Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
 
 
 
 
 
 
 
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
 
 
 
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
 
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
 
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100#include <linux/random.h>
 101
 102#include "internal.h"
 103
 104/* Internal flags */
 105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 
 107
 108static struct kmem_cache *policy_cache;
 109static struct kmem_cache *sn_cache;
 110
 111/* Highest zone. An specific allocation for a zone below that is not
 112   policied. */
 113enum zone_type policy_zone = 0;
 114
 115/*
 116 * run-time system-wide default policy => local allocation
 117 */
 118static struct mempolicy default_policy = {
 119	.refcnt = ATOMIC_INIT(1), /* never free it */
 120	.mode = MPOL_PREFERRED,
 121	.flags = MPOL_F_LOCAL,
 122};
 123
 124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126struct mempolicy *get_task_policy(struct task_struct *p)
 127{
 128	struct mempolicy *pol = p->mempolicy;
 129	int node;
 130
 131	if (pol)
 132		return pol;
 133
 134	node = numa_node_id();
 135	if (node != NUMA_NO_NODE) {
 136		pol = &preferred_node_policy[node];
 137		/* preferred_node_policy is not initialised early in boot */
 138		if (pol->mode)
 139			return pol;
 140	}
 141
 142	return &default_policy;
 143}
 144
 145static const struct mempolicy_operations {
 146	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 147	/*
 148	 * If read-side task has no lock to protect task->mempolicy, write-side
 149	 * task will rebind the task->mempolicy by two step. The first step is
 150	 * setting all the newly nodes, and the second step is cleaning all the
 151	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 152	 * page.
 153	 * If we have a lock to protect task->mempolicy in read-side, we do
 154	 * rebind directly.
 155	 *
 156	 * step:
 157	 * 	MPOL_REBIND_ONCE - do rebind work at once
 158	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 159	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 160	 */
 161	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 162			enum mpol_rebind_step step);
 163} mpol_ops[MPOL_MAX];
 164
 165static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 166{
 167	return pol->flags & MPOL_MODE_FLAGS;
 168}
 169
 170static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 171				   const nodemask_t *rel)
 172{
 173	nodemask_t tmp;
 174	nodes_fold(tmp, *orig, nodes_weight(*rel));
 175	nodes_onto(*ret, tmp, *rel);
 176}
 177
 178static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 179{
 180	if (nodes_empty(*nodes))
 181		return -EINVAL;
 182	pol->v.nodes = *nodes;
 183	return 0;
 184}
 185
 186static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (!nodes)
 189		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 190	else if (nodes_empty(*nodes))
 191		return -EINVAL;			/*  no allowed nodes */
 192	else
 193		pol->v.preferred_node = first_node(*nodes);
 194	return 0;
 195}
 196
 197static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 198{
 199	if (nodes_empty(*nodes))
 200		return -EINVAL;
 201	pol->v.nodes = *nodes;
 
 
 202	return 0;
 203}
 204
 205/*
 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 207 * any, for the new policy.  mpol_new() has already validated the nodes
 208 * parameter with respect to the policy mode and flags.  But, we need to
 209 * handle an empty nodemask with MPOL_PREFERRED here.
 210 *
 211 * Must be called holding task's alloc_lock to protect task's mems_allowed
 212 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 213 */
 214static int mpol_set_nodemask(struct mempolicy *pol,
 215		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 216{
 217	int ret;
 218
 219	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 220	if (pol == NULL)
 
 
 
 
 221		return 0;
 
 222	/* Check N_MEMORY */
 223	nodes_and(nsc->mask1,
 224		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 225
 226	VM_BUG_ON(!nodes);
 227	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 228		nodes = NULL;	/* explicit local allocation */
 229	else {
 230		if (pol->flags & MPOL_F_RELATIVE_NODES)
 231			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 232		else
 233			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 234
 235		if (mpol_store_user_nodemask(pol))
 236			pol->w.user_nodemask = *nodes;
 237		else
 238			pol->w.cpuset_mems_allowed =
 239						cpuset_current_mems_allowed;
 240	}
 241
 242	if (nodes)
 243		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 244	else
 245		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 246	return ret;
 247}
 248
 249/*
 250 * This function just creates a new policy, does some check and simple
 251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 252 */
 253static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 254				  nodemask_t *nodes)
 255{
 256	struct mempolicy *policy;
 257
 258	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 259		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 260
 261	if (mode == MPOL_DEFAULT) {
 262		if (nodes && !nodes_empty(*nodes))
 263			return ERR_PTR(-EINVAL);
 264		return NULL;
 265	}
 266	VM_BUG_ON(!nodes);
 267
 268	/*
 269	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 270	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 271	 * All other modes require a valid pointer to a non-empty nodemask.
 272	 */
 273	if (mode == MPOL_PREFERRED) {
 274		if (nodes_empty(*nodes)) {
 275			if (((flags & MPOL_F_STATIC_NODES) ||
 276			     (flags & MPOL_F_RELATIVE_NODES)))
 277				return ERR_PTR(-EINVAL);
 
 
 278		}
 279	} else if (mode == MPOL_LOCAL) {
 280		if (!nodes_empty(*nodes))
 
 
 281			return ERR_PTR(-EINVAL);
 282		mode = MPOL_PREFERRED;
 283	} else if (nodes_empty(*nodes))
 284		return ERR_PTR(-EINVAL);
 
 285	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 286	if (!policy)
 287		return ERR_PTR(-ENOMEM);
 288	atomic_set(&policy->refcnt, 1);
 289	policy->mode = mode;
 290	policy->flags = flags;
 
 291
 292	return policy;
 293}
 294
 295/* Slow path of a mpol destructor. */
 296void __mpol_put(struct mempolicy *p)
 297{
 298	if (!atomic_dec_and_test(&p->refcnt))
 299		return;
 300	kmem_cache_free(policy_cache, p);
 301}
 302
 303static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 304				enum mpol_rebind_step step)
 305{
 306}
 307
 308/*
 309 * step:
 310 * 	MPOL_REBIND_ONCE  - do rebind work at once
 311 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 312 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 313 */
 314static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 315				 enum mpol_rebind_step step)
 316{
 317	nodemask_t tmp;
 318
 319	if (pol->flags & MPOL_F_STATIC_NODES)
 320		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 321	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 322		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 323	else {
 324		/*
 325		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 326		 * result
 327		 */
 328		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 329			nodes_remap(tmp, pol->v.nodes,
 330					pol->w.cpuset_mems_allowed, *nodes);
 331			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 332		} else if (step == MPOL_REBIND_STEP2) {
 333			tmp = pol->w.cpuset_mems_allowed;
 334			pol->w.cpuset_mems_allowed = *nodes;
 335		} else
 336			BUG();
 337	}
 338
 339	if (nodes_empty(tmp))
 340		tmp = *nodes;
 341
 342	if (step == MPOL_REBIND_STEP1)
 343		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 344	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 345		pol->v.nodes = tmp;
 346	else
 347		BUG();
 348
 349	if (!node_isset(current->il_next, tmp)) {
 350		current->il_next = next_node(current->il_next, tmp);
 351		if (current->il_next >= MAX_NUMNODES)
 352			current->il_next = first_node(tmp);
 353		if (current->il_next >= MAX_NUMNODES)
 354			current->il_next = numa_node_id();
 355	}
 356}
 357
 358static void mpol_rebind_preferred(struct mempolicy *pol,
 359				  const nodemask_t *nodes,
 360				  enum mpol_rebind_step step)
 361{
 362	nodemask_t tmp;
 363
 364	if (pol->flags & MPOL_F_STATIC_NODES) {
 365		int node = first_node(pol->w.user_nodemask);
 366
 367		if (node_isset(node, *nodes)) {
 368			pol->v.preferred_node = node;
 369			pol->flags &= ~MPOL_F_LOCAL;
 370		} else
 371			pol->flags |= MPOL_F_LOCAL;
 372	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 373		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 374		pol->v.preferred_node = first_node(tmp);
 375	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 376		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 377						   pol->w.cpuset_mems_allowed,
 378						   *nodes);
 379		pol->w.cpuset_mems_allowed = *nodes;
 380	}
 381}
 382
 383/*
 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 385 *
 386 * If read-side task has no lock to protect task->mempolicy, write-side
 387 * task will rebind the task->mempolicy by two step. The first step is
 388 * setting all the newly nodes, and the second step is cleaning all the
 389 * disallowed nodes. In this way, we can avoid finding no node to alloc
 390 * page.
 391 * If we have a lock to protect task->mempolicy in read-side, we do
 392 * rebind directly.
 393 *
 394 * step:
 395 * 	MPOL_REBIND_ONCE  - do rebind work at once
 396 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 397 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 398 */
 399static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 400				enum mpol_rebind_step step)
 401{
 402	if (!pol)
 403		return;
 404	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 405	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 406		return;
 407
 408	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 409		return;
 410
 411	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 412		BUG();
 413
 414	if (step == MPOL_REBIND_STEP1)
 415		pol->flags |= MPOL_F_REBINDING;
 416	else if (step == MPOL_REBIND_STEP2)
 417		pol->flags &= ~MPOL_F_REBINDING;
 418	else if (step >= MPOL_REBIND_NSTEP)
 419		BUG();
 420
 421	mpol_ops[pol->mode].rebind(pol, newmask, step);
 422}
 423
 424/*
 425 * Wrapper for mpol_rebind_policy() that just requires task
 426 * pointer, and updates task mempolicy.
 427 *
 428 * Called with task's alloc_lock held.
 429 */
 430
 431void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 432			enum mpol_rebind_step step)
 433{
 434	mpol_rebind_policy(tsk->mempolicy, new, step);
 435}
 436
 437/*
 438 * Rebind each vma in mm to new nodemask.
 439 *
 440 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 441 */
 442
 443void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 444{
 445	struct vm_area_struct *vma;
 
 446
 447	down_write(&mm->mmap_sem);
 448	for (vma = mm->mmap; vma; vma = vma->vm_next)
 449		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 450	up_write(&mm->mmap_sem);
 
 
 451}
 452
 453static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 454	[MPOL_DEFAULT] = {
 455		.rebind = mpol_rebind_default,
 456	},
 457	[MPOL_INTERLEAVE] = {
 458		.create = mpol_new_interleave,
 459		.rebind = mpol_rebind_nodemask,
 460	},
 461	[MPOL_PREFERRED] = {
 462		.create = mpol_new_preferred,
 463		.rebind = mpol_rebind_preferred,
 464	},
 465	[MPOL_BIND] = {
 466		.create = mpol_new_bind,
 
 
 
 
 
 
 
 
 
 
 
 467		.rebind = mpol_rebind_nodemask,
 468	},
 469};
 470
 471static void migrate_page_add(struct page *page, struct list_head *pagelist,
 472				unsigned long flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474struct queue_pages {
 475	struct list_head *pagelist;
 476	unsigned long flags;
 477	nodemask_t *nmask;
 478	struct vm_area_struct *prev;
 
 
 
 
 479};
 480
 481/*
 482 * Scan through pages checking if pages follow certain conditions,
 483 * and move them to the pagelist if they do.
 
 
 484 */
 485static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486			unsigned long end, struct mm_walk *walk)
 487{
 488	struct vm_area_struct *vma = walk->vma;
 489	struct page *page;
 490	struct queue_pages *qp = walk->private;
 491	unsigned long flags = qp->flags;
 492	int nid, ret;
 493	pte_t *pte;
 494	spinlock_t *ptl;
 495
 496	if (pmd_trans_huge(*pmd)) {
 497		ptl = pmd_lock(walk->mm, pmd);
 498		if (pmd_trans_huge(*pmd)) {
 499			page = pmd_page(*pmd);
 500			if (is_huge_zero_page(page)) {
 501				spin_unlock(ptl);
 502				split_huge_pmd(vma, pmd, addr);
 503			} else {
 504				get_page(page);
 505				spin_unlock(ptl);
 506				lock_page(page);
 507				ret = split_huge_page(page);
 508				unlock_page(page);
 509				put_page(page);
 510				if (ret)
 511					return 0;
 512			}
 513		} else {
 514			spin_unlock(ptl);
 515		}
 516	}
 517
 518retry:
 519	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 
 
 
 520	for (; addr != end; pte++, addr += PAGE_SIZE) {
 521		if (!pte_present(*pte))
 
 
 
 
 
 522			continue;
 523		page = vm_normal_page(vma, addr, *pte);
 524		if (!page)
 
 525			continue;
 526		/*
 527		 * vm_normal_page() filters out zero pages, but there might
 528		 * still be PageReserved pages to skip, perhaps in a VDSO.
 529		 */
 530		if (PageReserved(page))
 531			continue;
 532		nid = page_to_nid(page);
 533		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 534			continue;
 535		if (PageTransCompound(page) && PageAnon(page)) {
 536			get_page(page);
 537			pte_unmap_unlock(pte, ptl);
 538			lock_page(page);
 539			ret = split_huge_page(page);
 540			unlock_page(page);
 541			put_page(page);
 542			/* Failed to split -- skip. */
 543			if (ret) {
 544				pte = pte_offset_map_lock(walk->mm, pmd,
 545						addr, &ptl);
 
 
 
 
 
 
 
 546				continue;
 547			}
 548			goto retry;
 
 
 
 
 
 
 549		}
 550
 551		migrate_page_add(page, qp->pagelist, flags);
 552	}
 553	pte_unmap_unlock(pte - 1, ptl);
 554	cond_resched();
 
 
 
 555	return 0;
 556}
 557
 558static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 559			       unsigned long addr, unsigned long end,
 560			       struct mm_walk *walk)
 561{
 562#ifdef CONFIG_HUGETLB_PAGE
 563	struct queue_pages *qp = walk->private;
 564	unsigned long flags = qp->flags;
 565	int nid;
 566	struct page *page;
 567	spinlock_t *ptl;
 568	pte_t entry;
 569
 570	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 571	entry = huge_ptep_get(pte);
 572	if (!pte_present(entry))
 
 
 
 
 
 
 573		goto unlock;
 574	page = pte_page(entry);
 575	nid = page_to_nid(page);
 576	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 577		goto unlock;
 578	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 579	if (flags & (MPOL_MF_MOVE_ALL) ||
 580	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 581		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 
 582unlock:
 583	spin_unlock(ptl);
 584#else
 585	BUG();
 586#endif
 587	return 0;
 588}
 589
 590#ifdef CONFIG_NUMA_BALANCING
 591/*
 592 * This is used to mark a range of virtual addresses to be inaccessible.
 593 * These are later cleared by a NUMA hinting fault. Depending on these
 594 * faults, pages may be migrated for better NUMA placement.
 595 *
 596 * This is assuming that NUMA faults are handled using PROT_NONE. If
 597 * an architecture makes a different choice, it will need further
 598 * changes to the core.
 599 */
 600unsigned long change_prot_numa(struct vm_area_struct *vma,
 601			unsigned long addr, unsigned long end)
 602{
 603	int nr_updated;
 
 604
 605	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 606	if (nr_updated)
 
 
 607		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 
 
 
 
 608
 609	return nr_updated;
 610}
 611#else
 612static unsigned long change_prot_numa(struct vm_area_struct *vma,
 613			unsigned long addr, unsigned long end)
 614{
 615	return 0;
 616}
 617#endif /* CONFIG_NUMA_BALANCING */
 618
 619static int queue_pages_test_walk(unsigned long start, unsigned long end,
 620				struct mm_walk *walk)
 621{
 622	struct vm_area_struct *vma = walk->vma;
 623	struct queue_pages *qp = walk->private;
 624	unsigned long endvma = vma->vm_end;
 625	unsigned long flags = qp->flags;
 626
 627	if (!vma_migratable(vma))
 628		return 1;
 629
 630	if (endvma > end)
 631		endvma = end;
 632	if (vma->vm_start > start)
 633		start = vma->vm_start;
 634
 635	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 636		if (!vma->vm_next && vma->vm_end < end)
 637			return -EFAULT;
 638		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 
 639			return -EFAULT;
 640	}
 
 
 
 
 
 
 641
 642	qp->prev = vma;
 643
 644	if (flags & MPOL_MF_LAZY) {
 645		/* Similar to task_numa_work, skip inaccessible VMAs */
 646		if (!is_vm_hugetlb_page(vma) &&
 647			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 648			!(vma->vm_flags & VM_MIXEDMAP))
 649			change_prot_numa(vma, start, endvma);
 650		return 1;
 651	}
 652
 653	/* queue pages from current vma */
 654	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 
 
 
 655		return 0;
 656	return 1;
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659/*
 660 * Walk through page tables and collect pages to be migrated.
 661 *
 662 * If pages found in a given range are on a set of nodes (determined by
 663 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 664 * passed via @private.)
 
 
 
 
 
 
 
 665 */
 666static int
 667queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 668		nodemask_t *nodes, unsigned long flags,
 669		struct list_head *pagelist)
 670{
 
 671	struct queue_pages qp = {
 672		.pagelist = pagelist,
 673		.flags = flags,
 674		.nmask = nodes,
 675		.prev = NULL,
 676	};
 677	struct mm_walk queue_pages_walk = {
 678		.hugetlb_entry = queue_pages_hugetlb,
 679		.pmd_entry = queue_pages_pte_range,
 680		.test_walk = queue_pages_test_walk,
 681		.mm = mm,
 682		.private = &qp,
 683	};
 
 
 
 
 684
 685	return walk_page_range(start, end, &queue_pages_walk);
 
 
 
 
 686}
 687
 688/*
 689 * Apply policy to a single VMA
 690 * This must be called with the mmap_sem held for writing.
 691 */
 692static int vma_replace_policy(struct vm_area_struct *vma,
 693						struct mempolicy *pol)
 694{
 695	int err;
 696	struct mempolicy *old;
 697	struct mempolicy *new;
 698
 699	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 700		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 701		 vma->vm_ops, vma->vm_file,
 702		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 703
 704	new = mpol_dup(pol);
 705	if (IS_ERR(new))
 706		return PTR_ERR(new);
 707
 708	if (vma->vm_ops && vma->vm_ops->set_policy) {
 709		err = vma->vm_ops->set_policy(vma, new);
 710		if (err)
 711			goto err_out;
 712	}
 713
 714	old = vma->vm_policy;
 715	vma->vm_policy = new; /* protected by mmap_sem */
 716	mpol_put(old);
 717
 718	return 0;
 719 err_out:
 720	mpol_put(new);
 721	return err;
 722}
 723
 724/* Step 2: apply policy to a range and do splits. */
 725static int mbind_range(struct mm_struct *mm, unsigned long start,
 726		       unsigned long end, struct mempolicy *new_pol)
 727{
 728	struct vm_area_struct *next;
 729	struct vm_area_struct *prev;
 730	struct vm_area_struct *vma;
 731	int err = 0;
 732	pgoff_t pgoff;
 733	unsigned long vmstart;
 734	unsigned long vmend;
 735
 736	vma = find_vma(mm, start);
 737	if (!vma || vma->vm_start > start)
 738		return -EFAULT;
 739
 740	prev = vma->vm_prev;
 741	if (start > vma->vm_start)
 742		prev = vma;
 743
 744	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 745		next = vma->vm_next;
 746		vmstart = max(start, vma->vm_start);
 747		vmend   = min(end, vma->vm_end);
 748
 749		if (mpol_equal(vma_policy(vma), new_pol))
 750			continue;
 751
 752		pgoff = vma->vm_pgoff +
 753			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 754		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 755				 vma->anon_vma, vma->vm_file, pgoff,
 756				 new_pol, vma->vm_userfaultfd_ctx);
 757		if (prev) {
 758			vma = prev;
 759			next = vma->vm_next;
 760			if (mpol_equal(vma_policy(vma), new_pol))
 761				continue;
 762			/* vma_merge() joined vma && vma->next, case 8 */
 763			goto replace;
 764		}
 765		if (vma->vm_start != vmstart) {
 766			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 767			if (err)
 768				goto out;
 769		}
 770		if (vma->vm_end != vmend) {
 771			err = split_vma(vma->vm_mm, vma, vmend, 0);
 772			if (err)
 773				goto out;
 774		}
 775 replace:
 776		err = vma_replace_policy(vma, new_pol);
 777		if (err)
 778			goto out;
 779	}
 780
 781 out:
 782	return err;
 
 
 
 
 783}
 784
 785/* Set the process memory policy */
 786static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 787			     nodemask_t *nodes)
 788{
 789	struct mempolicy *new, *old;
 790	NODEMASK_SCRATCH(scratch);
 791	int ret;
 792
 793	if (!scratch)
 794		return -ENOMEM;
 795
 796	new = mpol_new(mode, flags, nodes);
 797	if (IS_ERR(new)) {
 798		ret = PTR_ERR(new);
 799		goto out;
 800	}
 801
 802	task_lock(current);
 803	ret = mpol_set_nodemask(new, nodes, scratch);
 804	if (ret) {
 805		task_unlock(current);
 806		mpol_put(new);
 807		goto out;
 808	}
 
 809	old = current->mempolicy;
 810	current->mempolicy = new;
 811	if (new && new->mode == MPOL_INTERLEAVE &&
 812	    nodes_weight(new->v.nodes))
 813		current->il_next = first_node(new->v.nodes);
 
 
 814	task_unlock(current);
 815	mpol_put(old);
 816	ret = 0;
 817out:
 818	NODEMASK_SCRATCH_FREE(scratch);
 819	return ret;
 820}
 821
 822/*
 823 * Return nodemask for policy for get_mempolicy() query
 824 *
 825 * Called with task's alloc_lock held
 826 */
 827static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 828{
 829	nodes_clear(*nodes);
 830	if (p == &default_policy)
 831		return;
 832
 833	switch (p->mode) {
 834	case MPOL_BIND:
 835		/* Fall through */
 836	case MPOL_INTERLEAVE:
 837		*nodes = p->v.nodes;
 838		break;
 839	case MPOL_PREFERRED:
 840		if (!(p->flags & MPOL_F_LOCAL))
 841			node_set(p->v.preferred_node, *nodes);
 842		/* else return empty node mask for local allocation */
 
 
 
 843		break;
 844	default:
 845		BUG();
 846	}
 847}
 848
 849static int lookup_node(unsigned long addr)
 850{
 851	struct page *p;
 852	int err;
 853
 854	err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 855	if (err >= 0) {
 856		err = page_to_nid(p);
 857		put_page(p);
 858	}
 859	return err;
 860}
 861
 862/* Retrieve NUMA policy */
 863static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 864			     unsigned long addr, unsigned long flags)
 865{
 866	int err;
 867	struct mm_struct *mm = current->mm;
 868	struct vm_area_struct *vma = NULL;
 869	struct mempolicy *pol = current->mempolicy;
 870
 871	if (flags &
 872		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 873		return -EINVAL;
 874
 875	if (flags & MPOL_F_MEMS_ALLOWED) {
 876		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 877			return -EINVAL;
 878		*policy = 0;	/* just so it's initialized */
 879		task_lock(current);
 880		*nmask  = cpuset_current_mems_allowed;
 881		task_unlock(current);
 882		return 0;
 883	}
 884
 885	if (flags & MPOL_F_ADDR) {
 
 886		/*
 887		 * Do NOT fall back to task policy if the
 888		 * vma/shared policy at addr is NULL.  We
 889		 * want to return MPOL_DEFAULT in this case.
 890		 */
 891		down_read(&mm->mmap_sem);
 892		vma = find_vma_intersection(mm, addr, addr+1);
 893		if (!vma) {
 894			up_read(&mm->mmap_sem);
 895			return -EFAULT;
 896		}
 897		if (vma->vm_ops && vma->vm_ops->get_policy)
 898			pol = vma->vm_ops->get_policy(vma, addr);
 899		else
 900			pol = vma->vm_policy;
 901	} else if (addr)
 902		return -EINVAL;
 903
 904	if (!pol)
 905		pol = &default_policy;	/* indicates default behavior */
 906
 907	if (flags & MPOL_F_NODE) {
 908		if (flags & MPOL_F_ADDR) {
 909			err = lookup_node(addr);
 
 
 
 
 
 
 
 
 
 910			if (err < 0)
 911				goto out;
 912			*policy = err;
 913		} else if (pol == current->mempolicy &&
 914				pol->mode == MPOL_INTERLEAVE) {
 915			*policy = current->il_next;
 
 
 
 
 
 
 
 916		} else {
 917			err = -EINVAL;
 918			goto out;
 919		}
 920	} else {
 921		*policy = pol == &default_policy ? MPOL_DEFAULT :
 922						pol->mode;
 923		/*
 924		 * Internal mempolicy flags must be masked off before exposing
 925		 * the policy to userspace.
 926		 */
 927		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 928	}
 929
 930	if (vma) {
 931		up_read(&current->mm->mmap_sem);
 932		vma = NULL;
 933	}
 934
 935	err = 0;
 936	if (nmask) {
 937		if (mpol_store_user_nodemask(pol)) {
 938			*nmask = pol->w.user_nodemask;
 939		} else {
 940			task_lock(current);
 941			get_policy_nodemask(pol, nmask);
 942			task_unlock(current);
 943		}
 944	}
 945
 946 out:
 947	mpol_cond_put(pol);
 948	if (vma)
 949		up_read(&current->mm->mmap_sem);
 
 
 950	return err;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954/*
 955 * page migration
 956 */
 957static void migrate_page_add(struct page *page, struct list_head *pagelist,
 958				unsigned long flags)
 959{
 960	/*
 961	 * Avoid migrating a page that is shared with others.
 
 
 
 
 962	 */
 963	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 964		if (!isolate_lru_page(page)) {
 965			list_add_tail(&page->lru, pagelist);
 966			inc_zone_page_state(page, NR_ISOLATED_ANON +
 967					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 968		}
 969	}
 970}
 971
 972static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 973{
 974	if (PageHuge(page))
 975		return alloc_huge_page_node(page_hstate(compound_head(page)),
 976					node);
 977	else
 978		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 979						    __GFP_THISNODE, 0);
 980}
 981
 982/*
 983 * Migrate pages from one node to a target node.
 984 * Returns error or the number of pages not migrated.
 985 */
 986static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 987			   int flags)
 988{
 989	nodemask_t nmask;
 
 990	LIST_HEAD(pagelist);
 991	int err = 0;
 
 
 
 
 
 
 992
 993	nodes_clear(nmask);
 994	node_set(source, nmask);
 995
 
 
 
 
 
 
 
 
 
 996	/*
 997	 * This does not "check" the range but isolates all pages that
 998	 * need migration.  Between passing in the full user address
 999	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 
1000	 */
1001	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1002	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1003			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1004
1005	if (!list_empty(&pagelist)) {
1006		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1007					MIGRATE_SYNC, MR_SYSCALL);
1008		if (err)
1009			putback_movable_pages(&pagelist);
1010	}
1011
 
 
1012	return err;
1013}
1014
1015/*
1016 * Move pages between the two nodesets so as to preserve the physical
1017 * layout as much as possible.
1018 *
1019 * Returns the number of page that could not be moved.
1020 */
1021int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1022		     const nodemask_t *to, int flags)
1023{
1024	int busy = 0;
1025	int err;
1026	nodemask_t tmp;
1027
1028	err = migrate_prep();
1029	if (err)
1030		return err;
1031
1032	down_read(&mm->mmap_sem);
1033
1034	/*
1035	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1036	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1037	 * bit in 'tmp', and return that <source, dest> pair for migration.
1038	 * The pair of nodemasks 'to' and 'from' define the map.
1039	 *
1040	 * If no pair of bits is found that way, fallback to picking some
1041	 * pair of 'source' and 'dest' bits that are not the same.  If the
1042	 * 'source' and 'dest' bits are the same, this represents a node
1043	 * that will be migrating to itself, so no pages need move.
1044	 *
1045	 * If no bits are left in 'tmp', or if all remaining bits left
1046	 * in 'tmp' correspond to the same bit in 'to', return false
1047	 * (nothing left to migrate).
1048	 *
1049	 * This lets us pick a pair of nodes to migrate between, such that
1050	 * if possible the dest node is not already occupied by some other
1051	 * source node, minimizing the risk of overloading the memory on a
1052	 * node that would happen if we migrated incoming memory to a node
1053	 * before migrating outgoing memory source that same node.
1054	 *
1055	 * A single scan of tmp is sufficient.  As we go, we remember the
1056	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1057	 * that not only moved, but what's better, moved to an empty slot
1058	 * (d is not set in tmp), then we break out then, with that pair.
1059	 * Otherwise when we finish scanning from_tmp, we at least have the
1060	 * most recent <s, d> pair that moved.  If we get all the way through
1061	 * the scan of tmp without finding any node that moved, much less
1062	 * moved to an empty node, then there is nothing left worth migrating.
1063	 */
1064
1065	tmp = *from;
1066	while (!nodes_empty(tmp)) {
1067		int s,d;
1068		int source = NUMA_NO_NODE;
1069		int dest = 0;
1070
1071		for_each_node_mask(s, tmp) {
1072
1073			/*
1074			 * do_migrate_pages() tries to maintain the relative
1075			 * node relationship of the pages established between
1076			 * threads and memory areas.
1077                         *
1078			 * However if the number of source nodes is not equal to
1079			 * the number of destination nodes we can not preserve
1080			 * this node relative relationship.  In that case, skip
1081			 * copying memory from a node that is in the destination
1082			 * mask.
1083			 *
1084			 * Example: [2,3,4] -> [3,4,5] moves everything.
1085			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1086			 */
1087
1088			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1089						(node_isset(s, *to)))
1090				continue;
1091
1092			d = node_remap(s, *from, *to);
1093			if (s == d)
1094				continue;
1095
1096			source = s;	/* Node moved. Memorize */
1097			dest = d;
1098
1099			/* dest not in remaining from nodes? */
1100			if (!node_isset(dest, tmp))
1101				break;
1102		}
1103		if (source == NUMA_NO_NODE)
1104			break;
1105
1106		node_clear(source, tmp);
1107		err = migrate_to_node(mm, source, dest, flags);
1108		if (err > 0)
1109			busy += err;
1110		if (err < 0)
1111			break;
1112	}
1113	up_read(&mm->mmap_sem);
 
1114	if (err < 0)
1115		return err;
1116	return busy;
1117
1118}
1119
1120/*
1121 * Allocate a new page for page migration based on vma policy.
1122 * Start by assuming the page is mapped by the same vma as contains @start.
1123 * Search forward from there, if not.  N.B., this assumes that the
1124 * list of pages handed to migrate_pages()--which is how we get here--
1125 * is in virtual address order.
1126 */
1127static struct page *new_page(struct page *page, unsigned long start, int **x)
 
1128{
1129	struct vm_area_struct *vma;
1130	unsigned long uninitialized_var(address);
 
 
 
 
1131
1132	vma = find_vma(current->mm, start);
1133	while (vma) {
1134		address = page_address_in_vma(page, vma);
1135		if (address != -EFAULT)
1136			break;
1137		vma = vma->vm_next;
1138	}
1139
1140	if (PageHuge(page)) {
1141		BUG_ON(!vma);
1142		return alloc_huge_page_noerr(vma, address, 1);
 
 
1143	}
1144	/*
1145	 * if !vma, alloc_page_vma() will use task or system default policy
1146	 */
1147	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
1148}
1149#else
1150
1151static void migrate_page_add(struct page *page, struct list_head *pagelist,
1152				unsigned long flags)
1153{
 
1154}
1155
1156int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1157		     const nodemask_t *to, int flags)
1158{
1159	return -ENOSYS;
1160}
1161
1162static struct page *new_page(struct page *page, unsigned long start, int **x)
 
1163{
1164	return NULL;
1165}
1166#endif
1167
1168static long do_mbind(unsigned long start, unsigned long len,
1169		     unsigned short mode, unsigned short mode_flags,
1170		     nodemask_t *nmask, unsigned long flags)
1171{
1172	struct mm_struct *mm = current->mm;
 
 
 
1173	struct mempolicy *new;
1174	unsigned long end;
1175	int err;
 
1176	LIST_HEAD(pagelist);
1177
1178	if (flags & ~(unsigned long)MPOL_MF_VALID)
1179		return -EINVAL;
1180	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1181		return -EPERM;
1182
1183	if (start & ~PAGE_MASK)
1184		return -EINVAL;
1185
1186	if (mode == MPOL_DEFAULT)
1187		flags &= ~MPOL_MF_STRICT;
1188
1189	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1190	end = start + len;
1191
1192	if (end < start)
1193		return -EINVAL;
1194	if (end == start)
1195		return 0;
1196
1197	new = mpol_new(mode, mode_flags, nmask);
1198	if (IS_ERR(new))
1199		return PTR_ERR(new);
1200
1201	if (flags & MPOL_MF_LAZY)
1202		new->flags |= MPOL_F_MOF;
1203
1204	/*
1205	 * If we are using the default policy then operation
1206	 * on discontinuous address spaces is okay after all
1207	 */
1208	if (!new)
1209		flags |= MPOL_MF_DISCONTIG_OK;
1210
1211	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1212		 start, start + len, mode, mode_flags,
1213		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1214
1215	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1216
1217		err = migrate_prep();
1218		if (err)
1219			goto mpol_out;
1220	}
1221	{
1222		NODEMASK_SCRATCH(scratch);
1223		if (scratch) {
1224			down_write(&mm->mmap_sem);
1225			task_lock(current);
1226			err = mpol_set_nodemask(new, nmask, scratch);
1227			task_unlock(current);
1228			if (err)
1229				up_write(&mm->mmap_sem);
1230		} else
1231			err = -ENOMEM;
1232		NODEMASK_SCRATCH_FREE(scratch);
1233	}
1234	if (err)
1235		goto mpol_out;
1236
1237	err = queue_pages_range(mm, start, end, nmask,
1238			  flags | MPOL_MF_INVERT, &pagelist);
1239	if (!err)
1240		err = mbind_range(mm, start, end, new);
 
 
1241
1242	if (!err) {
1243		int nr_failed = 0;
 
 
 
 
 
 
 
 
 
 
1244
1245		if (!list_empty(&pagelist)) {
1246			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1247			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1248				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1249			if (nr_failed)
1250				putback_movable_pages(&pagelist);
1251		}
 
 
1252
1253		if (nr_failed && (flags & MPOL_MF_STRICT))
1254			err = -EIO;
1255	} else
1256		putback_movable_pages(&pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257
1258	up_write(&mm->mmap_sem);
1259 mpol_out:
 
 
 
1260	mpol_put(new);
 
 
1261	return err;
1262}
1263
1264/*
1265 * User space interface with variable sized bitmaps for nodelists.
1266 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267
1268/* Copy a node mask from user space. */
1269static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1270		     unsigned long maxnode)
1271{
1272	unsigned long k;
1273	unsigned long nlongs;
1274	unsigned long endmask;
1275
1276	--maxnode;
1277	nodes_clear(*nodes);
1278	if (maxnode == 0 || !nmask)
1279		return 0;
1280	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1281		return -EINVAL;
1282
1283	nlongs = BITS_TO_LONGS(maxnode);
1284	if ((maxnode % BITS_PER_LONG) == 0)
1285		endmask = ~0UL;
1286	else
1287		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 
 
 
1288
1289	/* When the user specified more nodes than supported just check
1290	   if the non supported part is all zero. */
1291	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292		if (nlongs > PAGE_SIZE/sizeof(long))
1293			return -EINVAL;
1294		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295			unsigned long t;
1296			if (get_user(t, nmask + k))
1297				return -EFAULT;
1298			if (k == nlongs - 1) {
1299				if (t & endmask)
1300					return -EINVAL;
1301			} else if (t)
1302				return -EINVAL;
1303		}
1304		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305		endmask = ~0UL;
1306	}
1307
1308	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1309		return -EFAULT;
1310	nodes_addr(*nodes)[nlongs-1] &= endmask;
1311	return 0;
1312}
1313
1314/* Copy a kernel node mask to user space */
1315static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1316			      nodemask_t *nodes)
1317{
1318	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1319	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 
 
 
 
1320
1321	if (copy > nbytes) {
1322		if (copy > PAGE_SIZE)
1323			return -EINVAL;
1324		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1325			return -EFAULT;
1326		copy = nbytes;
 
1327	}
 
 
 
 
 
1328	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329}
1330
1331SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1332		unsigned long, mode, const unsigned long __user *, nmask,
1333		unsigned long, maxnode, unsigned, flags)
1334{
1335	nodemask_t nodes;
1336	int err;
1337	unsigned short mode_flags;
1338
1339	mode_flags = mode & MPOL_MODE_FLAGS;
1340	mode &= ~MPOL_MODE_FLAGS;
1341	if (mode >= MPOL_MAX)
1342		return -EINVAL;
1343	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1344	    (mode_flags & MPOL_F_RELATIVE_NODES))
1345		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	err = get_nodes(&nodes, nmask, maxnode);
1347	if (err)
1348		return err;
1349	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1350}
1351
1352/* Set the process memory policy */
1353SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1354		unsigned long, maxnode)
1355{
1356	int err;
1357	nodemask_t nodes;
1358	unsigned short flags;
 
 
 
 
 
 
 
 
 
 
 
 
1359
1360	flags = mode & MPOL_MODE_FLAGS;
1361	mode &= ~MPOL_MODE_FLAGS;
1362	if ((unsigned int)mode >= MPOL_MAX)
 
 
1363		return -EINVAL;
1364	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
 
 
 
 
1365		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366	err = get_nodes(&nodes, nmask, maxnode);
1367	if (err)
1368		return err;
1369	return do_set_mempolicy(mode, flags, &nodes);
 
1370}
1371
1372SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1373		const unsigned long __user *, old_nodes,
1374		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1375{
1376	const struct cred *cred = current_cred(), *tcred;
1377	struct mm_struct *mm = NULL;
1378	struct task_struct *task;
1379	nodemask_t task_nodes;
1380	int err;
1381	nodemask_t *old;
1382	nodemask_t *new;
1383	NODEMASK_SCRATCH(scratch);
1384
1385	if (!scratch)
1386		return -ENOMEM;
1387
1388	old = &scratch->mask1;
1389	new = &scratch->mask2;
1390
1391	err = get_nodes(old, old_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	err = get_nodes(new, new_nodes, maxnode);
1396	if (err)
1397		goto out;
1398
1399	/* Find the mm_struct */
1400	rcu_read_lock();
1401	task = pid ? find_task_by_vpid(pid) : current;
1402	if (!task) {
1403		rcu_read_unlock();
1404		err = -ESRCH;
1405		goto out;
1406	}
1407	get_task_struct(task);
1408
1409	err = -EINVAL;
1410
1411	/*
1412	 * Check if this process has the right to modify the specified
1413	 * process. The right exists if the process has administrative
1414	 * capabilities, superuser privileges or the same
1415	 * userid as the target process.
1416	 */
1417	tcred = __task_cred(task);
1418	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1419	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1420	    !capable(CAP_SYS_NICE)) {
1421		rcu_read_unlock();
1422		err = -EPERM;
1423		goto out_put;
1424	}
1425	rcu_read_unlock();
1426
1427	task_nodes = cpuset_mems_allowed(task);
1428	/* Is the user allowed to access the target nodes? */
1429	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1430		err = -EPERM;
1431		goto out_put;
1432	}
1433
1434	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1435		err = -EINVAL;
 
1436		goto out_put;
1437	}
1438
1439	err = security_task_movememory(task);
1440	if (err)
1441		goto out_put;
1442
1443	mm = get_task_mm(task);
1444	put_task_struct(task);
1445
1446	if (!mm) {
1447		err = -EINVAL;
1448		goto out;
1449	}
1450
1451	err = do_migrate_pages(mm, old, new,
1452		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1453
1454	mmput(mm);
1455out:
1456	NODEMASK_SCRATCH_FREE(scratch);
1457
1458	return err;
1459
1460out_put:
1461	put_task_struct(task);
1462	goto out;
1463
1464}
1465
 
 
 
 
 
 
1466
1467/* Retrieve NUMA policy */
1468SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1469		unsigned long __user *, nmask, unsigned long, maxnode,
1470		unsigned long, addr, unsigned long, flags)
 
 
1471{
1472	int err;
1473	int uninitialized_var(pval);
1474	nodemask_t nodes;
1475
1476	if (nmask != NULL && maxnode < MAX_NUMNODES)
1477		return -EINVAL;
1478
 
 
1479	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1480
1481	if (err)
1482		return err;
1483
1484	if (policy && put_user(pval, policy))
1485		return -EFAULT;
1486
1487	if (nmask)
1488		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1489
1490	return err;
1491}
1492
1493#ifdef CONFIG_COMPAT
1494
1495COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1496		       compat_ulong_t __user *, nmask,
1497		       compat_ulong_t, maxnode,
1498		       compat_ulong_t, addr, compat_ulong_t, flags)
1499{
1500	long err;
1501	unsigned long __user *nm = NULL;
1502	unsigned long nr_bits, alloc_size;
1503	DECLARE_BITMAP(bm, MAX_NUMNODES);
1504
1505	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1506	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507
1508	if (nmask)
1509		nm = compat_alloc_user_space(alloc_size);
1510
1511	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1512
1513	if (!err && nmask) {
1514		unsigned long copy_size;
1515		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1516		err = copy_from_user(bm, nm, copy_size);
1517		/* ensure entire bitmap is zeroed */
1518		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1519		err |= compat_put_bitmap(nmask, bm, nr_bits);
1520	}
1521
1522	return err;
1523}
1524
1525COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1526		       compat_ulong_t, maxnode)
1527{
1528	long err = 0;
1529	unsigned long __user *nm = NULL;
1530	unsigned long nr_bits, alloc_size;
1531	DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536	if (nmask) {
1537		err = compat_get_bitmap(bm, nmask, nr_bits);
1538		nm = compat_alloc_user_space(alloc_size);
1539		err |= copy_to_user(nm, bm, alloc_size);
1540	}
1541
1542	if (err)
1543		return -EFAULT;
1544
1545	return sys_set_mempolicy(mode, nm, nr_bits+1);
1546}
1547
1548COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1549		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1550		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1551{
1552	long err = 0;
1553	unsigned long __user *nm = NULL;
1554	unsigned long nr_bits, alloc_size;
1555	nodemask_t bm;
1556
1557	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559
1560	if (nmask) {
1561		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1562		nm = compat_alloc_user_space(alloc_size);
1563		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1564	}
 
1565
1566	if (err)
1567		return -EFAULT;
 
1568
1569	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
1570}
1571
1572#endif
1573
1574struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1575						unsigned long addr)
1576{
1577	struct mempolicy *pol = NULL;
1578
1579	if (vma) {
1580		if (vma->vm_ops && vma->vm_ops->get_policy) {
1581			pol = vma->vm_ops->get_policy(vma, addr);
1582		} else if (vma->vm_policy) {
1583			pol = vma->vm_policy;
1584
1585			/*
1586			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588			 * count on these policies which will be dropped by
1589			 * mpol_cond_put() later
1590			 */
1591			if (mpol_needs_cond_ref(pol))
1592				mpol_get(pol);
1593		}
1594	}
1595
1596	return pol;
1597}
1598
1599/*
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
 
 
 
1603 *
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task.  It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1610 */
1611static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1612						unsigned long addr)
1613{
1614	struct mempolicy *pol = __get_vma_policy(vma, addr);
1615
 
1616	if (!pol)
1617		pol = get_task_policy(current);
1618
 
 
 
 
1619	return pol;
1620}
1621
1622bool vma_policy_mof(struct vm_area_struct *vma)
1623{
1624	struct mempolicy *pol;
1625
1626	if (vma->vm_ops && vma->vm_ops->get_policy) {
1627		bool ret = false;
 
1628
1629		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630		if (pol && (pol->flags & MPOL_F_MOF))
1631			ret = true;
1632		mpol_cond_put(pol);
1633
1634		return ret;
1635	}
1636
1637	pol = vma->vm_policy;
1638	if (!pol)
1639		pol = get_task_policy(current);
1640
1641	return pol->flags & MPOL_F_MOF;
1642}
1643
1644static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1645{
1646	enum zone_type dynamic_policy_zone = policy_zone;
1647
1648	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1649
1650	/*
1651	 * if policy->v.nodes has movable memory only,
1652	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1653	 *
1654	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655	 * so if the following test faile, it implies
1656	 * policy->v.nodes has movable memory only.
1657	 */
1658	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659		dynamic_policy_zone = ZONE_MOVABLE;
1660
1661	return zone >= dynamic_policy_zone;
1662}
1663
1664/*
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1666 * page allocation
1667 */
1668static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1669{
1670	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1671	if (unlikely(policy->mode == MPOL_BIND) &&
1672			apply_policy_zone(policy, gfp_zone(gfp)) &&
1673			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674		return &policy->v.nodes;
1675
1676	return NULL;
1677}
1678
1679/* Return a zonelist indicated by gfp for node representing a mempolicy */
1680static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1681	int nd)
1682{
1683	switch (policy->mode) {
1684	case MPOL_PREFERRED:
1685		if (!(policy->flags & MPOL_F_LOCAL))
1686			nd = policy->v.preferred_node;
1687		break;
1688	case MPOL_BIND:
1689		/*
1690		 * Normally, MPOL_BIND allocations are node-local within the
1691		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1692		 * current node isn't part of the mask, we use the zonelist for
1693		 * the first node in the mask instead.
1694		 */
1695		if (unlikely(gfp & __GFP_THISNODE) &&
1696				unlikely(!node_isset(nd, policy->v.nodes)))
1697			nd = first_node(policy->v.nodes);
1698		break;
1699	default:
1700		BUG();
1701	}
1702	return node_zonelist(nd, gfp);
 
1703}
1704
1705/* Do dynamic interleaving for a process */
1706static unsigned interleave_nodes(struct mempolicy *policy)
1707{
1708	unsigned nid, next;
1709	struct task_struct *me = current;
 
 
 
 
 
 
1710
1711	nid = me->il_next;
1712	next = next_node(nid, policy->v.nodes);
1713	if (next >= MAX_NUMNODES)
1714		next = first_node(policy->v.nodes);
1715	if (next < MAX_NUMNODES)
1716		me->il_next = next;
1717	return nid;
1718}
1719
1720/*
1721 * Depending on the memory policy provide a node from which to allocate the
1722 * next slab entry.
1723 */
1724unsigned int mempolicy_slab_node(void)
1725{
1726	struct mempolicy *policy;
1727	int node = numa_mem_id();
1728
1729	if (in_interrupt())
1730		return node;
1731
1732	policy = current->mempolicy;
1733	if (!policy || policy->flags & MPOL_F_LOCAL)
1734		return node;
1735
1736	switch (policy->mode) {
1737	case MPOL_PREFERRED:
1738		/*
1739		 * handled MPOL_F_LOCAL above
1740		 */
1741		return policy->v.preferred_node;
1742
1743	case MPOL_INTERLEAVE:
1744		return interleave_nodes(policy);
1745
1746	case MPOL_BIND: {
 
 
 
 
 
 
 
1747		/*
1748		 * Follow bind policy behavior and start allocation at the
1749		 * first node.
1750		 */
1751		struct zonelist *zonelist;
1752		struct zone *zone;
1753		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1754		zonelist = &NODE_DATA(node)->node_zonelists[0];
1755		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1756							&policy->v.nodes,
1757							&zone);
1758		return zone ? zone->node : node;
1759	}
 
 
1760
1761	default:
1762		BUG();
1763	}
1764}
1765
1766/* Do static interleaving for a VMA with known offset. */
1767static unsigned offset_il_node(struct mempolicy *pol,
1768		struct vm_area_struct *vma, unsigned long off)
1769{
1770	unsigned nnodes = nodes_weight(pol->v.nodes);
1771	unsigned target;
1772	int c;
1773	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	if (!nnodes)
 
1776		return numa_node_id();
1777	target = (unsigned int)off % nnodes;
1778	c = 0;
1779	do {
1780		nid = next_node(nid, pol->v.nodes);
1781		c++;
1782	} while (c <= target);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783	return nid;
1784}
1785
1786/* Determine a node number for interleave */
1787static inline unsigned interleave_nid(struct mempolicy *pol,
1788		 struct vm_area_struct *vma, unsigned long addr, int shift)
1789{
1790	if (vma) {
1791		unsigned long off;
 
 
 
 
 
1792
1793		/*
1794		 * for small pages, there is no difference between
1795		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1796		 * for huge pages, since vm_pgoff is in units of small
1797		 * pages, we need to shift off the always 0 bits to get
1798		 * a useful offset.
1799		 */
1800		BUG_ON(shift < PAGE_SHIFT);
1801		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1802		off += (addr - vma->vm_start) >> shift;
1803		return offset_il_node(pol, vma, off);
1804	} else
1805		return interleave_nodes(pol);
1806}
1807
1808/*
1809 * Return the bit number of a random bit set in the nodemask.
1810 * (returns NUMA_NO_NODE if nodemask is empty)
1811 */
1812int node_random(const nodemask_t *maskp)
 
1813{
1814	int w, bit = NUMA_NO_NODE;
1815
1816	w = nodes_weight(*maskp);
1817	if (w)
1818		bit = bitmap_ord_to_pos(maskp->bits,
1819			get_random_int() % w, MAX_NUMNODES);
1820	return bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821}
1822
1823#ifdef CONFIG_HUGETLBFS
1824/*
1825 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup and interleave policy
1828 * @gfp_flags: for requested zone
1829 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1830 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1831 *
1832 * Returns a zonelist suitable for a huge page allocation and a pointer
1833 * to the struct mempolicy for conditional unref after allocation.
1834 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1835 * @nodemask for filtering the zonelist.
1836 *
1837 * Must be protected by read_mems_allowed_begin()
1838 */
1839struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1840				gfp_t gfp_flags, struct mempolicy **mpol,
1841				nodemask_t **nodemask)
1842{
1843	struct zonelist *zl;
1844
1845	*mpol = get_vma_policy(vma, addr);
1846	*nodemask = NULL;	/* assume !MPOL_BIND */
1847
1848	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1849		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1850				huge_page_shift(hstate_vma(vma))), gfp_flags);
1851	} else {
1852		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1853		if ((*mpol)->mode == MPOL_BIND)
1854			*nodemask = &(*mpol)->v.nodes;
1855	}
1856	return zl;
1857}
1858
1859/*
1860 * init_nodemask_of_mempolicy
1861 *
1862 * If the current task's mempolicy is "default" [NULL], return 'false'
1863 * to indicate default policy.  Otherwise, extract the policy nodemask
1864 * for 'bind' or 'interleave' policy into the argument nodemask, or
1865 * initialize the argument nodemask to contain the single node for
1866 * 'preferred' or 'local' policy and return 'true' to indicate presence
1867 * of non-default mempolicy.
1868 *
1869 * We don't bother with reference counting the mempolicy [mpol_get/put]
1870 * because the current task is examining it's own mempolicy and a task's
1871 * mempolicy is only ever changed by the task itself.
1872 *
1873 * N.B., it is the caller's responsibility to free a returned nodemask.
1874 */
1875bool init_nodemask_of_mempolicy(nodemask_t *mask)
1876{
1877	struct mempolicy *mempolicy;
1878	int nid;
1879
1880	if (!(mask && current->mempolicy))
1881		return false;
1882
1883	task_lock(current);
1884	mempolicy = current->mempolicy;
1885	switch (mempolicy->mode) {
1886	case MPOL_PREFERRED:
1887		if (mempolicy->flags & MPOL_F_LOCAL)
1888			nid = numa_node_id();
1889		else
1890			nid = mempolicy->v.preferred_node;
1891		init_nodemask_of_node(mask, nid);
1892		break;
1893
1894	case MPOL_BIND:
1895		/* Fall through */
1896	case MPOL_INTERLEAVE:
1897		*mask =  mempolicy->v.nodes;
 
 
 
 
 
1898		break;
1899
1900	default:
1901		BUG();
1902	}
1903	task_unlock(current);
1904
1905	return true;
1906}
1907#endif
1908
1909/*
1910 * mempolicy_nodemask_intersects
1911 *
1912 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1913 * policy.  Otherwise, check for intersection between mask and the policy
1914 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1915 * policy, always return true since it may allocate elsewhere on fallback.
1916 *
1917 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1918 */
1919bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1920					const nodemask_t *mask)
1921{
1922	struct mempolicy *mempolicy;
1923	bool ret = true;
1924
1925	if (!mask)
1926		return ret;
 
1927	task_lock(tsk);
1928	mempolicy = tsk->mempolicy;
1929	if (!mempolicy)
1930		goto out;
1931
1932	switch (mempolicy->mode) {
1933	case MPOL_PREFERRED:
1934		/*
1935		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1936		 * allocate from, they may fallback to other nodes when oom.
1937		 * Thus, it's possible for tsk to have allocated memory from
1938		 * nodes in mask.
1939		 */
1940		break;
1941	case MPOL_BIND:
1942	case MPOL_INTERLEAVE:
1943		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1944		break;
1945	default:
1946		BUG();
1947	}
1948out:
1949	task_unlock(tsk);
 
1950	return ret;
1951}
1952
1953/* Allocate a page in interleaved policy.
1954   Own path because it needs to do special accounting. */
1955static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1956					unsigned nid)
1957{
1958	struct zonelist *zl;
1959	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
1960
1961	zl = node_zonelist(nid, gfp);
1962	page = __alloc_pages(gfp, order, zl);
1963	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1964		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1965	return page;
1966}
1967
1968/**
1969 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
1970 *
1971 * 	@gfp:
1972 *      %GFP_USER    user allocation.
1973 *      %GFP_KERNEL  kernel allocations,
1974 *      %GFP_HIGHMEM highmem/user allocations,
1975 *      %GFP_FS      allocation should not call back into a file system.
1976 *      %GFP_ATOMIC  don't sleep.
1977 *
1978 *	@order:Order of the GFP allocation.
1979 * 	@vma:  Pointer to VMA or NULL if not available.
1980 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1981 *	@node: Which node to prefer for allocation (modulo policy).
1982 *	@hugepage: for hugepages try only the preferred node if possible
1983 *
1984 * 	This function allocates a page from the kernel page pool and applies
1985 *	a NUMA policy associated with the VMA or the current process.
1986 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1987 *	mm_struct of the VMA to prevent it from going away. Should be used for
1988 *	all allocations for pages that will be mapped into user space. Returns
1989 *	NULL when no page can be allocated.
1990 */
1991struct page *
1992alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1993		unsigned long addr, int node, bool hugepage)
1994{
1995	struct mempolicy *pol;
1996	struct page *page;
1997	unsigned int cpuset_mems_cookie;
1998	struct zonelist *zl;
1999	nodemask_t *nmask;
2000
2001retry_cpuset:
2002	pol = get_vma_policy(vma, addr);
2003	cpuset_mems_cookie = read_mems_allowed_begin();
2004
2005	if (pol->mode == MPOL_INTERLEAVE) {
2006		unsigned nid;
2007
2008		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2009		mpol_cond_put(pol);
2010		page = alloc_page_interleave(gfp, order, nid);
2011		goto out;
2012	}
2013
2014	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2015		int hpage_node = node;
2016
 
 
 
2017		/*
2018		 * For hugepage allocation and non-interleave policy which
2019		 * allows the current node (or other explicitly preferred
2020		 * node) we only try to allocate from the current/preferred
2021		 * node and don't fall back to other nodes, as the cost of
2022		 * remote accesses would likely offset THP benefits.
2023		 *
2024		 * If the policy is interleave, or does not allow the current
2025		 * node in its nodemask, we allocate the standard way.
2026		 */
2027		if (pol->mode == MPOL_PREFERRED &&
2028						!(pol->flags & MPOL_F_LOCAL))
2029			hpage_node = pol->v.preferred_node;
2030
2031		nmask = policy_nodemask(gfp, pol);
2032		if (!nmask || node_isset(hpage_node, *nmask)) {
2033			mpol_cond_put(pol);
2034			page = __alloc_pages_node(hpage_node,
2035						gfp | __GFP_THISNODE, order);
2036			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2037		}
2038	}
2039
2040	nmask = policy_nodemask(gfp, pol);
2041	zl = policy_zonelist(gfp, pol, node);
2042	mpol_cond_put(pol);
2043	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2044out:
2045	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046		goto retry_cpuset;
2047	return page;
2048}
2049
 
 
 
 
 
 
 
2050/**
2051 * 	alloc_pages_current - Allocate pages.
 
 
 
 
 
 
 
 
 
 
2052 *
2053 *	@gfp:
2054 *		%GFP_USER   user allocation,
2055 *      	%GFP_KERNEL kernel allocation,
2056 *      	%GFP_HIGHMEM highmem allocation,
2057 *      	%GFP_FS     don't call back into a file system.
2058 *      	%GFP_ATOMIC don't sleep.
2059 *	@order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 *	Allocate a page from the kernel page pool.  When not in
2062 *	interrupt context and apply the current process NUMA policy.
2063 *	Returns NULL when no page can be allocated.
2064 *
2065 *	Don't call cpuset_update_task_memory_state() unless
2066 *	1) it's ok to take cpuset_sem (can WAIT), and
2067 *	2) allocating for current task (not interrupt).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068 */
2069struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070{
2071	struct mempolicy *pol = &default_policy;
2072	struct page *page;
2073	unsigned int cpuset_mems_cookie;
2074
 
 
 
 
2075	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2076		pol = get_task_policy(current);
2077
2078retry_cpuset:
2079	cpuset_mems_cookie = read_mems_allowed_begin();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080
2081	/*
2082	 * No reference counting needed for current->mempolicy
2083	 * nor system default_policy
 
 
 
2084	 */
2085	if (pol->mode == MPOL_INTERLEAVE)
2086		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2087	else
2088		page = __alloc_pages_nodemask(gfp, order,
2089				policy_zonelist(gfp, pol, numa_node_id()),
2090				policy_nodemask(gfp, pol));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091
2092	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093		goto retry_cpuset;
 
 
 
 
2094
2095	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096}
2097EXPORT_SYMBOL(alloc_pages_current);
2098
2099int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100{
2101	struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103	if (IS_ERR(pol))
2104		return PTR_ERR(pol);
2105	dst->vm_policy = pol;
2106	return 0;
2107}
2108
2109/*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed().  This
2113 * keeps mempolicies cpuset relative after its cpuset moves.  See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120/* Slow path of a mempolicy duplicate */
2121struct mempolicy *__mpol_dup(struct mempolicy *old)
2122{
2123	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125	if (!new)
2126		return ERR_PTR(-ENOMEM);
2127
2128	/* task's mempolicy is protected by alloc_lock */
2129	if (old == current->mempolicy) {
2130		task_lock(current);
2131		*new = *old;
2132		task_unlock(current);
2133	} else
2134		*new = *old;
2135
2136	if (current_cpuset_is_being_rebound()) {
2137		nodemask_t mems = cpuset_mems_allowed(current);
2138		if (new->flags & MPOL_F_REBINDING)
2139			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140		else
2141			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142	}
2143	atomic_set(&new->refcnt, 1);
2144	return new;
2145}
2146
2147/* Slow path of a mempolicy comparison */
2148bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149{
2150	if (!a || !b)
2151		return false;
2152	if (a->mode != b->mode)
2153		return false;
2154	if (a->flags != b->flags)
2155		return false;
 
 
2156	if (mpol_store_user_nodemask(a))
2157		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158			return false;
2159
2160	switch (a->mode) {
2161	case MPOL_BIND:
2162		/* Fall through */
2163	case MPOL_INTERLEAVE:
2164		return !!nodes_equal(a->v.nodes, b->v.nodes);
2165	case MPOL_PREFERRED:
2166		return a->v.preferred_node == b->v.preferred_node;
 
 
 
 
2167	default:
2168		BUG();
2169		return false;
2170	}
2171}
2172
2173/*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock rwlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182/*
2183 * lookup first element intersecting start-end.  Caller holds sp->lock for
2184 * reading or for writing
2185 */
2186static struct sp_node *
2187sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2188{
2189	struct rb_node *n = sp->root.rb_node;
2190
2191	while (n) {
2192		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2193
2194		if (start >= p->end)
2195			n = n->rb_right;
2196		else if (end <= p->start)
2197			n = n->rb_left;
2198		else
2199			break;
2200	}
2201	if (!n)
2202		return NULL;
2203	for (;;) {
2204		struct sp_node *w = NULL;
2205		struct rb_node *prev = rb_prev(n);
2206		if (!prev)
2207			break;
2208		w = rb_entry(prev, struct sp_node, nd);
2209		if (w->end <= start)
2210			break;
2211		n = prev;
2212	}
2213	return rb_entry(n, struct sp_node, nd);
2214}
2215
2216/*
2217 * Insert a new shared policy into the list.  Caller holds sp->lock for
2218 * writing.
2219 */
2220static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2221{
2222	struct rb_node **p = &sp->root.rb_node;
2223	struct rb_node *parent = NULL;
2224	struct sp_node *nd;
2225
2226	while (*p) {
2227		parent = *p;
2228		nd = rb_entry(parent, struct sp_node, nd);
2229		if (new->start < nd->start)
2230			p = &(*p)->rb_left;
2231		else if (new->end > nd->end)
2232			p = &(*p)->rb_right;
2233		else
2234			BUG();
2235	}
2236	rb_link_node(&new->nd, parent, p);
2237	rb_insert_color(&new->nd, &sp->root);
2238	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2239		 new->policy ? new->policy->mode : 0);
2240}
2241
2242/* Find shared policy intersecting idx */
2243struct mempolicy *
2244mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2245{
2246	struct mempolicy *pol = NULL;
2247	struct sp_node *sn;
2248
2249	if (!sp->root.rb_node)
2250		return NULL;
2251	read_lock(&sp->lock);
2252	sn = sp_lookup(sp, idx, idx+1);
2253	if (sn) {
2254		mpol_get(sn->policy);
2255		pol = sn->policy;
2256	}
2257	read_unlock(&sp->lock);
2258	return pol;
2259}
2260
2261static void sp_free(struct sp_node *n)
2262{
2263	mpol_put(n->policy);
2264	kmem_cache_free(sn_cache, n);
2265}
2266
2267/**
2268 * mpol_misplaced - check whether current page node is valid in policy
2269 *
2270 * @page: page to be checked
2271 * @vma: vm area where page mapped
2272 * @addr: virtual address where page mapped
2273 *
2274 * Lookup current policy node id for vma,addr and "compare to" page's
2275 * node id.
 
2276 *
2277 * Returns:
2278 *	-1	- not misplaced, page is in the right node
2279 *	node	- node id where the page should be
2280 *
2281 * Policy determination "mimics" alloc_page_vma().
2282 * Called from fault path where we know the vma and faulting address.
 
 
 
2283 */
2284int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
 
2285{
2286	struct mempolicy *pol;
2287	struct zone *zone;
2288	int curnid = page_to_nid(page);
2289	unsigned long pgoff;
 
2290	int thiscpu = raw_smp_processor_id();
2291	int thisnid = cpu_to_node(thiscpu);
2292	int polnid = -1;
2293	int ret = -1;
2294
2295	BUG_ON(!vma);
2296
2297	pol = get_vma_policy(vma, addr);
 
 
 
 
 
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		BUG_ON(addr >= vma->vm_end);
2304		BUG_ON(addr < vma->vm_start);
2305
2306		pgoff = vma->vm_pgoff;
2307		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2308		polnid = offset_il_node(pol, vma, pgoff);
2309		break;
2310
2311	case MPOL_PREFERRED:
2312		if (pol->flags & MPOL_F_LOCAL)
2313			polnid = numa_node_id();
2314		else
2315			polnid = pol->v.preferred_node;
 
 
 
2316		break;
2317
2318	case MPOL_BIND:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319		/*
2320		 * allows binding to multiple nodes.
2321		 * use current page if in policy nodemask,
2322		 * else select nearest allowed node, if any.
2323		 * If no allowed nodes, use current [!misplaced].
2324		 */
2325		if (node_isset(curnid, pol->v.nodes))
2326			goto out;
2327		(void)first_zones_zonelist(
2328				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2329				gfp_zone(GFP_HIGHUSER),
2330				&pol->v.nodes, &zone);
2331		polnid = zone->node;
2332		break;
2333
2334	default:
2335		BUG();
2336	}
2337
2338	/* Migrate the page towards the node whose CPU is referencing it */
2339	if (pol->flags & MPOL_F_MORON) {
2340		polnid = thisnid;
2341
2342		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
 
2343			goto out;
2344	}
2345
2346	if (curnid != polnid)
2347		ret = polnid;
2348out:
2349	mpol_cond_put(pol);
2350
2351	return ret;
2352}
2353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2355{
2356	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2357	rb_erase(&n->nd, &sp->root);
2358	sp_free(n);
2359}
2360
2361static void sp_node_init(struct sp_node *node, unsigned long start,
2362			unsigned long end, struct mempolicy *pol)
2363{
2364	node->start = start;
2365	node->end = end;
2366	node->policy = pol;
2367}
2368
2369static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2370				struct mempolicy *pol)
2371{
2372	struct sp_node *n;
2373	struct mempolicy *newpol;
2374
2375	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2376	if (!n)
2377		return NULL;
2378
2379	newpol = mpol_dup(pol);
2380	if (IS_ERR(newpol)) {
2381		kmem_cache_free(sn_cache, n);
2382		return NULL;
2383	}
2384	newpol->flags |= MPOL_F_SHARED;
2385	sp_node_init(n, start, end, newpol);
2386
2387	return n;
2388}
2389
2390/* Replace a policy range. */
2391static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2392				 unsigned long end, struct sp_node *new)
2393{
2394	struct sp_node *n;
2395	struct sp_node *n_new = NULL;
2396	struct mempolicy *mpol_new = NULL;
2397	int ret = 0;
2398
2399restart:
2400	write_lock(&sp->lock);
2401	n = sp_lookup(sp, start, end);
2402	/* Take care of old policies in the same range. */
2403	while (n && n->start < end) {
2404		struct rb_node *next = rb_next(&n->nd);
2405		if (n->start >= start) {
2406			if (n->end <= end)
2407				sp_delete(sp, n);
2408			else
2409				n->start = end;
2410		} else {
2411			/* Old policy spanning whole new range. */
2412			if (n->end > end) {
2413				if (!n_new)
2414					goto alloc_new;
2415
2416				*mpol_new = *n->policy;
2417				atomic_set(&mpol_new->refcnt, 1);
2418				sp_node_init(n_new, end, n->end, mpol_new);
2419				n->end = start;
2420				sp_insert(sp, n_new);
2421				n_new = NULL;
2422				mpol_new = NULL;
2423				break;
2424			} else
2425				n->end = start;
2426		}
2427		if (!next)
2428			break;
2429		n = rb_entry(next, struct sp_node, nd);
2430	}
2431	if (new)
2432		sp_insert(sp, new);
2433	write_unlock(&sp->lock);
2434	ret = 0;
2435
2436err_out:
2437	if (mpol_new)
2438		mpol_put(mpol_new);
2439	if (n_new)
2440		kmem_cache_free(sn_cache, n_new);
2441
2442	return ret;
2443
2444alloc_new:
2445	write_unlock(&sp->lock);
2446	ret = -ENOMEM;
2447	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2448	if (!n_new)
2449		goto err_out;
2450	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2451	if (!mpol_new)
2452		goto err_out;
 
2453	goto restart;
2454}
2455
2456/**
2457 * mpol_shared_policy_init - initialize shared policy for inode
2458 * @sp: pointer to inode shared policy
2459 * @mpol:  struct mempolicy to install
2460 *
2461 * Install non-NULL @mpol in inode's shared policy rb-tree.
2462 * On entry, the current task has a reference on a non-NULL @mpol.
2463 * This must be released on exit.
2464 * This is called at get_inode() calls and we can use GFP_KERNEL.
2465 */
2466void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2467{
2468	int ret;
2469
2470	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2471	rwlock_init(&sp->lock);
2472
2473	if (mpol) {
2474		struct vm_area_struct pvma;
2475		struct mempolicy *new;
2476		NODEMASK_SCRATCH(scratch);
2477
2478		if (!scratch)
2479			goto put_mpol;
2480		/* contextualize the tmpfs mount point mempolicy */
2481		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2482		if (IS_ERR(new))
 
2483			goto free_scratch; /* no valid nodemask intersection */
2484
2485		task_lock(current);
2486		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2487		task_unlock(current);
2488		if (ret)
2489			goto put_new;
2490
2491		/* Create pseudo-vma that contains just the policy */
2492		memset(&pvma, 0, sizeof(struct vm_area_struct));
2493		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2494		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2495
2496put_new:
2497		mpol_put(new);			/* drop initial ref */
2498free_scratch:
2499		NODEMASK_SCRATCH_FREE(scratch);
2500put_mpol:
2501		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2502	}
2503}
2504
2505int mpol_set_shared_policy(struct shared_policy *info,
2506			struct vm_area_struct *vma, struct mempolicy *npol)
2507{
2508	int err;
2509	struct sp_node *new = NULL;
2510	unsigned long sz = vma_pages(vma);
2511
2512	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2513		 vma->vm_pgoff,
2514		 sz, npol ? npol->mode : -1,
2515		 npol ? npol->flags : -1,
2516		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2517
2518	if (npol) {
2519		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2520		if (!new)
2521			return -ENOMEM;
2522	}
2523	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524	if (err && new)
2525		sp_free(new);
2526	return err;
2527}
2528
2529/* Free a backing policy store on inode delete. */
2530void mpol_free_shared_policy(struct shared_policy *p)
2531{
2532	struct sp_node *n;
2533	struct rb_node *next;
2534
2535	if (!p->root.rb_node)
2536		return;
2537	write_lock(&p->lock);
2538	next = rb_first(&p->root);
2539	while (next) {
2540		n = rb_entry(next, struct sp_node, nd);
2541		next = rb_next(&n->nd);
2542		sp_delete(p, n);
2543	}
2544	write_unlock(&p->lock);
2545}
2546
2547#ifdef CONFIG_NUMA_BALANCING
2548static int __initdata numabalancing_override;
2549
2550static void __init check_numabalancing_enable(void)
2551{
2552	bool numabalancing_default = false;
2553
2554	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2555		numabalancing_default = true;
2556
2557	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2558	if (numabalancing_override)
2559		set_numabalancing_state(numabalancing_override == 1);
2560
2561	if (num_online_nodes() > 1 && !numabalancing_override) {
2562		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2563			numabalancing_default ? "Enabling" : "Disabling");
2564		set_numabalancing_state(numabalancing_default);
2565	}
2566}
2567
2568static int __init setup_numabalancing(char *str)
2569{
2570	int ret = 0;
2571	if (!str)
2572		goto out;
2573
2574	if (!strcmp(str, "enable")) {
2575		numabalancing_override = 1;
2576		ret = 1;
2577	} else if (!strcmp(str, "disable")) {
2578		numabalancing_override = -1;
2579		ret = 1;
2580	}
2581out:
2582	if (!ret)
2583		pr_warn("Unable to parse numa_balancing=\n");
2584
2585	return ret;
2586}
2587__setup("numa_balancing=", setup_numabalancing);
2588#else
2589static inline void __init check_numabalancing_enable(void)
2590{
2591}
2592#endif /* CONFIG_NUMA_BALANCING */
2593
2594/* assumes fs == KERNEL_DS */
2595void __init numa_policy_init(void)
2596{
2597	nodemask_t interleave_nodes;
2598	unsigned long largest = 0;
2599	int nid, prefer = 0;
2600
2601	policy_cache = kmem_cache_create("numa_policy",
2602					 sizeof(struct mempolicy),
2603					 0, SLAB_PANIC, NULL);
2604
2605	sn_cache = kmem_cache_create("shared_policy_node",
2606				     sizeof(struct sp_node),
2607				     0, SLAB_PANIC, NULL);
2608
2609	for_each_node(nid) {
2610		preferred_node_policy[nid] = (struct mempolicy) {
2611			.refcnt = ATOMIC_INIT(1),
2612			.mode = MPOL_PREFERRED,
2613			.flags = MPOL_F_MOF | MPOL_F_MORON,
2614			.v = { .preferred_node = nid, },
2615		};
2616	}
2617
2618	/*
2619	 * Set interleaving policy for system init. Interleaving is only
2620	 * enabled across suitably sized nodes (default is >= 16MB), or
2621	 * fall back to the largest node if they're all smaller.
2622	 */
2623	nodes_clear(interleave_nodes);
2624	for_each_node_state(nid, N_MEMORY) {
2625		unsigned long total_pages = node_present_pages(nid);
2626
2627		/* Preserve the largest node */
2628		if (largest < total_pages) {
2629			largest = total_pages;
2630			prefer = nid;
2631		}
2632
2633		/* Interleave this node? */
2634		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2635			node_set(nid, interleave_nodes);
2636	}
2637
2638	/* All too small, use the largest */
2639	if (unlikely(nodes_empty(interleave_nodes)))
2640		node_set(prefer, interleave_nodes);
2641
2642	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2643		pr_err("%s: interleaving failed\n", __func__);
2644
2645	check_numabalancing_enable();
2646}
2647
2648/* Reset policy of current process to default */
2649void numa_default_policy(void)
2650{
2651	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2652}
2653
2654/*
2655 * Parse and format mempolicy from/to strings
2656 */
2657
2658/*
2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2660 */
2661static const char * const policy_modes[] =
2662{
2663	[MPOL_DEFAULT]    = "default",
2664	[MPOL_PREFERRED]  = "prefer",
2665	[MPOL_BIND]       = "bind",
2666	[MPOL_INTERLEAVE] = "interleave",
 
2667	[MPOL_LOCAL]      = "local",
 
2668};
2669
2670
2671#ifdef CONFIG_TMPFS
2672/**
2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2674 * @str:  string containing mempolicy to parse
2675 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2676 *
2677 * Format of input:
2678 *	<mode>[=<flags>][:<nodelist>]
2679 *
2680 * On success, returns 0, else 1
2681 */
2682int mpol_parse_str(char *str, struct mempolicy **mpol)
2683{
2684	struct mempolicy *new = NULL;
2685	unsigned short mode;
2686	unsigned short mode_flags;
2687	nodemask_t nodes;
2688	char *nodelist = strchr(str, ':');
2689	char *flags = strchr(str, '=');
2690	int err = 1;
 
 
 
2691
2692	if (nodelist) {
2693		/* NUL-terminate mode or flags string */
2694		*nodelist++ = '\0';
2695		if (nodelist_parse(nodelist, nodes))
2696			goto out;
2697		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698			goto out;
2699	} else
2700		nodes_clear(nodes);
2701
2702	if (flags)
2703		*flags++ = '\0';	/* terminate mode string */
2704
2705	for (mode = 0; mode < MPOL_MAX; mode++) {
2706		if (!strcmp(str, policy_modes[mode])) {
2707			break;
2708		}
2709	}
2710	if (mode >= MPOL_MAX)
2711		goto out;
2712
2713	switch (mode) {
2714	case MPOL_PREFERRED:
2715		/*
2716		 * Insist on a nodelist of one node only
 
 
2717		 */
2718		if (nodelist) {
2719			char *rest = nodelist;
2720			while (isdigit(*rest))
2721				rest++;
2722			if (*rest)
2723				goto out;
 
 
2724		}
2725		break;
2726	case MPOL_INTERLEAVE:
 
2727		/*
2728		 * Default to online nodes with memory if no nodelist
2729		 */
2730		if (!nodelist)
2731			nodes = node_states[N_MEMORY];
2732		break;
2733	case MPOL_LOCAL:
2734		/*
2735		 * Don't allow a nodelist;  mpol_new() checks flags
2736		 */
2737		if (nodelist)
2738			goto out;
2739		mode = MPOL_PREFERRED;
2740		break;
2741	case MPOL_DEFAULT:
2742		/*
2743		 * Insist on a empty nodelist
2744		 */
2745		if (!nodelist)
2746			err = 0;
2747		goto out;
 
2748	case MPOL_BIND:
2749		/*
2750		 * Insist on a nodelist
2751		 */
2752		if (!nodelist)
2753			goto out;
2754	}
2755
2756	mode_flags = 0;
2757	if (flags) {
2758		/*
2759		 * Currently, we only support two mutually exclusive
2760		 * mode flags.
2761		 */
2762		if (!strcmp(flags, "static"))
2763			mode_flags |= MPOL_F_STATIC_NODES;
2764		else if (!strcmp(flags, "relative"))
2765			mode_flags |= MPOL_F_RELATIVE_NODES;
2766		else
2767			goto out;
2768	}
2769
2770	new = mpol_new(mode, mode_flags, &nodes);
2771	if (IS_ERR(new))
2772		goto out;
2773
2774	/*
2775	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2776	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2777	 */
2778	if (mode != MPOL_PREFERRED)
2779		new->v.nodes = nodes;
2780	else if (nodelist)
2781		new->v.preferred_node = first_node(nodes);
2782	else
2783		new->flags |= MPOL_F_LOCAL;
 
 
2784
2785	/*
2786	 * Save nodes for contextualization: this will be used to "clone"
2787	 * the mempolicy in a specific context [cpuset] at a later time.
2788	 */
2789	new->w.user_nodemask = nodes;
2790
2791	err = 0;
2792
2793out:
2794	/* Restore string for error message */
2795	if (nodelist)
2796		*--nodelist = ':';
2797	if (flags)
2798		*--flags = '=';
2799	if (!err)
2800		*mpol = new;
2801	return err;
2802}
2803#endif /* CONFIG_TMPFS */
2804
2805/**
2806 * mpol_to_str - format a mempolicy structure for printing
2807 * @buffer:  to contain formatted mempolicy string
2808 * @maxlen:  length of @buffer
2809 * @pol:  pointer to mempolicy to be formatted
2810 *
2811 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2813 * longest flag, "relative", and to display at least a few node ids.
 
2814 */
2815void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2816{
2817	char *p = buffer;
2818	nodemask_t nodes = NODE_MASK_NONE;
2819	unsigned short mode = MPOL_DEFAULT;
2820	unsigned short flags = 0;
2821
2822	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
 
2823		mode = pol->mode;
2824		flags = pol->flags;
2825	}
2826
2827	switch (mode) {
2828	case MPOL_DEFAULT:
 
2829		break;
2830	case MPOL_PREFERRED:
2831		if (flags & MPOL_F_LOCAL)
2832			mode = MPOL_LOCAL;
2833		else
2834			node_set(pol->v.preferred_node, nodes);
2835		break;
2836	case MPOL_BIND:
2837	case MPOL_INTERLEAVE:
2838		nodes = pol->v.nodes;
 
2839		break;
2840	default:
2841		WARN_ON_ONCE(1);
2842		snprintf(p, maxlen, "unknown");
2843		return;
2844	}
2845
2846	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2847
2848	if (flags & MPOL_MODE_FLAGS) {
2849		p += snprintf(p, buffer + maxlen - p, "=");
2850
2851		/*
2852		 * Currently, the only defined flags are mutually exclusive
2853		 */
2854		if (flags & MPOL_F_STATIC_NODES)
2855			p += snprintf(p, buffer + maxlen - p, "static");
2856		else if (flags & MPOL_F_RELATIVE_NODES)
2857			p += snprintf(p, buffer + maxlen - p, "relative");
 
 
 
 
 
 
2858	}
2859
2860	if (!nodes_empty(nodes))
2861		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2862			       nodemask_pr_args(&nodes));
2863}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support six policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * weighted interleave
  23 *                Allocate memory interleaved over a set of nodes based on
  24 *                a set of weights (per-node), with normal fallback if it
  25 *                fails.  Otherwise operates the same as interleave.
  26 *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
  27 *                on node 0 for every 1 page allocated on node 1.
  28 *
  29 * bind           Only allocate memory on a specific set of nodes,
  30 *                no fallback.
  31 *                FIXME: memory is allocated starting with the first node
  32 *                to the last. It would be better if bind would truly restrict
  33 *                the allocation to memory nodes instead
  34 *
  35 * preferred      Try a specific node first before normal fallback.
  36 *                As a special case NUMA_NO_NODE here means do the allocation
  37 *                on the local CPU. This is normally identical to default,
  38 *                but useful to set in a VMA when you have a non default
  39 *                process policy.
  40 *
  41 * preferred many Try a set of nodes first before normal fallback. This is
  42 *                similar to preferred without the special case.
  43 *
  44 * default        Allocate on the local node first, or when on a VMA
  45 *                use the process policy. This is what Linux always did
  46 *		  in a NUMA aware kernel and still does by, ahem, default.
  47 *
  48 * The process policy is applied for most non interrupt memory allocations
  49 * in that process' context. Interrupts ignore the policies and always
  50 * try to allocate on the local CPU. The VMA policy is only applied for memory
  51 * allocations for a VMA in the VM.
  52 *
  53 * Currently there are a few corner cases in swapping where the policy
  54 * is not applied, but the majority should be handled. When process policy
  55 * is used it is not remembered over swap outs/swap ins.
  56 *
  57 * Only the highest zone in the zone hierarchy gets policied. Allocations
  58 * requesting a lower zone just use default policy. This implies that
  59 * on systems with highmem kernel lowmem allocation don't get policied.
  60 * Same with GFP_DMA allocations.
  61 *
  62 * For shmem/tmpfs shared memory the policy is shared between
  63 * all users and remembered even when nobody has memory mapped.
  64 */
  65
  66/* Notebook:
  67   fix mmap readahead to honour policy and enable policy for any page cache
  68   object
  69   statistics for bigpages
  70   global policy for page cache? currently it uses process policy. Requires
  71   first item above.
  72   handle mremap for shared memory (currently ignored for the policy)
  73   grows down?
  74   make bind policy root only? It can trigger oom much faster and the
  75   kernel is not always grateful with that.
  76*/
  77
  78#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  79
  80#include <linux/mempolicy.h>
  81#include <linux/pagewalk.h>
  82#include <linux/highmem.h>
  83#include <linux/hugetlb.h>
  84#include <linux/kernel.h>
  85#include <linux/sched.h>
  86#include <linux/sched/mm.h>
  87#include <linux/sched/numa_balancing.h>
  88#include <linux/sched/task.h>
  89#include <linux/nodemask.h>
  90#include <linux/cpuset.h>
  91#include <linux/slab.h>
  92#include <linux/string.h>
  93#include <linux/export.h>
  94#include <linux/nsproxy.h>
  95#include <linux/interrupt.h>
  96#include <linux/init.h>
  97#include <linux/compat.h>
  98#include <linux/ptrace.h>
  99#include <linux/swap.h>
 100#include <linux/seq_file.h>
 101#include <linux/proc_fs.h>
 102#include <linux/migrate.h>
 103#include <linux/ksm.h>
 104#include <linux/rmap.h>
 105#include <linux/security.h>
 106#include <linux/syscalls.h>
 107#include <linux/ctype.h>
 108#include <linux/mm_inline.h>
 109#include <linux/mmu_notifier.h>
 110#include <linux/printk.h>
 111#include <linux/swapops.h>
 112
 113#include <asm/tlbflush.h>
 114#include <asm/tlb.h>
 115#include <linux/uaccess.h>
 116
 117#include "internal.h"
 118
 119/* Internal flags */
 120#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 121#define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
 122#define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
 123
 124static struct kmem_cache *policy_cache;
 125static struct kmem_cache *sn_cache;
 126
 127/* Highest zone. An specific allocation for a zone below that is not
 128   policied. */
 129enum zone_type policy_zone = 0;
 130
 131/*
 132 * run-time system-wide default policy => local allocation
 133 */
 134static struct mempolicy default_policy = {
 135	.refcnt = ATOMIC_INIT(1), /* never free it */
 136	.mode = MPOL_LOCAL,
 
 137};
 138
 139static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 140
 141/*
 142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
 143 * system-default value should be used. A NULL iw_table also denotes that
 144 * system-default values should be used. Until the system-default table
 145 * is implemented, the system-default is always 1.
 146 *
 147 * iw_table is RCU protected
 148 */
 149static u8 __rcu *iw_table;
 150static DEFINE_MUTEX(iw_table_lock);
 151
 152static u8 get_il_weight(int node)
 153{
 154	u8 *table;
 155	u8 weight;
 156
 157	rcu_read_lock();
 158	table = rcu_dereference(iw_table);
 159	/* if no iw_table, use system default */
 160	weight = table ? table[node] : 1;
 161	/* if value in iw_table is 0, use system default */
 162	weight = weight ? weight : 1;
 163	rcu_read_unlock();
 164	return weight;
 165}
 166
 167/**
 168 * numa_nearest_node - Find nearest node by state
 169 * @node: Node id to start the search
 170 * @state: State to filter the search
 171 *
 172 * Lookup the closest node by distance if @nid is not in state.
 173 *
 174 * Return: this @node if it is in state, otherwise the closest node by distance
 175 */
 176int numa_nearest_node(int node, unsigned int state)
 177{
 178	int min_dist = INT_MAX, dist, n, min_node;
 179
 180	if (state >= NR_NODE_STATES)
 181		return -EINVAL;
 182
 183	if (node == NUMA_NO_NODE || node_state(node, state))
 184		return node;
 185
 186	min_node = node;
 187	for_each_node_state(n, state) {
 188		dist = node_distance(node, n);
 189		if (dist < min_dist) {
 190			min_dist = dist;
 191			min_node = n;
 192		}
 193	}
 194
 195	return min_node;
 196}
 197EXPORT_SYMBOL_GPL(numa_nearest_node);
 198
 199struct mempolicy *get_task_policy(struct task_struct *p)
 200{
 201	struct mempolicy *pol = p->mempolicy;
 202	int node;
 203
 204	if (pol)
 205		return pol;
 206
 207	node = numa_node_id();
 208	if (node != NUMA_NO_NODE) {
 209		pol = &preferred_node_policy[node];
 210		/* preferred_node_policy is not initialised early in boot */
 211		if (pol->mode)
 212			return pol;
 213	}
 214
 215	return &default_policy;
 216}
 217
 218static const struct mempolicy_operations {
 219	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 220	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221} mpol_ops[MPOL_MAX];
 222
 223static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 224{
 225	return pol->flags & MPOL_MODE_FLAGS;
 226}
 227
 228static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 229				   const nodemask_t *rel)
 230{
 231	nodemask_t tmp;
 232	nodes_fold(tmp, *orig, nodes_weight(*rel));
 233	nodes_onto(*ret, tmp, *rel);
 234}
 235
 236static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 237{
 238	if (nodes_empty(*nodes))
 239		return -EINVAL;
 240	pol->nodes = *nodes;
 241	return 0;
 242}
 243
 244static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 245{
 
 
 
 
 
 
 
 
 
 
 
 246	if (nodes_empty(*nodes))
 247		return -EINVAL;
 248
 249	nodes_clear(pol->nodes);
 250	node_set(first_node(*nodes), pol->nodes);
 251	return 0;
 252}
 253
 254/*
 255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 256 * any, for the new policy.  mpol_new() has already validated the nodes
 257 * parameter with respect to the policy mode and flags.
 
 258 *
 259 * Must be called holding task's alloc_lock to protect task's mems_allowed
 260 * and mempolicy.  May also be called holding the mmap_lock for write.
 261 */
 262static int mpol_set_nodemask(struct mempolicy *pol,
 263		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 264{
 265	int ret;
 266
 267	/*
 268	 * Default (pol==NULL) resp. local memory policies are not a
 269	 * subject of any remapping. They also do not need any special
 270	 * constructor.
 271	 */
 272	if (!pol || pol->mode == MPOL_LOCAL)
 273		return 0;
 274
 275	/* Check N_MEMORY */
 276	nodes_and(nsc->mask1,
 277		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 278
 279	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 280
 281	if (pol->flags & MPOL_F_RELATIVE_NODES)
 282		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 283	else
 284		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 285
 286	if (mpol_store_user_nodemask(pol))
 287		pol->w.user_nodemask = *nodes;
 288	else
 289		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 290
 291	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 292	return ret;
 293}
 294
 295/*
 296 * This function just creates a new policy, does some check and simple
 297 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 298 */
 299static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 300				  nodemask_t *nodes)
 301{
 302	struct mempolicy *policy;
 303
 
 
 
 304	if (mode == MPOL_DEFAULT) {
 305		if (nodes && !nodes_empty(*nodes))
 306			return ERR_PTR(-EINVAL);
 307		return NULL;
 308	}
 309	VM_BUG_ON(!nodes);
 310
 311	/*
 312	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 313	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 314	 * All other modes require a valid pointer to a non-empty nodemask.
 315	 */
 316	if (mode == MPOL_PREFERRED) {
 317		if (nodes_empty(*nodes)) {
 318			if (((flags & MPOL_F_STATIC_NODES) ||
 319			     (flags & MPOL_F_RELATIVE_NODES)))
 320				return ERR_PTR(-EINVAL);
 321
 322			mode = MPOL_LOCAL;
 323		}
 324	} else if (mode == MPOL_LOCAL) {
 325		if (!nodes_empty(*nodes) ||
 326		    (flags & MPOL_F_STATIC_NODES) ||
 327		    (flags & MPOL_F_RELATIVE_NODES))
 328			return ERR_PTR(-EINVAL);
 
 329	} else if (nodes_empty(*nodes))
 330		return ERR_PTR(-EINVAL);
 331
 332	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 333	if (!policy)
 334		return ERR_PTR(-ENOMEM);
 335	atomic_set(&policy->refcnt, 1);
 336	policy->mode = mode;
 337	policy->flags = flags;
 338	policy->home_node = NUMA_NO_NODE;
 339
 340	return policy;
 341}
 342
 343/* Slow path of a mpol destructor. */
 344void __mpol_put(struct mempolicy *pol)
 345{
 346	if (!atomic_dec_and_test(&pol->refcnt))
 347		return;
 348	kmem_cache_free(policy_cache, pol);
 349}
 350
 351static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 352{
 353}
 354
 355static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 356{
 357	nodemask_t tmp;
 358
 359	if (pol->flags & MPOL_F_STATIC_NODES)
 360		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 361	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363	else {
 364		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 365								*nodes);
 366		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 367	}
 368
 369	if (nodes_empty(tmp))
 370		tmp = *nodes;
 371
 372	pol->nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 373}
 374
 375static void mpol_rebind_preferred(struct mempolicy *pol,
 376						const nodemask_t *nodes)
 
 377{
 378	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381/*
 382 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 383 *
 384 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 385 * policies are protected by task->mems_allowed_seq to prevent a premature
 386 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 389{
 390	if (!pol || pol->mode == MPOL_LOCAL)
 391		return;
 392	if (!mpol_store_user_nodemask(pol) &&
 393	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 394		return;
 395
 396	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 397}
 398
 399/*
 400 * Wrapper for mpol_rebind_policy() that just requires task
 401 * pointer, and updates task mempolicy.
 402 *
 403 * Called with task's alloc_lock held.
 404 */
 405void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 
 406{
 407	mpol_rebind_policy(tsk->mempolicy, new);
 408}
 409
 410/*
 411 * Rebind each vma in mm to new nodemask.
 412 *
 413 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 414 */
 
 415void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 416{
 417	struct vm_area_struct *vma;
 418	VMA_ITERATOR(vmi, mm, 0);
 419
 420	mmap_write_lock(mm);
 421	for_each_vma(vmi, vma) {
 422		vma_start_write(vma);
 423		mpol_rebind_policy(vma->vm_policy, new);
 424	}
 425	mmap_write_unlock(mm);
 426}
 427
 428static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 429	[MPOL_DEFAULT] = {
 430		.rebind = mpol_rebind_default,
 431	},
 432	[MPOL_INTERLEAVE] = {
 433		.create = mpol_new_nodemask,
 434		.rebind = mpol_rebind_nodemask,
 435	},
 436	[MPOL_PREFERRED] = {
 437		.create = mpol_new_preferred,
 438		.rebind = mpol_rebind_preferred,
 439	},
 440	[MPOL_BIND] = {
 441		.create = mpol_new_nodemask,
 442		.rebind = mpol_rebind_nodemask,
 443	},
 444	[MPOL_LOCAL] = {
 445		.rebind = mpol_rebind_default,
 446	},
 447	[MPOL_PREFERRED_MANY] = {
 448		.create = mpol_new_nodemask,
 449		.rebind = mpol_rebind_preferred,
 450	},
 451	[MPOL_WEIGHTED_INTERLEAVE] = {
 452		.create = mpol_new_nodemask,
 453		.rebind = mpol_rebind_nodemask,
 454	},
 455};
 456
 457static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 458				unsigned long flags);
 459static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
 460				pgoff_t ilx, int *nid);
 461
 462static bool strictly_unmovable(unsigned long flags)
 463{
 464	/*
 465	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
 466	 * if any misplaced page is found.
 467	 */
 468	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
 469			 MPOL_MF_STRICT;
 470}
 471
 472struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
 473	struct mempolicy *pol;
 474	pgoff_t ilx;
 475};
 476
 477struct queue_pages {
 478	struct list_head *pagelist;
 479	unsigned long flags;
 480	nodemask_t *nmask;
 481	unsigned long start;
 482	unsigned long end;
 483	struct vm_area_struct *first;
 484	struct folio *large;		/* note last large folio encountered */
 485	long nr_failed;			/* could not be isolated at this time */
 486};
 487
 488/*
 489 * Check if the folio's nid is in qp->nmask.
 490 *
 491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 492 * in the invert of qp->nmask.
 493 */
 494static inline bool queue_folio_required(struct folio *folio,
 495					struct queue_pages *qp)
 496{
 497	int nid = folio_nid(folio);
 498	unsigned long flags = qp->flags;
 499
 500	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 501}
 502
 503static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
 504{
 505	struct folio *folio;
 506	struct queue_pages *qp = walk->private;
 507
 508	if (unlikely(is_pmd_migration_entry(*pmd))) {
 509		qp->nr_failed++;
 510		return;
 511	}
 512	folio = pmd_folio(*pmd);
 513	if (is_huge_zero_folio(folio)) {
 514		walk->action = ACTION_CONTINUE;
 515		return;
 516	}
 517	if (!queue_folio_required(folio, qp))
 518		return;
 519	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 520	    !vma_migratable(walk->vma) ||
 521	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
 522		qp->nr_failed++;
 523}
 524
 525/*
 526 * Scan through folios, checking if they satisfy the required conditions,
 527 * moving them from LRU to local pagelist for migration if they do (or not).
 528 *
 529 * queue_folios_pte_range() has two possible return values:
 530 * 0 - continue walking to scan for more, even if an existing folio on the
 531 *     wrong node could not be isolated and queued for migration.
 532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
 533 *        and an existing folio was on a node that does not follow the policy.
 534 */
 535static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
 536			unsigned long end, struct mm_walk *walk)
 537{
 538	struct vm_area_struct *vma = walk->vma;
 539	struct folio *folio;
 540	struct queue_pages *qp = walk->private;
 541	unsigned long flags = qp->flags;
 542	pte_t *pte, *mapped_pte;
 543	pte_t ptent;
 544	spinlock_t *ptl;
 545
 546	ptl = pmd_trans_huge_lock(pmd, vma);
 547	if (ptl) {
 548		queue_folios_pmd(pmd, walk);
 549		spin_unlock(ptl);
 550		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551	}
 552
 553	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 554	if (!pte) {
 555		walk->action = ACTION_AGAIN;
 556		return 0;
 557	}
 558	for (; addr != end; pte++, addr += PAGE_SIZE) {
 559		ptent = ptep_get(pte);
 560		if (pte_none(ptent))
 561			continue;
 562		if (!pte_present(ptent)) {
 563			if (is_migration_entry(pte_to_swp_entry(ptent)))
 564				qp->nr_failed++;
 565			continue;
 566		}
 567		folio = vm_normal_folio(vma, addr, ptent);
 568		if (!folio || folio_is_zone_device(folio))
 569			continue;
 570		/*
 571		 * vm_normal_folio() filters out zero pages, but there might
 572		 * still be reserved folios to skip, perhaps in a VDSO.
 573		 */
 574		if (folio_test_reserved(folio))
 575			continue;
 576		if (!queue_folio_required(folio, qp))
 
 577			continue;
 578		if (folio_test_large(folio)) {
 579			/*
 580			 * A large folio can only be isolated from LRU once,
 581			 * but may be mapped by many PTEs (and Copy-On-Write may
 582			 * intersperse PTEs of other, order 0, folios).  This is
 583			 * a common case, so don't mistake it for failure (but
 584			 * there can be other cases of multi-mapped pages which
 585			 * this quick check does not help to filter out - and a
 586			 * search of the pagelist might grow to be prohibitive).
 587			 *
 588			 * migrate_pages(&pagelist) returns nr_failed folios, so
 589			 * check "large" now so that queue_pages_range() returns
 590			 * a comparable nr_failed folios.  This does imply that
 591			 * if folio could not be isolated for some racy reason
 592			 * at its first PTE, later PTEs will not give it another
 593			 * chance of isolation; but keeps the accounting simple.
 594			 */
 595			if (folio == qp->large)
 596				continue;
 597			qp->large = folio;
 598		}
 599		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 600		    !vma_migratable(vma) ||
 601		    !migrate_folio_add(folio, qp->pagelist, flags)) {
 602			qp->nr_failed++;
 603			if (strictly_unmovable(flags))
 604				break;
 605		}
 
 
 606	}
 607	pte_unmap_unlock(mapped_pte, ptl);
 608	cond_resched();
 609out:
 610	if (qp->nr_failed && strictly_unmovable(flags))
 611		return -EIO;
 612	return 0;
 613}
 614
 615static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
 616			       unsigned long addr, unsigned long end,
 617			       struct mm_walk *walk)
 618{
 619#ifdef CONFIG_HUGETLB_PAGE
 620	struct queue_pages *qp = walk->private;
 621	unsigned long flags = qp->flags;
 622	struct folio *folio;
 
 623	spinlock_t *ptl;
 624	pte_t entry;
 625
 626	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 627	entry = huge_ptep_get(walk->mm, addr, pte);
 628	if (!pte_present(entry)) {
 629		if (unlikely(is_hugetlb_entry_migration(entry)))
 630			qp->nr_failed++;
 631		goto unlock;
 632	}
 633	folio = pfn_folio(pte_pfn(entry));
 634	if (!queue_folio_required(folio, qp))
 635		goto unlock;
 636	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
 637	    !vma_migratable(walk->vma)) {
 638		qp->nr_failed++;
 639		goto unlock;
 640	}
 641	/*
 642	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
 643	 * Choosing not to migrate a shared folio is not counted as a failure.
 644	 *
 645	 * See folio_likely_mapped_shared() on possible imprecision when we
 646	 * cannot easily detect if a folio is shared.
 647	 */
 648	if ((flags & MPOL_MF_MOVE_ALL) ||
 649	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
 650		if (!isolate_hugetlb(folio, qp->pagelist))
 651			qp->nr_failed++;
 652unlock:
 653	spin_unlock(ptl);
 654	if (qp->nr_failed && strictly_unmovable(flags))
 655		return -EIO;
 656#endif
 657	return 0;
 658}
 659
 660#ifdef CONFIG_NUMA_BALANCING
 661/*
 662 * This is used to mark a range of virtual addresses to be inaccessible.
 663 * These are later cleared by a NUMA hinting fault. Depending on these
 664 * faults, pages may be migrated for better NUMA placement.
 665 *
 666 * This is assuming that NUMA faults are handled using PROT_NONE. If
 667 * an architecture makes a different choice, it will need further
 668 * changes to the core.
 669 */
 670unsigned long change_prot_numa(struct vm_area_struct *vma,
 671			unsigned long addr, unsigned long end)
 672{
 673	struct mmu_gather tlb;
 674	long nr_updated;
 675
 676	tlb_gather_mmu(&tlb, vma->vm_mm);
 677
 678	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
 679	if (nr_updated > 0) {
 680		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 681		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
 682	}
 683
 684	tlb_finish_mmu(&tlb);
 685
 686	return nr_updated;
 687}
 
 
 
 
 
 
 688#endif /* CONFIG_NUMA_BALANCING */
 689
 690static int queue_pages_test_walk(unsigned long start, unsigned long end,
 691				struct mm_walk *walk)
 692{
 693	struct vm_area_struct *next, *vma = walk->vma;
 694	struct queue_pages *qp = walk->private;
 
 695	unsigned long flags = qp->flags;
 696
 697	/* range check first */
 698	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 
 
 
 
 
 699
 700	if (!qp->first) {
 701		qp->first = vma;
 702		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 703			(qp->start < vma->vm_start))
 704			/* hole at head side of range */
 705			return -EFAULT;
 706	}
 707	next = find_vma(vma->vm_mm, vma->vm_end);
 708	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 709		((vma->vm_end < qp->end) &&
 710		(!next || vma->vm_end < next->vm_start)))
 711		/* hole at middle or tail of range */
 712		return -EFAULT;
 713
 714	/*
 715	 * Need check MPOL_MF_STRICT to return -EIO if possible
 716	 * regardless of vma_migratable
 717	 */
 718	if (!vma_migratable(vma) &&
 719	    !(flags & MPOL_MF_STRICT))
 
 
 720		return 1;
 
 721
 722	/*
 723	 * Check page nodes, and queue pages to move, in the current vma.
 724	 * But if no moving, and no strict checking, the scan can be skipped.
 725	 */
 726	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 727		return 0;
 728	return 1;
 729}
 730
 731static const struct mm_walk_ops queue_pages_walk_ops = {
 732	.hugetlb_entry		= queue_folios_hugetlb,
 733	.pmd_entry		= queue_folios_pte_range,
 734	.test_walk		= queue_pages_test_walk,
 735	.walk_lock		= PGWALK_RDLOCK,
 736};
 737
 738static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
 739	.hugetlb_entry		= queue_folios_hugetlb,
 740	.pmd_entry		= queue_folios_pte_range,
 741	.test_walk		= queue_pages_test_walk,
 742	.walk_lock		= PGWALK_WRLOCK,
 743};
 744
 745/*
 746 * Walk through page tables and collect pages to be migrated.
 747 *
 748 * If pages found in a given range are not on the required set of @nodes,
 749 * and migration is allowed, they are isolated and queued to @pagelist.
 750 *
 751 * queue_pages_range() may return:
 752 * 0 - all pages already on the right node, or successfully queued for moving
 753 *     (or neither strict checking nor moving requested: only range checking).
 754 * >0 - this number of misplaced folios could not be queued for moving
 755 *      (a hugetlbfs page or a transparent huge page being counted as 1).
 756 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
 757 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
 758 */
 759static long
 760queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 761		nodemask_t *nodes, unsigned long flags,
 762		struct list_head *pagelist)
 763{
 764	int err;
 765	struct queue_pages qp = {
 766		.pagelist = pagelist,
 767		.flags = flags,
 768		.nmask = nodes,
 769		.start = start,
 770		.end = end,
 771		.first = NULL,
 
 
 
 
 
 772	};
 773	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
 774			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
 775
 776	err = walk_page_range(mm, start, end, ops, &qp);
 777
 778	if (!qp.first)
 779		/* whole range in hole */
 780		err = -EFAULT;
 781
 782	return err ? : qp.nr_failed;
 783}
 784
 785/*
 786 * Apply policy to a single VMA
 787 * This must be called with the mmap_lock held for writing.
 788 */
 789static int vma_replace_policy(struct vm_area_struct *vma,
 790				struct mempolicy *pol)
 791{
 792	int err;
 793	struct mempolicy *old;
 794	struct mempolicy *new;
 795
 796	vma_assert_write_locked(vma);
 
 
 
 797
 798	new = mpol_dup(pol);
 799	if (IS_ERR(new))
 800		return PTR_ERR(new);
 801
 802	if (vma->vm_ops && vma->vm_ops->set_policy) {
 803		err = vma->vm_ops->set_policy(vma, new);
 804		if (err)
 805			goto err_out;
 806	}
 807
 808	old = vma->vm_policy;
 809	vma->vm_policy = new; /* protected by mmap_lock */
 810	mpol_put(old);
 811
 812	return 0;
 813 err_out:
 814	mpol_put(new);
 815	return err;
 816}
 817
 818/* Split or merge the VMA (if required) and apply the new policy */
 819static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
 820		struct vm_area_struct **prev, unsigned long start,
 821		unsigned long end, struct mempolicy *new_pol)
 822{
 823	unsigned long vmstart, vmend;
 824
 825	vmend = min(end, vma->vm_end);
 826	if (start > vma->vm_start) {
 827		*prev = vma;
 828		vmstart = start;
 829	} else {
 830		vmstart = vma->vm_start;
 831	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 832
 833	if (mpol_equal(vma->vm_policy, new_pol)) {
 834		*prev = vma;
 835		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836	}
 837
 838	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
 839	if (IS_ERR(vma))
 840		return PTR_ERR(vma);
 841
 842	*prev = vma;
 843	return vma_replace_policy(vma, new_pol);
 844}
 845
 846/* Set the process memory policy */
 847static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 848			     nodemask_t *nodes)
 849{
 850	struct mempolicy *new, *old;
 851	NODEMASK_SCRATCH(scratch);
 852	int ret;
 853
 854	if (!scratch)
 855		return -ENOMEM;
 856
 857	new = mpol_new(mode, flags, nodes);
 858	if (IS_ERR(new)) {
 859		ret = PTR_ERR(new);
 860		goto out;
 861	}
 862
 863	task_lock(current);
 864	ret = mpol_set_nodemask(new, nodes, scratch);
 865	if (ret) {
 866		task_unlock(current);
 867		mpol_put(new);
 868		goto out;
 869	}
 870
 871	old = current->mempolicy;
 872	current->mempolicy = new;
 873	if (new && (new->mode == MPOL_INTERLEAVE ||
 874		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
 875		current->il_prev = MAX_NUMNODES-1;
 876		current->il_weight = 0;
 877	}
 878	task_unlock(current);
 879	mpol_put(old);
 880	ret = 0;
 881out:
 882	NODEMASK_SCRATCH_FREE(scratch);
 883	return ret;
 884}
 885
 886/*
 887 * Return nodemask for policy for get_mempolicy() query
 888 *
 889 * Called with task's alloc_lock held
 890 */
 891static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
 892{
 893	nodes_clear(*nodes);
 894	if (pol == &default_policy)
 895		return;
 896
 897	switch (pol->mode) {
 898	case MPOL_BIND:
 
 899	case MPOL_INTERLEAVE:
 
 
 900	case MPOL_PREFERRED:
 901	case MPOL_PREFERRED_MANY:
 902	case MPOL_WEIGHTED_INTERLEAVE:
 903		*nodes = pol->nodes;
 904		break;
 905	case MPOL_LOCAL:
 906		/* return empty node mask for local allocation */
 907		break;
 908	default:
 909		BUG();
 910	}
 911}
 912
 913static int lookup_node(struct mm_struct *mm, unsigned long addr)
 914{
 915	struct page *p = NULL;
 916	int ret;
 917
 918	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 919	if (ret > 0) {
 920		ret = page_to_nid(p);
 921		put_page(p);
 922	}
 923	return ret;
 924}
 925
 926/* Retrieve NUMA policy */
 927static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 928			     unsigned long addr, unsigned long flags)
 929{
 930	int err;
 931	struct mm_struct *mm = current->mm;
 932	struct vm_area_struct *vma = NULL;
 933	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 934
 935	if (flags &
 936		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 937		return -EINVAL;
 938
 939	if (flags & MPOL_F_MEMS_ALLOWED) {
 940		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 941			return -EINVAL;
 942		*policy = 0;	/* just so it's initialized */
 943		task_lock(current);
 944		*nmask  = cpuset_current_mems_allowed;
 945		task_unlock(current);
 946		return 0;
 947	}
 948
 949	if (flags & MPOL_F_ADDR) {
 950		pgoff_t ilx;		/* ignored here */
 951		/*
 952		 * Do NOT fall back to task policy if the
 953		 * vma/shared policy at addr is NULL.  We
 954		 * want to return MPOL_DEFAULT in this case.
 955		 */
 956		mmap_read_lock(mm);
 957		vma = vma_lookup(mm, addr);
 958		if (!vma) {
 959			mmap_read_unlock(mm);
 960			return -EFAULT;
 961		}
 962		pol = __get_vma_policy(vma, addr, &ilx);
 
 
 
 963	} else if (addr)
 964		return -EINVAL;
 965
 966	if (!pol)
 967		pol = &default_policy;	/* indicates default behavior */
 968
 969	if (flags & MPOL_F_NODE) {
 970		if (flags & MPOL_F_ADDR) {
 971			/*
 972			 * Take a refcount on the mpol, because we are about to
 973			 * drop the mmap_lock, after which only "pol" remains
 974			 * valid, "vma" is stale.
 975			 */
 976			pol_refcount = pol;
 977			vma = NULL;
 978			mpol_get(pol);
 979			mmap_read_unlock(mm);
 980			err = lookup_node(mm, addr);
 981			if (err < 0)
 982				goto out;
 983			*policy = err;
 984		} else if (pol == current->mempolicy &&
 985				pol->mode == MPOL_INTERLEAVE) {
 986			*policy = next_node_in(current->il_prev, pol->nodes);
 987		} else if (pol == current->mempolicy &&
 988				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
 989			if (current->il_weight)
 990				*policy = current->il_prev;
 991			else
 992				*policy = next_node_in(current->il_prev,
 993						       pol->nodes);
 994		} else {
 995			err = -EINVAL;
 996			goto out;
 997		}
 998	} else {
 999		*policy = pol == &default_policy ? MPOL_DEFAULT :
1000						pol->mode;
1001		/*
1002		 * Internal mempolicy flags must be masked off before exposing
1003		 * the policy to userspace.
1004		 */
1005		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1006	}
1007
 
 
 
 
 
1008	err = 0;
1009	if (nmask) {
1010		if (mpol_store_user_nodemask(pol)) {
1011			*nmask = pol->w.user_nodemask;
1012		} else {
1013			task_lock(current);
1014			get_policy_nodemask(pol, nmask);
1015			task_unlock(current);
1016		}
1017	}
1018
1019 out:
1020	mpol_cond_put(pol);
1021	if (vma)
1022		mmap_read_unlock(mm);
1023	if (pol_refcount)
1024		mpol_put(pol_refcount);
1025	return err;
1026}
1027
1028#ifdef CONFIG_MIGRATION
1029static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
 
 
 
1030				unsigned long flags)
1031{
1032	/*
1033	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034	 * Choosing not to migrate a shared folio is not counted as a failure.
1035	 *
1036	 * See folio_likely_mapped_shared() on possible imprecision when we
1037	 * cannot easily detect if a folio is shared.
1038	 */
1039	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040		if (folio_isolate_lru(folio)) {
1041			list_add_tail(&folio->lru, foliolist);
1042			node_stat_mod_folio(folio,
1043				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044				folio_nr_pages(folio));
1045		} else {
1046			/*
1047			 * Non-movable folio may reach here.  And, there may be
1048			 * temporary off LRU folios or non-LRU movable folios.
1049			 * Treat them as unmovable folios since they can't be
1050			 * isolated, so they can't be moved at the moment.
1051			 */
1052			return false;
1053		}
1054	}
1055	return true;
 
 
 
 
 
 
 
 
 
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			    int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	long nr_failed;
1069	long err = 0;
1070	struct migration_target_control mtc = {
1071		.nid = dest,
1072		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073		.reason = MR_SYSCALL,
1074	};
1075
1076	nodes_clear(nmask);
1077	node_set(source, nmask);
1078
1079	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080
1081	mmap_read_lock(mm);
1082	vma = find_vma(mm, 0);
1083	if (unlikely(!vma)) {
1084		mmap_read_unlock(mm);
1085		return 0;
1086	}
1087
1088	/*
1089	 * This does not migrate the range, but isolates all pages that
1090	 * need migration.  Between passing in the full user address
1091	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1092	 * but passes back the count of pages which could not be isolated.
1093	 */
1094	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1095				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1096	mmap_read_unlock(mm);
1097
1098	if (!list_empty(&pagelist)) {
1099		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1100			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1101		if (err)
1102			putback_movable_pages(&pagelist);
1103	}
1104
1105	if (err >= 0)
1106		err += nr_failed;
1107	return err;
1108}
1109
1110/*
1111 * Move pages between the two nodesets so as to preserve the physical
1112 * layout as much as possible.
1113 *
1114 * Returns the number of page that could not be moved.
1115 */
1116int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117		     const nodemask_t *to, int flags)
1118{
1119	long nr_failed = 0;
1120	long err = 0;
1121	nodemask_t tmp;
1122
1123	lru_cache_disable();
 
 
 
 
1124
1125	/*
1126	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1127	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1128	 * bit in 'tmp', and return that <source, dest> pair for migration.
1129	 * The pair of nodemasks 'to' and 'from' define the map.
1130	 *
1131	 * If no pair of bits is found that way, fallback to picking some
1132	 * pair of 'source' and 'dest' bits that are not the same.  If the
1133	 * 'source' and 'dest' bits are the same, this represents a node
1134	 * that will be migrating to itself, so no pages need move.
1135	 *
1136	 * If no bits are left in 'tmp', or if all remaining bits left
1137	 * in 'tmp' correspond to the same bit in 'to', return false
1138	 * (nothing left to migrate).
1139	 *
1140	 * This lets us pick a pair of nodes to migrate between, such that
1141	 * if possible the dest node is not already occupied by some other
1142	 * source node, minimizing the risk of overloading the memory on a
1143	 * node that would happen if we migrated incoming memory to a node
1144	 * before migrating outgoing memory source that same node.
1145	 *
1146	 * A single scan of tmp is sufficient.  As we go, we remember the
1147	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1148	 * that not only moved, but what's better, moved to an empty slot
1149	 * (d is not set in tmp), then we break out then, with that pair.
1150	 * Otherwise when we finish scanning from_tmp, we at least have the
1151	 * most recent <s, d> pair that moved.  If we get all the way through
1152	 * the scan of tmp without finding any node that moved, much less
1153	 * moved to an empty node, then there is nothing left worth migrating.
1154	 */
1155
1156	tmp = *from;
1157	while (!nodes_empty(tmp)) {
1158		int s, d;
1159		int source = NUMA_NO_NODE;
1160		int dest = 0;
1161
1162		for_each_node_mask(s, tmp) {
1163
1164			/*
1165			 * do_migrate_pages() tries to maintain the relative
1166			 * node relationship of the pages established between
1167			 * threads and memory areas.
1168                         *
1169			 * However if the number of source nodes is not equal to
1170			 * the number of destination nodes we can not preserve
1171			 * this node relative relationship.  In that case, skip
1172			 * copying memory from a node that is in the destination
1173			 * mask.
1174			 *
1175			 * Example: [2,3,4] -> [3,4,5] moves everything.
1176			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1177			 */
1178
1179			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1180						(node_isset(s, *to)))
1181				continue;
1182
1183			d = node_remap(s, *from, *to);
1184			if (s == d)
1185				continue;
1186
1187			source = s;	/* Node moved. Memorize */
1188			dest = d;
1189
1190			/* dest not in remaining from nodes? */
1191			if (!node_isset(dest, tmp))
1192				break;
1193		}
1194		if (source == NUMA_NO_NODE)
1195			break;
1196
1197		node_clear(source, tmp);
1198		err = migrate_to_node(mm, source, dest, flags);
1199		if (err > 0)
1200			nr_failed += err;
1201		if (err < 0)
1202			break;
1203	}
1204
1205	lru_cache_enable();
1206	if (err < 0)
1207		return err;
1208	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
 
1209}
1210
1211/*
1212 * Allocate a new folio for page migration, according to NUMA mempolicy.
 
 
 
 
1213 */
1214static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1215						    unsigned long private)
1216{
1217	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1218	struct mempolicy *pol = mmpol->pol;
1219	pgoff_t ilx = mmpol->ilx;
1220	unsigned int order;
1221	int nid = numa_node_id();
1222	gfp_t gfp;
1223
1224	order = folio_order(src);
1225	ilx += src->index >> order;
1226
1227	if (folio_test_hugetlb(src)) {
1228		nodemask_t *nodemask;
1229		struct hstate *h;
 
1230
1231		h = folio_hstate(src);
1232		gfp = htlb_alloc_mask(h);
1233		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1234		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1235				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1236	}
1237
1238	if (folio_test_large(src))
1239		gfp = GFP_TRANSHUGE;
1240	else
1241		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1242
1243	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1244}
1245#else
1246
1247static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248				unsigned long flags)
1249{
1250	return false;
1251}
1252
1253int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254		     const nodemask_t *to, int flags)
1255{
1256	return -ENOSYS;
1257}
1258
1259static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1260						    unsigned long private)
1261{
1262	return NULL;
1263}
1264#endif
1265
1266static long do_mbind(unsigned long start, unsigned long len,
1267		     unsigned short mode, unsigned short mode_flags,
1268		     nodemask_t *nmask, unsigned long flags)
1269{
1270	struct mm_struct *mm = current->mm;
1271	struct vm_area_struct *vma, *prev;
1272	struct vma_iterator vmi;
1273	struct migration_mpol mmpol;
1274	struct mempolicy *new;
1275	unsigned long end;
1276	long err;
1277	long nr_failed;
1278	LIST_HEAD(pagelist);
1279
1280	if (flags & ~(unsigned long)MPOL_MF_VALID)
1281		return -EINVAL;
1282	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283		return -EPERM;
1284
1285	if (start & ~PAGE_MASK)
1286		return -EINVAL;
1287
1288	if (mode == MPOL_DEFAULT)
1289		flags &= ~MPOL_MF_STRICT;
1290
1291	len = PAGE_ALIGN(len);
1292	end = start + len;
1293
1294	if (end < start)
1295		return -EINVAL;
1296	if (end == start)
1297		return 0;
1298
1299	new = mpol_new(mode, mode_flags, nmask);
1300	if (IS_ERR(new))
1301		return PTR_ERR(new);
1302
 
 
 
1303	/*
1304	 * If we are using the default policy then operation
1305	 * on discontinuous address spaces is okay after all
1306	 */
1307	if (!new)
1308		flags |= MPOL_MF_DISCONTIG_OK;
1309
1310	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1311		lru_cache_disable();
 
 
 
 
 
 
 
 
1312	{
1313		NODEMASK_SCRATCH(scratch);
1314		if (scratch) {
1315			mmap_write_lock(mm);
 
1316			err = mpol_set_nodemask(new, nmask, scratch);
 
1317			if (err)
1318				mmap_write_unlock(mm);
1319		} else
1320			err = -ENOMEM;
1321		NODEMASK_SCRATCH_FREE(scratch);
1322	}
1323	if (err)
1324		goto mpol_out;
1325
1326	/*
1327	 * Lock the VMAs before scanning for pages to migrate,
1328	 * to ensure we don't miss a concurrently inserted page.
1329	 */
1330	nr_failed = queue_pages_range(mm, start, end, nmask,
1331			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1332
1333	if (nr_failed < 0) {
1334		err = nr_failed;
1335		nr_failed = 0;
1336	} else {
1337		vma_iter_init(&vmi, mm, start);
1338		prev = vma_prev(&vmi);
1339		for_each_vma_range(vmi, vma, end) {
1340			err = mbind_range(&vmi, vma, &prev, start, end, new);
1341			if (err)
1342				break;
1343		}
1344	}
1345
1346	if (!err && !list_empty(&pagelist)) {
1347		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1348		if (!new) {
1349			new = get_task_policy(current);
1350			mpol_get(new);
 
1351		}
1352		mmpol.pol = new;
1353		mmpol.ilx = 0;
1354
1355		/*
1356		 * In the interleaved case, attempt to allocate on exactly the
1357		 * targeted nodes, for the first VMA to be migrated; for later
1358		 * VMAs, the nodes will still be interleaved from the targeted
1359		 * nodemask, but one by one may be selected differently.
1360		 */
1361		if (new->mode == MPOL_INTERLEAVE ||
1362		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1363			struct folio *folio;
1364			unsigned int order;
1365			unsigned long addr = -EFAULT;
1366
1367			list_for_each_entry(folio, &pagelist, lru) {
1368				if (!folio_test_ksm(folio))
1369					break;
1370			}
1371			if (!list_entry_is_head(folio, &pagelist, lru)) {
1372				vma_iter_init(&vmi, mm, start);
1373				for_each_vma_range(vmi, vma, end) {
1374					addr = page_address_in_vma(folio,
1375						folio_page(folio, 0), vma);
1376					if (addr != -EFAULT)
1377						break;
1378				}
1379			}
1380			if (addr != -EFAULT) {
1381				order = folio_order(folio);
1382				/* We already know the pol, but not the ilx */
1383				mpol_cond_put(get_vma_policy(vma, addr, order,
1384							     &mmpol.ilx));
1385				/* Set base from which to increment by index */
1386				mmpol.ilx -= folio->index >> order;
1387			}
1388		}
1389	}
1390
1391	mmap_write_unlock(mm);
1392
1393	if (!err && !list_empty(&pagelist)) {
1394		nr_failed |= migrate_pages(&pagelist,
1395				alloc_migration_target_by_mpol, NULL,
1396				(unsigned long)&mmpol, MIGRATE_SYNC,
1397				MR_MEMPOLICY_MBIND, NULL);
1398	}
1399
1400	if (nr_failed && (flags & MPOL_MF_STRICT))
1401		err = -EIO;
1402	if (!list_empty(&pagelist))
1403		putback_movable_pages(&pagelist);
1404mpol_out:
1405	mpol_put(new);
1406	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1407		lru_cache_enable();
1408	return err;
1409}
1410
1411/*
1412 * User space interface with variable sized bitmaps for nodelists.
1413 */
1414static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1415		      unsigned long maxnode)
1416{
1417	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1418	int ret;
1419
1420	if (in_compat_syscall())
1421		ret = compat_get_bitmap(mask,
1422					(const compat_ulong_t __user *)nmask,
1423					maxnode);
1424	else
1425		ret = copy_from_user(mask, nmask,
1426				     nlongs * sizeof(unsigned long));
1427
1428	if (ret)
1429		return -EFAULT;
1430
1431	if (maxnode % BITS_PER_LONG)
1432		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1433
1434	return 0;
1435}
1436
1437/* Copy a node mask from user space. */
1438static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1439		     unsigned long maxnode)
1440{
 
 
 
 
1441	--maxnode;
1442	nodes_clear(*nodes);
1443	if (maxnode == 0 || !nmask)
1444		return 0;
1445	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1446		return -EINVAL;
1447
1448	/*
1449	 * When the user specified more nodes than supported just check
1450	 * if the non supported part is all zero, one word at a time,
1451	 * starting at the end.
1452	 */
1453	while (maxnode > MAX_NUMNODES) {
1454		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1455		unsigned long t;
1456
1457		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1458			return -EFAULT;
1459
1460		if (maxnode - bits >= MAX_NUMNODES) {
1461			maxnode -= bits;
1462		} else {
1463			maxnode = MAX_NUMNODES;
1464			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
 
 
 
 
 
 
1465		}
1466		if (t)
1467			return -EINVAL;
1468	}
1469
1470	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1471}
1472
1473/* Copy a kernel node mask to user space */
1474static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1475			      nodemask_t *nodes)
1476{
1477	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1478	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1479	bool compat = in_compat_syscall();
1480
1481	if (compat)
1482		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1483
1484	if (copy > nbytes) {
1485		if (copy > PAGE_SIZE)
1486			return -EINVAL;
1487		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1488			return -EFAULT;
1489		copy = nbytes;
1490		maxnode = nr_node_ids;
1491	}
1492
1493	if (compat)
1494		return compat_put_bitmap((compat_ulong_t __user *)mask,
1495					 nodes_addr(*nodes), maxnode);
1496
1497	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1498}
1499
1500/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1501static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
 
1502{
1503	*flags = *mode & MPOL_MODE_FLAGS;
1504	*mode &= ~MPOL_MODE_FLAGS;
 
1505
1506	if ((unsigned int)(*mode) >=  MPOL_MAX)
 
 
1507		return -EINVAL;
1508	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
 
1509		return -EINVAL;
1510	if (*flags & MPOL_F_NUMA_BALANCING) {
1511		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1512			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1513		else
1514			return -EINVAL;
1515	}
1516	return 0;
1517}
1518
1519static long kernel_mbind(unsigned long start, unsigned long len,
1520			 unsigned long mode, const unsigned long __user *nmask,
1521			 unsigned long maxnode, unsigned int flags)
1522{
1523	unsigned short mode_flags;
1524	nodemask_t nodes;
1525	int lmode = mode;
1526	int err;
1527
1528	start = untagged_addr(start);
1529	err = sanitize_mpol_flags(&lmode, &mode_flags);
1530	if (err)
1531		return err;
1532
1533	err = get_nodes(&nodes, nmask, maxnode);
1534	if (err)
1535		return err;
1536
1537	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1538}
1539
1540SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1541		unsigned long, home_node, unsigned long, flags)
 
1542{
1543	struct mm_struct *mm = current->mm;
1544	struct vm_area_struct *vma, *prev;
1545	struct mempolicy *new, *old;
1546	unsigned long end;
1547	int err = -ENOENT;
1548	VMA_ITERATOR(vmi, mm, start);
1549
1550	start = untagged_addr(start);
1551	if (start & ~PAGE_MASK)
1552		return -EINVAL;
1553	/*
1554	 * flags is used for future extension if any.
1555	 */
1556	if (flags != 0)
1557		return -EINVAL;
1558
1559	/*
1560	 * Check home_node is online to avoid accessing uninitialized
1561	 * NODE_DATA.
1562	 */
1563	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1564		return -EINVAL;
1565
1566	len = PAGE_ALIGN(len);
1567	end = start + len;
1568
1569	if (end < start)
1570		return -EINVAL;
1571	if (end == start)
1572		return 0;
1573	mmap_write_lock(mm);
1574	prev = vma_prev(&vmi);
1575	for_each_vma_range(vmi, vma, end) {
1576		/*
1577		 * If any vma in the range got policy other than MPOL_BIND
1578		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1579		 * the home node for vmas we already updated before.
1580		 */
1581		old = vma_policy(vma);
1582		if (!old) {
1583			prev = vma;
1584			continue;
1585		}
1586		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1587			err = -EOPNOTSUPP;
1588			break;
1589		}
1590		new = mpol_dup(old);
1591		if (IS_ERR(new)) {
1592			err = PTR_ERR(new);
1593			break;
1594		}
1595
1596		vma_start_write(vma);
1597		new->home_node = home_node;
1598		err = mbind_range(&vmi, vma, &prev, start, end, new);
1599		mpol_put(new);
1600		if (err)
1601			break;
1602	}
1603	mmap_write_unlock(mm);
1604	return err;
1605}
1606
1607SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1608		unsigned long, mode, const unsigned long __user *, nmask,
1609		unsigned long, maxnode, unsigned int, flags)
1610{
1611	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1612}
1613
1614/* Set the process memory policy */
1615static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1616				 unsigned long maxnode)
1617{
1618	unsigned short mode_flags;
1619	nodemask_t nodes;
1620	int lmode = mode;
1621	int err;
1622
1623	err = sanitize_mpol_flags(&lmode, &mode_flags);
1624	if (err)
1625		return err;
1626
1627	err = get_nodes(&nodes, nmask, maxnode);
1628	if (err)
1629		return err;
1630
1631	return do_set_mempolicy(lmode, mode_flags, &nodes);
1632}
1633
1634SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1635		unsigned long, maxnode)
1636{
1637	return kernel_set_mempolicy(mode, nmask, maxnode);
1638}
1639
1640static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1641				const unsigned long __user *old_nodes,
1642				const unsigned long __user *new_nodes)
1643{
 
1644	struct mm_struct *mm = NULL;
1645	struct task_struct *task;
1646	nodemask_t task_nodes;
1647	int err;
1648	nodemask_t *old;
1649	nodemask_t *new;
1650	NODEMASK_SCRATCH(scratch);
1651
1652	if (!scratch)
1653		return -ENOMEM;
1654
1655	old = &scratch->mask1;
1656	new = &scratch->mask2;
1657
1658	err = get_nodes(old, old_nodes, maxnode);
1659	if (err)
1660		goto out;
1661
1662	err = get_nodes(new, new_nodes, maxnode);
1663	if (err)
1664		goto out;
1665
1666	/* Find the mm_struct */
1667	rcu_read_lock();
1668	task = pid ? find_task_by_vpid(pid) : current;
1669	if (!task) {
1670		rcu_read_unlock();
1671		err = -ESRCH;
1672		goto out;
1673	}
1674	get_task_struct(task);
1675
1676	err = -EINVAL;
1677
1678	/*
1679	 * Check if this process has the right to modify the specified process.
1680	 * Use the regular "ptrace_may_access()" checks.
1681	 */
1682	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1683		rcu_read_unlock();
1684		err = -EPERM;
1685		goto out_put;
1686	}
1687	rcu_read_unlock();
1688
1689	task_nodes = cpuset_mems_allowed(task);
1690	/* Is the user allowed to access the target nodes? */
1691	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1692		err = -EPERM;
1693		goto out_put;
1694	}
1695
1696	task_nodes = cpuset_mems_allowed(current);
1697	nodes_and(*new, *new, task_nodes);
1698	if (nodes_empty(*new))
1699		goto out_put;
 
1700
1701	err = security_task_movememory(task);
1702	if (err)
1703		goto out_put;
1704
1705	mm = get_task_mm(task);
1706	put_task_struct(task);
1707
1708	if (!mm) {
1709		err = -EINVAL;
1710		goto out;
1711	}
1712
1713	err = do_migrate_pages(mm, old, new,
1714		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1715
1716	mmput(mm);
1717out:
1718	NODEMASK_SCRATCH_FREE(scratch);
1719
1720	return err;
1721
1722out_put:
1723	put_task_struct(task);
1724	goto out;
 
1725}
1726
1727SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1728		const unsigned long __user *, old_nodes,
1729		const unsigned long __user *, new_nodes)
1730{
1731	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1732}
1733
1734/* Retrieve NUMA policy */
1735static int kernel_get_mempolicy(int __user *policy,
1736				unsigned long __user *nmask,
1737				unsigned long maxnode,
1738				unsigned long addr,
1739				unsigned long flags)
1740{
1741	int err;
1742	int pval;
1743	nodemask_t nodes;
1744
1745	if (nmask != NULL && maxnode < nr_node_ids)
1746		return -EINVAL;
1747
1748	addr = untagged_addr(addr);
1749
1750	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1751
1752	if (err)
1753		return err;
1754
1755	if (policy && put_user(pval, policy))
1756		return -EFAULT;
1757
1758	if (nmask)
1759		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1760
1761	return err;
1762}
1763
1764SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1765		unsigned long __user *, nmask, unsigned long, maxnode,
1766		unsigned long, addr, unsigned long, flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767{
1768	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769}
1770
1771bool vma_migratable(struct vm_area_struct *vma)
 
 
1772{
1773	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774		return false;
 
 
 
 
 
1775
1776	/*
1777	 * DAX device mappings require predictable access latency, so avoid
1778	 * incurring periodic faults.
1779	 */
1780	if (vma_is_dax(vma))
1781		return false;
1782
1783	if (is_vm_hugetlb_page(vma) &&
1784		!hugepage_migration_supported(hstate_vma(vma)))
1785		return false;
1786
1787	/*
1788	 * Migration allocates pages in the highest zone. If we cannot
1789	 * do so then migration (at least from node to node) is not
1790	 * possible.
1791	 */
1792	if (vma->vm_file &&
1793		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794			< policy_zone)
1795		return false;
1796	return true;
1797}
1798
 
 
1799struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800				   unsigned long addr, pgoff_t *ilx)
1801{
1802	*ilx = 0;
1803	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1804		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805}
1806
1807/*
1808 * get_vma_policy(@vma, @addr, @order, @ilx)
1809 * @vma: virtual memory area whose policy is sought
1810 * @addr: address in @vma for shared policy lookup
1811 * @order: 0, or appropriate huge_page_order for interleaving
1812 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1813 *       MPOL_WEIGHTED_INTERLEAVE
1814 *
1815 * Returns effective policy for a VMA at specified address.
1816 * Falls back to current->mempolicy or system default policy, as necessary.
1817 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818 * count--added by the get_policy() vm_op, as appropriate--to protect against
1819 * freeing by another task.  It is the caller's responsibility to free the
1820 * extra reference for shared policies.
1821 */
1822struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823				 unsigned long addr, int order, pgoff_t *ilx)
1824{
1825	struct mempolicy *pol;
1826
1827	pol = __get_vma_policy(vma, addr, ilx);
1828	if (!pol)
1829		pol = get_task_policy(current);
1830	if (pol->mode == MPOL_INTERLEAVE ||
1831	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1832		*ilx += vma->vm_pgoff >> order;
1833		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1834	}
1835	return pol;
1836}
1837
1838bool vma_policy_mof(struct vm_area_struct *vma)
1839{
1840	struct mempolicy *pol;
1841
1842	if (vma->vm_ops && vma->vm_ops->get_policy) {
1843		bool ret = false;
1844		pgoff_t ilx;		/* ignored here */
1845
1846		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1847		if (pol && (pol->flags & MPOL_F_MOF))
1848			ret = true;
1849		mpol_cond_put(pol);
1850
1851		return ret;
1852	}
1853
1854	pol = vma->vm_policy;
1855	if (!pol)
1856		pol = get_task_policy(current);
1857
1858	return pol->flags & MPOL_F_MOF;
1859}
1860
1861bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1862{
1863	enum zone_type dynamic_policy_zone = policy_zone;
1864
1865	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1866
1867	/*
1868	 * if policy->nodes has movable memory only,
1869	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1870	 *
1871	 * policy->nodes is intersect with node_states[N_MEMORY].
1872	 * so if the following test fails, it implies
1873	 * policy->nodes has movable memory only.
1874	 */
1875	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1876		dynamic_policy_zone = ZONE_MOVABLE;
1877
1878	return zone >= dynamic_policy_zone;
1879}
1880
1881static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
 
 
 
 
1882{
1883	unsigned int node;
1884	unsigned int cpuset_mems_cookie;
 
 
 
 
 
 
1885
1886retry:
1887	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1888	cpuset_mems_cookie = read_mems_allowed_begin();
1889	node = current->il_prev;
1890	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1891		node = next_node_in(node, policy->nodes);
1892		if (read_mems_allowed_retry(cpuset_mems_cookie))
1893			goto retry;
1894		if (node == MAX_NUMNODES)
1895			return node;
1896		current->il_prev = node;
1897		current->il_weight = get_il_weight(node);
 
 
 
 
 
 
 
 
 
 
1898	}
1899	current->il_weight--;
1900	return node;
1901}
1902
1903/* Do dynamic interleaving for a process */
1904static unsigned int interleave_nodes(struct mempolicy *policy)
1905{
1906	unsigned int nid;
1907	unsigned int cpuset_mems_cookie;
1908
1909	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1910	do {
1911		cpuset_mems_cookie = read_mems_allowed_begin();
1912		nid = next_node_in(current->il_prev, policy->nodes);
1913	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1914
1915	if (nid < MAX_NUMNODES)
1916		current->il_prev = nid;
 
 
 
 
1917	return nid;
1918}
1919
1920/*
1921 * Depending on the memory policy provide a node from which to allocate the
1922 * next slab entry.
1923 */
1924unsigned int mempolicy_slab_node(void)
1925{
1926	struct mempolicy *policy;
1927	int node = numa_mem_id();
1928
1929	if (!in_task())
1930		return node;
1931
1932	policy = current->mempolicy;
1933	if (!policy)
1934		return node;
1935
1936	switch (policy->mode) {
1937	case MPOL_PREFERRED:
1938		return first_node(policy->nodes);
 
 
 
1939
1940	case MPOL_INTERLEAVE:
1941		return interleave_nodes(policy);
1942
1943	case MPOL_WEIGHTED_INTERLEAVE:
1944		return weighted_interleave_nodes(policy);
1945
1946	case MPOL_BIND:
1947	case MPOL_PREFERRED_MANY:
1948	{
1949		struct zoneref *z;
1950
1951		/*
1952		 * Follow bind policy behavior and start allocation at the
1953		 * first node.
1954		 */
1955		struct zonelist *zonelist;
 
1956		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1957		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1958		z = first_zones_zonelist(zonelist, highest_zoneidx,
1959							&policy->nodes);
1960		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
 
1961	}
1962	case MPOL_LOCAL:
1963		return node;
1964
1965	default:
1966		BUG();
1967	}
1968}
1969
1970static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1971					      nodemask_t *mask)
1972{
1973	/*
1974	 * barrier stabilizes the nodemask locally so that it can be iterated
1975	 * over safely without concern for changes. Allocators validate node
1976	 * selection does not violate mems_allowed, so this is safe.
1977	 */
1978	barrier();
1979	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1980	barrier();
1981	return nodes_weight(*mask);
1982}
1983
1984static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1985{
1986	nodemask_t nodemask;
1987	unsigned int target, nr_nodes;
1988	u8 *table;
1989	unsigned int weight_total = 0;
1990	u8 weight;
1991	int nid;
1992
1993	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1994	if (!nr_nodes)
1995		return numa_node_id();
1996
1997	rcu_read_lock();
1998	table = rcu_dereference(iw_table);
1999	/* calculate the total weight */
2000	for_each_node_mask(nid, nodemask) {
2001		/* detect system default usage */
2002		weight = table ? table[nid] : 1;
2003		weight = weight ? weight : 1;
2004		weight_total += weight;
2005	}
2006
2007	/* Calculate the node offset based on totals */
2008	target = ilx % weight_total;
2009	nid = first_node(nodemask);
2010	while (target) {
2011		/* detect system default usage */
2012		weight = table ? table[nid] : 1;
2013		weight = weight ? weight : 1;
2014		if (target < weight)
2015			break;
2016		target -= weight;
2017		nid = next_node_in(nid, nodemask);
2018	}
2019	rcu_read_unlock();
2020	return nid;
2021}
2022
2023/*
2024 * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2025 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2026 * exceeds the number of present nodes.
2027 */
2028static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2029{
2030	nodemask_t nodemask;
2031	unsigned int target, nnodes;
2032	int i;
2033	int nid;
2034
2035	nnodes = read_once_policy_nodemask(pol, &nodemask);
2036	if (!nnodes)
2037		return numa_node_id();
2038	target = ilx % nnodes;
2039	nid = first_node(nodemask);
2040	for (i = 0; i < target; i++)
2041		nid = next_node(nid, nodemask);
2042	return nid;
 
 
 
 
 
2043}
2044
2045/*
2046 * Return a nodemask representing a mempolicy for filtering nodes for
2047 * page allocation, together with preferred node id (or the input node id).
2048 */
2049static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2050				   pgoff_t ilx, int *nid)
2051{
2052	nodemask_t *nodemask = NULL;
2053
2054	switch (pol->mode) {
2055	case MPOL_PREFERRED:
2056		/* Override input node id */
2057		*nid = first_node(pol->nodes);
2058		break;
2059	case MPOL_PREFERRED_MANY:
2060		nodemask = &pol->nodes;
2061		if (pol->home_node != NUMA_NO_NODE)
2062			*nid = pol->home_node;
2063		break;
2064	case MPOL_BIND:
2065		/* Restrict to nodemask (but not on lower zones) */
2066		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2067		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2068			nodemask = &pol->nodes;
2069		if (pol->home_node != NUMA_NO_NODE)
2070			*nid = pol->home_node;
2071		/*
2072		 * __GFP_THISNODE shouldn't even be used with the bind policy
2073		 * because we might easily break the expectation to stay on the
2074		 * requested node and not break the policy.
2075		 */
2076		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2077		break;
2078	case MPOL_INTERLEAVE:
2079		/* Override input node id */
2080		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081			interleave_nodes(pol) : interleave_nid(pol, ilx);
2082		break;
2083	case MPOL_WEIGHTED_INTERLEAVE:
2084		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2085			weighted_interleave_nodes(pol) :
2086			weighted_interleave_nid(pol, ilx);
2087		break;
2088	}
2089
2090	return nodemask;
2091}
2092
2093#ifdef CONFIG_HUGETLBFS
2094/*
2095 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2096 * @vma: virtual memory area whose policy is sought
2097 * @addr: address in @vma for shared policy lookup and interleave policy
2098 * @gfp_flags: for requested zone
2099 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2100 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2101 *
2102 * Returns a nid suitable for a huge page allocation and a pointer
2103 * to the struct mempolicy for conditional unref after allocation.
2104 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2105 * to the mempolicy's @nodemask for filtering the zonelist.
 
 
2106 */
2107int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2108		struct mempolicy **mpol, nodemask_t **nodemask)
 
2109{
2110	pgoff_t ilx;
2111	int nid;
 
 
2112
2113	nid = numa_node_id();
2114	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2115	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2116	return nid;
 
 
 
 
 
2117}
2118
2119/*
2120 * init_nodemask_of_mempolicy
2121 *
2122 * If the current task's mempolicy is "default" [NULL], return 'false'
2123 * to indicate default policy.  Otherwise, extract the policy nodemask
2124 * for 'bind' or 'interleave' policy into the argument nodemask, or
2125 * initialize the argument nodemask to contain the single node for
2126 * 'preferred' or 'local' policy and return 'true' to indicate presence
2127 * of non-default mempolicy.
2128 *
2129 * We don't bother with reference counting the mempolicy [mpol_get/put]
2130 * because the current task is examining it's own mempolicy and a task's
2131 * mempolicy is only ever changed by the task itself.
2132 *
2133 * N.B., it is the caller's responsibility to free a returned nodemask.
2134 */
2135bool init_nodemask_of_mempolicy(nodemask_t *mask)
2136{
2137	struct mempolicy *mempolicy;
 
2138
2139	if (!(mask && current->mempolicy))
2140		return false;
2141
2142	task_lock(current);
2143	mempolicy = current->mempolicy;
2144	switch (mempolicy->mode) {
2145	case MPOL_PREFERRED:
2146	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2147	case MPOL_BIND:
 
2148	case MPOL_INTERLEAVE:
2149	case MPOL_WEIGHTED_INTERLEAVE:
2150		*mask = mempolicy->nodes;
2151		break;
2152
2153	case MPOL_LOCAL:
2154		init_nodemask_of_node(mask, numa_node_id());
2155		break;
2156
2157	default:
2158		BUG();
2159	}
2160	task_unlock(current);
2161
2162	return true;
2163}
2164#endif
2165
2166/*
2167 * mempolicy_in_oom_domain
2168 *
2169 * If tsk's mempolicy is "bind", check for intersection between mask and
2170 * the policy nodemask. Otherwise, return true for all other policies
2171 * including "interleave", as a tsk with "interleave" policy may have
2172 * memory allocated from all nodes in system.
2173 *
2174 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2175 */
2176bool mempolicy_in_oom_domain(struct task_struct *tsk,
2177					const nodemask_t *mask)
2178{
2179	struct mempolicy *mempolicy;
2180	bool ret = true;
2181
2182	if (!mask)
2183		return ret;
2184
2185	task_lock(tsk);
2186	mempolicy = tsk->mempolicy;
2187	if (mempolicy && mempolicy->mode == MPOL_BIND)
2188		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189	task_unlock(tsk);
2190
2191	return ret;
2192}
2193
2194static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2195						int nid, nodemask_t *nodemask)
 
 
2196{
 
2197	struct page *page;
2198	gfp_t preferred_gfp;
2199
2200	/*
2201	 * This is a two pass approach. The first pass will only try the
2202	 * preferred nodes but skip the direct reclaim and allow the
2203	 * allocation to fail, while the second pass will try all the
2204	 * nodes in system.
2205	 */
2206	preferred_gfp = gfp | __GFP_NOWARN;
2207	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2208	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2209	if (!page)
2210		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2211
 
 
 
 
2212	return page;
2213}
2214
2215/**
2216 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2217 * @gfp: GFP flags.
2218 * @order: Order of the page allocation.
2219 * @pol: Pointer to the NUMA mempolicy.
2220 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2221 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2222 *
2223 * Return: The page on success or NULL if allocation fails.
2224 */
2225struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2226		struct mempolicy *pol, pgoff_t ilx, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227{
2228	nodemask_t *nodemask;
2229	struct page *page;
 
 
 
 
 
 
 
2230
2231	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
 
 
 
 
 
 
 
2232
2233	if (pol->mode == MPOL_PREFERRED_MANY)
2234		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2235
2236	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237	    /* filter "hugepage" allocation, unless from alloc_pages() */
2238	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2239		/*
2240		 * For hugepage allocation and non-interleave policy which
2241		 * allows the current node (or other explicitly preferred
2242		 * node) we only try to allocate from the current/preferred
2243		 * node and don't fall back to other nodes, as the cost of
2244		 * remote accesses would likely offset THP benefits.
2245		 *
2246		 * If the policy is interleave or does not allow the current
2247		 * node in its nodemask, we allocate the standard way.
2248		 */
2249		if (pol->mode != MPOL_INTERLEAVE &&
2250		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2251		    (!nodemask || node_isset(nid, *nodemask))) {
2252			/*
2253			 * First, try to allocate THP only on local node, but
2254			 * don't reclaim unnecessarily, just compact.
2255			 */
2256			page = __alloc_pages_node_noprof(nid,
2257				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2258			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2259				return page;
2260			/*
2261			 * If hugepage allocations are configured to always
2262			 * synchronous compact or the vma has been madvised
2263			 * to prefer hugepage backing, retry allowing remote
2264			 * memory with both reclaim and compact as well.
2265			 */
2266		}
2267	}
2268
2269	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2270
2271	if (unlikely(pol->mode == MPOL_INTERLEAVE ||
2272		     pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) {
2273		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2274		if (static_branch_likely(&vm_numa_stat_key) &&
2275		    page_to_nid(page) == nid) {
2276			preempt_disable();
2277			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2278			preempt_enable();
2279		}
2280	}
2281
 
 
 
 
 
 
 
2282	return page;
2283}
2284
2285struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2286		struct mempolicy *pol, pgoff_t ilx, int nid)
2287{
2288	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2289							order, pol, ilx, nid));
2290}
2291
2292/**
2293 * vma_alloc_folio - Allocate a folio for a VMA.
2294 * @gfp: GFP flags.
2295 * @order: Order of the folio.
2296 * @vma: Pointer to VMA.
2297 * @addr: Virtual address of the allocation.  Must be inside @vma.
2298 *
2299 * Allocate a folio for a specific address in @vma, using the appropriate
2300 * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2301 * VMA to prevent it from going away.  Should be used for all allocations
2302 * for folios that will be mapped into user space, excepting hugetlbfs, and
2303 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2304 *
2305 * Return: The folio on success or NULL if allocation fails.
2306 */
2307struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2308		unsigned long addr)
2309{
2310	struct mempolicy *pol;
2311	pgoff_t ilx;
2312	struct folio *folio;
2313
2314	if (vma->vm_flags & VM_DROPPABLE)
2315		gfp |= __GFP_NOWARN;
2316
2317	pol = get_vma_policy(vma, addr, order, &ilx);
2318	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2319	mpol_cond_put(pol);
2320	return folio;
2321}
2322EXPORT_SYMBOL(vma_alloc_folio_noprof);
2323
2324/**
2325 * alloc_pages - Allocate pages.
2326 * @gfp: GFP flags.
2327 * @order: Power of two of number of pages to allocate.
2328 *
2329 * Allocate 1 << @order contiguous pages.  The physical address of the
2330 * first page is naturally aligned (eg an order-3 allocation will be aligned
2331 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2332 * process is honoured when in process context.
2333 *
2334 * Context: Can be called from any context, providing the appropriate GFP
2335 * flags are used.
2336 * Return: The page on success or NULL if allocation fails.
2337 */
2338struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2339{
2340	struct mempolicy *pol = &default_policy;
 
 
2341
2342	/*
2343	 * No reference counting needed for current->mempolicy
2344	 * nor system default_policy
2345	 */
2346	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2347		pol = get_task_policy(current);
2348
2349	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2350				       numa_node_id());
2351}
2352EXPORT_SYMBOL(alloc_pages_noprof);
2353
2354struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2355{
2356	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2357}
2358EXPORT_SYMBOL(folio_alloc_noprof);
2359
2360static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2361		struct mempolicy *pol, unsigned long nr_pages,
2362		struct page **page_array)
2363{
2364	int nodes;
2365	unsigned long nr_pages_per_node;
2366	int delta;
2367	int i;
2368	unsigned long nr_allocated;
2369	unsigned long total_allocated = 0;
2370
2371	nodes = nodes_weight(pol->nodes);
2372	nr_pages_per_node = nr_pages / nodes;
2373	delta = nr_pages - nodes * nr_pages_per_node;
2374
2375	for (i = 0; i < nodes; i++) {
2376		if (delta) {
2377			nr_allocated = alloc_pages_bulk_noprof(gfp,
2378					interleave_nodes(pol), NULL,
2379					nr_pages_per_node + 1, NULL,
2380					page_array);
2381			delta--;
2382		} else {
2383			nr_allocated = alloc_pages_bulk_noprof(gfp,
2384					interleave_nodes(pol), NULL,
2385					nr_pages_per_node, NULL, page_array);
2386		}
2387
2388		page_array += nr_allocated;
2389		total_allocated += nr_allocated;
2390	}
2391
2392	return total_allocated;
2393}
2394
2395static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2396		struct mempolicy *pol, unsigned long nr_pages,
2397		struct page **page_array)
2398{
2399	struct task_struct *me = current;
2400	unsigned int cpuset_mems_cookie;
2401	unsigned long total_allocated = 0;
2402	unsigned long nr_allocated = 0;
2403	unsigned long rounds;
2404	unsigned long node_pages, delta;
2405	u8 *table, *weights, weight;
2406	unsigned int weight_total = 0;
2407	unsigned long rem_pages = nr_pages;
2408	nodemask_t nodes;
2409	int nnodes, node;
2410	int resume_node = MAX_NUMNODES - 1;
2411	u8 resume_weight = 0;
2412	int prev_node;
2413	int i;
2414
2415	if (!nr_pages)
2416		return 0;
2417
2418	/* read the nodes onto the stack, retry if done during rebind */
2419	do {
2420		cpuset_mems_cookie = read_mems_allowed_begin();
2421		nnodes = read_once_policy_nodemask(pol, &nodes);
2422	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2423
2424	/* if the nodemask has become invalid, we cannot do anything */
2425	if (!nnodes)
2426		return 0;
2427
2428	/* Continue allocating from most recent node and adjust the nr_pages */
2429	node = me->il_prev;
2430	weight = me->il_weight;
2431	if (weight && node_isset(node, nodes)) {
2432		node_pages = min(rem_pages, weight);
2433		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2434						  NULL, page_array);
2435		page_array += nr_allocated;
2436		total_allocated += nr_allocated;
2437		/* if that's all the pages, no need to interleave */
2438		if (rem_pages <= weight) {
2439			me->il_weight -= rem_pages;
2440			return total_allocated;
2441		}
2442		/* Otherwise we adjust remaining pages, continue from there */
2443		rem_pages -= weight;
2444	}
2445	/* clear active weight in case of an allocation failure */
2446	me->il_weight = 0;
2447	prev_node = node;
2448
2449	/* create a local copy of node weights to operate on outside rcu */
2450	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2451	if (!weights)
2452		return total_allocated;
2453
2454	rcu_read_lock();
2455	table = rcu_dereference(iw_table);
2456	if (table)
2457		memcpy(weights, table, nr_node_ids);
2458	rcu_read_unlock();
2459
2460	/* calculate total, detect system default usage */
2461	for_each_node_mask(node, nodes) {
2462		if (!weights[node])
2463			weights[node] = 1;
2464		weight_total += weights[node];
2465	}
2466
2467	/*
2468	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2469	 * Track which node weighted interleave should resume from.
2470	 *
2471	 * if (rounds > 0) and (delta == 0), resume_node will always be
2472	 * the node following prev_node and its weight.
2473	 */
2474	rounds = rem_pages / weight_total;
2475	delta = rem_pages % weight_total;
2476	resume_node = next_node_in(prev_node, nodes);
2477	resume_weight = weights[resume_node];
2478	for (i = 0; i < nnodes; i++) {
2479		node = next_node_in(prev_node, nodes);
2480		weight = weights[node];
2481		node_pages = weight * rounds;
2482		/* If a delta exists, add this node's portion of the delta */
2483		if (delta > weight) {
2484			node_pages += weight;
2485			delta -= weight;
2486		} else if (delta) {
2487			/* when delta is depleted, resume from that node */
2488			node_pages += delta;
2489			resume_node = node;
2490			resume_weight = weight - delta;
2491			delta = 0;
2492		}
2493		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2494		if (!node_pages)
2495			break;
2496		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2497						  NULL, page_array);
2498		page_array += nr_allocated;
2499		total_allocated += nr_allocated;
2500		if (total_allocated == nr_pages)
2501			break;
2502		prev_node = node;
2503	}
2504	me->il_prev = resume_node;
2505	me->il_weight = resume_weight;
2506	kfree(weights);
2507	return total_allocated;
2508}
2509
2510static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2511		struct mempolicy *pol, unsigned long nr_pages,
2512		struct page **page_array)
2513{
2514	gfp_t preferred_gfp;
2515	unsigned long nr_allocated = 0;
2516
2517	preferred_gfp = gfp | __GFP_NOWARN;
2518	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2519
2520	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2521					   nr_pages, NULL, page_array);
2522
2523	if (nr_allocated < nr_pages)
2524		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2525				nr_pages - nr_allocated, NULL,
2526				page_array + nr_allocated);
2527	return nr_allocated;
2528}
2529
2530/* alloc pages bulk and mempolicy should be considered at the
2531 * same time in some situation such as vmalloc.
2532 *
2533 * It can accelerate memory allocation especially interleaving
2534 * allocate memory.
2535 */
2536unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2537		unsigned long nr_pages, struct page **page_array)
2538{
2539	struct mempolicy *pol = &default_policy;
2540	nodemask_t *nodemask;
2541	int nid;
2542
2543	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2544		pol = get_task_policy(current);
2545
2546	if (pol->mode == MPOL_INTERLEAVE)
2547		return alloc_pages_bulk_array_interleave(gfp, pol,
2548							 nr_pages, page_array);
2549
2550	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2551		return alloc_pages_bulk_array_weighted_interleave(
2552				  gfp, pol, nr_pages, page_array);
2553
2554	if (pol->mode == MPOL_PREFERRED_MANY)
2555		return alloc_pages_bulk_array_preferred_many(gfp,
2556				numa_node_id(), pol, nr_pages, page_array);
2557
2558	nid = numa_node_id();
2559	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2560	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2561				       nr_pages, NULL, page_array);
2562}
 
2563
2564int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2565{
2566	struct mempolicy *pol = mpol_dup(src->vm_policy);
2567
2568	if (IS_ERR(pol))
2569		return PTR_ERR(pol);
2570	dst->vm_policy = pol;
2571	return 0;
2572}
2573
2574/*
2575 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2576 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2577 * with the mems_allowed returned by cpuset_mems_allowed().  This
2578 * keeps mempolicies cpuset relative after its cpuset moves.  See
2579 * further kernel/cpuset.c update_nodemask().
2580 *
2581 * current's mempolicy may be rebinded by the other task(the task that changes
2582 * cpuset's mems), so we needn't do rebind work for current task.
2583 */
2584
2585/* Slow path of a mempolicy duplicate */
2586struct mempolicy *__mpol_dup(struct mempolicy *old)
2587{
2588	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2589
2590	if (!new)
2591		return ERR_PTR(-ENOMEM);
2592
2593	/* task's mempolicy is protected by alloc_lock */
2594	if (old == current->mempolicy) {
2595		task_lock(current);
2596		*new = *old;
2597		task_unlock(current);
2598	} else
2599		*new = *old;
2600
2601	if (current_cpuset_is_being_rebound()) {
2602		nodemask_t mems = cpuset_mems_allowed(current);
2603		mpol_rebind_policy(new, &mems);
 
 
 
2604	}
2605	atomic_set(&new->refcnt, 1);
2606	return new;
2607}
2608
2609/* Slow path of a mempolicy comparison */
2610bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2611{
2612	if (!a || !b)
2613		return false;
2614	if (a->mode != b->mode)
2615		return false;
2616	if (a->flags != b->flags)
2617		return false;
2618	if (a->home_node != b->home_node)
2619		return false;
2620	if (mpol_store_user_nodemask(a))
2621		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2622			return false;
2623
2624	switch (a->mode) {
2625	case MPOL_BIND:
 
2626	case MPOL_INTERLEAVE:
 
2627	case MPOL_PREFERRED:
2628	case MPOL_PREFERRED_MANY:
2629	case MPOL_WEIGHTED_INTERLEAVE:
2630		return !!nodes_equal(a->nodes, b->nodes);
2631	case MPOL_LOCAL:
2632		return true;
2633	default:
2634		BUG();
2635		return false;
2636	}
2637}
2638
2639/*
2640 * Shared memory backing store policy support.
2641 *
2642 * Remember policies even when nobody has shared memory mapped.
2643 * The policies are kept in Red-Black tree linked from the inode.
2644 * They are protected by the sp->lock rwlock, which should be held
2645 * for any accesses to the tree.
2646 */
2647
2648/*
2649 * lookup first element intersecting start-end.  Caller holds sp->lock for
2650 * reading or for writing
2651 */
2652static struct sp_node *sp_lookup(struct shared_policy *sp,
2653					pgoff_t start, pgoff_t end)
2654{
2655	struct rb_node *n = sp->root.rb_node;
2656
2657	while (n) {
2658		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2659
2660		if (start >= p->end)
2661			n = n->rb_right;
2662		else if (end <= p->start)
2663			n = n->rb_left;
2664		else
2665			break;
2666	}
2667	if (!n)
2668		return NULL;
2669	for (;;) {
2670		struct sp_node *w = NULL;
2671		struct rb_node *prev = rb_prev(n);
2672		if (!prev)
2673			break;
2674		w = rb_entry(prev, struct sp_node, nd);
2675		if (w->end <= start)
2676			break;
2677		n = prev;
2678	}
2679	return rb_entry(n, struct sp_node, nd);
2680}
2681
2682/*
2683 * Insert a new shared policy into the list.  Caller holds sp->lock for
2684 * writing.
2685 */
2686static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2687{
2688	struct rb_node **p = &sp->root.rb_node;
2689	struct rb_node *parent = NULL;
2690	struct sp_node *nd;
2691
2692	while (*p) {
2693		parent = *p;
2694		nd = rb_entry(parent, struct sp_node, nd);
2695		if (new->start < nd->start)
2696			p = &(*p)->rb_left;
2697		else if (new->end > nd->end)
2698			p = &(*p)->rb_right;
2699		else
2700			BUG();
2701	}
2702	rb_link_node(&new->nd, parent, p);
2703	rb_insert_color(&new->nd, &sp->root);
 
 
2704}
2705
2706/* Find shared policy intersecting idx */
2707struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2708						pgoff_t idx)
2709{
2710	struct mempolicy *pol = NULL;
2711	struct sp_node *sn;
2712
2713	if (!sp->root.rb_node)
2714		return NULL;
2715	read_lock(&sp->lock);
2716	sn = sp_lookup(sp, idx, idx+1);
2717	if (sn) {
2718		mpol_get(sn->policy);
2719		pol = sn->policy;
2720	}
2721	read_unlock(&sp->lock);
2722	return pol;
2723}
2724
2725static void sp_free(struct sp_node *n)
2726{
2727	mpol_put(n->policy);
2728	kmem_cache_free(sn_cache, n);
2729}
2730
2731/**
2732 * mpol_misplaced - check whether current folio node is valid in policy
 
 
 
 
2733 *
2734 * @folio: folio to be checked
2735 * @vmf: structure describing the fault
2736 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2737 *
2738 * Lookup current policy node id for vma,addr and "compare to" folio's
2739 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
2740 * Called from fault path where we know the vma and faulting address.
2741 *
2742 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2743 * policy, or a suitable node ID to allocate a replacement folio from.
2744 */
2745int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2746		   unsigned long addr)
2747{
2748	struct mempolicy *pol;
2749	pgoff_t ilx;
2750	struct zoneref *z;
2751	int curnid = folio_nid(folio);
2752	struct vm_area_struct *vma = vmf->vma;
2753	int thiscpu = raw_smp_processor_id();
2754	int thisnid = numa_node_id();
2755	int polnid = NUMA_NO_NODE;
2756	int ret = NUMA_NO_NODE;
 
 
2757
2758	/*
2759	 * Make sure ptl is held so that we don't preempt and we
2760	 * have a stable smp processor id
2761	 */
2762	lockdep_assert_held(vmf->ptl);
2763	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2764	if (!(pol->flags & MPOL_F_MOF))
2765		goto out;
2766
2767	switch (pol->mode) {
2768	case MPOL_INTERLEAVE:
2769		polnid = interleave_nid(pol, ilx);
2770		break;
2771
2772	case MPOL_WEIGHTED_INTERLEAVE:
2773		polnid = weighted_interleave_nid(pol, ilx);
 
2774		break;
2775
2776	case MPOL_PREFERRED:
2777		if (node_isset(curnid, pol->nodes))
2778			goto out;
2779		polnid = first_node(pol->nodes);
2780		break;
2781
2782	case MPOL_LOCAL:
2783		polnid = numa_node_id();
2784		break;
2785
2786	case MPOL_BIND:
2787	case MPOL_PREFERRED_MANY:
2788		/*
2789		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2790		 * policy nodemask we don't allow numa migration to nodes
2791		 * outside policy nodemask for now. This is done so that if we
2792		 * want demotion to slow memory to happen, before allocating
2793		 * from some DRAM node say 'x', we will end up using a
2794		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2795		 * we should not promote to node 'x' from slow memory node.
2796		 */
2797		if (pol->flags & MPOL_F_MORON) {
2798			/*
2799			 * Optimize placement among multiple nodes
2800			 * via NUMA balancing
2801			 */
2802			if (node_isset(thisnid, pol->nodes))
2803				break;
2804			goto out;
2805		}
2806
2807		/*
 
2808		 * use current page if in policy nodemask,
2809		 * else select nearest allowed node, if any.
2810		 * If no allowed nodes, use current [!misplaced].
2811		 */
2812		if (node_isset(curnid, pol->nodes))
2813			goto out;
2814		z = first_zones_zonelist(
2815				node_zonelist(thisnid, GFP_HIGHUSER),
2816				gfp_zone(GFP_HIGHUSER),
2817				&pol->nodes);
2818		polnid = zonelist_node_idx(z);
2819		break;
2820
2821	default:
2822		BUG();
2823	}
2824
2825	/* Migrate the folio towards the node whose CPU is referencing it */
2826	if (pol->flags & MPOL_F_MORON) {
2827		polnid = thisnid;
2828
2829		if (!should_numa_migrate_memory(current, folio, curnid,
2830						thiscpu))
2831			goto out;
2832	}
2833
2834	if (curnid != polnid)
2835		ret = polnid;
2836out:
2837	mpol_cond_put(pol);
2838
2839	return ret;
2840}
2841
2842/*
2843 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2844 * dropped after task->mempolicy is set to NULL so that any allocation done as
2845 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2846 * policy.
2847 */
2848void mpol_put_task_policy(struct task_struct *task)
2849{
2850	struct mempolicy *pol;
2851
2852	task_lock(task);
2853	pol = task->mempolicy;
2854	task->mempolicy = NULL;
2855	task_unlock(task);
2856	mpol_put(pol);
2857}
2858
2859static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2860{
 
2861	rb_erase(&n->nd, &sp->root);
2862	sp_free(n);
2863}
2864
2865static void sp_node_init(struct sp_node *node, unsigned long start,
2866			unsigned long end, struct mempolicy *pol)
2867{
2868	node->start = start;
2869	node->end = end;
2870	node->policy = pol;
2871}
2872
2873static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2874				struct mempolicy *pol)
2875{
2876	struct sp_node *n;
2877	struct mempolicy *newpol;
2878
2879	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2880	if (!n)
2881		return NULL;
2882
2883	newpol = mpol_dup(pol);
2884	if (IS_ERR(newpol)) {
2885		kmem_cache_free(sn_cache, n);
2886		return NULL;
2887	}
2888	newpol->flags |= MPOL_F_SHARED;
2889	sp_node_init(n, start, end, newpol);
2890
2891	return n;
2892}
2893
2894/* Replace a policy range. */
2895static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2896				 pgoff_t end, struct sp_node *new)
2897{
2898	struct sp_node *n;
2899	struct sp_node *n_new = NULL;
2900	struct mempolicy *mpol_new = NULL;
2901	int ret = 0;
2902
2903restart:
2904	write_lock(&sp->lock);
2905	n = sp_lookup(sp, start, end);
2906	/* Take care of old policies in the same range. */
2907	while (n && n->start < end) {
2908		struct rb_node *next = rb_next(&n->nd);
2909		if (n->start >= start) {
2910			if (n->end <= end)
2911				sp_delete(sp, n);
2912			else
2913				n->start = end;
2914		} else {
2915			/* Old policy spanning whole new range. */
2916			if (n->end > end) {
2917				if (!n_new)
2918					goto alloc_new;
2919
2920				*mpol_new = *n->policy;
2921				atomic_set(&mpol_new->refcnt, 1);
2922				sp_node_init(n_new, end, n->end, mpol_new);
2923				n->end = start;
2924				sp_insert(sp, n_new);
2925				n_new = NULL;
2926				mpol_new = NULL;
2927				break;
2928			} else
2929				n->end = start;
2930		}
2931		if (!next)
2932			break;
2933		n = rb_entry(next, struct sp_node, nd);
2934	}
2935	if (new)
2936		sp_insert(sp, new);
2937	write_unlock(&sp->lock);
2938	ret = 0;
2939
2940err_out:
2941	if (mpol_new)
2942		mpol_put(mpol_new);
2943	if (n_new)
2944		kmem_cache_free(sn_cache, n_new);
2945
2946	return ret;
2947
2948alloc_new:
2949	write_unlock(&sp->lock);
2950	ret = -ENOMEM;
2951	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2952	if (!n_new)
2953		goto err_out;
2954	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2955	if (!mpol_new)
2956		goto err_out;
2957	atomic_set(&mpol_new->refcnt, 1);
2958	goto restart;
2959}
2960
2961/**
2962 * mpol_shared_policy_init - initialize shared policy for inode
2963 * @sp: pointer to inode shared policy
2964 * @mpol:  struct mempolicy to install
2965 *
2966 * Install non-NULL @mpol in inode's shared policy rb-tree.
2967 * On entry, the current task has a reference on a non-NULL @mpol.
2968 * This must be released on exit.
2969 * This is called at get_inode() calls and we can use GFP_KERNEL.
2970 */
2971void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2972{
2973	int ret;
2974
2975	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2976	rwlock_init(&sp->lock);
2977
2978	if (mpol) {
2979		struct sp_node *sn;
2980		struct mempolicy *npol;
2981		NODEMASK_SCRATCH(scratch);
2982
2983		if (!scratch)
2984			goto put_mpol;
2985
2986		/* contextualize the tmpfs mount point mempolicy to this file */
2987		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2988		if (IS_ERR(npol))
2989			goto free_scratch; /* no valid nodemask intersection */
2990
2991		task_lock(current);
2992		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2993		task_unlock(current);
2994		if (ret)
2995			goto put_npol;
2996
2997		/* alloc node covering entire file; adds ref to file's npol */
2998		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2999		if (sn)
3000			sp_insert(sp, sn);
3001put_npol:
3002		mpol_put(npol);	/* drop initial ref on file's npol */
 
3003free_scratch:
3004		NODEMASK_SCRATCH_FREE(scratch);
3005put_mpol:
3006		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3007	}
3008}
3009
3010int mpol_set_shared_policy(struct shared_policy *sp,
3011			struct vm_area_struct *vma, struct mempolicy *pol)
3012{
3013	int err;
3014	struct sp_node *new = NULL;
3015	unsigned long sz = vma_pages(vma);
3016
3017	if (pol) {
3018		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
 
 
 
 
 
 
3019		if (!new)
3020			return -ENOMEM;
3021	}
3022	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3023	if (err && new)
3024		sp_free(new);
3025	return err;
3026}
3027
3028/* Free a backing policy store on inode delete. */
3029void mpol_free_shared_policy(struct shared_policy *sp)
3030{
3031	struct sp_node *n;
3032	struct rb_node *next;
3033
3034	if (!sp->root.rb_node)
3035		return;
3036	write_lock(&sp->lock);
3037	next = rb_first(&sp->root);
3038	while (next) {
3039		n = rb_entry(next, struct sp_node, nd);
3040		next = rb_next(&n->nd);
3041		sp_delete(sp, n);
3042	}
3043	write_unlock(&sp->lock);
3044}
3045
3046#ifdef CONFIG_NUMA_BALANCING
3047static int __initdata numabalancing_override;
3048
3049static void __init check_numabalancing_enable(void)
3050{
3051	bool numabalancing_default = false;
3052
3053	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3054		numabalancing_default = true;
3055
3056	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3057	if (numabalancing_override)
3058		set_numabalancing_state(numabalancing_override == 1);
3059
3060	if (num_online_nodes() > 1 && !numabalancing_override) {
3061		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3062			numabalancing_default ? "Enabling" : "Disabling");
3063		set_numabalancing_state(numabalancing_default);
3064	}
3065}
3066
3067static int __init setup_numabalancing(char *str)
3068{
3069	int ret = 0;
3070	if (!str)
3071		goto out;
3072
3073	if (!strcmp(str, "enable")) {
3074		numabalancing_override = 1;
3075		ret = 1;
3076	} else if (!strcmp(str, "disable")) {
3077		numabalancing_override = -1;
3078		ret = 1;
3079	}
3080out:
3081	if (!ret)
3082		pr_warn("Unable to parse numa_balancing=\n");
3083
3084	return ret;
3085}
3086__setup("numa_balancing=", setup_numabalancing);
3087#else
3088static inline void __init check_numabalancing_enable(void)
3089{
3090}
3091#endif /* CONFIG_NUMA_BALANCING */
3092
 
3093void __init numa_policy_init(void)
3094{
3095	nodemask_t interleave_nodes;
3096	unsigned long largest = 0;
3097	int nid, prefer = 0;
3098
3099	policy_cache = kmem_cache_create("numa_policy",
3100					 sizeof(struct mempolicy),
3101					 0, SLAB_PANIC, NULL);
3102
3103	sn_cache = kmem_cache_create("shared_policy_node",
3104				     sizeof(struct sp_node),
3105				     0, SLAB_PANIC, NULL);
3106
3107	for_each_node(nid) {
3108		preferred_node_policy[nid] = (struct mempolicy) {
3109			.refcnt = ATOMIC_INIT(1),
3110			.mode = MPOL_PREFERRED,
3111			.flags = MPOL_F_MOF | MPOL_F_MORON,
3112			.nodes = nodemask_of_node(nid),
3113		};
3114	}
3115
3116	/*
3117	 * Set interleaving policy for system init. Interleaving is only
3118	 * enabled across suitably sized nodes (default is >= 16MB), or
3119	 * fall back to the largest node if they're all smaller.
3120	 */
3121	nodes_clear(interleave_nodes);
3122	for_each_node_state(nid, N_MEMORY) {
3123		unsigned long total_pages = node_present_pages(nid);
3124
3125		/* Preserve the largest node */
3126		if (largest < total_pages) {
3127			largest = total_pages;
3128			prefer = nid;
3129		}
3130
3131		/* Interleave this node? */
3132		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3133			node_set(nid, interleave_nodes);
3134	}
3135
3136	/* All too small, use the largest */
3137	if (unlikely(nodes_empty(interleave_nodes)))
3138		node_set(prefer, interleave_nodes);
3139
3140	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3141		pr_err("%s: interleaving failed\n", __func__);
3142
3143	check_numabalancing_enable();
3144}
3145
3146/* Reset policy of current process to default */
3147void numa_default_policy(void)
3148{
3149	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3150}
3151
3152/*
3153 * Parse and format mempolicy from/to strings
3154 */
 
 
 
 
3155static const char * const policy_modes[] =
3156{
3157	[MPOL_DEFAULT]    = "default",
3158	[MPOL_PREFERRED]  = "prefer",
3159	[MPOL_BIND]       = "bind",
3160	[MPOL_INTERLEAVE] = "interleave",
3161	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3162	[MPOL_LOCAL]      = "local",
3163	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3164};
3165
 
3166#ifdef CONFIG_TMPFS
3167/**
3168 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3169 * @str:  string containing mempolicy to parse
3170 * @mpol:  pointer to struct mempolicy pointer, returned on success.
3171 *
3172 * Format of input:
3173 *	<mode>[=<flags>][:<nodelist>]
3174 *
3175 * Return: %0 on success, else %1
3176 */
3177int mpol_parse_str(char *str, struct mempolicy **mpol)
3178{
3179	struct mempolicy *new = NULL;
 
3180	unsigned short mode_flags;
3181	nodemask_t nodes;
3182	char *nodelist = strchr(str, ':');
3183	char *flags = strchr(str, '=');
3184	int err = 1, mode;
3185
3186	if (flags)
3187		*flags++ = '\0';	/* terminate mode string */
3188
3189	if (nodelist) {
3190		/* NUL-terminate mode or flags string */
3191		*nodelist++ = '\0';
3192		if (nodelist_parse(nodelist, nodes))
3193			goto out;
3194		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3195			goto out;
3196	} else
3197		nodes_clear(nodes);
3198
3199	mode = match_string(policy_modes, MPOL_MAX, str);
3200	if (mode < 0)
 
 
 
 
 
 
 
3201		goto out;
3202
3203	switch (mode) {
3204	case MPOL_PREFERRED:
3205		/*
3206		 * Insist on a nodelist of one node only, although later
3207		 * we use first_node(nodes) to grab a single node, so here
3208		 * nodelist (or nodes) cannot be empty.
3209		 */
3210		if (nodelist) {
3211			char *rest = nodelist;
3212			while (isdigit(*rest))
3213				rest++;
3214			if (*rest)
3215				goto out;
3216			if (nodes_empty(nodes))
3217				goto out;
3218		}
3219		break;
3220	case MPOL_INTERLEAVE:
3221	case MPOL_WEIGHTED_INTERLEAVE:
3222		/*
3223		 * Default to online nodes with memory if no nodelist
3224		 */
3225		if (!nodelist)
3226			nodes = node_states[N_MEMORY];
3227		break;
3228	case MPOL_LOCAL:
3229		/*
3230		 * Don't allow a nodelist;  mpol_new() checks flags
3231		 */
3232		if (nodelist)
3233			goto out;
 
3234		break;
3235	case MPOL_DEFAULT:
3236		/*
3237		 * Insist on a empty nodelist
3238		 */
3239		if (!nodelist)
3240			err = 0;
3241		goto out;
3242	case MPOL_PREFERRED_MANY:
3243	case MPOL_BIND:
3244		/*
3245		 * Insist on a nodelist
3246		 */
3247		if (!nodelist)
3248			goto out;
3249	}
3250
3251	mode_flags = 0;
3252	if (flags) {
3253		/*
3254		 * Currently, we only support two mutually exclusive
3255		 * mode flags.
3256		 */
3257		if (!strcmp(flags, "static"))
3258			mode_flags |= MPOL_F_STATIC_NODES;
3259		else if (!strcmp(flags, "relative"))
3260			mode_flags |= MPOL_F_RELATIVE_NODES;
3261		else
3262			goto out;
3263	}
3264
3265	new = mpol_new(mode, mode_flags, &nodes);
3266	if (IS_ERR(new))
3267		goto out;
3268
3269	/*
3270	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3271	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3272	 */
3273	if (mode != MPOL_PREFERRED) {
3274		new->nodes = nodes;
3275	} else if (nodelist) {
3276		nodes_clear(new->nodes);
3277		node_set(first_node(nodes), new->nodes);
3278	} else {
3279		new->mode = MPOL_LOCAL;
3280	}
3281
3282	/*
3283	 * Save nodes for contextualization: this will be used to "clone"
3284	 * the mempolicy in a specific context [cpuset] at a later time.
3285	 */
3286	new->w.user_nodemask = nodes;
3287
3288	err = 0;
3289
3290out:
3291	/* Restore string for error message */
3292	if (nodelist)
3293		*--nodelist = ':';
3294	if (flags)
3295		*--flags = '=';
3296	if (!err)
3297		*mpol = new;
3298	return err;
3299}
3300#endif /* CONFIG_TMPFS */
3301
3302/**
3303 * mpol_to_str - format a mempolicy structure for printing
3304 * @buffer:  to contain formatted mempolicy string
3305 * @maxlen:  length of @buffer
3306 * @pol:  pointer to mempolicy to be formatted
3307 *
3308 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3309 * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3310 * interleave", plus the longest flag flags, "relative|balancing", and to
3311 * display at least a few node ids.
3312 */
3313void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3314{
3315	char *p = buffer;
3316	nodemask_t nodes = NODE_MASK_NONE;
3317	unsigned short mode = MPOL_DEFAULT;
3318	unsigned short flags = 0;
3319
3320	if (pol &&
3321	    pol != &default_policy &&
3322	    !(pol >= &preferred_node_policy[0] &&
3323	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3324		mode = pol->mode;
3325		flags = pol->flags;
3326	}
3327
3328	switch (mode) {
3329	case MPOL_DEFAULT:
3330	case MPOL_LOCAL:
3331		break;
3332	case MPOL_PREFERRED:
3333	case MPOL_PREFERRED_MANY:
 
 
 
 
3334	case MPOL_BIND:
3335	case MPOL_INTERLEAVE:
3336	case MPOL_WEIGHTED_INTERLEAVE:
3337		nodes = pol->nodes;
3338		break;
3339	default:
3340		WARN_ON_ONCE(1);
3341		snprintf(p, maxlen, "unknown");
3342		return;
3343	}
3344
3345	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3346
3347	if (flags & MPOL_MODE_FLAGS) {
3348		p += snprintf(p, buffer + maxlen - p, "=");
3349
3350		/*
3351		 * Static and relative are mutually exclusive.
3352		 */
3353		if (flags & MPOL_F_STATIC_NODES)
3354			p += snprintf(p, buffer + maxlen - p, "static");
3355		else if (flags & MPOL_F_RELATIVE_NODES)
3356			p += snprintf(p, buffer + maxlen - p, "relative");
3357
3358		if (flags & MPOL_F_NUMA_BALANCING) {
3359			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3360				p += snprintf(p, buffer + maxlen - p, "|");
3361			p += snprintf(p, buffer + maxlen - p, "balancing");
3362		}
3363	}
3364
3365	if (!nodes_empty(nodes))
3366		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3367			       nodemask_pr_args(&nodes));
3368}
3369
3370#ifdef CONFIG_SYSFS
3371struct iw_node_attr {
3372	struct kobj_attribute kobj_attr;
3373	int nid;
3374};
3375
3376static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3377			 char *buf)
3378{
3379	struct iw_node_attr *node_attr;
3380	u8 weight;
3381
3382	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3383	weight = get_il_weight(node_attr->nid);
3384	return sysfs_emit(buf, "%d\n", weight);
3385}
3386
3387static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3388			  const char *buf, size_t count)
3389{
3390	struct iw_node_attr *node_attr;
3391	u8 *new;
3392	u8 *old;
3393	u8 weight = 0;
3394
3395	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3396	if (count == 0 || sysfs_streq(buf, ""))
3397		weight = 0;
3398	else if (kstrtou8(buf, 0, &weight))
3399		return -EINVAL;
3400
3401	new = kzalloc(nr_node_ids, GFP_KERNEL);
3402	if (!new)
3403		return -ENOMEM;
3404
3405	mutex_lock(&iw_table_lock);
3406	old = rcu_dereference_protected(iw_table,
3407					lockdep_is_held(&iw_table_lock));
3408	if (old)
3409		memcpy(new, old, nr_node_ids);
3410	new[node_attr->nid] = weight;
3411	rcu_assign_pointer(iw_table, new);
3412	mutex_unlock(&iw_table_lock);
3413	synchronize_rcu();
3414	kfree(old);
3415	return count;
3416}
3417
3418static struct iw_node_attr **node_attrs;
3419
3420static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3421				  struct kobject *parent)
3422{
3423	if (!node_attr)
3424		return;
3425	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3426	kfree(node_attr->kobj_attr.attr.name);
3427	kfree(node_attr);
3428}
3429
3430static void sysfs_wi_release(struct kobject *wi_kobj)
3431{
3432	int i;
3433
3434	for (i = 0; i < nr_node_ids; i++)
3435		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3436	kobject_put(wi_kobj);
3437}
3438
3439static const struct kobj_type wi_ktype = {
3440	.sysfs_ops = &kobj_sysfs_ops,
3441	.release = sysfs_wi_release,
3442};
3443
3444static int add_weight_node(int nid, struct kobject *wi_kobj)
3445{
3446	struct iw_node_attr *node_attr;
3447	char *name;
3448
3449	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3450	if (!node_attr)
3451		return -ENOMEM;
3452
3453	name = kasprintf(GFP_KERNEL, "node%d", nid);
3454	if (!name) {
3455		kfree(node_attr);
3456		return -ENOMEM;
3457	}
3458
3459	sysfs_attr_init(&node_attr->kobj_attr.attr);
3460	node_attr->kobj_attr.attr.name = name;
3461	node_attr->kobj_attr.attr.mode = 0644;
3462	node_attr->kobj_attr.show = node_show;
3463	node_attr->kobj_attr.store = node_store;
3464	node_attr->nid = nid;
3465
3466	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3467		kfree(node_attr->kobj_attr.attr.name);
3468		kfree(node_attr);
3469		pr_err("failed to add attribute to weighted_interleave\n");
3470		return -ENOMEM;
3471	}
3472
3473	node_attrs[nid] = node_attr;
3474	return 0;
3475}
3476
3477static int add_weighted_interleave_group(struct kobject *root_kobj)
3478{
3479	struct kobject *wi_kobj;
3480	int nid, err;
3481
3482	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3483	if (!wi_kobj)
3484		return -ENOMEM;
3485
3486	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3487				   "weighted_interleave");
3488	if (err) {
3489		kfree(wi_kobj);
3490		return err;
3491	}
3492
3493	for_each_node_state(nid, N_POSSIBLE) {
3494		err = add_weight_node(nid, wi_kobj);
3495		if (err) {
3496			pr_err("failed to add sysfs [node%d]\n", nid);
3497			break;
3498		}
3499	}
3500	if (err)
3501		kobject_put(wi_kobj);
3502	return 0;
3503}
3504
3505static void mempolicy_kobj_release(struct kobject *kobj)
3506{
3507	u8 *old;
3508
3509	mutex_lock(&iw_table_lock);
3510	old = rcu_dereference_protected(iw_table,
3511					lockdep_is_held(&iw_table_lock));
3512	rcu_assign_pointer(iw_table, NULL);
3513	mutex_unlock(&iw_table_lock);
3514	synchronize_rcu();
3515	kfree(old);
3516	kfree(node_attrs);
3517	kfree(kobj);
3518}
3519
3520static const struct kobj_type mempolicy_ktype = {
3521	.release = mempolicy_kobj_release
3522};
3523
3524static int __init mempolicy_sysfs_init(void)
3525{
3526	int err;
3527	static struct kobject *mempolicy_kobj;
3528
3529	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3530	if (!mempolicy_kobj) {
3531		err = -ENOMEM;
3532		goto err_out;
3533	}
3534
3535	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3536			     GFP_KERNEL);
3537	if (!node_attrs) {
3538		err = -ENOMEM;
3539		goto mempol_out;
3540	}
3541
3542	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3543				   "mempolicy");
3544	if (err)
3545		goto node_out;
3546
3547	err = add_weighted_interleave_group(mempolicy_kobj);
3548	if (err) {
3549		pr_err("mempolicy sysfs structure failed to initialize\n");
3550		kobject_put(mempolicy_kobj);
3551		return err;
3552	}
3553
3554	return err;
3555node_out:
3556	kfree(node_attrs);
3557mempol_out:
3558	kfree(mempolicy_kobj);
3559err_out:
3560	pr_err("failed to add mempolicy kobject to the system\n");
3561	return err;
3562}
3563
3564late_initcall(mempolicy_sysfs_init);
3565#endif /* CONFIG_SYSFS */