Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
 
 
 
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
 
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
 
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100#include <linux/random.h>
 101
 102#include "internal.h"
 103
 104/* Internal flags */
 105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 107
 108static struct kmem_cache *policy_cache;
 109static struct kmem_cache *sn_cache;
 110
 111/* Highest zone. An specific allocation for a zone below that is not
 112   policied. */
 113enum zone_type policy_zone = 0;
 114
 115/*
 116 * run-time system-wide default policy => local allocation
 117 */
 118static struct mempolicy default_policy = {
 119	.refcnt = ATOMIC_INIT(1), /* never free it */
 120	.mode = MPOL_PREFERRED,
 121	.flags = MPOL_F_LOCAL,
 122};
 123
 124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126struct mempolicy *get_task_policy(struct task_struct *p)
 127{
 128	struct mempolicy *pol = p->mempolicy;
 129	int node;
 130
 131	if (pol)
 132		return pol;
 133
 134	node = numa_node_id();
 135	if (node != NUMA_NO_NODE) {
 136		pol = &preferred_node_policy[node];
 137		/* preferred_node_policy is not initialised early in boot */
 138		if (pol->mode)
 139			return pol;
 140	}
 141
 142	return &default_policy;
 143}
 144
 145static const struct mempolicy_operations {
 146	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 147	/*
 148	 * If read-side task has no lock to protect task->mempolicy, write-side
 149	 * task will rebind the task->mempolicy by two step. The first step is
 150	 * setting all the newly nodes, and the second step is cleaning all the
 151	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 152	 * page.
 153	 * If we have a lock to protect task->mempolicy in read-side, we do
 154	 * rebind directly.
 155	 *
 156	 * step:
 157	 * 	MPOL_REBIND_ONCE - do rebind work at once
 158	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 159	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 160	 */
 161	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 162			enum mpol_rebind_step step);
 163} mpol_ops[MPOL_MAX];
 164
 165static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 166{
 167	return pol->flags & MPOL_MODE_FLAGS;
 168}
 169
 170static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 171				   const nodemask_t *rel)
 172{
 173	nodemask_t tmp;
 174	nodes_fold(tmp, *orig, nodes_weight(*rel));
 175	nodes_onto(*ret, tmp, *rel);
 176}
 177
 178static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 179{
 180	if (nodes_empty(*nodes))
 181		return -EINVAL;
 182	pol->v.nodes = *nodes;
 183	return 0;
 184}
 185
 186static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (!nodes)
 189		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 190	else if (nodes_empty(*nodes))
 191		return -EINVAL;			/*  no allowed nodes */
 192	else
 193		pol->v.preferred_node = first_node(*nodes);
 194	return 0;
 195}
 196
 197static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 198{
 199	if (nodes_empty(*nodes))
 200		return -EINVAL;
 201	pol->v.nodes = *nodes;
 
 
 202	return 0;
 203}
 204
 205/*
 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 207 * any, for the new policy.  mpol_new() has already validated the nodes
 208 * parameter with respect to the policy mode and flags.  But, we need to
 209 * handle an empty nodemask with MPOL_PREFERRED here.
 210 *
 211 * Must be called holding task's alloc_lock to protect task's mems_allowed
 212 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 213 */
 214static int mpol_set_nodemask(struct mempolicy *pol,
 215		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 216{
 217	int ret;
 218
 219	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 220	if (pol == NULL)
 
 
 
 
 221		return 0;
 
 222	/* Check N_MEMORY */
 223	nodes_and(nsc->mask1,
 224		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 225
 226	VM_BUG_ON(!nodes);
 227	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 228		nodes = NULL;	/* explicit local allocation */
 229	else {
 230		if (pol->flags & MPOL_F_RELATIVE_NODES)
 231			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 232		else
 233			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 234
 235		if (mpol_store_user_nodemask(pol))
 236			pol->w.user_nodemask = *nodes;
 237		else
 238			pol->w.cpuset_mems_allowed =
 239						cpuset_current_mems_allowed;
 240	}
 241
 242	if (nodes)
 243		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 244	else
 245		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 246	return ret;
 247}
 248
 249/*
 250 * This function just creates a new policy, does some check and simple
 251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 252 */
 253static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 254				  nodemask_t *nodes)
 255{
 256	struct mempolicy *policy;
 257
 258	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 259		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 260
 261	if (mode == MPOL_DEFAULT) {
 262		if (nodes && !nodes_empty(*nodes))
 263			return ERR_PTR(-EINVAL);
 264		return NULL;
 265	}
 266	VM_BUG_ON(!nodes);
 267
 268	/*
 269	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 270	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 271	 * All other modes require a valid pointer to a non-empty nodemask.
 272	 */
 273	if (mode == MPOL_PREFERRED) {
 274		if (nodes_empty(*nodes)) {
 275			if (((flags & MPOL_F_STATIC_NODES) ||
 276			     (flags & MPOL_F_RELATIVE_NODES)))
 277				return ERR_PTR(-EINVAL);
 
 
 278		}
 279	} else if (mode == MPOL_LOCAL) {
 280		if (!nodes_empty(*nodes))
 
 
 281			return ERR_PTR(-EINVAL);
 282		mode = MPOL_PREFERRED;
 283	} else if (nodes_empty(*nodes))
 284		return ERR_PTR(-EINVAL);
 285	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 286	if (!policy)
 287		return ERR_PTR(-ENOMEM);
 288	atomic_set(&policy->refcnt, 1);
 289	policy->mode = mode;
 290	policy->flags = flags;
 
 291
 292	return policy;
 293}
 294
 295/* Slow path of a mpol destructor. */
 296void __mpol_put(struct mempolicy *p)
 297{
 298	if (!atomic_dec_and_test(&p->refcnt))
 299		return;
 300	kmem_cache_free(policy_cache, p);
 301}
 302
 303static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 304				enum mpol_rebind_step step)
 305{
 306}
 307
 308/*
 309 * step:
 310 * 	MPOL_REBIND_ONCE  - do rebind work at once
 311 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 312 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 313 */
 314static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 315				 enum mpol_rebind_step step)
 316{
 317	nodemask_t tmp;
 318
 319	if (pol->flags & MPOL_F_STATIC_NODES)
 320		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 321	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 322		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 323	else {
 324		/*
 325		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 326		 * result
 327		 */
 328		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 329			nodes_remap(tmp, pol->v.nodes,
 330					pol->w.cpuset_mems_allowed, *nodes);
 331			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 332		} else if (step == MPOL_REBIND_STEP2) {
 333			tmp = pol->w.cpuset_mems_allowed;
 334			pol->w.cpuset_mems_allowed = *nodes;
 335		} else
 336			BUG();
 337	}
 338
 339	if (nodes_empty(tmp))
 340		tmp = *nodes;
 341
 342	if (step == MPOL_REBIND_STEP1)
 343		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 344	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 345		pol->v.nodes = tmp;
 346	else
 347		BUG();
 348
 349	if (!node_isset(current->il_next, tmp)) {
 350		current->il_next = next_node(current->il_next, tmp);
 351		if (current->il_next >= MAX_NUMNODES)
 352			current->il_next = first_node(tmp);
 353		if (current->il_next >= MAX_NUMNODES)
 354			current->il_next = numa_node_id();
 355	}
 356}
 357
 358static void mpol_rebind_preferred(struct mempolicy *pol,
 359				  const nodemask_t *nodes,
 360				  enum mpol_rebind_step step)
 361{
 362	nodemask_t tmp;
 363
 364	if (pol->flags & MPOL_F_STATIC_NODES) {
 365		int node = first_node(pol->w.user_nodemask);
 366
 367		if (node_isset(node, *nodes)) {
 368			pol->v.preferred_node = node;
 369			pol->flags &= ~MPOL_F_LOCAL;
 370		} else
 371			pol->flags |= MPOL_F_LOCAL;
 372	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 373		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 374		pol->v.preferred_node = first_node(tmp);
 375	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 376		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 377						   pol->w.cpuset_mems_allowed,
 378						   *nodes);
 379		pol->w.cpuset_mems_allowed = *nodes;
 380	}
 381}
 382
 383/*
 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 385 *
 386 * If read-side task has no lock to protect task->mempolicy, write-side
 387 * task will rebind the task->mempolicy by two step. The first step is
 388 * setting all the newly nodes, and the second step is cleaning all the
 389 * disallowed nodes. In this way, we can avoid finding no node to alloc
 390 * page.
 391 * If we have a lock to protect task->mempolicy in read-side, we do
 392 * rebind directly.
 393 *
 394 * step:
 395 * 	MPOL_REBIND_ONCE  - do rebind work at once
 396 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 397 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 398 */
 399static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 400				enum mpol_rebind_step step)
 401{
 402	if (!pol)
 403		return;
 404	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 405	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 406		return;
 407
 408	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 409		return;
 410
 411	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 412		BUG();
 413
 414	if (step == MPOL_REBIND_STEP1)
 415		pol->flags |= MPOL_F_REBINDING;
 416	else if (step == MPOL_REBIND_STEP2)
 417		pol->flags &= ~MPOL_F_REBINDING;
 418	else if (step >= MPOL_REBIND_NSTEP)
 419		BUG();
 420
 421	mpol_ops[pol->mode].rebind(pol, newmask, step);
 422}
 423
 424/*
 425 * Wrapper for mpol_rebind_policy() that just requires task
 426 * pointer, and updates task mempolicy.
 427 *
 428 * Called with task's alloc_lock held.
 429 */
 430
 431void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 432			enum mpol_rebind_step step)
 433{
 434	mpol_rebind_policy(tsk->mempolicy, new, step);
 435}
 436
 437/*
 438 * Rebind each vma in mm to new nodemask.
 439 *
 440 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 441 */
 442
 443void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 444{
 445	struct vm_area_struct *vma;
 
 446
 447	down_write(&mm->mmap_sem);
 448	for (vma = mm->mmap; vma; vma = vma->vm_next)
 449		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 450	up_write(&mm->mmap_sem);
 451}
 452
 453static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 454	[MPOL_DEFAULT] = {
 455		.rebind = mpol_rebind_default,
 456	},
 457	[MPOL_INTERLEAVE] = {
 458		.create = mpol_new_interleave,
 459		.rebind = mpol_rebind_nodemask,
 460	},
 461	[MPOL_PREFERRED] = {
 462		.create = mpol_new_preferred,
 463		.rebind = mpol_rebind_preferred,
 464	},
 465	[MPOL_BIND] = {
 466		.create = mpol_new_bind,
 467		.rebind = mpol_rebind_nodemask,
 468	},
 
 
 
 
 
 
 
 469};
 470
 471static void migrate_page_add(struct page *page, struct list_head *pagelist,
 472				unsigned long flags);
 473
 474struct queue_pages {
 475	struct list_head *pagelist;
 476	unsigned long flags;
 477	nodemask_t *nmask;
 478	struct vm_area_struct *prev;
 
 
 479};
 480
 481/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482 * Scan through pages checking if pages follow certain conditions,
 483 * and move them to the pagelist if they do.
 
 
 
 
 
 
 
 
 484 */
 485static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 486			unsigned long end, struct mm_walk *walk)
 487{
 488	struct vm_area_struct *vma = walk->vma;
 489	struct page *page;
 490	struct queue_pages *qp = walk->private;
 491	unsigned long flags = qp->flags;
 492	int nid, ret;
 493	pte_t *pte;
 494	spinlock_t *ptl;
 495
 496	if (pmd_trans_huge(*pmd)) {
 497		ptl = pmd_lock(walk->mm, pmd);
 498		if (pmd_trans_huge(*pmd)) {
 499			page = pmd_page(*pmd);
 500			if (is_huge_zero_page(page)) {
 501				spin_unlock(ptl);
 502				split_huge_pmd(vma, pmd, addr);
 503			} else {
 504				get_page(page);
 505				spin_unlock(ptl);
 506				lock_page(page);
 507				ret = split_huge_page(page);
 508				unlock_page(page);
 509				put_page(page);
 510				if (ret)
 511					return 0;
 512			}
 513		} else {
 514			spin_unlock(ptl);
 515		}
 516	}
 517
 518retry:
 519	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 520	for (; addr != end; pte++, addr += PAGE_SIZE) {
 521		if (!pte_present(*pte))
 522			continue;
 523		page = vm_normal_page(vma, addr, *pte);
 524		if (!page)
 525			continue;
 526		/*
 527		 * vm_normal_page() filters out zero pages, but there might
 528		 * still be PageReserved pages to skip, perhaps in a VDSO.
 529		 */
 530		if (PageReserved(page))
 531			continue;
 532		nid = page_to_nid(page);
 533		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 534			continue;
 535		if (PageTransCompound(page) && PageAnon(page)) {
 536			get_page(page);
 537			pte_unmap_unlock(pte, ptl);
 538			lock_page(page);
 539			ret = split_huge_page(page);
 540			unlock_page(page);
 541			put_page(page);
 542			/* Failed to split -- skip. */
 543			if (ret) {
 544				pte = pte_offset_map_lock(walk->mm, pmd,
 545						addr, &ptl);
 546				continue;
 547			}
 548			goto retry;
 549		}
 550
 551		migrate_page_add(page, qp->pagelist, flags);
 
 
 
 
 
 
 
 
 552	}
 553	pte_unmap_unlock(pte - 1, ptl);
 554	cond_resched();
 555	return 0;
 
 
 
 
 556}
 557
 558static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 559			       unsigned long addr, unsigned long end,
 560			       struct mm_walk *walk)
 561{
 
 562#ifdef CONFIG_HUGETLB_PAGE
 563	struct queue_pages *qp = walk->private;
 564	unsigned long flags = qp->flags;
 565	int nid;
 566	struct page *page;
 567	spinlock_t *ptl;
 568	pte_t entry;
 569
 570	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 571	entry = huge_ptep_get(pte);
 572	if (!pte_present(entry))
 573		goto unlock;
 574	page = pte_page(entry);
 575	nid = page_to_nid(page);
 576	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 577		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 579	if (flags & (MPOL_MF_MOVE_ALL) ||
 580	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 581		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 
 582unlock:
 583	spin_unlock(ptl);
 584#else
 585	BUG();
 586#endif
 587	return 0;
 588}
 589
 590#ifdef CONFIG_NUMA_BALANCING
 591/*
 592 * This is used to mark a range of virtual addresses to be inaccessible.
 593 * These are later cleared by a NUMA hinting fault. Depending on these
 594 * faults, pages may be migrated for better NUMA placement.
 595 *
 596 * This is assuming that NUMA faults are handled using PROT_NONE. If
 597 * an architecture makes a different choice, it will need further
 598 * changes to the core.
 599 */
 600unsigned long change_prot_numa(struct vm_area_struct *vma,
 601			unsigned long addr, unsigned long end)
 602{
 
 603	int nr_updated;
 604
 605	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 
 
 
 606	if (nr_updated)
 607		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 608
 
 
 609	return nr_updated;
 610}
 611#else
 612static unsigned long change_prot_numa(struct vm_area_struct *vma,
 613			unsigned long addr, unsigned long end)
 614{
 615	return 0;
 616}
 617#endif /* CONFIG_NUMA_BALANCING */
 618
 619static int queue_pages_test_walk(unsigned long start, unsigned long end,
 620				struct mm_walk *walk)
 621{
 622	struct vm_area_struct *vma = walk->vma;
 623	struct queue_pages *qp = walk->private;
 624	unsigned long endvma = vma->vm_end;
 625	unsigned long flags = qp->flags;
 626
 627	if (!vma_migratable(vma))
 628		return 1;
 629
 630	if (endvma > end)
 631		endvma = end;
 632	if (vma->vm_start > start)
 633		start = vma->vm_start;
 634
 635	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 636		if (!vma->vm_next && vma->vm_end < end)
 637			return -EFAULT;
 638		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 639			return -EFAULT;
 640	}
 
 
 
 
 
 
 641
 642	qp->prev = vma;
 
 
 
 
 
 
 
 
 
 643
 644	if (flags & MPOL_MF_LAZY) {
 645		/* Similar to task_numa_work, skip inaccessible VMAs */
 646		if (!is_vm_hugetlb_page(vma) &&
 647			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 648			!(vma->vm_flags & VM_MIXEDMAP))
 649			change_prot_numa(vma, start, endvma);
 650		return 1;
 651	}
 652
 653	/* queue pages from current vma */
 654	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 655		return 0;
 656	return 1;
 657}
 658
 
 
 
 
 
 
 659/*
 660 * Walk through page tables and collect pages to be migrated.
 661 *
 662 * If pages found in a given range are on a set of nodes (determined by
 663 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 664 * passed via @private.)
 
 
 
 
 
 
 
 
 665 */
 666static int
 667queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 668		nodemask_t *nodes, unsigned long flags,
 669		struct list_head *pagelist)
 670{
 
 671	struct queue_pages qp = {
 672		.pagelist = pagelist,
 673		.flags = flags,
 674		.nmask = nodes,
 675		.prev = NULL,
 676	};
 677	struct mm_walk queue_pages_walk = {
 678		.hugetlb_entry = queue_pages_hugetlb,
 679		.pmd_entry = queue_pages_pte_range,
 680		.test_walk = queue_pages_test_walk,
 681		.mm = mm,
 682		.private = &qp,
 683	};
 684
 685	return walk_page_range(start, end, &queue_pages_walk);
 
 
 
 
 
 
 686}
 687
 688/*
 689 * Apply policy to a single VMA
 690 * This must be called with the mmap_sem held for writing.
 691 */
 692static int vma_replace_policy(struct vm_area_struct *vma,
 693						struct mempolicy *pol)
 694{
 695	int err;
 696	struct mempolicy *old;
 697	struct mempolicy *new;
 698
 699	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 700		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 701		 vma->vm_ops, vma->vm_file,
 702		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 703
 704	new = mpol_dup(pol);
 705	if (IS_ERR(new))
 706		return PTR_ERR(new);
 707
 708	if (vma->vm_ops && vma->vm_ops->set_policy) {
 709		err = vma->vm_ops->set_policy(vma, new);
 710		if (err)
 711			goto err_out;
 712	}
 713
 714	old = vma->vm_policy;
 715	vma->vm_policy = new; /* protected by mmap_sem */
 716	mpol_put(old);
 717
 718	return 0;
 719 err_out:
 720	mpol_put(new);
 721	return err;
 722}
 723
 724/* Step 2: apply policy to a range and do splits. */
 725static int mbind_range(struct mm_struct *mm, unsigned long start,
 726		       unsigned long end, struct mempolicy *new_pol)
 727{
 728	struct vm_area_struct *next;
 729	struct vm_area_struct *prev;
 730	struct vm_area_struct *vma;
 731	int err = 0;
 732	pgoff_t pgoff;
 733	unsigned long vmstart;
 734	unsigned long vmend;
 735
 736	vma = find_vma(mm, start);
 737	if (!vma || vma->vm_start > start)
 738		return -EFAULT;
 
 
 
 
 739
 740	prev = vma->vm_prev;
 741	if (start > vma->vm_start)
 742		prev = vma;
 743
 744	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 745		next = vma->vm_next;
 746		vmstart = max(start, vma->vm_start);
 747		vmend   = min(end, vma->vm_end);
 748
 749		if (mpol_equal(vma_policy(vma), new_pol))
 750			continue;
 751
 752		pgoff = vma->vm_pgoff +
 753			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 754		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 755				 vma->anon_vma, vma->vm_file, pgoff,
 756				 new_pol, vma->vm_userfaultfd_ctx);
 
 757		if (prev) {
 
 
 758			vma = prev;
 759			next = vma->vm_next;
 760			if (mpol_equal(vma_policy(vma), new_pol))
 761				continue;
 762			/* vma_merge() joined vma && vma->next, case 8 */
 763			goto replace;
 764		}
 765		if (vma->vm_start != vmstart) {
 766			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 767			if (err)
 768				goto out;
 
 
 769		}
 770		if (vma->vm_end != vmend) {
 771			err = split_vma(vma->vm_mm, vma, vmend, 0);
 772			if (err)
 773				goto out;
 
 
 774		}
 775 replace:
 776		err = vma_replace_policy(vma, new_pol);
 777		if (err)
 778			goto out;
 
 
 779	}
 780
 781 out:
 782	return err;
 783}
 784
 785/* Set the process memory policy */
 786static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 787			     nodemask_t *nodes)
 788{
 789	struct mempolicy *new, *old;
 790	NODEMASK_SCRATCH(scratch);
 791	int ret;
 792
 793	if (!scratch)
 794		return -ENOMEM;
 795
 796	new = mpol_new(mode, flags, nodes);
 797	if (IS_ERR(new)) {
 798		ret = PTR_ERR(new);
 799		goto out;
 800	}
 801
 802	task_lock(current);
 803	ret = mpol_set_nodemask(new, nodes, scratch);
 804	if (ret) {
 805		task_unlock(current);
 806		mpol_put(new);
 807		goto out;
 808	}
 
 809	old = current->mempolicy;
 810	current->mempolicy = new;
 811	if (new && new->mode == MPOL_INTERLEAVE &&
 812	    nodes_weight(new->v.nodes))
 813		current->il_next = first_node(new->v.nodes);
 814	task_unlock(current);
 815	mpol_put(old);
 816	ret = 0;
 817out:
 818	NODEMASK_SCRATCH_FREE(scratch);
 819	return ret;
 820}
 821
 822/*
 823 * Return nodemask for policy for get_mempolicy() query
 824 *
 825 * Called with task's alloc_lock held
 826 */
 827static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 828{
 829	nodes_clear(*nodes);
 830	if (p == &default_policy)
 831		return;
 832
 833	switch (p->mode) {
 834	case MPOL_BIND:
 835		/* Fall through */
 836	case MPOL_INTERLEAVE:
 837		*nodes = p->v.nodes;
 838		break;
 839	case MPOL_PREFERRED:
 840		if (!(p->flags & MPOL_F_LOCAL))
 841			node_set(p->v.preferred_node, *nodes);
 842		/* else return empty node mask for local allocation */
 
 
 843		break;
 844	default:
 845		BUG();
 846	}
 847}
 848
 849static int lookup_node(unsigned long addr)
 850{
 851	struct page *p;
 852	int err;
 853
 854	err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 855	if (err >= 0) {
 856		err = page_to_nid(p);
 857		put_page(p);
 858	}
 859	return err;
 860}
 861
 862/* Retrieve NUMA policy */
 863static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 864			     unsigned long addr, unsigned long flags)
 865{
 866	int err;
 867	struct mm_struct *mm = current->mm;
 868	struct vm_area_struct *vma = NULL;
 869	struct mempolicy *pol = current->mempolicy;
 870
 871	if (flags &
 872		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 873		return -EINVAL;
 874
 875	if (flags & MPOL_F_MEMS_ALLOWED) {
 876		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 877			return -EINVAL;
 878		*policy = 0;	/* just so it's initialized */
 879		task_lock(current);
 880		*nmask  = cpuset_current_mems_allowed;
 881		task_unlock(current);
 882		return 0;
 883	}
 884
 885	if (flags & MPOL_F_ADDR) {
 886		/*
 887		 * Do NOT fall back to task policy if the
 888		 * vma/shared policy at addr is NULL.  We
 889		 * want to return MPOL_DEFAULT in this case.
 890		 */
 891		down_read(&mm->mmap_sem);
 892		vma = find_vma_intersection(mm, addr, addr+1);
 893		if (!vma) {
 894			up_read(&mm->mmap_sem);
 895			return -EFAULT;
 896		}
 897		if (vma->vm_ops && vma->vm_ops->get_policy)
 898			pol = vma->vm_ops->get_policy(vma, addr);
 899		else
 900			pol = vma->vm_policy;
 901	} else if (addr)
 902		return -EINVAL;
 903
 904	if (!pol)
 905		pol = &default_policy;	/* indicates default behavior */
 906
 907	if (flags & MPOL_F_NODE) {
 908		if (flags & MPOL_F_ADDR) {
 909			err = lookup_node(addr);
 
 
 
 
 
 
 
 
 
 910			if (err < 0)
 911				goto out;
 912			*policy = err;
 913		} else if (pol == current->mempolicy &&
 914				pol->mode == MPOL_INTERLEAVE) {
 915			*policy = current->il_next;
 916		} else {
 917			err = -EINVAL;
 918			goto out;
 919		}
 920	} else {
 921		*policy = pol == &default_policy ? MPOL_DEFAULT :
 922						pol->mode;
 923		/*
 924		 * Internal mempolicy flags must be masked off before exposing
 925		 * the policy to userspace.
 926		 */
 927		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 928	}
 929
 930	if (vma) {
 931		up_read(&current->mm->mmap_sem);
 932		vma = NULL;
 933	}
 934
 935	err = 0;
 936	if (nmask) {
 937		if (mpol_store_user_nodemask(pol)) {
 938			*nmask = pol->w.user_nodemask;
 939		} else {
 940			task_lock(current);
 941			get_policy_nodemask(pol, nmask);
 942			task_unlock(current);
 943		}
 944	}
 945
 946 out:
 947	mpol_cond_put(pol);
 948	if (vma)
 949		up_read(&current->mm->mmap_sem);
 
 
 950	return err;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954/*
 955 * page migration
 956 */
 957static void migrate_page_add(struct page *page, struct list_head *pagelist,
 958				unsigned long flags)
 959{
 
 960	/*
 961	 * Avoid migrating a page that is shared with others.
 962	 */
 963	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 964		if (!isolate_lru_page(page)) {
 965			list_add_tail(&page->lru, pagelist);
 966			inc_zone_page_state(page, NR_ISOLATED_ANON +
 967					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 
 968		}
 969	}
 970}
 971
 972static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 973{
 974	if (PageHuge(page))
 975		return alloc_huge_page_node(page_hstate(compound_head(page)),
 976					node);
 977	else
 978		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 979						    __GFP_THISNODE, 0);
 980}
 981
 982/*
 983 * Migrate pages from one node to a target node.
 984 * Returns error or the number of pages not migrated.
 985 */
 986static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 987			   int flags)
 988{
 989	nodemask_t nmask;
 
 990	LIST_HEAD(pagelist);
 991	int err = 0;
 
 
 
 
 992
 993	nodes_clear(nmask);
 994	node_set(source, nmask);
 995
 996	/*
 997	 * This does not "check" the range but isolates all pages that
 998	 * need migration.  Between passing in the full user address
 999	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1000	 */
 
1001	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1002	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1003			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1004
1005	if (!list_empty(&pagelist)) {
1006		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1007					MIGRATE_SYNC, MR_SYSCALL);
1008		if (err)
1009			putback_movable_pages(&pagelist);
1010	}
1011
1012	return err;
1013}
1014
1015/*
1016 * Move pages between the two nodesets so as to preserve the physical
1017 * layout as much as possible.
1018 *
1019 * Returns the number of page that could not be moved.
1020 */
1021int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1022		     const nodemask_t *to, int flags)
1023{
1024	int busy = 0;
1025	int err;
1026	nodemask_t tmp;
1027
1028	err = migrate_prep();
1029	if (err)
1030		return err;
1031
1032	down_read(&mm->mmap_sem);
1033
1034	/*
1035	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1036	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1037	 * bit in 'tmp', and return that <source, dest> pair for migration.
1038	 * The pair of nodemasks 'to' and 'from' define the map.
1039	 *
1040	 * If no pair of bits is found that way, fallback to picking some
1041	 * pair of 'source' and 'dest' bits that are not the same.  If the
1042	 * 'source' and 'dest' bits are the same, this represents a node
1043	 * that will be migrating to itself, so no pages need move.
1044	 *
1045	 * If no bits are left in 'tmp', or if all remaining bits left
1046	 * in 'tmp' correspond to the same bit in 'to', return false
1047	 * (nothing left to migrate).
1048	 *
1049	 * This lets us pick a pair of nodes to migrate between, such that
1050	 * if possible the dest node is not already occupied by some other
1051	 * source node, minimizing the risk of overloading the memory on a
1052	 * node that would happen if we migrated incoming memory to a node
1053	 * before migrating outgoing memory source that same node.
1054	 *
1055	 * A single scan of tmp is sufficient.  As we go, we remember the
1056	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1057	 * that not only moved, but what's better, moved to an empty slot
1058	 * (d is not set in tmp), then we break out then, with that pair.
1059	 * Otherwise when we finish scanning from_tmp, we at least have the
1060	 * most recent <s, d> pair that moved.  If we get all the way through
1061	 * the scan of tmp without finding any node that moved, much less
1062	 * moved to an empty node, then there is nothing left worth migrating.
1063	 */
1064
1065	tmp = *from;
1066	while (!nodes_empty(tmp)) {
1067		int s,d;
1068		int source = NUMA_NO_NODE;
1069		int dest = 0;
1070
1071		for_each_node_mask(s, tmp) {
1072
1073			/*
1074			 * do_migrate_pages() tries to maintain the relative
1075			 * node relationship of the pages established between
1076			 * threads and memory areas.
1077                         *
1078			 * However if the number of source nodes is not equal to
1079			 * the number of destination nodes we can not preserve
1080			 * this node relative relationship.  In that case, skip
1081			 * copying memory from a node that is in the destination
1082			 * mask.
1083			 *
1084			 * Example: [2,3,4] -> [3,4,5] moves everything.
1085			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1086			 */
1087
1088			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1089						(node_isset(s, *to)))
1090				continue;
1091
1092			d = node_remap(s, *from, *to);
1093			if (s == d)
1094				continue;
1095
1096			source = s;	/* Node moved. Memorize */
1097			dest = d;
1098
1099			/* dest not in remaining from nodes? */
1100			if (!node_isset(dest, tmp))
1101				break;
1102		}
1103		if (source == NUMA_NO_NODE)
1104			break;
1105
1106		node_clear(source, tmp);
1107		err = migrate_to_node(mm, source, dest, flags);
1108		if (err > 0)
1109			busy += err;
1110		if (err < 0)
1111			break;
1112	}
1113	up_read(&mm->mmap_sem);
 
 
1114	if (err < 0)
1115		return err;
1116	return busy;
1117
1118}
1119
1120/*
1121 * Allocate a new page for page migration based on vma policy.
1122 * Start by assuming the page is mapped by the same vma as contains @start.
1123 * Search forward from there, if not.  N.B., this assumes that the
1124 * list of pages handed to migrate_pages()--which is how we get here--
1125 * is in virtual address order.
1126 */
1127static struct page *new_page(struct page *page, unsigned long start, int **x)
1128{
 
1129	struct vm_area_struct *vma;
1130	unsigned long uninitialized_var(address);
 
 
1131
1132	vma = find_vma(current->mm, start);
1133	while (vma) {
1134		address = page_address_in_vma(page, vma);
1135		if (address != -EFAULT)
1136			break;
1137		vma = vma->vm_next;
1138	}
1139
1140	if (PageHuge(page)) {
1141		BUG_ON(!vma);
1142		return alloc_huge_page_noerr(vma, address, 1);
1143	}
 
 
 
1144	/*
1145	 * if !vma, alloc_page_vma() will use task or system default policy
1146	 */
1147	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
1148}
1149#else
1150
1151static void migrate_page_add(struct page *page, struct list_head *pagelist,
1152				unsigned long flags)
1153{
 
1154}
1155
1156int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1157		     const nodemask_t *to, int flags)
1158{
1159	return -ENOSYS;
1160}
1161
1162static struct page *new_page(struct page *page, unsigned long start, int **x)
1163{
1164	return NULL;
1165}
1166#endif
1167
1168static long do_mbind(unsigned long start, unsigned long len,
1169		     unsigned short mode, unsigned short mode_flags,
1170		     nodemask_t *nmask, unsigned long flags)
1171{
1172	struct mm_struct *mm = current->mm;
1173	struct mempolicy *new;
1174	unsigned long end;
1175	int err;
 
1176	LIST_HEAD(pagelist);
1177
1178	if (flags & ~(unsigned long)MPOL_MF_VALID)
1179		return -EINVAL;
1180	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1181		return -EPERM;
1182
1183	if (start & ~PAGE_MASK)
1184		return -EINVAL;
1185
1186	if (mode == MPOL_DEFAULT)
1187		flags &= ~MPOL_MF_STRICT;
1188
1189	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1190	end = start + len;
1191
1192	if (end < start)
1193		return -EINVAL;
1194	if (end == start)
1195		return 0;
1196
1197	new = mpol_new(mode, mode_flags, nmask);
1198	if (IS_ERR(new))
1199		return PTR_ERR(new);
1200
1201	if (flags & MPOL_MF_LAZY)
1202		new->flags |= MPOL_F_MOF;
1203
1204	/*
1205	 * If we are using the default policy then operation
1206	 * on discontinuous address spaces is okay after all
1207	 */
1208	if (!new)
1209		flags |= MPOL_MF_DISCONTIG_OK;
1210
1211	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1212		 start, start + len, mode, mode_flags,
1213		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1214
1215	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1216
1217		err = migrate_prep();
1218		if (err)
1219			goto mpol_out;
1220	}
1221	{
1222		NODEMASK_SCRATCH(scratch);
1223		if (scratch) {
1224			down_write(&mm->mmap_sem);
1225			task_lock(current);
1226			err = mpol_set_nodemask(new, nmask, scratch);
1227			task_unlock(current);
1228			if (err)
1229				up_write(&mm->mmap_sem);
1230		} else
1231			err = -ENOMEM;
1232		NODEMASK_SCRATCH_FREE(scratch);
1233	}
1234	if (err)
1235		goto mpol_out;
1236
1237	err = queue_pages_range(mm, start, end, nmask,
1238			  flags | MPOL_MF_INVERT, &pagelist);
1239	if (!err)
1240		err = mbind_range(mm, start, end, new);
 
 
 
 
 
1241
1242	if (!err) {
1243		int nr_failed = 0;
1244
1245		if (!list_empty(&pagelist)) {
1246			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1247			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1248				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1249			if (nr_failed)
1250				putback_movable_pages(&pagelist);
1251		}
1252
1253		if (nr_failed && (flags & MPOL_MF_STRICT))
1254			err = -EIO;
1255	} else
1256		putback_movable_pages(&pagelist);
 
 
 
1257
1258	up_write(&mm->mmap_sem);
1259 mpol_out:
1260	mpol_put(new);
 
 
1261	return err;
1262}
1263
1264/*
1265 * User space interface with variable sized bitmaps for nodelists.
1266 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267
1268/* Copy a node mask from user space. */
1269static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1270		     unsigned long maxnode)
1271{
1272	unsigned long k;
1273	unsigned long nlongs;
1274	unsigned long endmask;
1275
1276	--maxnode;
1277	nodes_clear(*nodes);
1278	if (maxnode == 0 || !nmask)
1279		return 0;
1280	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1281		return -EINVAL;
1282
1283	nlongs = BITS_TO_LONGS(maxnode);
1284	if ((maxnode % BITS_PER_LONG) == 0)
1285		endmask = ~0UL;
1286	else
1287		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 
 
 
1288
1289	/* When the user specified more nodes than supported just check
1290	   if the non supported part is all zero. */
1291	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292		if (nlongs > PAGE_SIZE/sizeof(long))
1293			return -EINVAL;
1294		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295			unsigned long t;
1296			if (get_user(t, nmask + k))
1297				return -EFAULT;
1298			if (k == nlongs - 1) {
1299				if (t & endmask)
1300					return -EINVAL;
1301			} else if (t)
1302				return -EINVAL;
1303		}
1304		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305		endmask = ~0UL;
1306	}
1307
1308	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1309		return -EFAULT;
1310	nodes_addr(*nodes)[nlongs-1] &= endmask;
1311	return 0;
1312}
1313
1314/* Copy a kernel node mask to user space */
1315static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1316			      nodemask_t *nodes)
1317{
1318	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1319	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 
 
 
 
1320
1321	if (copy > nbytes) {
1322		if (copy > PAGE_SIZE)
1323			return -EINVAL;
1324		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1325			return -EFAULT;
1326		copy = nbytes;
 
1327	}
 
 
 
 
 
1328	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329}
1330
1331SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1332		unsigned long, mode, const unsigned long __user *, nmask,
1333		unsigned long, maxnode, unsigned, flags)
1334{
1335	nodemask_t nodes;
1336	int err;
1337	unsigned short mode_flags;
1338
1339	mode_flags = mode & MPOL_MODE_FLAGS;
1340	mode &= ~MPOL_MODE_FLAGS;
1341	if (mode >= MPOL_MAX)
1342		return -EINVAL;
1343	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1344	    (mode_flags & MPOL_F_RELATIVE_NODES))
1345		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	err = get_nodes(&nodes, nmask, maxnode);
1347	if (err)
1348		return err;
1349	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1350}
1351
1352/* Set the process memory policy */
1353SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1354		unsigned long, maxnode)
1355{
1356	int err;
1357	nodemask_t nodes;
1358	unsigned short flags;
 
 
 
 
 
1359
1360	flags = mode & MPOL_MODE_FLAGS;
1361	mode &= ~MPOL_MODE_FLAGS;
1362	if ((unsigned int)mode >= MPOL_MAX)
1363		return -EINVAL;
1364	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
 
 
 
 
 
 
 
 
 
 
1365		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366	err = get_nodes(&nodes, nmask, maxnode);
1367	if (err)
1368		return err;
1369	return do_set_mempolicy(mode, flags, &nodes);
 
1370}
1371
1372SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1373		const unsigned long __user *, old_nodes,
1374		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1375{
1376	const struct cred *cred = current_cred(), *tcred;
1377	struct mm_struct *mm = NULL;
1378	struct task_struct *task;
1379	nodemask_t task_nodes;
1380	int err;
1381	nodemask_t *old;
1382	nodemask_t *new;
1383	NODEMASK_SCRATCH(scratch);
1384
1385	if (!scratch)
1386		return -ENOMEM;
1387
1388	old = &scratch->mask1;
1389	new = &scratch->mask2;
1390
1391	err = get_nodes(old, old_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	err = get_nodes(new, new_nodes, maxnode);
1396	if (err)
1397		goto out;
1398
1399	/* Find the mm_struct */
1400	rcu_read_lock();
1401	task = pid ? find_task_by_vpid(pid) : current;
1402	if (!task) {
1403		rcu_read_unlock();
1404		err = -ESRCH;
1405		goto out;
1406	}
1407	get_task_struct(task);
1408
1409	err = -EINVAL;
1410
1411	/*
1412	 * Check if this process has the right to modify the specified
1413	 * process. The right exists if the process has administrative
1414	 * capabilities, superuser privileges or the same
1415	 * userid as the target process.
1416	 */
1417	tcred = __task_cred(task);
1418	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1419	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1420	    !capable(CAP_SYS_NICE)) {
1421		rcu_read_unlock();
1422		err = -EPERM;
1423		goto out_put;
1424	}
1425	rcu_read_unlock();
1426
1427	task_nodes = cpuset_mems_allowed(task);
1428	/* Is the user allowed to access the target nodes? */
1429	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1430		err = -EPERM;
1431		goto out_put;
1432	}
1433
1434	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1435		err = -EINVAL;
 
1436		goto out_put;
1437	}
1438
1439	err = security_task_movememory(task);
1440	if (err)
1441		goto out_put;
1442
1443	mm = get_task_mm(task);
1444	put_task_struct(task);
1445
1446	if (!mm) {
1447		err = -EINVAL;
1448		goto out;
1449	}
1450
1451	err = do_migrate_pages(mm, old, new,
1452		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1453
1454	mmput(mm);
1455out:
1456	NODEMASK_SCRATCH_FREE(scratch);
1457
1458	return err;
1459
1460out_put:
1461	put_task_struct(task);
1462	goto out;
1463
1464}
1465
 
 
 
 
 
 
 
1466
1467/* Retrieve NUMA policy */
1468SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1469		unsigned long __user *, nmask, unsigned long, maxnode,
1470		unsigned long, addr, unsigned long, flags)
 
 
1471{
1472	int err;
1473	int uninitialized_var(pval);
1474	nodemask_t nodes;
1475
1476	if (nmask != NULL && maxnode < MAX_NUMNODES)
1477		return -EINVAL;
1478
 
 
1479	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1480
1481	if (err)
1482		return err;
1483
1484	if (policy && put_user(pval, policy))
1485		return -EFAULT;
1486
1487	if (nmask)
1488		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1489
1490	return err;
1491}
1492
1493#ifdef CONFIG_COMPAT
1494
1495COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1496		       compat_ulong_t __user *, nmask,
1497		       compat_ulong_t, maxnode,
1498		       compat_ulong_t, addr, compat_ulong_t, flags)
1499{
1500	long err;
1501	unsigned long __user *nm = NULL;
1502	unsigned long nr_bits, alloc_size;
1503	DECLARE_BITMAP(bm, MAX_NUMNODES);
1504
1505	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1506	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507
1508	if (nmask)
1509		nm = compat_alloc_user_space(alloc_size);
1510
1511	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1512
1513	if (!err && nmask) {
1514		unsigned long copy_size;
1515		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1516		err = copy_from_user(bm, nm, copy_size);
1517		/* ensure entire bitmap is zeroed */
1518		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1519		err |= compat_put_bitmap(nmask, bm, nr_bits);
1520	}
1521
1522	return err;
1523}
1524
1525COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1526		       compat_ulong_t, maxnode)
1527{
1528	long err = 0;
1529	unsigned long __user *nm = NULL;
1530	unsigned long nr_bits, alloc_size;
1531	DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536	if (nmask) {
1537		err = compat_get_bitmap(bm, nmask, nr_bits);
1538		nm = compat_alloc_user_space(alloc_size);
1539		err |= copy_to_user(nm, bm, alloc_size);
1540	}
1541
1542	if (err)
1543		return -EFAULT;
1544
1545	return sys_set_mempolicy(mode, nm, nr_bits+1);
1546}
1547
1548COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1549		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1550		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1551{
1552	long err = 0;
1553	unsigned long __user *nm = NULL;
1554	unsigned long nr_bits, alloc_size;
1555	nodemask_t bm;
1556
1557	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559
1560	if (nmask) {
1561		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1562		nm = compat_alloc_user_space(alloc_size);
1563		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1564	}
 
1565
1566	if (err)
1567		return -EFAULT;
 
1568
1569	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
1570}
1571
1572#endif
1573
1574struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1575						unsigned long addr)
1576{
1577	struct mempolicy *pol = NULL;
1578
1579	if (vma) {
1580		if (vma->vm_ops && vma->vm_ops->get_policy) {
1581			pol = vma->vm_ops->get_policy(vma, addr);
1582		} else if (vma->vm_policy) {
1583			pol = vma->vm_policy;
1584
1585			/*
1586			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588			 * count on these policies which will be dropped by
1589			 * mpol_cond_put() later
1590			 */
1591			if (mpol_needs_cond_ref(pol))
1592				mpol_get(pol);
1593		}
1594	}
1595
1596	return pol;
1597}
1598
1599/*
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
1603 *
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task.  It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1610 */
1611static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1612						unsigned long addr)
1613{
1614	struct mempolicy *pol = __get_vma_policy(vma, addr);
1615
1616	if (!pol)
1617		pol = get_task_policy(current);
1618
1619	return pol;
1620}
1621
1622bool vma_policy_mof(struct vm_area_struct *vma)
1623{
1624	struct mempolicy *pol;
1625
1626	if (vma->vm_ops && vma->vm_ops->get_policy) {
1627		bool ret = false;
1628
1629		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630		if (pol && (pol->flags & MPOL_F_MOF))
1631			ret = true;
1632		mpol_cond_put(pol);
1633
1634		return ret;
1635	}
1636
1637	pol = vma->vm_policy;
1638	if (!pol)
1639		pol = get_task_policy(current);
1640
1641	return pol->flags & MPOL_F_MOF;
1642}
1643
1644static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1645{
1646	enum zone_type dynamic_policy_zone = policy_zone;
1647
1648	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1649
1650	/*
1651	 * if policy->v.nodes has movable memory only,
1652	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1653	 *
1654	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655	 * so if the following test faile, it implies
1656	 * policy->v.nodes has movable memory only.
1657	 */
1658	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659		dynamic_policy_zone = ZONE_MOVABLE;
1660
1661	return zone >= dynamic_policy_zone;
1662}
1663
1664/*
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1666 * page allocation
1667 */
1668static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1669{
 
 
1670	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1671	if (unlikely(policy->mode == MPOL_BIND) &&
1672			apply_policy_zone(policy, gfp_zone(gfp)) &&
1673			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674		return &policy->v.nodes;
 
 
 
1675
1676	return NULL;
1677}
1678
1679/* Return a zonelist indicated by gfp for node representing a mempolicy */
1680static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1681	int nd)
 
 
 
 
 
1682{
1683	switch (policy->mode) {
1684	case MPOL_PREFERRED:
1685		if (!(policy->flags & MPOL_F_LOCAL))
1686			nd = policy->v.preferred_node;
1687		break;
1688	case MPOL_BIND:
1689		/*
1690		 * Normally, MPOL_BIND allocations are node-local within the
1691		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1692		 * current node isn't part of the mask, we use the zonelist for
1693		 * the first node in the mask instead.
1694		 */
1695		if (unlikely(gfp & __GFP_THISNODE) &&
1696				unlikely(!node_isset(nd, policy->v.nodes)))
1697			nd = first_node(policy->v.nodes);
1698		break;
1699	default:
1700		BUG();
1701	}
1702	return node_zonelist(nd, gfp);
 
 
 
 
 
 
1703}
1704
1705/* Do dynamic interleaving for a process */
1706static unsigned interleave_nodes(struct mempolicy *policy)
1707{
1708	unsigned nid, next;
1709	struct task_struct *me = current;
1710
1711	nid = me->il_next;
1712	next = next_node(nid, policy->v.nodes);
1713	if (next >= MAX_NUMNODES)
1714		next = first_node(policy->v.nodes);
1715	if (next < MAX_NUMNODES)
1716		me->il_next = next;
1717	return nid;
1718}
1719
1720/*
1721 * Depending on the memory policy provide a node from which to allocate the
1722 * next slab entry.
1723 */
1724unsigned int mempolicy_slab_node(void)
1725{
1726	struct mempolicy *policy;
1727	int node = numa_mem_id();
1728
1729	if (in_interrupt())
1730		return node;
1731
1732	policy = current->mempolicy;
1733	if (!policy || policy->flags & MPOL_F_LOCAL)
1734		return node;
1735
1736	switch (policy->mode) {
1737	case MPOL_PREFERRED:
1738		/*
1739		 * handled MPOL_F_LOCAL above
1740		 */
1741		return policy->v.preferred_node;
1742
1743	case MPOL_INTERLEAVE:
1744		return interleave_nodes(policy);
1745
1746	case MPOL_BIND: {
 
 
 
 
1747		/*
1748		 * Follow bind policy behavior and start allocation at the
1749		 * first node.
1750		 */
1751		struct zonelist *zonelist;
1752		struct zone *zone;
1753		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1754		zonelist = &NODE_DATA(node)->node_zonelists[0];
1755		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1756							&policy->v.nodes,
1757							&zone);
1758		return zone ? zone->node : node;
1759	}
 
 
1760
1761	default:
1762		BUG();
1763	}
1764}
1765
1766/* Do static interleaving for a VMA with known offset. */
1767static unsigned offset_il_node(struct mempolicy *pol,
1768		struct vm_area_struct *vma, unsigned long off)
1769{
1770	unsigned nnodes = nodes_weight(pol->v.nodes);
1771	unsigned target;
1772	int c;
1773	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
1774
 
1775	if (!nnodes)
1776		return numa_node_id();
1777	target = (unsigned int)off % nnodes;
1778	c = 0;
1779	do {
1780		nid = next_node(nid, pol->v.nodes);
1781		c++;
1782	} while (c <= target);
1783	return nid;
1784}
1785
1786/* Determine a node number for interleave */
1787static inline unsigned interleave_nid(struct mempolicy *pol,
1788		 struct vm_area_struct *vma, unsigned long addr, int shift)
1789{
1790	if (vma) {
1791		unsigned long off;
1792
1793		/*
1794		 * for small pages, there is no difference between
1795		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1796		 * for huge pages, since vm_pgoff is in units of small
1797		 * pages, we need to shift off the always 0 bits to get
1798		 * a useful offset.
1799		 */
1800		BUG_ON(shift < PAGE_SHIFT);
1801		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1802		off += (addr - vma->vm_start) >> shift;
1803		return offset_il_node(pol, vma, off);
1804	} else
1805		return interleave_nodes(pol);
1806}
1807
1808/*
1809 * Return the bit number of a random bit set in the nodemask.
1810 * (returns NUMA_NO_NODE if nodemask is empty)
1811 */
1812int node_random(const nodemask_t *maskp)
1813{
1814	int w, bit = NUMA_NO_NODE;
1815
1816	w = nodes_weight(*maskp);
1817	if (w)
1818		bit = bitmap_ord_to_pos(maskp->bits,
1819			get_random_int() % w, MAX_NUMNODES);
1820	return bit;
1821}
1822
1823#ifdef CONFIG_HUGETLBFS
1824/*
1825 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup and interleave policy
1828 * @gfp_flags: for requested zone
1829 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1830 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1831 *
1832 * Returns a zonelist suitable for a huge page allocation and a pointer
1833 * to the struct mempolicy for conditional unref after allocation.
1834 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1835 * @nodemask for filtering the zonelist.
1836 *
1837 * Must be protected by read_mems_allowed_begin()
1838 */
1839struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1840				gfp_t gfp_flags, struct mempolicy **mpol,
1841				nodemask_t **nodemask)
1842{
1843	struct zonelist *zl;
 
1844
1845	*mpol = get_vma_policy(vma, addr);
1846	*nodemask = NULL;	/* assume !MPOL_BIND */
 
1847
1848	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1849		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1850				huge_page_shift(hstate_vma(vma))), gfp_flags);
1851	} else {
1852		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1853		if ((*mpol)->mode == MPOL_BIND)
1854			*nodemask = &(*mpol)->v.nodes;
1855	}
1856	return zl;
1857}
1858
1859/*
1860 * init_nodemask_of_mempolicy
1861 *
1862 * If the current task's mempolicy is "default" [NULL], return 'false'
1863 * to indicate default policy.  Otherwise, extract the policy nodemask
1864 * for 'bind' or 'interleave' policy into the argument nodemask, or
1865 * initialize the argument nodemask to contain the single node for
1866 * 'preferred' or 'local' policy and return 'true' to indicate presence
1867 * of non-default mempolicy.
1868 *
1869 * We don't bother with reference counting the mempolicy [mpol_get/put]
1870 * because the current task is examining it's own mempolicy and a task's
1871 * mempolicy is only ever changed by the task itself.
1872 *
1873 * N.B., it is the caller's responsibility to free a returned nodemask.
1874 */
1875bool init_nodemask_of_mempolicy(nodemask_t *mask)
1876{
1877	struct mempolicy *mempolicy;
1878	int nid;
1879
1880	if (!(mask && current->mempolicy))
1881		return false;
1882
1883	task_lock(current);
1884	mempolicy = current->mempolicy;
1885	switch (mempolicy->mode) {
1886	case MPOL_PREFERRED:
1887		if (mempolicy->flags & MPOL_F_LOCAL)
1888			nid = numa_node_id();
1889		else
1890			nid = mempolicy->v.preferred_node;
1891		init_nodemask_of_node(mask, nid);
1892		break;
1893
1894	case MPOL_BIND:
1895		/* Fall through */
1896	case MPOL_INTERLEAVE:
1897		*mask =  mempolicy->v.nodes;
 
 
 
 
1898		break;
1899
1900	default:
1901		BUG();
1902	}
1903	task_unlock(current);
1904
1905	return true;
1906}
1907#endif
1908
1909/*
1910 * mempolicy_nodemask_intersects
1911 *
1912 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1913 * policy.  Otherwise, check for intersection between mask and the policy
1914 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1915 * policy, always return true since it may allocate elsewhere on fallback.
1916 *
1917 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1918 */
1919bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1920					const nodemask_t *mask)
1921{
1922	struct mempolicy *mempolicy;
1923	bool ret = true;
1924
1925	if (!mask)
1926		return ret;
 
1927	task_lock(tsk);
1928	mempolicy = tsk->mempolicy;
1929	if (!mempolicy)
1930		goto out;
1931
1932	switch (mempolicy->mode) {
1933	case MPOL_PREFERRED:
1934		/*
1935		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1936		 * allocate from, they may fallback to other nodes when oom.
1937		 * Thus, it's possible for tsk to have allocated memory from
1938		 * nodes in mask.
1939		 */
1940		break;
1941	case MPOL_BIND:
1942	case MPOL_INTERLEAVE:
1943		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1944		break;
1945	default:
1946		BUG();
1947	}
1948out:
1949	task_unlock(tsk);
 
1950	return ret;
1951}
1952
1953/* Allocate a page in interleaved policy.
1954   Own path because it needs to do special accounting. */
1955static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1956					unsigned nid)
1957{
1958	struct zonelist *zl;
1959	struct page *page;
1960
1961	zl = node_zonelist(nid, gfp);
1962	page = __alloc_pages(gfp, order, zl);
1963	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1964		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965	return page;
1966}
1967
1968/**
1969 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
 
 
 
 
 
1970 *
1971 * 	@gfp:
1972 *      %GFP_USER    user allocation.
1973 *      %GFP_KERNEL  kernel allocations,
1974 *      %GFP_HIGHMEM highmem/user allocations,
1975 *      %GFP_FS      allocation should not call back into a file system.
1976 *      %GFP_ATOMIC  don't sleep.
1977 *
1978 *	@order:Order of the GFP allocation.
1979 * 	@vma:  Pointer to VMA or NULL if not available.
1980 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1981 *	@node: Which node to prefer for allocation (modulo policy).
1982 *	@hugepage: for hugepages try only the preferred node if possible
1983 *
1984 * 	This function allocates a page from the kernel page pool and applies
1985 *	a NUMA policy associated with the VMA or the current process.
1986 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1987 *	mm_struct of the VMA to prevent it from going away. Should be used for
1988 *	all allocations for pages that will be mapped into user space. Returns
1989 *	NULL when no page can be allocated.
1990 */
1991struct page *
1992alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1993		unsigned long addr, int node, bool hugepage)
1994{
1995	struct mempolicy *pol;
1996	struct page *page;
1997	unsigned int cpuset_mems_cookie;
1998	struct zonelist *zl;
1999	nodemask_t *nmask;
2000
2001retry_cpuset:
2002	pol = get_vma_policy(vma, addr);
2003	cpuset_mems_cookie = read_mems_allowed_begin();
2004
2005	if (pol->mode == MPOL_INTERLEAVE) {
 
2006		unsigned nid;
2007
2008		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2009		mpol_cond_put(pol);
 
2010		page = alloc_page_interleave(gfp, order, nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011		goto out;
2012	}
2013
2014	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2015		int hpage_node = node;
2016
2017		/*
2018		 * For hugepage allocation and non-interleave policy which
2019		 * allows the current node (or other explicitly preferred
2020		 * node) we only try to allocate from the current/preferred
2021		 * node and don't fall back to other nodes, as the cost of
2022		 * remote accesses would likely offset THP benefits.
2023		 *
2024		 * If the policy is interleave, or does not allow the current
2025		 * node in its nodemask, we allocate the standard way.
2026		 */
2027		if (pol->mode == MPOL_PREFERRED &&
2028						!(pol->flags & MPOL_F_LOCAL))
2029			hpage_node = pol->v.preferred_node;
2030
2031		nmask = policy_nodemask(gfp, pol);
2032		if (!nmask || node_isset(hpage_node, *nmask)) {
2033			mpol_cond_put(pol);
2034			page = __alloc_pages_node(hpage_node,
2035						gfp | __GFP_THISNODE, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036			goto out;
2037		}
2038	}
2039
2040	nmask = policy_nodemask(gfp, pol);
2041	zl = policy_zonelist(gfp, pol, node);
 
2042	mpol_cond_put(pol);
2043	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2044out:
2045	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046		goto retry_cpuset;
2047	return page;
2048}
 
2049
2050/**
2051 * 	alloc_pages_current - Allocate pages.
2052 *
2053 *	@gfp:
2054 *		%GFP_USER   user allocation,
2055 *      	%GFP_KERNEL kernel allocation,
2056 *      	%GFP_HIGHMEM highmem allocation,
2057 *      	%GFP_FS     don't call back into a file system.
2058 *      	%GFP_ATOMIC don't sleep.
2059 *	@order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 *	Allocate a page from the kernel page pool.  When not in
2062 *	interrupt context and apply the current process NUMA policy.
2063 *	Returns NULL when no page can be allocated.
2064 *
2065 *	Don't call cpuset_update_task_memory_state() unless
2066 *	1) it's ok to take cpuset_sem (can WAIT), and
2067 *	2) allocating for current task (not interrupt).
2068 */
2069struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070{
2071	struct mempolicy *pol = &default_policy;
2072	struct page *page;
2073	unsigned int cpuset_mems_cookie;
2074
2075	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2076		pol = get_task_policy(current);
2077
2078retry_cpuset:
2079	cpuset_mems_cookie = read_mems_allowed_begin();
2080
2081	/*
2082	 * No reference counting needed for current->mempolicy
2083	 * nor system default_policy
2084	 */
2085	if (pol->mode == MPOL_INTERLEAVE)
2086		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
 
 
 
2087	else
2088		page = __alloc_pages_nodemask(gfp, order,
2089				policy_zonelist(gfp, pol, numa_node_id()),
2090				policy_nodemask(gfp, pol));
2091
2092	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093		goto retry_cpuset;
2094
2095	return page;
2096}
2097EXPORT_SYMBOL(alloc_pages_current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098
2099int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100{
2101	struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103	if (IS_ERR(pol))
2104		return PTR_ERR(pol);
2105	dst->vm_policy = pol;
2106	return 0;
2107}
2108
2109/*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed().  This
2113 * keeps mempolicies cpuset relative after its cpuset moves.  See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120/* Slow path of a mempolicy duplicate */
2121struct mempolicy *__mpol_dup(struct mempolicy *old)
2122{
2123	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125	if (!new)
2126		return ERR_PTR(-ENOMEM);
2127
2128	/* task's mempolicy is protected by alloc_lock */
2129	if (old == current->mempolicy) {
2130		task_lock(current);
2131		*new = *old;
2132		task_unlock(current);
2133	} else
2134		*new = *old;
2135
2136	if (current_cpuset_is_being_rebound()) {
2137		nodemask_t mems = cpuset_mems_allowed(current);
2138		if (new->flags & MPOL_F_REBINDING)
2139			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140		else
2141			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142	}
2143	atomic_set(&new->refcnt, 1);
2144	return new;
2145}
2146
2147/* Slow path of a mempolicy comparison */
2148bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149{
2150	if (!a || !b)
2151		return false;
2152	if (a->mode != b->mode)
2153		return false;
2154	if (a->flags != b->flags)
2155		return false;
 
 
2156	if (mpol_store_user_nodemask(a))
2157		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158			return false;
2159
2160	switch (a->mode) {
2161	case MPOL_BIND:
2162		/* Fall through */
2163	case MPOL_INTERLEAVE:
2164		return !!nodes_equal(a->v.nodes, b->v.nodes);
2165	case MPOL_PREFERRED:
2166		return a->v.preferred_node == b->v.preferred_node;
 
 
 
2167	default:
2168		BUG();
2169		return false;
2170	}
2171}
2172
2173/*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock rwlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182/*
2183 * lookup first element intersecting start-end.  Caller holds sp->lock for
2184 * reading or for writing
2185 */
2186static struct sp_node *
2187sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2188{
2189	struct rb_node *n = sp->root.rb_node;
2190
2191	while (n) {
2192		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2193
2194		if (start >= p->end)
2195			n = n->rb_right;
2196		else if (end <= p->start)
2197			n = n->rb_left;
2198		else
2199			break;
2200	}
2201	if (!n)
2202		return NULL;
2203	for (;;) {
2204		struct sp_node *w = NULL;
2205		struct rb_node *prev = rb_prev(n);
2206		if (!prev)
2207			break;
2208		w = rb_entry(prev, struct sp_node, nd);
2209		if (w->end <= start)
2210			break;
2211		n = prev;
2212	}
2213	return rb_entry(n, struct sp_node, nd);
2214}
2215
2216/*
2217 * Insert a new shared policy into the list.  Caller holds sp->lock for
2218 * writing.
2219 */
2220static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2221{
2222	struct rb_node **p = &sp->root.rb_node;
2223	struct rb_node *parent = NULL;
2224	struct sp_node *nd;
2225
2226	while (*p) {
2227		parent = *p;
2228		nd = rb_entry(parent, struct sp_node, nd);
2229		if (new->start < nd->start)
2230			p = &(*p)->rb_left;
2231		else if (new->end > nd->end)
2232			p = &(*p)->rb_right;
2233		else
2234			BUG();
2235	}
2236	rb_link_node(&new->nd, parent, p);
2237	rb_insert_color(&new->nd, &sp->root);
2238	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2239		 new->policy ? new->policy->mode : 0);
2240}
2241
2242/* Find shared policy intersecting idx */
2243struct mempolicy *
2244mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2245{
2246	struct mempolicy *pol = NULL;
2247	struct sp_node *sn;
2248
2249	if (!sp->root.rb_node)
2250		return NULL;
2251	read_lock(&sp->lock);
2252	sn = sp_lookup(sp, idx, idx+1);
2253	if (sn) {
2254		mpol_get(sn->policy);
2255		pol = sn->policy;
2256	}
2257	read_unlock(&sp->lock);
2258	return pol;
2259}
2260
2261static void sp_free(struct sp_node *n)
2262{
2263	mpol_put(n->policy);
2264	kmem_cache_free(sn_cache, n);
2265}
2266
2267/**
2268 * mpol_misplaced - check whether current page node is valid in policy
2269 *
2270 * @page: page to be checked
2271 * @vma: vm area where page mapped
2272 * @addr: virtual address where page mapped
2273 *
2274 * Lookup current policy node id for vma,addr and "compare to" page's
2275 * node id.
2276 *
2277 * Returns:
2278 *	-1	- not misplaced, page is in the right node
2279 *	node	- node id where the page should be
2280 *
2281 * Policy determination "mimics" alloc_page_vma().
2282 * Called from fault path where we know the vma and faulting address.
 
 
 
2283 */
2284int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2285{
2286	struct mempolicy *pol;
2287	struct zone *zone;
2288	int curnid = page_to_nid(page);
2289	unsigned long pgoff;
2290	int thiscpu = raw_smp_processor_id();
2291	int thisnid = cpu_to_node(thiscpu);
2292	int polnid = -1;
2293	int ret = -1;
2294
2295	BUG_ON(!vma);
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		BUG_ON(addr >= vma->vm_end);
2304		BUG_ON(addr < vma->vm_start);
2305
2306		pgoff = vma->vm_pgoff;
2307		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2308		polnid = offset_il_node(pol, vma, pgoff);
2309		break;
2310
2311	case MPOL_PREFERRED:
2312		if (pol->flags & MPOL_F_LOCAL)
2313			polnid = numa_node_id();
2314		else
2315			polnid = pol->v.preferred_node;
 
 
 
2316		break;
2317
2318	case MPOL_BIND:
 
 
 
 
 
 
 
 
 
2319		/*
2320		 * allows binding to multiple nodes.
2321		 * use current page if in policy nodemask,
2322		 * else select nearest allowed node, if any.
2323		 * If no allowed nodes, use current [!misplaced].
2324		 */
2325		if (node_isset(curnid, pol->v.nodes))
2326			goto out;
2327		(void)first_zones_zonelist(
2328				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2329				gfp_zone(GFP_HIGHUSER),
2330				&pol->v.nodes, &zone);
2331		polnid = zone->node;
2332		break;
2333
2334	default:
2335		BUG();
2336	}
2337
2338	/* Migrate the page towards the node whose CPU is referencing it */
2339	if (pol->flags & MPOL_F_MORON) {
2340		polnid = thisnid;
2341
2342		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2343			goto out;
2344	}
2345
2346	if (curnid != polnid)
2347		ret = polnid;
2348out:
2349	mpol_cond_put(pol);
2350
2351	return ret;
2352}
2353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2355{
2356	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2357	rb_erase(&n->nd, &sp->root);
2358	sp_free(n);
2359}
2360
2361static void sp_node_init(struct sp_node *node, unsigned long start,
2362			unsigned long end, struct mempolicy *pol)
2363{
2364	node->start = start;
2365	node->end = end;
2366	node->policy = pol;
2367}
2368
2369static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2370				struct mempolicy *pol)
2371{
2372	struct sp_node *n;
2373	struct mempolicy *newpol;
2374
2375	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2376	if (!n)
2377		return NULL;
2378
2379	newpol = mpol_dup(pol);
2380	if (IS_ERR(newpol)) {
2381		kmem_cache_free(sn_cache, n);
2382		return NULL;
2383	}
2384	newpol->flags |= MPOL_F_SHARED;
2385	sp_node_init(n, start, end, newpol);
2386
2387	return n;
2388}
2389
2390/* Replace a policy range. */
2391static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2392				 unsigned long end, struct sp_node *new)
2393{
2394	struct sp_node *n;
2395	struct sp_node *n_new = NULL;
2396	struct mempolicy *mpol_new = NULL;
2397	int ret = 0;
2398
2399restart:
2400	write_lock(&sp->lock);
2401	n = sp_lookup(sp, start, end);
2402	/* Take care of old policies in the same range. */
2403	while (n && n->start < end) {
2404		struct rb_node *next = rb_next(&n->nd);
2405		if (n->start >= start) {
2406			if (n->end <= end)
2407				sp_delete(sp, n);
2408			else
2409				n->start = end;
2410		} else {
2411			/* Old policy spanning whole new range. */
2412			if (n->end > end) {
2413				if (!n_new)
2414					goto alloc_new;
2415
2416				*mpol_new = *n->policy;
2417				atomic_set(&mpol_new->refcnt, 1);
2418				sp_node_init(n_new, end, n->end, mpol_new);
2419				n->end = start;
2420				sp_insert(sp, n_new);
2421				n_new = NULL;
2422				mpol_new = NULL;
2423				break;
2424			} else
2425				n->end = start;
2426		}
2427		if (!next)
2428			break;
2429		n = rb_entry(next, struct sp_node, nd);
2430	}
2431	if (new)
2432		sp_insert(sp, new);
2433	write_unlock(&sp->lock);
2434	ret = 0;
2435
2436err_out:
2437	if (mpol_new)
2438		mpol_put(mpol_new);
2439	if (n_new)
2440		kmem_cache_free(sn_cache, n_new);
2441
2442	return ret;
2443
2444alloc_new:
2445	write_unlock(&sp->lock);
2446	ret = -ENOMEM;
2447	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2448	if (!n_new)
2449		goto err_out;
2450	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2451	if (!mpol_new)
2452		goto err_out;
 
2453	goto restart;
2454}
2455
2456/**
2457 * mpol_shared_policy_init - initialize shared policy for inode
2458 * @sp: pointer to inode shared policy
2459 * @mpol:  struct mempolicy to install
2460 *
2461 * Install non-NULL @mpol in inode's shared policy rb-tree.
2462 * On entry, the current task has a reference on a non-NULL @mpol.
2463 * This must be released on exit.
2464 * This is called at get_inode() calls and we can use GFP_KERNEL.
2465 */
2466void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2467{
2468	int ret;
2469
2470	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2471	rwlock_init(&sp->lock);
2472
2473	if (mpol) {
2474		struct vm_area_struct pvma;
2475		struct mempolicy *new;
2476		NODEMASK_SCRATCH(scratch);
2477
2478		if (!scratch)
2479			goto put_mpol;
2480		/* contextualize the tmpfs mount point mempolicy */
2481		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2482		if (IS_ERR(new))
2483			goto free_scratch; /* no valid nodemask intersection */
2484
2485		task_lock(current);
2486		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2487		task_unlock(current);
2488		if (ret)
2489			goto put_new;
2490
2491		/* Create pseudo-vma that contains just the policy */
2492		memset(&pvma, 0, sizeof(struct vm_area_struct));
2493		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2494		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2495
2496put_new:
2497		mpol_put(new);			/* drop initial ref */
2498free_scratch:
2499		NODEMASK_SCRATCH_FREE(scratch);
2500put_mpol:
2501		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2502	}
2503}
2504
2505int mpol_set_shared_policy(struct shared_policy *info,
2506			struct vm_area_struct *vma, struct mempolicy *npol)
2507{
2508	int err;
2509	struct sp_node *new = NULL;
2510	unsigned long sz = vma_pages(vma);
2511
2512	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2513		 vma->vm_pgoff,
2514		 sz, npol ? npol->mode : -1,
2515		 npol ? npol->flags : -1,
2516		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2517
2518	if (npol) {
2519		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2520		if (!new)
2521			return -ENOMEM;
2522	}
2523	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524	if (err && new)
2525		sp_free(new);
2526	return err;
2527}
2528
2529/* Free a backing policy store on inode delete. */
2530void mpol_free_shared_policy(struct shared_policy *p)
2531{
2532	struct sp_node *n;
2533	struct rb_node *next;
2534
2535	if (!p->root.rb_node)
2536		return;
2537	write_lock(&p->lock);
2538	next = rb_first(&p->root);
2539	while (next) {
2540		n = rb_entry(next, struct sp_node, nd);
2541		next = rb_next(&n->nd);
2542		sp_delete(p, n);
2543	}
2544	write_unlock(&p->lock);
2545}
2546
2547#ifdef CONFIG_NUMA_BALANCING
2548static int __initdata numabalancing_override;
2549
2550static void __init check_numabalancing_enable(void)
2551{
2552	bool numabalancing_default = false;
2553
2554	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2555		numabalancing_default = true;
2556
2557	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2558	if (numabalancing_override)
2559		set_numabalancing_state(numabalancing_override == 1);
2560
2561	if (num_online_nodes() > 1 && !numabalancing_override) {
2562		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2563			numabalancing_default ? "Enabling" : "Disabling");
2564		set_numabalancing_state(numabalancing_default);
2565	}
2566}
2567
2568static int __init setup_numabalancing(char *str)
2569{
2570	int ret = 0;
2571	if (!str)
2572		goto out;
2573
2574	if (!strcmp(str, "enable")) {
2575		numabalancing_override = 1;
2576		ret = 1;
2577	} else if (!strcmp(str, "disable")) {
2578		numabalancing_override = -1;
2579		ret = 1;
2580	}
2581out:
2582	if (!ret)
2583		pr_warn("Unable to parse numa_balancing=\n");
2584
2585	return ret;
2586}
2587__setup("numa_balancing=", setup_numabalancing);
2588#else
2589static inline void __init check_numabalancing_enable(void)
2590{
2591}
2592#endif /* CONFIG_NUMA_BALANCING */
2593
2594/* assumes fs == KERNEL_DS */
2595void __init numa_policy_init(void)
2596{
2597	nodemask_t interleave_nodes;
2598	unsigned long largest = 0;
2599	int nid, prefer = 0;
2600
2601	policy_cache = kmem_cache_create("numa_policy",
2602					 sizeof(struct mempolicy),
2603					 0, SLAB_PANIC, NULL);
2604
2605	sn_cache = kmem_cache_create("shared_policy_node",
2606				     sizeof(struct sp_node),
2607				     0, SLAB_PANIC, NULL);
2608
2609	for_each_node(nid) {
2610		preferred_node_policy[nid] = (struct mempolicy) {
2611			.refcnt = ATOMIC_INIT(1),
2612			.mode = MPOL_PREFERRED,
2613			.flags = MPOL_F_MOF | MPOL_F_MORON,
2614			.v = { .preferred_node = nid, },
2615		};
2616	}
2617
2618	/*
2619	 * Set interleaving policy for system init. Interleaving is only
2620	 * enabled across suitably sized nodes (default is >= 16MB), or
2621	 * fall back to the largest node if they're all smaller.
2622	 */
2623	nodes_clear(interleave_nodes);
2624	for_each_node_state(nid, N_MEMORY) {
2625		unsigned long total_pages = node_present_pages(nid);
2626
2627		/* Preserve the largest node */
2628		if (largest < total_pages) {
2629			largest = total_pages;
2630			prefer = nid;
2631		}
2632
2633		/* Interleave this node? */
2634		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2635			node_set(nid, interleave_nodes);
2636	}
2637
2638	/* All too small, use the largest */
2639	if (unlikely(nodes_empty(interleave_nodes)))
2640		node_set(prefer, interleave_nodes);
2641
2642	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2643		pr_err("%s: interleaving failed\n", __func__);
2644
2645	check_numabalancing_enable();
2646}
2647
2648/* Reset policy of current process to default */
2649void numa_default_policy(void)
2650{
2651	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2652}
2653
2654/*
2655 * Parse and format mempolicy from/to strings
2656 */
2657
2658/*
2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2660 */
2661static const char * const policy_modes[] =
2662{
2663	[MPOL_DEFAULT]    = "default",
2664	[MPOL_PREFERRED]  = "prefer",
2665	[MPOL_BIND]       = "bind",
2666	[MPOL_INTERLEAVE] = "interleave",
2667	[MPOL_LOCAL]      = "local",
 
2668};
2669
2670
2671#ifdef CONFIG_TMPFS
2672/**
2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2674 * @str:  string containing mempolicy to parse
2675 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2676 *
2677 * Format of input:
2678 *	<mode>[=<flags>][:<nodelist>]
2679 *
2680 * On success, returns 0, else 1
2681 */
2682int mpol_parse_str(char *str, struct mempolicy **mpol)
2683{
2684	struct mempolicy *new = NULL;
2685	unsigned short mode;
2686	unsigned short mode_flags;
2687	nodemask_t nodes;
2688	char *nodelist = strchr(str, ':');
2689	char *flags = strchr(str, '=');
2690	int err = 1;
 
 
 
2691
2692	if (nodelist) {
2693		/* NUL-terminate mode or flags string */
2694		*nodelist++ = '\0';
2695		if (nodelist_parse(nodelist, nodes))
2696			goto out;
2697		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698			goto out;
2699	} else
2700		nodes_clear(nodes);
2701
2702	if (flags)
2703		*flags++ = '\0';	/* terminate mode string */
2704
2705	for (mode = 0; mode < MPOL_MAX; mode++) {
2706		if (!strcmp(str, policy_modes[mode])) {
2707			break;
2708		}
2709	}
2710	if (mode >= MPOL_MAX)
2711		goto out;
2712
2713	switch (mode) {
2714	case MPOL_PREFERRED:
2715		/*
2716		 * Insist on a nodelist of one node only
 
 
2717		 */
2718		if (nodelist) {
2719			char *rest = nodelist;
2720			while (isdigit(*rest))
2721				rest++;
2722			if (*rest)
2723				goto out;
 
 
2724		}
2725		break;
2726	case MPOL_INTERLEAVE:
2727		/*
2728		 * Default to online nodes with memory if no nodelist
2729		 */
2730		if (!nodelist)
2731			nodes = node_states[N_MEMORY];
2732		break;
2733	case MPOL_LOCAL:
2734		/*
2735		 * Don't allow a nodelist;  mpol_new() checks flags
2736		 */
2737		if (nodelist)
2738			goto out;
2739		mode = MPOL_PREFERRED;
2740		break;
2741	case MPOL_DEFAULT:
2742		/*
2743		 * Insist on a empty nodelist
2744		 */
2745		if (!nodelist)
2746			err = 0;
2747		goto out;
 
2748	case MPOL_BIND:
2749		/*
2750		 * Insist on a nodelist
2751		 */
2752		if (!nodelist)
2753			goto out;
2754	}
2755
2756	mode_flags = 0;
2757	if (flags) {
2758		/*
2759		 * Currently, we only support two mutually exclusive
2760		 * mode flags.
2761		 */
2762		if (!strcmp(flags, "static"))
2763			mode_flags |= MPOL_F_STATIC_NODES;
2764		else if (!strcmp(flags, "relative"))
2765			mode_flags |= MPOL_F_RELATIVE_NODES;
2766		else
2767			goto out;
2768	}
2769
2770	new = mpol_new(mode, mode_flags, &nodes);
2771	if (IS_ERR(new))
2772		goto out;
2773
2774	/*
2775	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2776	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2777	 */
2778	if (mode != MPOL_PREFERRED)
2779		new->v.nodes = nodes;
2780	else if (nodelist)
2781		new->v.preferred_node = first_node(nodes);
2782	else
2783		new->flags |= MPOL_F_LOCAL;
 
 
2784
2785	/*
2786	 * Save nodes for contextualization: this will be used to "clone"
2787	 * the mempolicy in a specific context [cpuset] at a later time.
2788	 */
2789	new->w.user_nodemask = nodes;
2790
2791	err = 0;
2792
2793out:
2794	/* Restore string for error message */
2795	if (nodelist)
2796		*--nodelist = ':';
2797	if (flags)
2798		*--flags = '=';
2799	if (!err)
2800		*mpol = new;
2801	return err;
2802}
2803#endif /* CONFIG_TMPFS */
2804
2805/**
2806 * mpol_to_str - format a mempolicy structure for printing
2807 * @buffer:  to contain formatted mempolicy string
2808 * @maxlen:  length of @buffer
2809 * @pol:  pointer to mempolicy to be formatted
2810 *
2811 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2813 * longest flag, "relative", and to display at least a few node ids.
2814 */
2815void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2816{
2817	char *p = buffer;
2818	nodemask_t nodes = NODE_MASK_NONE;
2819	unsigned short mode = MPOL_DEFAULT;
2820	unsigned short flags = 0;
2821
2822	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2823		mode = pol->mode;
2824		flags = pol->flags;
2825	}
2826
2827	switch (mode) {
2828	case MPOL_DEFAULT:
 
2829		break;
2830	case MPOL_PREFERRED:
2831		if (flags & MPOL_F_LOCAL)
2832			mode = MPOL_LOCAL;
2833		else
2834			node_set(pol->v.preferred_node, nodes);
2835		break;
2836	case MPOL_BIND:
2837	case MPOL_INTERLEAVE:
2838		nodes = pol->v.nodes;
2839		break;
2840	default:
2841		WARN_ON_ONCE(1);
2842		snprintf(p, maxlen, "unknown");
2843		return;
2844	}
2845
2846	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2847
2848	if (flags & MPOL_MODE_FLAGS) {
2849		p += snprintf(p, buffer + maxlen - p, "=");
2850
2851		/*
2852		 * Currently, the only defined flags are mutually exclusive
2853		 */
2854		if (flags & MPOL_F_STATIC_NODES)
2855			p += snprintf(p, buffer + maxlen - p, "static");
2856		else if (flags & MPOL_F_RELATIVE_NODES)
2857			p += snprintf(p, buffer + maxlen - p, "relative");
2858	}
2859
2860	if (!nodes_empty(nodes))
2861		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2862			       nodemask_pr_args(&nodes));
2863}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * preferred many Try a set of nodes first before normal fallback. This is
  35 *                similar to preferred without the special case.
  36 *
  37 * default        Allocate on the local node first, or when on a VMA
  38 *                use the process policy. This is what Linux always did
  39 *		  in a NUMA aware kernel and still does by, ahem, default.
  40 *
  41 * The process policy is applied for most non interrupt memory allocations
  42 * in that process' context. Interrupts ignore the policies and always
  43 * try to allocate on the local CPU. The VMA policy is only applied for memory
  44 * allocations for a VMA in the VM.
  45 *
  46 * Currently there are a few corner cases in swapping where the policy
  47 * is not applied, but the majority should be handled. When process policy
  48 * is used it is not remembered over swap outs/swap ins.
  49 *
  50 * Only the highest zone in the zone hierarchy gets policied. Allocations
  51 * requesting a lower zone just use default policy. This implies that
  52 * on systems with highmem kernel lowmem allocation don't get policied.
  53 * Same with GFP_DMA allocations.
  54 *
  55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  56 * all users and remembered even when nobody has memory mapped.
  57 */
  58
  59/* Notebook:
  60   fix mmap readahead to honour policy and enable policy for any page cache
  61   object
  62   statistics for bigpages
  63   global policy for page cache? currently it uses process policy. Requires
  64   first item above.
  65   handle mremap for shared memory (currently ignored for the policy)
  66   grows down?
  67   make bind policy root only? It can trigger oom much faster and the
  68   kernel is not always grateful with that.
  69*/
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/mempolicy.h>
  74#include <linux/pagewalk.h>
  75#include <linux/highmem.h>
  76#include <linux/hugetlb.h>
  77#include <linux/kernel.h>
  78#include <linux/sched.h>
  79#include <linux/sched/mm.h>
  80#include <linux/sched/numa_balancing.h>
  81#include <linux/sched/task.h>
  82#include <linux/nodemask.h>
  83#include <linux/cpuset.h>
  84#include <linux/slab.h>
  85#include <linux/string.h>
  86#include <linux/export.h>
  87#include <linux/nsproxy.h>
  88#include <linux/interrupt.h>
  89#include <linux/init.h>
  90#include <linux/compat.h>
  91#include <linux/ptrace.h>
  92#include <linux/swap.h>
  93#include <linux/seq_file.h>
  94#include <linux/proc_fs.h>
  95#include <linux/migrate.h>
  96#include <linux/ksm.h>
  97#include <linux/rmap.h>
  98#include <linux/security.h>
  99#include <linux/syscalls.h>
 100#include <linux/ctype.h>
 101#include <linux/mm_inline.h>
 102#include <linux/mmu_notifier.h>
 103#include <linux/printk.h>
 104#include <linux/swapops.h>
 105
 106#include <asm/tlbflush.h>
 107#include <asm/tlb.h>
 108#include <linux/uaccess.h>
 109
 110#include "internal.h"
 111
 112/* Internal flags */
 113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 115
 116static struct kmem_cache *policy_cache;
 117static struct kmem_cache *sn_cache;
 118
 119/* Highest zone. An specific allocation for a zone below that is not
 120   policied. */
 121enum zone_type policy_zone = 0;
 122
 123/*
 124 * run-time system-wide default policy => local allocation
 125 */
 126static struct mempolicy default_policy = {
 127	.refcnt = ATOMIC_INIT(1), /* never free it */
 128	.mode = MPOL_LOCAL,
 
 129};
 130
 131static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 132
 133/**
 134 * numa_map_to_online_node - Find closest online node
 135 * @node: Node id to start the search
 136 *
 137 * Lookup the next closest node by distance if @nid is not online.
 138 *
 139 * Return: this @node if it is online, otherwise the closest node by distance
 140 */
 141int numa_map_to_online_node(int node)
 142{
 143	int min_dist = INT_MAX, dist, n, min_node;
 144
 145	if (node == NUMA_NO_NODE || node_online(node))
 146		return node;
 147
 148	min_node = node;
 149	for_each_online_node(n) {
 150		dist = node_distance(node, n);
 151		if (dist < min_dist) {
 152			min_dist = dist;
 153			min_node = n;
 154		}
 155	}
 156
 157	return min_node;
 158}
 159EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 160
 161struct mempolicy *get_task_policy(struct task_struct *p)
 162{
 163	struct mempolicy *pol = p->mempolicy;
 164	int node;
 165
 166	if (pol)
 167		return pol;
 168
 169	node = numa_node_id();
 170	if (node != NUMA_NO_NODE) {
 171		pol = &preferred_node_policy[node];
 172		/* preferred_node_policy is not initialised early in boot */
 173		if (pol->mode)
 174			return pol;
 175	}
 176
 177	return &default_policy;
 178}
 179
 180static const struct mempolicy_operations {
 181	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 182	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183} mpol_ops[MPOL_MAX];
 184
 185static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 186{
 187	return pol->flags & MPOL_MODE_FLAGS;
 188}
 189
 190static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 191				   const nodemask_t *rel)
 192{
 193	nodemask_t tmp;
 194	nodes_fold(tmp, *orig, nodes_weight(*rel));
 195	nodes_onto(*ret, tmp, *rel);
 196}
 197
 198static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 199{
 200	if (nodes_empty(*nodes))
 201		return -EINVAL;
 202	pol->nodes = *nodes;
 203	return 0;
 204}
 205
 206static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 207{
 
 
 
 
 
 
 
 
 
 
 
 208	if (nodes_empty(*nodes))
 209		return -EINVAL;
 210
 211	nodes_clear(pol->nodes);
 212	node_set(first_node(*nodes), pol->nodes);
 213	return 0;
 214}
 215
 216/*
 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 218 * any, for the new policy.  mpol_new() has already validated the nodes
 219 * parameter with respect to the policy mode and flags.
 
 220 *
 221 * Must be called holding task's alloc_lock to protect task's mems_allowed
 222 * and mempolicy.  May also be called holding the mmap_lock for write.
 223 */
 224static int mpol_set_nodemask(struct mempolicy *pol,
 225		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 226{
 227	int ret;
 228
 229	/*
 230	 * Default (pol==NULL) resp. local memory policies are not a
 231	 * subject of any remapping. They also do not need any special
 232	 * constructor.
 233	 */
 234	if (!pol || pol->mode == MPOL_LOCAL)
 235		return 0;
 236
 237	/* Check N_MEMORY */
 238	nodes_and(nsc->mask1,
 239		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 240
 241	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 242
 243	if (pol->flags & MPOL_F_RELATIVE_NODES)
 244		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 245	else
 246		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 247
 248	if (mpol_store_user_nodemask(pol))
 249		pol->w.user_nodemask = *nodes;
 250	else
 251		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 252
 253	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 254	return ret;
 255}
 256
 257/*
 258 * This function just creates a new policy, does some check and simple
 259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 260 */
 261static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 262				  nodemask_t *nodes)
 263{
 264	struct mempolicy *policy;
 265
 266	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 267		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 268
 269	if (mode == MPOL_DEFAULT) {
 270		if (nodes && !nodes_empty(*nodes))
 271			return ERR_PTR(-EINVAL);
 272		return NULL;
 273	}
 274	VM_BUG_ON(!nodes);
 275
 276	/*
 277	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 278	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 279	 * All other modes require a valid pointer to a non-empty nodemask.
 280	 */
 281	if (mode == MPOL_PREFERRED) {
 282		if (nodes_empty(*nodes)) {
 283			if (((flags & MPOL_F_STATIC_NODES) ||
 284			     (flags & MPOL_F_RELATIVE_NODES)))
 285				return ERR_PTR(-EINVAL);
 286
 287			mode = MPOL_LOCAL;
 288		}
 289	} else if (mode == MPOL_LOCAL) {
 290		if (!nodes_empty(*nodes) ||
 291		    (flags & MPOL_F_STATIC_NODES) ||
 292		    (flags & MPOL_F_RELATIVE_NODES))
 293			return ERR_PTR(-EINVAL);
 
 294	} else if (nodes_empty(*nodes))
 295		return ERR_PTR(-EINVAL);
 296	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 297	if (!policy)
 298		return ERR_PTR(-ENOMEM);
 299	atomic_set(&policy->refcnt, 1);
 300	policy->mode = mode;
 301	policy->flags = flags;
 302	policy->home_node = NUMA_NO_NODE;
 303
 304	return policy;
 305}
 306
 307/* Slow path of a mpol destructor. */
 308void __mpol_put(struct mempolicy *p)
 309{
 310	if (!atomic_dec_and_test(&p->refcnt))
 311		return;
 312	kmem_cache_free(policy_cache, p);
 313}
 314
 315static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 316{
 317}
 318
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES)
 324		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 325	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 326		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 327	else {
 328		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 329								*nodes);
 330		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 331	}
 332
 333	if (nodes_empty(tmp))
 334		tmp = *nodes;
 335
 336	pol->nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339static void mpol_rebind_preferred(struct mempolicy *pol,
 340						const nodemask_t *nodes)
 
 341{
 342	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343}
 344
 345/*
 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 347 *
 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 349 * policies are protected by task->mems_allowed_seq to prevent a premature
 350 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 351 */
 352static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 353{
 354	if (!pol || pol->mode == MPOL_LOCAL)
 355		return;
 356	if (!mpol_store_user_nodemask(pol) &&
 357	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 358		return;
 359
 360	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363/*
 364 * Wrapper for mpol_rebind_policy() that just requires task
 365 * pointer, and updates task mempolicy.
 366 *
 367 * Called with task's alloc_lock held.
 368 */
 369
 370void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 371{
 372	mpol_rebind_policy(tsk->mempolicy, new);
 373}
 374
 375/*
 376 * Rebind each vma in mm to new nodemask.
 377 *
 378 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 379 */
 380
 381void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 382{
 383	struct vm_area_struct *vma;
 384	VMA_ITERATOR(vmi, mm, 0);
 385
 386	mmap_write_lock(mm);
 387	for_each_vma(vmi, vma)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_nodemask,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_nodemask,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411	[MPOL_PREFERRED_MANY] = {
 412		.create = mpol_new_nodemask,
 413		.rebind = mpol_rebind_preferred,
 414	},
 415};
 416
 417static int migrate_page_add(struct page *page, struct list_head *pagelist,
 418				unsigned long flags);
 419
 420struct queue_pages {
 421	struct list_head *pagelist;
 422	unsigned long flags;
 423	nodemask_t *nmask;
 424	unsigned long start;
 425	unsigned long end;
 426	struct vm_area_struct *first;
 427};
 428
 429/*
 430 * Check if the page's nid is in qp->nmask.
 431 *
 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 433 * in the invert of qp->nmask.
 434 */
 435static inline bool queue_pages_required(struct page *page,
 436					struct queue_pages *qp)
 437{
 438	int nid = page_to_nid(page);
 439	unsigned long flags = qp->flags;
 440
 441	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 442}
 443
 444/*
 445 * queue_pages_pmd() has three possible return values:
 446 * 0 - pages are placed on the right node or queued successfully, or
 447 *     special page is met, i.e. huge zero page.
 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 449 *     specified.
 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 451 *        existing page was already on a node that does not follow the
 452 *        policy.
 453 */
 454static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 455				unsigned long end, struct mm_walk *walk)
 456	__releases(ptl)
 457{
 458	int ret = 0;
 459	struct page *page;
 460	struct queue_pages *qp = walk->private;
 461	unsigned long flags;
 462
 463	if (unlikely(is_pmd_migration_entry(*pmd))) {
 464		ret = -EIO;
 465		goto unlock;
 466	}
 467	page = pmd_page(*pmd);
 468	if (is_huge_zero_page(page)) {
 469		walk->action = ACTION_CONTINUE;
 470		goto unlock;
 471	}
 472	if (!queue_pages_required(page, qp))
 473		goto unlock;
 474
 475	flags = qp->flags;
 476	/* go to thp migration */
 477	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 478		if (!vma_migratable(walk->vma) ||
 479		    migrate_page_add(page, qp->pagelist, flags)) {
 480			ret = 1;
 481			goto unlock;
 482		}
 483	} else
 484		ret = -EIO;
 485unlock:
 486	spin_unlock(ptl);
 487	return ret;
 488}
 489
 490/*
 491 * Scan through pages checking if pages follow certain conditions,
 492 * and move them to the pagelist if they do.
 493 *
 494 * queue_pages_pte_range() has three possible return values:
 495 * 0 - pages are placed on the right node or queued successfully, or
 496 *     special page is met, i.e. zero page.
 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 498 *     specified.
 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 500 *        on a node that does not follow the policy.
 501 */
 502static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 503			unsigned long end, struct mm_walk *walk)
 504{
 505	struct vm_area_struct *vma = walk->vma;
 506	struct page *page;
 507	struct queue_pages *qp = walk->private;
 508	unsigned long flags = qp->flags;
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl)
 515		return queue_pages_pmd(pmd, ptl, addr, end, walk);
 516
 517	if (pmd_trans_unstable(pmd))
 518		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519
 520	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 
 521	for (; addr != end; pte++, addr += PAGE_SIZE) {
 522		if (!pte_present(*pte))
 523			continue;
 524		page = vm_normal_page(vma, addr, *pte);
 525		if (!page || is_zone_device_page(page))
 526			continue;
 527		/*
 528		 * vm_normal_page() filters out zero pages, but there might
 529		 * still be PageReserved pages to skip, perhaps in a VDSO.
 530		 */
 531		if (PageReserved(page))
 532			continue;
 533		if (!queue_pages_required(page, qp))
 
 534			continue;
 535		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 536			/* MPOL_MF_STRICT must be specified if we get here */
 537			if (!vma_migratable(vma)) {
 538				has_unmovable = true;
 539				break;
 
 
 
 
 
 
 
 540			}
 
 
 541
 542			/*
 543			 * Do not abort immediately since there may be
 544			 * temporary off LRU pages in the range.  Still
 545			 * need migrate other LRU pages.
 546			 */
 547			if (migrate_page_add(page, qp->pagelist, flags))
 548				has_unmovable = true;
 549		} else
 550			break;
 551	}
 552	pte_unmap_unlock(mapped_pte, ptl);
 553	cond_resched();
 554
 555	if (has_unmovable)
 556		return 1;
 557
 558	return addr != end ? -EIO : 0;
 559}
 560
 561static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 562			       unsigned long addr, unsigned long end,
 563			       struct mm_walk *walk)
 564{
 565	int ret = 0;
 566#ifdef CONFIG_HUGETLB_PAGE
 567	struct queue_pages *qp = walk->private;
 568	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 
 569	struct page *page;
 570	spinlock_t *ptl;
 571	pte_t entry;
 572
 573	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 574	entry = huge_ptep_get(pte);
 575	if (!pte_present(entry))
 576		goto unlock;
 577	page = pte_page(entry);
 578	if (!queue_pages_required(page, qp))
 
 579		goto unlock;
 580
 581	if (flags == MPOL_MF_STRICT) {
 582		/*
 583		 * STRICT alone means only detecting misplaced page and no
 584		 * need to further check other vma.
 585		 */
 586		ret = -EIO;
 587		goto unlock;
 588	}
 589
 590	if (!vma_migratable(walk->vma)) {
 591		/*
 592		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 593		 * stopped walking current vma.
 594		 * Detecting misplaced page but allow migrating pages which
 595		 * have been queued.
 596		 */
 597		ret = 1;
 598		goto unlock;
 599	}
 600
 601	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 602	if (flags & (MPOL_MF_MOVE_ALL) ||
 603	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
 604	     !hugetlb_pmd_shared(pte))) {
 605		if (isolate_hugetlb(page, qp->pagelist) &&
 606			(flags & MPOL_MF_STRICT))
 607			/*
 608			 * Failed to isolate page but allow migrating pages
 609			 * which have been queued.
 610			 */
 611			ret = 1;
 612	}
 613unlock:
 614	spin_unlock(ptl);
 615#else
 616	BUG();
 617#endif
 618	return ret;
 619}
 620
 621#ifdef CONFIG_NUMA_BALANCING
 622/*
 623 * This is used to mark a range of virtual addresses to be inaccessible.
 624 * These are later cleared by a NUMA hinting fault. Depending on these
 625 * faults, pages may be migrated for better NUMA placement.
 626 *
 627 * This is assuming that NUMA faults are handled using PROT_NONE. If
 628 * an architecture makes a different choice, it will need further
 629 * changes to the core.
 630 */
 631unsigned long change_prot_numa(struct vm_area_struct *vma,
 632			unsigned long addr, unsigned long end)
 633{
 634	struct mmu_gather tlb;
 635	int nr_updated;
 636
 637	tlb_gather_mmu(&tlb, vma->vm_mm);
 638
 639	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
 640				       MM_CP_PROT_NUMA);
 641	if (nr_updated)
 642		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 643
 644	tlb_finish_mmu(&tlb);
 645
 646	return nr_updated;
 647}
 648#else
 649static unsigned long change_prot_numa(struct vm_area_struct *vma,
 650			unsigned long addr, unsigned long end)
 651{
 652	return 0;
 653}
 654#endif /* CONFIG_NUMA_BALANCING */
 655
 656static int queue_pages_test_walk(unsigned long start, unsigned long end,
 657				struct mm_walk *walk)
 658{
 659	struct vm_area_struct *next, *vma = walk->vma;
 660	struct queue_pages *qp = walk->private;
 661	unsigned long endvma = vma->vm_end;
 662	unsigned long flags = qp->flags;
 663
 664	/* range check first */
 665	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 666
 667	if (!qp->first) {
 668		qp->first = vma;
 669		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 670			(qp->start < vma->vm_start))
 671			/* hole at head side of range */
 
 
 
 
 672			return -EFAULT;
 673	}
 674	next = find_vma(vma->vm_mm, vma->vm_end);
 675	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 676		((vma->vm_end < qp->end) &&
 677		(!next || vma->vm_end < next->vm_start)))
 678		/* hole at middle or tail of range */
 679		return -EFAULT;
 680
 681	/*
 682	 * Need check MPOL_MF_STRICT to return -EIO if possible
 683	 * regardless of vma_migratable
 684	 */
 685	if (!vma_migratable(vma) &&
 686	    !(flags & MPOL_MF_STRICT))
 687		return 1;
 688
 689	if (endvma > end)
 690		endvma = end;
 691
 692	if (flags & MPOL_MF_LAZY) {
 693		/* Similar to task_numa_work, skip inaccessible VMAs */
 694		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 
 695			!(vma->vm_flags & VM_MIXEDMAP))
 696			change_prot_numa(vma, start, endvma);
 697		return 1;
 698	}
 699
 700	/* queue pages from current vma */
 701	if (flags & MPOL_MF_VALID)
 702		return 0;
 703	return 1;
 704}
 705
 706static const struct mm_walk_ops queue_pages_walk_ops = {
 707	.hugetlb_entry		= queue_pages_hugetlb,
 708	.pmd_entry		= queue_pages_pte_range,
 709	.test_walk		= queue_pages_test_walk,
 710};
 711
 712/*
 713 * Walk through page tables and collect pages to be migrated.
 714 *
 715 * If pages found in a given range are on a set of nodes (determined by
 716 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 717 * passed via @private.
 718 *
 719 * queue_pages_range() has three possible return values:
 720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 721 *     specified.
 722 * 0 - queue pages successfully or no misplaced page.
 723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 724 *         memory range specified by nodemask and maxnode points outside
 725 *         your accessible address space (-EFAULT)
 726 */
 727static int
 728queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 729		nodemask_t *nodes, unsigned long flags,
 730		struct list_head *pagelist)
 731{
 732	int err;
 733	struct queue_pages qp = {
 734		.pagelist = pagelist,
 735		.flags = flags,
 736		.nmask = nodes,
 737		.start = start,
 738		.end = end,
 739		.first = NULL,
 
 
 
 
 
 740	};
 741
 742	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 743
 744	if (!qp.first)
 745		/* whole range in hole */
 746		err = -EFAULT;
 747
 748	return err;
 749}
 750
 751/*
 752 * Apply policy to a single VMA
 753 * This must be called with the mmap_lock held for writing.
 754 */
 755static int vma_replace_policy(struct vm_area_struct *vma,
 756						struct mempolicy *pol)
 757{
 758	int err;
 759	struct mempolicy *old;
 760	struct mempolicy *new;
 761
 762	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 763		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 764		 vma->vm_ops, vma->vm_file,
 765		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 766
 767	new = mpol_dup(pol);
 768	if (IS_ERR(new))
 769		return PTR_ERR(new);
 770
 771	if (vma->vm_ops && vma->vm_ops->set_policy) {
 772		err = vma->vm_ops->set_policy(vma, new);
 773		if (err)
 774			goto err_out;
 775	}
 776
 777	old = vma->vm_policy;
 778	vma->vm_policy = new; /* protected by mmap_lock */
 779	mpol_put(old);
 780
 781	return 0;
 782 err_out:
 783	mpol_put(new);
 784	return err;
 785}
 786
 787/* Step 2: apply policy to a range and do splits. */
 788static int mbind_range(struct mm_struct *mm, unsigned long start,
 789		       unsigned long end, struct mempolicy *new_pol)
 790{
 791	MA_STATE(mas, &mm->mm_mt, start, start);
 792	struct vm_area_struct *prev;
 793	struct vm_area_struct *vma;
 794	int err = 0;
 795	pgoff_t pgoff;
 
 
 796
 797	prev = mas_prev(&mas, 0);
 798	if (unlikely(!prev))
 799		mas_set(&mas, start);
 800
 801	vma = mas_find(&mas, end - 1);
 802	if (WARN_ON(!vma))
 803		return 0;
 804
 
 805	if (start > vma->vm_start)
 806		prev = vma;
 807
 808	for (; vma; vma = mas_next(&mas, end - 1)) {
 809		unsigned long vmstart = max(start, vma->vm_start);
 810		unsigned long vmend = min(end, vma->vm_end);
 
 811
 812		if (mpol_equal(vma_policy(vma), new_pol))
 813			goto next;
 814
 815		pgoff = vma->vm_pgoff +
 816			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 817		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 818				 vma->anon_vma, vma->vm_file, pgoff,
 819				 new_pol, vma->vm_userfaultfd_ctx,
 820				 anon_vma_name(vma));
 821		if (prev) {
 822			/* vma_merge() invalidated the mas */
 823			mas_pause(&mas);
 824			vma = prev;
 
 
 
 
 825			goto replace;
 826		}
 827		if (vma->vm_start != vmstart) {
 828			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 829			if (err)
 830				goto out;
 831			/* split_vma() invalidated the mas */
 832			mas_pause(&mas);
 833		}
 834		if (vma->vm_end != vmend) {
 835			err = split_vma(vma->vm_mm, vma, vmend, 0);
 836			if (err)
 837				goto out;
 838			/* split_vma() invalidated the mas */
 839			mas_pause(&mas);
 840		}
 841replace:
 842		err = vma_replace_policy(vma, new_pol);
 843		if (err)
 844			goto out;
 845next:
 846		prev = vma;
 847	}
 848
 849out:
 850	return err;
 851}
 852
 853/* Set the process memory policy */
 854static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 855			     nodemask_t *nodes)
 856{
 857	struct mempolicy *new, *old;
 858	NODEMASK_SCRATCH(scratch);
 859	int ret;
 860
 861	if (!scratch)
 862		return -ENOMEM;
 863
 864	new = mpol_new(mode, flags, nodes);
 865	if (IS_ERR(new)) {
 866		ret = PTR_ERR(new);
 867		goto out;
 868	}
 869
 870	task_lock(current);
 871	ret = mpol_set_nodemask(new, nodes, scratch);
 872	if (ret) {
 873		task_unlock(current);
 874		mpol_put(new);
 875		goto out;
 876	}
 877
 878	old = current->mempolicy;
 879	current->mempolicy = new;
 880	if (new && new->mode == MPOL_INTERLEAVE)
 881		current->il_prev = MAX_NUMNODES-1;
 
 882	task_unlock(current);
 883	mpol_put(old);
 884	ret = 0;
 885out:
 886	NODEMASK_SCRATCH_FREE(scratch);
 887	return ret;
 888}
 889
 890/*
 891 * Return nodemask for policy for get_mempolicy() query
 892 *
 893 * Called with task's alloc_lock held
 894 */
 895static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 896{
 897	nodes_clear(*nodes);
 898	if (p == &default_policy)
 899		return;
 900
 901	switch (p->mode) {
 902	case MPOL_BIND:
 
 903	case MPOL_INTERLEAVE:
 
 
 904	case MPOL_PREFERRED:
 905	case MPOL_PREFERRED_MANY:
 906		*nodes = p->nodes;
 907		break;
 908	case MPOL_LOCAL:
 909		/* return empty node mask for local allocation */
 910		break;
 911	default:
 912		BUG();
 913	}
 914}
 915
 916static int lookup_node(struct mm_struct *mm, unsigned long addr)
 917{
 918	struct page *p = NULL;
 919	int ret;
 920
 921	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 922	if (ret > 0) {
 923		ret = page_to_nid(p);
 924		put_page(p);
 925	}
 926	return ret;
 927}
 928
 929/* Retrieve NUMA policy */
 930static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 931			     unsigned long addr, unsigned long flags)
 932{
 933	int err;
 934	struct mm_struct *mm = current->mm;
 935	struct vm_area_struct *vma = NULL;
 936	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 937
 938	if (flags &
 939		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 940		return -EINVAL;
 941
 942	if (flags & MPOL_F_MEMS_ALLOWED) {
 943		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 944			return -EINVAL;
 945		*policy = 0;	/* just so it's initialized */
 946		task_lock(current);
 947		*nmask  = cpuset_current_mems_allowed;
 948		task_unlock(current);
 949		return 0;
 950	}
 951
 952	if (flags & MPOL_F_ADDR) {
 953		/*
 954		 * Do NOT fall back to task policy if the
 955		 * vma/shared policy at addr is NULL.  We
 956		 * want to return MPOL_DEFAULT in this case.
 957		 */
 958		mmap_read_lock(mm);
 959		vma = vma_lookup(mm, addr);
 960		if (!vma) {
 961			mmap_read_unlock(mm);
 962			return -EFAULT;
 963		}
 964		if (vma->vm_ops && vma->vm_ops->get_policy)
 965			pol = vma->vm_ops->get_policy(vma, addr);
 966		else
 967			pol = vma->vm_policy;
 968	} else if (addr)
 969		return -EINVAL;
 970
 971	if (!pol)
 972		pol = &default_policy;	/* indicates default behavior */
 973
 974	if (flags & MPOL_F_NODE) {
 975		if (flags & MPOL_F_ADDR) {
 976			/*
 977			 * Take a refcount on the mpol, because we are about to
 978			 * drop the mmap_lock, after which only "pol" remains
 979			 * valid, "vma" is stale.
 980			 */
 981			pol_refcount = pol;
 982			vma = NULL;
 983			mpol_get(pol);
 984			mmap_read_unlock(mm);
 985			err = lookup_node(mm, addr);
 986			if (err < 0)
 987				goto out;
 988			*policy = err;
 989		} else if (pol == current->mempolicy &&
 990				pol->mode == MPOL_INTERLEAVE) {
 991			*policy = next_node_in(current->il_prev, pol->nodes);
 992		} else {
 993			err = -EINVAL;
 994			goto out;
 995		}
 996	} else {
 997		*policy = pol == &default_policy ? MPOL_DEFAULT :
 998						pol->mode;
 999		/*
1000		 * Internal mempolicy flags must be masked off before exposing
1001		 * the policy to userspace.
1002		 */
1003		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004	}
1005
 
 
 
 
 
1006	err = 0;
1007	if (nmask) {
1008		if (mpol_store_user_nodemask(pol)) {
1009			*nmask = pol->w.user_nodemask;
1010		} else {
1011			task_lock(current);
1012			get_policy_nodemask(pol, nmask);
1013			task_unlock(current);
1014		}
1015	}
1016
1017 out:
1018	mpol_cond_put(pol);
1019	if (vma)
1020		mmap_read_unlock(mm);
1021	if (pol_refcount)
1022		mpol_put(pol_refcount);
1023	return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027/*
1028 * page migration, thp tail pages can be passed.
1029 */
1030static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031				unsigned long flags)
1032{
1033	struct page *head = compound_head(page);
1034	/*
1035	 * Avoid migrating a page that is shared with others.
1036	 */
1037	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038		if (!isolate_lru_page(head)) {
1039			list_add_tail(&head->lru, pagelist);
1040			mod_node_page_state(page_pgdat(head),
1041				NR_ISOLATED_ANON + page_is_file_lru(head),
1042				thp_nr_pages(head));
1043		} else if (flags & MPOL_MF_STRICT) {
1044			/*
1045			 * Non-movable page may reach here.  And, there may be
1046			 * temporary off LRU pages or non-LRU movable pages.
1047			 * Treat them as unmovable pages since they can't be
1048			 * isolated, so they can't be moved at the moment.  It
1049			 * should return -EIO for this case too.
1050			 */
1051			return -EIO;
1052		}
1053	}
 
1054
1055	return 0;
 
 
 
 
 
 
 
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			   int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	int err = 0;
1069	struct migration_target_control mtc = {
1070		.nid = dest,
1071		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1072	};
1073
1074	nodes_clear(nmask);
1075	node_set(source, nmask);
1076
1077	/*
1078	 * This does not "check" the range but isolates all pages that
1079	 * need migration.  Between passing in the full user address
1080	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081	 */
1082	vma = find_vma(mm, 0);
1083	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1085			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086
1087	if (!list_empty(&pagelist)) {
1088		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1089				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090		if (err)
1091			putback_movable_pages(&pagelist);
1092	}
1093
1094	return err;
1095}
1096
1097/*
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1100 *
1101 * Returns the number of page that could not be moved.
1102 */
1103int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104		     const nodemask_t *to, int flags)
1105{
1106	int busy = 0;
1107	int err = 0;
1108	nodemask_t tmp;
1109
1110	lru_cache_disable();
 
 
1111
1112	mmap_read_lock(mm);
1113
1114	/*
1115	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1116	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1117	 * bit in 'tmp', and return that <source, dest> pair for migration.
1118	 * The pair of nodemasks 'to' and 'from' define the map.
1119	 *
1120	 * If no pair of bits is found that way, fallback to picking some
1121	 * pair of 'source' and 'dest' bits that are not the same.  If the
1122	 * 'source' and 'dest' bits are the same, this represents a node
1123	 * that will be migrating to itself, so no pages need move.
1124	 *
1125	 * If no bits are left in 'tmp', or if all remaining bits left
1126	 * in 'tmp' correspond to the same bit in 'to', return false
1127	 * (nothing left to migrate).
1128	 *
1129	 * This lets us pick a pair of nodes to migrate between, such that
1130	 * if possible the dest node is not already occupied by some other
1131	 * source node, minimizing the risk of overloading the memory on a
1132	 * node that would happen if we migrated incoming memory to a node
1133	 * before migrating outgoing memory source that same node.
1134	 *
1135	 * A single scan of tmp is sufficient.  As we go, we remember the
1136	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1137	 * that not only moved, but what's better, moved to an empty slot
1138	 * (d is not set in tmp), then we break out then, with that pair.
1139	 * Otherwise when we finish scanning from_tmp, we at least have the
1140	 * most recent <s, d> pair that moved.  If we get all the way through
1141	 * the scan of tmp without finding any node that moved, much less
1142	 * moved to an empty node, then there is nothing left worth migrating.
1143	 */
1144
1145	tmp = *from;
1146	while (!nodes_empty(tmp)) {
1147		int s, d;
1148		int source = NUMA_NO_NODE;
1149		int dest = 0;
1150
1151		for_each_node_mask(s, tmp) {
1152
1153			/*
1154			 * do_migrate_pages() tries to maintain the relative
1155			 * node relationship of the pages established between
1156			 * threads and memory areas.
1157                         *
1158			 * However if the number of source nodes is not equal to
1159			 * the number of destination nodes we can not preserve
1160			 * this node relative relationship.  In that case, skip
1161			 * copying memory from a node that is in the destination
1162			 * mask.
1163			 *
1164			 * Example: [2,3,4] -> [3,4,5] moves everything.
1165			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166			 */
1167
1168			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1169						(node_isset(s, *to)))
1170				continue;
1171
1172			d = node_remap(s, *from, *to);
1173			if (s == d)
1174				continue;
1175
1176			source = s;	/* Node moved. Memorize */
1177			dest = d;
1178
1179			/* dest not in remaining from nodes? */
1180			if (!node_isset(dest, tmp))
1181				break;
1182		}
1183		if (source == NUMA_NO_NODE)
1184			break;
1185
1186		node_clear(source, tmp);
1187		err = migrate_to_node(mm, source, dest, flags);
1188		if (err > 0)
1189			busy += err;
1190		if (err < 0)
1191			break;
1192	}
1193	mmap_read_unlock(mm);
1194
1195	lru_cache_enable();
1196	if (err < 0)
1197		return err;
1198	return busy;
1199
1200}
1201
1202/*
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not.  N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1208 */
1209static struct page *new_page(struct page *page, unsigned long start)
1210{
1211	struct folio *dst, *src = page_folio(page);
1212	struct vm_area_struct *vma;
1213	unsigned long address;
1214	VMA_ITERATOR(vmi, current->mm, start);
1215	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216
1217	for_each_vma(vmi, vma) {
 
1218		address = page_address_in_vma(page, vma);
1219		if (address != -EFAULT)
1220			break;
 
1221	}
1222
1223	if (folio_test_hugetlb(src))
1224		return alloc_huge_page_vma(page_hstate(&src->page),
1225				vma, address);
1226
1227	if (folio_test_large(src))
1228		gfp = GFP_TRANSHUGE;
1229
1230	/*
1231	 * if !vma, vma_alloc_folio() will use task or system default policy
1232	 */
1233	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234			folio_test_large(src));
1235	return &dst->page;
1236}
1237#else
1238
1239static int migrate_page_add(struct page *page, struct list_head *pagelist,
1240				unsigned long flags)
1241{
1242	return -EIO;
1243}
1244
1245int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246		     const nodemask_t *to, int flags)
1247{
1248	return -ENOSYS;
1249}
1250
1251static struct page *new_page(struct page *page, unsigned long start)
1252{
1253	return NULL;
1254}
1255#endif
1256
1257static long do_mbind(unsigned long start, unsigned long len,
1258		     unsigned short mode, unsigned short mode_flags,
1259		     nodemask_t *nmask, unsigned long flags)
1260{
1261	struct mm_struct *mm = current->mm;
1262	struct mempolicy *new;
1263	unsigned long end;
1264	int err;
1265	int ret;
1266	LIST_HEAD(pagelist);
1267
1268	if (flags & ~(unsigned long)MPOL_MF_VALID)
1269		return -EINVAL;
1270	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271		return -EPERM;
1272
1273	if (start & ~PAGE_MASK)
1274		return -EINVAL;
1275
1276	if (mode == MPOL_DEFAULT)
1277		flags &= ~MPOL_MF_STRICT;
1278
1279	len = PAGE_ALIGN(len);
1280	end = start + len;
1281
1282	if (end < start)
1283		return -EINVAL;
1284	if (end == start)
1285		return 0;
1286
1287	new = mpol_new(mode, mode_flags, nmask);
1288	if (IS_ERR(new))
1289		return PTR_ERR(new);
1290
1291	if (flags & MPOL_MF_LAZY)
1292		new->flags |= MPOL_F_MOF;
1293
1294	/*
1295	 * If we are using the default policy then operation
1296	 * on discontinuous address spaces is okay after all
1297	 */
1298	if (!new)
1299		flags |= MPOL_MF_DISCONTIG_OK;
1300
1301	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302		 start, start + len, mode, mode_flags,
1303		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304
1305	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306
1307		lru_cache_disable();
 
 
1308	}
1309	{
1310		NODEMASK_SCRATCH(scratch);
1311		if (scratch) {
1312			mmap_write_lock(mm);
 
1313			err = mpol_set_nodemask(new, nmask, scratch);
 
1314			if (err)
1315				mmap_write_unlock(mm);
1316		} else
1317			err = -ENOMEM;
1318		NODEMASK_SCRATCH_FREE(scratch);
1319	}
1320	if (err)
1321		goto mpol_out;
1322
1323	ret = queue_pages_range(mm, start, end, nmask,
1324			  flags | MPOL_MF_INVERT, &pagelist);
1325
1326	if (ret < 0) {
1327		err = ret;
1328		goto up_out;
1329	}
1330
1331	err = mbind_range(mm, start, end, new);
1332
1333	if (!err) {
1334		int nr_failed = 0;
1335
1336		if (!list_empty(&pagelist)) {
1337			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340			if (nr_failed)
1341				putback_movable_pages(&pagelist);
1342		}
1343
1344		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345			err = -EIO;
1346	} else {
1347up_out:
1348		if (!list_empty(&pagelist))
1349			putback_movable_pages(&pagelist);
1350	}
1351
1352	mmap_write_unlock(mm);
1353mpol_out:
1354	mpol_put(new);
1355	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356		lru_cache_enable();
1357	return err;
1358}
1359
1360/*
1361 * User space interface with variable sized bitmaps for nodelists.
1362 */
1363static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364		      unsigned long maxnode)
1365{
1366	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367	int ret;
1368
1369	if (in_compat_syscall())
1370		ret = compat_get_bitmap(mask,
1371					(const compat_ulong_t __user *)nmask,
1372					maxnode);
1373	else
1374		ret = copy_from_user(mask, nmask,
1375				     nlongs * sizeof(unsigned long));
1376
1377	if (ret)
1378		return -EFAULT;
1379
1380	if (maxnode % BITS_PER_LONG)
1381		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382
1383	return 0;
1384}
1385
1386/* Copy a node mask from user space. */
1387static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388		     unsigned long maxnode)
1389{
 
 
 
 
1390	--maxnode;
1391	nodes_clear(*nodes);
1392	if (maxnode == 0 || !nmask)
1393		return 0;
1394	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395		return -EINVAL;
1396
1397	/*
1398	 * When the user specified more nodes than supported just check
1399	 * if the non supported part is all zero, one word at a time,
1400	 * starting at the end.
1401	 */
1402	while (maxnode > MAX_NUMNODES) {
1403		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404		unsigned long t;
1405
1406		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1407			return -EFAULT;
1408
1409		if (maxnode - bits >= MAX_NUMNODES) {
1410			maxnode -= bits;
1411		} else {
1412			maxnode = MAX_NUMNODES;
1413			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
 
 
 
 
 
 
1414		}
1415		if (t)
1416			return -EINVAL;
1417	}
1418
1419	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1420}
1421
1422/* Copy a kernel node mask to user space */
1423static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424			      nodemask_t *nodes)
1425{
1426	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428	bool compat = in_compat_syscall();
1429
1430	if (compat)
1431		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432
1433	if (copy > nbytes) {
1434		if (copy > PAGE_SIZE)
1435			return -EINVAL;
1436		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437			return -EFAULT;
1438		copy = nbytes;
1439		maxnode = nr_node_ids;
1440	}
1441
1442	if (compat)
1443		return compat_put_bitmap((compat_ulong_t __user *)mask,
1444					 nodes_addr(*nodes), maxnode);
1445
1446	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447}
1448
1449/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
 
1451{
1452	*flags = *mode & MPOL_MODE_FLAGS;
1453	*mode &= ~MPOL_MODE_FLAGS;
 
1454
1455	if ((unsigned int)(*mode) >=  MPOL_MAX)
 
 
1456		return -EINVAL;
1457	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
 
1458		return -EINVAL;
1459	if (*flags & MPOL_F_NUMA_BALANCING) {
1460		if (*mode != MPOL_BIND)
1461			return -EINVAL;
1462		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463	}
1464	return 0;
1465}
1466
1467static long kernel_mbind(unsigned long start, unsigned long len,
1468			 unsigned long mode, const unsigned long __user *nmask,
1469			 unsigned long maxnode, unsigned int flags)
1470{
1471	unsigned short mode_flags;
1472	nodemask_t nodes;
1473	int lmode = mode;
1474	int err;
1475
1476	start = untagged_addr(start);
1477	err = sanitize_mpol_flags(&lmode, &mode_flags);
1478	if (err)
1479		return err;
1480
1481	err = get_nodes(&nodes, nmask, maxnode);
1482	if (err)
1483		return err;
1484
1485	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486}
1487
1488SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489		unsigned long, home_node, unsigned long, flags)
 
1490{
1491	struct mm_struct *mm = current->mm;
1492	struct vm_area_struct *vma;
1493	struct mempolicy *new;
1494	unsigned long vmstart;
1495	unsigned long vmend;
1496	unsigned long end;
1497	int err = -ENOENT;
1498	VMA_ITERATOR(vmi, mm, start);
1499
1500	start = untagged_addr(start);
1501	if (start & ~PAGE_MASK)
 
1502		return -EINVAL;
1503	/*
1504	 * flags is used for future extension if any.
1505	 */
1506	if (flags != 0)
1507		return -EINVAL;
1508
1509	/*
1510	 * Check home_node is online to avoid accessing uninitialized
1511	 * NODE_DATA.
1512	 */
1513	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514		return -EINVAL;
1515
1516	len = PAGE_ALIGN(len);
1517	end = start + len;
1518
1519	if (end < start)
1520		return -EINVAL;
1521	if (end == start)
1522		return 0;
1523	mmap_write_lock(mm);
1524	for_each_vma_range(vmi, vma, end) {
1525		vmstart = max(start, vma->vm_start);
1526		vmend   = min(end, vma->vm_end);
1527		new = mpol_dup(vma_policy(vma));
1528		if (IS_ERR(new)) {
1529			err = PTR_ERR(new);
1530			break;
1531		}
1532		/*
1533		 * Only update home node if there is an existing vma policy
1534		 */
1535		if (!new)
1536			continue;
1537
1538		/*
1539		 * If any vma in the range got policy other than MPOL_BIND
1540		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1541		 * the home node for vmas we already updated before.
1542		 */
1543		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1544			mpol_put(new);
1545			err = -EOPNOTSUPP;
1546			break;
1547		}
1548
1549		new->home_node = home_node;
1550		err = mbind_range(mm, vmstart, vmend, new);
1551		mpol_put(new);
1552		if (err)
1553			break;
1554	}
1555	mmap_write_unlock(mm);
1556	return err;
1557}
1558
1559SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560		unsigned long, mode, const unsigned long __user *, nmask,
1561		unsigned long, maxnode, unsigned int, flags)
1562{
1563	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564}
1565
1566/* Set the process memory policy */
1567static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568				 unsigned long maxnode)
1569{
1570	unsigned short mode_flags;
1571	nodemask_t nodes;
1572	int lmode = mode;
1573	int err;
1574
1575	err = sanitize_mpol_flags(&lmode, &mode_flags);
1576	if (err)
1577		return err;
1578
1579	err = get_nodes(&nodes, nmask, maxnode);
1580	if (err)
1581		return err;
1582
1583	return do_set_mempolicy(lmode, mode_flags, &nodes);
1584}
1585
1586SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587		unsigned long, maxnode)
1588{
1589	return kernel_set_mempolicy(mode, nmask, maxnode);
1590}
1591
1592static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593				const unsigned long __user *old_nodes,
1594				const unsigned long __user *new_nodes)
1595{
 
1596	struct mm_struct *mm = NULL;
1597	struct task_struct *task;
1598	nodemask_t task_nodes;
1599	int err;
1600	nodemask_t *old;
1601	nodemask_t *new;
1602	NODEMASK_SCRATCH(scratch);
1603
1604	if (!scratch)
1605		return -ENOMEM;
1606
1607	old = &scratch->mask1;
1608	new = &scratch->mask2;
1609
1610	err = get_nodes(old, old_nodes, maxnode);
1611	if (err)
1612		goto out;
1613
1614	err = get_nodes(new, new_nodes, maxnode);
1615	if (err)
1616		goto out;
1617
1618	/* Find the mm_struct */
1619	rcu_read_lock();
1620	task = pid ? find_task_by_vpid(pid) : current;
1621	if (!task) {
1622		rcu_read_unlock();
1623		err = -ESRCH;
1624		goto out;
1625	}
1626	get_task_struct(task);
1627
1628	err = -EINVAL;
1629
1630	/*
1631	 * Check if this process has the right to modify the specified process.
1632	 * Use the regular "ptrace_may_access()" checks.
1633	 */
1634	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1635		rcu_read_unlock();
1636		err = -EPERM;
1637		goto out_put;
1638	}
1639	rcu_read_unlock();
1640
1641	task_nodes = cpuset_mems_allowed(task);
1642	/* Is the user allowed to access the target nodes? */
1643	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644		err = -EPERM;
1645		goto out_put;
1646	}
1647
1648	task_nodes = cpuset_mems_allowed(current);
1649	nodes_and(*new, *new, task_nodes);
1650	if (nodes_empty(*new))
1651		goto out_put;
 
1652
1653	err = security_task_movememory(task);
1654	if (err)
1655		goto out_put;
1656
1657	mm = get_task_mm(task);
1658	put_task_struct(task);
1659
1660	if (!mm) {
1661		err = -EINVAL;
1662		goto out;
1663	}
1664
1665	err = do_migrate_pages(mm, old, new,
1666		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667
1668	mmput(mm);
1669out:
1670	NODEMASK_SCRATCH_FREE(scratch);
1671
1672	return err;
1673
1674out_put:
1675	put_task_struct(task);
1676	goto out;
1677
1678}
1679
1680SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681		const unsigned long __user *, old_nodes,
1682		const unsigned long __user *, new_nodes)
1683{
1684	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685}
1686
1687
1688/* Retrieve NUMA policy */
1689static int kernel_get_mempolicy(int __user *policy,
1690				unsigned long __user *nmask,
1691				unsigned long maxnode,
1692				unsigned long addr,
1693				unsigned long flags)
1694{
1695	int err;
1696	int pval;
1697	nodemask_t nodes;
1698
1699	if (nmask != NULL && maxnode < nr_node_ids)
1700		return -EINVAL;
1701
1702	addr = untagged_addr(addr);
1703
1704	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705
1706	if (err)
1707		return err;
1708
1709	if (policy && put_user(pval, policy))
1710		return -EFAULT;
1711
1712	if (nmask)
1713		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714
1715	return err;
1716}
1717
1718SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719		unsigned long __user *, nmask, unsigned long, maxnode,
1720		unsigned long, addr, unsigned long, flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721{
1722	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725bool vma_migratable(struct vm_area_struct *vma)
 
 
1726{
1727	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728		return false;
 
 
 
 
 
1729
1730	/*
1731	 * DAX device mappings require predictable access latency, so avoid
1732	 * incurring periodic faults.
1733	 */
1734	if (vma_is_dax(vma))
1735		return false;
1736
1737	if (is_vm_hugetlb_page(vma) &&
1738		!hugepage_migration_supported(hstate_vma(vma)))
1739		return false;
1740
1741	/*
1742	 * Migration allocates pages in the highest zone. If we cannot
1743	 * do so then migration (at least from node to node) is not
1744	 * possible.
1745	 */
1746	if (vma->vm_file &&
1747		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748			< policy_zone)
1749		return false;
1750	return true;
1751}
1752
 
 
1753struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754						unsigned long addr)
1755{
1756	struct mempolicy *pol = NULL;
1757
1758	if (vma) {
1759		if (vma->vm_ops && vma->vm_ops->get_policy) {
1760			pol = vma->vm_ops->get_policy(vma, addr);
1761		} else if (vma->vm_policy) {
1762			pol = vma->vm_policy;
1763
1764			/*
1765			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767			 * count on these policies which will be dropped by
1768			 * mpol_cond_put() later
1769			 */
1770			if (mpol_needs_cond_ref(pol))
1771				mpol_get(pol);
1772		}
1773	}
1774
1775	return pol;
1776}
1777
1778/*
1779 * get_vma_policy(@vma, @addr)
1780 * @vma: virtual memory area whose policy is sought
1781 * @addr: address in @vma for shared policy lookup
1782 *
1783 * Returns effective policy for a VMA at specified address.
1784 * Falls back to current->mempolicy or system default policy, as necessary.
1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786 * count--added by the get_policy() vm_op, as appropriate--to protect against
1787 * freeing by another task.  It is the caller's responsibility to free the
1788 * extra reference for shared policies.
1789 */
1790static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791						unsigned long addr)
1792{
1793	struct mempolicy *pol = __get_vma_policy(vma, addr);
1794
1795	if (!pol)
1796		pol = get_task_policy(current);
1797
1798	return pol;
1799}
1800
1801bool vma_policy_mof(struct vm_area_struct *vma)
1802{
1803	struct mempolicy *pol;
1804
1805	if (vma->vm_ops && vma->vm_ops->get_policy) {
1806		bool ret = false;
1807
1808		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809		if (pol && (pol->flags & MPOL_F_MOF))
1810			ret = true;
1811		mpol_cond_put(pol);
1812
1813		return ret;
1814	}
1815
1816	pol = vma->vm_policy;
1817	if (!pol)
1818		pol = get_task_policy(current);
1819
1820	return pol->flags & MPOL_F_MOF;
1821}
1822
1823bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824{
1825	enum zone_type dynamic_policy_zone = policy_zone;
1826
1827	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828
1829	/*
1830	 * if policy->nodes has movable memory only,
1831	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832	 *
1833	 * policy->nodes is intersect with node_states[N_MEMORY].
1834	 * so if the following test fails, it implies
1835	 * policy->nodes has movable memory only.
1836	 */
1837	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838		dynamic_policy_zone = ZONE_MOVABLE;
1839
1840	return zone >= dynamic_policy_zone;
1841}
1842
1843/*
1844 * Return a nodemask representing a mempolicy for filtering nodes for
1845 * page allocation
1846 */
1847nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848{
1849	int mode = policy->mode;
1850
1851	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1852	if (unlikely(mode == MPOL_BIND) &&
1853		apply_policy_zone(policy, gfp_zone(gfp)) &&
1854		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855		return &policy->nodes;
1856
1857	if (mode == MPOL_PREFERRED_MANY)
1858		return &policy->nodes;
1859
1860	return NULL;
1861}
1862
1863/*
1864 * Return the  preferred node id for 'prefer' mempolicy, and return
1865 * the given id for all other policies.
1866 *
1867 * policy_node() is always coupled with policy_nodemask(), which
1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 */
1870static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871{
1872	if (policy->mode == MPOL_PREFERRED) {
1873		nd = first_node(policy->nodes);
1874	} else {
 
 
 
1875		/*
1876		 * __GFP_THISNODE shouldn't even be used with the bind policy
1877		 * because we might easily break the expectation to stay on the
1878		 * requested node and not break the policy.
 
1879		 */
1880		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1881	}
1882
1883	if ((policy->mode == MPOL_BIND ||
1884	     policy->mode == MPOL_PREFERRED_MANY) &&
1885	    policy->home_node != NUMA_NO_NODE)
1886		return policy->home_node;
1887
1888	return nd;
1889}
1890
1891/* Do dynamic interleaving for a process */
1892static unsigned interleave_nodes(struct mempolicy *policy)
1893{
1894	unsigned next;
1895	struct task_struct *me = current;
1896
1897	next = next_node_in(me->il_prev, policy->nodes);
 
 
 
1898	if (next < MAX_NUMNODES)
1899		me->il_prev = next;
1900	return next;
1901}
1902
1903/*
1904 * Depending on the memory policy provide a node from which to allocate the
1905 * next slab entry.
1906 */
1907unsigned int mempolicy_slab_node(void)
1908{
1909	struct mempolicy *policy;
1910	int node = numa_mem_id();
1911
1912	if (!in_task())
1913		return node;
1914
1915	policy = current->mempolicy;
1916	if (!policy)
1917		return node;
1918
1919	switch (policy->mode) {
1920	case MPOL_PREFERRED:
1921		return first_node(policy->nodes);
 
 
 
1922
1923	case MPOL_INTERLEAVE:
1924		return interleave_nodes(policy);
1925
1926	case MPOL_BIND:
1927	case MPOL_PREFERRED_MANY:
1928	{
1929		struct zoneref *z;
1930
1931		/*
1932		 * Follow bind policy behavior and start allocation at the
1933		 * first node.
1934		 */
1935		struct zonelist *zonelist;
 
1936		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938		z = first_zones_zonelist(zonelist, highest_zoneidx,
1939							&policy->nodes);
1940		return z->zone ? zone_to_nid(z->zone) : node;
 
1941	}
1942	case MPOL_LOCAL:
1943		return node;
1944
1945	default:
1946		BUG();
1947	}
1948}
1949
1950/*
1951 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953 * number of present nodes.
1954 */
1955static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956{
1957	nodemask_t nodemask = pol->nodes;
1958	unsigned int target, nnodes;
1959	int i;
1960	int nid;
1961	/*
1962	 * The barrier will stabilize the nodemask in a register or on
1963	 * the stack so that it will stop changing under the code.
1964	 *
1965	 * Between first_node() and next_node(), pol->nodes could be changed
1966	 * by other threads. So we put pol->nodes in a local stack.
1967	 */
1968	barrier();
1969
1970	nnodes = nodes_weight(nodemask);
1971	if (!nnodes)
1972		return numa_node_id();
1973	target = (unsigned int)n % nnodes;
1974	nid = first_node(nodemask);
1975	for (i = 0; i < target; i++)
1976		nid = next_node(nid, nodemask);
 
 
1977	return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984	if (vma) {
1985		unsigned long off;
1986
1987		/*
1988		 * for small pages, there is no difference between
1989		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990		 * for huge pages, since vm_pgoff is in units of small
1991		 * pages, we need to shift off the always 0 bits to get
1992		 * a useful offset.
1993		 */
1994		BUG_ON(shift < PAGE_SHIFT);
1995		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996		off += (addr - vma->vm_start) >> shift;
1997		return offset_il_node(pol, off);
1998	} else
1999		return interleave_nodes(pol);
2000}
2001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014 * to the mempolicy's @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019				struct mempolicy **mpol, nodemask_t **nodemask)
 
2020{
2021	int nid;
2022	int mode;
2023
2024	*mpol = get_vma_policy(vma, addr);
2025	*nodemask = NULL;
2026	mode = (*mpol)->mode;
2027
2028	if (unlikely(mode == MPOL_INTERLEAVE)) {
2029		nid = interleave_nid(*mpol, vma, addr,
2030					huge_page_shift(hstate_vma(vma)));
2031	} else {
2032		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034			*nodemask = &(*mpol)->nodes;
2035	}
2036	return nid;
2037}
2038
2039/*
2040 * init_nodemask_of_mempolicy
2041 *
2042 * If the current task's mempolicy is "default" [NULL], return 'false'
2043 * to indicate default policy.  Otherwise, extract the policy nodemask
2044 * for 'bind' or 'interleave' policy into the argument nodemask, or
2045 * initialize the argument nodemask to contain the single node for
2046 * 'preferred' or 'local' policy and return 'true' to indicate presence
2047 * of non-default mempolicy.
2048 *
2049 * We don't bother with reference counting the mempolicy [mpol_get/put]
2050 * because the current task is examining it's own mempolicy and a task's
2051 * mempolicy is only ever changed by the task itself.
2052 *
2053 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 */
2055bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056{
2057	struct mempolicy *mempolicy;
 
2058
2059	if (!(mask && current->mempolicy))
2060		return false;
2061
2062	task_lock(current);
2063	mempolicy = current->mempolicy;
2064	switch (mempolicy->mode) {
2065	case MPOL_PREFERRED:
2066	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2067	case MPOL_BIND:
 
2068	case MPOL_INTERLEAVE:
2069		*mask = mempolicy->nodes;
2070		break;
2071
2072	case MPOL_LOCAL:
2073		init_nodemask_of_node(mask, numa_node_id());
2074		break;
2075
2076	default:
2077		BUG();
2078	}
2079	task_unlock(current);
2080
2081	return true;
2082}
2083#endif
2084
2085/*
2086 * mempolicy_in_oom_domain
2087 *
2088 * If tsk's mempolicy is "bind", check for intersection between mask and
2089 * the policy nodemask. Otherwise, return true for all other policies
2090 * including "interleave", as a tsk with "interleave" policy may have
2091 * memory allocated from all nodes in system.
2092 *
2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 */
2095bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096					const nodemask_t *mask)
2097{
2098	struct mempolicy *mempolicy;
2099	bool ret = true;
2100
2101	if (!mask)
2102		return ret;
2103
2104	task_lock(tsk);
2105	mempolicy = tsk->mempolicy;
2106	if (mempolicy && mempolicy->mode == MPOL_BIND)
2107		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108	task_unlock(tsk);
2109
2110	return ret;
2111}
2112
2113/* Allocate a page in interleaved policy.
2114   Own path because it needs to do special accounting. */
2115static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116					unsigned nid)
2117{
 
2118	struct page *page;
2119
2120	page = __alloc_pages(gfp, order, nid, NULL);
2121	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122	if (!static_branch_likely(&vm_numa_stat_key))
2123		return page;
2124	if (page && page_to_nid(page) == nid) {
2125		preempt_disable();
2126		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127		preempt_enable();
2128	}
2129	return page;
2130}
2131
2132static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133						int nid, struct mempolicy *pol)
2134{
2135	struct page *page;
2136	gfp_t preferred_gfp;
2137
2138	/*
2139	 * This is a two pass approach. The first pass will only try the
2140	 * preferred nodes but skip the direct reclaim and allow the
2141	 * allocation to fail, while the second pass will try all the
2142	 * nodes in system.
2143	 */
2144	preferred_gfp = gfp | __GFP_NOWARN;
2145	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147	if (!page)
2148		page = __alloc_pages(gfp, order, nid, NULL);
2149
2150	return page;
2151}
2152
2153/**
2154 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @gfp: GFP flags.
2156 * @order: Order of the folio.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual address of the allocation.  Must be inside @vma.
2159 * @hugepage: For hugepages try only the preferred node if possible.
2160 *
2161 * Allocate a folio for a specific address in @vma, using the appropriate
2162 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2163 * of the mm_struct of the VMA to prevent it from going away.  Should be
2164 * used for all allocations for folios that will be mapped into user space.
2165 *
2166 * Return: The folio on success or NULL if allocation fails.
2167 */
2168struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169		unsigned long addr, bool hugepage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	struct mempolicy *pol;
2172	int node = numa_node_id();
2173	struct folio *folio;
2174	int preferred_nid;
2175	nodemask_t *nmask;
2176
 
2177	pol = get_vma_policy(vma, addr);
 
2178
2179	if (pol->mode == MPOL_INTERLEAVE) {
2180		struct page *page;
2181		unsigned nid;
2182
2183		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184		mpol_cond_put(pol);
2185		gfp |= __GFP_COMP;
2186		page = alloc_page_interleave(gfp, order, nid);
2187		if (page && order > 1)
2188			prep_transhuge_page(page);
2189		folio = (struct folio *)page;
2190		goto out;
2191	}
2192
2193	if (pol->mode == MPOL_PREFERRED_MANY) {
2194		struct page *page;
2195
2196		node = policy_node(gfp, pol, node);
2197		gfp |= __GFP_COMP;
2198		page = alloc_pages_preferred_many(gfp, order, node, pol);
2199		mpol_cond_put(pol);
2200		if (page && order > 1)
2201			prep_transhuge_page(page);
2202		folio = (struct folio *)page;
2203		goto out;
2204	}
2205
2206	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2207		int hpage_node = node;
2208
2209		/*
2210		 * For hugepage allocation and non-interleave policy which
2211		 * allows the current node (or other explicitly preferred
2212		 * node) we only try to allocate from the current/preferred
2213		 * node and don't fall back to other nodes, as the cost of
2214		 * remote accesses would likely offset THP benefits.
2215		 *
2216		 * If the policy is interleave or does not allow the current
2217		 * node in its nodemask, we allocate the standard way.
2218		 */
2219		if (pol->mode == MPOL_PREFERRED)
2220			hpage_node = first_node(pol->nodes);
 
2221
2222		nmask = policy_nodemask(gfp, pol);
2223		if (!nmask || node_isset(hpage_node, *nmask)) {
2224			mpol_cond_put(pol);
2225			/*
2226			 * First, try to allocate THP only on local node, but
2227			 * don't reclaim unnecessarily, just compact.
2228			 */
2229			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2230					__GFP_NORETRY, order, hpage_node);
2231
2232			/*
2233			 * If hugepage allocations are configured to always
2234			 * synchronous compact or the vma has been madvised
2235			 * to prefer hugepage backing, retry allowing remote
2236			 * memory with both reclaim and compact as well.
2237			 */
2238			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2239				folio = __folio_alloc(gfp, order, hpage_node,
2240						      nmask);
2241
2242			goto out;
2243		}
2244	}
2245
2246	nmask = policy_nodemask(gfp, pol);
2247	preferred_nid = policy_node(gfp, pol, node);
2248	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249	mpol_cond_put(pol);
 
2250out:
2251	return folio;
 
 
2252}
2253EXPORT_SYMBOL(vma_alloc_folio);
2254
2255/**
2256 * alloc_pages - Allocate pages.
2257 * @gfp: GFP flags.
2258 * @order: Power of two of number of pages to allocate.
2259 *
2260 * Allocate 1 << @order contiguous pages.  The physical address of the
2261 * first page is naturally aligned (eg an order-3 allocation will be aligned
2262 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2263 * process is honoured when in process context.
2264 *
2265 * Context: Can be called from any context, providing the appropriate GFP
2266 * flags are used.
2267 * Return: The page on success or NULL if allocation fails.
 
 
 
 
 
2268 */
2269struct page *alloc_pages(gfp_t gfp, unsigned order)
2270{
2271	struct mempolicy *pol = &default_policy;
2272	struct page *page;
 
2273
2274	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2275		pol = get_task_policy(current);
2276
 
 
 
2277	/*
2278	 * No reference counting needed for current->mempolicy
2279	 * nor system default_policy
2280	 */
2281	if (pol->mode == MPOL_INTERLEAVE)
2282		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2283	else if (pol->mode == MPOL_PREFERRED_MANY)
2284		page = alloc_pages_preferred_many(gfp, order,
2285				  policy_node(gfp, pol, numa_node_id()), pol);
2286	else
2287		page = __alloc_pages(gfp, order,
2288				policy_node(gfp, pol, numa_node_id()),
2289				policy_nodemask(gfp, pol));
2290
 
 
 
2291	return page;
2292}
2293EXPORT_SYMBOL(alloc_pages);
2294
2295struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296{
2297	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298
2299	if (page && order > 1)
2300		prep_transhuge_page(page);
2301	return (struct folio *)page;
2302}
2303EXPORT_SYMBOL(folio_alloc);
2304
2305static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2306		struct mempolicy *pol, unsigned long nr_pages,
2307		struct page **page_array)
2308{
2309	int nodes;
2310	unsigned long nr_pages_per_node;
2311	int delta;
2312	int i;
2313	unsigned long nr_allocated;
2314	unsigned long total_allocated = 0;
2315
2316	nodes = nodes_weight(pol->nodes);
2317	nr_pages_per_node = nr_pages / nodes;
2318	delta = nr_pages - nodes * nr_pages_per_node;
2319
2320	for (i = 0; i < nodes; i++) {
2321		if (delta) {
2322			nr_allocated = __alloc_pages_bulk(gfp,
2323					interleave_nodes(pol), NULL,
2324					nr_pages_per_node + 1, NULL,
2325					page_array);
2326			delta--;
2327		} else {
2328			nr_allocated = __alloc_pages_bulk(gfp,
2329					interleave_nodes(pol), NULL,
2330					nr_pages_per_node, NULL, page_array);
2331		}
2332
2333		page_array += nr_allocated;
2334		total_allocated += nr_allocated;
2335	}
2336
2337	return total_allocated;
2338}
2339
2340static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2341		struct mempolicy *pol, unsigned long nr_pages,
2342		struct page **page_array)
2343{
2344	gfp_t preferred_gfp;
2345	unsigned long nr_allocated = 0;
2346
2347	preferred_gfp = gfp | __GFP_NOWARN;
2348	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349
2350	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2351					   nr_pages, NULL, page_array);
2352
2353	if (nr_allocated < nr_pages)
2354		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2355				nr_pages - nr_allocated, NULL,
2356				page_array + nr_allocated);
2357	return nr_allocated;
2358}
2359
2360/* alloc pages bulk and mempolicy should be considered at the
2361 * same time in some situation such as vmalloc.
2362 *
2363 * It can accelerate memory allocation especially interleaving
2364 * allocate memory.
2365 */
2366unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2367		unsigned long nr_pages, struct page **page_array)
2368{
2369	struct mempolicy *pol = &default_policy;
2370
2371	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2372		pol = get_task_policy(current);
2373
2374	if (pol->mode == MPOL_INTERLEAVE)
2375		return alloc_pages_bulk_array_interleave(gfp, pol,
2376							 nr_pages, page_array);
2377
2378	if (pol->mode == MPOL_PREFERRED_MANY)
2379		return alloc_pages_bulk_array_preferred_many(gfp,
2380				numa_node_id(), pol, nr_pages, page_array);
2381
2382	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2383				  policy_nodemask(gfp, pol), nr_pages, NULL,
2384				  page_array);
2385}
2386
2387int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388{
2389	struct mempolicy *pol = mpol_dup(vma_policy(src));
2390
2391	if (IS_ERR(pol))
2392		return PTR_ERR(pol);
2393	dst->vm_policy = pol;
2394	return 0;
2395}
2396
2397/*
2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2400 * with the mems_allowed returned by cpuset_mems_allowed().  This
2401 * keeps mempolicies cpuset relative after its cpuset moves.  See
2402 * further kernel/cpuset.c update_nodemask().
2403 *
2404 * current's mempolicy may be rebinded by the other task(the task that changes
2405 * cpuset's mems), so we needn't do rebind work for current task.
2406 */
2407
2408/* Slow path of a mempolicy duplicate */
2409struct mempolicy *__mpol_dup(struct mempolicy *old)
2410{
2411	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2412
2413	if (!new)
2414		return ERR_PTR(-ENOMEM);
2415
2416	/* task's mempolicy is protected by alloc_lock */
2417	if (old == current->mempolicy) {
2418		task_lock(current);
2419		*new = *old;
2420		task_unlock(current);
2421	} else
2422		*new = *old;
2423
2424	if (current_cpuset_is_being_rebound()) {
2425		nodemask_t mems = cpuset_mems_allowed(current);
2426		mpol_rebind_policy(new, &mems);
 
 
 
2427	}
2428	atomic_set(&new->refcnt, 1);
2429	return new;
2430}
2431
2432/* Slow path of a mempolicy comparison */
2433bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2434{
2435	if (!a || !b)
2436		return false;
2437	if (a->mode != b->mode)
2438		return false;
2439	if (a->flags != b->flags)
2440		return false;
2441	if (a->home_node != b->home_node)
2442		return false;
2443	if (mpol_store_user_nodemask(a))
2444		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445			return false;
2446
2447	switch (a->mode) {
2448	case MPOL_BIND:
 
2449	case MPOL_INTERLEAVE:
 
2450	case MPOL_PREFERRED:
2451	case MPOL_PREFERRED_MANY:
2452		return !!nodes_equal(a->nodes, b->nodes);
2453	case MPOL_LOCAL:
2454		return true;
2455	default:
2456		BUG();
2457		return false;
2458	}
2459}
2460
2461/*
2462 * Shared memory backing store policy support.
2463 *
2464 * Remember policies even when nobody has shared memory mapped.
2465 * The policies are kept in Red-Black tree linked from the inode.
2466 * They are protected by the sp->lock rwlock, which should be held
2467 * for any accesses to the tree.
2468 */
2469
2470/*
2471 * lookup first element intersecting start-end.  Caller holds sp->lock for
2472 * reading or for writing
2473 */
2474static struct sp_node *
2475sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476{
2477	struct rb_node *n = sp->root.rb_node;
2478
2479	while (n) {
2480		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481
2482		if (start >= p->end)
2483			n = n->rb_right;
2484		else if (end <= p->start)
2485			n = n->rb_left;
2486		else
2487			break;
2488	}
2489	if (!n)
2490		return NULL;
2491	for (;;) {
2492		struct sp_node *w = NULL;
2493		struct rb_node *prev = rb_prev(n);
2494		if (!prev)
2495			break;
2496		w = rb_entry(prev, struct sp_node, nd);
2497		if (w->end <= start)
2498			break;
2499		n = prev;
2500	}
2501	return rb_entry(n, struct sp_node, nd);
2502}
2503
2504/*
2505 * Insert a new shared policy into the list.  Caller holds sp->lock for
2506 * writing.
2507 */
2508static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509{
2510	struct rb_node **p = &sp->root.rb_node;
2511	struct rb_node *parent = NULL;
2512	struct sp_node *nd;
2513
2514	while (*p) {
2515		parent = *p;
2516		nd = rb_entry(parent, struct sp_node, nd);
2517		if (new->start < nd->start)
2518			p = &(*p)->rb_left;
2519		else if (new->end > nd->end)
2520			p = &(*p)->rb_right;
2521		else
2522			BUG();
2523	}
2524	rb_link_node(&new->nd, parent, p);
2525	rb_insert_color(&new->nd, &sp->root);
2526	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2527		 new->policy ? new->policy->mode : 0);
2528}
2529
2530/* Find shared policy intersecting idx */
2531struct mempolicy *
2532mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533{
2534	struct mempolicy *pol = NULL;
2535	struct sp_node *sn;
2536
2537	if (!sp->root.rb_node)
2538		return NULL;
2539	read_lock(&sp->lock);
2540	sn = sp_lookup(sp, idx, idx+1);
2541	if (sn) {
2542		mpol_get(sn->policy);
2543		pol = sn->policy;
2544	}
2545	read_unlock(&sp->lock);
2546	return pol;
2547}
2548
2549static void sp_free(struct sp_node *n)
2550{
2551	mpol_put(n->policy);
2552	kmem_cache_free(sn_cache, n);
2553}
2554
2555/**
2556 * mpol_misplaced - check whether current page node is valid in policy
2557 *
2558 * @page: page to be checked
2559 * @vma: vm area where page mapped
2560 * @addr: virtual address where page mapped
2561 *
2562 * Lookup current policy node id for vma,addr and "compare to" page's
2563 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
 
 
 
2564 * Called from fault path where we know the vma and faulting address.
2565 *
2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2567 * policy, or a suitable node ID to allocate a replacement page from.
2568 */
2569int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570{
2571	struct mempolicy *pol;
2572	struct zoneref *z;
2573	int curnid = page_to_nid(page);
2574	unsigned long pgoff;
2575	int thiscpu = raw_smp_processor_id();
2576	int thisnid = cpu_to_node(thiscpu);
2577	int polnid = NUMA_NO_NODE;
2578	int ret = NUMA_NO_NODE;
 
 
2579
2580	pol = get_vma_policy(vma, addr);
2581	if (!(pol->flags & MPOL_F_MOF))
2582		goto out;
2583
2584	switch (pol->mode) {
2585	case MPOL_INTERLEAVE:
 
 
 
2586		pgoff = vma->vm_pgoff;
2587		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2588		polnid = offset_il_node(pol, pgoff);
2589		break;
2590
2591	case MPOL_PREFERRED:
2592		if (node_isset(curnid, pol->nodes))
2593			goto out;
2594		polnid = first_node(pol->nodes);
2595		break;
2596
2597	case MPOL_LOCAL:
2598		polnid = numa_node_id();
2599		break;
2600
2601	case MPOL_BIND:
2602		/* Optimize placement among multiple nodes via NUMA balancing */
2603		if (pol->flags & MPOL_F_MORON) {
2604			if (node_isset(thisnid, pol->nodes))
2605				break;
2606			goto out;
2607		}
2608		fallthrough;
2609
2610	case MPOL_PREFERRED_MANY:
2611		/*
 
2612		 * use current page if in policy nodemask,
2613		 * else select nearest allowed node, if any.
2614		 * If no allowed nodes, use current [!misplaced].
2615		 */
2616		if (node_isset(curnid, pol->nodes))
2617			goto out;
2618		z = first_zones_zonelist(
2619				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2620				gfp_zone(GFP_HIGHUSER),
2621				&pol->nodes);
2622		polnid = zone_to_nid(z->zone);
2623		break;
2624
2625	default:
2626		BUG();
2627	}
2628
2629	/* Migrate the page towards the node whose CPU is referencing it */
2630	if (pol->flags & MPOL_F_MORON) {
2631		polnid = thisnid;
2632
2633		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2634			goto out;
2635	}
2636
2637	if (curnid != polnid)
2638		ret = polnid;
2639out:
2640	mpol_cond_put(pol);
2641
2642	return ret;
2643}
2644
2645/*
2646 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2647 * dropped after task->mempolicy is set to NULL so that any allocation done as
2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2649 * policy.
2650 */
2651void mpol_put_task_policy(struct task_struct *task)
2652{
2653	struct mempolicy *pol;
2654
2655	task_lock(task);
2656	pol = task->mempolicy;
2657	task->mempolicy = NULL;
2658	task_unlock(task);
2659	mpol_put(pol);
2660}
2661
2662static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663{
2664	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2665	rb_erase(&n->nd, &sp->root);
2666	sp_free(n);
2667}
2668
2669static void sp_node_init(struct sp_node *node, unsigned long start,
2670			unsigned long end, struct mempolicy *pol)
2671{
2672	node->start = start;
2673	node->end = end;
2674	node->policy = pol;
2675}
2676
2677static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2678				struct mempolicy *pol)
2679{
2680	struct sp_node *n;
2681	struct mempolicy *newpol;
2682
2683	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2684	if (!n)
2685		return NULL;
2686
2687	newpol = mpol_dup(pol);
2688	if (IS_ERR(newpol)) {
2689		kmem_cache_free(sn_cache, n);
2690		return NULL;
2691	}
2692	newpol->flags |= MPOL_F_SHARED;
2693	sp_node_init(n, start, end, newpol);
2694
2695	return n;
2696}
2697
2698/* Replace a policy range. */
2699static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2700				 unsigned long end, struct sp_node *new)
2701{
2702	struct sp_node *n;
2703	struct sp_node *n_new = NULL;
2704	struct mempolicy *mpol_new = NULL;
2705	int ret = 0;
2706
2707restart:
2708	write_lock(&sp->lock);
2709	n = sp_lookup(sp, start, end);
2710	/* Take care of old policies in the same range. */
2711	while (n && n->start < end) {
2712		struct rb_node *next = rb_next(&n->nd);
2713		if (n->start >= start) {
2714			if (n->end <= end)
2715				sp_delete(sp, n);
2716			else
2717				n->start = end;
2718		} else {
2719			/* Old policy spanning whole new range. */
2720			if (n->end > end) {
2721				if (!n_new)
2722					goto alloc_new;
2723
2724				*mpol_new = *n->policy;
2725				atomic_set(&mpol_new->refcnt, 1);
2726				sp_node_init(n_new, end, n->end, mpol_new);
2727				n->end = start;
2728				sp_insert(sp, n_new);
2729				n_new = NULL;
2730				mpol_new = NULL;
2731				break;
2732			} else
2733				n->end = start;
2734		}
2735		if (!next)
2736			break;
2737		n = rb_entry(next, struct sp_node, nd);
2738	}
2739	if (new)
2740		sp_insert(sp, new);
2741	write_unlock(&sp->lock);
2742	ret = 0;
2743
2744err_out:
2745	if (mpol_new)
2746		mpol_put(mpol_new);
2747	if (n_new)
2748		kmem_cache_free(sn_cache, n_new);
2749
2750	return ret;
2751
2752alloc_new:
2753	write_unlock(&sp->lock);
2754	ret = -ENOMEM;
2755	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2756	if (!n_new)
2757		goto err_out;
2758	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2759	if (!mpol_new)
2760		goto err_out;
2761	atomic_set(&mpol_new->refcnt, 1);
2762	goto restart;
2763}
2764
2765/**
2766 * mpol_shared_policy_init - initialize shared policy for inode
2767 * @sp: pointer to inode shared policy
2768 * @mpol:  struct mempolicy to install
2769 *
2770 * Install non-NULL @mpol in inode's shared policy rb-tree.
2771 * On entry, the current task has a reference on a non-NULL @mpol.
2772 * This must be released on exit.
2773 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 */
2775void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2776{
2777	int ret;
2778
2779	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2780	rwlock_init(&sp->lock);
2781
2782	if (mpol) {
2783		struct vm_area_struct pvma;
2784		struct mempolicy *new;
2785		NODEMASK_SCRATCH(scratch);
2786
2787		if (!scratch)
2788			goto put_mpol;
2789		/* contextualize the tmpfs mount point mempolicy */
2790		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791		if (IS_ERR(new))
2792			goto free_scratch; /* no valid nodemask intersection */
2793
2794		task_lock(current);
2795		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2796		task_unlock(current);
2797		if (ret)
2798			goto put_new;
2799
2800		/* Create pseudo-vma that contains just the policy */
2801		vma_init(&pvma, NULL);
2802		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2803		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2804
2805put_new:
2806		mpol_put(new);			/* drop initial ref */
2807free_scratch:
2808		NODEMASK_SCRATCH_FREE(scratch);
2809put_mpol:
2810		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2811	}
2812}
2813
2814int mpol_set_shared_policy(struct shared_policy *info,
2815			struct vm_area_struct *vma, struct mempolicy *npol)
2816{
2817	int err;
2818	struct sp_node *new = NULL;
2819	unsigned long sz = vma_pages(vma);
2820
2821	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822		 vma->vm_pgoff,
2823		 sz, npol ? npol->mode : -1,
2824		 npol ? npol->flags : -1,
2825		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2826
2827	if (npol) {
2828		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2829		if (!new)
2830			return -ENOMEM;
2831	}
2832	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2833	if (err && new)
2834		sp_free(new);
2835	return err;
2836}
2837
2838/* Free a backing policy store on inode delete. */
2839void mpol_free_shared_policy(struct shared_policy *p)
2840{
2841	struct sp_node *n;
2842	struct rb_node *next;
2843
2844	if (!p->root.rb_node)
2845		return;
2846	write_lock(&p->lock);
2847	next = rb_first(&p->root);
2848	while (next) {
2849		n = rb_entry(next, struct sp_node, nd);
2850		next = rb_next(&n->nd);
2851		sp_delete(p, n);
2852	}
2853	write_unlock(&p->lock);
2854}
2855
2856#ifdef CONFIG_NUMA_BALANCING
2857static int __initdata numabalancing_override;
2858
2859static void __init check_numabalancing_enable(void)
2860{
2861	bool numabalancing_default = false;
2862
2863	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2864		numabalancing_default = true;
2865
2866	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2867	if (numabalancing_override)
2868		set_numabalancing_state(numabalancing_override == 1);
2869
2870	if (num_online_nodes() > 1 && !numabalancing_override) {
2871		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2872			numabalancing_default ? "Enabling" : "Disabling");
2873		set_numabalancing_state(numabalancing_default);
2874	}
2875}
2876
2877static int __init setup_numabalancing(char *str)
2878{
2879	int ret = 0;
2880	if (!str)
2881		goto out;
2882
2883	if (!strcmp(str, "enable")) {
2884		numabalancing_override = 1;
2885		ret = 1;
2886	} else if (!strcmp(str, "disable")) {
2887		numabalancing_override = -1;
2888		ret = 1;
2889	}
2890out:
2891	if (!ret)
2892		pr_warn("Unable to parse numa_balancing=\n");
2893
2894	return ret;
2895}
2896__setup("numa_balancing=", setup_numabalancing);
2897#else
2898static inline void __init check_numabalancing_enable(void)
2899{
2900}
2901#endif /* CONFIG_NUMA_BALANCING */
2902
2903/* assumes fs == KERNEL_DS */
2904void __init numa_policy_init(void)
2905{
2906	nodemask_t interleave_nodes;
2907	unsigned long largest = 0;
2908	int nid, prefer = 0;
2909
2910	policy_cache = kmem_cache_create("numa_policy",
2911					 sizeof(struct mempolicy),
2912					 0, SLAB_PANIC, NULL);
2913
2914	sn_cache = kmem_cache_create("shared_policy_node",
2915				     sizeof(struct sp_node),
2916				     0, SLAB_PANIC, NULL);
2917
2918	for_each_node(nid) {
2919		preferred_node_policy[nid] = (struct mempolicy) {
2920			.refcnt = ATOMIC_INIT(1),
2921			.mode = MPOL_PREFERRED,
2922			.flags = MPOL_F_MOF | MPOL_F_MORON,
2923			.nodes = nodemask_of_node(nid),
2924		};
2925	}
2926
2927	/*
2928	 * Set interleaving policy for system init. Interleaving is only
2929	 * enabled across suitably sized nodes (default is >= 16MB), or
2930	 * fall back to the largest node if they're all smaller.
2931	 */
2932	nodes_clear(interleave_nodes);
2933	for_each_node_state(nid, N_MEMORY) {
2934		unsigned long total_pages = node_present_pages(nid);
2935
2936		/* Preserve the largest node */
2937		if (largest < total_pages) {
2938			largest = total_pages;
2939			prefer = nid;
2940		}
2941
2942		/* Interleave this node? */
2943		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2944			node_set(nid, interleave_nodes);
2945	}
2946
2947	/* All too small, use the largest */
2948	if (unlikely(nodes_empty(interleave_nodes)))
2949		node_set(prefer, interleave_nodes);
2950
2951	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2952		pr_err("%s: interleaving failed\n", __func__);
2953
2954	check_numabalancing_enable();
2955}
2956
2957/* Reset policy of current process to default */
2958void numa_default_policy(void)
2959{
2960	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2961}
2962
2963/*
2964 * Parse and format mempolicy from/to strings
2965 */
2966
 
 
 
2967static const char * const policy_modes[] =
2968{
2969	[MPOL_DEFAULT]    = "default",
2970	[MPOL_PREFERRED]  = "prefer",
2971	[MPOL_BIND]       = "bind",
2972	[MPOL_INTERLEAVE] = "interleave",
2973	[MPOL_LOCAL]      = "local",
2974	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2975};
2976
2977
2978#ifdef CONFIG_TMPFS
2979/**
2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2981 * @str:  string containing mempolicy to parse
2982 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2983 *
2984 * Format of input:
2985 *	<mode>[=<flags>][:<nodelist>]
2986 *
2987 * Return: %0 on success, else %1
2988 */
2989int mpol_parse_str(char *str, struct mempolicy **mpol)
2990{
2991	struct mempolicy *new = NULL;
 
2992	unsigned short mode_flags;
2993	nodemask_t nodes;
2994	char *nodelist = strchr(str, ':');
2995	char *flags = strchr(str, '=');
2996	int err = 1, mode;
2997
2998	if (flags)
2999		*flags++ = '\0';	/* terminate mode string */
3000
3001	if (nodelist) {
3002		/* NUL-terminate mode or flags string */
3003		*nodelist++ = '\0';
3004		if (nodelist_parse(nodelist, nodes))
3005			goto out;
3006		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007			goto out;
3008	} else
3009		nodes_clear(nodes);
3010
3011	mode = match_string(policy_modes, MPOL_MAX, str);
3012	if (mode < 0)
 
 
 
 
 
 
 
3013		goto out;
3014
3015	switch (mode) {
3016	case MPOL_PREFERRED:
3017		/*
3018		 * Insist on a nodelist of one node only, although later
3019		 * we use first_node(nodes) to grab a single node, so here
3020		 * nodelist (or nodes) cannot be empty.
3021		 */
3022		if (nodelist) {
3023			char *rest = nodelist;
3024			while (isdigit(*rest))
3025				rest++;
3026			if (*rest)
3027				goto out;
3028			if (nodes_empty(nodes))
3029				goto out;
3030		}
3031		break;
3032	case MPOL_INTERLEAVE:
3033		/*
3034		 * Default to online nodes with memory if no nodelist
3035		 */
3036		if (!nodelist)
3037			nodes = node_states[N_MEMORY];
3038		break;
3039	case MPOL_LOCAL:
3040		/*
3041		 * Don't allow a nodelist;  mpol_new() checks flags
3042		 */
3043		if (nodelist)
3044			goto out;
 
3045		break;
3046	case MPOL_DEFAULT:
3047		/*
3048		 * Insist on a empty nodelist
3049		 */
3050		if (!nodelist)
3051			err = 0;
3052		goto out;
3053	case MPOL_PREFERRED_MANY:
3054	case MPOL_BIND:
3055		/*
3056		 * Insist on a nodelist
3057		 */
3058		if (!nodelist)
3059			goto out;
3060	}
3061
3062	mode_flags = 0;
3063	if (flags) {
3064		/*
3065		 * Currently, we only support two mutually exclusive
3066		 * mode flags.
3067		 */
3068		if (!strcmp(flags, "static"))
3069			mode_flags |= MPOL_F_STATIC_NODES;
3070		else if (!strcmp(flags, "relative"))
3071			mode_flags |= MPOL_F_RELATIVE_NODES;
3072		else
3073			goto out;
3074	}
3075
3076	new = mpol_new(mode, mode_flags, &nodes);
3077	if (IS_ERR(new))
3078		goto out;
3079
3080	/*
3081	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3082	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083	 */
3084	if (mode != MPOL_PREFERRED) {
3085		new->nodes = nodes;
3086	} else if (nodelist) {
3087		nodes_clear(new->nodes);
3088		node_set(first_node(nodes), new->nodes);
3089	} else {
3090		new->mode = MPOL_LOCAL;
3091	}
3092
3093	/*
3094	 * Save nodes for contextualization: this will be used to "clone"
3095	 * the mempolicy in a specific context [cpuset] at a later time.
3096	 */
3097	new->w.user_nodemask = nodes;
3098
3099	err = 0;
3100
3101out:
3102	/* Restore string for error message */
3103	if (nodelist)
3104		*--nodelist = ':';
3105	if (flags)
3106		*--flags = '=';
3107	if (!err)
3108		*mpol = new;
3109	return err;
3110}
3111#endif /* CONFIG_TMPFS */
3112
3113/**
3114 * mpol_to_str - format a mempolicy structure for printing
3115 * @buffer:  to contain formatted mempolicy string
3116 * @maxlen:  length of @buffer
3117 * @pol:  pointer to mempolicy to be formatted
3118 *
3119 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3121 * longest flag, "relative", and to display at least a few node ids.
3122 */
3123void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3124{
3125	char *p = buffer;
3126	nodemask_t nodes = NODE_MASK_NONE;
3127	unsigned short mode = MPOL_DEFAULT;
3128	unsigned short flags = 0;
3129
3130	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3131		mode = pol->mode;
3132		flags = pol->flags;
3133	}
3134
3135	switch (mode) {
3136	case MPOL_DEFAULT:
3137	case MPOL_LOCAL:
3138		break;
3139	case MPOL_PREFERRED:
3140	case MPOL_PREFERRED_MANY:
 
 
 
 
3141	case MPOL_BIND:
3142	case MPOL_INTERLEAVE:
3143		nodes = pol->nodes;
3144		break;
3145	default:
3146		WARN_ON_ONCE(1);
3147		snprintf(p, maxlen, "unknown");
3148		return;
3149	}
3150
3151	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3152
3153	if (flags & MPOL_MODE_FLAGS) {
3154		p += snprintf(p, buffer + maxlen - p, "=");
3155
3156		/*
3157		 * Currently, the only defined flags are mutually exclusive
3158		 */
3159		if (flags & MPOL_F_STATIC_NODES)
3160			p += snprintf(p, buffer + maxlen - p, "static");
3161		else if (flags & MPOL_F_RELATIVE_NODES)
3162			p += snprintf(p, buffer + maxlen - p, "relative");
3163	}
3164
3165	if (!nodes_empty(nodes))
3166		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167			       nodemask_pr_args(&nodes));
3168}