folio));
 112	folio_set_isolated(folio);
 113	folio_unlock(folio);
 114
 115	return true;
 116
 117out_no_isolated:
 118	folio_unlock(folio);
 119out_putfolio:
 120	folio_put(folio);
 121out:
 122	return false;
 123}
 124
 125static void putback_movable_folio(struct folio *folio)
 
 126{
 127	const struct movable_operations *mops = folio_movable_ops(folio);
 128
 129	mops->putback_page(&folio->page);
 130	folio_clear_isolated(folio);
 131}
 132
 133/*
 134 * Put previously isolated pages back onto the appropriate lists
 135 * from where they were once taken off for compaction/migration.
 136 *
 137 * This function shall be used whenever the isolated pageset has been
 138 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 139 * and isolate_hugetlb().
 140 */
 141void putback_movable_pages(struct list_head *l)
 142{
 143	struct folio *folio;
 144	struct folio *folio2;
 145
 146	list_for_each_entry_safe(folio, folio2, l, lru) {
 147		if (unlikely(folio_test_hugetlb(folio))) {
 148			folio_putback_active_hugetlb(folio);
 149			continue;
 150		}
 151		list_del(&folio->lru);
 152		/*
 153		 * We isolated non-lru movable folio so here we can use
 154		 * __folio_test_movable because LRU folio's mapping cannot
 155		 * have PAGE_MAPPING_MOVABLE.
 156		 */
 157		if (unlikely(__folio_test_movable(folio))) {
 158			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
 159			folio_lock(folio);
 160			if (folio_test_movable(folio))
 161				putback_movable_folio(folio);
 162			else
 163				folio_clear_isolated(folio);
 164			folio_unlock(folio);
 165			folio_put(folio);
 166		} else {
 167			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
 168					folio_is_file_lru(folio), -folio_nr_pages(folio));
 169			folio_putback_lru(folio);
 170		}
 171	}
 172}
 173
 174/* Must be called with an elevated refcount on the non-hugetlb folio */
 175bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
 
 
 
 176{
 177	bool isolated, lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178
 179	if (folio_test_hugetlb(folio))
 180		return isolate_hugetlb(folio, list);
 181
 182	lru = !__folio_test_movable(folio);
 183	if (lru)
 184		isolated = folio_isolate_lru(folio);
 185	else
 186		isolated = isolate_movable_page(&folio->page,
 187						ISOLATE_UNEVICTABLE);
 188
 189	if (!isolated)
 190		return false;
 191
 192	list_add(&folio->lru, list);
 193	if (lru)
 194		node_stat_add_folio(folio, NR_ISOLATED_ANON +
 195				    folio_is_file_lru(folio));
 196
 197	return true;
 198}
 199
 200static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
 201					  struct folio *folio,
 202					  unsigned long idx)
 203{
 204	struct page *page = folio_page(folio, idx);
 205	bool contains_data;
 206	pte_t newpte;
 207	void *addr;
 208
 209	if (PageCompound(page))
 210		return false;
 211	VM_BUG_ON_PAGE(!PageAnon(page), page);
 212	VM_BUG_ON_PAGE(!PageLocked(page), page);
 213	VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page);
 214
 215	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
 216	    mm_forbids_zeropage(pvmw->vma->vm_mm))
 217		return false;
 
 
 
 
 
 218
 219	/*
 220	 * The pmd entry mapping the old thp was flushed and the pte mapping
 221	 * this subpage has been non present. If the subpage is only zero-filled
 222	 * then map it to the shared zeropage.
 223	 */
 224	addr = kmap_local_page(page);
 225	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
 226	kunmap_local(addr);
 227
 228	if (contains_data)
 229		return false;
 230
 231	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
 232					pvmw->vma->vm_page_prot));
 233	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
 234
 235	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
 236	return true;
 237}
 238
 239struct rmap_walk_arg {
 240	struct folio *folio;
 241	bool map_unused_to_zeropage;
 242};
 243
 244/*
 245 * Restore a potential migration pte to a working pte entry
 246 */
 247static bool remove_migration_pte(struct folio *folio,
 248		struct vm_area_struct *vma, unsigned long addr, void *arg)
 249{
 250	struct rmap_walk_arg *rmap_walk_arg = arg;
 251	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 252
 253	while (page_vma_mapped_walk(&pvmw)) {
 254		rmap_t rmap_flags = RMAP_NONE;
 255		pte_t old_pte;
 256		pte_t pte;
 257		swp_entry_t entry;
 258		struct page *new;
 259		unsigned long idx = 0;
 260
 261		/* pgoff is invalid for ksm pages, but they are never large */
 262		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 263			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 264		new = folio_page(folio, idx);
 265
 266#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 267		/* PMD-mapped THP migration entry */
 268		if (!pvmw.pte) {
 269			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 270					!folio_test_pmd_mappable(folio), folio);
 271			remove_migration_pmd(&pvmw, new);
 272			continue;
 273		}
 274#endif
 275		if (rmap_walk_arg->map_unused_to_zeropage &&
 276		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
 277			continue;
 278
 279		folio_get(folio);
 280		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
 281		old_pte = ptep_get(pvmw.pte);
 282
 283		entry = pte_to_swp_entry(old_pte);
 284		if (!is_migration_entry_young(entry))
 285			pte = pte_mkold(pte);
 286		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 287			pte = pte_mkdirty(pte);
 288		if (pte_swp_soft_dirty(old_pte))
 289			pte = pte_mksoft_dirty(pte);
 290		else
 291			pte = pte_clear_soft_dirty(pte);
 
 
 
 
 292
 293		if (is_writable_migration_entry(entry))
 294			pte = pte_mkwrite(pte, vma);
 295		else if (pte_swp_uffd_wp(old_pte))
 296			pte = pte_mkuffd_wp(pte);
 297
 298		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 299			rmap_flags |= RMAP_EXCLUSIVE;
 300
 301		if (unlikely(is_device_private_page(new))) {
 302			if (pte_write(pte))
 303				entry = make_writable_device_private_entry(
 304							page_to_pfn(new));
 305			else
 306				entry = make_readable_device_private_entry(
 307							page_to_pfn(new));
 308			pte = swp_entry_to_pte(entry);
 309			if (pte_swp_soft_dirty(old_pte))
 310				pte = pte_swp_mksoft_dirty(pte);
 311			if (pte_swp_uffd_wp(old_pte))
 312				pte = pte_swp_mkuffd_wp(pte);
 313		}
 314
 315#ifdef CONFIG_HUGETLB_PAGE
 316		if (folio_test_hugetlb(folio)) {
 317			struct hstate *h = hstate_vma(vma);
 318			unsigned int shift = huge_page_shift(h);
 319			unsigned long psize = huge_page_size(h);
 320
 321			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 322			if (folio_test_anon(folio))
 323				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
 324						      rmap_flags);
 325			else
 326				hugetlb_add_file_rmap(folio);
 327			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
 328					psize);
 329		} else
 330#endif
 331		{
 332			if (folio_test_anon(folio))
 333				folio_add_anon_rmap_pte(folio, new, vma,
 334							pvmw.address, rmap_flags);
 335			else
 336				folio_add_file_rmap_pte(folio, new, vma);
 337			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 338		}
 339		if (vma->vm_flags & VM_LOCKED)
 340			mlock_drain_local();
 341
 342		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 343					   compound_order(new));
 344
 345		/* No need to invalidate - it was non-present before */
 346		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 347	}
 348
 349	return true;
 350}
 351
 352/*
 353 * Get rid of all migration entries and replace them by
 354 * references to the indicated page.
 355 */
 356void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
 357{
 358	struct rmap_walk_arg rmap_walk_arg = {
 359		.folio = src,
 360		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
 361	};
 362
 363	struct rmap_walk_control rwc = {
 364		.rmap_one = remove_migration_pte,
 365		.arg = &rmap_walk_arg,
 366	};
 367
 368	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
 369
 370	if (flags & RMP_LOCKED)
 371		rmap_walk_locked(dst, &rwc);
 372	else
 373		rmap_walk(dst, &rwc);
 374}
 375
 376/*
 377 * Something used the pte of a page under migration. We need to
 378 * get to the page and wait until migration is finished.
 379 * When we return from this function the fault will be retried.
 380 */
 381void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 382			  unsigned long address)
 383{
 384	spinlock_t *ptl;
 385	pte_t *ptep;
 386	pte_t pte;
 387	swp_entry_t entry;
 
 388
 389	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 390	if (!ptep)
 391		return;
 392
 393	pte = ptep_get(ptep);
 394	pte_unmap(ptep);
 395
 396	if (!is_swap_pte(pte))
 397		goto out;
 398
 399	entry = pte_to_swp_entry(pte);
 400	if (!is_migration_entry(entry))
 401		goto out;
 402
 403	migration_entry_wait_on_locked(entry, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	return;
 405out:
 406	spin_unlock(ptl);
 407}
 408
 409#ifdef CONFIG_HUGETLB_PAGE
 410/*
 411 * The vma read lock must be held upon entry. Holding that lock prevents either
 412 * the pte or the ptl from being freed.
 413 *
 414 * This function will release the vma lock before returning.
 415 */
 416void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 417{
 418	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
 419	pte_t pte;
 
 
 420
 421	hugetlb_vma_assert_locked(vma);
 422	spin_lock(ptl);
 423	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
 424
 425	if (unlikely(!is_hugetlb_entry_migration(pte))) {
 426		spin_unlock(ptl);
 427		hugetlb_vma_unlock_read(vma);
 428	} else {
 429		/*
 430		 * If migration entry existed, safe to release vma lock
 431		 * here because the pgtable page won't be freed without the
 432		 * pgtable lock released.  See comment right above pgtable
 433		 * lock release in migration_entry_wait_on_locked().
 434		 */
 435		hugetlb_vma_unlock_read(vma);
 436		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
 437	}
 438}
 439#endif
 440
 441#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 442void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 
 
 443{
 444	spinlock_t *ptl;
 
 
 
 
 
 
 
 445
 446	ptl = pmd_lock(mm, pmd);
 447	if (!is_pmd_migration_entry(*pmd))
 448		goto unlock;
 449	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
 450	return;
 451unlock:
 452	spin_unlock(ptl);
 453}
 454#endif
 455
 456static int folio_expected_refs(struct address_space *mapping,
 457		struct folio *folio)
 458{
 459	int refs = 1;
 460	if (!mapping)
 461		return refs;
 462
 463	refs += folio_nr_pages(folio);
 464	if (folio_test_private(folio))
 465		refs++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467	return refs;
 
 
 468}
 
 
 
 
 
 
 
 469
 470/*
 471 * Replace the folio in the mapping.
 472 *
 473 * The number of remaining references must be:
 474 * 1 for anonymous folios without a mapping
 475 * 2 for folios with a mapping
 476 * 3 for folios with a mapping and the private flag set.
 477 */
 478static int __folio_migrate_mapping(struct address_space *mapping,
 479		struct folio *newfolio, struct folio *folio, int expected_count)
 
 
 480{
 481	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 482	struct zone *oldzone, *newzone;
 483	int dirty;
 484	long nr = folio_nr_pages(folio);
 485	long entries, i;
 486
 487	if (!mapping) {
 488		/* Take off deferred split queue while frozen and memcg set */
 489		if (folio_test_large(folio) &&
 490		    folio_test_large_rmappable(folio)) {
 491			if (!folio_ref_freeze(folio, expected_count))
 492				return -EAGAIN;
 493			folio_unqueue_deferred_split(folio);
 494			folio_ref_unfreeze(folio, expected_count);
 495		}
 496
 497		/* No turning back from here */
 498		newfolio->index = folio->index;
 499		newfolio->mapping = folio->mapping;
 500		if (folio_test_anon(folio) && folio_test_large(folio))
 501			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
 502		if (folio_test_swapbacked(folio))
 503			__folio_set_swapbacked(newfolio);
 504
 505		return MIGRATEPAGE_SUCCESS;
 506	}
 507
 508	oldzone = folio_zone(folio);
 509	newzone = folio_zone(newfolio);
 
 
 
 
 
 
 
 
 
 
 
 
 510
 511	xas_lock_irq(&xas);
 512	if (!folio_ref_freeze(folio, expected_count)) {
 513		xas_unlock_irq(&xas);
 514		return -EAGAIN;
 515	}
 516
 517	/* Take off deferred split queue while frozen and memcg set */
 518	folio_unqueue_deferred_split(folio);
 
 
 
 
 
 
 
 
 
 
 
 519
 520	/*
 521	 * Now we know that no one else is looking at the folio:
 522	 * no turning back from here.
 523	 */
 524	newfolio->index = folio->index;
 525	newfolio->mapping = folio->mapping;
 526	if (folio_test_anon(folio) && folio_test_large(folio))
 527		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
 528	folio_ref_add(newfolio, nr); /* add cache reference */
 529	if (folio_test_swapbacked(folio)) {
 530		__folio_set_swapbacked(newfolio);
 531		if (folio_test_swapcache(folio)) {
 532			folio_set_swapcache(newfolio);
 533			newfolio->private = folio_get_private(folio);
 534		}
 535		entries = nr;
 536	} else {
 537		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 538		entries = 1;
 539	}
 540
 541	/* Move dirty while folio refs frozen and newfolio not yet exposed */
 542	dirty = folio_test_dirty(folio);
 543	if (dirty) {
 544		folio_clear_dirty(folio);
 545		folio_set_dirty(newfolio);
 546	}
 547
 548	/* Swap cache still stores N entries instead of a high-order entry */
 549	for (i = 0; i < entries; i++) {
 550		xas_store(&xas, newfolio);
 551		xas_next(&xas);
 552	}
 553
 554	/*
 555	 * Drop cache reference from old folio by unfreezing
 556	 * to one less reference.
 557	 * We know this isn't the last reference.
 558	 */
 559	folio_ref_unfreeze(folio, expected_count - nr);
 560
 561	xas_unlock(&xas);
 562	/* Leave irq disabled to prevent preemption while updating stats */
 563
 564	/*
 565	 * If moved to a different zone then also account
 566	 * the folio for that zone. Other VM counters will be
 567	 * taken care of when we establish references to the
 568	 * new folio and drop references to the old folio.
 569	 *
 570	 * Note that anonymous folios are accounted for
 571	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 572	 * are mapped to swap space.
 573	 */
 574	if (newzone != oldzone) {
 575		struct lruvec *old_lruvec, *new_lruvec;
 576		struct mem_cgroup *memcg;
 577
 578		memcg = folio_memcg(folio);
 579		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 580		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 581
 582		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 583		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 584		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 585			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 586			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 587
 588			if (folio_test_pmd_mappable(folio)) {
 589				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
 590				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
 591			}
 592		}
 593#ifdef CONFIG_SWAP
 594		if (folio_test_swapcache(folio)) {
 595			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 596			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 597		}
 598#endif
 599		if (dirty && mapping_can_writeback(mapping)) {
 600			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 601			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 602			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 603			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 604		}
 605	}
 606	local_irq_enable();
 607
 608	return MIGRATEPAGE_SUCCESS;
 609}
 610
 611int folio_migrate_mapping(struct address_space *mapping,
 612		struct folio *newfolio, struct folio *folio, int extra_count)
 613{
 614	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 615
 616	if (folio_ref_count(folio) != expected_count)
 617		return -EAGAIN;
 618
 619	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
 620}
 621EXPORT_SYMBOL(folio_migrate_mapping);
 622
 623/*
 624 * The expected number of remaining references is the same as that
 625 * of folio_migrate_mapping().
 626 */
 627int migrate_huge_page_move_mapping(struct address_space *mapping,
 628				   struct folio *dst, struct folio *src)
 629{
 630	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 631	int rc, expected_count = folio_expected_refs(mapping, src);
 632
 633	if (folio_ref_count(src) != expected_count)
 
 
 
 
 
 
 
 
 634		return -EAGAIN;
 
 635
 636	rc = folio_mc_copy(dst, src);
 637	if (unlikely(rc))
 638		return rc;
 639
 640	xas_lock_irq(&xas);
 641	if (!folio_ref_freeze(src, expected_count)) {
 642		xas_unlock_irq(&xas);
 643		return -EAGAIN;
 644	}
 645
 646	dst->index = src->index;
 647	dst->mapping = src->mapping;
 648
 649	folio_ref_add(dst, folio_nr_pages(dst));
 650
 651	xas_store(&xas, dst);
 652
 653	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
 654
 655	xas_unlock_irq(&xas);
 656
 657	return MIGRATEPAGE_SUCCESS;
 658}
 659
 660/*
 661 * Copy the flags and some other ancillary information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662 */
 663void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 664{
 665	int cpupid;
 666
 667	if (folio_test_referenced(folio))
 668		folio_set_referenced(newfolio);
 669	if (folio_test_uptodate(folio))
 670		folio_mark_uptodate(newfolio);
 671	if (folio_test_clear_active(folio)) {
 672		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 673		folio_set_active(newfolio);
 674	} else if (folio_test_clear_unevictable(folio))
 675		folio_set_unevictable(newfolio);
 676	if (folio_test_workingset(folio))
 677		folio_set_workingset(newfolio);
 678	if (folio_test_checked(folio))
 679		folio_set_checked(newfolio);
 680	/*
 681	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 682	 * migration entries. We can still have PG_anon_exclusive set on an
 683	 * effectively unmapped and unreferenced first sub-pages of an
 684	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 685	 */
 686	if (folio_test_mappedtodisk(folio))
 687		folio_set_mappedtodisk(newfolio);
 688
 689	/* Move dirty on pages not done by folio_migrate_mapping() */
 690	if (folio_test_dirty(folio))
 691		folio_set_dirty(newfolio);
 692
 693	if (folio_test_young(folio))
 694		folio_set_young(newfolio);
 695	if (folio_test_idle(folio))
 696		folio_set_idle(newfolio);
 697
 698	folio_migrate_refs(newfolio, folio);
 699	/*
 700	 * Copy NUMA information to the new page, to prevent over-eager
 701	 * future migrations of this same page.
 702	 */
 703	cpupid = folio_xchg_last_cpupid(folio, -1);
 704	/*
 705	 * For memory tiering mode, when migrate between slow and fast
 706	 * memory node, reset cpupid, because that is used to record
 707	 * page access time in slow memory node.
 708	 */
 709	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
 710		bool f_toptier = node_is_toptier(folio_nid(folio));
 711		bool t_toptier = node_is_toptier(folio_nid(newfolio));
 712
 713		if (f_toptier != t_toptier)
 714			cpupid = -1;
 715	}
 716	folio_xchg_last_cpupid(newfolio, cpupid);
 717
 718	folio_migrate_ksm(newfolio, folio);
 719	/*
 720	 * Please do not reorder this without considering how mm/ksm.c's
 721	 * ksm_get_folio() depends upon ksm_migrate_page() and the
 722	 * swapcache flag.
 723	 */
 724	if (folio_test_swapcache(folio))
 725		folio_clear_swapcache(folio);
 726	folio_clear_private(folio);
 727
 728	/* page->private contains hugetlb specific flags */
 729	if (!folio_test_hugetlb(folio))
 730		folio->private = NULL;
 731
 732	/*
 733	 * If any waiters have accumulated on the new page then
 734	 * wake them up.
 735	 */
 736	if (folio_test_writeback(newfolio))
 737		folio_end_writeback(newfolio);
 738
 739	/*
 740	 * PG_readahead shares the same bit with PG_reclaim.  The above
 741	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 742	 * bit after that.
 743	 */
 744	if (folio_test_readahead(folio))
 745		folio_set_readahead(newfolio);
 746
 747	folio_copy_owner(newfolio, folio);
 748	pgalloc_tag_swap(newfolio, folio);
 749
 750	mem_cgroup_migrate(folio, newfolio);
 751}
 752EXPORT_SYMBOL(folio_migrate_flags);
 753
 754/************************************************************
 755 *                    Migration functions
 756 ***********************************************************/
 757
 758static int __migrate_folio(struct address_space *mapping, struct folio *dst,
 759			   struct folio *src, void *src_private,
 760			   enum migrate_mode mode)
 
 
 
 
 
 
 761{
 762	int rc, expected_count = folio_expected_refs(mapping, src);
 763
 764	/* Check whether src does not have extra refs before we do more work */
 765	if (folio_ref_count(src) != expected_count)
 766		return -EAGAIN;
 767
 768	rc = folio_mc_copy(dst, src);
 769	if (unlikely(rc))
 770		return rc;
 771
 772	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
 773	if (rc != MIGRATEPAGE_SUCCESS)
 774		return rc;
 775
 776	if (src_private)
 777		folio_attach_private(dst, folio_detach_private(src));
 778
 779	folio_migrate_flags(dst, src);
 780	return MIGRATEPAGE_SUCCESS;
 781}
 
 782
 783/**
 784 * migrate_folio() - Simple folio migration.
 785 * @mapping: The address_space containing the folio.
 786 * @dst: The folio to migrate the data to.
 787 * @src: The folio containing the current data.
 788 * @mode: How to migrate the page.
 789 *
 790 * Common logic to directly migrate a single LRU folio suitable for
 791 * folios that do not have private data.
 792 *
 793 * Folios are locked upon entry and exit.
 794 */
 795int migrate_folio(struct address_space *mapping, struct folio *dst,
 796		  struct folio *src, enum migrate_mode mode)
 797{
 798	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 799	return __migrate_folio(mapping, dst, src, NULL, mode);
 800}
 801EXPORT_SYMBOL(migrate_folio);
 802
 803#ifdef CONFIG_BUFFER_HEAD
 804/* Returns true if all buffers are successfully locked */
 805static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 806							enum migrate_mode mode)
 807{
 808	struct buffer_head *bh = head;
 809	struct buffer_head *failed_bh;
 810
 811	do {
 812		if (!trylock_buffer(bh)) {
 813			if (mode == MIGRATE_ASYNC)
 814				goto unlock;
 815			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
 816				goto unlock;
 817			lock_buffer(bh);
 818		}
 819
 820		bh = bh->b_this_page;
 821	} while (bh != head);
 822
 823	return true;
 824
 825unlock:
 826	/* We failed to lock the buffer and cannot stall. */
 827	failed_bh = bh;
 828	bh = head;
 829	while (bh != failed_bh) {
 830		unlock_buffer(bh);
 831		bh = bh->b_this_page;
 832	}
 833
 834	return false;
 835}
 836
 837static int __buffer_migrate_folio(struct address_space *mapping,
 838		struct folio *dst, struct folio *src, enum migrate_mode mode,
 839		bool check_refs)
 840{
 841	struct buffer_head *bh, *head;
 842	int rc;
 843	int expected_count;
 844
 845	head = folio_buffers(src);
 846	if (!head)
 847		return migrate_folio(mapping, dst, src, mode);
 848
 849	/* Check whether page does not have extra refs before we do more work */
 850	expected_count = folio_expected_refs(mapping, src);
 851	if (folio_ref_count(src) != expected_count)
 852		return -EAGAIN;
 853
 854	if (!buffer_migrate_lock_buffers(head, mode))
 855		return -EAGAIN;
 856
 857	if (check_refs) {
 858		bool busy;
 859		bool invalidated = false;
 860
 861recheck_buffers:
 862		busy = false;
 863		spin_lock(&mapping->i_private_lock);
 864		bh = head;
 865		do {
 866			if (atomic_read(&bh->b_count)) {
 867				busy = true;
 868				break;
 869			}
 870			bh = bh->b_this_page;
 871		} while (bh != head);
 872		if (busy) {
 873			if (invalidated) {
 874				rc = -EAGAIN;
 875				goto unlock_buffers;
 876			}
 877			spin_unlock(&mapping->i_private_lock);
 878			invalidate_bh_lrus();
 879			invalidated = true;
 880			goto recheck_buffers;
 881		}
 882	}
 883
 884	rc = filemap_migrate_folio(mapping, dst, src, mode);
 885	if (rc != MIGRATEPAGE_SUCCESS)
 886		goto unlock_buffers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887
 888	bh = head;
 889	do {
 890		folio_set_bh(bh, dst, bh_offset(bh));
 891		bh = bh->b_this_page;
 
 892	} while (bh != head);
 893
 894unlock_buffers:
 895	if (check_refs)
 896		spin_unlock(&mapping->i_private_lock);
 
 897	bh = head;
 898	do {
 899		unlock_buffer(bh);
 
 900		bh = bh->b_this_page;
 
 901	} while (bh != head);
 902
 903	return rc;
 904}
 905
 906/**
 907 * buffer_migrate_folio() - Migration function for folios with buffers.
 908 * @mapping: The address space containing @src.
 909 * @dst: The folio to migrate to.
 910 * @src: The folio to migrate from.
 911 * @mode: How to migrate the folio.
 912 *
 913 * This function can only be used if the underlying filesystem guarantees
 914 * that no other references to @src exist. For example attached buffer
 915 * heads are accessed only under the folio lock.  If your filesystem cannot
 916 * provide this guarantee, buffer_migrate_folio_norefs() may be more
 917 * appropriate.
 918 *
 919 * Return: 0 on success or a negative errno on failure.
 920 */
 921int buffer_migrate_folio(struct address_space *mapping,
 922		struct folio *dst, struct folio *src, enum migrate_mode mode)
 923{
 924	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 925}
 926EXPORT_SYMBOL(buffer_migrate_folio);
 927
 928/**
 929 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 930 * @mapping: The address space containing @src.
 931 * @dst: The folio to migrate to.
 932 * @src: The folio to migrate from.
 933 * @mode: How to migrate the folio.
 934 *
 935 * Like buffer_migrate_folio() except that this variant is more careful
 936 * and checks that there are also no buffer head references. This function
 937 * is the right one for mappings where buffer heads are directly looked
 938 * up and referenced (such as block device mappings).
 939 *
 940 * Return: 0 on success or a negative errno on failure.
 941 */
 942int buffer_migrate_folio_norefs(struct address_space *mapping,
 943		struct folio *dst, struct folio *src, enum migrate_mode mode)
 944{
 945	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 946}
 947EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
 948#endif /* CONFIG_BUFFER_HEAD */
 949
 950int filemap_migrate_folio(struct address_space *mapping,
 951		struct folio *dst, struct folio *src, enum migrate_mode mode)
 952{
 953	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
 954}
 955EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 956
 957/*
 958 * Writeback a folio to clean the dirty state
 959 */
 960static int writeout(struct address_space *mapping, struct folio *folio)
 961{
 962	struct writeback_control wbc = {
 963		.sync_mode = WB_SYNC_NONE,
 964		.nr_to_write = 1,
 965		.range_start = 0,
 966		.range_end = LLONG_MAX,
 967		.for_reclaim = 1
 968	};
 969	int rc;
 970
 971	if (!mapping->a_ops->writepage)
 972		/* No write method for the address space */
 973		return -EINVAL;
 974
 975	if (!folio_clear_dirty_for_io(folio))
 976		/* Someone else already triggered a write */
 977		return -EAGAIN;
 978
 979	/*
 980	 * A dirty folio may imply that the underlying filesystem has
 981	 * the folio on some queue. So the folio must be clean for
 982	 * migration. Writeout may mean we lose the lock and the
 983	 * folio state is no longer what we checked for earlier.
 984	 * At this point we know that the migration attempt cannot
 985	 * be successful.
 986	 */
 987	remove_migration_ptes(folio, folio, 0);
 988
 989	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 990
 991	if (rc != AOP_WRITEPAGE_ACTIVATE)
 992		/* unlocked. Relock */
 993		folio_lock(folio);
 994
 995	return (rc < 0) ? -EIO : -EAGAIN;
 996}
 997
 998/*
 999 * Default handling if a filesystem does not provide a migration function.
1000 */
1001static int fallback_migrate_folio(struct address_space *mapping,
1002		struct folio *dst, struct folio *src, enum migrate_mode mode)
1003{
1004	if (folio_test_dirty(src)) {
1005		/* Only writeback folios in full synchronous migration */
1006		switch (mode) {
1007		case MIGRATE_SYNC:
1008			break;
1009		default:
1010			return -EBUSY;
1011		}
1012		return writeout(mapping, src);
1013	}
1014
1015	/*
1016	 * Buffers may be managed in a filesystem specific way.
1017	 * We must have no buffers or drop them.
1018	 */
1019	if (!filemap_release_folio(src, GFP_KERNEL))
1020		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 
1021
1022	return migrate_folio(mapping, dst, src, mode);
1023}
1024
1025/*
1026 * Move a page to a newly allocated page
1027 * The page is locked and all ptes have been successfully removed.
1028 *
1029 * The new page will have replaced the old page if this function
1030 * is successful.
1031 *
1032 * Return value:
1033 *   < 0 - error code
1034 *  MIGRATEPAGE_SUCCESS - success
1035 */
1036static int move_to_new_folio(struct folio *dst, struct folio *src,
1037				enum migrate_mode mode)
1038{
1039	int rc = -EAGAIN;
1040	bool is_lru = !__folio_test_movable(src);
1041
1042	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1043	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1044
1045	if (likely(is_lru)) {
1046		struct address_space *mapping = folio_mapping(src);
1047
1048		if (!mapping)
1049			rc = migrate_folio(mapping, dst, src, mode);
1050		else if (mapping_inaccessible(mapping))
1051			rc = -EOPNOTSUPP;
1052		else if (mapping->a_ops->migrate_folio)
1053			/*
1054			 * Most folios have a mapping and most filesystems
1055			 * provide a migrate_folio callback. Anonymous folios
1056			 * are part of swap space which also has its own
1057			 * migrate_folio callback. This is the most common path
1058			 * for page migration.
1059			 */
1060			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1061								mode);
1062		else
1063			rc = fallback_migrate_folio(mapping, dst, src, mode);
1064	} else {
1065		const struct movable_operations *mops;
1066
 
 
 
 
1067		/*
1068		 * In case of non-lru page, it could be released after
1069		 * isolation step. In that case, we shouldn't try migration.
 
 
1070		 */
1071		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1072		if (!folio_test_movable(src)) {
1073			rc = MIGRATEPAGE_SUCCESS;
1074			folio_clear_isolated(src);
1075			goto out;
1076		}
1077
1078		mops = folio_movable_ops(src);
1079		rc = mops->migrate_page(&dst->page, &src->page, mode);
1080		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1081				!folio_test_isolated(src));
1082	}
1083
1084	/*
1085	 * When successful, old pagecache src->mapping must be cleared before
1086	 * src is freed; but stats require that PageAnon be left as PageAnon.
1087	 */
1088	if (rc == MIGRATEPAGE_SUCCESS) {
1089		if (__folio_test_movable(src)) {
1090			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1091
1092			/*
1093			 * We clear PG_movable under page_lock so any compactor
1094			 * cannot try to migrate this page.
1095			 */
1096			folio_clear_isolated(src);
1097		}
1098
1099		/*
1100		 * Anonymous and movable src->mapping will be cleared by
1101		 * free_pages_prepare so don't reset it here for keeping
1102		 * the type to work PageAnon, for example.
1103		 */
1104		if (!folio_mapping_flags(src))
1105			src->mapping = NULL;
1106
1107		if (likely(!folio_is_zone_device(dst)))
1108			flush_dcache_folio(dst);
1109	}
1110out:
1111	return rc;
1112}
1113
1114/*
1115 * To record some information during migration, we use unused private
1116 * field of struct folio of the newly allocated destination folio.
1117 * This is safe because nobody is using it except us.
1118 */
1119enum {
1120	PAGE_WAS_MAPPED = BIT(0),
1121	PAGE_WAS_MLOCKED = BIT(1),
1122	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1123};
1124
1125static void __migrate_folio_record(struct folio *dst,
1126				   int old_page_state,
1127				   struct anon_vma *anon_vma)
1128{
1129	dst->private = (void *)anon_vma + old_page_state;
1130}
1131
1132static void __migrate_folio_extract(struct folio *dst,
1133				   int *old_page_state,
1134				   struct anon_vma **anon_vmap)
1135{
1136	unsigned long private = (unsigned long)dst->private;
1137
1138	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1139	*old_page_state = private & PAGE_OLD_STATES;
1140	dst->private = NULL;
1141}
1142
1143/* Restore the source folio to the original state upon failure */
1144static void migrate_folio_undo_src(struct folio *src,
1145				   int page_was_mapped,
1146				   struct anon_vma *anon_vma,
1147				   bool locked,
1148				   struct list_head *ret)
1149{
1150	if (page_was_mapped)
1151		remove_migration_ptes(src, src, 0);
1152	/* Drop an anon_vma reference if we took one */
1153	if (anon_vma)
1154		put_anon_vma(anon_vma);
1155	if (locked)
1156		folio_unlock(src);
1157	if (ret)
1158		list_move_tail(&src->lru, ret);
1159}
1160
1161/* Restore the destination folio to the original state upon failure */
1162static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1163		free_folio_t put_new_folio, unsigned long private)
1164{
1165	if (locked)
1166		folio_unlock(dst);
1167	if (put_new_folio)
1168		put_new_folio(dst, private);
1169	else
1170		folio_put(dst);
1171}
1172
1173/* Cleanup src folio upon migration success */
1174static void migrate_folio_done(struct folio *src,
1175			       enum migrate_reason reason)
1176{
1177	/*
1178	 * Compaction can migrate also non-LRU pages which are
1179	 * not accounted to NR_ISOLATED_*. They can be recognized
1180	 * as __folio_test_movable
1181	 */
1182	if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION)
1183		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1184				    folio_is_file_lru(src), -folio_nr_pages(src));
1185
1186	if (reason != MR_MEMORY_FAILURE)
1187		/* We release the page in page_handle_poison. */
1188		folio_put(src);
1189}
1190
1191/* Obtain the lock on page, remove all ptes. */
1192static int migrate_folio_unmap(new_folio_t get_new_folio,
1193		free_folio_t put_new_folio, unsigned long private,
1194		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1195		enum migrate_reason reason, struct list_head *ret)
1196{
1197	struct folio *dst;
1198	int rc = -EAGAIN;
1199	int old_page_state = 0;
1200	struct anon_vma *anon_vma = NULL;
1201	bool is_lru = data_race(!__folio_test_movable(src));
1202	bool locked = false;
1203	bool dst_locked = false;
1204
1205	if (folio_ref_count(src) == 1) {
1206		/* Folio was freed from under us. So we are done. */
1207		folio_clear_active(src);
1208		folio_clear_unevictable(src);
1209		/* free_pages_prepare() will clear PG_isolated. */
1210		list_del(&src->lru);
1211		migrate_folio_done(src, reason);
1212		return MIGRATEPAGE_SUCCESS;
1213	}
1214
1215	dst = get_new_folio(src, private);
1216	if (!dst)
1217		return -ENOMEM;
1218	*dstp = dst;
1219
1220	dst->private = NULL;
1221
1222	if (!folio_trylock(src)) {
1223		if (mode == MIGRATE_ASYNC)
1224			goto out;
1225
1226		/*
1227		 * It's not safe for direct compaction to call lock_page.
1228		 * For example, during page readahead pages are added locked
1229		 * to the LRU. Later, when the IO completes the pages are
1230		 * marked uptodate and unlocked. However, the queueing
1231		 * could be merging multiple pages for one bio (e.g.
1232		 * mpage_readahead). If an allocation happens for the
1233		 * second or third page, the process can end up locking
1234		 * the same page twice and deadlocking. Rather than
1235		 * trying to be clever about what pages can be locked,
1236		 * avoid the use of lock_page for direct compaction
1237		 * altogether.
1238		 */
1239		if (current->flags & PF_MEMALLOC)
1240			goto out;
1241
1242		/*
1243		 * In "light" mode, we can wait for transient locks (eg
1244		 * inserting a page into the page table), but it's not
1245		 * worth waiting for I/O.
1246		 */
1247		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1248			goto out;
1249
1250		folio_lock(src);
1251	}
1252	locked = true;
1253	if (folio_test_mlocked(src))
1254		old_page_state |= PAGE_WAS_MLOCKED;
1255
1256	if (folio_test_writeback(src)) {
1257		/*
1258		 * Only in the case of a full synchronous migration is it
1259		 * necessary to wait for PageWriteback. In the async case,
1260		 * the retry loop is too short and in the sync-light case,
1261		 * the overhead of stalling is too much
1262		 */
1263		switch (mode) {
1264		case MIGRATE_SYNC:
1265			break;
1266		default:
1267			rc = -EBUSY;
1268			goto out;
1269		}
1270		folio_wait_writeback(src);
 
 
1271	}
1272
1273	/*
1274	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1275	 * we cannot notice that anon_vma is freed while we migrate a page.
1276	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1277	 * of migration. File cache pages are no problem because of page_lock()
1278	 * File Caches may use write_page() or lock_page() in migration, then,
1279	 * just care Anon page here.
1280	 *
1281	 * Only folio_get_anon_vma() understands the subtleties of
1282	 * getting a hold on an anon_vma from outside one of its mms.
1283	 * But if we cannot get anon_vma, then we won't need it anyway,
1284	 * because that implies that the anon page is no longer mapped
1285	 * (and cannot be remapped so long as we hold the page lock).
1286	 */
1287	if (folio_test_anon(src) && !folio_test_ksm(src))
1288		anon_vma = folio_get_anon_vma(src);
1289
1290	/*
1291	 * Block others from accessing the new page when we get around to
1292	 * establishing additional references. We are usually the only one
1293	 * holding a reference to dst at this point. We used to have a BUG
1294	 * here if folio_trylock(dst) fails, but would like to allow for
1295	 * cases where there might be a race with the previous use of dst.
1296	 * This is much like races on refcount of oldpage: just don't BUG().
1297	 */
1298	if (unlikely(!folio_trylock(dst)))
1299		goto out;
1300	dst_locked = true;
1301
1302	if (unlikely(!is_lru)) {
1303		__migrate_folio_record(dst, old_page_state, anon_vma);
1304		return MIGRATEPAGE_UNMAP;
 
 
 
 
 
 
 
1305	}
1306
1307	/*
1308	 * Corner case handling:
1309	 * 1. When a new swap-cache page is read into, it is added to the LRU
1310	 * and treated as swapcache but it has no rmap yet.
1311	 * Calling try_to_unmap() against a src->mapping==NULL page will
1312	 * trigger a BUG.  So handle it here.
1313	 * 2. An orphaned page (see truncate_cleanup_page) might have
1314	 * fs-private metadata. The page can be picked up due to memory
1315	 * offlining.  Everywhere else except page reclaim, the page is
1316	 * invisible to the vm, so the page can not be migrated.  So try to
1317	 * free the metadata, so the page can be freed.
1318	 */
1319	if (!src->mapping) {
1320		if (folio_test_private(src)) {
1321			try_to_free_buffers(src);
1322			goto out;
 
1323		}
1324	} else if (folio_mapped(src)) {
1325		/* Establish migration ptes */
1326		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1327			       !folio_test_ksm(src) && !anon_vma, src);
1328		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1329		old_page_state |= PAGE_WAS_MAPPED;
 
1330	}
1331
1332	if (!folio_mapped(src)) {
1333		__migrate_folio_record(dst, old_page_state, anon_vma);
1334		return MIGRATEPAGE_UNMAP;
1335	}
 
 
1336
 
 
 
 
 
 
 
1337out:
1338	/*
1339	 * A folio that has not been unmapped will be restored to
1340	 * right list unless we want to retry.
1341	 */
1342	if (rc == -EAGAIN)
1343		ret = NULL;
1344
1345	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1346			       anon_vma, locked, ret);
1347	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1348
1349	return rc;
1350}
1351
1352/* Migrate the folio to the newly allocated folio in dst. */
1353static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1354			      struct folio *src, struct folio *dst,
1355			      enum migrate_mode mode, enum migrate_reason reason,
1356			      struct list_head *ret)
1357{
1358	int rc;
1359	int old_page_state = 0;
1360	struct anon_vma *anon_vma = NULL;
1361	bool is_lru = !__folio_test_movable(src);
1362	struct list_head *prev;
 
 
 
 
 
 
 
 
 
 
 
 
1363
1364	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1365	prev = dst->lru.prev;
1366	list_del(&dst->lru);
1367
1368	rc = move_to_new_folio(dst, src, mode);
1369	if (rc)
1370		goto out;
 
1371
1372	if (unlikely(!is_lru))
1373		goto out_unlock_both;
 
 
 
 
 
1374
1375	/*
1376	 * When successful, push dst to LRU immediately: so that if it
1377	 * turns out to be an mlocked page, remove_migration_ptes() will
1378	 * automatically build up the correct dst->mlock_count for it.
1379	 *
1380	 * We would like to do something similar for the old page, when
1381	 * unsuccessful, and other cases when a page has been temporarily
1382	 * isolated from the unevictable LRU: but this case is the easiest.
1383	 */
1384	folio_add_lru(dst);
1385	if (old_page_state & PAGE_WAS_MLOCKED)
1386		lru_add_drain();
1387
1388	if (old_page_state & PAGE_WAS_MAPPED)
1389		remove_migration_ptes(src, dst, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390
1391out_unlock_both:
1392	folio_unlock(dst);
1393	set_page_owner_migrate_reason(&dst->page, reason);
1394	/*
1395	 * If migration is successful, decrease refcount of dst,
1396	 * which will not free the page because new page owner increased
1397	 * refcounter.
1398	 */
1399	folio_put(dst);
1400
1401	/*
1402	 * A folio that has been migrated has all references removed
1403	 * and will be freed.
1404	 */
1405	list_del(&src->lru);
1406	/* Drop an anon_vma reference if we took one */
1407	if (anon_vma)
1408		put_anon_vma(anon_vma);
1409	folio_unlock(src);
1410	migrate_folio_done(src, reason);
1411
1412	return rc;
1413out:
1414	/*
1415	 * A folio that has not been migrated will be restored to
1416	 * right list unless we want to retry.
1417	 */
1418	if (rc == -EAGAIN) {
1419		list_add(&dst->lru, prev);
1420		__migrate_folio_record(dst, old_page_state, anon_vma);
1421		return rc;
1422	}
1423
1424	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1425			       anon_vma, true, ret);
1426	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1427
1428	return rc;
1429}
1430
1431/*
1432 * Counterpart of unmap_and_move_page() for hugepage migration.
1433 *
1434 * This function doesn't wait the completion of hugepage I/O
1435 * because there is no race between I/O and migration for hugepage.
1436 * Note that currently hugepage I/O occurs only in direct I/O
1437 * where no lock is held and PG_writeback is irrelevant,
1438 * and writeback status of all subpages are counted in the reference
1439 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1440 * under direct I/O, the reference of the head page is 512 and a bit more.)
1441 * This means that when we try to migrate hugepage whose subpages are
1442 * doing direct I/O, some references remain after try_to_unmap() and
1443 * hugepage migration fails without data corruption.
1444 *
1445 * There is also no race when direct I/O is issued on the page under migration,
1446 * because then pte is replaced with migration swap entry and direct I/O code
1447 * will wait in the page fault for migration to complete.
1448 */
1449static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1450		free_folio_t put_new_folio, unsigned long private,
1451		struct folio *src, int force, enum migrate_mode mode,
1452		int reason, struct list_head *ret)
1453{
1454	struct folio *dst;
1455	int rc = -EAGAIN;
 
1456	int page_was_mapped = 0;
 
1457	struct anon_vma *anon_vma = NULL;
1458	struct address_space *mapping = NULL;
1459
1460	if (folio_ref_count(src) == 1) {
1461		/* page was freed from under us. So we are done. */
1462		folio_putback_active_hugetlb(src);
1463		return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
1464	}
1465
1466	dst = get_new_folio(src, private);
1467	if (!dst)
1468		return -ENOMEM;
1469
1470	if (!folio_trylock(src)) {
1471		if (!force)
1472			goto out;
1473		switch (mode) {
1474		case MIGRATE_SYNC:
1475			break;
1476		default:
1477			goto out;
1478		}
1479		folio_lock(src);
1480	}
1481
1482	/*
1483	 * Check for pages which are in the process of being freed.  Without
1484	 * folio_mapping() set, hugetlbfs specific move page routine will not
1485	 * be called and we could leak usage counts for subpools.
1486	 */
1487	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1488		rc = -EBUSY;
1489		goto out_unlock;
1490	}
1491
1492	if (folio_test_anon(src))
1493		anon_vma = folio_get_anon_vma(src);
1494
1495	if (unlikely(!folio_trylock(dst)))
1496		goto put_anon;
1497
1498	if (folio_mapped(src)) {
1499		enum ttu_flags ttu = 0;
1500
1501		if (!folio_test_anon(src)) {
1502			/*
1503			 * In shared mappings, try_to_unmap could potentially
1504			 * call huge_pmd_unshare.  Because of this, take
1505			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1506			 * to let lower levels know we have taken the lock.
1507			 */
1508			mapping = hugetlb_folio_mapping_lock_write(src);
1509			if (unlikely(!mapping))
1510				goto unlock_put_anon;
1511
1512			ttu = TTU_RMAP_LOCKED;
1513		}
1514
1515		try_to_migrate(src, ttu);
1516		page_was_mapped = 1;
1517
1518		if (ttu & TTU_RMAP_LOCKED)
1519			i_mmap_unlock_write(mapping);
1520	}
1521
1522	if (!folio_mapped(src))
1523		rc = move_to_new_folio(dst, src, mode);
1524
1525	if (page_was_mapped)
1526		remove_migration_ptes(src,
1527			rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1528
1529unlock_put_anon:
1530	folio_unlock(dst);
1531
1532put_anon:
1533	if (anon_vma)
1534		put_anon_vma(anon_vma);
1535
1536	if (rc == MIGRATEPAGE_SUCCESS) {
1537		move_hugetlb_state(src, dst, reason);
1538		put_new_folio = NULL;
 
1539	}
1540
1541out_unlock:
1542	folio_unlock(src);
1543out:
1544	if (rc == MIGRATEPAGE_SUCCESS)
1545		folio_putback_active_hugetlb(src);
1546	else if (rc != -EAGAIN)
1547		list_move_tail(&src->lru, ret);
1548
1549	/*
1550	 * If migration was not successful and there's a freeing callback, use
1551	 * it.  Otherwise, put_page() will drop the reference grabbed during
1552	 * isolation.
1553	 */
1554	if (put_new_folio)
1555		put_new_folio(dst, private);
1556	else
1557		folio_putback_active_hugetlb(dst);
1558
1559	return rc;
1560}
1561
1562static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1563				  enum migrate_mode mode)
1564{
1565	int rc;
1566
1567	if (mode == MIGRATE_ASYNC) {
1568		if (!folio_trylock(folio))
1569			return -EAGAIN;
1570	} else {
1571		folio_lock(folio);
1572	}
1573	rc = split_folio_to_list(folio, split_folios);
1574	folio_unlock(folio);
1575	if (!rc)
1576		list_move_tail(&folio->lru, split_folios);
1577
1578	return rc;
1579}
1580
1581#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1582#define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1583#else
1584#define NR_MAX_BATCHED_MIGRATION	512
1585#endif
1586#define NR_MAX_MIGRATE_PAGES_RETRY	10
1587#define NR_MAX_MIGRATE_ASYNC_RETRY	3
1588#define NR_MAX_MIGRATE_SYNC_RETRY					\
1589	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1590
1591struct migrate_pages_stats {
1592	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1593				   units of base pages */
1594	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1595				   units of base pages.  Untried folios aren't counted */
1596	int nr_thp_succeeded;	/* THP migrated successfully */
1597	int nr_thp_failed;	/* THP failed to be migrated */
1598	int nr_thp_split;	/* THP split before migrating */
1599	int nr_split;	/* Large folio (include THP) split before migrating */
1600};
1601
1602/*
1603 * Returns the number of hugetlb folios that were not migrated, or an error code
1604 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1605 * any more because the list has become empty or no retryable hugetlb folios
1606 * exist any more. It is caller's responsibility to call putback_movable_pages()
1607 * only if ret != 0.
1608 */
1609static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1610			    free_folio_t put_new_folio, unsigned long private,
1611			    enum migrate_mode mode, int reason,
1612			    struct migrate_pages_stats *stats,
1613			    struct list_head *ret_folios)
1614{
1615	int retry = 1;
1616	int nr_failed = 0;
1617	int nr_retry_pages = 0;
1618	int pass = 0;
1619	struct folio *folio, *folio2;
1620	int rc, nr_pages;
1621
1622	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1623		retry = 0;
1624		nr_retry_pages = 0;
1625
1626		list_for_each_entry_safe(folio, folio2, from, lru) {
1627			if (!folio_test_hugetlb(folio))
1628				continue;
1629
1630			nr_pages = folio_nr_pages(folio);
1631
1632			cond_resched();
1633
1634			/*
1635			 * Migratability of hugepages depends on architectures and
1636			 * their size.  This check is necessary because some callers
1637			 * of hugepage migration like soft offline and memory
1638			 * hotremove don't walk through page tables or check whether
1639			 * the hugepage is pmd-based or not before kicking migration.
1640			 */
1641			if (!hugepage_migration_supported(folio_hstate(folio))) {
1642				nr_failed++;
1643				stats->nr_failed_pages += nr_pages;
1644				list_move_tail(&folio->lru, ret_folios);
1645				continue;
1646			}
1647
1648			rc = unmap_and_move_huge_page(get_new_folio,
1649						      put_new_folio, private,
1650						      folio, pass > 2, mode,
1651						      reason, ret_folios);
1652			/*
1653			 * The rules are:
1654			 *	Success: hugetlb folio will be put back
1655			 *	-EAGAIN: stay on the from list
1656			 *	-ENOMEM: stay on the from list
1657			 *	Other errno: put on ret_folios list
1658			 */
1659			switch(rc) {
1660			case -ENOMEM:
1661				/*
1662				 * When memory is low, don't bother to try to migrate
1663				 * other folios, just exit.
1664				 */
1665				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1666				return -ENOMEM;
1667			case -EAGAIN:
1668				retry++;
1669				nr_retry_pages += nr_pages;
1670				break;
1671			case MIGRATEPAGE_SUCCESS:
1672				stats->nr_succeeded += nr_pages;
1673				break;
1674			default:
1675				/*
1676				 * Permanent failure (-EBUSY, etc.):
1677				 * unlike -EAGAIN case, the failed folio is
1678				 * removed from migration folio list and not
1679				 * retried in the next outer loop.
1680				 */
1681				nr_failed++;
1682				stats->nr_failed_pages += nr_pages;
1683				break;
1684			}
1685		}
1686	}
1687	/*
1688	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1689	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1690	 * folios as failed.
1691	 */
1692	nr_failed += retry;
1693	stats->nr_failed_pages += nr_retry_pages;
1694
1695	return nr_failed;
1696}
1697
1698/*
1699 * migrate_pages_batch() first unmaps folios in the from list as many as
1700 * possible, then move the unmapped folios.
1701 *
1702 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1703 * lock or bit when we have locked more than one folio.  Which may cause
1704 * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1705 * length of the from list must be <= 1.
1706 */
1707static int migrate_pages_batch(struct list_head *from,
1708		new_folio_t get_new_folio, free_folio_t put_new_folio,
1709		unsigned long private, enum migrate_mode mode, int reason,
1710		struct list_head *ret_folios, struct list_head *split_folios,
1711		struct migrate_pages_stats *stats, int nr_pass)
1712{
1713	int retry = 1;
1714	int thp_retry = 1;
1715	int nr_failed = 0;
1716	int nr_retry_pages = 0;
1717	int pass = 0;
1718	bool is_thp = false;
1719	bool is_large = false;
1720	struct folio *folio, *folio2, *dst = NULL, *dst2;
1721	int rc, rc_saved = 0, nr_pages;
1722	LIST_HEAD(unmap_folios);
1723	LIST_HEAD(dst_folios);
1724	bool nosplit = (reason == MR_NUMA_MISPLACED);
1725
1726	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1727			!list_empty(from) && !list_is_singular(from));
1728
1729	for (pass = 0; pass < nr_pass && retry; pass++) {
1730		retry = 0;
1731		thp_retry = 0;
1732		nr_retry_pages = 0;
1733
1734		list_for_each_entry_safe(folio, folio2, from, lru) {
1735			is_large = folio_test_large(folio);
1736			is_thp = folio_test_pmd_mappable(folio);
1737			nr_pages = folio_nr_pages(folio);
1738
 
1739			cond_resched();
1740
1741			/*
1742			 * The rare folio on the deferred split list should
1743			 * be split now. It should not count as a failure:
1744			 * but increment nr_failed because, without doing so,
1745			 * migrate_pages() may report success with (split but
1746			 * unmigrated) pages still on its fromlist; whereas it
1747			 * always reports success when its fromlist is empty.
1748			 * stats->nr_thp_failed should be increased too,
1749			 * otherwise stats inconsistency will happen when
1750			 * migrate_pages_batch is called via migrate_pages()
1751			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1752			 *
1753			 * Only check it without removing it from the list.
1754			 * Since the folio can be on deferred_split_scan()
1755			 * local list and removing it can cause the local list
1756			 * corruption. Folio split process below can handle it
1757			 * with the help of folio_ref_freeze().
1758			 *
1759			 * nr_pages > 2 is needed to avoid checking order-1
1760			 * page cache folios. They exist, in contrast to
1761			 * non-existent order-1 anonymous folios, and do not
1762			 * use _deferred_list.
1763			 */
1764			if (nr_pages > 2 &&
1765			   !list_empty(&folio->_deferred_list) &&
1766			   folio_test_partially_mapped(folio)) {
1767				if (!try_split_folio(folio, split_folios, mode)) {
1768					nr_failed++;
1769					stats->nr_thp_failed += is_thp;
1770					stats->nr_thp_split += is_thp;
1771					stats->nr_split++;
1772					continue;
1773				}
1774			}
1775
1776			/*
1777			 * Large folio migration might be unsupported or
1778			 * the allocation might be failed so we should retry
1779			 * on the same folio with the large folio split
1780			 * to normal folios.
1781			 *
1782			 * Split folios are put in split_folios, and
1783			 * we will migrate them after the rest of the
1784			 * list is processed.
1785			 */
1786			if (!thp_migration_supported() && is_thp) {
1787				nr_failed++;
1788				stats->nr_thp_failed++;
1789				if (!try_split_folio(folio, split_folios, mode)) {
1790					stats->nr_thp_split++;
1791					stats->nr_split++;
1792					continue;
1793				}
1794				stats->nr_failed_pages += nr_pages;
1795				list_move_tail(&folio->lru, ret_folios);
1796				continue;
1797			}
1798
1799			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1800					private, folio, &dst, mode, reason,
1801					ret_folios);
1802			/*
1803			 * The rules are:
1804			 *	Success: folio will be freed
1805			 *	Unmap: folio will be put on unmap_folios list,
1806			 *	       dst folio put on dst_folios list
1807			 *	-EAGAIN: stay on the from list
1808			 *	-ENOMEM: stay on the from list
1809			 *	Other errno: put on ret_folios list
1810			 */
1811			switch(rc) {
1812			case -ENOMEM:
1813				/*
1814				 * When memory is low, don't bother to try to migrate
1815				 * other folios, move unmapped folios, then exit.
1816				 */
1817				nr_failed++;
1818				stats->nr_thp_failed += is_thp;
1819				/* Large folio NUMA faulting doesn't split to retry. */
1820				if (is_large && !nosplit) {
1821					int ret = try_split_folio(folio, split_folios, mode);
1822
1823					if (!ret) {
1824						stats->nr_thp_split += is_thp;
1825						stats->nr_split++;
1826						break;
1827					} else if (reason == MR_LONGTERM_PIN &&
1828						   ret == -EAGAIN) {
1829						/*
1830						 * Try again to split large folio to
1831						 * mitigate the failure of longterm pinning.
1832						 */
1833						retry++;
1834						thp_retry += is_thp;
1835						nr_retry_pages += nr_pages;
1836						/* Undo duplicated failure counting. */
1837						nr_failed--;
1838						stats->nr_thp_failed -= is_thp;
1839						break;
1840					}
1841				}
1842
1843				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1844				/* nr_failed isn't updated for not used */
1845				stats->nr_thp_failed += thp_retry;
1846				rc_saved = rc;
1847				if (list_empty(&unmap_folios))
1848					goto out;
1849				else
1850					goto move;
1851			case -EAGAIN:
1852				retry++;
1853				thp_retry += is_thp;
1854				nr_retry_pages += nr_pages;
1855				break;
1856			case MIGRATEPAGE_SUCCESS:
1857				stats->nr_succeeded += nr_pages;
1858				stats->nr_thp_succeeded += is_thp;
1859				break;
1860			case MIGRATEPAGE_UNMAP:
1861				list_move_tail(&folio->lru, &unmap_folios);
1862				list_add_tail(&dst->lru, &dst_folios);
1863				break;
1864			default:
1865				/*
1866				 * Permanent failure (-EBUSY, etc.):
1867				 * unlike -EAGAIN case, the failed folio is
1868				 * removed from migration folio list and not
1869				 * retried in the next outer loop.
1870				 */
1871				nr_failed++;
1872				stats->nr_thp_failed += is_thp;
1873				stats->nr_failed_pages += nr_pages;
1874				break;
1875			}
1876		}
1877	}
1878	nr_failed += retry;
1879	stats->nr_thp_failed += thp_retry;
1880	stats->nr_failed_pages += nr_retry_pages;
1881move:
1882	/* Flush TLBs for all unmapped folios */
1883	try_to_unmap_flush();
 
 
1884
1885	retry = 1;
1886	for (pass = 0; pass < nr_pass && retry; pass++) {
1887		retry = 0;
1888		thp_retry = 0;
1889		nr_retry_pages = 0;
1890
1891		dst = list_first_entry(&dst_folios, struct folio, lru);
1892		dst2 = list_next_entry(dst, lru);
1893		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1894			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1895			nr_pages = folio_nr_pages(folio);
1896
1897			cond_resched();
 
 
 
 
 
 
 
 
 
1898
1899			rc = migrate_folio_move(put_new_folio, private,
1900						folio, dst, mode,
1901						reason, ret_folios);
1902			/*
1903			 * The rules are:
1904			 *	Success: folio will be freed
1905			 *	-EAGAIN: stay on the unmap_folios list
1906			 *	Other errno: put on ret_folios list
1907			 */
1908			switch(rc) {
1909			case -EAGAIN:
1910				retry++;
1911				thp_retry += is_thp;
1912				nr_retry_pages += nr_pages;
1913				break;
1914			case MIGRATEPAGE_SUCCESS:
1915				stats->nr_succeeded += nr_pages;
1916				stats->nr_thp_succeeded += is_thp;
1917				break;
1918			default:
1919				nr_failed++;
1920				stats->nr_thp_failed += is_thp;
1921				stats->nr_failed_pages += nr_pages;
1922				break;
1923			}
1924			dst = dst2;
1925			dst2 = list_next_entry(dst, lru);
1926		}
1927	}
1928	nr_failed += retry;
1929	stats->nr_thp_failed += thp_retry;
1930	stats->nr_failed_pages += nr_retry_pages;
1931
1932	rc = rc_saved ? : nr_failed;
1933out:
1934	/* Cleanup remaining folios */
1935	dst = list_first_entry(&dst_folios, struct folio, lru);
1936	dst2 = list_next_entry(dst, lru);
1937	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1938		int old_page_state = 0;
1939		struct anon_vma *anon_vma = NULL;
1940
1941		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1942		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1943				       anon_vma, true, ret_folios);
1944		list_del(&dst->lru);
1945		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1946		dst = dst2;
1947		dst2 = list_next_entry(dst, lru);
1948	}
1949
1950	return rc;
1951}
1952
1953static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1954		free_folio_t put_new_folio, unsigned long private,
1955		enum migrate_mode mode, int reason,
1956		struct list_head *ret_folios, struct list_head *split_folios,
1957		struct migrate_pages_stats *stats)
1958{
1959	int rc, nr_failed = 0;
1960	LIST_HEAD(folios);
1961	struct migrate_pages_stats astats;
1962
1963	memset(&astats, 0, sizeof(astats));
1964	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1965	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1966				 reason, &folios, split_folios, &astats,
1967				 NR_MAX_MIGRATE_ASYNC_RETRY);
1968	stats->nr_succeeded += astats.nr_succeeded;
1969	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1970	stats->nr_thp_split += astats.nr_thp_split;
1971	stats->nr_split += astats.nr_split;
1972	if (rc < 0) {
1973		stats->nr_failed_pages += astats.nr_failed_pages;
1974		stats->nr_thp_failed += astats.nr_thp_failed;
1975		list_splice_tail(&folios, ret_folios);
1976		return rc;
1977	}
1978	stats->nr_thp_failed += astats.nr_thp_split;
1979	/*
1980	 * Do not count rc, as pages will be retried below.
1981	 * Count nr_split only, since it includes nr_thp_split.
1982	 */
1983	nr_failed += astats.nr_split;
1984	/*
1985	 * Fall back to migrate all failed folios one by one synchronously. All
1986	 * failed folios except split THPs will be retried, so their failure
1987	 * isn't counted
1988	 */
1989	list_splice_tail_init(&folios, from);
1990	while (!list_empty(from)) {
1991		list_move(from->next, &folios);
1992		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1993					 private, mode, reason, ret_folios,
1994					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1995		list_splice_tail_init(&folios, ret_folios);
1996		if (rc < 0)
1997			return rc;
1998		nr_failed += rc;
1999	}
2000
2001	return nr_failed;
 
 
 
 
 
2002}
2003
2004/*
2005 * migrate_pages - migrate the folios specified in a list, to the free folios
2006 *		   supplied as the target for the page migration
2007 *
2008 * @from:		The list of folios to be migrated.
2009 * @get_new_folio:	The function used to allocate free folios to be used
2010 *			as the target of the folio migration.
2011 * @put_new_folio:	The function used to free target folios if migration
2012 *			fails, or NULL if no special handling is necessary.
2013 * @private:		Private data to be passed on to get_new_folio()
2014 * @mode:		The migration mode that specifies the constraints for
2015 *			folio migration, if any.
2016 * @reason:		The reason for folio migration.
2017 * @ret_succeeded:	Set to the number of folios migrated successfully if
2018 *			the caller passes a non-NULL pointer.
2019 *
2020 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2021 * are movable any more because the list has become empty or no retryable folios
2022 * exist any more. It is caller's responsibility to call putback_movable_pages()
2023 * only if ret != 0.
2024 *
2025 * Returns the number of {normal folio, large folio, hugetlb} that were not
2026 * migrated, or an error code. The number of large folio splits will be
2027 * considered as the number of non-migrated large folio, no matter how many
2028 * split folios of the large folio are migrated successfully.
2029 */
2030int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2031		free_folio_t put_new_folio, unsigned long private,
2032		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2033{
2034	int rc, rc_gather;
2035	int nr_pages;
2036	struct folio *folio, *folio2;
2037	LIST_HEAD(folios);
2038	LIST_HEAD(ret_folios);
2039	LIST_HEAD(split_folios);
2040	struct migrate_pages_stats stats;
2041
2042	trace_mm_migrate_pages_start(mode, reason);
2043
2044	memset(&stats, 0, sizeof(stats));
2045
2046	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2047				     mode, reason, &stats, &ret_folios);
2048	if (rc_gather < 0)
2049		goto out;
2050
2051again:
2052	nr_pages = 0;
2053	list_for_each_entry_safe(folio, folio2, from, lru) {
2054		/* Retried hugetlb folios will be kept in list  */
2055		if (folio_test_hugetlb(folio)) {
2056			list_move_tail(&folio->lru, &ret_folios);
2057			continue;
2058		}
2059
2060		nr_pages += folio_nr_pages(folio);
2061		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2062			break;
2063	}
2064	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2065		list_cut_before(&folios, from, &folio2->lru);
2066	else
2067		list_splice_init(from, &folios);
2068	if (mode == MIGRATE_ASYNC)
2069		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2070				private, mode, reason, &ret_folios,
2071				&split_folios, &stats,
2072				NR_MAX_MIGRATE_PAGES_RETRY);
2073	else
2074		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2075				private, mode, reason, &ret_folios,
2076				&split_folios, &stats);
2077	list_splice_tail_init(&folios, &ret_folios);
2078	if (rc < 0) {
2079		rc_gather = rc;
2080		list_splice_tail(&split_folios, &ret_folios);
2081		goto out;
2082	}
2083	if (!list_empty(&split_folios)) {
2084		/*
2085		 * Failure isn't counted since all split folios of a large folio
2086		 * is counted as 1 failure already.  And, we only try to migrate
2087		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2088		 */
2089		migrate_pages_batch(&split_folios, get_new_folio,
2090				put_new_folio, private, MIGRATE_ASYNC, reason,
2091				&ret_folios, NULL, &stats, 1);
2092		list_splice_tail_init(&split_folios, &ret_folios);
2093	}
2094	rc_gather += rc;
2095	if (!list_empty(from))
2096		goto again;
2097out:
2098	/*
2099	 * Put the permanent failure folio back to migration list, they
2100	 * will be put back to the right list by the caller.
2101	 */
2102	list_splice(&ret_folios, from);
 
 
2103
2104	/*
2105	 * Return 0 in case all split folios of fail-to-migrate large folios
2106	 * are migrated successfully.
2107	 */
2108	if (list_empty(from))
2109		rc_gather = 0;
2110
2111	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2112	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2113	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2114	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2115	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2116	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2117			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2118			       stats.nr_thp_split, stats.nr_split, mode,
2119			       reason);
2120
2121	if (ret_succeeded)
2122		*ret_succeeded = stats.nr_succeeded;
 
2123
2124	return rc_gather;
2125}
 
2126
2127struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2128{
2129	struct migration_target_control *mtc;
2130	gfp_t gfp_mask;
2131	unsigned int order = 0;
2132	int nid;
2133	int zidx;
2134
2135	mtc = (struct migration_target_control *)private;
2136	gfp_mask = mtc->gfp_mask;
2137	nid = mtc->nid;
2138	if (nid == NUMA_NO_NODE)
2139		nid = folio_nid(src);
2140
2141	if (folio_test_hugetlb(src)) {
2142		struct hstate *h = folio_hstate(src);
2143
2144		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2145		return alloc_hugetlb_folio_nodemask(h, nid,
2146						mtc->nmask, gfp_mask,
2147						htlb_allow_alloc_fallback(mtc->reason));
2148	}
2149
2150	if (folio_test_large(src)) {
 
 
 
 
 
 
 
 
2151		/*
2152		 * clear __GFP_RECLAIM to make the migration callback
2153		 * consistent with regular THP allocations.
 
2154		 */
2155		gfp_mask &= ~__GFP_RECLAIM;
2156		gfp_mask |= GFP_TRANSHUGE;
2157		order = folio_order(src);
2158	}
2159	zidx = zone_idx(folio_zone(src));
2160	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2161		gfp_mask |= __GFP_HIGHMEM;
2162
2163	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2164}
2165
2166#ifdef CONFIG_NUMA
2167
2168static int store_status(int __user *status, int start, int value, int nr)
2169{
2170	while (nr-- > 0) {
2171		if (put_user(value, status + start))
2172			return -EFAULT;
2173		start++;
2174	}
2175
2176	return 0;
2177}
2178
2179static int do_move_pages_to_node(struct list_head *pagelist, int node)
2180{
2181	int err;
2182	struct migration_target_control mtc = {
2183		.nid = node,
2184		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2185		.reason = MR_SYSCALL,
2186	};
2187
2188	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2189		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2190	if (err)
2191		putback_movable_pages(pagelist);
2192	return err;
2193}
2194
2195static int __add_folio_for_migration(struct folio *folio, int node,
2196		struct list_head *pagelist, bool migrate_all)
2197{
2198	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2199		return -EFAULT;
2200
2201	if (folio_is_zone_device(folio))
2202		return -ENOENT;
2203
2204	if (folio_nid(folio) == node)
2205		return 0;
2206
2207	if (folio_likely_mapped_shared(folio) && !migrate_all)
2208		return -EACCES;
2209
2210	if (folio_test_hugetlb(folio)) {
2211		if (isolate_hugetlb(folio, pagelist))
2212			return 1;
2213	} else if (folio_isolate_lru(folio)) {
2214		list_add_tail(&folio->lru, pagelist);
2215		node_stat_mod_folio(folio,
2216			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2217			folio_nr_pages(folio));
2218		return 1;
2219	}
2220	return -EBUSY;
2221}
2222
2223/*
2224 * Resolves the given address to a struct folio, isolates it from the LRU and
2225 * puts it to the given pagelist.
2226 * Returns:
2227 *     errno - if the folio cannot be found/isolated
2228 *     0 - when it doesn't have to be migrated because it is already on the
2229 *         target node
2230 *     1 - when it has been queued
2231 */
2232static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2233		int node, struct list_head *pagelist, bool migrate_all)
2234{
2235	struct vm_area_struct *vma;
2236	struct folio_walk fw;
2237	struct folio *folio;
2238	unsigned long addr;
2239	int err = -EFAULT;
2240
2241	mmap_read_lock(mm);
2242	addr = (unsigned long)untagged_addr_remote(mm, p);
2243
2244	vma = vma_lookup(mm, addr);
2245	if (vma && vma_migratable(vma)) {
2246		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2247		if (folio) {
2248			err = __add_folio_for_migration(folio, node, pagelist,
2249							migrate_all);
2250			folio_walk_end(&fw, vma);
2251		} else {
2252			err = -ENOENT;
2253		}
2254	}
2255	mmap_read_unlock(mm);
2256	return err;
2257}
2258
2259static int move_pages_and_store_status(int node,
2260		struct list_head *pagelist, int __user *status,
2261		int start, int i, unsigned long nr_pages)
2262{
2263	int err;
2264
2265	if (list_empty(pagelist))
2266		return 0;
2267
2268	err = do_move_pages_to_node(pagelist, node);
2269	if (err) {
2270		/*
2271		 * Positive err means the number of failed
2272		 * pages to migrate.  Since we are going to
2273		 * abort and return the number of non-migrated
2274		 * pages, so need to include the rest of the
2275		 * nr_pages that have not been attempted as
2276		 * well.
2277		 */
2278		if (err > 0)
2279			err += nr_pages - i;
2280		return err;
2281	}
2282	return store_status(status, start, node, i - start);
2283}
2284
2285/*
2286 * Migrate an array of page address onto an array of nodes and fill
2287 * the corresponding array of status.
2288 */
2289static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2290			 unsigned long nr_pages,
2291			 const void __user * __user *pages,
2292			 const int __user *nodes,
2293			 int __user *status, int flags)
2294{
2295	compat_uptr_t __user *compat_pages = (void __user *)pages;
2296	int current_node = NUMA_NO_NODE;
2297	LIST_HEAD(pagelist);
2298	int start, i;
2299	int err = 0, err1;
2300
2301	lru_cache_disable();
 
 
 
2302
2303	for (i = start = 0; i < nr_pages; i++) {
2304		const void __user *p;
2305		int node;
2306
2307		err = -EFAULT;
2308		if (in_compat_syscall()) {
2309			compat_uptr_t cp;
 
 
 
 
 
 
 
 
 
 
2310
2311			if (get_user(cp, compat_pages + i))
2312				goto out_flush;
 
 
2313
2314			p = compat_ptr(cp);
2315		} else {
2316			if (get_user(p, pages + i))
2317				goto out_flush;
2318		}
2319		if (get_user(node, nodes + i))
2320			goto out_flush;
2321
2322		err = -ENODEV;
2323		if (node < 0 || node >= MAX_NUMNODES)
2324			goto out_flush;
2325		if (!node_state(node, N_MEMORY))
2326			goto out_flush;
2327
2328		err = -EACCES;
2329		if (!node_isset(node, task_nodes))
2330			goto out_flush;
2331
2332		if (current_node == NUMA_NO_NODE) {
2333			current_node = node;
2334			start = i;
2335		} else if (node != current_node) {
2336			err = move_pages_and_store_status(current_node,
2337					&pagelist, status, start, i, nr_pages);
2338			if (err)
2339				goto out;
2340			start = i;
2341			current_node = node;
2342		}
2343
2344		/*
2345		 * Errors in the page lookup or isolation are not fatal and we simply
2346		 * report them via status
2347		 */
2348		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2349					      flags & MPOL_MF_MOVE_ALL);
2350
2351		if (err > 0) {
2352			/* The page is successfully queued for migration */
2353			continue;
2354		}
2355
2356		/*
2357		 * The move_pages() man page does not have an -EEXIST choice, so
2358		 * use -EFAULT instead.
2359		 */
2360		if (err == -EEXIST)
2361			err = -EFAULT;
2362
2363		/*
2364		 * If the page is already on the target node (!err), store the
2365		 * node, otherwise, store the err.
2366		 */
2367		err = store_status(status, i, err ? : current_node, 1);
2368		if (err)
2369			goto out_flush;
2370
2371		err = move_pages_and_store_status(current_node, &pagelist,
2372				status, start, i, nr_pages);
2373		if (err) {
2374			/* We have accounted for page i */
2375			if (err > 0)
2376				err--;
2377			goto out;
2378		}
2379		current_node = NUMA_NO_NODE;
2380	}
2381out_flush:
2382	/* Make sure we do not overwrite the existing error */
2383	err1 = move_pages_and_store_status(current_node, &pagelist,
2384				status, start, i, nr_pages);
2385	if (err >= 0)
2386		err = err1;
2387out:
2388	lru_cache_enable();
2389	return err;
2390}
2391
2392/*
2393 * Determine the nodes of an array of pages and store it in an array of status.
2394 */
2395static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2396				const void __user **pages, int *status)
2397{
2398	unsigned long i;
2399
2400	mmap_read_lock(mm);
2401
2402	for (i = 0; i < nr_pages; i++) {
2403		unsigned long addr = (unsigned long)(*pages);
2404		struct vm_area_struct *vma;
2405		struct folio_walk fw;
2406		struct folio *folio;
2407		int err = -EFAULT;
2408
2409		vma = vma_lookup(mm, addr);
2410		if (!vma)
 
 
 
 
 
 
 
2411			goto set_status;
2412
2413		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2414		if (folio) {
2415			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2416				err = -EFAULT;
2417			else if (folio_is_zone_device(folio))
2418				err = -ENOENT;
2419			else
2420				err = folio_nid(folio);
2421			folio_walk_end(&fw, vma);
2422		} else {
2423			err = -ENOENT;
2424		}
2425set_status:
2426		*status = err;
2427
2428		pages++;
2429		status++;
2430	}
2431
2432	mmap_read_unlock(mm);
2433}
2434
2435static int get_compat_pages_array(const void __user *chunk_pages[],
2436				  const void __user * __user *pages,
2437				  unsigned long chunk_nr)
2438{
2439	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2440	compat_uptr_t p;
2441	int i;
2442
2443	for (i = 0; i < chunk_nr; i++) {
2444		if (get_user(p, pages32 + i))
2445			return -EFAULT;
2446		chunk_pages[i] = compat_ptr(p);
2447	}
2448
2449	return 0;
2450}
2451
2452/*
2453 * Determine the nodes of a user array of pages and store it in
2454 * a user array of status.
2455 */
2456static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2457			 const void __user * __user *pages,
2458			 int __user *status)
2459{
2460#define DO_PAGES_STAT_CHUNK_NR 16UL
2461	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2462	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2463
2464	while (nr_pages) {
2465		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
 
 
 
 
2466
2467		if (in_compat_syscall()) {
2468			if (get_compat_pages_array(chunk_pages, pages,
2469						   chunk_nr))
2470				break;
2471		} else {
2472			if (copy_from_user(chunk_pages, pages,
2473				      chunk_nr * sizeof(*chunk_pages)))
2474				break;
2475		}
2476
2477		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2478
2479		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2480			break;
2481
2482		pages += chunk_nr;
2483		status += chunk_nr;
2484		nr_pages -= chunk_nr;
2485	}
2486	return nr_pages ? -EFAULT : 0;
2487}
2488
2489static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 
 
 
 
 
 
 
2490{
 
2491	struct task_struct *task;
2492	struct mm_struct *mm;
 
 
2493
2494	/*
2495	 * There is no need to check if current process has the right to modify
2496	 * the specified process when they are same.
2497	 */
2498	if (!pid) {
2499		mmget(current->mm);
2500		*mem_nodes = cpuset_mems_allowed(current);
2501		return current->mm;
2502	}
2503
2504	task = find_get_task_by_vpid(pid);
 
 
2505	if (!task) {
2506		return ERR_PTR(-ESRCH);
 
2507	}
 
2508
2509	/*
2510	 * Check if this process has the right to modify the specified
2511	 * process. Use the regular "ptrace_may_access()" checks.
2512	 */
2513	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2514		mm = ERR_PTR(-EPERM);
 
 
 
 
 
 
2515		goto out;
2516	}
 
2517
2518	mm = ERR_PTR(security_task_movememory(task));
2519	if (IS_ERR(mm))
2520		goto out;
2521	*mem_nodes = cpuset_mems_allowed(task);
 
2522	mm = get_task_mm(task);
2523out:
2524	put_task_struct(task);
 
2525	if (!mm)
2526		mm = ERR_PTR(-EINVAL);
2527	return mm;
2528}
2529
2530/*
2531 * Move a list of pages in the address space of the currently executing
2532 * process.
2533 */
2534static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2535			     const void __user * __user *pages,
2536			     const int __user *nodes,
2537			     int __user *status, int flags)
2538{
2539	struct mm_struct *mm;
2540	int err;
2541	nodemask_t task_nodes;
2542
2543	/* Check flags */
2544	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2545		return -EINVAL;
2546
2547	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2548		return -EPERM;
2549
2550	mm = find_mm_struct(pid, &task_nodes);
2551	if (IS_ERR(mm))
2552		return PTR_ERR(mm);
2553
2554	if (nodes)
2555		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2556				    nodes, status, flags);
2557	else
2558		err = do_pages_stat(mm, nr_pages, pages, status);
2559
2560	mmput(mm);
2561	return err;
2562}
2563
2564SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2565		const void __user * __user *, pages,
2566		const int __user *, nodes,
2567		int __user *, status, int, flags)
2568{
2569	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2570}
2571
2572#ifdef CONFIG_NUMA_BALANCING
2573/*
2574 * Returns true if this is a safe migration target node for misplaced NUMA
2575 * pages. Currently it only checks the watermarks which is crude.
2576 */
2577static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2578				   unsigned long nr_migrate_pages)
2579{
2580	int z;
2581
2582	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2583		struct zone *zone = pgdat->node_zones + z;
2584
2585		if (!managed_zone(zone))
 
 
 
2586			continue;
2587
2588		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2589		if (!zone_watermark_ok(zone, 0,
2590				       high_wmark_pages(zone) +
2591				       nr_migrate_pages,
2592				       ZONE_MOVABLE, ALLOC_CMA))
2593			continue;
2594		return true;
2595	}
2596	return false;
2597}
2598
2599static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2600					   unsigned long data)
 
2601{
2602	int nid = (int) data;
2603	int order = folio_order(src);
2604	gfp_t gfp = __GFP_THISNODE;
 
 
 
 
 
2605
2606	if (order > 0)
2607		gfp |= GFP_TRANSHUGE_LIGHT;
2608	else {
2609		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2610			__GFP_NOWARN;
2611		gfp &= ~__GFP_RECLAIM;
2612	}
2613	return __folio_alloc_node(gfp, order, nid);
2614}
2615
2616/*
2617 * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2618 * permitted. Must be called with the PTL still held.
 
2619 */
2620int migrate_misplaced_folio_prepare(struct folio *folio,
2621		struct vm_area_struct *vma, int node)
 
 
 
 
2622{
2623	int nr_pages = folio_nr_pages(folio);
2624	pg_data_t *pgdat = NODE_DATA(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625
2626	if (folio_is_file_lru(folio)) {
2627		/*
2628		 * Do not migrate file folios that are mapped in multiple
2629		 * processes with execute permissions as they are probably
2630		 * shared libraries.
2631		 *
2632		 * See folio_likely_mapped_shared() on possible imprecision
2633		 * when we cannot easily detect if a folio is shared.
2634		 */
2635		if ((vma->vm_flags & VM_EXEC) &&
2636		    folio_likely_mapped_shared(folio))
2637			return -EACCES;
2638
2639		/*
2640		 * Do not migrate dirty folios as not all filesystems can move
2641		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2642		 * cycles.
2643		 */
2644		if (folio_test_dirty(folio))
2645			return -EAGAIN;
2646	}
2647
2648	/* Avoid migrating to a node that is nearly full */
2649	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2650		int z;
2651
2652		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2653			return -EAGAIN;
2654		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2655			if (managed_zone(pgdat->node_zones + z))
2656				break;
2657		}
2658
2659		/*
2660		 * If there are no managed zones, it should not proceed
2661		 * further.
2662		 */
2663		if (z < 0)
2664			return -EAGAIN;
 
 
 
 
 
2665
2666		wakeup_kswapd(pgdat->node_zones + z, 0,
2667			      folio_order(folio), ZONE_MOVABLE);
2668		return -EAGAIN;
2669	}
2670
2671	if (!folio_isolate_lru(folio))
2672		return -EAGAIN;
 
 
 
 
 
 
2673
2674	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2675			    nr_pages);
2676	return 0;
 
2677}
2678
2679/*
2680 * Attempt to migrate a misplaced folio to the specified destination
2681 * node. Caller is expected to have isolated the folio by calling
2682 * migrate_misplaced_folio_prepare(), which will result in an
2683 * elevated reference count on the folio. This function will un-isolate the
2684 * folio, dereferencing the folio before returning.
2685 */
2686int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2687			    int node)
2688{
2689	pg_data_t *pgdat = NODE_DATA(node);
 
2690	int nr_remaining;
2691	unsigned int nr_succeeded;
2692	LIST_HEAD(migratepages);
2693	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2694	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2695
2696	list_add(&folio->lru, &migratepages);
2697	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698				     NULL, node, MIGRATE_ASYNC,
2699				     MR_NUMA_MISPLACED, &nr_succeeded);
2700	if (nr_remaining && !list_empty(&migratepages))
2701		putback_movable_pages(&migratepages);
2702	if (nr_succeeded) {
2703		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2704		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2705		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2706		    && !node_is_toptier(folio_nid(folio))
2707		    && node_is_toptier(node))
2708			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709	}
2710	mem_cgroup_put(memcg);
2711	BUG_ON(!list_empty(&migratepages));
2712	return nr_remaining ? -EAGAIN : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2713}
2714#endif /* CONFIG_NUMA_BALANCING */
 
2715#endif /* CONFIG_NUMA */