Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
 
 
 
  76#include <linux/nodemask.h>
  77#include <linux/cpuset.h>
  78#include <linux/slab.h>
  79#include <linux/string.h>
  80#include <linux/export.h>
  81#include <linux/nsproxy.h>
  82#include <linux/interrupt.h>
  83#include <linux/init.h>
  84#include <linux/compat.h>
 
  85#include <linux/swap.h>
  86#include <linux/seq_file.h>
  87#include <linux/proc_fs.h>
  88#include <linux/migrate.h>
  89#include <linux/ksm.h>
  90#include <linux/rmap.h>
  91#include <linux/security.h>
  92#include <linux/syscalls.h>
  93#include <linux/ctype.h>
  94#include <linux/mm_inline.h>
  95#include <linux/mmu_notifier.h>
  96#include <linux/printk.h>
 
  97
  98#include <asm/tlbflush.h>
  99#include <asm/uaccess.h>
 100#include <linux/random.h>
 101
 102#include "internal.h"
 103
 104/* Internal flags */
 105#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 106#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 107
 108static struct kmem_cache *policy_cache;
 109static struct kmem_cache *sn_cache;
 110
 111/* Highest zone. An specific allocation for a zone below that is not
 112   policied. */
 113enum zone_type policy_zone = 0;
 114
 115/*
 116 * run-time system-wide default policy => local allocation
 117 */
 118static struct mempolicy default_policy = {
 119	.refcnt = ATOMIC_INIT(1), /* never free it */
 120	.mode = MPOL_PREFERRED,
 121	.flags = MPOL_F_LOCAL,
 122};
 123
 124static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 125
 126struct mempolicy *get_task_policy(struct task_struct *p)
 127{
 128	struct mempolicy *pol = p->mempolicy;
 129	int node;
 130
 131	if (pol)
 132		return pol;
 133
 134	node = numa_node_id();
 135	if (node != NUMA_NO_NODE) {
 136		pol = &preferred_node_policy[node];
 137		/* preferred_node_policy is not initialised early in boot */
 138		if (pol->mode)
 139			return pol;
 140	}
 141
 142	return &default_policy;
 143}
 144
 145static const struct mempolicy_operations {
 146	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 147	/*
 148	 * If read-side task has no lock to protect task->mempolicy, write-side
 149	 * task will rebind the task->mempolicy by two step. The first step is
 150	 * setting all the newly nodes, and the second step is cleaning all the
 151	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 152	 * page.
 153	 * If we have a lock to protect task->mempolicy in read-side, we do
 154	 * rebind directly.
 155	 *
 156	 * step:
 157	 * 	MPOL_REBIND_ONCE - do rebind work at once
 158	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 159	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 160	 */
 161	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 162			enum mpol_rebind_step step);
 163} mpol_ops[MPOL_MAX];
 164
 165static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 166{
 167	return pol->flags & MPOL_MODE_FLAGS;
 168}
 169
 170static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 171				   const nodemask_t *rel)
 172{
 173	nodemask_t tmp;
 174	nodes_fold(tmp, *orig, nodes_weight(*rel));
 175	nodes_onto(*ret, tmp, *rel);
 176}
 177
 178static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 179{
 180	if (nodes_empty(*nodes))
 181		return -EINVAL;
 182	pol->v.nodes = *nodes;
 183	return 0;
 184}
 185
 186static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (!nodes)
 189		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 190	else if (nodes_empty(*nodes))
 191		return -EINVAL;			/*  no allowed nodes */
 192	else
 193		pol->v.preferred_node = first_node(*nodes);
 194	return 0;
 195}
 196
 197static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 198{
 199	if (nodes_empty(*nodes))
 200		return -EINVAL;
 201	pol->v.nodes = *nodes;
 202	return 0;
 203}
 204
 205/*
 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 207 * any, for the new policy.  mpol_new() has already validated the nodes
 208 * parameter with respect to the policy mode and flags.  But, we need to
 209 * handle an empty nodemask with MPOL_PREFERRED here.
 210 *
 211 * Must be called holding task's alloc_lock to protect task's mems_allowed
 212 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 213 */
 214static int mpol_set_nodemask(struct mempolicy *pol,
 215		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 216{
 217	int ret;
 218
 219	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 220	if (pol == NULL)
 221		return 0;
 222	/* Check N_MEMORY */
 223	nodes_and(nsc->mask1,
 224		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 225
 226	VM_BUG_ON(!nodes);
 227	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 228		nodes = NULL;	/* explicit local allocation */
 229	else {
 230		if (pol->flags & MPOL_F_RELATIVE_NODES)
 231			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 232		else
 233			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 234
 235		if (mpol_store_user_nodemask(pol))
 236			pol->w.user_nodemask = *nodes;
 237		else
 238			pol->w.cpuset_mems_allowed =
 239						cpuset_current_mems_allowed;
 240	}
 241
 242	if (nodes)
 243		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 244	else
 245		ret = mpol_ops[pol->mode].create(pol, NULL);
 246	return ret;
 247}
 248
 249/*
 250 * This function just creates a new policy, does some check and simple
 251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 252 */
 253static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 254				  nodemask_t *nodes)
 255{
 256	struct mempolicy *policy;
 257
 258	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 259		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 260
 261	if (mode == MPOL_DEFAULT) {
 262		if (nodes && !nodes_empty(*nodes))
 263			return ERR_PTR(-EINVAL);
 264		return NULL;
 265	}
 266	VM_BUG_ON(!nodes);
 267
 268	/*
 269	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 270	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 271	 * All other modes require a valid pointer to a non-empty nodemask.
 272	 */
 273	if (mode == MPOL_PREFERRED) {
 274		if (nodes_empty(*nodes)) {
 275			if (((flags & MPOL_F_STATIC_NODES) ||
 276			     (flags & MPOL_F_RELATIVE_NODES)))
 277				return ERR_PTR(-EINVAL);
 278		}
 279	} else if (mode == MPOL_LOCAL) {
 280		if (!nodes_empty(*nodes))
 
 
 281			return ERR_PTR(-EINVAL);
 282		mode = MPOL_PREFERRED;
 283	} else if (nodes_empty(*nodes))
 284		return ERR_PTR(-EINVAL);
 285	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 286	if (!policy)
 287		return ERR_PTR(-ENOMEM);
 288	atomic_set(&policy->refcnt, 1);
 289	policy->mode = mode;
 290	policy->flags = flags;
 291
 292	return policy;
 293}
 294
 295/* Slow path of a mpol destructor. */
 296void __mpol_put(struct mempolicy *p)
 297{
 298	if (!atomic_dec_and_test(&p->refcnt))
 299		return;
 300	kmem_cache_free(policy_cache, p);
 301}
 302
 303static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 304				enum mpol_rebind_step step)
 305{
 306}
 307
 308/*
 309 * step:
 310 * 	MPOL_REBIND_ONCE  - do rebind work at once
 311 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 312 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 313 */
 314static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 315				 enum mpol_rebind_step step)
 316{
 317	nodemask_t tmp;
 318
 319	if (pol->flags & MPOL_F_STATIC_NODES)
 320		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 321	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 322		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 323	else {
 324		/*
 325		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 326		 * result
 327		 */
 328		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 329			nodes_remap(tmp, pol->v.nodes,
 330					pol->w.cpuset_mems_allowed, *nodes);
 331			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 332		} else if (step == MPOL_REBIND_STEP2) {
 333			tmp = pol->w.cpuset_mems_allowed;
 334			pol->w.cpuset_mems_allowed = *nodes;
 335		} else
 336			BUG();
 337	}
 338
 339	if (nodes_empty(tmp))
 340		tmp = *nodes;
 341
 342	if (step == MPOL_REBIND_STEP1)
 343		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 344	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 345		pol->v.nodes = tmp;
 346	else
 347		BUG();
 348
 349	if (!node_isset(current->il_next, tmp)) {
 350		current->il_next = next_node(current->il_next, tmp);
 351		if (current->il_next >= MAX_NUMNODES)
 352			current->il_next = first_node(tmp);
 353		if (current->il_next >= MAX_NUMNODES)
 354			current->il_next = numa_node_id();
 355	}
 356}
 357
 358static void mpol_rebind_preferred(struct mempolicy *pol,
 359				  const nodemask_t *nodes,
 360				  enum mpol_rebind_step step)
 361{
 362	nodemask_t tmp;
 363
 364	if (pol->flags & MPOL_F_STATIC_NODES) {
 365		int node = first_node(pol->w.user_nodemask);
 366
 367		if (node_isset(node, *nodes)) {
 368			pol->v.preferred_node = node;
 369			pol->flags &= ~MPOL_F_LOCAL;
 370		} else
 371			pol->flags |= MPOL_F_LOCAL;
 372	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 373		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 374		pol->v.preferred_node = first_node(tmp);
 375	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 376		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 377						   pol->w.cpuset_mems_allowed,
 378						   *nodes);
 379		pol->w.cpuset_mems_allowed = *nodes;
 380	}
 381}
 382
 383/*
 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 385 *
 386 * If read-side task has no lock to protect task->mempolicy, write-side
 387 * task will rebind the task->mempolicy by two step. The first step is
 388 * setting all the newly nodes, and the second step is cleaning all the
 389 * disallowed nodes. In this way, we can avoid finding no node to alloc
 390 * page.
 391 * If we have a lock to protect task->mempolicy in read-side, we do
 392 * rebind directly.
 393 *
 394 * step:
 395 * 	MPOL_REBIND_ONCE  - do rebind work at once
 396 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 397 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 398 */
 399static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 400				enum mpol_rebind_step step)
 401{
 402	if (!pol)
 403		return;
 404	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 405	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 406		return;
 407
 408	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 409		return;
 410
 411	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 412		BUG();
 413
 414	if (step == MPOL_REBIND_STEP1)
 415		pol->flags |= MPOL_F_REBINDING;
 416	else if (step == MPOL_REBIND_STEP2)
 417		pol->flags &= ~MPOL_F_REBINDING;
 418	else if (step >= MPOL_REBIND_NSTEP)
 419		BUG();
 420
 421	mpol_ops[pol->mode].rebind(pol, newmask, step);
 422}
 423
 424/*
 425 * Wrapper for mpol_rebind_policy() that just requires task
 426 * pointer, and updates task mempolicy.
 427 *
 428 * Called with task's alloc_lock held.
 429 */
 430
 431void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 432			enum mpol_rebind_step step)
 433{
 434	mpol_rebind_policy(tsk->mempolicy, new, step);
 435}
 436
 437/*
 438 * Rebind each vma in mm to new nodemask.
 439 *
 440 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 441 */
 442
 443void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 444{
 445	struct vm_area_struct *vma;
 446
 447	down_write(&mm->mmap_sem);
 448	for (vma = mm->mmap; vma; vma = vma->vm_next)
 449		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 450	up_write(&mm->mmap_sem);
 451}
 452
 453static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 454	[MPOL_DEFAULT] = {
 455		.rebind = mpol_rebind_default,
 456	},
 457	[MPOL_INTERLEAVE] = {
 458		.create = mpol_new_interleave,
 459		.rebind = mpol_rebind_nodemask,
 460	},
 461	[MPOL_PREFERRED] = {
 462		.create = mpol_new_preferred,
 463		.rebind = mpol_rebind_preferred,
 464	},
 465	[MPOL_BIND] = {
 466		.create = mpol_new_bind,
 467		.rebind = mpol_rebind_nodemask,
 468	},
 469};
 470
 471static void migrate_page_add(struct page *page, struct list_head *pagelist,
 472				unsigned long flags);
 473
 474struct queue_pages {
 475	struct list_head *pagelist;
 476	unsigned long flags;
 477	nodemask_t *nmask;
 478	struct vm_area_struct *prev;
 479};
 480
 481/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482 * Scan through pages checking if pages follow certain conditions,
 483 * and move them to the pagelist if they do.
 484 */
 485static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 486			unsigned long end, struct mm_walk *walk)
 487{
 488	struct vm_area_struct *vma = walk->vma;
 489	struct page *page;
 490	struct queue_pages *qp = walk->private;
 491	unsigned long flags = qp->flags;
 492	int nid, ret;
 493	pte_t *pte;
 494	spinlock_t *ptl;
 495
 496	if (pmd_trans_huge(*pmd)) {
 497		ptl = pmd_lock(walk->mm, pmd);
 498		if (pmd_trans_huge(*pmd)) {
 499			page = pmd_page(*pmd);
 500			if (is_huge_zero_page(page)) {
 501				spin_unlock(ptl);
 502				split_huge_pmd(vma, pmd, addr);
 503			} else {
 504				get_page(page);
 505				spin_unlock(ptl);
 506				lock_page(page);
 507				ret = split_huge_page(page);
 508				unlock_page(page);
 509				put_page(page);
 510				if (ret)
 511					return 0;
 512			}
 513		} else {
 514			spin_unlock(ptl);
 515		}
 516	}
 517
 518retry:
 
 
 519	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 520	for (; addr != end; pte++, addr += PAGE_SIZE) {
 521		if (!pte_present(*pte))
 522			continue;
 523		page = vm_normal_page(vma, addr, *pte);
 524		if (!page)
 525			continue;
 526		/*
 527		 * vm_normal_page() filters out zero pages, but there might
 528		 * still be PageReserved pages to skip, perhaps in a VDSO.
 529		 */
 530		if (PageReserved(page))
 531			continue;
 532		nid = page_to_nid(page);
 533		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 534			continue;
 535		if (PageTransCompound(page) && PageAnon(page)) {
 536			get_page(page);
 537			pte_unmap_unlock(pte, ptl);
 538			lock_page(page);
 539			ret = split_huge_page(page);
 540			unlock_page(page);
 541			put_page(page);
 542			/* Failed to split -- skip. */
 543			if (ret) {
 544				pte = pte_offset_map_lock(walk->mm, pmd,
 545						addr, &ptl);
 546				continue;
 547			}
 548			goto retry;
 549		}
 550
 551		migrate_page_add(page, qp->pagelist, flags);
 552	}
 553	pte_unmap_unlock(pte - 1, ptl);
 554	cond_resched();
 555	return 0;
 556}
 557
 558static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 559			       unsigned long addr, unsigned long end,
 560			       struct mm_walk *walk)
 561{
 562#ifdef CONFIG_HUGETLB_PAGE
 563	struct queue_pages *qp = walk->private;
 564	unsigned long flags = qp->flags;
 565	int nid;
 566	struct page *page;
 567	spinlock_t *ptl;
 568	pte_t entry;
 569
 570	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 571	entry = huge_ptep_get(pte);
 572	if (!pte_present(entry))
 573		goto unlock;
 574	page = pte_page(entry);
 575	nid = page_to_nid(page);
 576	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
 577		goto unlock;
 578	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 579	if (flags & (MPOL_MF_MOVE_ALL) ||
 580	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 581		isolate_huge_page(page, qp->pagelist);
 582unlock:
 583	spin_unlock(ptl);
 584#else
 585	BUG();
 586#endif
 587	return 0;
 588}
 589
 590#ifdef CONFIG_NUMA_BALANCING
 591/*
 592 * This is used to mark a range of virtual addresses to be inaccessible.
 593 * These are later cleared by a NUMA hinting fault. Depending on these
 594 * faults, pages may be migrated for better NUMA placement.
 595 *
 596 * This is assuming that NUMA faults are handled using PROT_NONE. If
 597 * an architecture makes a different choice, it will need further
 598 * changes to the core.
 599 */
 600unsigned long change_prot_numa(struct vm_area_struct *vma,
 601			unsigned long addr, unsigned long end)
 602{
 603	int nr_updated;
 604
 605	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 606	if (nr_updated)
 607		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 608
 609	return nr_updated;
 610}
 611#else
 612static unsigned long change_prot_numa(struct vm_area_struct *vma,
 613			unsigned long addr, unsigned long end)
 614{
 615	return 0;
 616}
 617#endif /* CONFIG_NUMA_BALANCING */
 618
 619static int queue_pages_test_walk(unsigned long start, unsigned long end,
 620				struct mm_walk *walk)
 621{
 622	struct vm_area_struct *vma = walk->vma;
 623	struct queue_pages *qp = walk->private;
 624	unsigned long endvma = vma->vm_end;
 625	unsigned long flags = qp->flags;
 626
 627	if (!vma_migratable(vma))
 628		return 1;
 629
 630	if (endvma > end)
 631		endvma = end;
 632	if (vma->vm_start > start)
 633		start = vma->vm_start;
 634
 635	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 636		if (!vma->vm_next && vma->vm_end < end)
 637			return -EFAULT;
 638		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 639			return -EFAULT;
 640	}
 641
 642	qp->prev = vma;
 643
 644	if (flags & MPOL_MF_LAZY) {
 645		/* Similar to task_numa_work, skip inaccessible VMAs */
 646		if (!is_vm_hugetlb_page(vma) &&
 647			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 648			!(vma->vm_flags & VM_MIXEDMAP))
 649			change_prot_numa(vma, start, endvma);
 650		return 1;
 651	}
 652
 653	/* queue pages from current vma */
 654	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 655		return 0;
 656	return 1;
 657}
 658
 659/*
 660 * Walk through page tables and collect pages to be migrated.
 661 *
 662 * If pages found in a given range are on a set of nodes (determined by
 663 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 664 * passed via @private.)
 665 */
 666static int
 667queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 668		nodemask_t *nodes, unsigned long flags,
 669		struct list_head *pagelist)
 670{
 671	struct queue_pages qp = {
 672		.pagelist = pagelist,
 673		.flags = flags,
 674		.nmask = nodes,
 675		.prev = NULL,
 676	};
 677	struct mm_walk queue_pages_walk = {
 678		.hugetlb_entry = queue_pages_hugetlb,
 679		.pmd_entry = queue_pages_pte_range,
 680		.test_walk = queue_pages_test_walk,
 681		.mm = mm,
 682		.private = &qp,
 683	};
 684
 685	return walk_page_range(start, end, &queue_pages_walk);
 686}
 687
 688/*
 689 * Apply policy to a single VMA
 690 * This must be called with the mmap_sem held for writing.
 691 */
 692static int vma_replace_policy(struct vm_area_struct *vma,
 693						struct mempolicy *pol)
 694{
 695	int err;
 696	struct mempolicy *old;
 697	struct mempolicy *new;
 698
 699	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 700		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 701		 vma->vm_ops, vma->vm_file,
 702		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 703
 704	new = mpol_dup(pol);
 705	if (IS_ERR(new))
 706		return PTR_ERR(new);
 707
 708	if (vma->vm_ops && vma->vm_ops->set_policy) {
 709		err = vma->vm_ops->set_policy(vma, new);
 710		if (err)
 711			goto err_out;
 712	}
 713
 714	old = vma->vm_policy;
 715	vma->vm_policy = new; /* protected by mmap_sem */
 716	mpol_put(old);
 717
 718	return 0;
 719 err_out:
 720	mpol_put(new);
 721	return err;
 722}
 723
 724/* Step 2: apply policy to a range and do splits. */
 725static int mbind_range(struct mm_struct *mm, unsigned long start,
 726		       unsigned long end, struct mempolicy *new_pol)
 727{
 728	struct vm_area_struct *next;
 729	struct vm_area_struct *prev;
 730	struct vm_area_struct *vma;
 731	int err = 0;
 732	pgoff_t pgoff;
 733	unsigned long vmstart;
 734	unsigned long vmend;
 735
 736	vma = find_vma(mm, start);
 737	if (!vma || vma->vm_start > start)
 738		return -EFAULT;
 739
 740	prev = vma->vm_prev;
 741	if (start > vma->vm_start)
 742		prev = vma;
 743
 744	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 745		next = vma->vm_next;
 746		vmstart = max(start, vma->vm_start);
 747		vmend   = min(end, vma->vm_end);
 748
 749		if (mpol_equal(vma_policy(vma), new_pol))
 750			continue;
 751
 752		pgoff = vma->vm_pgoff +
 753			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 754		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 755				 vma->anon_vma, vma->vm_file, pgoff,
 756				 new_pol, vma->vm_userfaultfd_ctx);
 757		if (prev) {
 758			vma = prev;
 759			next = vma->vm_next;
 760			if (mpol_equal(vma_policy(vma), new_pol))
 761				continue;
 762			/* vma_merge() joined vma && vma->next, case 8 */
 763			goto replace;
 764		}
 765		if (vma->vm_start != vmstart) {
 766			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 767			if (err)
 768				goto out;
 769		}
 770		if (vma->vm_end != vmend) {
 771			err = split_vma(vma->vm_mm, vma, vmend, 0);
 772			if (err)
 773				goto out;
 774		}
 775 replace:
 776		err = vma_replace_policy(vma, new_pol);
 777		if (err)
 778			goto out;
 779	}
 780
 781 out:
 782	return err;
 783}
 784
 785/* Set the process memory policy */
 786static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 787			     nodemask_t *nodes)
 788{
 789	struct mempolicy *new, *old;
 790	NODEMASK_SCRATCH(scratch);
 791	int ret;
 792
 793	if (!scratch)
 794		return -ENOMEM;
 795
 796	new = mpol_new(mode, flags, nodes);
 797	if (IS_ERR(new)) {
 798		ret = PTR_ERR(new);
 799		goto out;
 800	}
 801
 802	task_lock(current);
 803	ret = mpol_set_nodemask(new, nodes, scratch);
 804	if (ret) {
 805		task_unlock(current);
 806		mpol_put(new);
 807		goto out;
 808	}
 809	old = current->mempolicy;
 810	current->mempolicy = new;
 811	if (new && new->mode == MPOL_INTERLEAVE &&
 812	    nodes_weight(new->v.nodes))
 813		current->il_next = first_node(new->v.nodes);
 814	task_unlock(current);
 815	mpol_put(old);
 816	ret = 0;
 817out:
 818	NODEMASK_SCRATCH_FREE(scratch);
 819	return ret;
 820}
 821
 822/*
 823 * Return nodemask for policy for get_mempolicy() query
 824 *
 825 * Called with task's alloc_lock held
 826 */
 827static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 828{
 829	nodes_clear(*nodes);
 830	if (p == &default_policy)
 831		return;
 832
 833	switch (p->mode) {
 834	case MPOL_BIND:
 835		/* Fall through */
 836	case MPOL_INTERLEAVE:
 837		*nodes = p->v.nodes;
 838		break;
 839	case MPOL_PREFERRED:
 840		if (!(p->flags & MPOL_F_LOCAL))
 841			node_set(p->v.preferred_node, *nodes);
 842		/* else return empty node mask for local allocation */
 843		break;
 844	default:
 845		BUG();
 846	}
 847}
 848
 849static int lookup_node(unsigned long addr)
 850{
 851	struct page *p;
 852	int err;
 853
 854	err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 855	if (err >= 0) {
 856		err = page_to_nid(p);
 857		put_page(p);
 858	}
 859	return err;
 860}
 861
 862/* Retrieve NUMA policy */
 863static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 864			     unsigned long addr, unsigned long flags)
 865{
 866	int err;
 867	struct mm_struct *mm = current->mm;
 868	struct vm_area_struct *vma = NULL;
 869	struct mempolicy *pol = current->mempolicy;
 870
 871	if (flags &
 872		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 873		return -EINVAL;
 874
 875	if (flags & MPOL_F_MEMS_ALLOWED) {
 876		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 877			return -EINVAL;
 878		*policy = 0;	/* just so it's initialized */
 879		task_lock(current);
 880		*nmask  = cpuset_current_mems_allowed;
 881		task_unlock(current);
 882		return 0;
 883	}
 884
 885	if (flags & MPOL_F_ADDR) {
 886		/*
 887		 * Do NOT fall back to task policy if the
 888		 * vma/shared policy at addr is NULL.  We
 889		 * want to return MPOL_DEFAULT in this case.
 890		 */
 891		down_read(&mm->mmap_sem);
 892		vma = find_vma_intersection(mm, addr, addr+1);
 893		if (!vma) {
 894			up_read(&mm->mmap_sem);
 895			return -EFAULT;
 896		}
 897		if (vma->vm_ops && vma->vm_ops->get_policy)
 898			pol = vma->vm_ops->get_policy(vma, addr);
 899		else
 900			pol = vma->vm_policy;
 901	} else if (addr)
 902		return -EINVAL;
 903
 904	if (!pol)
 905		pol = &default_policy;	/* indicates default behavior */
 906
 907	if (flags & MPOL_F_NODE) {
 908		if (flags & MPOL_F_ADDR) {
 909			err = lookup_node(addr);
 910			if (err < 0)
 911				goto out;
 912			*policy = err;
 913		} else if (pol == current->mempolicy &&
 914				pol->mode == MPOL_INTERLEAVE) {
 915			*policy = current->il_next;
 916		} else {
 917			err = -EINVAL;
 918			goto out;
 919		}
 920	} else {
 921		*policy = pol == &default_policy ? MPOL_DEFAULT :
 922						pol->mode;
 923		/*
 924		 * Internal mempolicy flags must be masked off before exposing
 925		 * the policy to userspace.
 926		 */
 927		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 928	}
 929
 930	if (vma) {
 931		up_read(&current->mm->mmap_sem);
 932		vma = NULL;
 933	}
 934
 935	err = 0;
 936	if (nmask) {
 937		if (mpol_store_user_nodemask(pol)) {
 938			*nmask = pol->w.user_nodemask;
 939		} else {
 940			task_lock(current);
 941			get_policy_nodemask(pol, nmask);
 942			task_unlock(current);
 943		}
 944	}
 945
 946 out:
 947	mpol_cond_put(pol);
 948	if (vma)
 949		up_read(&current->mm->mmap_sem);
 950	return err;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954/*
 955 * page migration
 956 */
 957static void migrate_page_add(struct page *page, struct list_head *pagelist,
 958				unsigned long flags)
 959{
 
 960	/*
 961	 * Avoid migrating a page that is shared with others.
 962	 */
 963	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 964		if (!isolate_lru_page(page)) {
 965			list_add_tail(&page->lru, pagelist);
 966			inc_zone_page_state(page, NR_ISOLATED_ANON +
 967					    page_is_file_cache(page));
 
 968		}
 969	}
 970}
 971
 972static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 
 973{
 974	if (PageHuge(page))
 975		return alloc_huge_page_node(page_hstate(compound_head(page)),
 976					node);
 977	else
 
 
 
 
 
 
 
 
 
 
 978		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 979						    __GFP_THISNODE, 0);
 980}
 981
 982/*
 983 * Migrate pages from one node to a target node.
 984 * Returns error or the number of pages not migrated.
 985 */
 986static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 987			   int flags)
 988{
 989	nodemask_t nmask;
 990	LIST_HEAD(pagelist);
 991	int err = 0;
 992
 993	nodes_clear(nmask);
 994	node_set(source, nmask);
 995
 996	/*
 997	 * This does not "check" the range but isolates all pages that
 998	 * need migration.  Between passing in the full user address
 999	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1000	 */
1001	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1002	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1003			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1004
1005	if (!list_empty(&pagelist)) {
1006		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1007					MIGRATE_SYNC, MR_SYSCALL);
1008		if (err)
1009			putback_movable_pages(&pagelist);
1010	}
1011
1012	return err;
1013}
1014
1015/*
1016 * Move pages between the two nodesets so as to preserve the physical
1017 * layout as much as possible.
1018 *
1019 * Returns the number of page that could not be moved.
1020 */
1021int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1022		     const nodemask_t *to, int flags)
1023{
1024	int busy = 0;
1025	int err;
1026	nodemask_t tmp;
1027
1028	err = migrate_prep();
1029	if (err)
1030		return err;
1031
1032	down_read(&mm->mmap_sem);
1033
1034	/*
1035	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1036	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1037	 * bit in 'tmp', and return that <source, dest> pair for migration.
1038	 * The pair of nodemasks 'to' and 'from' define the map.
1039	 *
1040	 * If no pair of bits is found that way, fallback to picking some
1041	 * pair of 'source' and 'dest' bits that are not the same.  If the
1042	 * 'source' and 'dest' bits are the same, this represents a node
1043	 * that will be migrating to itself, so no pages need move.
1044	 *
1045	 * If no bits are left in 'tmp', or if all remaining bits left
1046	 * in 'tmp' correspond to the same bit in 'to', return false
1047	 * (nothing left to migrate).
1048	 *
1049	 * This lets us pick a pair of nodes to migrate between, such that
1050	 * if possible the dest node is not already occupied by some other
1051	 * source node, minimizing the risk of overloading the memory on a
1052	 * node that would happen if we migrated incoming memory to a node
1053	 * before migrating outgoing memory source that same node.
1054	 *
1055	 * A single scan of tmp is sufficient.  As we go, we remember the
1056	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1057	 * that not only moved, but what's better, moved to an empty slot
1058	 * (d is not set in tmp), then we break out then, with that pair.
1059	 * Otherwise when we finish scanning from_tmp, we at least have the
1060	 * most recent <s, d> pair that moved.  If we get all the way through
1061	 * the scan of tmp without finding any node that moved, much less
1062	 * moved to an empty node, then there is nothing left worth migrating.
1063	 */
1064
1065	tmp = *from;
1066	while (!nodes_empty(tmp)) {
1067		int s,d;
1068		int source = NUMA_NO_NODE;
1069		int dest = 0;
1070
1071		for_each_node_mask(s, tmp) {
1072
1073			/*
1074			 * do_migrate_pages() tries to maintain the relative
1075			 * node relationship of the pages established between
1076			 * threads and memory areas.
1077                         *
1078			 * However if the number of source nodes is not equal to
1079			 * the number of destination nodes we can not preserve
1080			 * this node relative relationship.  In that case, skip
1081			 * copying memory from a node that is in the destination
1082			 * mask.
1083			 *
1084			 * Example: [2,3,4] -> [3,4,5] moves everything.
1085			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1086			 */
1087
1088			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1089						(node_isset(s, *to)))
1090				continue;
1091
1092			d = node_remap(s, *from, *to);
1093			if (s == d)
1094				continue;
1095
1096			source = s;	/* Node moved. Memorize */
1097			dest = d;
1098
1099			/* dest not in remaining from nodes? */
1100			if (!node_isset(dest, tmp))
1101				break;
1102		}
1103		if (source == NUMA_NO_NODE)
1104			break;
1105
1106		node_clear(source, tmp);
1107		err = migrate_to_node(mm, source, dest, flags);
1108		if (err > 0)
1109			busy += err;
1110		if (err < 0)
1111			break;
1112	}
1113	up_read(&mm->mmap_sem);
1114	if (err < 0)
1115		return err;
1116	return busy;
1117
1118}
1119
1120/*
1121 * Allocate a new page for page migration based on vma policy.
1122 * Start by assuming the page is mapped by the same vma as contains @start.
1123 * Search forward from there, if not.  N.B., this assumes that the
1124 * list of pages handed to migrate_pages()--which is how we get here--
1125 * is in virtual address order.
1126 */
1127static struct page *new_page(struct page *page, unsigned long start, int **x)
1128{
1129	struct vm_area_struct *vma;
1130	unsigned long uninitialized_var(address);
1131
1132	vma = find_vma(current->mm, start);
1133	while (vma) {
1134		address = page_address_in_vma(page, vma);
1135		if (address != -EFAULT)
1136			break;
1137		vma = vma->vm_next;
1138	}
1139
1140	if (PageHuge(page)) {
1141		BUG_ON(!vma);
1142		return alloc_huge_page_noerr(vma, address, 1);
 
 
 
 
 
 
 
 
 
1143	}
1144	/*
1145	 * if !vma, alloc_page_vma() will use task or system default policy
1146	 */
1147	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
1148}
1149#else
1150
1151static void migrate_page_add(struct page *page, struct list_head *pagelist,
1152				unsigned long flags)
1153{
1154}
1155
1156int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1157		     const nodemask_t *to, int flags)
1158{
1159	return -ENOSYS;
1160}
1161
1162static struct page *new_page(struct page *page, unsigned long start, int **x)
1163{
1164	return NULL;
1165}
1166#endif
1167
1168static long do_mbind(unsigned long start, unsigned long len,
1169		     unsigned short mode, unsigned short mode_flags,
1170		     nodemask_t *nmask, unsigned long flags)
1171{
1172	struct mm_struct *mm = current->mm;
1173	struct mempolicy *new;
1174	unsigned long end;
1175	int err;
1176	LIST_HEAD(pagelist);
1177
1178	if (flags & ~(unsigned long)MPOL_MF_VALID)
1179		return -EINVAL;
1180	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1181		return -EPERM;
1182
1183	if (start & ~PAGE_MASK)
1184		return -EINVAL;
1185
1186	if (mode == MPOL_DEFAULT)
1187		flags &= ~MPOL_MF_STRICT;
1188
1189	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1190	end = start + len;
1191
1192	if (end < start)
1193		return -EINVAL;
1194	if (end == start)
1195		return 0;
1196
1197	new = mpol_new(mode, mode_flags, nmask);
1198	if (IS_ERR(new))
1199		return PTR_ERR(new);
1200
1201	if (flags & MPOL_MF_LAZY)
1202		new->flags |= MPOL_F_MOF;
1203
1204	/*
1205	 * If we are using the default policy then operation
1206	 * on discontinuous address spaces is okay after all
1207	 */
1208	if (!new)
1209		flags |= MPOL_MF_DISCONTIG_OK;
1210
1211	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1212		 start, start + len, mode, mode_flags,
1213		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1214
1215	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1216
1217		err = migrate_prep();
1218		if (err)
1219			goto mpol_out;
1220	}
1221	{
1222		NODEMASK_SCRATCH(scratch);
1223		if (scratch) {
1224			down_write(&mm->mmap_sem);
1225			task_lock(current);
1226			err = mpol_set_nodemask(new, nmask, scratch);
1227			task_unlock(current);
1228			if (err)
1229				up_write(&mm->mmap_sem);
1230		} else
1231			err = -ENOMEM;
1232		NODEMASK_SCRATCH_FREE(scratch);
1233	}
1234	if (err)
1235		goto mpol_out;
1236
1237	err = queue_pages_range(mm, start, end, nmask,
1238			  flags | MPOL_MF_INVERT, &pagelist);
1239	if (!err)
1240		err = mbind_range(mm, start, end, new);
1241
1242	if (!err) {
1243		int nr_failed = 0;
1244
1245		if (!list_empty(&pagelist)) {
1246			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1247			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1248				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1249			if (nr_failed)
1250				putback_movable_pages(&pagelist);
1251		}
1252
1253		if (nr_failed && (flags & MPOL_MF_STRICT))
1254			err = -EIO;
1255	} else
1256		putback_movable_pages(&pagelist);
1257
1258	up_write(&mm->mmap_sem);
1259 mpol_out:
1260	mpol_put(new);
1261	return err;
1262}
1263
1264/*
1265 * User space interface with variable sized bitmaps for nodelists.
1266 */
1267
1268/* Copy a node mask from user space. */
1269static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1270		     unsigned long maxnode)
1271{
1272	unsigned long k;
 
1273	unsigned long nlongs;
1274	unsigned long endmask;
1275
1276	--maxnode;
1277	nodes_clear(*nodes);
1278	if (maxnode == 0 || !nmask)
1279		return 0;
1280	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1281		return -EINVAL;
1282
1283	nlongs = BITS_TO_LONGS(maxnode);
1284	if ((maxnode % BITS_PER_LONG) == 0)
1285		endmask = ~0UL;
1286	else
1287		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1288
1289	/* When the user specified more nodes than supported just check
1290	   if the non supported part is all zero. */
 
 
 
 
 
 
 
1291	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292		if (nlongs > PAGE_SIZE/sizeof(long))
1293			return -EINVAL;
1294		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295			unsigned long t;
1296			if (get_user(t, nmask + k))
1297				return -EFAULT;
1298			if (k == nlongs - 1) {
1299				if (t & endmask)
1300					return -EINVAL;
1301			} else if (t)
1302				return -EINVAL;
1303		}
1304		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305		endmask = ~0UL;
1306	}
1307
 
 
 
 
 
 
 
 
 
 
1308	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1309		return -EFAULT;
1310	nodes_addr(*nodes)[nlongs-1] &= endmask;
1311	return 0;
1312}
1313
1314/* Copy a kernel node mask to user space */
1315static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1316			      nodemask_t *nodes)
1317{
1318	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1319	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1320
1321	if (copy > nbytes) {
1322		if (copy > PAGE_SIZE)
1323			return -EINVAL;
1324		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1325			return -EFAULT;
1326		copy = nbytes;
1327	}
1328	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329}
1330
1331SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1332		unsigned long, mode, const unsigned long __user *, nmask,
1333		unsigned long, maxnode, unsigned, flags)
1334{
1335	nodemask_t nodes;
1336	int err;
1337	unsigned short mode_flags;
1338
1339	mode_flags = mode & MPOL_MODE_FLAGS;
1340	mode &= ~MPOL_MODE_FLAGS;
1341	if (mode >= MPOL_MAX)
1342		return -EINVAL;
1343	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1344	    (mode_flags & MPOL_F_RELATIVE_NODES))
1345		return -EINVAL;
1346	err = get_nodes(&nodes, nmask, maxnode);
1347	if (err)
1348		return err;
1349	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1350}
1351
 
 
 
 
 
 
 
1352/* Set the process memory policy */
1353SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1354		unsigned long, maxnode)
1355{
1356	int err;
1357	nodemask_t nodes;
1358	unsigned short flags;
1359
1360	flags = mode & MPOL_MODE_FLAGS;
1361	mode &= ~MPOL_MODE_FLAGS;
1362	if ((unsigned int)mode >= MPOL_MAX)
1363		return -EINVAL;
1364	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1365		return -EINVAL;
1366	err = get_nodes(&nodes, nmask, maxnode);
1367	if (err)
1368		return err;
1369	return do_set_mempolicy(mode, flags, &nodes);
1370}
1371
1372SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1373		const unsigned long __user *, old_nodes,
1374		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1375{
1376	const struct cred *cred = current_cred(), *tcred;
1377	struct mm_struct *mm = NULL;
1378	struct task_struct *task;
1379	nodemask_t task_nodes;
1380	int err;
1381	nodemask_t *old;
1382	nodemask_t *new;
1383	NODEMASK_SCRATCH(scratch);
1384
1385	if (!scratch)
1386		return -ENOMEM;
1387
1388	old = &scratch->mask1;
1389	new = &scratch->mask2;
1390
1391	err = get_nodes(old, old_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	err = get_nodes(new, new_nodes, maxnode);
1396	if (err)
1397		goto out;
1398
1399	/* Find the mm_struct */
1400	rcu_read_lock();
1401	task = pid ? find_task_by_vpid(pid) : current;
1402	if (!task) {
1403		rcu_read_unlock();
1404		err = -ESRCH;
1405		goto out;
1406	}
1407	get_task_struct(task);
1408
1409	err = -EINVAL;
1410
1411	/*
1412	 * Check if this process has the right to modify the specified
1413	 * process. The right exists if the process has administrative
1414	 * capabilities, superuser privileges or the same
1415	 * userid as the target process.
1416	 */
1417	tcred = __task_cred(task);
1418	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1419	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1420	    !capable(CAP_SYS_NICE)) {
1421		rcu_read_unlock();
1422		err = -EPERM;
1423		goto out_put;
1424	}
1425	rcu_read_unlock();
1426
1427	task_nodes = cpuset_mems_allowed(task);
1428	/* Is the user allowed to access the target nodes? */
1429	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1430		err = -EPERM;
1431		goto out_put;
1432	}
1433
1434	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1435		err = -EINVAL;
 
 
 
 
 
1436		goto out_put;
1437	}
1438
1439	err = security_task_movememory(task);
1440	if (err)
1441		goto out_put;
1442
1443	mm = get_task_mm(task);
1444	put_task_struct(task);
1445
1446	if (!mm) {
1447		err = -EINVAL;
1448		goto out;
1449	}
1450
1451	err = do_migrate_pages(mm, old, new,
1452		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1453
1454	mmput(mm);
1455out:
1456	NODEMASK_SCRATCH_FREE(scratch);
1457
1458	return err;
1459
1460out_put:
1461	put_task_struct(task);
1462	goto out;
1463
1464}
1465
 
 
 
 
 
 
 
1466
1467/* Retrieve NUMA policy */
1468SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1469		unsigned long __user *, nmask, unsigned long, maxnode,
1470		unsigned long, addr, unsigned long, flags)
 
 
1471{
1472	int err;
1473	int uninitialized_var(pval);
1474	nodemask_t nodes;
1475
1476	if (nmask != NULL && maxnode < MAX_NUMNODES)
1477		return -EINVAL;
1478
1479	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1480
1481	if (err)
1482		return err;
1483
1484	if (policy && put_user(pval, policy))
1485		return -EFAULT;
1486
1487	if (nmask)
1488		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1489
1490	return err;
1491}
1492
 
 
 
 
 
 
 
1493#ifdef CONFIG_COMPAT
1494
1495COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1496		       compat_ulong_t __user *, nmask,
1497		       compat_ulong_t, maxnode,
1498		       compat_ulong_t, addr, compat_ulong_t, flags)
1499{
1500	long err;
1501	unsigned long __user *nm = NULL;
1502	unsigned long nr_bits, alloc_size;
1503	DECLARE_BITMAP(bm, MAX_NUMNODES);
1504
1505	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1506	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507
1508	if (nmask)
1509		nm = compat_alloc_user_space(alloc_size);
1510
1511	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1512
1513	if (!err && nmask) {
1514		unsigned long copy_size;
1515		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1516		err = copy_from_user(bm, nm, copy_size);
1517		/* ensure entire bitmap is zeroed */
1518		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1519		err |= compat_put_bitmap(nmask, bm, nr_bits);
1520	}
1521
1522	return err;
1523}
1524
1525COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1526		       compat_ulong_t, maxnode)
1527{
1528	long err = 0;
1529	unsigned long __user *nm = NULL;
1530	unsigned long nr_bits, alloc_size;
1531	DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536	if (nmask) {
1537		err = compat_get_bitmap(bm, nmask, nr_bits);
 
1538		nm = compat_alloc_user_space(alloc_size);
1539		err |= copy_to_user(nm, bm, alloc_size);
 
1540	}
1541
1542	if (err)
1543		return -EFAULT;
1544
1545	return sys_set_mempolicy(mode, nm, nr_bits+1);
1546}
1547
1548COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1549		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1550		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1551{
1552	long err = 0;
1553	unsigned long __user *nm = NULL;
1554	unsigned long nr_bits, alloc_size;
1555	nodemask_t bm;
1556
1557	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559
1560	if (nmask) {
1561		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 
1562		nm = compat_alloc_user_space(alloc_size);
1563		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 
1564	}
1565
1566	if (err)
1567		return -EFAULT;
1568
1569	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570}
1571
1572#endif
1573
1574struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1575						unsigned long addr)
1576{
1577	struct mempolicy *pol = NULL;
1578
1579	if (vma) {
1580		if (vma->vm_ops && vma->vm_ops->get_policy) {
1581			pol = vma->vm_ops->get_policy(vma, addr);
1582		} else if (vma->vm_policy) {
1583			pol = vma->vm_policy;
1584
1585			/*
1586			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588			 * count on these policies which will be dropped by
1589			 * mpol_cond_put() later
1590			 */
1591			if (mpol_needs_cond_ref(pol))
1592				mpol_get(pol);
1593		}
1594	}
1595
1596	return pol;
1597}
1598
1599/*
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
1603 *
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task.  It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1610 */
1611static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1612						unsigned long addr)
1613{
1614	struct mempolicy *pol = __get_vma_policy(vma, addr);
1615
1616	if (!pol)
1617		pol = get_task_policy(current);
1618
1619	return pol;
1620}
1621
1622bool vma_policy_mof(struct vm_area_struct *vma)
1623{
1624	struct mempolicy *pol;
1625
1626	if (vma->vm_ops && vma->vm_ops->get_policy) {
1627		bool ret = false;
1628
1629		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630		if (pol && (pol->flags & MPOL_F_MOF))
1631			ret = true;
1632		mpol_cond_put(pol);
1633
1634		return ret;
1635	}
1636
1637	pol = vma->vm_policy;
1638	if (!pol)
1639		pol = get_task_policy(current);
1640
1641	return pol->flags & MPOL_F_MOF;
1642}
1643
1644static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1645{
1646	enum zone_type dynamic_policy_zone = policy_zone;
1647
1648	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1649
1650	/*
1651	 * if policy->v.nodes has movable memory only,
1652	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1653	 *
1654	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655	 * so if the following test faile, it implies
1656	 * policy->v.nodes has movable memory only.
1657	 */
1658	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659		dynamic_policy_zone = ZONE_MOVABLE;
1660
1661	return zone >= dynamic_policy_zone;
1662}
1663
1664/*
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1666 * page allocation
1667 */
1668static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1669{
1670	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1671	if (unlikely(policy->mode == MPOL_BIND) &&
1672			apply_policy_zone(policy, gfp_zone(gfp)) &&
1673			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674		return &policy->v.nodes;
1675
1676	return NULL;
1677}
1678
1679/* Return a zonelist indicated by gfp for node representing a mempolicy */
1680static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1681	int nd)
1682{
1683	switch (policy->mode) {
1684	case MPOL_PREFERRED:
1685		if (!(policy->flags & MPOL_F_LOCAL))
1686			nd = policy->v.preferred_node;
1687		break;
1688	case MPOL_BIND:
1689		/*
1690		 * Normally, MPOL_BIND allocations are node-local within the
1691		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1692		 * current node isn't part of the mask, we use the zonelist for
1693		 * the first node in the mask instead.
1694		 */
1695		if (unlikely(gfp & __GFP_THISNODE) &&
1696				unlikely(!node_isset(nd, policy->v.nodes)))
1697			nd = first_node(policy->v.nodes);
1698		break;
1699	default:
1700		BUG();
1701	}
1702	return node_zonelist(nd, gfp);
 
1703}
1704
1705/* Do dynamic interleaving for a process */
1706static unsigned interleave_nodes(struct mempolicy *policy)
1707{
1708	unsigned nid, next;
1709	struct task_struct *me = current;
1710
1711	nid = me->il_next;
1712	next = next_node(nid, policy->v.nodes);
1713	if (next >= MAX_NUMNODES)
1714		next = first_node(policy->v.nodes);
1715	if (next < MAX_NUMNODES)
1716		me->il_next = next;
1717	return nid;
1718}
1719
1720/*
1721 * Depending on the memory policy provide a node from which to allocate the
1722 * next slab entry.
1723 */
1724unsigned int mempolicy_slab_node(void)
1725{
1726	struct mempolicy *policy;
1727	int node = numa_mem_id();
1728
1729	if (in_interrupt())
1730		return node;
1731
1732	policy = current->mempolicy;
1733	if (!policy || policy->flags & MPOL_F_LOCAL)
1734		return node;
1735
1736	switch (policy->mode) {
1737	case MPOL_PREFERRED:
1738		/*
1739		 * handled MPOL_F_LOCAL above
1740		 */
1741		return policy->v.preferred_node;
1742
1743	case MPOL_INTERLEAVE:
1744		return interleave_nodes(policy);
1745
1746	case MPOL_BIND: {
 
 
1747		/*
1748		 * Follow bind policy behavior and start allocation at the
1749		 * first node.
1750		 */
1751		struct zonelist *zonelist;
1752		struct zone *zone;
1753		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1754		zonelist = &NODE_DATA(node)->node_zonelists[0];
1755		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1756							&policy->v.nodes,
1757							&zone);
1758		return zone ? zone->node : node;
1759	}
1760
1761	default:
1762		BUG();
1763	}
1764}
1765
1766/* Do static interleaving for a VMA with known offset. */
1767static unsigned offset_il_node(struct mempolicy *pol,
1768		struct vm_area_struct *vma, unsigned long off)
 
 
 
1769{
1770	unsigned nnodes = nodes_weight(pol->v.nodes);
1771	unsigned target;
1772	int c;
1773	int nid = NUMA_NO_NODE;
1774
1775	if (!nnodes)
1776		return numa_node_id();
1777	target = (unsigned int)off % nnodes;
1778	c = 0;
1779	do {
1780		nid = next_node(nid, pol->v.nodes);
1781		c++;
1782	} while (c <= target);
1783	return nid;
1784}
1785
1786/* Determine a node number for interleave */
1787static inline unsigned interleave_nid(struct mempolicy *pol,
1788		 struct vm_area_struct *vma, unsigned long addr, int shift)
1789{
1790	if (vma) {
1791		unsigned long off;
1792
1793		/*
1794		 * for small pages, there is no difference between
1795		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1796		 * for huge pages, since vm_pgoff is in units of small
1797		 * pages, we need to shift off the always 0 bits to get
1798		 * a useful offset.
1799		 */
1800		BUG_ON(shift < PAGE_SHIFT);
1801		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1802		off += (addr - vma->vm_start) >> shift;
1803		return offset_il_node(pol, vma, off);
1804	} else
1805		return interleave_nodes(pol);
1806}
1807
1808/*
1809 * Return the bit number of a random bit set in the nodemask.
1810 * (returns NUMA_NO_NODE if nodemask is empty)
1811 */
1812int node_random(const nodemask_t *maskp)
1813{
1814	int w, bit = NUMA_NO_NODE;
1815
1816	w = nodes_weight(*maskp);
1817	if (w)
1818		bit = bitmap_ord_to_pos(maskp->bits,
1819			get_random_int() % w, MAX_NUMNODES);
1820	return bit;
1821}
1822
1823#ifdef CONFIG_HUGETLBFS
1824/*
1825 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup and interleave policy
1828 * @gfp_flags: for requested zone
1829 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1830 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1831 *
1832 * Returns a zonelist suitable for a huge page allocation and a pointer
1833 * to the struct mempolicy for conditional unref after allocation.
1834 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1835 * @nodemask for filtering the zonelist.
1836 *
1837 * Must be protected by read_mems_allowed_begin()
1838 */
1839struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1840				gfp_t gfp_flags, struct mempolicy **mpol,
1841				nodemask_t **nodemask)
1842{
1843	struct zonelist *zl;
1844
1845	*mpol = get_vma_policy(vma, addr);
1846	*nodemask = NULL;	/* assume !MPOL_BIND */
1847
1848	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1849		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1850				huge_page_shift(hstate_vma(vma))), gfp_flags);
1851	} else {
1852		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1853		if ((*mpol)->mode == MPOL_BIND)
1854			*nodemask = &(*mpol)->v.nodes;
1855	}
1856	return zl;
1857}
1858
1859/*
1860 * init_nodemask_of_mempolicy
1861 *
1862 * If the current task's mempolicy is "default" [NULL], return 'false'
1863 * to indicate default policy.  Otherwise, extract the policy nodemask
1864 * for 'bind' or 'interleave' policy into the argument nodemask, or
1865 * initialize the argument nodemask to contain the single node for
1866 * 'preferred' or 'local' policy and return 'true' to indicate presence
1867 * of non-default mempolicy.
1868 *
1869 * We don't bother with reference counting the mempolicy [mpol_get/put]
1870 * because the current task is examining it's own mempolicy and a task's
1871 * mempolicy is only ever changed by the task itself.
1872 *
1873 * N.B., it is the caller's responsibility to free a returned nodemask.
1874 */
1875bool init_nodemask_of_mempolicy(nodemask_t *mask)
1876{
1877	struct mempolicy *mempolicy;
1878	int nid;
1879
1880	if (!(mask && current->mempolicy))
1881		return false;
1882
1883	task_lock(current);
1884	mempolicy = current->mempolicy;
1885	switch (mempolicy->mode) {
1886	case MPOL_PREFERRED:
1887		if (mempolicy->flags & MPOL_F_LOCAL)
1888			nid = numa_node_id();
1889		else
1890			nid = mempolicy->v.preferred_node;
1891		init_nodemask_of_node(mask, nid);
1892		break;
1893
1894	case MPOL_BIND:
1895		/* Fall through */
1896	case MPOL_INTERLEAVE:
1897		*mask =  mempolicy->v.nodes;
1898		break;
1899
1900	default:
1901		BUG();
1902	}
1903	task_unlock(current);
1904
1905	return true;
1906}
1907#endif
1908
1909/*
1910 * mempolicy_nodemask_intersects
1911 *
1912 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1913 * policy.  Otherwise, check for intersection between mask and the policy
1914 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1915 * policy, always return true since it may allocate elsewhere on fallback.
1916 *
1917 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1918 */
1919bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1920					const nodemask_t *mask)
1921{
1922	struct mempolicy *mempolicy;
1923	bool ret = true;
1924
1925	if (!mask)
1926		return ret;
1927	task_lock(tsk);
1928	mempolicy = tsk->mempolicy;
1929	if (!mempolicy)
1930		goto out;
1931
1932	switch (mempolicy->mode) {
1933	case MPOL_PREFERRED:
1934		/*
1935		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1936		 * allocate from, they may fallback to other nodes when oom.
1937		 * Thus, it's possible for tsk to have allocated memory from
1938		 * nodes in mask.
1939		 */
1940		break;
1941	case MPOL_BIND:
1942	case MPOL_INTERLEAVE:
1943		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1944		break;
1945	default:
1946		BUG();
1947	}
1948out:
1949	task_unlock(tsk);
1950	return ret;
1951}
1952
1953/* Allocate a page in interleaved policy.
1954   Own path because it needs to do special accounting. */
1955static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1956					unsigned nid)
1957{
1958	struct zonelist *zl;
1959	struct page *page;
1960
1961	zl = node_zonelist(nid, gfp);
1962	page = __alloc_pages(gfp, order, zl);
1963	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1964		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
1965	return page;
1966}
1967
1968/**
1969 * 	alloc_pages_vma	- Allocate a page for a VMA.
1970 *
1971 * 	@gfp:
1972 *      %GFP_USER    user allocation.
1973 *      %GFP_KERNEL  kernel allocations,
1974 *      %GFP_HIGHMEM highmem/user allocations,
1975 *      %GFP_FS      allocation should not call back into a file system.
1976 *      %GFP_ATOMIC  don't sleep.
1977 *
1978 *	@order:Order of the GFP allocation.
1979 * 	@vma:  Pointer to VMA or NULL if not available.
1980 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1981 *	@node: Which node to prefer for allocation (modulo policy).
1982 *	@hugepage: for hugepages try only the preferred node if possible
1983 *
1984 * 	This function allocates a page from the kernel page pool and applies
1985 *	a NUMA policy associated with the VMA or the current process.
1986 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1987 *	mm_struct of the VMA to prevent it from going away. Should be used for
1988 *	all allocations for pages that will be mapped into user space. Returns
1989 *	NULL when no page can be allocated.
1990 */
1991struct page *
1992alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1993		unsigned long addr, int node, bool hugepage)
1994{
1995	struct mempolicy *pol;
1996	struct page *page;
1997	unsigned int cpuset_mems_cookie;
1998	struct zonelist *zl;
1999	nodemask_t *nmask;
2000
2001retry_cpuset:
2002	pol = get_vma_policy(vma, addr);
2003	cpuset_mems_cookie = read_mems_allowed_begin();
2004
2005	if (pol->mode == MPOL_INTERLEAVE) {
2006		unsigned nid;
2007
2008		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2009		mpol_cond_put(pol);
2010		page = alloc_page_interleave(gfp, order, nid);
2011		goto out;
2012	}
2013
2014	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2015		int hpage_node = node;
2016
2017		/*
2018		 * For hugepage allocation and non-interleave policy which
2019		 * allows the current node (or other explicitly preferred
2020		 * node) we only try to allocate from the current/preferred
2021		 * node and don't fall back to other nodes, as the cost of
2022		 * remote accesses would likely offset THP benefits.
2023		 *
2024		 * If the policy is interleave, or does not allow the current
2025		 * node in its nodemask, we allocate the standard way.
2026		 */
2027		if (pol->mode == MPOL_PREFERRED &&
2028						!(pol->flags & MPOL_F_LOCAL))
2029			hpage_node = pol->v.preferred_node;
2030
2031		nmask = policy_nodemask(gfp, pol);
2032		if (!nmask || node_isset(hpage_node, *nmask)) {
2033			mpol_cond_put(pol);
2034			page = __alloc_pages_node(hpage_node,
2035						gfp | __GFP_THISNODE, order);
2036			goto out;
2037		}
2038	}
2039
2040	nmask = policy_nodemask(gfp, pol);
2041	zl = policy_zonelist(gfp, pol, node);
 
2042	mpol_cond_put(pol);
2043	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2044out:
2045	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046		goto retry_cpuset;
2047	return page;
2048}
2049
2050/**
2051 * 	alloc_pages_current - Allocate pages.
2052 *
2053 *	@gfp:
2054 *		%GFP_USER   user allocation,
2055 *      	%GFP_KERNEL kernel allocation,
2056 *      	%GFP_HIGHMEM highmem allocation,
2057 *      	%GFP_FS     don't call back into a file system.
2058 *      	%GFP_ATOMIC don't sleep.
2059 *	@order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 *	Allocate a page from the kernel page pool.  When not in
2062 *	interrupt context and apply the current process NUMA policy.
2063 *	Returns NULL when no page can be allocated.
2064 *
2065 *	Don't call cpuset_update_task_memory_state() unless
2066 *	1) it's ok to take cpuset_sem (can WAIT), and
2067 *	2) allocating for current task (not interrupt).
2068 */
2069struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070{
2071	struct mempolicy *pol = &default_policy;
2072	struct page *page;
2073	unsigned int cpuset_mems_cookie;
2074
2075	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2076		pol = get_task_policy(current);
2077
2078retry_cpuset:
2079	cpuset_mems_cookie = read_mems_allowed_begin();
2080
2081	/*
2082	 * No reference counting needed for current->mempolicy
2083	 * nor system default_policy
2084	 */
2085	if (pol->mode == MPOL_INTERLEAVE)
2086		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2087	else
2088		page = __alloc_pages_nodemask(gfp, order,
2089				policy_zonelist(gfp, pol, numa_node_id()),
2090				policy_nodemask(gfp, pol));
2091
2092	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093		goto retry_cpuset;
2094
2095	return page;
2096}
2097EXPORT_SYMBOL(alloc_pages_current);
2098
2099int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100{
2101	struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103	if (IS_ERR(pol))
2104		return PTR_ERR(pol);
2105	dst->vm_policy = pol;
2106	return 0;
2107}
2108
2109/*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed().  This
2113 * keeps mempolicies cpuset relative after its cpuset moves.  See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120/* Slow path of a mempolicy duplicate */
2121struct mempolicy *__mpol_dup(struct mempolicy *old)
2122{
2123	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125	if (!new)
2126		return ERR_PTR(-ENOMEM);
2127
2128	/* task's mempolicy is protected by alloc_lock */
2129	if (old == current->mempolicy) {
2130		task_lock(current);
2131		*new = *old;
2132		task_unlock(current);
2133	} else
2134		*new = *old;
2135
2136	if (current_cpuset_is_being_rebound()) {
2137		nodemask_t mems = cpuset_mems_allowed(current);
2138		if (new->flags & MPOL_F_REBINDING)
2139			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140		else
2141			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142	}
2143	atomic_set(&new->refcnt, 1);
2144	return new;
2145}
2146
2147/* Slow path of a mempolicy comparison */
2148bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149{
2150	if (!a || !b)
2151		return false;
2152	if (a->mode != b->mode)
2153		return false;
2154	if (a->flags != b->flags)
2155		return false;
2156	if (mpol_store_user_nodemask(a))
2157		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158			return false;
2159
2160	switch (a->mode) {
2161	case MPOL_BIND:
2162		/* Fall through */
2163	case MPOL_INTERLEAVE:
2164		return !!nodes_equal(a->v.nodes, b->v.nodes);
2165	case MPOL_PREFERRED:
 
 
 
2166		return a->v.preferred_node == b->v.preferred_node;
2167	default:
2168		BUG();
2169		return false;
2170	}
2171}
2172
2173/*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock rwlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182/*
2183 * lookup first element intersecting start-end.  Caller holds sp->lock for
2184 * reading or for writing
2185 */
2186static struct sp_node *
2187sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2188{
2189	struct rb_node *n = sp->root.rb_node;
2190
2191	while (n) {
2192		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2193
2194		if (start >= p->end)
2195			n = n->rb_right;
2196		else if (end <= p->start)
2197			n = n->rb_left;
2198		else
2199			break;
2200	}
2201	if (!n)
2202		return NULL;
2203	for (;;) {
2204		struct sp_node *w = NULL;
2205		struct rb_node *prev = rb_prev(n);
2206		if (!prev)
2207			break;
2208		w = rb_entry(prev, struct sp_node, nd);
2209		if (w->end <= start)
2210			break;
2211		n = prev;
2212	}
2213	return rb_entry(n, struct sp_node, nd);
2214}
2215
2216/*
2217 * Insert a new shared policy into the list.  Caller holds sp->lock for
2218 * writing.
2219 */
2220static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2221{
2222	struct rb_node **p = &sp->root.rb_node;
2223	struct rb_node *parent = NULL;
2224	struct sp_node *nd;
2225
2226	while (*p) {
2227		parent = *p;
2228		nd = rb_entry(parent, struct sp_node, nd);
2229		if (new->start < nd->start)
2230			p = &(*p)->rb_left;
2231		else if (new->end > nd->end)
2232			p = &(*p)->rb_right;
2233		else
2234			BUG();
2235	}
2236	rb_link_node(&new->nd, parent, p);
2237	rb_insert_color(&new->nd, &sp->root);
2238	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2239		 new->policy ? new->policy->mode : 0);
2240}
2241
2242/* Find shared policy intersecting idx */
2243struct mempolicy *
2244mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2245{
2246	struct mempolicy *pol = NULL;
2247	struct sp_node *sn;
2248
2249	if (!sp->root.rb_node)
2250		return NULL;
2251	read_lock(&sp->lock);
2252	sn = sp_lookup(sp, idx, idx+1);
2253	if (sn) {
2254		mpol_get(sn->policy);
2255		pol = sn->policy;
2256	}
2257	read_unlock(&sp->lock);
2258	return pol;
2259}
2260
2261static void sp_free(struct sp_node *n)
2262{
2263	mpol_put(n->policy);
2264	kmem_cache_free(sn_cache, n);
2265}
2266
2267/**
2268 * mpol_misplaced - check whether current page node is valid in policy
2269 *
2270 * @page: page to be checked
2271 * @vma: vm area where page mapped
2272 * @addr: virtual address where page mapped
2273 *
2274 * Lookup current policy node id for vma,addr and "compare to" page's
2275 * node id.
2276 *
2277 * Returns:
2278 *	-1	- not misplaced, page is in the right node
2279 *	node	- node id where the page should be
2280 *
2281 * Policy determination "mimics" alloc_page_vma().
2282 * Called from fault path where we know the vma and faulting address.
2283 */
2284int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2285{
2286	struct mempolicy *pol;
2287	struct zone *zone;
2288	int curnid = page_to_nid(page);
2289	unsigned long pgoff;
2290	int thiscpu = raw_smp_processor_id();
2291	int thisnid = cpu_to_node(thiscpu);
2292	int polnid = -1;
2293	int ret = -1;
2294
2295	BUG_ON(!vma);
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		BUG_ON(addr >= vma->vm_end);
2304		BUG_ON(addr < vma->vm_start);
2305
2306		pgoff = vma->vm_pgoff;
2307		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2308		polnid = offset_il_node(pol, vma, pgoff);
2309		break;
2310
2311	case MPOL_PREFERRED:
2312		if (pol->flags & MPOL_F_LOCAL)
2313			polnid = numa_node_id();
2314		else
2315			polnid = pol->v.preferred_node;
2316		break;
2317
2318	case MPOL_BIND:
 
2319		/*
2320		 * allows binding to multiple nodes.
2321		 * use current page if in policy nodemask,
2322		 * else select nearest allowed node, if any.
2323		 * If no allowed nodes, use current [!misplaced].
2324		 */
2325		if (node_isset(curnid, pol->v.nodes))
2326			goto out;
2327		(void)first_zones_zonelist(
2328				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2329				gfp_zone(GFP_HIGHUSER),
2330				&pol->v.nodes, &zone);
2331		polnid = zone->node;
2332		break;
2333
2334	default:
2335		BUG();
2336	}
2337
2338	/* Migrate the page towards the node whose CPU is referencing it */
2339	if (pol->flags & MPOL_F_MORON) {
2340		polnid = thisnid;
2341
2342		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2343			goto out;
2344	}
2345
2346	if (curnid != polnid)
2347		ret = polnid;
2348out:
2349	mpol_cond_put(pol);
2350
2351	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2352}
2353
2354static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2355{
2356	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2357	rb_erase(&n->nd, &sp->root);
2358	sp_free(n);
2359}
2360
2361static void sp_node_init(struct sp_node *node, unsigned long start,
2362			unsigned long end, struct mempolicy *pol)
2363{
2364	node->start = start;
2365	node->end = end;
2366	node->policy = pol;
2367}
2368
2369static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2370				struct mempolicy *pol)
2371{
2372	struct sp_node *n;
2373	struct mempolicy *newpol;
2374
2375	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2376	if (!n)
2377		return NULL;
2378
2379	newpol = mpol_dup(pol);
2380	if (IS_ERR(newpol)) {
2381		kmem_cache_free(sn_cache, n);
2382		return NULL;
2383	}
2384	newpol->flags |= MPOL_F_SHARED;
2385	sp_node_init(n, start, end, newpol);
2386
2387	return n;
2388}
2389
2390/* Replace a policy range. */
2391static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2392				 unsigned long end, struct sp_node *new)
2393{
2394	struct sp_node *n;
2395	struct sp_node *n_new = NULL;
2396	struct mempolicy *mpol_new = NULL;
2397	int ret = 0;
2398
2399restart:
2400	write_lock(&sp->lock);
2401	n = sp_lookup(sp, start, end);
2402	/* Take care of old policies in the same range. */
2403	while (n && n->start < end) {
2404		struct rb_node *next = rb_next(&n->nd);
2405		if (n->start >= start) {
2406			if (n->end <= end)
2407				sp_delete(sp, n);
2408			else
2409				n->start = end;
2410		} else {
2411			/* Old policy spanning whole new range. */
2412			if (n->end > end) {
2413				if (!n_new)
2414					goto alloc_new;
2415
2416				*mpol_new = *n->policy;
2417				atomic_set(&mpol_new->refcnt, 1);
2418				sp_node_init(n_new, end, n->end, mpol_new);
2419				n->end = start;
2420				sp_insert(sp, n_new);
2421				n_new = NULL;
2422				mpol_new = NULL;
2423				break;
2424			} else
2425				n->end = start;
2426		}
2427		if (!next)
2428			break;
2429		n = rb_entry(next, struct sp_node, nd);
2430	}
2431	if (new)
2432		sp_insert(sp, new);
2433	write_unlock(&sp->lock);
2434	ret = 0;
2435
2436err_out:
2437	if (mpol_new)
2438		mpol_put(mpol_new);
2439	if (n_new)
2440		kmem_cache_free(sn_cache, n_new);
2441
2442	return ret;
2443
2444alloc_new:
2445	write_unlock(&sp->lock);
2446	ret = -ENOMEM;
2447	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2448	if (!n_new)
2449		goto err_out;
2450	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2451	if (!mpol_new)
2452		goto err_out;
2453	goto restart;
2454}
2455
2456/**
2457 * mpol_shared_policy_init - initialize shared policy for inode
2458 * @sp: pointer to inode shared policy
2459 * @mpol:  struct mempolicy to install
2460 *
2461 * Install non-NULL @mpol in inode's shared policy rb-tree.
2462 * On entry, the current task has a reference on a non-NULL @mpol.
2463 * This must be released on exit.
2464 * This is called at get_inode() calls and we can use GFP_KERNEL.
2465 */
2466void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2467{
2468	int ret;
2469
2470	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2471	rwlock_init(&sp->lock);
2472
2473	if (mpol) {
2474		struct vm_area_struct pvma;
2475		struct mempolicy *new;
2476		NODEMASK_SCRATCH(scratch);
2477
2478		if (!scratch)
2479			goto put_mpol;
2480		/* contextualize the tmpfs mount point mempolicy */
2481		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2482		if (IS_ERR(new))
2483			goto free_scratch; /* no valid nodemask intersection */
2484
2485		task_lock(current);
2486		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2487		task_unlock(current);
2488		if (ret)
2489			goto put_new;
2490
2491		/* Create pseudo-vma that contains just the policy */
2492		memset(&pvma, 0, sizeof(struct vm_area_struct));
2493		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2494		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2495
2496put_new:
2497		mpol_put(new);			/* drop initial ref */
2498free_scratch:
2499		NODEMASK_SCRATCH_FREE(scratch);
2500put_mpol:
2501		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2502	}
2503}
2504
2505int mpol_set_shared_policy(struct shared_policy *info,
2506			struct vm_area_struct *vma, struct mempolicy *npol)
2507{
2508	int err;
2509	struct sp_node *new = NULL;
2510	unsigned long sz = vma_pages(vma);
2511
2512	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2513		 vma->vm_pgoff,
2514		 sz, npol ? npol->mode : -1,
2515		 npol ? npol->flags : -1,
2516		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2517
2518	if (npol) {
2519		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2520		if (!new)
2521			return -ENOMEM;
2522	}
2523	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524	if (err && new)
2525		sp_free(new);
2526	return err;
2527}
2528
2529/* Free a backing policy store on inode delete. */
2530void mpol_free_shared_policy(struct shared_policy *p)
2531{
2532	struct sp_node *n;
2533	struct rb_node *next;
2534
2535	if (!p->root.rb_node)
2536		return;
2537	write_lock(&p->lock);
2538	next = rb_first(&p->root);
2539	while (next) {
2540		n = rb_entry(next, struct sp_node, nd);
2541		next = rb_next(&n->nd);
2542		sp_delete(p, n);
2543	}
2544	write_unlock(&p->lock);
2545}
2546
2547#ifdef CONFIG_NUMA_BALANCING
2548static int __initdata numabalancing_override;
2549
2550static void __init check_numabalancing_enable(void)
2551{
2552	bool numabalancing_default = false;
2553
2554	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2555		numabalancing_default = true;
2556
2557	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2558	if (numabalancing_override)
2559		set_numabalancing_state(numabalancing_override == 1);
2560
2561	if (num_online_nodes() > 1 && !numabalancing_override) {
2562		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2563			numabalancing_default ? "Enabling" : "Disabling");
2564		set_numabalancing_state(numabalancing_default);
2565	}
2566}
2567
2568static int __init setup_numabalancing(char *str)
2569{
2570	int ret = 0;
2571	if (!str)
2572		goto out;
2573
2574	if (!strcmp(str, "enable")) {
2575		numabalancing_override = 1;
2576		ret = 1;
2577	} else if (!strcmp(str, "disable")) {
2578		numabalancing_override = -1;
2579		ret = 1;
2580	}
2581out:
2582	if (!ret)
2583		pr_warn("Unable to parse numa_balancing=\n");
2584
2585	return ret;
2586}
2587__setup("numa_balancing=", setup_numabalancing);
2588#else
2589static inline void __init check_numabalancing_enable(void)
2590{
2591}
2592#endif /* CONFIG_NUMA_BALANCING */
2593
2594/* assumes fs == KERNEL_DS */
2595void __init numa_policy_init(void)
2596{
2597	nodemask_t interleave_nodes;
2598	unsigned long largest = 0;
2599	int nid, prefer = 0;
2600
2601	policy_cache = kmem_cache_create("numa_policy",
2602					 sizeof(struct mempolicy),
2603					 0, SLAB_PANIC, NULL);
2604
2605	sn_cache = kmem_cache_create("shared_policy_node",
2606				     sizeof(struct sp_node),
2607				     0, SLAB_PANIC, NULL);
2608
2609	for_each_node(nid) {
2610		preferred_node_policy[nid] = (struct mempolicy) {
2611			.refcnt = ATOMIC_INIT(1),
2612			.mode = MPOL_PREFERRED,
2613			.flags = MPOL_F_MOF | MPOL_F_MORON,
2614			.v = { .preferred_node = nid, },
2615		};
2616	}
2617
2618	/*
2619	 * Set interleaving policy for system init. Interleaving is only
2620	 * enabled across suitably sized nodes (default is >= 16MB), or
2621	 * fall back to the largest node if they're all smaller.
2622	 */
2623	nodes_clear(interleave_nodes);
2624	for_each_node_state(nid, N_MEMORY) {
2625		unsigned long total_pages = node_present_pages(nid);
2626
2627		/* Preserve the largest node */
2628		if (largest < total_pages) {
2629			largest = total_pages;
2630			prefer = nid;
2631		}
2632
2633		/* Interleave this node? */
2634		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2635			node_set(nid, interleave_nodes);
2636	}
2637
2638	/* All too small, use the largest */
2639	if (unlikely(nodes_empty(interleave_nodes)))
2640		node_set(prefer, interleave_nodes);
2641
2642	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2643		pr_err("%s: interleaving failed\n", __func__);
2644
2645	check_numabalancing_enable();
2646}
2647
2648/* Reset policy of current process to default */
2649void numa_default_policy(void)
2650{
2651	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2652}
2653
2654/*
2655 * Parse and format mempolicy from/to strings
2656 */
2657
2658/*
2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2660 */
2661static const char * const policy_modes[] =
2662{
2663	[MPOL_DEFAULT]    = "default",
2664	[MPOL_PREFERRED]  = "prefer",
2665	[MPOL_BIND]       = "bind",
2666	[MPOL_INTERLEAVE] = "interleave",
2667	[MPOL_LOCAL]      = "local",
2668};
2669
2670
2671#ifdef CONFIG_TMPFS
2672/**
2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2674 * @str:  string containing mempolicy to parse
2675 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2676 *
2677 * Format of input:
2678 *	<mode>[=<flags>][:<nodelist>]
2679 *
2680 * On success, returns 0, else 1
2681 */
2682int mpol_parse_str(char *str, struct mempolicy **mpol)
2683{
2684	struct mempolicy *new = NULL;
2685	unsigned short mode;
2686	unsigned short mode_flags;
2687	nodemask_t nodes;
2688	char *nodelist = strchr(str, ':');
2689	char *flags = strchr(str, '=');
2690	int err = 1;
2691
2692	if (nodelist) {
2693		/* NUL-terminate mode or flags string */
2694		*nodelist++ = '\0';
2695		if (nodelist_parse(nodelist, nodes))
2696			goto out;
2697		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698			goto out;
2699	} else
2700		nodes_clear(nodes);
2701
2702	if (flags)
2703		*flags++ = '\0';	/* terminate mode string */
2704
2705	for (mode = 0; mode < MPOL_MAX; mode++) {
2706		if (!strcmp(str, policy_modes[mode])) {
2707			break;
2708		}
2709	}
2710	if (mode >= MPOL_MAX)
2711		goto out;
2712
2713	switch (mode) {
2714	case MPOL_PREFERRED:
2715		/*
2716		 * Insist on a nodelist of one node only
2717		 */
2718		if (nodelist) {
2719			char *rest = nodelist;
2720			while (isdigit(*rest))
2721				rest++;
2722			if (*rest)
2723				goto out;
2724		}
2725		break;
2726	case MPOL_INTERLEAVE:
2727		/*
2728		 * Default to online nodes with memory if no nodelist
2729		 */
2730		if (!nodelist)
2731			nodes = node_states[N_MEMORY];
2732		break;
2733	case MPOL_LOCAL:
2734		/*
2735		 * Don't allow a nodelist;  mpol_new() checks flags
2736		 */
2737		if (nodelist)
2738			goto out;
2739		mode = MPOL_PREFERRED;
2740		break;
2741	case MPOL_DEFAULT:
2742		/*
2743		 * Insist on a empty nodelist
2744		 */
2745		if (!nodelist)
2746			err = 0;
2747		goto out;
2748	case MPOL_BIND:
2749		/*
2750		 * Insist on a nodelist
2751		 */
2752		if (!nodelist)
2753			goto out;
2754	}
2755
2756	mode_flags = 0;
2757	if (flags) {
2758		/*
2759		 * Currently, we only support two mutually exclusive
2760		 * mode flags.
2761		 */
2762		if (!strcmp(flags, "static"))
2763			mode_flags |= MPOL_F_STATIC_NODES;
2764		else if (!strcmp(flags, "relative"))
2765			mode_flags |= MPOL_F_RELATIVE_NODES;
2766		else
2767			goto out;
2768	}
2769
2770	new = mpol_new(mode, mode_flags, &nodes);
2771	if (IS_ERR(new))
2772		goto out;
2773
2774	/*
2775	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2776	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2777	 */
2778	if (mode != MPOL_PREFERRED)
2779		new->v.nodes = nodes;
2780	else if (nodelist)
2781		new->v.preferred_node = first_node(nodes);
2782	else
2783		new->flags |= MPOL_F_LOCAL;
2784
2785	/*
2786	 * Save nodes for contextualization: this will be used to "clone"
2787	 * the mempolicy in a specific context [cpuset] at a later time.
2788	 */
2789	new->w.user_nodemask = nodes;
2790
2791	err = 0;
2792
2793out:
2794	/* Restore string for error message */
2795	if (nodelist)
2796		*--nodelist = ':';
2797	if (flags)
2798		*--flags = '=';
2799	if (!err)
2800		*mpol = new;
2801	return err;
2802}
2803#endif /* CONFIG_TMPFS */
2804
2805/**
2806 * mpol_to_str - format a mempolicy structure for printing
2807 * @buffer:  to contain formatted mempolicy string
2808 * @maxlen:  length of @buffer
2809 * @pol:  pointer to mempolicy to be formatted
2810 *
2811 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2813 * longest flag, "relative", and to display at least a few node ids.
2814 */
2815void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2816{
2817	char *p = buffer;
2818	nodemask_t nodes = NODE_MASK_NONE;
2819	unsigned short mode = MPOL_DEFAULT;
2820	unsigned short flags = 0;
2821
2822	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2823		mode = pol->mode;
2824		flags = pol->flags;
2825	}
2826
2827	switch (mode) {
2828	case MPOL_DEFAULT:
2829		break;
2830	case MPOL_PREFERRED:
2831		if (flags & MPOL_F_LOCAL)
2832			mode = MPOL_LOCAL;
2833		else
2834			node_set(pol->v.preferred_node, nodes);
2835		break;
2836	case MPOL_BIND:
2837	case MPOL_INTERLEAVE:
2838		nodes = pol->v.nodes;
2839		break;
2840	default:
2841		WARN_ON_ONCE(1);
2842		snprintf(p, maxlen, "unknown");
2843		return;
2844	}
2845
2846	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2847
2848	if (flags & MPOL_MODE_FLAGS) {
2849		p += snprintf(p, buffer + maxlen - p, "=");
2850
2851		/*
2852		 * Currently, the only defined flags are mutually exclusive
2853		 */
2854		if (flags & MPOL_F_STATIC_NODES)
2855			p += snprintf(p, buffer + maxlen - p, "static");
2856		else if (flags & MPOL_F_RELATIVE_NODES)
2857			p += snprintf(p, buffer + maxlen - p, "relative");
2858	}
2859
2860	if (!nodes_empty(nodes))
2861		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2862			       nodemask_pr_args(&nodes));
2863}
v4.17
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 210		return 0;
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = tmp;
 
 
 
 
 
 
 
 
 
 
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 404};
 405
 406static void migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 432				unsigned long end, struct mm_walk *walk)
 433{
 434	int ret = 0;
 435	struct page *page;
 436	struct queue_pages *qp = walk->private;
 437	unsigned long flags;
 438
 439	if (unlikely(is_pmd_migration_entry(*pmd))) {
 440		ret = 1;
 441		goto unlock;
 442	}
 443	page = pmd_page(*pmd);
 444	if (is_huge_zero_page(page)) {
 445		spin_unlock(ptl);
 446		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 447		goto out;
 448	}
 449	if (!queue_pages_required(page, qp)) {
 450		ret = 1;
 451		goto unlock;
 452	}
 453
 454	ret = 1;
 455	flags = qp->flags;
 456	/* go to thp migration */
 457	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 458		migrate_page_add(page, qp->pagelist, flags);
 459unlock:
 460	spin_unlock(ptl);
 461out:
 462	return ret;
 463}
 464
 465/*
 466 * Scan through pages checking if pages follow certain conditions,
 467 * and move them to the pagelist if they do.
 468 */
 469static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 470			unsigned long end, struct mm_walk *walk)
 471{
 472	struct vm_area_struct *vma = walk->vma;
 473	struct page *page;
 474	struct queue_pages *qp = walk->private;
 475	unsigned long flags = qp->flags;
 476	int ret;
 477	pte_t *pte;
 478	spinlock_t *ptl;
 479
 480	ptl = pmd_trans_huge_lock(pmd, vma);
 481	if (ptl) {
 482		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 483		if (ret)
 484			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	}
 486
 487	if (pmd_trans_unstable(pmd))
 488		return 0;
 489
 490	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 491	for (; addr != end; pte++, addr += PAGE_SIZE) {
 492		if (!pte_present(*pte))
 493			continue;
 494		page = vm_normal_page(vma, addr, *pte);
 495		if (!page)
 496			continue;
 497		/*
 498		 * vm_normal_page() filters out zero pages, but there might
 499		 * still be PageReserved pages to skip, perhaps in a VDSO.
 500		 */
 501		if (PageReserved(page))
 502			continue;
 503		if (!queue_pages_required(page, qp))
 
 504			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		migrate_page_add(page, qp->pagelist, flags);
 506	}
 507	pte_unmap_unlock(pte - 1, ptl);
 508	cond_resched();
 509	return 0;
 510}
 511
 512static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 513			       unsigned long addr, unsigned long end,
 514			       struct mm_walk *walk)
 515{
 516#ifdef CONFIG_HUGETLB_PAGE
 517	struct queue_pages *qp = walk->private;
 518	unsigned long flags = qp->flags;
 
 519	struct page *page;
 520	spinlock_t *ptl;
 521	pte_t entry;
 522
 523	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 524	entry = huge_ptep_get(pte);
 525	if (!pte_present(entry))
 526		goto unlock;
 527	page = pte_page(entry);
 528	if (!queue_pages_required(page, qp))
 
 529		goto unlock;
 530	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 531	if (flags & (MPOL_MF_MOVE_ALL) ||
 532	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 533		isolate_huge_page(page, qp->pagelist);
 534unlock:
 535	spin_unlock(ptl);
 536#else
 537	BUG();
 538#endif
 539	return 0;
 540}
 541
 542#ifdef CONFIG_NUMA_BALANCING
 543/*
 544 * This is used to mark a range of virtual addresses to be inaccessible.
 545 * These are later cleared by a NUMA hinting fault. Depending on these
 546 * faults, pages may be migrated for better NUMA placement.
 547 *
 548 * This is assuming that NUMA faults are handled using PROT_NONE. If
 549 * an architecture makes a different choice, it will need further
 550 * changes to the core.
 551 */
 552unsigned long change_prot_numa(struct vm_area_struct *vma,
 553			unsigned long addr, unsigned long end)
 554{
 555	int nr_updated;
 556
 557	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 558	if (nr_updated)
 559		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 560
 561	return nr_updated;
 562}
 563#else
 564static unsigned long change_prot_numa(struct vm_area_struct *vma,
 565			unsigned long addr, unsigned long end)
 566{
 567	return 0;
 568}
 569#endif /* CONFIG_NUMA_BALANCING */
 570
 571static int queue_pages_test_walk(unsigned long start, unsigned long end,
 572				struct mm_walk *walk)
 573{
 574	struct vm_area_struct *vma = walk->vma;
 575	struct queue_pages *qp = walk->private;
 576	unsigned long endvma = vma->vm_end;
 577	unsigned long flags = qp->flags;
 578
 579	if (!vma_migratable(vma))
 580		return 1;
 581
 582	if (endvma > end)
 583		endvma = end;
 584	if (vma->vm_start > start)
 585		start = vma->vm_start;
 586
 587	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 588		if (!vma->vm_next && vma->vm_end < end)
 589			return -EFAULT;
 590		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 591			return -EFAULT;
 592	}
 593
 594	qp->prev = vma;
 595
 596	if (flags & MPOL_MF_LAZY) {
 597		/* Similar to task_numa_work, skip inaccessible VMAs */
 598		if (!is_vm_hugetlb_page(vma) &&
 599			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 600			!(vma->vm_flags & VM_MIXEDMAP))
 601			change_prot_numa(vma, start, endvma);
 602		return 1;
 603	}
 604
 605	/* queue pages from current vma */
 606	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 607		return 0;
 608	return 1;
 609}
 610
 611/*
 612 * Walk through page tables and collect pages to be migrated.
 613 *
 614 * If pages found in a given range are on a set of nodes (determined by
 615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 616 * passed via @private.)
 617 */
 618static int
 619queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 620		nodemask_t *nodes, unsigned long flags,
 621		struct list_head *pagelist)
 622{
 623	struct queue_pages qp = {
 624		.pagelist = pagelist,
 625		.flags = flags,
 626		.nmask = nodes,
 627		.prev = NULL,
 628	};
 629	struct mm_walk queue_pages_walk = {
 630		.hugetlb_entry = queue_pages_hugetlb,
 631		.pmd_entry = queue_pages_pte_range,
 632		.test_walk = queue_pages_test_walk,
 633		.mm = mm,
 634		.private = &qp,
 635	};
 636
 637	return walk_page_range(start, end, &queue_pages_walk);
 638}
 639
 640/*
 641 * Apply policy to a single VMA
 642 * This must be called with the mmap_sem held for writing.
 643 */
 644static int vma_replace_policy(struct vm_area_struct *vma,
 645						struct mempolicy *pol)
 646{
 647	int err;
 648	struct mempolicy *old;
 649	struct mempolicy *new;
 650
 651	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 652		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 653		 vma->vm_ops, vma->vm_file,
 654		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 655
 656	new = mpol_dup(pol);
 657	if (IS_ERR(new))
 658		return PTR_ERR(new);
 659
 660	if (vma->vm_ops && vma->vm_ops->set_policy) {
 661		err = vma->vm_ops->set_policy(vma, new);
 662		if (err)
 663			goto err_out;
 664	}
 665
 666	old = vma->vm_policy;
 667	vma->vm_policy = new; /* protected by mmap_sem */
 668	mpol_put(old);
 669
 670	return 0;
 671 err_out:
 672	mpol_put(new);
 673	return err;
 674}
 675
 676/* Step 2: apply policy to a range and do splits. */
 677static int mbind_range(struct mm_struct *mm, unsigned long start,
 678		       unsigned long end, struct mempolicy *new_pol)
 679{
 680	struct vm_area_struct *next;
 681	struct vm_area_struct *prev;
 682	struct vm_area_struct *vma;
 683	int err = 0;
 684	pgoff_t pgoff;
 685	unsigned long vmstart;
 686	unsigned long vmend;
 687
 688	vma = find_vma(mm, start);
 689	if (!vma || vma->vm_start > start)
 690		return -EFAULT;
 691
 692	prev = vma->vm_prev;
 693	if (start > vma->vm_start)
 694		prev = vma;
 695
 696	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 697		next = vma->vm_next;
 698		vmstart = max(start, vma->vm_start);
 699		vmend   = min(end, vma->vm_end);
 700
 701		if (mpol_equal(vma_policy(vma), new_pol))
 702			continue;
 703
 704		pgoff = vma->vm_pgoff +
 705			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 706		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 707				 vma->anon_vma, vma->vm_file, pgoff,
 708				 new_pol, vma->vm_userfaultfd_ctx);
 709		if (prev) {
 710			vma = prev;
 711			next = vma->vm_next;
 712			if (mpol_equal(vma_policy(vma), new_pol))
 713				continue;
 714			/* vma_merge() joined vma && vma->next, case 8 */
 715			goto replace;
 716		}
 717		if (vma->vm_start != vmstart) {
 718			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 719			if (err)
 720				goto out;
 721		}
 722		if (vma->vm_end != vmend) {
 723			err = split_vma(vma->vm_mm, vma, vmend, 0);
 724			if (err)
 725				goto out;
 726		}
 727 replace:
 728		err = vma_replace_policy(vma, new_pol);
 729		if (err)
 730			goto out;
 731	}
 732
 733 out:
 734	return err;
 735}
 736
 737/* Set the process memory policy */
 738static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 739			     nodemask_t *nodes)
 740{
 741	struct mempolicy *new, *old;
 742	NODEMASK_SCRATCH(scratch);
 743	int ret;
 744
 745	if (!scratch)
 746		return -ENOMEM;
 747
 748	new = mpol_new(mode, flags, nodes);
 749	if (IS_ERR(new)) {
 750		ret = PTR_ERR(new);
 751		goto out;
 752	}
 753
 754	task_lock(current);
 755	ret = mpol_set_nodemask(new, nodes, scratch);
 756	if (ret) {
 757		task_unlock(current);
 758		mpol_put(new);
 759		goto out;
 760	}
 761	old = current->mempolicy;
 762	current->mempolicy = new;
 763	if (new && new->mode == MPOL_INTERLEAVE)
 764		current->il_prev = MAX_NUMNODES-1;
 
 765	task_unlock(current);
 766	mpol_put(old);
 767	ret = 0;
 768out:
 769	NODEMASK_SCRATCH_FREE(scratch);
 770	return ret;
 771}
 772
 773/*
 774 * Return nodemask for policy for get_mempolicy() query
 775 *
 776 * Called with task's alloc_lock held
 777 */
 778static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 779{
 780	nodes_clear(*nodes);
 781	if (p == &default_policy)
 782		return;
 783
 784	switch (p->mode) {
 785	case MPOL_BIND:
 786		/* Fall through */
 787	case MPOL_INTERLEAVE:
 788		*nodes = p->v.nodes;
 789		break;
 790	case MPOL_PREFERRED:
 791		if (!(p->flags & MPOL_F_LOCAL))
 792			node_set(p->v.preferred_node, *nodes);
 793		/* else return empty node mask for local allocation */
 794		break;
 795	default:
 796		BUG();
 797	}
 798}
 799
 800static int lookup_node(unsigned long addr)
 801{
 802	struct page *p;
 803	int err;
 804
 805	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 806	if (err >= 0) {
 807		err = page_to_nid(p);
 808		put_page(p);
 809	}
 810	return err;
 811}
 812
 813/* Retrieve NUMA policy */
 814static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 815			     unsigned long addr, unsigned long flags)
 816{
 817	int err;
 818	struct mm_struct *mm = current->mm;
 819	struct vm_area_struct *vma = NULL;
 820	struct mempolicy *pol = current->mempolicy;
 821
 822	if (flags &
 823		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 824		return -EINVAL;
 825
 826	if (flags & MPOL_F_MEMS_ALLOWED) {
 827		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 828			return -EINVAL;
 829		*policy = 0;	/* just so it's initialized */
 830		task_lock(current);
 831		*nmask  = cpuset_current_mems_allowed;
 832		task_unlock(current);
 833		return 0;
 834	}
 835
 836	if (flags & MPOL_F_ADDR) {
 837		/*
 838		 * Do NOT fall back to task policy if the
 839		 * vma/shared policy at addr is NULL.  We
 840		 * want to return MPOL_DEFAULT in this case.
 841		 */
 842		down_read(&mm->mmap_sem);
 843		vma = find_vma_intersection(mm, addr, addr+1);
 844		if (!vma) {
 845			up_read(&mm->mmap_sem);
 846			return -EFAULT;
 847		}
 848		if (vma->vm_ops && vma->vm_ops->get_policy)
 849			pol = vma->vm_ops->get_policy(vma, addr);
 850		else
 851			pol = vma->vm_policy;
 852	} else if (addr)
 853		return -EINVAL;
 854
 855	if (!pol)
 856		pol = &default_policy;	/* indicates default behavior */
 857
 858	if (flags & MPOL_F_NODE) {
 859		if (flags & MPOL_F_ADDR) {
 860			err = lookup_node(addr);
 861			if (err < 0)
 862				goto out;
 863			*policy = err;
 864		} else if (pol == current->mempolicy &&
 865				pol->mode == MPOL_INTERLEAVE) {
 866			*policy = next_node_in(current->il_prev, pol->v.nodes);
 867		} else {
 868			err = -EINVAL;
 869			goto out;
 870		}
 871	} else {
 872		*policy = pol == &default_policy ? MPOL_DEFAULT :
 873						pol->mode;
 874		/*
 875		 * Internal mempolicy flags must be masked off before exposing
 876		 * the policy to userspace.
 877		 */
 878		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 879	}
 880
 
 
 
 
 
 881	err = 0;
 882	if (nmask) {
 883		if (mpol_store_user_nodemask(pol)) {
 884			*nmask = pol->w.user_nodemask;
 885		} else {
 886			task_lock(current);
 887			get_policy_nodemask(pol, nmask);
 888			task_unlock(current);
 889		}
 890	}
 891
 892 out:
 893	mpol_cond_put(pol);
 894	if (vma)
 895		up_read(&current->mm->mmap_sem);
 896	return err;
 897}
 898
 899#ifdef CONFIG_MIGRATION
 900/*
 901 * page migration, thp tail pages can be passed.
 902 */
 903static void migrate_page_add(struct page *page, struct list_head *pagelist,
 904				unsigned long flags)
 905{
 906	struct page *head = compound_head(page);
 907	/*
 908	 * Avoid migrating a page that is shared with others.
 909	 */
 910	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 911		if (!isolate_lru_page(head)) {
 912			list_add_tail(&head->lru, pagelist);
 913			mod_node_page_state(page_pgdat(head),
 914				NR_ISOLATED_ANON + page_is_file_cache(head),
 915				hpage_nr_pages(head));
 916		}
 917	}
 918}
 919
 920/* page allocation callback for NUMA node migration */
 921struct page *alloc_new_node_page(struct page *page, unsigned long node)
 922{
 923	if (PageHuge(page))
 924		return alloc_huge_page_node(page_hstate(compound_head(page)),
 925					node);
 926	else if (PageTransHuge(page)) {
 927		struct page *thp;
 928
 929		thp = alloc_pages_node(node,
 930			(GFP_TRANSHUGE | __GFP_THISNODE),
 931			HPAGE_PMD_ORDER);
 932		if (!thp)
 933			return NULL;
 934		prep_transhuge_page(thp);
 935		return thp;
 936	} else
 937		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 938						    __GFP_THISNODE, 0);
 939}
 940
 941/*
 942 * Migrate pages from one node to a target node.
 943 * Returns error or the number of pages not migrated.
 944 */
 945static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 946			   int flags)
 947{
 948	nodemask_t nmask;
 949	LIST_HEAD(pagelist);
 950	int err = 0;
 951
 952	nodes_clear(nmask);
 953	node_set(source, nmask);
 954
 955	/*
 956	 * This does not "check" the range but isolates all pages that
 957	 * need migration.  Between passing in the full user address
 958	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 959	 */
 960	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 961	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 962			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 963
 964	if (!list_empty(&pagelist)) {
 965		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
 966					MIGRATE_SYNC, MR_SYSCALL);
 967		if (err)
 968			putback_movable_pages(&pagelist);
 969	}
 970
 971	return err;
 972}
 973
 974/*
 975 * Move pages between the two nodesets so as to preserve the physical
 976 * layout as much as possible.
 977 *
 978 * Returns the number of page that could not be moved.
 979 */
 980int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 981		     const nodemask_t *to, int flags)
 982{
 983	int busy = 0;
 984	int err;
 985	nodemask_t tmp;
 986
 987	err = migrate_prep();
 988	if (err)
 989		return err;
 990
 991	down_read(&mm->mmap_sem);
 992
 993	/*
 994	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 995	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 996	 * bit in 'tmp', and return that <source, dest> pair for migration.
 997	 * The pair of nodemasks 'to' and 'from' define the map.
 998	 *
 999	 * If no pair of bits is found that way, fallback to picking some
1000	 * pair of 'source' and 'dest' bits that are not the same.  If the
1001	 * 'source' and 'dest' bits are the same, this represents a node
1002	 * that will be migrating to itself, so no pages need move.
1003	 *
1004	 * If no bits are left in 'tmp', or if all remaining bits left
1005	 * in 'tmp' correspond to the same bit in 'to', return false
1006	 * (nothing left to migrate).
1007	 *
1008	 * This lets us pick a pair of nodes to migrate between, such that
1009	 * if possible the dest node is not already occupied by some other
1010	 * source node, minimizing the risk of overloading the memory on a
1011	 * node that would happen if we migrated incoming memory to a node
1012	 * before migrating outgoing memory source that same node.
1013	 *
1014	 * A single scan of tmp is sufficient.  As we go, we remember the
1015	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1016	 * that not only moved, but what's better, moved to an empty slot
1017	 * (d is not set in tmp), then we break out then, with that pair.
1018	 * Otherwise when we finish scanning from_tmp, we at least have the
1019	 * most recent <s, d> pair that moved.  If we get all the way through
1020	 * the scan of tmp without finding any node that moved, much less
1021	 * moved to an empty node, then there is nothing left worth migrating.
1022	 */
1023
1024	tmp = *from;
1025	while (!nodes_empty(tmp)) {
1026		int s,d;
1027		int source = NUMA_NO_NODE;
1028		int dest = 0;
1029
1030		for_each_node_mask(s, tmp) {
1031
1032			/*
1033			 * do_migrate_pages() tries to maintain the relative
1034			 * node relationship of the pages established between
1035			 * threads and memory areas.
1036                         *
1037			 * However if the number of source nodes is not equal to
1038			 * the number of destination nodes we can not preserve
1039			 * this node relative relationship.  In that case, skip
1040			 * copying memory from a node that is in the destination
1041			 * mask.
1042			 *
1043			 * Example: [2,3,4] -> [3,4,5] moves everything.
1044			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045			 */
1046
1047			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048						(node_isset(s, *to)))
1049				continue;
1050
1051			d = node_remap(s, *from, *to);
1052			if (s == d)
1053				continue;
1054
1055			source = s;	/* Node moved. Memorize */
1056			dest = d;
1057
1058			/* dest not in remaining from nodes? */
1059			if (!node_isset(dest, tmp))
1060				break;
1061		}
1062		if (source == NUMA_NO_NODE)
1063			break;
1064
1065		node_clear(source, tmp);
1066		err = migrate_to_node(mm, source, dest, flags);
1067		if (err > 0)
1068			busy += err;
1069		if (err < 0)
1070			break;
1071	}
1072	up_read(&mm->mmap_sem);
1073	if (err < 0)
1074		return err;
1075	return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start by assuming the page is mapped by the same vma as contains @start.
1082 * Search forward from there, if not.  N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_page(struct page *page, unsigned long start)
1087{
1088	struct vm_area_struct *vma;
1089	unsigned long uninitialized_var(address);
1090
1091	vma = find_vma(current->mm, start);
1092	while (vma) {
1093		address = page_address_in_vma(page, vma);
1094		if (address != -EFAULT)
1095			break;
1096		vma = vma->vm_next;
1097	}
1098
1099	if (PageHuge(page)) {
1100		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101				vma, address);
1102	} else if (PageTransHuge(page)) {
1103		struct page *thp;
1104
1105		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106					 HPAGE_PMD_ORDER);
1107		if (!thp)
1108			return NULL;
1109		prep_transhuge_page(thp);
1110		return thp;
1111	}
1112	/*
1113	 * if !vma, alloc_page_vma() will use task or system default policy
1114	 */
1115	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116			vma, address);
1117}
1118#else
1119
1120static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121				unsigned long flags)
1122{
1123}
1124
1125int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126		     const nodemask_t *to, int flags)
1127{
1128	return -ENOSYS;
1129}
1130
1131static struct page *new_page(struct page *page, unsigned long start)
1132{
1133	return NULL;
1134}
1135#endif
1136
1137static long do_mbind(unsigned long start, unsigned long len,
1138		     unsigned short mode, unsigned short mode_flags,
1139		     nodemask_t *nmask, unsigned long flags)
1140{
1141	struct mm_struct *mm = current->mm;
1142	struct mempolicy *new;
1143	unsigned long end;
1144	int err;
1145	LIST_HEAD(pagelist);
1146
1147	if (flags & ~(unsigned long)MPOL_MF_VALID)
1148		return -EINVAL;
1149	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150		return -EPERM;
1151
1152	if (start & ~PAGE_MASK)
1153		return -EINVAL;
1154
1155	if (mode == MPOL_DEFAULT)
1156		flags &= ~MPOL_MF_STRICT;
1157
1158	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159	end = start + len;
1160
1161	if (end < start)
1162		return -EINVAL;
1163	if (end == start)
1164		return 0;
1165
1166	new = mpol_new(mode, mode_flags, nmask);
1167	if (IS_ERR(new))
1168		return PTR_ERR(new);
1169
1170	if (flags & MPOL_MF_LAZY)
1171		new->flags |= MPOL_F_MOF;
1172
1173	/*
1174	 * If we are using the default policy then operation
1175	 * on discontinuous address spaces is okay after all
1176	 */
1177	if (!new)
1178		flags |= MPOL_MF_DISCONTIG_OK;
1179
1180	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181		 start, start + len, mode, mode_flags,
1182		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186		err = migrate_prep();
1187		if (err)
1188			goto mpol_out;
1189	}
1190	{
1191		NODEMASK_SCRATCH(scratch);
1192		if (scratch) {
1193			down_write(&mm->mmap_sem);
1194			task_lock(current);
1195			err = mpol_set_nodemask(new, nmask, scratch);
1196			task_unlock(current);
1197			if (err)
1198				up_write(&mm->mmap_sem);
1199		} else
1200			err = -ENOMEM;
1201		NODEMASK_SCRATCH_FREE(scratch);
1202	}
1203	if (err)
1204		goto mpol_out;
1205
1206	err = queue_pages_range(mm, start, end, nmask,
1207			  flags | MPOL_MF_INVERT, &pagelist);
1208	if (!err)
1209		err = mbind_range(mm, start, end, new);
1210
1211	if (!err) {
1212		int nr_failed = 0;
1213
1214		if (!list_empty(&pagelist)) {
1215			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218			if (nr_failed)
1219				putback_movable_pages(&pagelist);
1220		}
1221
1222		if (nr_failed && (flags & MPOL_MF_STRICT))
1223			err = -EIO;
1224	} else
1225		putback_movable_pages(&pagelist);
1226
1227	up_write(&mm->mmap_sem);
1228 mpol_out:
1229	mpol_put(new);
1230	return err;
1231}
1232
1233/*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
1236
1237/* Copy a node mask from user space. */
1238static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239		     unsigned long maxnode)
1240{
1241	unsigned long k;
1242	unsigned long t;
1243	unsigned long nlongs;
1244	unsigned long endmask;
1245
1246	--maxnode;
1247	nodes_clear(*nodes);
1248	if (maxnode == 0 || !nmask)
1249		return 0;
1250	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251		return -EINVAL;
1252
1253	nlongs = BITS_TO_LONGS(maxnode);
1254	if ((maxnode % BITS_PER_LONG) == 0)
1255		endmask = ~0UL;
1256	else
1257		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259	/*
1260	 * When the user specified more nodes than supported just check
1261	 * if the non supported part is all zero.
1262	 *
1263	 * If maxnode have more longs than MAX_NUMNODES, check
1264	 * the bits in that area first. And then go through to
1265	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267	 */
1268	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 
 
1269		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 
1270			if (get_user(t, nmask + k))
1271				return -EFAULT;
1272			if (k == nlongs - 1) {
1273				if (t & endmask)
1274					return -EINVAL;
1275			} else if (t)
1276				return -EINVAL;
1277		}
1278		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279		endmask = ~0UL;
1280	}
1281
1282	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283		unsigned long valid_mask = endmask;
1284
1285		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286		if (get_user(t, nmask + nlongs - 1))
1287			return -EFAULT;
1288		if (t & valid_mask)
1289			return -EINVAL;
1290	}
1291
1292	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293		return -EFAULT;
1294	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295	return 0;
1296}
1297
1298/* Copy a kernel node mask to user space */
1299static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300			      nodemask_t *nodes)
1301{
1302	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1304
1305	if (copy > nbytes) {
1306		if (copy > PAGE_SIZE)
1307			return -EINVAL;
1308		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309			return -EFAULT;
1310		copy = nbytes;
1311	}
1312	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313}
1314
1315static long kernel_mbind(unsigned long start, unsigned long len,
1316			 unsigned long mode, const unsigned long __user *nmask,
1317			 unsigned long maxnode, unsigned int flags)
1318{
1319	nodemask_t nodes;
1320	int err;
1321	unsigned short mode_flags;
1322
1323	mode_flags = mode & MPOL_MODE_FLAGS;
1324	mode &= ~MPOL_MODE_FLAGS;
1325	if (mode >= MPOL_MAX)
1326		return -EINVAL;
1327	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329		return -EINVAL;
1330	err = get_nodes(&nodes, nmask, maxnode);
1331	if (err)
1332		return err;
1333	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1334}
1335
1336SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337		unsigned long, mode, const unsigned long __user *, nmask,
1338		unsigned long, maxnode, unsigned int, flags)
1339{
1340	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341}
1342
1343/* Set the process memory policy */
1344static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345				 unsigned long maxnode)
1346{
1347	int err;
1348	nodemask_t nodes;
1349	unsigned short flags;
1350
1351	flags = mode & MPOL_MODE_FLAGS;
1352	mode &= ~MPOL_MODE_FLAGS;
1353	if ((unsigned int)mode >= MPOL_MAX)
1354		return -EINVAL;
1355	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356		return -EINVAL;
1357	err = get_nodes(&nodes, nmask, maxnode);
1358	if (err)
1359		return err;
1360	return do_set_mempolicy(mode, flags, &nodes);
1361}
1362
1363SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364		unsigned long, maxnode)
1365{
1366	return kernel_set_mempolicy(mode, nmask, maxnode);
1367}
1368
1369static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370				const unsigned long __user *old_nodes,
1371				const unsigned long __user *new_nodes)
1372{
 
1373	struct mm_struct *mm = NULL;
1374	struct task_struct *task;
1375	nodemask_t task_nodes;
1376	int err;
1377	nodemask_t *old;
1378	nodemask_t *new;
1379	NODEMASK_SCRATCH(scratch);
1380
1381	if (!scratch)
1382		return -ENOMEM;
1383
1384	old = &scratch->mask1;
1385	new = &scratch->mask2;
1386
1387	err = get_nodes(old, old_nodes, maxnode);
1388	if (err)
1389		goto out;
1390
1391	err = get_nodes(new, new_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	/* Find the mm_struct */
1396	rcu_read_lock();
1397	task = pid ? find_task_by_vpid(pid) : current;
1398	if (!task) {
1399		rcu_read_unlock();
1400		err = -ESRCH;
1401		goto out;
1402	}
1403	get_task_struct(task);
1404
1405	err = -EINVAL;
1406
1407	/*
1408	 * Check if this process has the right to modify the specified process.
1409	 * Use the regular "ptrace_may_access()" checks.
 
 
1410	 */
1411	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
1412		rcu_read_unlock();
1413		err = -EPERM;
1414		goto out_put;
1415	}
1416	rcu_read_unlock();
1417
1418	task_nodes = cpuset_mems_allowed(task);
1419	/* Is the user allowed to access the target nodes? */
1420	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421		err = -EPERM;
1422		goto out_put;
1423	}
1424
1425	task_nodes = cpuset_mems_allowed(current);
1426	nodes_and(*new, *new, task_nodes);
1427	if (nodes_empty(*new))
1428		goto out_put;
1429
1430	nodes_and(*new, *new, node_states[N_MEMORY]);
1431	if (nodes_empty(*new))
1432		goto out_put;
 
1433
1434	err = security_task_movememory(task);
1435	if (err)
1436		goto out_put;
1437
1438	mm = get_task_mm(task);
1439	put_task_struct(task);
1440
1441	if (!mm) {
1442		err = -EINVAL;
1443		goto out;
1444	}
1445
1446	err = do_migrate_pages(mm, old, new,
1447		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449	mmput(mm);
1450out:
1451	NODEMASK_SCRATCH_FREE(scratch);
1452
1453	return err;
1454
1455out_put:
1456	put_task_struct(task);
1457	goto out;
1458
1459}
1460
1461SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462		const unsigned long __user *, old_nodes,
1463		const unsigned long __user *, new_nodes)
1464{
1465	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466}
1467
1468
1469/* Retrieve NUMA policy */
1470static int kernel_get_mempolicy(int __user *policy,
1471				unsigned long __user *nmask,
1472				unsigned long maxnode,
1473				unsigned long addr,
1474				unsigned long flags)
1475{
1476	int err;
1477	int uninitialized_var(pval);
1478	nodemask_t nodes;
1479
1480	if (nmask != NULL && maxnode < MAX_NUMNODES)
1481		return -EINVAL;
1482
1483	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485	if (err)
1486		return err;
1487
1488	if (policy && put_user(pval, policy))
1489		return -EFAULT;
1490
1491	if (nmask)
1492		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494	return err;
1495}
1496
1497SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498		unsigned long __user *, nmask, unsigned long, maxnode,
1499		unsigned long, addr, unsigned long, flags)
1500{
1501	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502}
1503
1504#ifdef CONFIG_COMPAT
1505
1506COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507		       compat_ulong_t __user *, nmask,
1508		       compat_ulong_t, maxnode,
1509		       compat_ulong_t, addr, compat_ulong_t, flags)
1510{
1511	long err;
1512	unsigned long __user *nm = NULL;
1513	unsigned long nr_bits, alloc_size;
1514	DECLARE_BITMAP(bm, MAX_NUMNODES);
1515
1516	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519	if (nmask)
1520		nm = compat_alloc_user_space(alloc_size);
1521
1522	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523
1524	if (!err && nmask) {
1525		unsigned long copy_size;
1526		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527		err = copy_from_user(bm, nm, copy_size);
1528		/* ensure entire bitmap is zeroed */
1529		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530		err |= compat_put_bitmap(nmask, bm, nr_bits);
1531	}
1532
1533	return err;
1534}
1535
1536COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537		       compat_ulong_t, maxnode)
1538{
 
1539	unsigned long __user *nm = NULL;
1540	unsigned long nr_bits, alloc_size;
1541	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542
1543	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545
1546	if (nmask) {
1547		if (compat_get_bitmap(bm, nmask, nr_bits))
1548			return -EFAULT;
1549		nm = compat_alloc_user_space(alloc_size);
1550		if (copy_to_user(nm, bm, alloc_size))
1551			return -EFAULT;
1552	}
1553
1554	return kernel_set_mempolicy(mode, nm, nr_bits+1);
 
 
 
1555}
1556
1557COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1560{
 
1561	unsigned long __user *nm = NULL;
1562	unsigned long nr_bits, alloc_size;
1563	nodemask_t bm;
1564
1565	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568	if (nmask) {
1569		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570			return -EFAULT;
1571		nm = compat_alloc_user_space(alloc_size);
1572		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573			return -EFAULT;
1574	}
1575
1576	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577}
1578
1579COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580		       compat_ulong_t, maxnode,
1581		       const compat_ulong_t __user *, old_nodes,
1582		       const compat_ulong_t __user *, new_nodes)
1583{
1584	unsigned long __user *old = NULL;
1585	unsigned long __user *new = NULL;
1586	nodemask_t tmp_mask;
1587	unsigned long nr_bits;
1588	unsigned long size;
1589
1590	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592	if (old_nodes) {
1593		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594			return -EFAULT;
1595		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596		if (new_nodes)
1597			new = old + size / sizeof(unsigned long);
1598		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599			return -EFAULT;
1600	}
1601	if (new_nodes) {
1602		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603			return -EFAULT;
1604		if (new == NULL)
1605			new = compat_alloc_user_space(size);
1606		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607			return -EFAULT;
1608	}
1609	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610}
1611
1612#endif /* CONFIG_COMPAT */
1613
1614struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615						unsigned long addr)
1616{
1617	struct mempolicy *pol = NULL;
1618
1619	if (vma) {
1620		if (vma->vm_ops && vma->vm_ops->get_policy) {
1621			pol = vma->vm_ops->get_policy(vma, addr);
1622		} else if (vma->vm_policy) {
1623			pol = vma->vm_policy;
1624
1625			/*
1626			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628			 * count on these policies which will be dropped by
1629			 * mpol_cond_put() later
1630			 */
1631			if (mpol_needs_cond_ref(pol))
1632				mpol_get(pol);
1633		}
1634	}
1635
1636	return pol;
1637}
1638
1639/*
1640 * get_vma_policy(@vma, @addr)
1641 * @vma: virtual memory area whose policy is sought
1642 * @addr: address in @vma for shared policy lookup
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to current->mempolicy or system default policy, as necessary.
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task.  It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1650 */
1651static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652						unsigned long addr)
1653{
1654	struct mempolicy *pol = __get_vma_policy(vma, addr);
1655
1656	if (!pol)
1657		pol = get_task_policy(current);
1658
1659	return pol;
1660}
1661
1662bool vma_policy_mof(struct vm_area_struct *vma)
1663{
1664	struct mempolicy *pol;
1665
1666	if (vma->vm_ops && vma->vm_ops->get_policy) {
1667		bool ret = false;
1668
1669		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670		if (pol && (pol->flags & MPOL_F_MOF))
1671			ret = true;
1672		mpol_cond_put(pol);
1673
1674		return ret;
1675	}
1676
1677	pol = vma->vm_policy;
1678	if (!pol)
1679		pol = get_task_policy(current);
1680
1681	return pol->flags & MPOL_F_MOF;
1682}
1683
1684static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685{
1686	enum zone_type dynamic_policy_zone = policy_zone;
1687
1688	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689
1690	/*
1691	 * if policy->v.nodes has movable memory only,
1692	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693	 *
1694	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695	 * so if the following test faile, it implies
1696	 * policy->v.nodes has movable memory only.
1697	 */
1698	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699		dynamic_policy_zone = ZONE_MOVABLE;
1700
1701	return zone >= dynamic_policy_zone;
1702}
1703
1704/*
1705 * Return a nodemask representing a mempolicy for filtering nodes for
1706 * page allocation
1707 */
1708static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709{
1710	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1711	if (unlikely(policy->mode == MPOL_BIND) &&
1712			apply_policy_zone(policy, gfp_zone(gfp)) &&
1713			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714		return &policy->v.nodes;
1715
1716	return NULL;
1717}
1718
1719/* Return the node id preferred by the given mempolicy, or the given id */
1720static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721								int nd)
1722{
1723	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724		nd = policy->v.preferred_node;
1725	else {
 
 
 
1726		/*
1727		 * __GFP_THISNODE shouldn't even be used with the bind policy
1728		 * because we might easily break the expectation to stay on the
1729		 * requested node and not break the policy.
 
1730		 */
1731		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1732	}
1733
1734	return nd;
1735}
1736
1737/* Do dynamic interleaving for a process */
1738static unsigned interleave_nodes(struct mempolicy *policy)
1739{
1740	unsigned next;
1741	struct task_struct *me = current;
1742
1743	next = next_node_in(me->il_prev, policy->v.nodes);
 
 
 
1744	if (next < MAX_NUMNODES)
1745		me->il_prev = next;
1746	return next;
1747}
1748
1749/*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
1752 */
1753unsigned int mempolicy_slab_node(void)
1754{
1755	struct mempolicy *policy;
1756	int node = numa_mem_id();
1757
1758	if (in_interrupt())
1759		return node;
1760
1761	policy = current->mempolicy;
1762	if (!policy || policy->flags & MPOL_F_LOCAL)
1763		return node;
1764
1765	switch (policy->mode) {
1766	case MPOL_PREFERRED:
1767		/*
1768		 * handled MPOL_F_LOCAL above
1769		 */
1770		return policy->v.preferred_node;
1771
1772	case MPOL_INTERLEAVE:
1773		return interleave_nodes(policy);
1774
1775	case MPOL_BIND: {
1776		struct zoneref *z;
1777
1778		/*
1779		 * Follow bind policy behavior and start allocation at the
1780		 * first node.
1781		 */
1782		struct zonelist *zonelist;
 
1783		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785		z = first_zones_zonelist(zonelist, highest_zoneidx,
1786							&policy->v.nodes);
1787		return z->zone ? z->zone->node : node;
 
1788	}
1789
1790	default:
1791		BUG();
1792	}
1793}
1794
1795/*
1796 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798 * number of present nodes.
1799 */
1800static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801{
1802	unsigned nnodes = nodes_weight(pol->v.nodes);
1803	unsigned target;
1804	int i;
1805	int nid;
1806
1807	if (!nnodes)
1808		return numa_node_id();
1809	target = (unsigned int)n % nnodes;
1810	nid = first_node(pol->v.nodes);
1811	for (i = 0; i < target; i++)
1812		nid = next_node(nid, pol->v.nodes);
 
 
1813	return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818		 struct vm_area_struct *vma, unsigned long addr, int shift)
1819{
1820	if (vma) {
1821		unsigned long off;
1822
1823		/*
1824		 * for small pages, there is no difference between
1825		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826		 * for huge pages, since vm_pgoff is in units of small
1827		 * pages, we need to shift off the always 0 bits to get
1828		 * a useful offset.
1829		 */
1830		BUG_ON(shift < PAGE_SHIFT);
1831		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832		off += (addr - vma->vm_start) >> shift;
1833		return offset_il_node(pol, off);
1834	} else
1835		return interleave_nodes(pol);
1836}
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838#ifdef CONFIG_HUGETLBFS
1839/*
1840 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a nid suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855				struct mempolicy **mpol, nodemask_t **nodemask)
 
1856{
1857	int nid;
1858
1859	*mpol = get_vma_policy(vma, addr);
1860	*nodemask = NULL;	/* assume !MPOL_BIND */
1861
1862	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863		nid = interleave_nid(*mpol, vma, addr,
1864					huge_page_shift(hstate_vma(vma)));
1865	} else {
1866		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867		if ((*mpol)->mode == MPOL_BIND)
1868			*nodemask = &(*mpol)->v.nodes;
1869	}
1870	return nid;
1871}
1872
1873/*
1874 * init_nodemask_of_mempolicy
1875 *
1876 * If the current task's mempolicy is "default" [NULL], return 'false'
1877 * to indicate default policy.  Otherwise, extract the policy nodemask
1878 * for 'bind' or 'interleave' policy into the argument nodemask, or
1879 * initialize the argument nodemask to contain the single node for
1880 * 'preferred' or 'local' policy and return 'true' to indicate presence
1881 * of non-default mempolicy.
1882 *
1883 * We don't bother with reference counting the mempolicy [mpol_get/put]
1884 * because the current task is examining it's own mempolicy and a task's
1885 * mempolicy is only ever changed by the task itself.
1886 *
1887 * N.B., it is the caller's responsibility to free a returned nodemask.
1888 */
1889bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890{
1891	struct mempolicy *mempolicy;
1892	int nid;
1893
1894	if (!(mask && current->mempolicy))
1895		return false;
1896
1897	task_lock(current);
1898	mempolicy = current->mempolicy;
1899	switch (mempolicy->mode) {
1900	case MPOL_PREFERRED:
1901		if (mempolicy->flags & MPOL_F_LOCAL)
1902			nid = numa_node_id();
1903		else
1904			nid = mempolicy->v.preferred_node;
1905		init_nodemask_of_node(mask, nid);
1906		break;
1907
1908	case MPOL_BIND:
1909		/* Fall through */
1910	case MPOL_INTERLEAVE:
1911		*mask =  mempolicy->v.nodes;
1912		break;
1913
1914	default:
1915		BUG();
1916	}
1917	task_unlock(current);
1918
1919	return true;
1920}
1921#endif
1922
1923/*
1924 * mempolicy_nodemask_intersects
1925 *
1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927 * policy.  Otherwise, check for intersection between mask and the policy
1928 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1929 * policy, always return true since it may allocate elsewhere on fallback.
1930 *
1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932 */
1933bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934					const nodemask_t *mask)
1935{
1936	struct mempolicy *mempolicy;
1937	bool ret = true;
1938
1939	if (!mask)
1940		return ret;
1941	task_lock(tsk);
1942	mempolicy = tsk->mempolicy;
1943	if (!mempolicy)
1944		goto out;
1945
1946	switch (mempolicy->mode) {
1947	case MPOL_PREFERRED:
1948		/*
1949		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950		 * allocate from, they may fallback to other nodes when oom.
1951		 * Thus, it's possible for tsk to have allocated memory from
1952		 * nodes in mask.
1953		 */
1954		break;
1955	case MPOL_BIND:
1956	case MPOL_INTERLEAVE:
1957		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958		break;
1959	default:
1960		BUG();
1961	}
1962out:
1963	task_unlock(tsk);
1964	return ret;
1965}
1966
1967/* Allocate a page in interleaved policy.
1968   Own path because it needs to do special accounting. */
1969static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970					unsigned nid)
1971{
 
1972	struct page *page;
1973
1974	page = __alloc_pages(gfp, order, nid);
1975	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976	if (!static_branch_likely(&vm_numa_stat_key))
1977		return page;
1978	if (page && page_to_nid(page) == nid) {
1979		preempt_disable();
1980		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981		preempt_enable();
1982	}
1983	return page;
1984}
1985
1986/**
1987 * 	alloc_pages_vma	- Allocate a page for a VMA.
1988 *
1989 * 	@gfp:
1990 *      %GFP_USER    user allocation.
1991 *      %GFP_KERNEL  kernel allocations,
1992 *      %GFP_HIGHMEM highmem/user allocations,
1993 *      %GFP_FS      allocation should not call back into a file system.
1994 *      %GFP_ATOMIC  don't sleep.
1995 *
1996 *	@order:Order of the GFP allocation.
1997 * 	@vma:  Pointer to VMA or NULL if not available.
1998 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1999 *	@node: Which node to prefer for allocation (modulo policy).
2000 *	@hugepage: for hugepages try only the preferred node if possible
2001 *
2002 * 	This function allocates a page from the kernel page pool and applies
2003 *	a NUMA policy associated with the VMA or the current process.
2004 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005 *	mm_struct of the VMA to prevent it from going away. Should be used for
2006 *	all allocations for pages that will be mapped into user space. Returns
2007 *	NULL when no page can be allocated.
2008 */
2009struct page *
2010alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011		unsigned long addr, int node, bool hugepage)
2012{
2013	struct mempolicy *pol;
2014	struct page *page;
2015	int preferred_nid;
 
2016	nodemask_t *nmask;
2017
 
2018	pol = get_vma_policy(vma, addr);
 
2019
2020	if (pol->mode == MPOL_INTERLEAVE) {
2021		unsigned nid;
2022
2023		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024		mpol_cond_put(pol);
2025		page = alloc_page_interleave(gfp, order, nid);
2026		goto out;
2027	}
2028
2029	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030		int hpage_node = node;
2031
2032		/*
2033		 * For hugepage allocation and non-interleave policy which
2034		 * allows the current node (or other explicitly preferred
2035		 * node) we only try to allocate from the current/preferred
2036		 * node and don't fall back to other nodes, as the cost of
2037		 * remote accesses would likely offset THP benefits.
2038		 *
2039		 * If the policy is interleave, or does not allow the current
2040		 * node in its nodemask, we allocate the standard way.
2041		 */
2042		if (pol->mode == MPOL_PREFERRED &&
2043						!(pol->flags & MPOL_F_LOCAL))
2044			hpage_node = pol->v.preferred_node;
2045
2046		nmask = policy_nodemask(gfp, pol);
2047		if (!nmask || node_isset(hpage_node, *nmask)) {
2048			mpol_cond_put(pol);
2049			page = __alloc_pages_node(hpage_node,
2050						gfp | __GFP_THISNODE, order);
2051			goto out;
2052		}
2053	}
2054
2055	nmask = policy_nodemask(gfp, pol);
2056	preferred_nid = policy_node(gfp, pol, node);
2057	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058	mpol_cond_put(pol);
 
2059out:
 
 
2060	return page;
2061}
2062
2063/**
2064 * 	alloc_pages_current - Allocate pages.
2065 *
2066 *	@gfp:
2067 *		%GFP_USER   user allocation,
2068 *      	%GFP_KERNEL kernel allocation,
2069 *      	%GFP_HIGHMEM highmem allocation,
2070 *      	%GFP_FS     don't call back into a file system.
2071 *      	%GFP_ATOMIC don't sleep.
2072 *	@order: Power of two of allocation size in pages. 0 is a single page.
2073 *
2074 *	Allocate a page from the kernel page pool.  When not in
2075 *	interrupt context and apply the current process NUMA policy.
2076 *	Returns NULL when no page can be allocated.
 
 
 
 
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = &default_policy;
2081	struct page *page;
 
2082
2083	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084		pol = get_task_policy(current);
2085
 
 
 
2086	/*
2087	 * No reference counting needed for current->mempolicy
2088	 * nor system default_policy
2089	 */
2090	if (pol->mode == MPOL_INTERLEAVE)
2091		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092	else
2093		page = __alloc_pages_nodemask(gfp, order,
2094				policy_node(gfp, pol, numa_node_id()),
2095				policy_nodemask(gfp, pol));
2096
 
 
 
2097	return page;
2098}
2099EXPORT_SYMBOL(alloc_pages_current);
2100
2101int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102{
2103	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104
2105	if (IS_ERR(pol))
2106		return PTR_ERR(pol);
2107	dst->vm_policy = pol;
2108	return 0;
2109}
2110
2111/*
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed().  This
2115 * keeps mempolicies cpuset relative after its cpuset moves.  See
2116 * further kernel/cpuset.c update_nodemask().
2117 *
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2120 */
2121
2122/* Slow path of a mempolicy duplicate */
2123struct mempolicy *__mpol_dup(struct mempolicy *old)
2124{
2125	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126
2127	if (!new)
2128		return ERR_PTR(-ENOMEM);
2129
2130	/* task's mempolicy is protected by alloc_lock */
2131	if (old == current->mempolicy) {
2132		task_lock(current);
2133		*new = *old;
2134		task_unlock(current);
2135	} else
2136		*new = *old;
2137
2138	if (current_cpuset_is_being_rebound()) {
2139		nodemask_t mems = cpuset_mems_allowed(current);
2140		mpol_rebind_policy(new, &mems);
 
 
 
2141	}
2142	atomic_set(&new->refcnt, 1);
2143	return new;
2144}
2145
2146/* Slow path of a mempolicy comparison */
2147bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148{
2149	if (!a || !b)
2150		return false;
2151	if (a->mode != b->mode)
2152		return false;
2153	if (a->flags != b->flags)
2154		return false;
2155	if (mpol_store_user_nodemask(a))
2156		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157			return false;
2158
2159	switch (a->mode) {
2160	case MPOL_BIND:
2161		/* Fall through */
2162	case MPOL_INTERLEAVE:
2163		return !!nodes_equal(a->v.nodes, b->v.nodes);
2164	case MPOL_PREFERRED:
2165		/* a's ->flags is the same as b's */
2166		if (a->flags & MPOL_F_LOCAL)
2167			return true;
2168		return a->v.preferred_node == b->v.preferred_node;
2169	default:
2170		BUG();
2171		return false;
2172	}
2173}
2174
2175/*
2176 * Shared memory backing store policy support.
2177 *
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2182 */
2183
2184/*
2185 * lookup first element intersecting start-end.  Caller holds sp->lock for
2186 * reading or for writing
2187 */
2188static struct sp_node *
2189sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190{
2191	struct rb_node *n = sp->root.rb_node;
2192
2193	while (n) {
2194		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195
2196		if (start >= p->end)
2197			n = n->rb_right;
2198		else if (end <= p->start)
2199			n = n->rb_left;
2200		else
2201			break;
2202	}
2203	if (!n)
2204		return NULL;
2205	for (;;) {
2206		struct sp_node *w = NULL;
2207		struct rb_node *prev = rb_prev(n);
2208		if (!prev)
2209			break;
2210		w = rb_entry(prev, struct sp_node, nd);
2211		if (w->end <= start)
2212			break;
2213		n = prev;
2214	}
2215	return rb_entry(n, struct sp_node, nd);
2216}
2217
2218/*
2219 * Insert a new shared policy into the list.  Caller holds sp->lock for
2220 * writing.
2221 */
2222static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223{
2224	struct rb_node **p = &sp->root.rb_node;
2225	struct rb_node *parent = NULL;
2226	struct sp_node *nd;
2227
2228	while (*p) {
2229		parent = *p;
2230		nd = rb_entry(parent, struct sp_node, nd);
2231		if (new->start < nd->start)
2232			p = &(*p)->rb_left;
2233		else if (new->end > nd->end)
2234			p = &(*p)->rb_right;
2235		else
2236			BUG();
2237	}
2238	rb_link_node(&new->nd, parent, p);
2239	rb_insert_color(&new->nd, &sp->root);
2240	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241		 new->policy ? new->policy->mode : 0);
2242}
2243
2244/* Find shared policy intersecting idx */
2245struct mempolicy *
2246mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247{
2248	struct mempolicy *pol = NULL;
2249	struct sp_node *sn;
2250
2251	if (!sp->root.rb_node)
2252		return NULL;
2253	read_lock(&sp->lock);
2254	sn = sp_lookup(sp, idx, idx+1);
2255	if (sn) {
2256		mpol_get(sn->policy);
2257		pol = sn->policy;
2258	}
2259	read_unlock(&sp->lock);
2260	return pol;
2261}
2262
2263static void sp_free(struct sp_node *n)
2264{
2265	mpol_put(n->policy);
2266	kmem_cache_free(sn_cache, n);
2267}
2268
2269/**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
2278 *
2279 * Returns:
2280 *	-1	- not misplaced, page is in the right node
2281 *	node	- node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
2285 */
2286int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287{
2288	struct mempolicy *pol;
2289	struct zoneref *z;
2290	int curnid = page_to_nid(page);
2291	unsigned long pgoff;
2292	int thiscpu = raw_smp_processor_id();
2293	int thisnid = cpu_to_node(thiscpu);
2294	int polnid = -1;
2295	int ret = -1;
2296
 
 
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
 
 
 
2303		pgoff = vma->vm_pgoff;
2304		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305		polnid = offset_il_node(pol, pgoff);
2306		break;
2307
2308	case MPOL_PREFERRED:
2309		if (pol->flags & MPOL_F_LOCAL)
2310			polnid = numa_node_id();
2311		else
2312			polnid = pol->v.preferred_node;
2313		break;
2314
2315	case MPOL_BIND:
2316
2317		/*
2318		 * allows binding to multiple nodes.
2319		 * use current page if in policy nodemask,
2320		 * else select nearest allowed node, if any.
2321		 * If no allowed nodes, use current [!misplaced].
2322		 */
2323		if (node_isset(curnid, pol->v.nodes))
2324			goto out;
2325		z = first_zones_zonelist(
2326				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327				gfp_zone(GFP_HIGHUSER),
2328				&pol->v.nodes);
2329		polnid = z->zone->node;
2330		break;
2331
2332	default:
2333		BUG();
2334	}
2335
2336	/* Migrate the page towards the node whose CPU is referencing it */
2337	if (pol->flags & MPOL_F_MORON) {
2338		polnid = thisnid;
2339
2340		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2341			goto out;
2342	}
2343
2344	if (curnid != polnid)
2345		ret = polnid;
2346out:
2347	mpol_cond_put(pol);
2348
2349	return ret;
2350}
2351
2352/*
2353 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2354 * dropped after task->mempolicy is set to NULL so that any allocation done as
2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356 * policy.
2357 */
2358void mpol_put_task_policy(struct task_struct *task)
2359{
2360	struct mempolicy *pol;
2361
2362	task_lock(task);
2363	pol = task->mempolicy;
2364	task->mempolicy = NULL;
2365	task_unlock(task);
2366	mpol_put(pol);
2367}
2368
2369static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370{
2371	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372	rb_erase(&n->nd, &sp->root);
2373	sp_free(n);
2374}
2375
2376static void sp_node_init(struct sp_node *node, unsigned long start,
2377			unsigned long end, struct mempolicy *pol)
2378{
2379	node->start = start;
2380	node->end = end;
2381	node->policy = pol;
2382}
2383
2384static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385				struct mempolicy *pol)
2386{
2387	struct sp_node *n;
2388	struct mempolicy *newpol;
2389
2390	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391	if (!n)
2392		return NULL;
2393
2394	newpol = mpol_dup(pol);
2395	if (IS_ERR(newpol)) {
2396		kmem_cache_free(sn_cache, n);
2397		return NULL;
2398	}
2399	newpol->flags |= MPOL_F_SHARED;
2400	sp_node_init(n, start, end, newpol);
2401
2402	return n;
2403}
2404
2405/* Replace a policy range. */
2406static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407				 unsigned long end, struct sp_node *new)
2408{
2409	struct sp_node *n;
2410	struct sp_node *n_new = NULL;
2411	struct mempolicy *mpol_new = NULL;
2412	int ret = 0;
2413
2414restart:
2415	write_lock(&sp->lock);
2416	n = sp_lookup(sp, start, end);
2417	/* Take care of old policies in the same range. */
2418	while (n && n->start < end) {
2419		struct rb_node *next = rb_next(&n->nd);
2420		if (n->start >= start) {
2421			if (n->end <= end)
2422				sp_delete(sp, n);
2423			else
2424				n->start = end;
2425		} else {
2426			/* Old policy spanning whole new range. */
2427			if (n->end > end) {
2428				if (!n_new)
2429					goto alloc_new;
2430
2431				*mpol_new = *n->policy;
2432				atomic_set(&mpol_new->refcnt, 1);
2433				sp_node_init(n_new, end, n->end, mpol_new);
2434				n->end = start;
2435				sp_insert(sp, n_new);
2436				n_new = NULL;
2437				mpol_new = NULL;
2438				break;
2439			} else
2440				n->end = start;
2441		}
2442		if (!next)
2443			break;
2444		n = rb_entry(next, struct sp_node, nd);
2445	}
2446	if (new)
2447		sp_insert(sp, new);
2448	write_unlock(&sp->lock);
2449	ret = 0;
2450
2451err_out:
2452	if (mpol_new)
2453		mpol_put(mpol_new);
2454	if (n_new)
2455		kmem_cache_free(sn_cache, n_new);
2456
2457	return ret;
2458
2459alloc_new:
2460	write_unlock(&sp->lock);
2461	ret = -ENOMEM;
2462	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463	if (!n_new)
2464		goto err_out;
2465	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466	if (!mpol_new)
2467		goto err_out;
2468	goto restart;
2469}
2470
2471/**
2472 * mpol_shared_policy_init - initialize shared policy for inode
2473 * @sp: pointer to inode shared policy
2474 * @mpol:  struct mempolicy to install
2475 *
2476 * Install non-NULL @mpol in inode's shared policy rb-tree.
2477 * On entry, the current task has a reference on a non-NULL @mpol.
2478 * This must be released on exit.
2479 * This is called at get_inode() calls and we can use GFP_KERNEL.
2480 */
2481void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482{
2483	int ret;
2484
2485	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2486	rwlock_init(&sp->lock);
2487
2488	if (mpol) {
2489		struct vm_area_struct pvma;
2490		struct mempolicy *new;
2491		NODEMASK_SCRATCH(scratch);
2492
2493		if (!scratch)
2494			goto put_mpol;
2495		/* contextualize the tmpfs mount point mempolicy */
2496		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497		if (IS_ERR(new))
2498			goto free_scratch; /* no valid nodemask intersection */
2499
2500		task_lock(current);
2501		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502		task_unlock(current);
2503		if (ret)
2504			goto put_new;
2505
2506		/* Create pseudo-vma that contains just the policy */
2507		memset(&pvma, 0, sizeof(struct vm_area_struct));
2508		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2509		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510
2511put_new:
2512		mpol_put(new);			/* drop initial ref */
2513free_scratch:
2514		NODEMASK_SCRATCH_FREE(scratch);
2515put_mpol:
2516		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2517	}
2518}
2519
2520int mpol_set_shared_policy(struct shared_policy *info,
2521			struct vm_area_struct *vma, struct mempolicy *npol)
2522{
2523	int err;
2524	struct sp_node *new = NULL;
2525	unsigned long sz = vma_pages(vma);
2526
2527	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528		 vma->vm_pgoff,
2529		 sz, npol ? npol->mode : -1,
2530		 npol ? npol->flags : -1,
2531		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532
2533	if (npol) {
2534		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535		if (!new)
2536			return -ENOMEM;
2537	}
2538	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539	if (err && new)
2540		sp_free(new);
2541	return err;
2542}
2543
2544/* Free a backing policy store on inode delete. */
2545void mpol_free_shared_policy(struct shared_policy *p)
2546{
2547	struct sp_node *n;
2548	struct rb_node *next;
2549
2550	if (!p->root.rb_node)
2551		return;
2552	write_lock(&p->lock);
2553	next = rb_first(&p->root);
2554	while (next) {
2555		n = rb_entry(next, struct sp_node, nd);
2556		next = rb_next(&n->nd);
2557		sp_delete(p, n);
2558	}
2559	write_unlock(&p->lock);
2560}
2561
2562#ifdef CONFIG_NUMA_BALANCING
2563static int __initdata numabalancing_override;
2564
2565static void __init check_numabalancing_enable(void)
2566{
2567	bool numabalancing_default = false;
2568
2569	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570		numabalancing_default = true;
2571
2572	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573	if (numabalancing_override)
2574		set_numabalancing_state(numabalancing_override == 1);
2575
2576	if (num_online_nodes() > 1 && !numabalancing_override) {
2577		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578			numabalancing_default ? "Enabling" : "Disabling");
2579		set_numabalancing_state(numabalancing_default);
2580	}
2581}
2582
2583static int __init setup_numabalancing(char *str)
2584{
2585	int ret = 0;
2586	if (!str)
2587		goto out;
2588
2589	if (!strcmp(str, "enable")) {
2590		numabalancing_override = 1;
2591		ret = 1;
2592	} else if (!strcmp(str, "disable")) {
2593		numabalancing_override = -1;
2594		ret = 1;
2595	}
2596out:
2597	if (!ret)
2598		pr_warn("Unable to parse numa_balancing=\n");
2599
2600	return ret;
2601}
2602__setup("numa_balancing=", setup_numabalancing);
2603#else
2604static inline void __init check_numabalancing_enable(void)
2605{
2606}
2607#endif /* CONFIG_NUMA_BALANCING */
2608
2609/* assumes fs == KERNEL_DS */
2610void __init numa_policy_init(void)
2611{
2612	nodemask_t interleave_nodes;
2613	unsigned long largest = 0;
2614	int nid, prefer = 0;
2615
2616	policy_cache = kmem_cache_create("numa_policy",
2617					 sizeof(struct mempolicy),
2618					 0, SLAB_PANIC, NULL);
2619
2620	sn_cache = kmem_cache_create("shared_policy_node",
2621				     sizeof(struct sp_node),
2622				     0, SLAB_PANIC, NULL);
2623
2624	for_each_node(nid) {
2625		preferred_node_policy[nid] = (struct mempolicy) {
2626			.refcnt = ATOMIC_INIT(1),
2627			.mode = MPOL_PREFERRED,
2628			.flags = MPOL_F_MOF | MPOL_F_MORON,
2629			.v = { .preferred_node = nid, },
2630		};
2631	}
2632
2633	/*
2634	 * Set interleaving policy for system init. Interleaving is only
2635	 * enabled across suitably sized nodes (default is >= 16MB), or
2636	 * fall back to the largest node if they're all smaller.
2637	 */
2638	nodes_clear(interleave_nodes);
2639	for_each_node_state(nid, N_MEMORY) {
2640		unsigned long total_pages = node_present_pages(nid);
2641
2642		/* Preserve the largest node */
2643		if (largest < total_pages) {
2644			largest = total_pages;
2645			prefer = nid;
2646		}
2647
2648		/* Interleave this node? */
2649		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650			node_set(nid, interleave_nodes);
2651	}
2652
2653	/* All too small, use the largest */
2654	if (unlikely(nodes_empty(interleave_nodes)))
2655		node_set(prefer, interleave_nodes);
2656
2657	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658		pr_err("%s: interleaving failed\n", __func__);
2659
2660	check_numabalancing_enable();
2661}
2662
2663/* Reset policy of current process to default */
2664void numa_default_policy(void)
2665{
2666	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667}
2668
2669/*
2670 * Parse and format mempolicy from/to strings
2671 */
2672
2673/*
2674 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2675 */
2676static const char * const policy_modes[] =
2677{
2678	[MPOL_DEFAULT]    = "default",
2679	[MPOL_PREFERRED]  = "prefer",
2680	[MPOL_BIND]       = "bind",
2681	[MPOL_INTERLEAVE] = "interleave",
2682	[MPOL_LOCAL]      = "local",
2683};
2684
2685
2686#ifdef CONFIG_TMPFS
2687/**
2688 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689 * @str:  string containing mempolicy to parse
2690 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2691 *
2692 * Format of input:
2693 *	<mode>[=<flags>][:<nodelist>]
2694 *
2695 * On success, returns 0, else 1
2696 */
2697int mpol_parse_str(char *str, struct mempolicy **mpol)
2698{
2699	struct mempolicy *new = NULL;
2700	unsigned short mode;
2701	unsigned short mode_flags;
2702	nodemask_t nodes;
2703	char *nodelist = strchr(str, ':');
2704	char *flags = strchr(str, '=');
2705	int err = 1;
2706
2707	if (nodelist) {
2708		/* NUL-terminate mode or flags string */
2709		*nodelist++ = '\0';
2710		if (nodelist_parse(nodelist, nodes))
2711			goto out;
2712		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713			goto out;
2714	} else
2715		nodes_clear(nodes);
2716
2717	if (flags)
2718		*flags++ = '\0';	/* terminate mode string */
2719
2720	for (mode = 0; mode < MPOL_MAX; mode++) {
2721		if (!strcmp(str, policy_modes[mode])) {
2722			break;
2723		}
2724	}
2725	if (mode >= MPOL_MAX)
2726		goto out;
2727
2728	switch (mode) {
2729	case MPOL_PREFERRED:
2730		/*
2731		 * Insist on a nodelist of one node only
2732		 */
2733		if (nodelist) {
2734			char *rest = nodelist;
2735			while (isdigit(*rest))
2736				rest++;
2737			if (*rest)
2738				goto out;
2739		}
2740		break;
2741	case MPOL_INTERLEAVE:
2742		/*
2743		 * Default to online nodes with memory if no nodelist
2744		 */
2745		if (!nodelist)
2746			nodes = node_states[N_MEMORY];
2747		break;
2748	case MPOL_LOCAL:
2749		/*
2750		 * Don't allow a nodelist;  mpol_new() checks flags
2751		 */
2752		if (nodelist)
2753			goto out;
2754		mode = MPOL_PREFERRED;
2755		break;
2756	case MPOL_DEFAULT:
2757		/*
2758		 * Insist on a empty nodelist
2759		 */
2760		if (!nodelist)
2761			err = 0;
2762		goto out;
2763	case MPOL_BIND:
2764		/*
2765		 * Insist on a nodelist
2766		 */
2767		if (!nodelist)
2768			goto out;
2769	}
2770
2771	mode_flags = 0;
2772	if (flags) {
2773		/*
2774		 * Currently, we only support two mutually exclusive
2775		 * mode flags.
2776		 */
2777		if (!strcmp(flags, "static"))
2778			mode_flags |= MPOL_F_STATIC_NODES;
2779		else if (!strcmp(flags, "relative"))
2780			mode_flags |= MPOL_F_RELATIVE_NODES;
2781		else
2782			goto out;
2783	}
2784
2785	new = mpol_new(mode, mode_flags, &nodes);
2786	if (IS_ERR(new))
2787		goto out;
2788
2789	/*
2790	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792	 */
2793	if (mode != MPOL_PREFERRED)
2794		new->v.nodes = nodes;
2795	else if (nodelist)
2796		new->v.preferred_node = first_node(nodes);
2797	else
2798		new->flags |= MPOL_F_LOCAL;
2799
2800	/*
2801	 * Save nodes for contextualization: this will be used to "clone"
2802	 * the mempolicy in a specific context [cpuset] at a later time.
2803	 */
2804	new->w.user_nodemask = nodes;
2805
2806	err = 0;
2807
2808out:
2809	/* Restore string for error message */
2810	if (nodelist)
2811		*--nodelist = ':';
2812	if (flags)
2813		*--flags = '=';
2814	if (!err)
2815		*mpol = new;
2816	return err;
2817}
2818#endif /* CONFIG_TMPFS */
2819
2820/**
2821 * mpol_to_str - format a mempolicy structure for printing
2822 * @buffer:  to contain formatted mempolicy string
2823 * @maxlen:  length of @buffer
2824 * @pol:  pointer to mempolicy to be formatted
2825 *
2826 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828 * longest flag, "relative", and to display at least a few node ids.
2829 */
2830void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831{
2832	char *p = buffer;
2833	nodemask_t nodes = NODE_MASK_NONE;
2834	unsigned short mode = MPOL_DEFAULT;
2835	unsigned short flags = 0;
2836
2837	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838		mode = pol->mode;
2839		flags = pol->flags;
2840	}
2841
2842	switch (mode) {
2843	case MPOL_DEFAULT:
2844		break;
2845	case MPOL_PREFERRED:
2846		if (flags & MPOL_F_LOCAL)
2847			mode = MPOL_LOCAL;
2848		else
2849			node_set(pol->v.preferred_node, nodes);
2850		break;
2851	case MPOL_BIND:
2852	case MPOL_INTERLEAVE:
2853		nodes = pol->v.nodes;
2854		break;
2855	default:
2856		WARN_ON_ONCE(1);
2857		snprintf(p, maxlen, "unknown");
2858		return;
2859	}
2860
2861	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862
2863	if (flags & MPOL_MODE_FLAGS) {
2864		p += snprintf(p, buffer + maxlen - p, "=");
2865
2866		/*
2867		 * Currently, the only defined flags are mutually exclusive
2868		 */
2869		if (flags & MPOL_F_STATIC_NODES)
2870			p += snprintf(p, buffer + maxlen - p, "static");
2871		else if (flags & MPOL_F_RELATIVE_NODES)
2872			p += snprintf(p, buffer + maxlen - p, "relative");
2873	}
2874
2875	if (!nodes_empty(nodes))
2876		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877			       nodemask_pr_args(&nodes));
2878}