Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100#include <linux/random.h>
 101
 102#include "internal.h"
 103
 104/* Internal flags */
 105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 107
 108static struct kmem_cache *policy_cache;
 109static struct kmem_cache *sn_cache;
 110
 111/* Highest zone. An specific allocation for a zone below that is not
 112   policied. */
 113enum zone_type policy_zone = 0;
 114
 115/*
 116 * run-time system-wide default policy => local allocation
 117 */
 118static struct mempolicy default_policy = {
 119	.refcnt = ATOMIC_INIT(1), /* never free it */
 120	.mode = MPOL_PREFERRED,
 121	.flags = MPOL_F_LOCAL,
 122};
 123
 124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 125
 126struct mempolicy *get_task_policy(struct task_struct *p)
 127{
 128	struct mempolicy *pol = p->mempolicy;
 129	int node;
 130
 131	if (pol)
 132		return pol;
 133
 134	node = numa_node_id();
 135	if (node != NUMA_NO_NODE) {
 136		pol = &preferred_node_policy[node];
 137		/* preferred_node_policy is not initialised early in boot */
 138		if (pol->mode)
 139			return pol;
 
 
 
 140	}
 141
 142	return &default_policy;
 143}
 144
 145static const struct mempolicy_operations {
 146	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 147	/*
 148	 * If read-side task has no lock to protect task->mempolicy, write-side
 149	 * task will rebind the task->mempolicy by two step. The first step is
 150	 * setting all the newly nodes, and the second step is cleaning all the
 151	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 152	 * page.
 153	 * If we have a lock to protect task->mempolicy in read-side, we do
 154	 * rebind directly.
 155	 *
 156	 * step:
 157	 * 	MPOL_REBIND_ONCE - do rebind work at once
 158	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 159	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 160	 */
 161	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 162			enum mpol_rebind_step step);
 163} mpol_ops[MPOL_MAX];
 164
 
 
 
 
 
 
 165static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 166{
 167	return pol->flags & MPOL_MODE_FLAGS;
 168}
 169
 170static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 171				   const nodemask_t *rel)
 172{
 173	nodemask_t tmp;
 174	nodes_fold(tmp, *orig, nodes_weight(*rel));
 175	nodes_onto(*ret, tmp, *rel);
 176}
 177
 178static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 179{
 180	if (nodes_empty(*nodes))
 181		return -EINVAL;
 182	pol->v.nodes = *nodes;
 183	return 0;
 184}
 185
 186static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (!nodes)
 189		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 190	else if (nodes_empty(*nodes))
 191		return -EINVAL;			/*  no allowed nodes */
 192	else
 193		pol->v.preferred_node = first_node(*nodes);
 194	return 0;
 195}
 196
 197static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 198{
 199	if (nodes_empty(*nodes))
 200		return -EINVAL;
 201	pol->v.nodes = *nodes;
 202	return 0;
 203}
 204
 205/*
 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 207 * any, for the new policy.  mpol_new() has already validated the nodes
 208 * parameter with respect to the policy mode and flags.  But, we need to
 209 * handle an empty nodemask with MPOL_PREFERRED here.
 210 *
 211 * Must be called holding task's alloc_lock to protect task's mems_allowed
 212 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 213 */
 214static int mpol_set_nodemask(struct mempolicy *pol,
 215		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 216{
 217	int ret;
 218
 219	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 220	if (pol == NULL)
 221		return 0;
 222	/* Check N_MEMORY */
 223	nodes_and(nsc->mask1,
 224		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 225
 226	VM_BUG_ON(!nodes);
 227	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 228		nodes = NULL;	/* explicit local allocation */
 229	else {
 230		if (pol->flags & MPOL_F_RELATIVE_NODES)
 231			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 232		else
 233			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 234
 235		if (mpol_store_user_nodemask(pol))
 236			pol->w.user_nodemask = *nodes;
 237		else
 238			pol->w.cpuset_mems_allowed =
 239						cpuset_current_mems_allowed;
 240	}
 241
 242	if (nodes)
 243		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 244	else
 245		ret = mpol_ops[pol->mode].create(pol, NULL);
 246	return ret;
 247}
 248
 249/*
 250 * This function just creates a new policy, does some check and simple
 251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 252 */
 253static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 254				  nodemask_t *nodes)
 255{
 256	struct mempolicy *policy;
 257
 258	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 259		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 260
 261	if (mode == MPOL_DEFAULT) {
 262		if (nodes && !nodes_empty(*nodes))
 263			return ERR_PTR(-EINVAL);
 264		return NULL;
 265	}
 266	VM_BUG_ON(!nodes);
 267
 268	/*
 269	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 270	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 271	 * All other modes require a valid pointer to a non-empty nodemask.
 272	 */
 273	if (mode == MPOL_PREFERRED) {
 274		if (nodes_empty(*nodes)) {
 275			if (((flags & MPOL_F_STATIC_NODES) ||
 276			     (flags & MPOL_F_RELATIVE_NODES)))
 277				return ERR_PTR(-EINVAL);
 278		}
 279	} else if (mode == MPOL_LOCAL) {
 280		if (!nodes_empty(*nodes))
 281			return ERR_PTR(-EINVAL);
 282		mode = MPOL_PREFERRED;
 283	} else if (nodes_empty(*nodes))
 284		return ERR_PTR(-EINVAL);
 285	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 286	if (!policy)
 287		return ERR_PTR(-ENOMEM);
 288	atomic_set(&policy->refcnt, 1);
 289	policy->mode = mode;
 290	policy->flags = flags;
 291
 292	return policy;
 293}
 294
 295/* Slow path of a mpol destructor. */
 296void __mpol_put(struct mempolicy *p)
 297{
 298	if (!atomic_dec_and_test(&p->refcnt))
 299		return;
 300	kmem_cache_free(policy_cache, p);
 301}
 302
 303static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 304				enum mpol_rebind_step step)
 305{
 306}
 307
 308/*
 309 * step:
 310 * 	MPOL_REBIND_ONCE  - do rebind work at once
 311 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 312 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 313 */
 314static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 315				 enum mpol_rebind_step step)
 316{
 317	nodemask_t tmp;
 318
 319	if (pol->flags & MPOL_F_STATIC_NODES)
 320		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 321	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 322		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 323	else {
 324		/*
 325		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 326		 * result
 327		 */
 328		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 329			nodes_remap(tmp, pol->v.nodes,
 330					pol->w.cpuset_mems_allowed, *nodes);
 331			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 332		} else if (step == MPOL_REBIND_STEP2) {
 333			tmp = pol->w.cpuset_mems_allowed;
 334			pol->w.cpuset_mems_allowed = *nodes;
 335		} else
 336			BUG();
 337	}
 338
 339	if (nodes_empty(tmp))
 340		tmp = *nodes;
 341
 342	if (step == MPOL_REBIND_STEP1)
 343		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 344	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 345		pol->v.nodes = tmp;
 346	else
 347		BUG();
 348
 349	if (!node_isset(current->il_next, tmp)) {
 350		current->il_next = next_node(current->il_next, tmp);
 351		if (current->il_next >= MAX_NUMNODES)
 352			current->il_next = first_node(tmp);
 353		if (current->il_next >= MAX_NUMNODES)
 354			current->il_next = numa_node_id();
 355	}
 356}
 357
 358static void mpol_rebind_preferred(struct mempolicy *pol,
 359				  const nodemask_t *nodes,
 360				  enum mpol_rebind_step step)
 361{
 362	nodemask_t tmp;
 363
 364	if (pol->flags & MPOL_F_STATIC_NODES) {
 365		int node = first_node(pol->w.user_nodemask);
 366
 367		if (node_isset(node, *nodes)) {
 368			pol->v.preferred_node = node;
 369			pol->flags &= ~MPOL_F_LOCAL;
 370		} else
 371			pol->flags |= MPOL_F_LOCAL;
 372	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 373		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 374		pol->v.preferred_node = first_node(tmp);
 375	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 376		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 377						   pol->w.cpuset_mems_allowed,
 378						   *nodes);
 379		pol->w.cpuset_mems_allowed = *nodes;
 380	}
 381}
 382
 383/*
 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 385 *
 386 * If read-side task has no lock to protect task->mempolicy, write-side
 387 * task will rebind the task->mempolicy by two step. The first step is
 388 * setting all the newly nodes, and the second step is cleaning all the
 389 * disallowed nodes. In this way, we can avoid finding no node to alloc
 390 * page.
 391 * If we have a lock to protect task->mempolicy in read-side, we do
 392 * rebind directly.
 393 *
 394 * step:
 395 * 	MPOL_REBIND_ONCE  - do rebind work at once
 396 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 397 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 398 */
 399static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 400				enum mpol_rebind_step step)
 401{
 402	if (!pol)
 403		return;
 404	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 405	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 406		return;
 407
 408	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 409		return;
 410
 411	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 412		BUG();
 413
 414	if (step == MPOL_REBIND_STEP1)
 415		pol->flags |= MPOL_F_REBINDING;
 416	else if (step == MPOL_REBIND_STEP2)
 417		pol->flags &= ~MPOL_F_REBINDING;
 418	else if (step >= MPOL_REBIND_NSTEP)
 419		BUG();
 420
 421	mpol_ops[pol->mode].rebind(pol, newmask, step);
 422}
 423
 424/*
 425 * Wrapper for mpol_rebind_policy() that just requires task
 426 * pointer, and updates task mempolicy.
 427 *
 428 * Called with task's alloc_lock held.
 429 */
 430
 431void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 432			enum mpol_rebind_step step)
 433{
 434	mpol_rebind_policy(tsk->mempolicy, new, step);
 435}
 436
 437/*
 438 * Rebind each vma in mm to new nodemask.
 439 *
 440 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 441 */
 442
 443void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 444{
 445	struct vm_area_struct *vma;
 446
 447	down_write(&mm->mmap_sem);
 448	for (vma = mm->mmap; vma; vma = vma->vm_next)
 449		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 450	up_write(&mm->mmap_sem);
 451}
 452
 453static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 454	[MPOL_DEFAULT] = {
 455		.rebind = mpol_rebind_default,
 456	},
 457	[MPOL_INTERLEAVE] = {
 458		.create = mpol_new_interleave,
 459		.rebind = mpol_rebind_nodemask,
 460	},
 461	[MPOL_PREFERRED] = {
 462		.create = mpol_new_preferred,
 463		.rebind = mpol_rebind_preferred,
 464	},
 465	[MPOL_BIND] = {
 466		.create = mpol_new_bind,
 467		.rebind = mpol_rebind_nodemask,
 468	},
 469};
 470
 471static void migrate_page_add(struct page *page, struct list_head *pagelist,
 472				unsigned long flags);
 473
 474struct queue_pages {
 475	struct list_head *pagelist;
 476	unsigned long flags;
 477	nodemask_t *nmask;
 478	struct vm_area_struct *prev;
 479};
 480
 481/*
 482 * Scan through pages checking if pages follow certain conditions,
 483 * and move them to the pagelist if they do.
 484 */
 485static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 486			unsigned long end, struct mm_walk *walk)
 
 
 487{
 488	struct vm_area_struct *vma = walk->vma;
 489	struct page *page;
 490	struct queue_pages *qp = walk->private;
 491	unsigned long flags = qp->flags;
 492	int nid, ret;
 493	pte_t *pte;
 494	spinlock_t *ptl;
 495
 496	if (pmd_trans_huge(*pmd)) {
 497		ptl = pmd_lock(walk->mm, pmd);
 498		if (pmd_trans_huge(*pmd)) {
 499			page = pmd_page(*pmd);
 500			if (is_huge_zero_page(page)) {
 501				spin_unlock(ptl);
 502				split_huge_pmd(vma, pmd, addr);
 503			} else {
 504				get_page(page);
 505				spin_unlock(ptl);
 506				lock_page(page);
 507				ret = split_huge_page(page);
 508				unlock_page(page);
 509				put_page(page);
 510				if (ret)
 511					return 0;
 512			}
 513		} else {
 514			spin_unlock(ptl);
 515		}
 516	}
 517
 518retry:
 519	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 520	for (; addr != end; pte++, addr += PAGE_SIZE) {
 521		if (!pte_present(*pte))
 522			continue;
 523		page = vm_normal_page(vma, addr, *pte);
 524		if (!page)
 525			continue;
 526		/*
 527		 * vm_normal_page() filters out zero pages, but there might
 528		 * still be PageReserved pages to skip, perhaps in a VDSO.
 529		 */
 530		if (PageReserved(page))
 531			continue;
 532		nid = page_to_nid(page);
 533		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 534			continue;
 535		if (PageTransCompound(page) && PageAnon(page)) {
 536			get_page(page);
 537			pte_unmap_unlock(pte, ptl);
 538			lock_page(page);
 539			ret = split_huge_page(page);
 540			unlock_page(page);
 541			put_page(page);
 542			/* Failed to split -- skip. */
 543			if (ret) {
 544				pte = pte_offset_map_lock(walk->mm, pmd,
 545						addr, &ptl);
 546				continue;
 547			}
 548			goto retry;
 549		}
 550
 551		migrate_page_add(page, qp->pagelist, flags);
 552	}
 553	pte_unmap_unlock(pte - 1, ptl);
 554	cond_resched();
 555	return 0;
 
 
 556}
 557
 558static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 559			       unsigned long addr, unsigned long end,
 560			       struct mm_walk *walk)
 561{
 562#ifdef CONFIG_HUGETLB_PAGE
 563	struct queue_pages *qp = walk->private;
 564	unsigned long flags = qp->flags;
 565	int nid;
 566	struct page *page;
 567	spinlock_t *ptl;
 568	pte_t entry;
 569
 570	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 571	entry = huge_ptep_get(pte);
 572	if (!pte_present(entry))
 573		goto unlock;
 574	page = pte_page(entry);
 575	nid = page_to_nid(page);
 576	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 577		goto unlock;
 578	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 579	if (flags & (MPOL_MF_MOVE_ALL) ||
 580	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 581		isolate_huge_page(page, qp->pagelist);
 582unlock:
 583	spin_unlock(ptl);
 584#else
 585	BUG();
 586#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587	return 0;
 588}
 589
 590#ifdef CONFIG_NUMA_BALANCING
 591/*
 592 * This is used to mark a range of virtual addresses to be inaccessible.
 593 * These are later cleared by a NUMA hinting fault. Depending on these
 594 * faults, pages may be migrated for better NUMA placement.
 595 *
 596 * This is assuming that NUMA faults are handled using PROT_NONE. If
 597 * an architecture makes a different choice, it will need further
 598 * changes to the core.
 599 */
 600unsigned long change_prot_numa(struct vm_area_struct *vma,
 601			unsigned long addr, unsigned long end)
 602{
 603	int nr_updated;
 604
 605	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 606	if (nr_updated)
 607		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 608
 609	return nr_updated;
 610}
 611#else
 612static unsigned long change_prot_numa(struct vm_area_struct *vma,
 613			unsigned long addr, unsigned long end)
 614{
 615	return 0;
 616}
 617#endif /* CONFIG_NUMA_BALANCING */
 618
 619static int queue_pages_test_walk(unsigned long start, unsigned long end,
 620				struct mm_walk *walk)
 621{
 622	struct vm_area_struct *vma = walk->vma;
 623	struct queue_pages *qp = walk->private;
 624	unsigned long endvma = vma->vm_end;
 625	unsigned long flags = qp->flags;
 626
 627	if (!vma_migratable(vma))
 628		return 1;
 629
 630	if (endvma > end)
 631		endvma = end;
 632	if (vma->vm_start > start)
 633		start = vma->vm_start;
 634
 635	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 636		if (!vma->vm_next && vma->vm_end < end)
 637			return -EFAULT;
 638		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 639			return -EFAULT;
 640	}
 641
 642	qp->prev = vma;
 643
 644	if (flags & MPOL_MF_LAZY) {
 645		/* Similar to task_numa_work, skip inaccessible VMAs */
 646		if (!is_vm_hugetlb_page(vma) &&
 647			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 648			!(vma->vm_flags & VM_MIXEDMAP))
 649			change_prot_numa(vma, start, endvma);
 650		return 1;
 651	}
 652
 653	/* queue pages from current vma */
 654	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 655		return 0;
 656	return 1;
 657}
 658
 659/*
 660 * Walk through page tables and collect pages to be migrated.
 661 *
 662 * If pages found in a given range are on a set of nodes (determined by
 663 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 664 * passed via @private.)
 665 */
 666static int
 667queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 668		nodemask_t *nodes, unsigned long flags,
 669		struct list_head *pagelist)
 670{
 671	struct queue_pages qp = {
 672		.pagelist = pagelist,
 673		.flags = flags,
 674		.nmask = nodes,
 675		.prev = NULL,
 676	};
 677	struct mm_walk queue_pages_walk = {
 678		.hugetlb_entry = queue_pages_hugetlb,
 679		.pmd_entry = queue_pages_pte_range,
 680		.test_walk = queue_pages_test_walk,
 681		.mm = mm,
 682		.private = &qp,
 683	};
 684
 685	return walk_page_range(start, end, &queue_pages_walk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686}
 687
 688/*
 689 * Apply policy to a single VMA
 690 * This must be called with the mmap_sem held for writing.
 691 */
 692static int vma_replace_policy(struct vm_area_struct *vma,
 693						struct mempolicy *pol)
 694{
 695	int err;
 696	struct mempolicy *old;
 697	struct mempolicy *new;
 698
 699	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 700		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 701		 vma->vm_ops, vma->vm_file,
 702		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 703
 704	new = mpol_dup(pol);
 705	if (IS_ERR(new))
 706		return PTR_ERR(new);
 707
 708	if (vma->vm_ops && vma->vm_ops->set_policy) {
 709		err = vma->vm_ops->set_policy(vma, new);
 710		if (err)
 711			goto err_out;
 712	}
 713
 714	old = vma->vm_policy;
 715	vma->vm_policy = new; /* protected by mmap_sem */
 716	mpol_put(old);
 717
 718	return 0;
 719 err_out:
 720	mpol_put(new);
 721	return err;
 722}
 723
 724/* Step 2: apply policy to a range and do splits. */
 725static int mbind_range(struct mm_struct *mm, unsigned long start,
 726		       unsigned long end, struct mempolicy *new_pol)
 727{
 728	struct vm_area_struct *next;
 729	struct vm_area_struct *prev;
 730	struct vm_area_struct *vma;
 731	int err = 0;
 732	pgoff_t pgoff;
 733	unsigned long vmstart;
 734	unsigned long vmend;
 735
 736	vma = find_vma(mm, start);
 737	if (!vma || vma->vm_start > start)
 738		return -EFAULT;
 739
 740	prev = vma->vm_prev;
 741	if (start > vma->vm_start)
 742		prev = vma;
 743
 744	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 745		next = vma->vm_next;
 746		vmstart = max(start, vma->vm_start);
 747		vmend   = min(end, vma->vm_end);
 748
 749		if (mpol_equal(vma_policy(vma), new_pol))
 750			continue;
 751
 752		pgoff = vma->vm_pgoff +
 753			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 754		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 755				 vma->anon_vma, vma->vm_file, pgoff,
 756				 new_pol, vma->vm_userfaultfd_ctx);
 757		if (prev) {
 758			vma = prev;
 759			next = vma->vm_next;
 760			if (mpol_equal(vma_policy(vma), new_pol))
 761				continue;
 762			/* vma_merge() joined vma && vma->next, case 8 */
 763			goto replace;
 764		}
 765		if (vma->vm_start != vmstart) {
 766			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 767			if (err)
 768				goto out;
 769		}
 770		if (vma->vm_end != vmend) {
 771			err = split_vma(vma->vm_mm, vma, vmend, 0);
 772			if (err)
 773				goto out;
 774		}
 775 replace:
 776		err = vma_replace_policy(vma, new_pol);
 777		if (err)
 778			goto out;
 779	}
 780
 781 out:
 782	return err;
 783}
 784
 785/* Set the process memory policy */
 786static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 787			     nodemask_t *nodes)
 788{
 789	struct mempolicy *new, *old;
 
 790	NODEMASK_SCRATCH(scratch);
 791	int ret;
 792
 793	if (!scratch)
 794		return -ENOMEM;
 795
 796	new = mpol_new(mode, flags, nodes);
 797	if (IS_ERR(new)) {
 798		ret = PTR_ERR(new);
 799		goto out;
 800	}
 801
 
 
 
 
 
 
 
 802	task_lock(current);
 803	ret = mpol_set_nodemask(new, nodes, scratch);
 804	if (ret) {
 805		task_unlock(current);
 
 
 806		mpol_put(new);
 807		goto out;
 808	}
 809	old = current->mempolicy;
 810	current->mempolicy = new;
 811	if (new && new->mode == MPOL_INTERLEAVE &&
 812	    nodes_weight(new->v.nodes))
 813		current->il_next = first_node(new->v.nodes);
 814	task_unlock(current);
 
 
 
 815	mpol_put(old);
 816	ret = 0;
 817out:
 818	NODEMASK_SCRATCH_FREE(scratch);
 819	return ret;
 820}
 821
 822/*
 823 * Return nodemask for policy for get_mempolicy() query
 824 *
 825 * Called with task's alloc_lock held
 826 */
 827static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 828{
 829	nodes_clear(*nodes);
 830	if (p == &default_policy)
 831		return;
 832
 833	switch (p->mode) {
 834	case MPOL_BIND:
 835		/* Fall through */
 836	case MPOL_INTERLEAVE:
 837		*nodes = p->v.nodes;
 838		break;
 839	case MPOL_PREFERRED:
 840		if (!(p->flags & MPOL_F_LOCAL))
 841			node_set(p->v.preferred_node, *nodes);
 842		/* else return empty node mask for local allocation */
 843		break;
 844	default:
 845		BUG();
 846	}
 847}
 848
 849static int lookup_node(unsigned long addr)
 850{
 851	struct page *p;
 852	int err;
 853
 854	err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 855	if (err >= 0) {
 856		err = page_to_nid(p);
 857		put_page(p);
 858	}
 859	return err;
 860}
 861
 862/* Retrieve NUMA policy */
 863static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 864			     unsigned long addr, unsigned long flags)
 865{
 866	int err;
 867	struct mm_struct *mm = current->mm;
 868	struct vm_area_struct *vma = NULL;
 869	struct mempolicy *pol = current->mempolicy;
 870
 871	if (flags &
 872		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 873		return -EINVAL;
 874
 875	if (flags & MPOL_F_MEMS_ALLOWED) {
 876		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 877			return -EINVAL;
 878		*policy = 0;	/* just so it's initialized */
 879		task_lock(current);
 880		*nmask  = cpuset_current_mems_allowed;
 881		task_unlock(current);
 882		return 0;
 883	}
 884
 885	if (flags & MPOL_F_ADDR) {
 886		/*
 887		 * Do NOT fall back to task policy if the
 888		 * vma/shared policy at addr is NULL.  We
 889		 * want to return MPOL_DEFAULT in this case.
 890		 */
 891		down_read(&mm->mmap_sem);
 892		vma = find_vma_intersection(mm, addr, addr+1);
 893		if (!vma) {
 894			up_read(&mm->mmap_sem);
 895			return -EFAULT;
 896		}
 897		if (vma->vm_ops && vma->vm_ops->get_policy)
 898			pol = vma->vm_ops->get_policy(vma, addr);
 899		else
 900			pol = vma->vm_policy;
 901	} else if (addr)
 902		return -EINVAL;
 903
 904	if (!pol)
 905		pol = &default_policy;	/* indicates default behavior */
 906
 907	if (flags & MPOL_F_NODE) {
 908		if (flags & MPOL_F_ADDR) {
 909			err = lookup_node(addr);
 910			if (err < 0)
 911				goto out;
 912			*policy = err;
 913		} else if (pol == current->mempolicy &&
 914				pol->mode == MPOL_INTERLEAVE) {
 915			*policy = current->il_next;
 916		} else {
 917			err = -EINVAL;
 918			goto out;
 919		}
 920	} else {
 921		*policy = pol == &default_policy ? MPOL_DEFAULT :
 922						pol->mode;
 923		/*
 924		 * Internal mempolicy flags must be masked off before exposing
 925		 * the policy to userspace.
 926		 */
 927		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 928	}
 929
 930	if (vma) {
 931		up_read(&current->mm->mmap_sem);
 932		vma = NULL;
 933	}
 934
 935	err = 0;
 936	if (nmask) {
 937		if (mpol_store_user_nodemask(pol)) {
 938			*nmask = pol->w.user_nodemask;
 939		} else {
 940			task_lock(current);
 941			get_policy_nodemask(pol, nmask);
 942			task_unlock(current);
 943		}
 944	}
 945
 946 out:
 947	mpol_cond_put(pol);
 948	if (vma)
 949		up_read(&current->mm->mmap_sem);
 950	return err;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954/*
 955 * page migration
 956 */
 957static void migrate_page_add(struct page *page, struct list_head *pagelist,
 958				unsigned long flags)
 959{
 960	/*
 961	 * Avoid migrating a page that is shared with others.
 962	 */
 963	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 964		if (!isolate_lru_page(page)) {
 965			list_add_tail(&page->lru, pagelist);
 966			inc_zone_page_state(page, NR_ISOLATED_ANON +
 967					    page_is_file_cache(page));
 968		}
 969	}
 970}
 971
 972static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 973{
 974	if (PageHuge(page))
 975		return alloc_huge_page_node(page_hstate(compound_head(page)),
 976					node);
 977	else
 978		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 979						    __GFP_THISNODE, 0);
 980}
 981
 982/*
 983 * Migrate pages from one node to a target node.
 984 * Returns error or the number of pages not migrated.
 985 */
 986static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 987			   int flags)
 988{
 989	nodemask_t nmask;
 990	LIST_HEAD(pagelist);
 991	int err = 0;
 992
 993	nodes_clear(nmask);
 994	node_set(source, nmask);
 995
 996	/*
 997	 * This does not "check" the range but isolates all pages that
 998	 * need migration.  Between passing in the full user address
 999	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1000	 */
1001	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1002	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1003			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1004
1005	if (!list_empty(&pagelist)) {
1006		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1007					MIGRATE_SYNC, MR_SYSCALL);
1008		if (err)
1009			putback_movable_pages(&pagelist);
1010	}
1011
1012	return err;
1013}
1014
1015/*
1016 * Move pages between the two nodesets so as to preserve the physical
1017 * layout as much as possible.
1018 *
1019 * Returns the number of page that could not be moved.
1020 */
1021int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1022		     const nodemask_t *to, int flags)
1023{
1024	int busy = 0;
1025	int err;
1026	nodemask_t tmp;
1027
1028	err = migrate_prep();
1029	if (err)
1030		return err;
1031
1032	down_read(&mm->mmap_sem);
1033
 
 
 
 
1034	/*
1035	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1036	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1037	 * bit in 'tmp', and return that <source, dest> pair for migration.
1038	 * The pair of nodemasks 'to' and 'from' define the map.
1039	 *
1040	 * If no pair of bits is found that way, fallback to picking some
1041	 * pair of 'source' and 'dest' bits that are not the same.  If the
1042	 * 'source' and 'dest' bits are the same, this represents a node
1043	 * that will be migrating to itself, so no pages need move.
1044	 *
1045	 * If no bits are left in 'tmp', or if all remaining bits left
1046	 * in 'tmp' correspond to the same bit in 'to', return false
1047	 * (nothing left to migrate).
1048	 *
1049	 * This lets us pick a pair of nodes to migrate between, such that
1050	 * if possible the dest node is not already occupied by some other
1051	 * source node, minimizing the risk of overloading the memory on a
1052	 * node that would happen if we migrated incoming memory to a node
1053	 * before migrating outgoing memory source that same node.
1054	 *
1055	 * A single scan of tmp is sufficient.  As we go, we remember the
1056	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1057	 * that not only moved, but what's better, moved to an empty slot
1058	 * (d is not set in tmp), then we break out then, with that pair.
1059	 * Otherwise when we finish scanning from_tmp, we at least have the
1060	 * most recent <s, d> pair that moved.  If we get all the way through
1061	 * the scan of tmp without finding any node that moved, much less
1062	 * moved to an empty node, then there is nothing left worth migrating.
1063	 */
1064
1065	tmp = *from;
1066	while (!nodes_empty(tmp)) {
1067		int s,d;
1068		int source = NUMA_NO_NODE;
1069		int dest = 0;
1070
1071		for_each_node_mask(s, tmp) {
1072
1073			/*
1074			 * do_migrate_pages() tries to maintain the relative
1075			 * node relationship of the pages established between
1076			 * threads and memory areas.
1077                         *
1078			 * However if the number of source nodes is not equal to
1079			 * the number of destination nodes we can not preserve
1080			 * this node relative relationship.  In that case, skip
1081			 * copying memory from a node that is in the destination
1082			 * mask.
1083			 *
1084			 * Example: [2,3,4] -> [3,4,5] moves everything.
1085			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1086			 */
1087
1088			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1089						(node_isset(s, *to)))
1090				continue;
1091
1092			d = node_remap(s, *from, *to);
1093			if (s == d)
1094				continue;
1095
1096			source = s;	/* Node moved. Memorize */
1097			dest = d;
1098
1099			/* dest not in remaining from nodes? */
1100			if (!node_isset(dest, tmp))
1101				break;
1102		}
1103		if (source == NUMA_NO_NODE)
1104			break;
1105
1106		node_clear(source, tmp);
1107		err = migrate_to_node(mm, source, dest, flags);
1108		if (err > 0)
1109			busy += err;
1110		if (err < 0)
1111			break;
1112	}
 
1113	up_read(&mm->mmap_sem);
1114	if (err < 0)
1115		return err;
1116	return busy;
1117
1118}
1119
1120/*
1121 * Allocate a new page for page migration based on vma policy.
1122 * Start by assuming the page is mapped by the same vma as contains @start.
1123 * Search forward from there, if not.  N.B., this assumes that the
1124 * list of pages handed to migrate_pages()--which is how we get here--
1125 * is in virtual address order.
1126 */
1127static struct page *new_page(struct page *page, unsigned long start, int **x)
1128{
1129	struct vm_area_struct *vma;
1130	unsigned long uninitialized_var(address);
1131
1132	vma = find_vma(current->mm, start);
1133	while (vma) {
1134		address = page_address_in_vma(page, vma);
1135		if (address != -EFAULT)
1136			break;
1137		vma = vma->vm_next;
1138	}
1139
1140	if (PageHuge(page)) {
1141		BUG_ON(!vma);
1142		return alloc_huge_page_noerr(vma, address, 1);
1143	}
1144	/*
1145	 * if !vma, alloc_page_vma() will use task or system default policy
1146	 */
1147	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1148}
1149#else
1150
1151static void migrate_page_add(struct page *page, struct list_head *pagelist,
1152				unsigned long flags)
1153{
1154}
1155
1156int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1157		     const nodemask_t *to, int flags)
1158{
1159	return -ENOSYS;
1160}
1161
1162static struct page *new_page(struct page *page, unsigned long start, int **x)
1163{
1164	return NULL;
1165}
1166#endif
1167
1168static long do_mbind(unsigned long start, unsigned long len,
1169		     unsigned short mode, unsigned short mode_flags,
1170		     nodemask_t *nmask, unsigned long flags)
1171{
 
1172	struct mm_struct *mm = current->mm;
1173	struct mempolicy *new;
1174	unsigned long end;
1175	int err;
1176	LIST_HEAD(pagelist);
1177
1178	if (flags & ~(unsigned long)MPOL_MF_VALID)
1179		return -EINVAL;
1180	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1181		return -EPERM;
1182
1183	if (start & ~PAGE_MASK)
1184		return -EINVAL;
1185
1186	if (mode == MPOL_DEFAULT)
1187		flags &= ~MPOL_MF_STRICT;
1188
1189	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1190	end = start + len;
1191
1192	if (end < start)
1193		return -EINVAL;
1194	if (end == start)
1195		return 0;
1196
1197	new = mpol_new(mode, mode_flags, nmask);
1198	if (IS_ERR(new))
1199		return PTR_ERR(new);
1200
1201	if (flags & MPOL_MF_LAZY)
1202		new->flags |= MPOL_F_MOF;
1203
1204	/*
1205	 * If we are using the default policy then operation
1206	 * on discontinuous address spaces is okay after all
1207	 */
1208	if (!new)
1209		flags |= MPOL_MF_DISCONTIG_OK;
1210
1211	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1212		 start, start + len, mode, mode_flags,
1213		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1214
1215	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1216
1217		err = migrate_prep();
1218		if (err)
1219			goto mpol_out;
1220	}
1221	{
1222		NODEMASK_SCRATCH(scratch);
1223		if (scratch) {
1224			down_write(&mm->mmap_sem);
1225			task_lock(current);
1226			err = mpol_set_nodemask(new, nmask, scratch);
1227			task_unlock(current);
1228			if (err)
1229				up_write(&mm->mmap_sem);
1230		} else
1231			err = -ENOMEM;
1232		NODEMASK_SCRATCH_FREE(scratch);
1233	}
1234	if (err)
1235		goto mpol_out;
1236
1237	err = queue_pages_range(mm, start, end, nmask,
1238			  flags | MPOL_MF_INVERT, &pagelist);
1239	if (!err)
 
 
1240		err = mbind_range(mm, start, end, new);
1241
1242	if (!err) {
1243		int nr_failed = 0;
1244
1245		if (!list_empty(&pagelist)) {
1246			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1247			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1248				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
 
1249			if (nr_failed)
1250				putback_movable_pages(&pagelist);
1251		}
1252
1253		if (nr_failed && (flags & MPOL_MF_STRICT))
1254			err = -EIO;
1255	} else
1256		putback_movable_pages(&pagelist);
1257
1258	up_write(&mm->mmap_sem);
1259 mpol_out:
1260	mpol_put(new);
1261	return err;
1262}
1263
1264/*
1265 * User space interface with variable sized bitmaps for nodelists.
1266 */
1267
1268/* Copy a node mask from user space. */
1269static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1270		     unsigned long maxnode)
1271{
1272	unsigned long k;
1273	unsigned long nlongs;
1274	unsigned long endmask;
1275
1276	--maxnode;
1277	nodes_clear(*nodes);
1278	if (maxnode == 0 || !nmask)
1279		return 0;
1280	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1281		return -EINVAL;
1282
1283	nlongs = BITS_TO_LONGS(maxnode);
1284	if ((maxnode % BITS_PER_LONG) == 0)
1285		endmask = ~0UL;
1286	else
1287		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1288
1289	/* When the user specified more nodes than supported just check
1290	   if the non supported part is all zero. */
1291	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292		if (nlongs > PAGE_SIZE/sizeof(long))
1293			return -EINVAL;
1294		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295			unsigned long t;
1296			if (get_user(t, nmask + k))
1297				return -EFAULT;
1298			if (k == nlongs - 1) {
1299				if (t & endmask)
1300					return -EINVAL;
1301			} else if (t)
1302				return -EINVAL;
1303		}
1304		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305		endmask = ~0UL;
1306	}
1307
1308	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1309		return -EFAULT;
1310	nodes_addr(*nodes)[nlongs-1] &= endmask;
1311	return 0;
1312}
1313
1314/* Copy a kernel node mask to user space */
1315static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1316			      nodemask_t *nodes)
1317{
1318	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1319	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1320
1321	if (copy > nbytes) {
1322		if (copy > PAGE_SIZE)
1323			return -EINVAL;
1324		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1325			return -EFAULT;
1326		copy = nbytes;
1327	}
1328	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329}
1330
1331SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1332		unsigned long, mode, const unsigned long __user *, nmask,
1333		unsigned long, maxnode, unsigned, flags)
1334{
1335	nodemask_t nodes;
1336	int err;
1337	unsigned short mode_flags;
1338
1339	mode_flags = mode & MPOL_MODE_FLAGS;
1340	mode &= ~MPOL_MODE_FLAGS;
1341	if (mode >= MPOL_MAX)
1342		return -EINVAL;
1343	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1344	    (mode_flags & MPOL_F_RELATIVE_NODES))
1345		return -EINVAL;
1346	err = get_nodes(&nodes, nmask, maxnode);
1347	if (err)
1348		return err;
1349	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1350}
1351
1352/* Set the process memory policy */
1353SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1354		unsigned long, maxnode)
1355{
1356	int err;
1357	nodemask_t nodes;
1358	unsigned short flags;
1359
1360	flags = mode & MPOL_MODE_FLAGS;
1361	mode &= ~MPOL_MODE_FLAGS;
1362	if ((unsigned int)mode >= MPOL_MAX)
1363		return -EINVAL;
1364	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1365		return -EINVAL;
1366	err = get_nodes(&nodes, nmask, maxnode);
1367	if (err)
1368		return err;
1369	return do_set_mempolicy(mode, flags, &nodes);
1370}
1371
1372SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1373		const unsigned long __user *, old_nodes,
1374		const unsigned long __user *, new_nodes)
1375{
1376	const struct cred *cred = current_cred(), *tcred;
1377	struct mm_struct *mm = NULL;
1378	struct task_struct *task;
1379	nodemask_t task_nodes;
1380	int err;
1381	nodemask_t *old;
1382	nodemask_t *new;
1383	NODEMASK_SCRATCH(scratch);
1384
1385	if (!scratch)
1386		return -ENOMEM;
1387
1388	old = &scratch->mask1;
1389	new = &scratch->mask2;
1390
1391	err = get_nodes(old, old_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	err = get_nodes(new, new_nodes, maxnode);
1396	if (err)
1397		goto out;
1398
1399	/* Find the mm_struct */
1400	rcu_read_lock();
1401	task = pid ? find_task_by_vpid(pid) : current;
1402	if (!task) {
1403		rcu_read_unlock();
1404		err = -ESRCH;
1405		goto out;
1406	}
1407	get_task_struct(task);
1408
1409	err = -EINVAL;
1410
1411	/*
1412	 * Check if this process has the right to modify the specified
1413	 * process. The right exists if the process has administrative
1414	 * capabilities, superuser privileges or the same
1415	 * userid as the target process.
1416	 */
1417	tcred = __task_cred(task);
1418	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1419	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1420	    !capable(CAP_SYS_NICE)) {
1421		rcu_read_unlock();
1422		err = -EPERM;
1423		goto out_put;
1424	}
1425	rcu_read_unlock();
1426
1427	task_nodes = cpuset_mems_allowed(task);
1428	/* Is the user allowed to access the target nodes? */
1429	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1430		err = -EPERM;
1431		goto out_put;
1432	}
1433
1434	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1435		err = -EINVAL;
1436		goto out_put;
1437	}
1438
1439	err = security_task_movememory(task);
1440	if (err)
1441		goto out_put;
1442
1443	mm = get_task_mm(task);
1444	put_task_struct(task);
1445
1446	if (!mm) {
1447		err = -EINVAL;
1448		goto out;
1449	}
1450
1451	err = do_migrate_pages(mm, old, new,
1452		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1453
1454	mmput(mm);
1455out:
1456	NODEMASK_SCRATCH_FREE(scratch);
1457
1458	return err;
1459
1460out_put:
1461	put_task_struct(task);
1462	goto out;
1463
1464}
1465
1466
1467/* Retrieve NUMA policy */
1468SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1469		unsigned long __user *, nmask, unsigned long, maxnode,
1470		unsigned long, addr, unsigned long, flags)
1471{
1472	int err;
1473	int uninitialized_var(pval);
1474	nodemask_t nodes;
1475
1476	if (nmask != NULL && maxnode < MAX_NUMNODES)
1477		return -EINVAL;
1478
1479	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1480
1481	if (err)
1482		return err;
1483
1484	if (policy && put_user(pval, policy))
1485		return -EFAULT;
1486
1487	if (nmask)
1488		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1489
1490	return err;
1491}
1492
1493#ifdef CONFIG_COMPAT
1494
1495COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1496		       compat_ulong_t __user *, nmask,
1497		       compat_ulong_t, maxnode,
1498		       compat_ulong_t, addr, compat_ulong_t, flags)
1499{
1500	long err;
1501	unsigned long __user *nm = NULL;
1502	unsigned long nr_bits, alloc_size;
1503	DECLARE_BITMAP(bm, MAX_NUMNODES);
1504
1505	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1506	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507
1508	if (nmask)
1509		nm = compat_alloc_user_space(alloc_size);
1510
1511	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1512
1513	if (!err && nmask) {
1514		unsigned long copy_size;
1515		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1516		err = copy_from_user(bm, nm, copy_size);
1517		/* ensure entire bitmap is zeroed */
1518		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1519		err |= compat_put_bitmap(nmask, bm, nr_bits);
1520	}
1521
1522	return err;
1523}
1524
1525COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1526		       compat_ulong_t, maxnode)
1527{
1528	long err = 0;
1529	unsigned long __user *nm = NULL;
1530	unsigned long nr_bits, alloc_size;
1531	DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536	if (nmask) {
1537		err = compat_get_bitmap(bm, nmask, nr_bits);
1538		nm = compat_alloc_user_space(alloc_size);
1539		err |= copy_to_user(nm, bm, alloc_size);
1540	}
1541
1542	if (err)
1543		return -EFAULT;
1544
1545	return sys_set_mempolicy(mode, nm, nr_bits+1);
1546}
1547
1548COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1549		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1550		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1551{
1552	long err = 0;
1553	unsigned long __user *nm = NULL;
1554	unsigned long nr_bits, alloc_size;
1555	nodemask_t bm;
1556
1557	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559
1560	if (nmask) {
1561		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1562		nm = compat_alloc_user_space(alloc_size);
1563		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1564	}
1565
1566	if (err)
1567		return -EFAULT;
1568
1569	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1570}
1571
1572#endif
1573
1574struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1575						unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576{
1577	struct mempolicy *pol = NULL;
1578
1579	if (vma) {
1580		if (vma->vm_ops && vma->vm_ops->get_policy) {
1581			pol = vma->vm_ops->get_policy(vma, addr);
 
 
 
1582		} else if (vma->vm_policy) {
1583			pol = vma->vm_policy;
1584
1585			/*
1586			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588			 * count on these policies which will be dropped by
1589			 * mpol_cond_put() later
1590			 */
1591			if (mpol_needs_cond_ref(pol))
1592				mpol_get(pol);
1593		}
1594	}
1595
1596	return pol;
1597}
1598
1599/*
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
1603 *
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task.  It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1610 */
1611static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1612						unsigned long addr)
1613{
1614	struct mempolicy *pol = __get_vma_policy(vma, addr);
1615
1616	if (!pol)
1617		pol = get_task_policy(current);
1618
1619	return pol;
1620}
1621
1622bool vma_policy_mof(struct vm_area_struct *vma)
1623{
1624	struct mempolicy *pol;
1625
1626	if (vma->vm_ops && vma->vm_ops->get_policy) {
1627		bool ret = false;
1628
1629		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630		if (pol && (pol->flags & MPOL_F_MOF))
1631			ret = true;
1632		mpol_cond_put(pol);
1633
1634		return ret;
 
 
 
1635	}
1636
1637	pol = vma->vm_policy;
1638	if (!pol)
1639		pol = get_task_policy(current);
1640
1641	return pol->flags & MPOL_F_MOF;
1642}
1643
1644static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1645{
1646	enum zone_type dynamic_policy_zone = policy_zone;
1647
1648	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1649
1650	/*
1651	 * if policy->v.nodes has movable memory only,
1652	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1653	 *
1654	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655	 * so if the following test faile, it implies
1656	 * policy->v.nodes has movable memory only.
1657	 */
1658	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659		dynamic_policy_zone = ZONE_MOVABLE;
1660
1661	return zone >= dynamic_policy_zone;
1662}
1663
1664/*
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1666 * page allocation
1667 */
1668static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1669{
1670	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1671	if (unlikely(policy->mode == MPOL_BIND) &&
1672			apply_policy_zone(policy, gfp_zone(gfp)) &&
1673			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674		return &policy->v.nodes;
1675
1676	return NULL;
1677}
1678
1679/* Return a zonelist indicated by gfp for node representing a mempolicy */
1680static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1681	int nd)
1682{
1683	switch (policy->mode) {
1684	case MPOL_PREFERRED:
1685		if (!(policy->flags & MPOL_F_LOCAL))
1686			nd = policy->v.preferred_node;
1687		break;
1688	case MPOL_BIND:
1689		/*
1690		 * Normally, MPOL_BIND allocations are node-local within the
1691		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1692		 * current node isn't part of the mask, we use the zonelist for
1693		 * the first node in the mask instead.
1694		 */
1695		if (unlikely(gfp & __GFP_THISNODE) &&
1696				unlikely(!node_isset(nd, policy->v.nodes)))
1697			nd = first_node(policy->v.nodes);
1698		break;
1699	default:
1700		BUG();
1701	}
1702	return node_zonelist(nd, gfp);
1703}
1704
1705/* Do dynamic interleaving for a process */
1706static unsigned interleave_nodes(struct mempolicy *policy)
1707{
1708	unsigned nid, next;
1709	struct task_struct *me = current;
1710
1711	nid = me->il_next;
1712	next = next_node(nid, policy->v.nodes);
1713	if (next >= MAX_NUMNODES)
1714		next = first_node(policy->v.nodes);
1715	if (next < MAX_NUMNODES)
1716		me->il_next = next;
1717	return nid;
1718}
1719
1720/*
1721 * Depending on the memory policy provide a node from which to allocate the
1722 * next slab entry.
1723 */
1724unsigned int mempolicy_slab_node(void)
1725{
1726	struct mempolicy *policy;
1727	int node = numa_mem_id();
1728
1729	if (in_interrupt())
1730		return node;
1731
1732	policy = current->mempolicy;
1733	if (!policy || policy->flags & MPOL_F_LOCAL)
1734		return node;
1735
1736	switch (policy->mode) {
1737	case MPOL_PREFERRED:
1738		/*
1739		 * handled MPOL_F_LOCAL above
1740		 */
1741		return policy->v.preferred_node;
1742
1743	case MPOL_INTERLEAVE:
1744		return interleave_nodes(policy);
1745
1746	case MPOL_BIND: {
1747		/*
1748		 * Follow bind policy behavior and start allocation at the
1749		 * first node.
1750		 */
1751		struct zonelist *zonelist;
1752		struct zone *zone;
1753		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1754		zonelist = &NODE_DATA(node)->node_zonelists[0];
1755		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1756							&policy->v.nodes,
1757							&zone);
1758		return zone ? zone->node : node;
1759	}
1760
1761	default:
1762		BUG();
1763	}
1764}
1765
1766/* Do static interleaving for a VMA with known offset. */
1767static unsigned offset_il_node(struct mempolicy *pol,
1768		struct vm_area_struct *vma, unsigned long off)
1769{
1770	unsigned nnodes = nodes_weight(pol->v.nodes);
1771	unsigned target;
1772	int c;
1773	int nid = NUMA_NO_NODE;
1774
1775	if (!nnodes)
1776		return numa_node_id();
1777	target = (unsigned int)off % nnodes;
1778	c = 0;
1779	do {
1780		nid = next_node(nid, pol->v.nodes);
1781		c++;
1782	} while (c <= target);
1783	return nid;
1784}
1785
1786/* Determine a node number for interleave */
1787static inline unsigned interleave_nid(struct mempolicy *pol,
1788		 struct vm_area_struct *vma, unsigned long addr, int shift)
1789{
1790	if (vma) {
1791		unsigned long off;
1792
1793		/*
1794		 * for small pages, there is no difference between
1795		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1796		 * for huge pages, since vm_pgoff is in units of small
1797		 * pages, we need to shift off the always 0 bits to get
1798		 * a useful offset.
1799		 */
1800		BUG_ON(shift < PAGE_SHIFT);
1801		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1802		off += (addr - vma->vm_start) >> shift;
1803		return offset_il_node(pol, vma, off);
1804	} else
1805		return interleave_nodes(pol);
1806}
1807
1808/*
1809 * Return the bit number of a random bit set in the nodemask.
1810 * (returns NUMA_NO_NODE if nodemask is empty)
1811 */
1812int node_random(const nodemask_t *maskp)
1813{
1814	int w, bit = NUMA_NO_NODE;
1815
1816	w = nodes_weight(*maskp);
1817	if (w)
1818		bit = bitmap_ord_to_pos(maskp->bits,
1819			get_random_int() % w, MAX_NUMNODES);
1820	return bit;
1821}
1822
1823#ifdef CONFIG_HUGETLBFS
1824/*
1825 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup and interleave policy
1828 * @gfp_flags: for requested zone
1829 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1830 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1831 *
1832 * Returns a zonelist suitable for a huge page allocation and a pointer
1833 * to the struct mempolicy for conditional unref after allocation.
1834 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1835 * @nodemask for filtering the zonelist.
1836 *
1837 * Must be protected by read_mems_allowed_begin()
1838 */
1839struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1840				gfp_t gfp_flags, struct mempolicy **mpol,
1841				nodemask_t **nodemask)
1842{
1843	struct zonelist *zl;
1844
1845	*mpol = get_vma_policy(vma, addr);
1846	*nodemask = NULL;	/* assume !MPOL_BIND */
1847
1848	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1849		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1850				huge_page_shift(hstate_vma(vma))), gfp_flags);
1851	} else {
1852		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1853		if ((*mpol)->mode == MPOL_BIND)
1854			*nodemask = &(*mpol)->v.nodes;
1855	}
1856	return zl;
1857}
1858
1859/*
1860 * init_nodemask_of_mempolicy
1861 *
1862 * If the current task's mempolicy is "default" [NULL], return 'false'
1863 * to indicate default policy.  Otherwise, extract the policy nodemask
1864 * for 'bind' or 'interleave' policy into the argument nodemask, or
1865 * initialize the argument nodemask to contain the single node for
1866 * 'preferred' or 'local' policy and return 'true' to indicate presence
1867 * of non-default mempolicy.
1868 *
1869 * We don't bother with reference counting the mempolicy [mpol_get/put]
1870 * because the current task is examining it's own mempolicy and a task's
1871 * mempolicy is only ever changed by the task itself.
1872 *
1873 * N.B., it is the caller's responsibility to free a returned nodemask.
1874 */
1875bool init_nodemask_of_mempolicy(nodemask_t *mask)
1876{
1877	struct mempolicy *mempolicy;
1878	int nid;
1879
1880	if (!(mask && current->mempolicy))
1881		return false;
1882
1883	task_lock(current);
1884	mempolicy = current->mempolicy;
1885	switch (mempolicy->mode) {
1886	case MPOL_PREFERRED:
1887		if (mempolicy->flags & MPOL_F_LOCAL)
1888			nid = numa_node_id();
1889		else
1890			nid = mempolicy->v.preferred_node;
1891		init_nodemask_of_node(mask, nid);
1892		break;
1893
1894	case MPOL_BIND:
1895		/* Fall through */
1896	case MPOL_INTERLEAVE:
1897		*mask =  mempolicy->v.nodes;
1898		break;
1899
1900	default:
1901		BUG();
1902	}
1903	task_unlock(current);
1904
1905	return true;
1906}
1907#endif
1908
1909/*
1910 * mempolicy_nodemask_intersects
1911 *
1912 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1913 * policy.  Otherwise, check for intersection between mask and the policy
1914 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1915 * policy, always return true since it may allocate elsewhere on fallback.
1916 *
1917 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1918 */
1919bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1920					const nodemask_t *mask)
1921{
1922	struct mempolicy *mempolicy;
1923	bool ret = true;
1924
1925	if (!mask)
1926		return ret;
1927	task_lock(tsk);
1928	mempolicy = tsk->mempolicy;
1929	if (!mempolicy)
1930		goto out;
1931
1932	switch (mempolicy->mode) {
1933	case MPOL_PREFERRED:
1934		/*
1935		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1936		 * allocate from, they may fallback to other nodes when oom.
1937		 * Thus, it's possible for tsk to have allocated memory from
1938		 * nodes in mask.
1939		 */
1940		break;
1941	case MPOL_BIND:
1942	case MPOL_INTERLEAVE:
1943		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1944		break;
1945	default:
1946		BUG();
1947	}
1948out:
1949	task_unlock(tsk);
1950	return ret;
1951}
1952
1953/* Allocate a page in interleaved policy.
1954   Own path because it needs to do special accounting. */
1955static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1956					unsigned nid)
1957{
1958	struct zonelist *zl;
1959	struct page *page;
1960
1961	zl = node_zonelist(nid, gfp);
1962	page = __alloc_pages(gfp, order, zl);
1963	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1964		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1965	return page;
1966}
1967
1968/**
1969 * 	alloc_pages_vma	- Allocate a page for a VMA.
1970 *
1971 * 	@gfp:
1972 *      %GFP_USER    user allocation.
1973 *      %GFP_KERNEL  kernel allocations,
1974 *      %GFP_HIGHMEM highmem/user allocations,
1975 *      %GFP_FS      allocation should not call back into a file system.
1976 *      %GFP_ATOMIC  don't sleep.
1977 *
1978 *	@order:Order of the GFP allocation.
1979 * 	@vma:  Pointer to VMA or NULL if not available.
1980 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1981 *	@node: Which node to prefer for allocation (modulo policy).
1982 *	@hugepage: for hugepages try only the preferred node if possible
1983 *
1984 * 	This function allocates a page from the kernel page pool and applies
1985 *	a NUMA policy associated with the VMA or the current process.
1986 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1987 *	mm_struct of the VMA to prevent it from going away. Should be used for
1988 *	all allocations for pages that will be mapped into user space. Returns
1989 *	NULL when no page can be allocated.
 
 
1990 */
1991struct page *
1992alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1993		unsigned long addr, int node, bool hugepage)
1994{
1995	struct mempolicy *pol;
1996	struct page *page;
1997	unsigned int cpuset_mems_cookie;
1998	struct zonelist *zl;
1999	nodemask_t *nmask;
2000
2001retry_cpuset:
2002	pol = get_vma_policy(vma, addr);
2003	cpuset_mems_cookie = read_mems_allowed_begin();
2004
2005	if (pol->mode == MPOL_INTERLEAVE) {
2006		unsigned nid;
2007
2008		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2009		mpol_cond_put(pol);
2010		page = alloc_page_interleave(gfp, order, nid);
2011		goto out;
2012	}
2013
2014	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2015		int hpage_node = node;
2016
2017		/*
2018		 * For hugepage allocation and non-interleave policy which
2019		 * allows the current node (or other explicitly preferred
2020		 * node) we only try to allocate from the current/preferred
2021		 * node and don't fall back to other nodes, as the cost of
2022		 * remote accesses would likely offset THP benefits.
2023		 *
2024		 * If the policy is interleave, or does not allow the current
2025		 * node in its nodemask, we allocate the standard way.
2026		 */
2027		if (pol->mode == MPOL_PREFERRED &&
2028						!(pol->flags & MPOL_F_LOCAL))
2029			hpage_node = pol->v.preferred_node;
2030
2031		nmask = policy_nodemask(gfp, pol);
2032		if (!nmask || node_isset(hpage_node, *nmask)) {
2033			mpol_cond_put(pol);
2034			page = __alloc_pages_node(hpage_node,
2035						gfp | __GFP_THISNODE, order);
2036			goto out;
2037		}
2038	}
2039
2040	nmask = policy_nodemask(gfp, pol);
2041	zl = policy_zonelist(gfp, pol, node);
2042	mpol_cond_put(pol);
2043	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2044out:
2045	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046		goto retry_cpuset;
2047	return page;
2048}
2049
2050/**
2051 * 	alloc_pages_current - Allocate pages.
2052 *
2053 *	@gfp:
2054 *		%GFP_USER   user allocation,
2055 *      	%GFP_KERNEL kernel allocation,
2056 *      	%GFP_HIGHMEM highmem allocation,
2057 *      	%GFP_FS     don't call back into a file system.
2058 *      	%GFP_ATOMIC don't sleep.
2059 *	@order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 *	Allocate a page from the kernel page pool.  When not in
2062 *	interrupt context and apply the current process NUMA policy.
2063 *	Returns NULL when no page can be allocated.
2064 *
2065 *	Don't call cpuset_update_task_memory_state() unless
2066 *	1) it's ok to take cpuset_sem (can WAIT), and
2067 *	2) allocating for current task (not interrupt).
2068 */
2069struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070{
2071	struct mempolicy *pol = &default_policy;
2072	struct page *page;
2073	unsigned int cpuset_mems_cookie;
2074
2075	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2076		pol = get_task_policy(current);
2077
2078retry_cpuset:
2079	cpuset_mems_cookie = read_mems_allowed_begin();
2080
2081	/*
2082	 * No reference counting needed for current->mempolicy
2083	 * nor system default_policy
2084	 */
2085	if (pol->mode == MPOL_INTERLEAVE)
2086		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2087	else
2088		page = __alloc_pages_nodemask(gfp, order,
2089				policy_zonelist(gfp, pol, numa_node_id()),
2090				policy_nodemask(gfp, pol));
2091
2092	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093		goto retry_cpuset;
2094
2095	return page;
2096}
2097EXPORT_SYMBOL(alloc_pages_current);
2098
2099int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100{
2101	struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103	if (IS_ERR(pol))
2104		return PTR_ERR(pol);
2105	dst->vm_policy = pol;
2106	return 0;
2107}
2108
2109/*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed().  This
2113 * keeps mempolicies cpuset relative after its cpuset moves.  See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120/* Slow path of a mempolicy duplicate */
2121struct mempolicy *__mpol_dup(struct mempolicy *old)
2122{
2123	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125	if (!new)
2126		return ERR_PTR(-ENOMEM);
2127
2128	/* task's mempolicy is protected by alloc_lock */
2129	if (old == current->mempolicy) {
2130		task_lock(current);
2131		*new = *old;
2132		task_unlock(current);
2133	} else
2134		*new = *old;
2135
 
2136	if (current_cpuset_is_being_rebound()) {
2137		nodemask_t mems = cpuset_mems_allowed(current);
2138		if (new->flags & MPOL_F_REBINDING)
2139			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140		else
2141			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142	}
 
2143	atomic_set(&new->refcnt, 1);
2144	return new;
2145}
2146
2147/* Slow path of a mempolicy comparison */
2148bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149{
2150	if (!a || !b)
2151		return false;
2152	if (a->mode != b->mode)
2153		return false;
2154	if (a->flags != b->flags)
2155		return false;
2156	if (mpol_store_user_nodemask(a))
2157		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158			return false;
2159
2160	switch (a->mode) {
2161	case MPOL_BIND:
2162		/* Fall through */
2163	case MPOL_INTERLEAVE:
2164		return !!nodes_equal(a->v.nodes, b->v.nodes);
2165	case MPOL_PREFERRED:
2166		return a->v.preferred_node == b->v.preferred_node;
2167	default:
2168		BUG();
2169		return false;
2170	}
2171}
2172
2173/*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock rwlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182/*
2183 * lookup first element intersecting start-end.  Caller holds sp->lock for
2184 * reading or for writing
2185 */
2186static struct sp_node *
2187sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2188{
2189	struct rb_node *n = sp->root.rb_node;
2190
2191	while (n) {
2192		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2193
2194		if (start >= p->end)
2195			n = n->rb_right;
2196		else if (end <= p->start)
2197			n = n->rb_left;
2198		else
2199			break;
2200	}
2201	if (!n)
2202		return NULL;
2203	for (;;) {
2204		struct sp_node *w = NULL;
2205		struct rb_node *prev = rb_prev(n);
2206		if (!prev)
2207			break;
2208		w = rb_entry(prev, struct sp_node, nd);
2209		if (w->end <= start)
2210			break;
2211		n = prev;
2212	}
2213	return rb_entry(n, struct sp_node, nd);
2214}
2215
2216/*
2217 * Insert a new shared policy into the list.  Caller holds sp->lock for
2218 * writing.
2219 */
2220static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2221{
2222	struct rb_node **p = &sp->root.rb_node;
2223	struct rb_node *parent = NULL;
2224	struct sp_node *nd;
2225
2226	while (*p) {
2227		parent = *p;
2228		nd = rb_entry(parent, struct sp_node, nd);
2229		if (new->start < nd->start)
2230			p = &(*p)->rb_left;
2231		else if (new->end > nd->end)
2232			p = &(*p)->rb_right;
2233		else
2234			BUG();
2235	}
2236	rb_link_node(&new->nd, parent, p);
2237	rb_insert_color(&new->nd, &sp->root);
2238	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2239		 new->policy ? new->policy->mode : 0);
2240}
2241
2242/* Find shared policy intersecting idx */
2243struct mempolicy *
2244mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2245{
2246	struct mempolicy *pol = NULL;
2247	struct sp_node *sn;
2248
2249	if (!sp->root.rb_node)
2250		return NULL;
2251	read_lock(&sp->lock);
2252	sn = sp_lookup(sp, idx, idx+1);
2253	if (sn) {
2254		mpol_get(sn->policy);
2255		pol = sn->policy;
2256	}
2257	read_unlock(&sp->lock);
2258	return pol;
2259}
2260
2261static void sp_free(struct sp_node *n)
2262{
2263	mpol_put(n->policy);
2264	kmem_cache_free(sn_cache, n);
2265}
2266
2267/**
2268 * mpol_misplaced - check whether current page node is valid in policy
2269 *
2270 * @page: page to be checked
2271 * @vma: vm area where page mapped
2272 * @addr: virtual address where page mapped
2273 *
2274 * Lookup current policy node id for vma,addr and "compare to" page's
2275 * node id.
2276 *
2277 * Returns:
2278 *	-1	- not misplaced, page is in the right node
2279 *	node	- node id where the page should be
2280 *
2281 * Policy determination "mimics" alloc_page_vma().
2282 * Called from fault path where we know the vma and faulting address.
2283 */
2284int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2285{
2286	struct mempolicy *pol;
2287	struct zone *zone;
2288	int curnid = page_to_nid(page);
2289	unsigned long pgoff;
2290	int thiscpu = raw_smp_processor_id();
2291	int thisnid = cpu_to_node(thiscpu);
2292	int polnid = -1;
2293	int ret = -1;
2294
2295	BUG_ON(!vma);
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		BUG_ON(addr >= vma->vm_end);
2304		BUG_ON(addr < vma->vm_start);
2305
2306		pgoff = vma->vm_pgoff;
2307		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2308		polnid = offset_il_node(pol, vma, pgoff);
2309		break;
2310
2311	case MPOL_PREFERRED:
2312		if (pol->flags & MPOL_F_LOCAL)
2313			polnid = numa_node_id();
2314		else
2315			polnid = pol->v.preferred_node;
2316		break;
2317
2318	case MPOL_BIND:
2319		/*
2320		 * allows binding to multiple nodes.
2321		 * use current page if in policy nodemask,
2322		 * else select nearest allowed node, if any.
2323		 * If no allowed nodes, use current [!misplaced].
2324		 */
2325		if (node_isset(curnid, pol->v.nodes))
2326			goto out;
2327		(void)first_zones_zonelist(
2328				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2329				gfp_zone(GFP_HIGHUSER),
2330				&pol->v.nodes, &zone);
2331		polnid = zone->node;
2332		break;
2333
2334	default:
2335		BUG();
2336	}
2337
2338	/* Migrate the page towards the node whose CPU is referencing it */
2339	if (pol->flags & MPOL_F_MORON) {
2340		polnid = thisnid;
2341
2342		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2343			goto out;
2344	}
2345
2346	if (curnid != polnid)
2347		ret = polnid;
2348out:
2349	mpol_cond_put(pol);
2350
2351	return ret;
2352}
2353
2354static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2355{
2356	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2357	rb_erase(&n->nd, &sp->root);
2358	sp_free(n);
2359}
2360
2361static void sp_node_init(struct sp_node *node, unsigned long start,
2362			unsigned long end, struct mempolicy *pol)
2363{
2364	node->start = start;
2365	node->end = end;
2366	node->policy = pol;
2367}
2368
2369static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2370				struct mempolicy *pol)
2371{
2372	struct sp_node *n;
2373	struct mempolicy *newpol;
2374
2375	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2376	if (!n)
2377		return NULL;
2378
2379	newpol = mpol_dup(pol);
2380	if (IS_ERR(newpol)) {
2381		kmem_cache_free(sn_cache, n);
2382		return NULL;
2383	}
2384	newpol->flags |= MPOL_F_SHARED;
2385	sp_node_init(n, start, end, newpol);
2386
2387	return n;
2388}
2389
2390/* Replace a policy range. */
2391static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2392				 unsigned long end, struct sp_node *new)
2393{
2394	struct sp_node *n;
2395	struct sp_node *n_new = NULL;
2396	struct mempolicy *mpol_new = NULL;
2397	int ret = 0;
2398
2399restart:
2400	write_lock(&sp->lock);
2401	n = sp_lookup(sp, start, end);
2402	/* Take care of old policies in the same range. */
2403	while (n && n->start < end) {
2404		struct rb_node *next = rb_next(&n->nd);
2405		if (n->start >= start) {
2406			if (n->end <= end)
2407				sp_delete(sp, n);
2408			else
2409				n->start = end;
2410		} else {
2411			/* Old policy spanning whole new range. */
2412			if (n->end > end) {
2413				if (!n_new)
2414					goto alloc_new;
2415
2416				*mpol_new = *n->policy;
2417				atomic_set(&mpol_new->refcnt, 1);
2418				sp_node_init(n_new, end, n->end, mpol_new);
2419				n->end = start;
2420				sp_insert(sp, n_new);
2421				n_new = NULL;
2422				mpol_new = NULL;
2423				break;
2424			} else
2425				n->end = start;
2426		}
2427		if (!next)
2428			break;
2429		n = rb_entry(next, struct sp_node, nd);
2430	}
2431	if (new)
2432		sp_insert(sp, new);
2433	write_unlock(&sp->lock);
2434	ret = 0;
2435
2436err_out:
2437	if (mpol_new)
2438		mpol_put(mpol_new);
2439	if (n_new)
2440		kmem_cache_free(sn_cache, n_new);
2441
2442	return ret;
2443
2444alloc_new:
2445	write_unlock(&sp->lock);
2446	ret = -ENOMEM;
2447	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2448	if (!n_new)
2449		goto err_out;
2450	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2451	if (!mpol_new)
2452		goto err_out;
2453	goto restart;
2454}
2455
2456/**
2457 * mpol_shared_policy_init - initialize shared policy for inode
2458 * @sp: pointer to inode shared policy
2459 * @mpol:  struct mempolicy to install
2460 *
2461 * Install non-NULL @mpol in inode's shared policy rb-tree.
2462 * On entry, the current task has a reference on a non-NULL @mpol.
2463 * This must be released on exit.
2464 * This is called at get_inode() calls and we can use GFP_KERNEL.
2465 */
2466void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2467{
2468	int ret;
2469
2470	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2471	rwlock_init(&sp->lock);
2472
2473	if (mpol) {
2474		struct vm_area_struct pvma;
2475		struct mempolicy *new;
2476		NODEMASK_SCRATCH(scratch);
2477
2478		if (!scratch)
2479			goto put_mpol;
2480		/* contextualize the tmpfs mount point mempolicy */
2481		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2482		if (IS_ERR(new))
2483			goto free_scratch; /* no valid nodemask intersection */
2484
2485		task_lock(current);
2486		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2487		task_unlock(current);
2488		if (ret)
2489			goto put_new;
2490
2491		/* Create pseudo-vma that contains just the policy */
2492		memset(&pvma, 0, sizeof(struct vm_area_struct));
2493		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2494		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2495
2496put_new:
2497		mpol_put(new);			/* drop initial ref */
2498free_scratch:
2499		NODEMASK_SCRATCH_FREE(scratch);
2500put_mpol:
2501		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2502	}
2503}
2504
2505int mpol_set_shared_policy(struct shared_policy *info,
2506			struct vm_area_struct *vma, struct mempolicy *npol)
2507{
2508	int err;
2509	struct sp_node *new = NULL;
2510	unsigned long sz = vma_pages(vma);
2511
2512	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2513		 vma->vm_pgoff,
2514		 sz, npol ? npol->mode : -1,
2515		 npol ? npol->flags : -1,
2516		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2517
2518	if (npol) {
2519		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2520		if (!new)
2521			return -ENOMEM;
2522	}
2523	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524	if (err && new)
2525		sp_free(new);
2526	return err;
2527}
2528
2529/* Free a backing policy store on inode delete. */
2530void mpol_free_shared_policy(struct shared_policy *p)
2531{
2532	struct sp_node *n;
2533	struct rb_node *next;
2534
2535	if (!p->root.rb_node)
2536		return;
2537	write_lock(&p->lock);
2538	next = rb_first(&p->root);
2539	while (next) {
2540		n = rb_entry(next, struct sp_node, nd);
2541		next = rb_next(&n->nd);
2542		sp_delete(p, n);
2543	}
2544	write_unlock(&p->lock);
2545}
2546
2547#ifdef CONFIG_NUMA_BALANCING
2548static int __initdata numabalancing_override;
2549
2550static void __init check_numabalancing_enable(void)
2551{
2552	bool numabalancing_default = false;
2553
2554	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2555		numabalancing_default = true;
2556
2557	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2558	if (numabalancing_override)
2559		set_numabalancing_state(numabalancing_override == 1);
2560
2561	if (num_online_nodes() > 1 && !numabalancing_override) {
2562		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
 
 
2563			numabalancing_default ? "Enabling" : "Disabling");
2564		set_numabalancing_state(numabalancing_default);
2565	}
2566}
2567
2568static int __init setup_numabalancing(char *str)
2569{
2570	int ret = 0;
2571	if (!str)
2572		goto out;
2573
2574	if (!strcmp(str, "enable")) {
2575		numabalancing_override = 1;
2576		ret = 1;
2577	} else if (!strcmp(str, "disable")) {
2578		numabalancing_override = -1;
2579		ret = 1;
2580	}
2581out:
2582	if (!ret)
2583		pr_warn("Unable to parse numa_balancing=\n");
2584
2585	return ret;
2586}
2587__setup("numa_balancing=", setup_numabalancing);
2588#else
2589static inline void __init check_numabalancing_enable(void)
2590{
2591}
2592#endif /* CONFIG_NUMA_BALANCING */
2593
2594/* assumes fs == KERNEL_DS */
2595void __init numa_policy_init(void)
2596{
2597	nodemask_t interleave_nodes;
2598	unsigned long largest = 0;
2599	int nid, prefer = 0;
2600
2601	policy_cache = kmem_cache_create("numa_policy",
2602					 sizeof(struct mempolicy),
2603					 0, SLAB_PANIC, NULL);
2604
2605	sn_cache = kmem_cache_create("shared_policy_node",
2606				     sizeof(struct sp_node),
2607				     0, SLAB_PANIC, NULL);
2608
2609	for_each_node(nid) {
2610		preferred_node_policy[nid] = (struct mempolicy) {
2611			.refcnt = ATOMIC_INIT(1),
2612			.mode = MPOL_PREFERRED,
2613			.flags = MPOL_F_MOF | MPOL_F_MORON,
2614			.v = { .preferred_node = nid, },
2615		};
2616	}
2617
2618	/*
2619	 * Set interleaving policy for system init. Interleaving is only
2620	 * enabled across suitably sized nodes (default is >= 16MB), or
2621	 * fall back to the largest node if they're all smaller.
2622	 */
2623	nodes_clear(interleave_nodes);
2624	for_each_node_state(nid, N_MEMORY) {
2625		unsigned long total_pages = node_present_pages(nid);
2626
2627		/* Preserve the largest node */
2628		if (largest < total_pages) {
2629			largest = total_pages;
2630			prefer = nid;
2631		}
2632
2633		/* Interleave this node? */
2634		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2635			node_set(nid, interleave_nodes);
2636	}
2637
2638	/* All too small, use the largest */
2639	if (unlikely(nodes_empty(interleave_nodes)))
2640		node_set(prefer, interleave_nodes);
2641
2642	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2643		pr_err("%s: interleaving failed\n", __func__);
2644
2645	check_numabalancing_enable();
2646}
2647
2648/* Reset policy of current process to default */
2649void numa_default_policy(void)
2650{
2651	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2652}
2653
2654/*
2655 * Parse and format mempolicy from/to strings
2656 */
2657
2658/*
2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2660 */
2661static const char * const policy_modes[] =
2662{
2663	[MPOL_DEFAULT]    = "default",
2664	[MPOL_PREFERRED]  = "prefer",
2665	[MPOL_BIND]       = "bind",
2666	[MPOL_INTERLEAVE] = "interleave",
2667	[MPOL_LOCAL]      = "local",
2668};
2669
2670
2671#ifdef CONFIG_TMPFS
2672/**
2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2674 * @str:  string containing mempolicy to parse
2675 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2676 *
2677 * Format of input:
2678 *	<mode>[=<flags>][:<nodelist>]
2679 *
2680 * On success, returns 0, else 1
2681 */
2682int mpol_parse_str(char *str, struct mempolicy **mpol)
2683{
2684	struct mempolicy *new = NULL;
2685	unsigned short mode;
2686	unsigned short mode_flags;
2687	nodemask_t nodes;
2688	char *nodelist = strchr(str, ':');
2689	char *flags = strchr(str, '=');
2690	int err = 1;
2691
2692	if (nodelist) {
2693		/* NUL-terminate mode or flags string */
2694		*nodelist++ = '\0';
2695		if (nodelist_parse(nodelist, nodes))
2696			goto out;
2697		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698			goto out;
2699	} else
2700		nodes_clear(nodes);
2701
2702	if (flags)
2703		*flags++ = '\0';	/* terminate mode string */
2704
2705	for (mode = 0; mode < MPOL_MAX; mode++) {
2706		if (!strcmp(str, policy_modes[mode])) {
2707			break;
2708		}
2709	}
2710	if (mode >= MPOL_MAX)
2711		goto out;
2712
2713	switch (mode) {
2714	case MPOL_PREFERRED:
2715		/*
2716		 * Insist on a nodelist of one node only
2717		 */
2718		if (nodelist) {
2719			char *rest = nodelist;
2720			while (isdigit(*rest))
2721				rest++;
2722			if (*rest)
2723				goto out;
2724		}
2725		break;
2726	case MPOL_INTERLEAVE:
2727		/*
2728		 * Default to online nodes with memory if no nodelist
2729		 */
2730		if (!nodelist)
2731			nodes = node_states[N_MEMORY];
2732		break;
2733	case MPOL_LOCAL:
2734		/*
2735		 * Don't allow a nodelist;  mpol_new() checks flags
2736		 */
2737		if (nodelist)
2738			goto out;
2739		mode = MPOL_PREFERRED;
2740		break;
2741	case MPOL_DEFAULT:
2742		/*
2743		 * Insist on a empty nodelist
2744		 */
2745		if (!nodelist)
2746			err = 0;
2747		goto out;
2748	case MPOL_BIND:
2749		/*
2750		 * Insist on a nodelist
2751		 */
2752		if (!nodelist)
2753			goto out;
2754	}
2755
2756	mode_flags = 0;
2757	if (flags) {
2758		/*
2759		 * Currently, we only support two mutually exclusive
2760		 * mode flags.
2761		 */
2762		if (!strcmp(flags, "static"))
2763			mode_flags |= MPOL_F_STATIC_NODES;
2764		else if (!strcmp(flags, "relative"))
2765			mode_flags |= MPOL_F_RELATIVE_NODES;
2766		else
2767			goto out;
2768	}
2769
2770	new = mpol_new(mode, mode_flags, &nodes);
2771	if (IS_ERR(new))
2772		goto out;
2773
2774	/*
2775	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2776	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2777	 */
2778	if (mode != MPOL_PREFERRED)
2779		new->v.nodes = nodes;
2780	else if (nodelist)
2781		new->v.preferred_node = first_node(nodes);
2782	else
2783		new->flags |= MPOL_F_LOCAL;
2784
2785	/*
2786	 * Save nodes for contextualization: this will be used to "clone"
2787	 * the mempolicy in a specific context [cpuset] at a later time.
2788	 */
2789	new->w.user_nodemask = nodes;
2790
2791	err = 0;
2792
2793out:
2794	/* Restore string for error message */
2795	if (nodelist)
2796		*--nodelist = ':';
2797	if (flags)
2798		*--flags = '=';
2799	if (!err)
2800		*mpol = new;
2801	return err;
2802}
2803#endif /* CONFIG_TMPFS */
2804
2805/**
2806 * mpol_to_str - format a mempolicy structure for printing
2807 * @buffer:  to contain formatted mempolicy string
2808 * @maxlen:  length of @buffer
2809 * @pol:  pointer to mempolicy to be formatted
2810 *
2811 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2813 * longest flag, "relative", and to display at least a few node ids.
2814 */
2815void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2816{
2817	char *p = buffer;
2818	nodemask_t nodes = NODE_MASK_NONE;
2819	unsigned short mode = MPOL_DEFAULT;
2820	unsigned short flags = 0;
2821
2822	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2823		mode = pol->mode;
2824		flags = pol->flags;
2825	}
2826
2827	switch (mode) {
2828	case MPOL_DEFAULT:
2829		break;
2830	case MPOL_PREFERRED:
2831		if (flags & MPOL_F_LOCAL)
2832			mode = MPOL_LOCAL;
2833		else
2834			node_set(pol->v.preferred_node, nodes);
2835		break;
2836	case MPOL_BIND:
2837	case MPOL_INTERLEAVE:
2838		nodes = pol->v.nodes;
2839		break;
2840	default:
2841		WARN_ON_ONCE(1);
2842		snprintf(p, maxlen, "unknown");
2843		return;
2844	}
2845
2846	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2847
2848	if (flags & MPOL_MODE_FLAGS) {
2849		p += snprintf(p, buffer + maxlen - p, "=");
2850
2851		/*
2852		 * Currently, the only defined flags are mutually exclusive
2853		 */
2854		if (flags & MPOL_F_STATIC_NODES)
2855			p += snprintf(p, buffer + maxlen - p, "static");
2856		else if (flags & MPOL_F_RELATIVE_NODES)
2857			p += snprintf(p, buffer + maxlen - p, "relative");
2858	}
2859
2860	if (!nodes_empty(nodes))
2861		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2862			       nodemask_pr_args(&nodes));
 
2863}
v3.15
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93#include <linux/mmu_notifier.h>
 
  94
  95#include <asm/tlbflush.h>
  96#include <asm/uaccess.h>
  97#include <linux/random.h>
  98
  99#include "internal.h"
 100
 101/* Internal flags */
 102#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 103#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 104
 105static struct kmem_cache *policy_cache;
 106static struct kmem_cache *sn_cache;
 107
 108/* Highest zone. An specific allocation for a zone below that is not
 109   policied. */
 110enum zone_type policy_zone = 0;
 111
 112/*
 113 * run-time system-wide default policy => local allocation
 114 */
 115static struct mempolicy default_policy = {
 116	.refcnt = ATOMIC_INIT(1), /* never free it */
 117	.mode = MPOL_PREFERRED,
 118	.flags = MPOL_F_LOCAL,
 119};
 120
 121static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 122
 123static struct mempolicy *get_task_policy(struct task_struct *p)
 124{
 125	struct mempolicy *pol = p->mempolicy;
 
 126
 127	if (!pol) {
 128		int node = numa_node_id();
 129
 130		if (node != NUMA_NO_NODE) {
 131			pol = &preferred_node_policy[node];
 132			/*
 133			 * preferred_node_policy is not initialised early in
 134			 * boot
 135			 */
 136			if (!pol->mode)
 137				pol = NULL;
 138		}
 139	}
 140
 141	return pol;
 142}
 143
 144static const struct mempolicy_operations {
 145	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146	/*
 147	 * If read-side task has no lock to protect task->mempolicy, write-side
 148	 * task will rebind the task->mempolicy by two step. The first step is
 149	 * setting all the newly nodes, and the second step is cleaning all the
 150	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 151	 * page.
 152	 * If we have a lock to protect task->mempolicy in read-side, we do
 153	 * rebind directly.
 154	 *
 155	 * step:
 156	 * 	MPOL_REBIND_ONCE - do rebind work at once
 157	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 158	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159	 */
 160	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161			enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164/* Check that the nodemask contains at least one populated zone */
 165static int is_valid_nodemask(const nodemask_t *nodemask)
 166{
 167	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
 168}
 169
 170static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 171{
 172	return pol->flags & MPOL_MODE_FLAGS;
 173}
 174
 175static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 176				   const nodemask_t *rel)
 177{
 178	nodemask_t tmp;
 179	nodes_fold(tmp, *orig, nodes_weight(*rel));
 180	nodes_onto(*ret, tmp, *rel);
 181}
 182
 183static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 184{
 185	if (nodes_empty(*nodes))
 186		return -EINVAL;
 187	pol->v.nodes = *nodes;
 188	return 0;
 189}
 190
 191static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 192{
 193	if (!nodes)
 194		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 195	else if (nodes_empty(*nodes))
 196		return -EINVAL;			/*  no allowed nodes */
 197	else
 198		pol->v.preferred_node = first_node(*nodes);
 199	return 0;
 200}
 201
 202static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 203{
 204	if (!is_valid_nodemask(nodes))
 205		return -EINVAL;
 206	pol->v.nodes = *nodes;
 207	return 0;
 208}
 209
 210/*
 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 212 * any, for the new policy.  mpol_new() has already validated the nodes
 213 * parameter with respect to the policy mode and flags.  But, we need to
 214 * handle an empty nodemask with MPOL_PREFERRED here.
 215 *
 216 * Must be called holding task's alloc_lock to protect task's mems_allowed
 217 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 218 */
 219static int mpol_set_nodemask(struct mempolicy *pol,
 220		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 221{
 222	int ret;
 223
 224	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 225	if (pol == NULL)
 226		return 0;
 227	/* Check N_MEMORY */
 228	nodes_and(nsc->mask1,
 229		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 230
 231	VM_BUG_ON(!nodes);
 232	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 233		nodes = NULL;	/* explicit local allocation */
 234	else {
 235		if (pol->flags & MPOL_F_RELATIVE_NODES)
 236			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 237		else
 238			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 239
 240		if (mpol_store_user_nodemask(pol))
 241			pol->w.user_nodemask = *nodes;
 242		else
 243			pol->w.cpuset_mems_allowed =
 244						cpuset_current_mems_allowed;
 245	}
 246
 247	if (nodes)
 248		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 249	else
 250		ret = mpol_ops[pol->mode].create(pol, NULL);
 251	return ret;
 252}
 253
 254/*
 255 * This function just creates a new policy, does some check and simple
 256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 257 */
 258static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 259				  nodemask_t *nodes)
 260{
 261	struct mempolicy *policy;
 262
 263	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 264		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 265
 266	if (mode == MPOL_DEFAULT) {
 267		if (nodes && !nodes_empty(*nodes))
 268			return ERR_PTR(-EINVAL);
 269		return NULL;
 270	}
 271	VM_BUG_ON(!nodes);
 272
 273	/*
 274	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 275	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 276	 * All other modes require a valid pointer to a non-empty nodemask.
 277	 */
 278	if (mode == MPOL_PREFERRED) {
 279		if (nodes_empty(*nodes)) {
 280			if (((flags & MPOL_F_STATIC_NODES) ||
 281			     (flags & MPOL_F_RELATIVE_NODES)))
 282				return ERR_PTR(-EINVAL);
 283		}
 284	} else if (mode == MPOL_LOCAL) {
 285		if (!nodes_empty(*nodes))
 286			return ERR_PTR(-EINVAL);
 287		mode = MPOL_PREFERRED;
 288	} else if (nodes_empty(*nodes))
 289		return ERR_PTR(-EINVAL);
 290	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 291	if (!policy)
 292		return ERR_PTR(-ENOMEM);
 293	atomic_set(&policy->refcnt, 1);
 294	policy->mode = mode;
 295	policy->flags = flags;
 296
 297	return policy;
 298}
 299
 300/* Slow path of a mpol destructor. */
 301void __mpol_put(struct mempolicy *p)
 302{
 303	if (!atomic_dec_and_test(&p->refcnt))
 304		return;
 305	kmem_cache_free(policy_cache, p);
 306}
 307
 308static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 309				enum mpol_rebind_step step)
 310{
 311}
 312
 313/*
 314 * step:
 315 * 	MPOL_REBIND_ONCE  - do rebind work at once
 316 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 317 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 318 */
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 320				 enum mpol_rebind_step step)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		/*
 330		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 331		 * result
 332		 */
 333		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 334			nodes_remap(tmp, pol->v.nodes,
 335					pol->w.cpuset_mems_allowed, *nodes);
 336			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 337		} else if (step == MPOL_REBIND_STEP2) {
 338			tmp = pol->w.cpuset_mems_allowed;
 339			pol->w.cpuset_mems_allowed = *nodes;
 340		} else
 341			BUG();
 342	}
 343
 344	if (nodes_empty(tmp))
 345		tmp = *nodes;
 346
 347	if (step == MPOL_REBIND_STEP1)
 348		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 349	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 350		pol->v.nodes = tmp;
 351	else
 352		BUG();
 353
 354	if (!node_isset(current->il_next, tmp)) {
 355		current->il_next = next_node(current->il_next, tmp);
 356		if (current->il_next >= MAX_NUMNODES)
 357			current->il_next = first_node(tmp);
 358		if (current->il_next >= MAX_NUMNODES)
 359			current->il_next = numa_node_id();
 360	}
 361}
 362
 363static void mpol_rebind_preferred(struct mempolicy *pol,
 364				  const nodemask_t *nodes,
 365				  enum mpol_rebind_step step)
 366{
 367	nodemask_t tmp;
 368
 369	if (pol->flags & MPOL_F_STATIC_NODES) {
 370		int node = first_node(pol->w.user_nodemask);
 371
 372		if (node_isset(node, *nodes)) {
 373			pol->v.preferred_node = node;
 374			pol->flags &= ~MPOL_F_LOCAL;
 375		} else
 376			pol->flags |= MPOL_F_LOCAL;
 377	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 378		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 379		pol->v.preferred_node = first_node(tmp);
 380	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 381		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 382						   pol->w.cpuset_mems_allowed,
 383						   *nodes);
 384		pol->w.cpuset_mems_allowed = *nodes;
 385	}
 386}
 387
 388/*
 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 390 *
 391 * If read-side task has no lock to protect task->mempolicy, write-side
 392 * task will rebind the task->mempolicy by two step. The first step is
 393 * setting all the newly nodes, and the second step is cleaning all the
 394 * disallowed nodes. In this way, we can avoid finding no node to alloc
 395 * page.
 396 * If we have a lock to protect task->mempolicy in read-side, we do
 397 * rebind directly.
 398 *
 399 * step:
 400 * 	MPOL_REBIND_ONCE  - do rebind work at once
 401 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 402 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 403 */
 404static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 405				enum mpol_rebind_step step)
 406{
 407	if (!pol)
 408		return;
 409	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 410	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 411		return;
 412
 413	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 414		return;
 415
 416	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 417		BUG();
 418
 419	if (step == MPOL_REBIND_STEP1)
 420		pol->flags |= MPOL_F_REBINDING;
 421	else if (step == MPOL_REBIND_STEP2)
 422		pol->flags &= ~MPOL_F_REBINDING;
 423	else if (step >= MPOL_REBIND_NSTEP)
 424		BUG();
 425
 426	mpol_ops[pol->mode].rebind(pol, newmask, step);
 427}
 428
 429/*
 430 * Wrapper for mpol_rebind_policy() that just requires task
 431 * pointer, and updates task mempolicy.
 432 *
 433 * Called with task's alloc_lock held.
 434 */
 435
 436void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 437			enum mpol_rebind_step step)
 438{
 439	mpol_rebind_policy(tsk->mempolicy, new, step);
 440}
 441
 442/*
 443 * Rebind each vma in mm to new nodemask.
 444 *
 445 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 446 */
 447
 448void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 449{
 450	struct vm_area_struct *vma;
 451
 452	down_write(&mm->mmap_sem);
 453	for (vma = mm->mmap; vma; vma = vma->vm_next)
 454		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 455	up_write(&mm->mmap_sem);
 456}
 457
 458static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 459	[MPOL_DEFAULT] = {
 460		.rebind = mpol_rebind_default,
 461	},
 462	[MPOL_INTERLEAVE] = {
 463		.create = mpol_new_interleave,
 464		.rebind = mpol_rebind_nodemask,
 465	},
 466	[MPOL_PREFERRED] = {
 467		.create = mpol_new_preferred,
 468		.rebind = mpol_rebind_preferred,
 469	},
 470	[MPOL_BIND] = {
 471		.create = mpol_new_bind,
 472		.rebind = mpol_rebind_nodemask,
 473	},
 474};
 475
 476static void migrate_page_add(struct page *page, struct list_head *pagelist,
 477				unsigned long flags);
 478
 
 
 
 
 
 
 
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 */
 483static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 484		unsigned long addr, unsigned long end,
 485		const nodemask_t *nodes, unsigned long flags,
 486		void *private)
 487{
 488	pte_t *orig_pte;
 
 
 
 
 489	pte_t *pte;
 490	spinlock_t *ptl;
 491
 492	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 493	do {
 494		struct page *page;
 495		int nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496
 
 
 
 497		if (!pte_present(*pte))
 498			continue;
 499		page = vm_normal_page(vma, addr, *pte);
 500		if (!page)
 501			continue;
 502		/*
 503		 * vm_normal_page() filters out zero pages, but there might
 504		 * still be PageReserved pages to skip, perhaps in a VDSO.
 505		 */
 506		if (PageReserved(page))
 507			continue;
 508		nid = page_to_nid(page);
 509		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 510			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 513			migrate_page_add(page, private, flags);
 514		else
 515			break;
 516	} while (pte++, addr += PAGE_SIZE, addr != end);
 517	pte_unmap_unlock(orig_pte, ptl);
 518	return addr != end;
 519}
 520
 521static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
 522		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
 523				    void *private)
 524{
 525#ifdef CONFIG_HUGETLB_PAGE
 
 
 526	int nid;
 527	struct page *page;
 528	spinlock_t *ptl;
 529	pte_t entry;
 530
 531	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
 532	entry = huge_ptep_get((pte_t *)pmd);
 533	if (!pte_present(entry))
 534		goto unlock;
 535	page = pte_page(entry);
 536	nid = page_to_nid(page);
 537	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 538		goto unlock;
 539	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 540	if (flags & (MPOL_MF_MOVE_ALL) ||
 541	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 542		isolate_huge_page(page, private);
 543unlock:
 544	spin_unlock(ptl);
 545#else
 546	BUG();
 547#endif
 548}
 549
 550static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 551		unsigned long addr, unsigned long end,
 552		const nodemask_t *nodes, unsigned long flags,
 553		void *private)
 554{
 555	pmd_t *pmd;
 556	unsigned long next;
 557
 558	pmd = pmd_offset(pud, addr);
 559	do {
 560		next = pmd_addr_end(addr, end);
 561		if (!pmd_present(*pmd))
 562			continue;
 563		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
 564			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
 565						flags, private);
 566			continue;
 567		}
 568		split_huge_page_pmd(vma, addr, pmd);
 569		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 570			continue;
 571		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
 572				    flags, private))
 573			return -EIO;
 574	} while (pmd++, addr = next, addr != end);
 575	return 0;
 576}
 577
 578static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 579		unsigned long addr, unsigned long end,
 580		const nodemask_t *nodes, unsigned long flags,
 581		void *private)
 582{
 583	pud_t *pud;
 584	unsigned long next;
 585
 586	pud = pud_offset(pgd, addr);
 587	do {
 588		next = pud_addr_end(addr, end);
 589		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
 590			continue;
 591		if (pud_none_or_clear_bad(pud))
 592			continue;
 593		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
 594				    flags, private))
 595			return -EIO;
 596	} while (pud++, addr = next, addr != end);
 597	return 0;
 598}
 599
 600static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
 601		unsigned long addr, unsigned long end,
 602		const nodemask_t *nodes, unsigned long flags,
 603		void *private)
 604{
 605	pgd_t *pgd;
 606	unsigned long next;
 607
 608	pgd = pgd_offset(vma->vm_mm, addr);
 609	do {
 610		next = pgd_addr_end(addr, end);
 611		if (pgd_none_or_clear_bad(pgd))
 612			continue;
 613		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
 614				    flags, private))
 615			return -EIO;
 616	} while (pgd++, addr = next, addr != end);
 617	return 0;
 618}
 619
 620#ifdef CONFIG_NUMA_BALANCING
 621/*
 622 * This is used to mark a range of virtual addresses to be inaccessible.
 623 * These are later cleared by a NUMA hinting fault. Depending on these
 624 * faults, pages may be migrated for better NUMA placement.
 625 *
 626 * This is assuming that NUMA faults are handled using PROT_NONE. If
 627 * an architecture makes a different choice, it will need further
 628 * changes to the core.
 629 */
 630unsigned long change_prot_numa(struct vm_area_struct *vma,
 631			unsigned long addr, unsigned long end)
 632{
 633	int nr_updated;
 634
 635	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
 636	if (nr_updated)
 637		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 638
 639	return nr_updated;
 640}
 641#else
 642static unsigned long change_prot_numa(struct vm_area_struct *vma,
 643			unsigned long addr, unsigned long end)
 644{
 645	return 0;
 646}
 647#endif /* CONFIG_NUMA_BALANCING */
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/*
 650 * Walk through page tables and collect pages to be migrated.
 651 *
 652 * If pages found in a given range are on a set of nodes (determined by
 653 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 654 * passed via @private.)
 655 */
 656static struct vm_area_struct *
 657queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 658		const nodemask_t *nodes, unsigned long flags, void *private)
 
 659{
 660	int err;
 661	struct vm_area_struct *first, *vma, *prev;
 
 
 
 
 
 
 
 
 
 
 
 662
 663
 664	first = find_vma(mm, start);
 665	if (!first)
 666		return ERR_PTR(-EFAULT);
 667	prev = NULL;
 668	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 669		unsigned long endvma = vma->vm_end;
 670
 671		if (endvma > end)
 672			endvma = end;
 673		if (vma->vm_start > start)
 674			start = vma->vm_start;
 675
 676		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 677			if (!vma->vm_next && vma->vm_end < end)
 678				return ERR_PTR(-EFAULT);
 679			if (prev && prev->vm_end < vma->vm_start)
 680				return ERR_PTR(-EFAULT);
 681		}
 682
 683		if (flags & MPOL_MF_LAZY) {
 684			change_prot_numa(vma, start, endvma);
 685			goto next;
 686		}
 687
 688		if ((flags & MPOL_MF_STRICT) ||
 689		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 690		      vma_migratable(vma))) {
 691
 692			err = queue_pages_pgd_range(vma, start, endvma, nodes,
 693						flags, private);
 694			if (err) {
 695				first = ERR_PTR(err);
 696				break;
 697			}
 698		}
 699next:
 700		prev = vma;
 701	}
 702	return first;
 703}
 704
 705/*
 706 * Apply policy to a single VMA
 707 * This must be called with the mmap_sem held for writing.
 708 */
 709static int vma_replace_policy(struct vm_area_struct *vma,
 710						struct mempolicy *pol)
 711{
 712	int err;
 713	struct mempolicy *old;
 714	struct mempolicy *new;
 715
 716	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 717		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 718		 vma->vm_ops, vma->vm_file,
 719		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 720
 721	new = mpol_dup(pol);
 722	if (IS_ERR(new))
 723		return PTR_ERR(new);
 724
 725	if (vma->vm_ops && vma->vm_ops->set_policy) {
 726		err = vma->vm_ops->set_policy(vma, new);
 727		if (err)
 728			goto err_out;
 729	}
 730
 731	old = vma->vm_policy;
 732	vma->vm_policy = new; /* protected by mmap_sem */
 733	mpol_put(old);
 734
 735	return 0;
 736 err_out:
 737	mpol_put(new);
 738	return err;
 739}
 740
 741/* Step 2: apply policy to a range and do splits. */
 742static int mbind_range(struct mm_struct *mm, unsigned long start,
 743		       unsigned long end, struct mempolicy *new_pol)
 744{
 745	struct vm_area_struct *next;
 746	struct vm_area_struct *prev;
 747	struct vm_area_struct *vma;
 748	int err = 0;
 749	pgoff_t pgoff;
 750	unsigned long vmstart;
 751	unsigned long vmend;
 752
 753	vma = find_vma(mm, start);
 754	if (!vma || vma->vm_start > start)
 755		return -EFAULT;
 756
 757	prev = vma->vm_prev;
 758	if (start > vma->vm_start)
 759		prev = vma;
 760
 761	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 762		next = vma->vm_next;
 763		vmstart = max(start, vma->vm_start);
 764		vmend   = min(end, vma->vm_end);
 765
 766		if (mpol_equal(vma_policy(vma), new_pol))
 767			continue;
 768
 769		pgoff = vma->vm_pgoff +
 770			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 771		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 772				  vma->anon_vma, vma->vm_file, pgoff,
 773				  new_pol);
 774		if (prev) {
 775			vma = prev;
 776			next = vma->vm_next;
 777			if (mpol_equal(vma_policy(vma), new_pol))
 778				continue;
 779			/* vma_merge() joined vma && vma->next, case 8 */
 780			goto replace;
 781		}
 782		if (vma->vm_start != vmstart) {
 783			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 784			if (err)
 785				goto out;
 786		}
 787		if (vma->vm_end != vmend) {
 788			err = split_vma(vma->vm_mm, vma, vmend, 0);
 789			if (err)
 790				goto out;
 791		}
 792 replace:
 793		err = vma_replace_policy(vma, new_pol);
 794		if (err)
 795			goto out;
 796	}
 797
 798 out:
 799	return err;
 800}
 801
 802/* Set the process memory policy */
 803static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 804			     nodemask_t *nodes)
 805{
 806	struct mempolicy *new, *old;
 807	struct mm_struct *mm = current->mm;
 808	NODEMASK_SCRATCH(scratch);
 809	int ret;
 810
 811	if (!scratch)
 812		return -ENOMEM;
 813
 814	new = mpol_new(mode, flags, nodes);
 815	if (IS_ERR(new)) {
 816		ret = PTR_ERR(new);
 817		goto out;
 818	}
 819	/*
 820	 * prevent changing our mempolicy while show_numa_maps()
 821	 * is using it.
 822	 * Note:  do_set_mempolicy() can be called at init time
 823	 * with no 'mm'.
 824	 */
 825	if (mm)
 826		down_write(&mm->mmap_sem);
 827	task_lock(current);
 828	ret = mpol_set_nodemask(new, nodes, scratch);
 829	if (ret) {
 830		task_unlock(current);
 831		if (mm)
 832			up_write(&mm->mmap_sem);
 833		mpol_put(new);
 834		goto out;
 835	}
 836	old = current->mempolicy;
 837	current->mempolicy = new;
 838	if (new && new->mode == MPOL_INTERLEAVE &&
 839	    nodes_weight(new->v.nodes))
 840		current->il_next = first_node(new->v.nodes);
 841	task_unlock(current);
 842	if (mm)
 843		up_write(&mm->mmap_sem);
 844
 845	mpol_put(old);
 846	ret = 0;
 847out:
 848	NODEMASK_SCRATCH_FREE(scratch);
 849	return ret;
 850}
 851
 852/*
 853 * Return nodemask for policy for get_mempolicy() query
 854 *
 855 * Called with task's alloc_lock held
 856 */
 857static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 858{
 859	nodes_clear(*nodes);
 860	if (p == &default_policy)
 861		return;
 862
 863	switch (p->mode) {
 864	case MPOL_BIND:
 865		/* Fall through */
 866	case MPOL_INTERLEAVE:
 867		*nodes = p->v.nodes;
 868		break;
 869	case MPOL_PREFERRED:
 870		if (!(p->flags & MPOL_F_LOCAL))
 871			node_set(p->v.preferred_node, *nodes);
 872		/* else return empty node mask for local allocation */
 873		break;
 874	default:
 875		BUG();
 876	}
 877}
 878
 879static int lookup_node(struct mm_struct *mm, unsigned long addr)
 880{
 881	struct page *p;
 882	int err;
 883
 884	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 885	if (err >= 0) {
 886		err = page_to_nid(p);
 887		put_page(p);
 888	}
 889	return err;
 890}
 891
 892/* Retrieve NUMA policy */
 893static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 894			     unsigned long addr, unsigned long flags)
 895{
 896	int err;
 897	struct mm_struct *mm = current->mm;
 898	struct vm_area_struct *vma = NULL;
 899	struct mempolicy *pol = current->mempolicy;
 900
 901	if (flags &
 902		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 903		return -EINVAL;
 904
 905	if (flags & MPOL_F_MEMS_ALLOWED) {
 906		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 907			return -EINVAL;
 908		*policy = 0;	/* just so it's initialized */
 909		task_lock(current);
 910		*nmask  = cpuset_current_mems_allowed;
 911		task_unlock(current);
 912		return 0;
 913	}
 914
 915	if (flags & MPOL_F_ADDR) {
 916		/*
 917		 * Do NOT fall back to task policy if the
 918		 * vma/shared policy at addr is NULL.  We
 919		 * want to return MPOL_DEFAULT in this case.
 920		 */
 921		down_read(&mm->mmap_sem);
 922		vma = find_vma_intersection(mm, addr, addr+1);
 923		if (!vma) {
 924			up_read(&mm->mmap_sem);
 925			return -EFAULT;
 926		}
 927		if (vma->vm_ops && vma->vm_ops->get_policy)
 928			pol = vma->vm_ops->get_policy(vma, addr);
 929		else
 930			pol = vma->vm_policy;
 931	} else if (addr)
 932		return -EINVAL;
 933
 934	if (!pol)
 935		pol = &default_policy;	/* indicates default behavior */
 936
 937	if (flags & MPOL_F_NODE) {
 938		if (flags & MPOL_F_ADDR) {
 939			err = lookup_node(mm, addr);
 940			if (err < 0)
 941				goto out;
 942			*policy = err;
 943		} else if (pol == current->mempolicy &&
 944				pol->mode == MPOL_INTERLEAVE) {
 945			*policy = current->il_next;
 946		} else {
 947			err = -EINVAL;
 948			goto out;
 949		}
 950	} else {
 951		*policy = pol == &default_policy ? MPOL_DEFAULT :
 952						pol->mode;
 953		/*
 954		 * Internal mempolicy flags must be masked off before exposing
 955		 * the policy to userspace.
 956		 */
 957		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 958	}
 959
 960	if (vma) {
 961		up_read(&current->mm->mmap_sem);
 962		vma = NULL;
 963	}
 964
 965	err = 0;
 966	if (nmask) {
 967		if (mpol_store_user_nodemask(pol)) {
 968			*nmask = pol->w.user_nodemask;
 969		} else {
 970			task_lock(current);
 971			get_policy_nodemask(pol, nmask);
 972			task_unlock(current);
 973		}
 974	}
 975
 976 out:
 977	mpol_cond_put(pol);
 978	if (vma)
 979		up_read(&current->mm->mmap_sem);
 980	return err;
 981}
 982
 983#ifdef CONFIG_MIGRATION
 984/*
 985 * page migration
 986 */
 987static void migrate_page_add(struct page *page, struct list_head *pagelist,
 988				unsigned long flags)
 989{
 990	/*
 991	 * Avoid migrating a page that is shared with others.
 992	 */
 993	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 994		if (!isolate_lru_page(page)) {
 995			list_add_tail(&page->lru, pagelist);
 996			inc_zone_page_state(page, NR_ISOLATED_ANON +
 997					    page_is_file_cache(page));
 998		}
 999	}
1000}
1001
1002static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1003{
1004	if (PageHuge(page))
1005		return alloc_huge_page_node(page_hstate(compound_head(page)),
1006					node);
1007	else
1008		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
1009}
1010
1011/*
1012 * Migrate pages from one node to a target node.
1013 * Returns error or the number of pages not migrated.
1014 */
1015static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1016			   int flags)
1017{
1018	nodemask_t nmask;
1019	LIST_HEAD(pagelist);
1020	int err = 0;
1021
1022	nodes_clear(nmask);
1023	node_set(source, nmask);
1024
1025	/*
1026	 * This does not "check" the range but isolates all pages that
1027	 * need migration.  Between passing in the full user address
1028	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1029	 */
1030	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1031	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1032			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1033
1034	if (!list_empty(&pagelist)) {
1035		err = migrate_pages(&pagelist, new_node_page, dest,
1036					MIGRATE_SYNC, MR_SYSCALL);
1037		if (err)
1038			putback_movable_pages(&pagelist);
1039	}
1040
1041	return err;
1042}
1043
1044/*
1045 * Move pages between the two nodesets so as to preserve the physical
1046 * layout as much as possible.
1047 *
1048 * Returns the number of page that could not be moved.
1049 */
1050int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1051		     const nodemask_t *to, int flags)
1052{
1053	int busy = 0;
1054	int err;
1055	nodemask_t tmp;
1056
1057	err = migrate_prep();
1058	if (err)
1059		return err;
1060
1061	down_read(&mm->mmap_sem);
1062
1063	err = migrate_vmas(mm, from, to, flags);
1064	if (err)
1065		goto out;
1066
1067	/*
1068	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1069	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1070	 * bit in 'tmp', and return that <source, dest> pair for migration.
1071	 * The pair of nodemasks 'to' and 'from' define the map.
1072	 *
1073	 * If no pair of bits is found that way, fallback to picking some
1074	 * pair of 'source' and 'dest' bits that are not the same.  If the
1075	 * 'source' and 'dest' bits are the same, this represents a node
1076	 * that will be migrating to itself, so no pages need move.
1077	 *
1078	 * If no bits are left in 'tmp', or if all remaining bits left
1079	 * in 'tmp' correspond to the same bit in 'to', return false
1080	 * (nothing left to migrate).
1081	 *
1082	 * This lets us pick a pair of nodes to migrate between, such that
1083	 * if possible the dest node is not already occupied by some other
1084	 * source node, minimizing the risk of overloading the memory on a
1085	 * node that would happen if we migrated incoming memory to a node
1086	 * before migrating outgoing memory source that same node.
1087	 *
1088	 * A single scan of tmp is sufficient.  As we go, we remember the
1089	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1090	 * that not only moved, but what's better, moved to an empty slot
1091	 * (d is not set in tmp), then we break out then, with that pair.
1092	 * Otherwise when we finish scanning from_tmp, we at least have the
1093	 * most recent <s, d> pair that moved.  If we get all the way through
1094	 * the scan of tmp without finding any node that moved, much less
1095	 * moved to an empty node, then there is nothing left worth migrating.
1096	 */
1097
1098	tmp = *from;
1099	while (!nodes_empty(tmp)) {
1100		int s,d;
1101		int source = NUMA_NO_NODE;
1102		int dest = 0;
1103
1104		for_each_node_mask(s, tmp) {
1105
1106			/*
1107			 * do_migrate_pages() tries to maintain the relative
1108			 * node relationship of the pages established between
1109			 * threads and memory areas.
1110                         *
1111			 * However if the number of source nodes is not equal to
1112			 * the number of destination nodes we can not preserve
1113			 * this node relative relationship.  In that case, skip
1114			 * copying memory from a node that is in the destination
1115			 * mask.
1116			 *
1117			 * Example: [2,3,4] -> [3,4,5] moves everything.
1118			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1119			 */
1120
1121			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1122						(node_isset(s, *to)))
1123				continue;
1124
1125			d = node_remap(s, *from, *to);
1126			if (s == d)
1127				continue;
1128
1129			source = s;	/* Node moved. Memorize */
1130			dest = d;
1131
1132			/* dest not in remaining from nodes? */
1133			if (!node_isset(dest, tmp))
1134				break;
1135		}
1136		if (source == NUMA_NO_NODE)
1137			break;
1138
1139		node_clear(source, tmp);
1140		err = migrate_to_node(mm, source, dest, flags);
1141		if (err > 0)
1142			busy += err;
1143		if (err < 0)
1144			break;
1145	}
1146out:
1147	up_read(&mm->mmap_sem);
1148	if (err < 0)
1149		return err;
1150	return busy;
1151
1152}
1153
1154/*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start assuming that page is mapped by vma pointed to by @private.
1157 * Search forward from there, if not.  N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
1161static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1162{
1163	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1164	unsigned long uninitialized_var(address);
1165
 
1166	while (vma) {
1167		address = page_address_in_vma(page, vma);
1168		if (address != -EFAULT)
1169			break;
1170		vma = vma->vm_next;
1171	}
1172
1173	if (PageHuge(page)) {
1174		BUG_ON(!vma);
1175		return alloc_huge_page_noerr(vma, address, 1);
1176	}
1177	/*
1178	 * if !vma, alloc_page_vma() will use task or system default policy
1179	 */
1180	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1181}
1182#else
1183
1184static void migrate_page_add(struct page *page, struct list_head *pagelist,
1185				unsigned long flags)
1186{
1187}
1188
1189int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1190		     const nodemask_t *to, int flags)
1191{
1192	return -ENOSYS;
1193}
1194
1195static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1196{
1197	return NULL;
1198}
1199#endif
1200
1201static long do_mbind(unsigned long start, unsigned long len,
1202		     unsigned short mode, unsigned short mode_flags,
1203		     nodemask_t *nmask, unsigned long flags)
1204{
1205	struct vm_area_struct *vma;
1206	struct mm_struct *mm = current->mm;
1207	struct mempolicy *new;
1208	unsigned long end;
1209	int err;
1210	LIST_HEAD(pagelist);
1211
1212	if (flags & ~(unsigned long)MPOL_MF_VALID)
1213		return -EINVAL;
1214	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1215		return -EPERM;
1216
1217	if (start & ~PAGE_MASK)
1218		return -EINVAL;
1219
1220	if (mode == MPOL_DEFAULT)
1221		flags &= ~MPOL_MF_STRICT;
1222
1223	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1224	end = start + len;
1225
1226	if (end < start)
1227		return -EINVAL;
1228	if (end == start)
1229		return 0;
1230
1231	new = mpol_new(mode, mode_flags, nmask);
1232	if (IS_ERR(new))
1233		return PTR_ERR(new);
1234
1235	if (flags & MPOL_MF_LAZY)
1236		new->flags |= MPOL_F_MOF;
1237
1238	/*
1239	 * If we are using the default policy then operation
1240	 * on discontinuous address spaces is okay after all
1241	 */
1242	if (!new)
1243		flags |= MPOL_MF_DISCONTIG_OK;
1244
1245	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1246		 start, start + len, mode, mode_flags,
1247		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1248
1249	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1250
1251		err = migrate_prep();
1252		if (err)
1253			goto mpol_out;
1254	}
1255	{
1256		NODEMASK_SCRATCH(scratch);
1257		if (scratch) {
1258			down_write(&mm->mmap_sem);
1259			task_lock(current);
1260			err = mpol_set_nodemask(new, nmask, scratch);
1261			task_unlock(current);
1262			if (err)
1263				up_write(&mm->mmap_sem);
1264		} else
1265			err = -ENOMEM;
1266		NODEMASK_SCRATCH_FREE(scratch);
1267	}
1268	if (err)
1269		goto mpol_out;
1270
1271	vma = queue_pages_range(mm, start, end, nmask,
1272			  flags | MPOL_MF_INVERT, &pagelist);
1273
1274	err = PTR_ERR(vma);	/* maybe ... */
1275	if (!IS_ERR(vma))
1276		err = mbind_range(mm, start, end, new);
1277
1278	if (!err) {
1279		int nr_failed = 0;
1280
1281		if (!list_empty(&pagelist)) {
1282			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1283			nr_failed = migrate_pages(&pagelist, new_vma_page,
1284					(unsigned long)vma,
1285					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1286			if (nr_failed)
1287				putback_movable_pages(&pagelist);
1288		}
1289
1290		if (nr_failed && (flags & MPOL_MF_STRICT))
1291			err = -EIO;
1292	} else
1293		putback_movable_pages(&pagelist);
1294
1295	up_write(&mm->mmap_sem);
1296 mpol_out:
1297	mpol_put(new);
1298	return err;
1299}
1300
1301/*
1302 * User space interface with variable sized bitmaps for nodelists.
1303 */
1304
1305/* Copy a node mask from user space. */
1306static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1307		     unsigned long maxnode)
1308{
1309	unsigned long k;
1310	unsigned long nlongs;
1311	unsigned long endmask;
1312
1313	--maxnode;
1314	nodes_clear(*nodes);
1315	if (maxnode == 0 || !nmask)
1316		return 0;
1317	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1318		return -EINVAL;
1319
1320	nlongs = BITS_TO_LONGS(maxnode);
1321	if ((maxnode % BITS_PER_LONG) == 0)
1322		endmask = ~0UL;
1323	else
1324		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1325
1326	/* When the user specified more nodes than supported just check
1327	   if the non supported part is all zero. */
1328	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1329		if (nlongs > PAGE_SIZE/sizeof(long))
1330			return -EINVAL;
1331		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1332			unsigned long t;
1333			if (get_user(t, nmask + k))
1334				return -EFAULT;
1335			if (k == nlongs - 1) {
1336				if (t & endmask)
1337					return -EINVAL;
1338			} else if (t)
1339				return -EINVAL;
1340		}
1341		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1342		endmask = ~0UL;
1343	}
1344
1345	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1346		return -EFAULT;
1347	nodes_addr(*nodes)[nlongs-1] &= endmask;
1348	return 0;
1349}
1350
1351/* Copy a kernel node mask to user space */
1352static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1353			      nodemask_t *nodes)
1354{
1355	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1356	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1357
1358	if (copy > nbytes) {
1359		if (copy > PAGE_SIZE)
1360			return -EINVAL;
1361		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1362			return -EFAULT;
1363		copy = nbytes;
1364	}
1365	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1366}
1367
1368SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1369		unsigned long, mode, unsigned long __user *, nmask,
1370		unsigned long, maxnode, unsigned, flags)
1371{
1372	nodemask_t nodes;
1373	int err;
1374	unsigned short mode_flags;
1375
1376	mode_flags = mode & MPOL_MODE_FLAGS;
1377	mode &= ~MPOL_MODE_FLAGS;
1378	if (mode >= MPOL_MAX)
1379		return -EINVAL;
1380	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1381	    (mode_flags & MPOL_F_RELATIVE_NODES))
1382		return -EINVAL;
1383	err = get_nodes(&nodes, nmask, maxnode);
1384	if (err)
1385		return err;
1386	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1387}
1388
1389/* Set the process memory policy */
1390SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1391		unsigned long, maxnode)
1392{
1393	int err;
1394	nodemask_t nodes;
1395	unsigned short flags;
1396
1397	flags = mode & MPOL_MODE_FLAGS;
1398	mode &= ~MPOL_MODE_FLAGS;
1399	if ((unsigned int)mode >= MPOL_MAX)
1400		return -EINVAL;
1401	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1402		return -EINVAL;
1403	err = get_nodes(&nodes, nmask, maxnode);
1404	if (err)
1405		return err;
1406	return do_set_mempolicy(mode, flags, &nodes);
1407}
1408
1409SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1410		const unsigned long __user *, old_nodes,
1411		const unsigned long __user *, new_nodes)
1412{
1413	const struct cred *cred = current_cred(), *tcred;
1414	struct mm_struct *mm = NULL;
1415	struct task_struct *task;
1416	nodemask_t task_nodes;
1417	int err;
1418	nodemask_t *old;
1419	nodemask_t *new;
1420	NODEMASK_SCRATCH(scratch);
1421
1422	if (!scratch)
1423		return -ENOMEM;
1424
1425	old = &scratch->mask1;
1426	new = &scratch->mask2;
1427
1428	err = get_nodes(old, old_nodes, maxnode);
1429	if (err)
1430		goto out;
1431
1432	err = get_nodes(new, new_nodes, maxnode);
1433	if (err)
1434		goto out;
1435
1436	/* Find the mm_struct */
1437	rcu_read_lock();
1438	task = pid ? find_task_by_vpid(pid) : current;
1439	if (!task) {
1440		rcu_read_unlock();
1441		err = -ESRCH;
1442		goto out;
1443	}
1444	get_task_struct(task);
1445
1446	err = -EINVAL;
1447
1448	/*
1449	 * Check if this process has the right to modify the specified
1450	 * process. The right exists if the process has administrative
1451	 * capabilities, superuser privileges or the same
1452	 * userid as the target process.
1453	 */
1454	tcred = __task_cred(task);
1455	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457	    !capable(CAP_SYS_NICE)) {
1458		rcu_read_unlock();
1459		err = -EPERM;
1460		goto out_put;
1461	}
1462	rcu_read_unlock();
1463
1464	task_nodes = cpuset_mems_allowed(task);
1465	/* Is the user allowed to access the target nodes? */
1466	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1467		err = -EPERM;
1468		goto out_put;
1469	}
1470
1471	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1472		err = -EINVAL;
1473		goto out_put;
1474	}
1475
1476	err = security_task_movememory(task);
1477	if (err)
1478		goto out_put;
1479
1480	mm = get_task_mm(task);
1481	put_task_struct(task);
1482
1483	if (!mm) {
1484		err = -EINVAL;
1485		goto out;
1486	}
1487
1488	err = do_migrate_pages(mm, old, new,
1489		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1490
1491	mmput(mm);
1492out:
1493	NODEMASK_SCRATCH_FREE(scratch);
1494
1495	return err;
1496
1497out_put:
1498	put_task_struct(task);
1499	goto out;
1500
1501}
1502
1503
1504/* Retrieve NUMA policy */
1505SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1506		unsigned long __user *, nmask, unsigned long, maxnode,
1507		unsigned long, addr, unsigned long, flags)
1508{
1509	int err;
1510	int uninitialized_var(pval);
1511	nodemask_t nodes;
1512
1513	if (nmask != NULL && maxnode < MAX_NUMNODES)
1514		return -EINVAL;
1515
1516	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1517
1518	if (err)
1519		return err;
1520
1521	if (policy && put_user(pval, policy))
1522		return -EFAULT;
1523
1524	if (nmask)
1525		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1526
1527	return err;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1533		       compat_ulong_t __user *, nmask,
1534		       compat_ulong_t, maxnode,
1535		       compat_ulong_t, addr, compat_ulong_t, flags)
1536{
1537	long err;
1538	unsigned long __user *nm = NULL;
1539	unsigned long nr_bits, alloc_size;
1540	DECLARE_BITMAP(bm, MAX_NUMNODES);
1541
1542	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1543	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1544
1545	if (nmask)
1546		nm = compat_alloc_user_space(alloc_size);
1547
1548	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1549
1550	if (!err && nmask) {
1551		unsigned long copy_size;
1552		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1553		err = copy_from_user(bm, nm, copy_size);
1554		/* ensure entire bitmap is zeroed */
1555		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1556		err |= compat_put_bitmap(nmask, bm, nr_bits);
1557	}
1558
1559	return err;
1560}
1561
1562COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1563		       compat_ulong_t, maxnode)
1564{
1565	long err = 0;
1566	unsigned long __user *nm = NULL;
1567	unsigned long nr_bits, alloc_size;
1568	DECLARE_BITMAP(bm, MAX_NUMNODES);
1569
1570	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572
1573	if (nmask) {
1574		err = compat_get_bitmap(bm, nmask, nr_bits);
1575		nm = compat_alloc_user_space(alloc_size);
1576		err |= copy_to_user(nm, bm, alloc_size);
1577	}
1578
1579	if (err)
1580		return -EFAULT;
1581
1582	return sys_set_mempolicy(mode, nm, nr_bits+1);
1583}
1584
1585COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1586		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1587		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1588{
1589	long err = 0;
1590	unsigned long __user *nm = NULL;
1591	unsigned long nr_bits, alloc_size;
1592	nodemask_t bm;
1593
1594	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1595	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1596
1597	if (nmask) {
1598		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1599		nm = compat_alloc_user_space(alloc_size);
1600		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1601	}
1602
1603	if (err)
1604		return -EFAULT;
1605
1606	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1607}
1608
1609#endif
1610
1611/*
1612 * get_vma_policy(@task, @vma, @addr)
1613 * @task - task for fallback if vma policy == default
1614 * @vma   - virtual memory area whose policy is sought
1615 * @addr  - address in @vma for shared policy lookup
1616 *
1617 * Returns effective policy for a VMA at specified address.
1618 * Falls back to @task or system default policy, as necessary.
1619 * Current or other task's task mempolicy and non-shared vma policies must be
1620 * protected by task_lock(task) by the caller.
1621 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1622 * count--added by the get_policy() vm_op, as appropriate--to protect against
1623 * freeing by another task.  It is the caller's responsibility to free the
1624 * extra reference for shared policies.
1625 */
1626struct mempolicy *get_vma_policy(struct task_struct *task,
1627		struct vm_area_struct *vma, unsigned long addr)
1628{
1629	struct mempolicy *pol = get_task_policy(task);
1630
1631	if (vma) {
1632		if (vma->vm_ops && vma->vm_ops->get_policy) {
1633			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1634									addr);
1635			if (vpol)
1636				pol = vpol;
1637		} else if (vma->vm_policy) {
1638			pol = vma->vm_policy;
1639
1640			/*
1641			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1642			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1643			 * count on these policies which will be dropped by
1644			 * mpol_cond_put() later
1645			 */
1646			if (mpol_needs_cond_ref(pol))
1647				mpol_get(pol);
1648		}
1649	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650	if (!pol)
1651		pol = &default_policy;
 
1652	return pol;
1653}
1654
1655bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1656{
1657	struct mempolicy *pol = get_task_policy(task);
1658	if (vma) {
1659		if (vma->vm_ops && vma->vm_ops->get_policy) {
1660			bool ret = false;
1661
1662			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1663			if (pol && (pol->flags & MPOL_F_MOF))
1664				ret = true;
1665			mpol_cond_put(pol);
1666
1667			return ret;
1668		} else if (vma->vm_policy) {
1669			pol = vma->vm_policy;
1670		}
1671	}
1672
 
1673	if (!pol)
1674		return default_policy.flags & MPOL_F_MOF;
1675
1676	return pol->flags & MPOL_F_MOF;
1677}
1678
1679static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1680{
1681	enum zone_type dynamic_policy_zone = policy_zone;
1682
1683	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1684
1685	/*
1686	 * if policy->v.nodes has movable memory only,
1687	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1688	 *
1689	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690	 * so if the following test faile, it implies
1691	 * policy->v.nodes has movable memory only.
1692	 */
1693	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1694		dynamic_policy_zone = ZONE_MOVABLE;
1695
1696	return zone >= dynamic_policy_zone;
1697}
1698
1699/*
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1701 * page allocation
1702 */
1703static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1704{
1705	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1706	if (unlikely(policy->mode == MPOL_BIND) &&
1707			apply_policy_zone(policy, gfp_zone(gfp)) &&
1708			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1709		return &policy->v.nodes;
1710
1711	return NULL;
1712}
1713
1714/* Return a zonelist indicated by gfp for node representing a mempolicy */
1715static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1716	int nd)
1717{
1718	switch (policy->mode) {
1719	case MPOL_PREFERRED:
1720		if (!(policy->flags & MPOL_F_LOCAL))
1721			nd = policy->v.preferred_node;
1722		break;
1723	case MPOL_BIND:
1724		/*
1725		 * Normally, MPOL_BIND allocations are node-local within the
1726		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1727		 * current node isn't part of the mask, we use the zonelist for
1728		 * the first node in the mask instead.
1729		 */
1730		if (unlikely(gfp & __GFP_THISNODE) &&
1731				unlikely(!node_isset(nd, policy->v.nodes)))
1732			nd = first_node(policy->v.nodes);
1733		break;
1734	default:
1735		BUG();
1736	}
1737	return node_zonelist(nd, gfp);
1738}
1739
1740/* Do dynamic interleaving for a process */
1741static unsigned interleave_nodes(struct mempolicy *policy)
1742{
1743	unsigned nid, next;
1744	struct task_struct *me = current;
1745
1746	nid = me->il_next;
1747	next = next_node(nid, policy->v.nodes);
1748	if (next >= MAX_NUMNODES)
1749		next = first_node(policy->v.nodes);
1750	if (next < MAX_NUMNODES)
1751		me->il_next = next;
1752	return nid;
1753}
1754
1755/*
1756 * Depending on the memory policy provide a node from which to allocate the
1757 * next slab entry.
1758 */
1759unsigned int mempolicy_slab_node(void)
1760{
1761	struct mempolicy *policy;
1762	int node = numa_mem_id();
1763
1764	if (in_interrupt())
1765		return node;
1766
1767	policy = current->mempolicy;
1768	if (!policy || policy->flags & MPOL_F_LOCAL)
1769		return node;
1770
1771	switch (policy->mode) {
1772	case MPOL_PREFERRED:
1773		/*
1774		 * handled MPOL_F_LOCAL above
1775		 */
1776		return policy->v.preferred_node;
1777
1778	case MPOL_INTERLEAVE:
1779		return interleave_nodes(policy);
1780
1781	case MPOL_BIND: {
1782		/*
1783		 * Follow bind policy behavior and start allocation at the
1784		 * first node.
1785		 */
1786		struct zonelist *zonelist;
1787		struct zone *zone;
1788		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1789		zonelist = &NODE_DATA(node)->node_zonelists[0];
1790		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1791							&policy->v.nodes,
1792							&zone);
1793		return zone ? zone->node : node;
1794	}
1795
1796	default:
1797		BUG();
1798	}
1799}
1800
1801/* Do static interleaving for a VMA with known offset. */
1802static unsigned offset_il_node(struct mempolicy *pol,
1803		struct vm_area_struct *vma, unsigned long off)
1804{
1805	unsigned nnodes = nodes_weight(pol->v.nodes);
1806	unsigned target;
1807	int c;
1808	int nid = NUMA_NO_NODE;
1809
1810	if (!nnodes)
1811		return numa_node_id();
1812	target = (unsigned int)off % nnodes;
1813	c = 0;
1814	do {
1815		nid = next_node(nid, pol->v.nodes);
1816		c++;
1817	} while (c <= target);
1818	return nid;
1819}
1820
1821/* Determine a node number for interleave */
1822static inline unsigned interleave_nid(struct mempolicy *pol,
1823		 struct vm_area_struct *vma, unsigned long addr, int shift)
1824{
1825	if (vma) {
1826		unsigned long off;
1827
1828		/*
1829		 * for small pages, there is no difference between
1830		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1831		 * for huge pages, since vm_pgoff is in units of small
1832		 * pages, we need to shift off the always 0 bits to get
1833		 * a useful offset.
1834		 */
1835		BUG_ON(shift < PAGE_SHIFT);
1836		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1837		off += (addr - vma->vm_start) >> shift;
1838		return offset_il_node(pol, vma, off);
1839	} else
1840		return interleave_nodes(pol);
1841}
1842
1843/*
1844 * Return the bit number of a random bit set in the nodemask.
1845 * (returns NUMA_NO_NODE if nodemask is empty)
1846 */
1847int node_random(const nodemask_t *maskp)
1848{
1849	int w, bit = NUMA_NO_NODE;
1850
1851	w = nodes_weight(*maskp);
1852	if (w)
1853		bit = bitmap_ord_to_pos(maskp->bits,
1854			get_random_int() % w, MAX_NUMNODES);
1855	return bit;
1856}
1857
1858#ifdef CONFIG_HUGETLBFS
1859/*
1860 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1861 * @vma = virtual memory area whose policy is sought
1862 * @addr = address in @vma for shared policy lookup and interleave policy
1863 * @gfp_flags = for requested zone
1864 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1865 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1866 *
1867 * Returns a zonelist suitable for a huge page allocation and a pointer
1868 * to the struct mempolicy for conditional unref after allocation.
1869 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1870 * @nodemask for filtering the zonelist.
1871 *
1872 * Must be protected by read_mems_allowed_begin()
1873 */
1874struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1875				gfp_t gfp_flags, struct mempolicy **mpol,
1876				nodemask_t **nodemask)
1877{
1878	struct zonelist *zl;
1879
1880	*mpol = get_vma_policy(current, vma, addr);
1881	*nodemask = NULL;	/* assume !MPOL_BIND */
1882
1883	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1884		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1885				huge_page_shift(hstate_vma(vma))), gfp_flags);
1886	} else {
1887		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1888		if ((*mpol)->mode == MPOL_BIND)
1889			*nodemask = &(*mpol)->v.nodes;
1890	}
1891	return zl;
1892}
1893
1894/*
1895 * init_nodemask_of_mempolicy
1896 *
1897 * If the current task's mempolicy is "default" [NULL], return 'false'
1898 * to indicate default policy.  Otherwise, extract the policy nodemask
1899 * for 'bind' or 'interleave' policy into the argument nodemask, or
1900 * initialize the argument nodemask to contain the single node for
1901 * 'preferred' or 'local' policy and return 'true' to indicate presence
1902 * of non-default mempolicy.
1903 *
1904 * We don't bother with reference counting the mempolicy [mpol_get/put]
1905 * because the current task is examining it's own mempolicy and a task's
1906 * mempolicy is only ever changed by the task itself.
1907 *
1908 * N.B., it is the caller's responsibility to free a returned nodemask.
1909 */
1910bool init_nodemask_of_mempolicy(nodemask_t *mask)
1911{
1912	struct mempolicy *mempolicy;
1913	int nid;
1914
1915	if (!(mask && current->mempolicy))
1916		return false;
1917
1918	task_lock(current);
1919	mempolicy = current->mempolicy;
1920	switch (mempolicy->mode) {
1921	case MPOL_PREFERRED:
1922		if (mempolicy->flags & MPOL_F_LOCAL)
1923			nid = numa_node_id();
1924		else
1925			nid = mempolicy->v.preferred_node;
1926		init_nodemask_of_node(mask, nid);
1927		break;
1928
1929	case MPOL_BIND:
1930		/* Fall through */
1931	case MPOL_INTERLEAVE:
1932		*mask =  mempolicy->v.nodes;
1933		break;
1934
1935	default:
1936		BUG();
1937	}
1938	task_unlock(current);
1939
1940	return true;
1941}
1942#endif
1943
1944/*
1945 * mempolicy_nodemask_intersects
1946 *
1947 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1948 * policy.  Otherwise, check for intersection between mask and the policy
1949 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1950 * policy, always return true since it may allocate elsewhere on fallback.
1951 *
1952 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1953 */
1954bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1955					const nodemask_t *mask)
1956{
1957	struct mempolicy *mempolicy;
1958	bool ret = true;
1959
1960	if (!mask)
1961		return ret;
1962	task_lock(tsk);
1963	mempolicy = tsk->mempolicy;
1964	if (!mempolicy)
1965		goto out;
1966
1967	switch (mempolicy->mode) {
1968	case MPOL_PREFERRED:
1969		/*
1970		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1971		 * allocate from, they may fallback to other nodes when oom.
1972		 * Thus, it's possible for tsk to have allocated memory from
1973		 * nodes in mask.
1974		 */
1975		break;
1976	case MPOL_BIND:
1977	case MPOL_INTERLEAVE:
1978		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1979		break;
1980	default:
1981		BUG();
1982	}
1983out:
1984	task_unlock(tsk);
1985	return ret;
1986}
1987
1988/* Allocate a page in interleaved policy.
1989   Own path because it needs to do special accounting. */
1990static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1991					unsigned nid)
1992{
1993	struct zonelist *zl;
1994	struct page *page;
1995
1996	zl = node_zonelist(nid, gfp);
1997	page = __alloc_pages(gfp, order, zl);
1998	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1999		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2000	return page;
2001}
2002
2003/**
2004 * 	alloc_pages_vma	- Allocate a page for a VMA.
2005 *
2006 * 	@gfp:
2007 *      %GFP_USER    user allocation.
2008 *      %GFP_KERNEL  kernel allocations,
2009 *      %GFP_HIGHMEM highmem/user allocations,
2010 *      %GFP_FS      allocation should not call back into a file system.
2011 *      %GFP_ATOMIC  don't sleep.
2012 *
2013 *	@order:Order of the GFP allocation.
2014 * 	@vma:  Pointer to VMA or NULL if not available.
2015 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 
 
2016 *
2017 * 	This function allocates a page from the kernel page pool and applies
2018 *	a NUMA policy associated with the VMA or the current process.
2019 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2020 *	mm_struct of the VMA to prevent it from going away. Should be used for
2021 *	all allocations for pages that will be mapped into
2022 * 	user space. Returns NULL when no page can be allocated.
2023 *
2024 *	Should be called with the mm_sem of the vma hold.
2025 */
2026struct page *
2027alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2028		unsigned long addr, int node)
2029{
2030	struct mempolicy *pol;
2031	struct page *page;
2032	unsigned int cpuset_mems_cookie;
 
 
2033
2034retry_cpuset:
2035	pol = get_vma_policy(current, vma, addr);
2036	cpuset_mems_cookie = read_mems_allowed_begin();
2037
2038	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2039		unsigned nid;
2040
2041		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2042		mpol_cond_put(pol);
2043		page = alloc_page_interleave(gfp, order, nid);
2044		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2045			goto retry_cpuset;
2046
2047		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048	}
2049	page = __alloc_pages_nodemask(gfp, order,
2050				      policy_zonelist(gfp, pol, node),
2051				      policy_nodemask(gfp, pol));
2052	if (unlikely(mpol_needs_cond_ref(pol)))
2053		__mpol_put(pol);
 
2054	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2055		goto retry_cpuset;
2056	return page;
2057}
2058
2059/**
2060 * 	alloc_pages_current - Allocate pages.
2061 *
2062 *	@gfp:
2063 *		%GFP_USER   user allocation,
2064 *      	%GFP_KERNEL kernel allocation,
2065 *      	%GFP_HIGHMEM highmem allocation,
2066 *      	%GFP_FS     don't call back into a file system.
2067 *      	%GFP_ATOMIC don't sleep.
2068 *	@order: Power of two of allocation size in pages. 0 is a single page.
2069 *
2070 *	Allocate a page from the kernel page pool.  When not in
2071 *	interrupt context and apply the current process NUMA policy.
2072 *	Returns NULL when no page can be allocated.
2073 *
2074 *	Don't call cpuset_update_task_memory_state() unless
2075 *	1) it's ok to take cpuset_sem (can WAIT), and
2076 *	2) allocating for current task (not interrupt).
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = get_task_policy(current);
2081	struct page *page;
2082	unsigned int cpuset_mems_cookie;
2083
2084	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2085		pol = &default_policy;
2086
2087retry_cpuset:
2088	cpuset_mems_cookie = read_mems_allowed_begin();
2089
2090	/*
2091	 * No reference counting needed for current->mempolicy
2092	 * nor system default_policy
2093	 */
2094	if (pol->mode == MPOL_INTERLEAVE)
2095		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2096	else
2097		page = __alloc_pages_nodemask(gfp, order,
2098				policy_zonelist(gfp, pol, numa_node_id()),
2099				policy_nodemask(gfp, pol));
2100
2101	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2102		goto retry_cpuset;
2103
2104	return page;
2105}
2106EXPORT_SYMBOL(alloc_pages_current);
2107
2108int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2109{
2110	struct mempolicy *pol = mpol_dup(vma_policy(src));
2111
2112	if (IS_ERR(pol))
2113		return PTR_ERR(pol);
2114	dst->vm_policy = pol;
2115	return 0;
2116}
2117
2118/*
2119 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2120 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2121 * with the mems_allowed returned by cpuset_mems_allowed().  This
2122 * keeps mempolicies cpuset relative after its cpuset moves.  See
2123 * further kernel/cpuset.c update_nodemask().
2124 *
2125 * current's mempolicy may be rebinded by the other task(the task that changes
2126 * cpuset's mems), so we needn't do rebind work for current task.
2127 */
2128
2129/* Slow path of a mempolicy duplicate */
2130struct mempolicy *__mpol_dup(struct mempolicy *old)
2131{
2132	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2133
2134	if (!new)
2135		return ERR_PTR(-ENOMEM);
2136
2137	/* task's mempolicy is protected by alloc_lock */
2138	if (old == current->mempolicy) {
2139		task_lock(current);
2140		*new = *old;
2141		task_unlock(current);
2142	} else
2143		*new = *old;
2144
2145	rcu_read_lock();
2146	if (current_cpuset_is_being_rebound()) {
2147		nodemask_t mems = cpuset_mems_allowed(current);
2148		if (new->flags & MPOL_F_REBINDING)
2149			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2150		else
2151			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2152	}
2153	rcu_read_unlock();
2154	atomic_set(&new->refcnt, 1);
2155	return new;
2156}
2157
2158/* Slow path of a mempolicy comparison */
2159bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2160{
2161	if (!a || !b)
2162		return false;
2163	if (a->mode != b->mode)
2164		return false;
2165	if (a->flags != b->flags)
2166		return false;
2167	if (mpol_store_user_nodemask(a))
2168		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2169			return false;
2170
2171	switch (a->mode) {
2172	case MPOL_BIND:
2173		/* Fall through */
2174	case MPOL_INTERLEAVE:
2175		return !!nodes_equal(a->v.nodes, b->v.nodes);
2176	case MPOL_PREFERRED:
2177		return a->v.preferred_node == b->v.preferred_node;
2178	default:
2179		BUG();
2180		return false;
2181	}
2182}
2183
2184/*
2185 * Shared memory backing store policy support.
2186 *
2187 * Remember policies even when nobody has shared memory mapped.
2188 * The policies are kept in Red-Black tree linked from the inode.
2189 * They are protected by the sp->lock spinlock, which should be held
2190 * for any accesses to the tree.
2191 */
2192
2193/* lookup first element intersecting start-end */
2194/* Caller holds sp->lock */
 
 
2195static struct sp_node *
2196sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2197{
2198	struct rb_node *n = sp->root.rb_node;
2199
2200	while (n) {
2201		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2202
2203		if (start >= p->end)
2204			n = n->rb_right;
2205		else if (end <= p->start)
2206			n = n->rb_left;
2207		else
2208			break;
2209	}
2210	if (!n)
2211		return NULL;
2212	for (;;) {
2213		struct sp_node *w = NULL;
2214		struct rb_node *prev = rb_prev(n);
2215		if (!prev)
2216			break;
2217		w = rb_entry(prev, struct sp_node, nd);
2218		if (w->end <= start)
2219			break;
2220		n = prev;
2221	}
2222	return rb_entry(n, struct sp_node, nd);
2223}
2224
2225/* Insert a new shared policy into the list. */
2226/* Caller holds sp->lock */
 
 
2227static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2228{
2229	struct rb_node **p = &sp->root.rb_node;
2230	struct rb_node *parent = NULL;
2231	struct sp_node *nd;
2232
2233	while (*p) {
2234		parent = *p;
2235		nd = rb_entry(parent, struct sp_node, nd);
2236		if (new->start < nd->start)
2237			p = &(*p)->rb_left;
2238		else if (new->end > nd->end)
2239			p = &(*p)->rb_right;
2240		else
2241			BUG();
2242	}
2243	rb_link_node(&new->nd, parent, p);
2244	rb_insert_color(&new->nd, &sp->root);
2245	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2246		 new->policy ? new->policy->mode : 0);
2247}
2248
2249/* Find shared policy intersecting idx */
2250struct mempolicy *
2251mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2252{
2253	struct mempolicy *pol = NULL;
2254	struct sp_node *sn;
2255
2256	if (!sp->root.rb_node)
2257		return NULL;
2258	spin_lock(&sp->lock);
2259	sn = sp_lookup(sp, idx, idx+1);
2260	if (sn) {
2261		mpol_get(sn->policy);
2262		pol = sn->policy;
2263	}
2264	spin_unlock(&sp->lock);
2265	return pol;
2266}
2267
2268static void sp_free(struct sp_node *n)
2269{
2270	mpol_put(n->policy);
2271	kmem_cache_free(sn_cache, n);
2272}
2273
2274/**
2275 * mpol_misplaced - check whether current page node is valid in policy
2276 *
2277 * @page   - page to be checked
2278 * @vma    - vm area where page mapped
2279 * @addr   - virtual address where page mapped
2280 *
2281 * Lookup current policy node id for vma,addr and "compare to" page's
2282 * node id.
2283 *
2284 * Returns:
2285 *	-1	- not misplaced, page is in the right node
2286 *	node	- node id where the page should be
2287 *
2288 * Policy determination "mimics" alloc_page_vma().
2289 * Called from fault path where we know the vma and faulting address.
2290 */
2291int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2292{
2293	struct mempolicy *pol;
2294	struct zone *zone;
2295	int curnid = page_to_nid(page);
2296	unsigned long pgoff;
2297	int thiscpu = raw_smp_processor_id();
2298	int thisnid = cpu_to_node(thiscpu);
2299	int polnid = -1;
2300	int ret = -1;
2301
2302	BUG_ON(!vma);
2303
2304	pol = get_vma_policy(current, vma, addr);
2305	if (!(pol->flags & MPOL_F_MOF))
2306		goto out;
2307
2308	switch (pol->mode) {
2309	case MPOL_INTERLEAVE:
2310		BUG_ON(addr >= vma->vm_end);
2311		BUG_ON(addr < vma->vm_start);
2312
2313		pgoff = vma->vm_pgoff;
2314		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2315		polnid = offset_il_node(pol, vma, pgoff);
2316		break;
2317
2318	case MPOL_PREFERRED:
2319		if (pol->flags & MPOL_F_LOCAL)
2320			polnid = numa_node_id();
2321		else
2322			polnid = pol->v.preferred_node;
2323		break;
2324
2325	case MPOL_BIND:
2326		/*
2327		 * allows binding to multiple nodes.
2328		 * use current page if in policy nodemask,
2329		 * else select nearest allowed node, if any.
2330		 * If no allowed nodes, use current [!misplaced].
2331		 */
2332		if (node_isset(curnid, pol->v.nodes))
2333			goto out;
2334		(void)first_zones_zonelist(
2335				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2336				gfp_zone(GFP_HIGHUSER),
2337				&pol->v.nodes, &zone);
2338		polnid = zone->node;
2339		break;
2340
2341	default:
2342		BUG();
2343	}
2344
2345	/* Migrate the page towards the node whose CPU is referencing it */
2346	if (pol->flags & MPOL_F_MORON) {
2347		polnid = thisnid;
2348
2349		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2350			goto out;
2351	}
2352
2353	if (curnid != polnid)
2354		ret = polnid;
2355out:
2356	mpol_cond_put(pol);
2357
2358	return ret;
2359}
2360
2361static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2362{
2363	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2364	rb_erase(&n->nd, &sp->root);
2365	sp_free(n);
2366}
2367
2368static void sp_node_init(struct sp_node *node, unsigned long start,
2369			unsigned long end, struct mempolicy *pol)
2370{
2371	node->start = start;
2372	node->end = end;
2373	node->policy = pol;
2374}
2375
2376static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2377				struct mempolicy *pol)
2378{
2379	struct sp_node *n;
2380	struct mempolicy *newpol;
2381
2382	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2383	if (!n)
2384		return NULL;
2385
2386	newpol = mpol_dup(pol);
2387	if (IS_ERR(newpol)) {
2388		kmem_cache_free(sn_cache, n);
2389		return NULL;
2390	}
2391	newpol->flags |= MPOL_F_SHARED;
2392	sp_node_init(n, start, end, newpol);
2393
2394	return n;
2395}
2396
2397/* Replace a policy range. */
2398static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2399				 unsigned long end, struct sp_node *new)
2400{
2401	struct sp_node *n;
2402	struct sp_node *n_new = NULL;
2403	struct mempolicy *mpol_new = NULL;
2404	int ret = 0;
2405
2406restart:
2407	spin_lock(&sp->lock);
2408	n = sp_lookup(sp, start, end);
2409	/* Take care of old policies in the same range. */
2410	while (n && n->start < end) {
2411		struct rb_node *next = rb_next(&n->nd);
2412		if (n->start >= start) {
2413			if (n->end <= end)
2414				sp_delete(sp, n);
2415			else
2416				n->start = end;
2417		} else {
2418			/* Old policy spanning whole new range. */
2419			if (n->end > end) {
2420				if (!n_new)
2421					goto alloc_new;
2422
2423				*mpol_new = *n->policy;
2424				atomic_set(&mpol_new->refcnt, 1);
2425				sp_node_init(n_new, end, n->end, mpol_new);
2426				n->end = start;
2427				sp_insert(sp, n_new);
2428				n_new = NULL;
2429				mpol_new = NULL;
2430				break;
2431			} else
2432				n->end = start;
2433		}
2434		if (!next)
2435			break;
2436		n = rb_entry(next, struct sp_node, nd);
2437	}
2438	if (new)
2439		sp_insert(sp, new);
2440	spin_unlock(&sp->lock);
2441	ret = 0;
2442
2443err_out:
2444	if (mpol_new)
2445		mpol_put(mpol_new);
2446	if (n_new)
2447		kmem_cache_free(sn_cache, n_new);
2448
2449	return ret;
2450
2451alloc_new:
2452	spin_unlock(&sp->lock);
2453	ret = -ENOMEM;
2454	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2455	if (!n_new)
2456		goto err_out;
2457	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2458	if (!mpol_new)
2459		goto err_out;
2460	goto restart;
2461}
2462
2463/**
2464 * mpol_shared_policy_init - initialize shared policy for inode
2465 * @sp: pointer to inode shared policy
2466 * @mpol:  struct mempolicy to install
2467 *
2468 * Install non-NULL @mpol in inode's shared policy rb-tree.
2469 * On entry, the current task has a reference on a non-NULL @mpol.
2470 * This must be released on exit.
2471 * This is called at get_inode() calls and we can use GFP_KERNEL.
2472 */
2473void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2474{
2475	int ret;
2476
2477	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2478	spin_lock_init(&sp->lock);
2479
2480	if (mpol) {
2481		struct vm_area_struct pvma;
2482		struct mempolicy *new;
2483		NODEMASK_SCRATCH(scratch);
2484
2485		if (!scratch)
2486			goto put_mpol;
2487		/* contextualize the tmpfs mount point mempolicy */
2488		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2489		if (IS_ERR(new))
2490			goto free_scratch; /* no valid nodemask intersection */
2491
2492		task_lock(current);
2493		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2494		task_unlock(current);
2495		if (ret)
2496			goto put_new;
2497
2498		/* Create pseudo-vma that contains just the policy */
2499		memset(&pvma, 0, sizeof(struct vm_area_struct));
2500		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2501		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2502
2503put_new:
2504		mpol_put(new);			/* drop initial ref */
2505free_scratch:
2506		NODEMASK_SCRATCH_FREE(scratch);
2507put_mpol:
2508		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2509	}
2510}
2511
2512int mpol_set_shared_policy(struct shared_policy *info,
2513			struct vm_area_struct *vma, struct mempolicy *npol)
2514{
2515	int err;
2516	struct sp_node *new = NULL;
2517	unsigned long sz = vma_pages(vma);
2518
2519	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2520		 vma->vm_pgoff,
2521		 sz, npol ? npol->mode : -1,
2522		 npol ? npol->flags : -1,
2523		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2524
2525	if (npol) {
2526		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2527		if (!new)
2528			return -ENOMEM;
2529	}
2530	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2531	if (err && new)
2532		sp_free(new);
2533	return err;
2534}
2535
2536/* Free a backing policy store on inode delete. */
2537void mpol_free_shared_policy(struct shared_policy *p)
2538{
2539	struct sp_node *n;
2540	struct rb_node *next;
2541
2542	if (!p->root.rb_node)
2543		return;
2544	spin_lock(&p->lock);
2545	next = rb_first(&p->root);
2546	while (next) {
2547		n = rb_entry(next, struct sp_node, nd);
2548		next = rb_next(&n->nd);
2549		sp_delete(p, n);
2550	}
2551	spin_unlock(&p->lock);
2552}
2553
2554#ifdef CONFIG_NUMA_BALANCING
2555static int __initdata numabalancing_override;
2556
2557static void __init check_numabalancing_enable(void)
2558{
2559	bool numabalancing_default = false;
2560
2561	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2562		numabalancing_default = true;
2563
2564	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2565	if (numabalancing_override)
2566		set_numabalancing_state(numabalancing_override == 1);
2567
2568	if (nr_node_ids > 1 && !numabalancing_override) {
2569		pr_info("%s automatic NUMA balancing. "
2570			"Configure with numa_balancing= or the "
2571			"kernel.numa_balancing sysctl",
2572			numabalancing_default ? "Enabling" : "Disabling");
2573		set_numabalancing_state(numabalancing_default);
2574	}
2575}
2576
2577static int __init setup_numabalancing(char *str)
2578{
2579	int ret = 0;
2580	if (!str)
2581		goto out;
2582
2583	if (!strcmp(str, "enable")) {
2584		numabalancing_override = 1;
2585		ret = 1;
2586	} else if (!strcmp(str, "disable")) {
2587		numabalancing_override = -1;
2588		ret = 1;
2589	}
2590out:
2591	if (!ret)
2592		pr_warn("Unable to parse numa_balancing=\n");
2593
2594	return ret;
2595}
2596__setup("numa_balancing=", setup_numabalancing);
2597#else
2598static inline void __init check_numabalancing_enable(void)
2599{
2600}
2601#endif /* CONFIG_NUMA_BALANCING */
2602
2603/* assumes fs == KERNEL_DS */
2604void __init numa_policy_init(void)
2605{
2606	nodemask_t interleave_nodes;
2607	unsigned long largest = 0;
2608	int nid, prefer = 0;
2609
2610	policy_cache = kmem_cache_create("numa_policy",
2611					 sizeof(struct mempolicy),
2612					 0, SLAB_PANIC, NULL);
2613
2614	sn_cache = kmem_cache_create("shared_policy_node",
2615				     sizeof(struct sp_node),
2616				     0, SLAB_PANIC, NULL);
2617
2618	for_each_node(nid) {
2619		preferred_node_policy[nid] = (struct mempolicy) {
2620			.refcnt = ATOMIC_INIT(1),
2621			.mode = MPOL_PREFERRED,
2622			.flags = MPOL_F_MOF | MPOL_F_MORON,
2623			.v = { .preferred_node = nid, },
2624		};
2625	}
2626
2627	/*
2628	 * Set interleaving policy for system init. Interleaving is only
2629	 * enabled across suitably sized nodes (default is >= 16MB), or
2630	 * fall back to the largest node if they're all smaller.
2631	 */
2632	nodes_clear(interleave_nodes);
2633	for_each_node_state(nid, N_MEMORY) {
2634		unsigned long total_pages = node_present_pages(nid);
2635
2636		/* Preserve the largest node */
2637		if (largest < total_pages) {
2638			largest = total_pages;
2639			prefer = nid;
2640		}
2641
2642		/* Interleave this node? */
2643		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2644			node_set(nid, interleave_nodes);
2645	}
2646
2647	/* All too small, use the largest */
2648	if (unlikely(nodes_empty(interleave_nodes)))
2649		node_set(prefer, interleave_nodes);
2650
2651	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2652		printk("numa_policy_init: interleaving failed\n");
2653
2654	check_numabalancing_enable();
2655}
2656
2657/* Reset policy of current process to default */
2658void numa_default_policy(void)
2659{
2660	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2661}
2662
2663/*
2664 * Parse and format mempolicy from/to strings
2665 */
2666
2667/*
2668 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2669 */
2670static const char * const policy_modes[] =
2671{
2672	[MPOL_DEFAULT]    = "default",
2673	[MPOL_PREFERRED]  = "prefer",
2674	[MPOL_BIND]       = "bind",
2675	[MPOL_INTERLEAVE] = "interleave",
2676	[MPOL_LOCAL]      = "local",
2677};
2678
2679
2680#ifdef CONFIG_TMPFS
2681/**
2682 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2683 * @str:  string containing mempolicy to parse
2684 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2685 *
2686 * Format of input:
2687 *	<mode>[=<flags>][:<nodelist>]
2688 *
2689 * On success, returns 0, else 1
2690 */
2691int mpol_parse_str(char *str, struct mempolicy **mpol)
2692{
2693	struct mempolicy *new = NULL;
2694	unsigned short mode;
2695	unsigned short mode_flags;
2696	nodemask_t nodes;
2697	char *nodelist = strchr(str, ':');
2698	char *flags = strchr(str, '=');
2699	int err = 1;
2700
2701	if (nodelist) {
2702		/* NUL-terminate mode or flags string */
2703		*nodelist++ = '\0';
2704		if (nodelist_parse(nodelist, nodes))
2705			goto out;
2706		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2707			goto out;
2708	} else
2709		nodes_clear(nodes);
2710
2711	if (flags)
2712		*flags++ = '\0';	/* terminate mode string */
2713
2714	for (mode = 0; mode < MPOL_MAX; mode++) {
2715		if (!strcmp(str, policy_modes[mode])) {
2716			break;
2717		}
2718	}
2719	if (mode >= MPOL_MAX)
2720		goto out;
2721
2722	switch (mode) {
2723	case MPOL_PREFERRED:
2724		/*
2725		 * Insist on a nodelist of one node only
2726		 */
2727		if (nodelist) {
2728			char *rest = nodelist;
2729			while (isdigit(*rest))
2730				rest++;
2731			if (*rest)
2732				goto out;
2733		}
2734		break;
2735	case MPOL_INTERLEAVE:
2736		/*
2737		 * Default to online nodes with memory if no nodelist
2738		 */
2739		if (!nodelist)
2740			nodes = node_states[N_MEMORY];
2741		break;
2742	case MPOL_LOCAL:
2743		/*
2744		 * Don't allow a nodelist;  mpol_new() checks flags
2745		 */
2746		if (nodelist)
2747			goto out;
2748		mode = MPOL_PREFERRED;
2749		break;
2750	case MPOL_DEFAULT:
2751		/*
2752		 * Insist on a empty nodelist
2753		 */
2754		if (!nodelist)
2755			err = 0;
2756		goto out;
2757	case MPOL_BIND:
2758		/*
2759		 * Insist on a nodelist
2760		 */
2761		if (!nodelist)
2762			goto out;
2763	}
2764
2765	mode_flags = 0;
2766	if (flags) {
2767		/*
2768		 * Currently, we only support two mutually exclusive
2769		 * mode flags.
2770		 */
2771		if (!strcmp(flags, "static"))
2772			mode_flags |= MPOL_F_STATIC_NODES;
2773		else if (!strcmp(flags, "relative"))
2774			mode_flags |= MPOL_F_RELATIVE_NODES;
2775		else
2776			goto out;
2777	}
2778
2779	new = mpol_new(mode, mode_flags, &nodes);
2780	if (IS_ERR(new))
2781		goto out;
2782
2783	/*
2784	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2785	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2786	 */
2787	if (mode != MPOL_PREFERRED)
2788		new->v.nodes = nodes;
2789	else if (nodelist)
2790		new->v.preferred_node = first_node(nodes);
2791	else
2792		new->flags |= MPOL_F_LOCAL;
2793
2794	/*
2795	 * Save nodes for contextualization: this will be used to "clone"
2796	 * the mempolicy in a specific context [cpuset] at a later time.
2797	 */
2798	new->w.user_nodemask = nodes;
2799
2800	err = 0;
2801
2802out:
2803	/* Restore string for error message */
2804	if (nodelist)
2805		*--nodelist = ':';
2806	if (flags)
2807		*--flags = '=';
2808	if (!err)
2809		*mpol = new;
2810	return err;
2811}
2812#endif /* CONFIG_TMPFS */
2813
2814/**
2815 * mpol_to_str - format a mempolicy structure for printing
2816 * @buffer:  to contain formatted mempolicy string
2817 * @maxlen:  length of @buffer
2818 * @pol:  pointer to mempolicy to be formatted
2819 *
2820 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2821 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2822 * longest flag, "relative", and to display at least a few node ids.
2823 */
2824void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2825{
2826	char *p = buffer;
2827	nodemask_t nodes = NODE_MASK_NONE;
2828	unsigned short mode = MPOL_DEFAULT;
2829	unsigned short flags = 0;
2830
2831	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2832		mode = pol->mode;
2833		flags = pol->flags;
2834	}
2835
2836	switch (mode) {
2837	case MPOL_DEFAULT:
2838		break;
2839	case MPOL_PREFERRED:
2840		if (flags & MPOL_F_LOCAL)
2841			mode = MPOL_LOCAL;
2842		else
2843			node_set(pol->v.preferred_node, nodes);
2844		break;
2845	case MPOL_BIND:
2846	case MPOL_INTERLEAVE:
2847		nodes = pol->v.nodes;
2848		break;
2849	default:
2850		WARN_ON_ONCE(1);
2851		snprintf(p, maxlen, "unknown");
2852		return;
2853	}
2854
2855	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2856
2857	if (flags & MPOL_MODE_FLAGS) {
2858		p += snprintf(p, buffer + maxlen - p, "=");
2859
2860		/*
2861		 * Currently, the only defined flags are mutually exclusive
2862		 */
2863		if (flags & MPOL_F_STATIC_NODES)
2864			p += snprintf(p, buffer + maxlen - p, "static");
2865		else if (flags & MPOL_F_RELATIVE_NODES)
2866			p += snprintf(p, buffer + maxlen - p, "relative");
2867	}
2868
2869	if (!nodes_empty(nodes)) {
2870		p += snprintf(p, buffer + maxlen - p, ":");
2871	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2872	}
2873}