Loading...
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32};
33
34static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37};
38
39static const unsigned int tacc_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41};
42
43static const unsigned int tacc_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46};
47
48#define UNSTUFF_BITS(resp,start,size) \
49 ({ \
50 const int __size = size; \
51 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
52 const int __off = 3 - ((start) / 32); \
53 const int __shft = (start) & 31; \
54 u32 __res; \
55 \
56 __res = resp[__off] >> __shft; \
57 if (__size + __shft > 32) \
58 __res |= resp[__off-1] << ((32 - __shft) % 32); \
59 __res & __mask; \
60 })
61
62/*
63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
64 */
65static int mmc_decode_cid(struct mmc_card *card)
66{
67 u32 *resp = card->raw_cid;
68
69 /*
70 * The selection of the format here is based upon published
71 * specs from sandisk and from what people have reported.
72 */
73 switch (card->csd.mmca_vsn) {
74 case 0: /* MMC v1.0 - v1.2 */
75 case 1: /* MMC v1.4 */
76 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
77 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
78 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
79 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
80 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
81 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
82 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
83 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
84 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
85 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
86 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
87 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
88 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
89 break;
90
91 case 2: /* MMC v2.0 - v2.2 */
92 case 3: /* MMC v3.1 - v3.3 */
93 case 4: /* MMC v4 */
94 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
95 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
96 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
97 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
98 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
99 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
100 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
101 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
102 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
103 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
104 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
105 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
106 break;
107
108 default:
109 pr_err("%s: card has unknown MMCA version %d\n",
110 mmc_hostname(card->host), card->csd.mmca_vsn);
111 return -EINVAL;
112 }
113
114 return 0;
115}
116
117static void mmc_set_erase_size(struct mmc_card *card)
118{
119 if (card->ext_csd.erase_group_def & 1)
120 card->erase_size = card->ext_csd.hc_erase_size;
121 else
122 card->erase_size = card->csd.erase_size;
123
124 mmc_init_erase(card);
125}
126
127/*
128 * Given a 128-bit response, decode to our card CSD structure.
129 */
130static int mmc_decode_csd(struct mmc_card *card)
131{
132 struct mmc_csd *csd = &card->csd;
133 unsigned int e, m, a, b;
134 u32 *resp = card->raw_csd;
135
136 /*
137 * We only understand CSD structure v1.1 and v1.2.
138 * v1.2 has extra information in bits 15, 11 and 10.
139 * We also support eMMC v4.4 & v4.41.
140 */
141 csd->structure = UNSTUFF_BITS(resp, 126, 2);
142 if (csd->structure == 0) {
143 pr_err("%s: unrecognised CSD structure version %d\n",
144 mmc_hostname(card->host), csd->structure);
145 return -EINVAL;
146 }
147
148 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
149 m = UNSTUFF_BITS(resp, 115, 4);
150 e = UNSTUFF_BITS(resp, 112, 3);
151 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
152 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
153
154 m = UNSTUFF_BITS(resp, 99, 4);
155 e = UNSTUFF_BITS(resp, 96, 3);
156 csd->max_dtr = tran_exp[e] * tran_mant[m];
157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
158
159 e = UNSTUFF_BITS(resp, 47, 3);
160 m = UNSTUFF_BITS(resp, 62, 12);
161 csd->capacity = (1 + m) << (e + 2);
162
163 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
164 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
165 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
166 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
167 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
168 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
169 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
170 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
171
172 if (csd->write_blkbits >= 9) {
173 a = UNSTUFF_BITS(resp, 42, 5);
174 b = UNSTUFF_BITS(resp, 37, 5);
175 csd->erase_size = (a + 1) * (b + 1);
176 csd->erase_size <<= csd->write_blkbits - 9;
177 }
178
179 return 0;
180}
181
182static void mmc_select_card_type(struct mmc_card *card)
183{
184 struct mmc_host *host = card->host;
185 u8 card_type = card->ext_csd.raw_card_type;
186 u32 caps = host->caps, caps2 = host->caps2;
187 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
188 unsigned int avail_type = 0;
189
190 if (caps & MMC_CAP_MMC_HIGHSPEED &&
191 card_type & EXT_CSD_CARD_TYPE_HS_26) {
192 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
193 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
194 }
195
196 if (caps & MMC_CAP_MMC_HIGHSPEED &&
197 card_type & EXT_CSD_CARD_TYPE_HS_52) {
198 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
199 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
200 }
201
202 if (caps & MMC_CAP_1_8V_DDR &&
203 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
204 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
206 }
207
208 if (caps & MMC_CAP_1_2V_DDR &&
209 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
212 }
213
214 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
215 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
216 hs200_max_dtr = MMC_HS200_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
218 }
219
220 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
221 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
222 hs200_max_dtr = MMC_HS200_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
224 }
225
226 if (caps2 & MMC_CAP2_HS400_1_8V &&
227 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
230 }
231
232 if (caps2 & MMC_CAP2_HS400_1_2V &&
233 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
236 }
237
238 card->ext_csd.hs_max_dtr = hs_max_dtr;
239 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
240 card->mmc_avail_type = avail_type;
241}
242
243static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
244{
245 u8 hc_erase_grp_sz, hc_wp_grp_sz;
246
247 /*
248 * Disable these attributes by default
249 */
250 card->ext_csd.enhanced_area_offset = -EINVAL;
251 card->ext_csd.enhanced_area_size = -EINVAL;
252
253 /*
254 * Enhanced area feature support -- check whether the eMMC
255 * card has the Enhanced area enabled. If so, export enhanced
256 * area offset and size to user by adding sysfs interface.
257 */
258 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
259 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
260 if (card->ext_csd.partition_setting_completed) {
261 hc_erase_grp_sz =
262 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
263 hc_wp_grp_sz =
264 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
265
266 /*
267 * calculate the enhanced data area offset, in bytes
268 */
269 card->ext_csd.enhanced_area_offset =
270 (((unsigned long long)ext_csd[139]) << 24) +
271 (((unsigned long long)ext_csd[138]) << 16) +
272 (((unsigned long long)ext_csd[137]) << 8) +
273 (((unsigned long long)ext_csd[136]));
274 if (mmc_card_blockaddr(card))
275 card->ext_csd.enhanced_area_offset <<= 9;
276 /*
277 * calculate the enhanced data area size, in kilobytes
278 */
279 card->ext_csd.enhanced_area_size =
280 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
281 ext_csd[140];
282 card->ext_csd.enhanced_area_size *=
283 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
284 card->ext_csd.enhanced_area_size <<= 9;
285 } else {
286 pr_warn("%s: defines enhanced area without partition setting complete\n",
287 mmc_hostname(card->host));
288 }
289 }
290}
291
292static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
293{
294 int idx;
295 u8 hc_erase_grp_sz, hc_wp_grp_sz;
296 unsigned int part_size;
297
298 /*
299 * General purpose partition feature support --
300 * If ext_csd has the size of general purpose partitions,
301 * set size, part_cfg, partition name in mmc_part.
302 */
303 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
304 EXT_CSD_PART_SUPPORT_PART_EN) {
305 hc_erase_grp_sz =
306 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
307 hc_wp_grp_sz =
308 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
309
310 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
311 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
312 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
313 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
314 continue;
315 if (card->ext_csd.partition_setting_completed == 0) {
316 pr_warn("%s: has partition size defined without partition complete\n",
317 mmc_hostname(card->host));
318 break;
319 }
320 part_size =
321 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
322 << 16) +
323 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
324 << 8) +
325 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
326 part_size *= (size_t)(hc_erase_grp_sz *
327 hc_wp_grp_sz);
328 mmc_part_add(card, part_size << 19,
329 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
330 "gp%d", idx, false,
331 MMC_BLK_DATA_AREA_GP);
332 }
333 }
334}
335
336/*
337 * Decode extended CSD.
338 */
339static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
340{
341 int err = 0, idx;
342 unsigned int part_size;
343 struct device_node *np;
344 bool broken_hpi = false;
345
346 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
347 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
348 if (card->csd.structure == 3) {
349 if (card->ext_csd.raw_ext_csd_structure > 2) {
350 pr_err("%s: unrecognised EXT_CSD structure "
351 "version %d\n", mmc_hostname(card->host),
352 card->ext_csd.raw_ext_csd_structure);
353 err = -EINVAL;
354 goto out;
355 }
356 }
357
358 np = mmc_of_find_child_device(card->host, 0);
359 if (np && of_device_is_compatible(np, "mmc-card"))
360 broken_hpi = of_property_read_bool(np, "broken-hpi");
361 of_node_put(np);
362
363 /*
364 * The EXT_CSD format is meant to be forward compatible. As long
365 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
366 * are authorized, see JEDEC JESD84-B50 section B.8.
367 */
368 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
369
370 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
371 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
372 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
373 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
374 if (card->ext_csd.rev >= 2) {
375 card->ext_csd.sectors =
376 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
377 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
378 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
379 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
380
381 /* Cards with density > 2GiB are sector addressed */
382 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
383 mmc_card_set_blockaddr(card);
384 }
385
386 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
387 mmc_select_card_type(card);
388
389 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
390 card->ext_csd.raw_erase_timeout_mult =
391 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
392 card->ext_csd.raw_hc_erase_grp_size =
393 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
394 if (card->ext_csd.rev >= 3) {
395 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
396 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
397
398 /* EXT_CSD value is in units of 10ms, but we store in ms */
399 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
400
401 /* Sleep / awake timeout in 100ns units */
402 if (sa_shift > 0 && sa_shift <= 0x17)
403 card->ext_csd.sa_timeout =
404 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
405 card->ext_csd.erase_group_def =
406 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
407 card->ext_csd.hc_erase_timeout = 300 *
408 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
409 card->ext_csd.hc_erase_size =
410 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
411
412 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
413
414 /*
415 * There are two boot regions of equal size, defined in
416 * multiples of 128K.
417 */
418 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
419 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
420 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
421 mmc_part_add(card, part_size,
422 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
423 "boot%d", idx, true,
424 MMC_BLK_DATA_AREA_BOOT);
425 }
426 }
427 }
428
429 card->ext_csd.raw_hc_erase_gap_size =
430 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
431 card->ext_csd.raw_sec_trim_mult =
432 ext_csd[EXT_CSD_SEC_TRIM_MULT];
433 card->ext_csd.raw_sec_erase_mult =
434 ext_csd[EXT_CSD_SEC_ERASE_MULT];
435 card->ext_csd.raw_sec_feature_support =
436 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
437 card->ext_csd.raw_trim_mult =
438 ext_csd[EXT_CSD_TRIM_MULT];
439 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
440 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
441 if (card->ext_csd.rev >= 4) {
442 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
443 EXT_CSD_PART_SETTING_COMPLETED)
444 card->ext_csd.partition_setting_completed = 1;
445 else
446 card->ext_csd.partition_setting_completed = 0;
447
448 mmc_manage_enhanced_area(card, ext_csd);
449
450 mmc_manage_gp_partitions(card, ext_csd);
451
452 card->ext_csd.sec_trim_mult =
453 ext_csd[EXT_CSD_SEC_TRIM_MULT];
454 card->ext_csd.sec_erase_mult =
455 ext_csd[EXT_CSD_SEC_ERASE_MULT];
456 card->ext_csd.sec_feature_support =
457 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
458 card->ext_csd.trim_timeout = 300 *
459 ext_csd[EXT_CSD_TRIM_MULT];
460
461 /*
462 * Note that the call to mmc_part_add above defaults to read
463 * only. If this default assumption is changed, the call must
464 * take into account the value of boot_locked below.
465 */
466 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
467 card->ext_csd.boot_ro_lockable = true;
468
469 /* Save power class values */
470 card->ext_csd.raw_pwr_cl_52_195 =
471 ext_csd[EXT_CSD_PWR_CL_52_195];
472 card->ext_csd.raw_pwr_cl_26_195 =
473 ext_csd[EXT_CSD_PWR_CL_26_195];
474 card->ext_csd.raw_pwr_cl_52_360 =
475 ext_csd[EXT_CSD_PWR_CL_52_360];
476 card->ext_csd.raw_pwr_cl_26_360 =
477 ext_csd[EXT_CSD_PWR_CL_26_360];
478 card->ext_csd.raw_pwr_cl_200_195 =
479 ext_csd[EXT_CSD_PWR_CL_200_195];
480 card->ext_csd.raw_pwr_cl_200_360 =
481 ext_csd[EXT_CSD_PWR_CL_200_360];
482 card->ext_csd.raw_pwr_cl_ddr_52_195 =
483 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
484 card->ext_csd.raw_pwr_cl_ddr_52_360 =
485 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
486 card->ext_csd.raw_pwr_cl_ddr_200_360 =
487 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
488 }
489
490 if (card->ext_csd.rev >= 5) {
491 /* Adjust production date as per JEDEC JESD84-B451 */
492 if (card->cid.year < 2010)
493 card->cid.year += 16;
494
495 /* check whether the eMMC card supports BKOPS */
496 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
497 card->ext_csd.bkops = 1;
498 card->ext_csd.man_bkops_en =
499 (ext_csd[EXT_CSD_BKOPS_EN] &
500 EXT_CSD_MANUAL_BKOPS_MASK);
501 card->ext_csd.raw_bkops_status =
502 ext_csd[EXT_CSD_BKOPS_STATUS];
503 if (!card->ext_csd.man_bkops_en)
504 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
505 mmc_hostname(card->host));
506 }
507
508 /* check whether the eMMC card supports HPI */
509 if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
510 card->ext_csd.hpi = 1;
511 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
512 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
513 else
514 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
515 /*
516 * Indicate the maximum timeout to close
517 * a command interrupted by HPI
518 */
519 card->ext_csd.out_of_int_time =
520 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
521 }
522
523 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
524 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
525
526 /*
527 * RPMB regions are defined in multiples of 128K.
528 */
529 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
530 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
531 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
532 EXT_CSD_PART_CONFIG_ACC_RPMB,
533 "rpmb", 0, false,
534 MMC_BLK_DATA_AREA_RPMB);
535 }
536 }
537
538 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
539 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
540 card->erased_byte = 0xFF;
541 else
542 card->erased_byte = 0x0;
543
544 /* eMMC v4.5 or later */
545 if (card->ext_csd.rev >= 6) {
546 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
547
548 card->ext_csd.generic_cmd6_time = 10 *
549 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
550 card->ext_csd.power_off_longtime = 10 *
551 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
552
553 card->ext_csd.cache_size =
554 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
555 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
556 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
557 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
558
559 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
560 card->ext_csd.data_sector_size = 4096;
561 else
562 card->ext_csd.data_sector_size = 512;
563
564 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
565 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
566 card->ext_csd.data_tag_unit_size =
567 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
568 (card->ext_csd.data_sector_size);
569 } else {
570 card->ext_csd.data_tag_unit_size = 0;
571 }
572
573 card->ext_csd.max_packed_writes =
574 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
575 card->ext_csd.max_packed_reads =
576 ext_csd[EXT_CSD_MAX_PACKED_READS];
577 } else {
578 card->ext_csd.data_sector_size = 512;
579 }
580
581 /* eMMC v5 or later */
582 if (card->ext_csd.rev >= 7) {
583 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
584 MMC_FIRMWARE_LEN);
585 card->ext_csd.ffu_capable =
586 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
587 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
588 }
589out:
590 return err;
591}
592
593static int mmc_read_ext_csd(struct mmc_card *card)
594{
595 u8 *ext_csd;
596 int err;
597
598 if (!mmc_can_ext_csd(card))
599 return 0;
600
601 err = mmc_get_ext_csd(card, &ext_csd);
602 if (err) {
603 /* If the host or the card can't do the switch,
604 * fail more gracefully. */
605 if ((err != -EINVAL)
606 && (err != -ENOSYS)
607 && (err != -EFAULT))
608 return err;
609
610 /*
611 * High capacity cards should have this "magic" size
612 * stored in their CSD.
613 */
614 if (card->csd.capacity == (4096 * 512)) {
615 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
616 mmc_hostname(card->host));
617 } else {
618 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
619 mmc_hostname(card->host));
620 err = 0;
621 }
622
623 return err;
624 }
625
626 err = mmc_decode_ext_csd(card, ext_csd);
627 kfree(ext_csd);
628 return err;
629}
630
631static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
632{
633 u8 *bw_ext_csd;
634 int err;
635
636 if (bus_width == MMC_BUS_WIDTH_1)
637 return 0;
638
639 err = mmc_get_ext_csd(card, &bw_ext_csd);
640 if (err)
641 return err;
642
643 /* only compare read only fields */
644 err = !((card->ext_csd.raw_partition_support ==
645 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
646 (card->ext_csd.raw_erased_mem_count ==
647 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
648 (card->ext_csd.rev ==
649 bw_ext_csd[EXT_CSD_REV]) &&
650 (card->ext_csd.raw_ext_csd_structure ==
651 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
652 (card->ext_csd.raw_card_type ==
653 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
654 (card->ext_csd.raw_s_a_timeout ==
655 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
656 (card->ext_csd.raw_hc_erase_gap_size ==
657 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
658 (card->ext_csd.raw_erase_timeout_mult ==
659 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
660 (card->ext_csd.raw_hc_erase_grp_size ==
661 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
662 (card->ext_csd.raw_sec_trim_mult ==
663 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
664 (card->ext_csd.raw_sec_erase_mult ==
665 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
666 (card->ext_csd.raw_sec_feature_support ==
667 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
668 (card->ext_csd.raw_trim_mult ==
669 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
670 (card->ext_csd.raw_sectors[0] ==
671 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
672 (card->ext_csd.raw_sectors[1] ==
673 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
674 (card->ext_csd.raw_sectors[2] ==
675 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
676 (card->ext_csd.raw_sectors[3] ==
677 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
678 (card->ext_csd.raw_pwr_cl_52_195 ==
679 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
680 (card->ext_csd.raw_pwr_cl_26_195 ==
681 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
682 (card->ext_csd.raw_pwr_cl_52_360 ==
683 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
684 (card->ext_csd.raw_pwr_cl_26_360 ==
685 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
686 (card->ext_csd.raw_pwr_cl_200_195 ==
687 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
688 (card->ext_csd.raw_pwr_cl_200_360 ==
689 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
690 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
691 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
692 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
693 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
694 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
695 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
696
697 if (err)
698 err = -EINVAL;
699
700 kfree(bw_ext_csd);
701 return err;
702}
703
704MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
705 card->raw_cid[2], card->raw_cid[3]);
706MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
707 card->raw_csd[2], card->raw_csd[3]);
708MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
709MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
710MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
711MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
712MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
713MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
714MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
715MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
716MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
717MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
718MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
719 card->ext_csd.enhanced_area_offset);
720MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
721MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
722MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
723
724static ssize_t mmc_fwrev_show(struct device *dev,
725 struct device_attribute *attr,
726 char *buf)
727{
728 struct mmc_card *card = mmc_dev_to_card(dev);
729
730 if (card->ext_csd.rev < 7) {
731 return sprintf(buf, "0x%x\n", card->cid.fwrev);
732 } else {
733 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
734 card->ext_csd.fwrev);
735 }
736}
737
738static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
739
740static struct attribute *mmc_std_attrs[] = {
741 &dev_attr_cid.attr,
742 &dev_attr_csd.attr,
743 &dev_attr_date.attr,
744 &dev_attr_erase_size.attr,
745 &dev_attr_preferred_erase_size.attr,
746 &dev_attr_fwrev.attr,
747 &dev_attr_ffu_capable.attr,
748 &dev_attr_hwrev.attr,
749 &dev_attr_manfid.attr,
750 &dev_attr_name.attr,
751 &dev_attr_oemid.attr,
752 &dev_attr_prv.attr,
753 &dev_attr_serial.attr,
754 &dev_attr_enhanced_area_offset.attr,
755 &dev_attr_enhanced_area_size.attr,
756 &dev_attr_raw_rpmb_size_mult.attr,
757 &dev_attr_rel_sectors.attr,
758 NULL,
759};
760ATTRIBUTE_GROUPS(mmc_std);
761
762static struct device_type mmc_type = {
763 .groups = mmc_std_groups,
764};
765
766/*
767 * Select the PowerClass for the current bus width
768 * If power class is defined for 4/8 bit bus in the
769 * extended CSD register, select it by executing the
770 * mmc_switch command.
771 */
772static int __mmc_select_powerclass(struct mmc_card *card,
773 unsigned int bus_width)
774{
775 struct mmc_host *host = card->host;
776 struct mmc_ext_csd *ext_csd = &card->ext_csd;
777 unsigned int pwrclass_val = 0;
778 int err = 0;
779
780 switch (1 << host->ios.vdd) {
781 case MMC_VDD_165_195:
782 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
783 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
784 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
785 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
786 ext_csd->raw_pwr_cl_52_195 :
787 ext_csd->raw_pwr_cl_ddr_52_195;
788 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
789 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
790 break;
791 case MMC_VDD_27_28:
792 case MMC_VDD_28_29:
793 case MMC_VDD_29_30:
794 case MMC_VDD_30_31:
795 case MMC_VDD_31_32:
796 case MMC_VDD_32_33:
797 case MMC_VDD_33_34:
798 case MMC_VDD_34_35:
799 case MMC_VDD_35_36:
800 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
801 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
802 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
803 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
804 ext_csd->raw_pwr_cl_52_360 :
805 ext_csd->raw_pwr_cl_ddr_52_360;
806 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
807 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
808 ext_csd->raw_pwr_cl_ddr_200_360 :
809 ext_csd->raw_pwr_cl_200_360;
810 break;
811 default:
812 pr_warn("%s: Voltage range not supported for power class\n",
813 mmc_hostname(host));
814 return -EINVAL;
815 }
816
817 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
818 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
819 EXT_CSD_PWR_CL_8BIT_SHIFT;
820 else
821 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
822 EXT_CSD_PWR_CL_4BIT_SHIFT;
823
824 /* If the power class is different from the default value */
825 if (pwrclass_val > 0) {
826 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
827 EXT_CSD_POWER_CLASS,
828 pwrclass_val,
829 card->ext_csd.generic_cmd6_time);
830 }
831
832 return err;
833}
834
835static int mmc_select_powerclass(struct mmc_card *card)
836{
837 struct mmc_host *host = card->host;
838 u32 bus_width, ext_csd_bits;
839 int err, ddr;
840
841 /* Power class selection is supported for versions >= 4.0 */
842 if (!mmc_can_ext_csd(card))
843 return 0;
844
845 bus_width = host->ios.bus_width;
846 /* Power class values are defined only for 4/8 bit bus */
847 if (bus_width == MMC_BUS_WIDTH_1)
848 return 0;
849
850 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
851 if (ddr)
852 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
853 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
854 else
855 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
856 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
857
858 err = __mmc_select_powerclass(card, ext_csd_bits);
859 if (err)
860 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
861 mmc_hostname(host), 1 << bus_width, ddr);
862
863 return err;
864}
865
866/*
867 * Set the bus speed for the selected speed mode.
868 */
869static void mmc_set_bus_speed(struct mmc_card *card)
870{
871 unsigned int max_dtr = (unsigned int)-1;
872
873 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
874 max_dtr > card->ext_csd.hs200_max_dtr)
875 max_dtr = card->ext_csd.hs200_max_dtr;
876 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
877 max_dtr = card->ext_csd.hs_max_dtr;
878 else if (max_dtr > card->csd.max_dtr)
879 max_dtr = card->csd.max_dtr;
880
881 mmc_set_clock(card->host, max_dtr);
882}
883
884/*
885 * Select the bus width amoung 4-bit and 8-bit(SDR).
886 * If the bus width is changed successfully, return the selected width value.
887 * Zero is returned instead of error value if the wide width is not supported.
888 */
889static int mmc_select_bus_width(struct mmc_card *card)
890{
891 static unsigned ext_csd_bits[] = {
892 EXT_CSD_BUS_WIDTH_8,
893 EXT_CSD_BUS_WIDTH_4,
894 };
895 static unsigned bus_widths[] = {
896 MMC_BUS_WIDTH_8,
897 MMC_BUS_WIDTH_4,
898 };
899 struct mmc_host *host = card->host;
900 unsigned idx, bus_width = 0;
901 int err = 0;
902
903 if (!mmc_can_ext_csd(card) ||
904 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
905 return 0;
906
907 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
908
909 /*
910 * Unlike SD, MMC cards dont have a configuration register to notify
911 * supported bus width. So bus test command should be run to identify
912 * the supported bus width or compare the ext csd values of current
913 * bus width and ext csd values of 1 bit mode read earlier.
914 */
915 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
916 /*
917 * Host is capable of 8bit transfer, then switch
918 * the device to work in 8bit transfer mode. If the
919 * mmc switch command returns error then switch to
920 * 4bit transfer mode. On success set the corresponding
921 * bus width on the host.
922 */
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_BUS_WIDTH,
925 ext_csd_bits[idx],
926 card->ext_csd.generic_cmd6_time);
927 if (err)
928 continue;
929
930 bus_width = bus_widths[idx];
931 mmc_set_bus_width(host, bus_width);
932
933 /*
934 * If controller can't handle bus width test,
935 * compare ext_csd previously read in 1 bit mode
936 * against ext_csd at new bus width
937 */
938 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
939 err = mmc_compare_ext_csds(card, bus_width);
940 else
941 err = mmc_bus_test(card, bus_width);
942
943 if (!err) {
944 err = bus_width;
945 break;
946 } else {
947 pr_warn("%s: switch to bus width %d failed\n",
948 mmc_hostname(host), 1 << bus_width);
949 }
950 }
951
952 return err;
953}
954
955/*
956 * Switch to the high-speed mode
957 */
958static int mmc_select_hs(struct mmc_card *card)
959{
960 int err;
961
962 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
963 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
964 card->ext_csd.generic_cmd6_time,
965 true, true, true);
966 if (!err)
967 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
968
969 return err;
970}
971
972/*
973 * Activate wide bus and DDR if supported.
974 */
975static int mmc_select_hs_ddr(struct mmc_card *card)
976{
977 struct mmc_host *host = card->host;
978 u32 bus_width, ext_csd_bits;
979 int err = 0;
980
981 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
982 return 0;
983
984 bus_width = host->ios.bus_width;
985 if (bus_width == MMC_BUS_WIDTH_1)
986 return 0;
987
988 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
989 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
990
991 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 EXT_CSD_BUS_WIDTH,
993 ext_csd_bits,
994 card->ext_csd.generic_cmd6_time);
995 if (err) {
996 pr_err("%s: switch to bus width %d ddr failed\n",
997 mmc_hostname(host), 1 << bus_width);
998 return err;
999 }
1000
1001 /*
1002 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1003 * signaling.
1004 *
1005 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1006 *
1007 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1008 * in the JEDEC spec for DDR.
1009 *
1010 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1011 * host controller can support this, like some of the SDHCI
1012 * controller which connect to an eMMC device. Some of these
1013 * host controller still needs to use 1.8v vccq for supporting
1014 * DDR mode.
1015 *
1016 * So the sequence will be:
1017 * if (host and device can both support 1.2v IO)
1018 * use 1.2v IO;
1019 * else if (host and device can both support 1.8v IO)
1020 * use 1.8v IO;
1021 * so if host and device can only support 3.3v IO, this is the
1022 * last choice.
1023 *
1024 * WARNING: eMMC rules are NOT the same as SD DDR
1025 */
1026 err = -EINVAL;
1027 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1028 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1029
1030 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1031 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1032
1033 /* make sure vccq is 3.3v after switching disaster */
1034 if (err)
1035 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1036
1037 if (!err)
1038 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1039
1040 return err;
1041}
1042
1043/* Caller must hold re-tuning */
1044static int mmc_switch_status(struct mmc_card *card)
1045{
1046 u32 status;
1047 int err;
1048
1049 err = mmc_send_status(card, &status);
1050 if (err)
1051 return err;
1052
1053 return mmc_switch_status_error(card->host, status);
1054}
1055
1056static int mmc_select_hs400(struct mmc_card *card)
1057{
1058 struct mmc_host *host = card->host;
1059 bool send_status = true;
1060 unsigned int max_dtr;
1061 int err = 0;
1062 u8 val;
1063
1064 /*
1065 * HS400 mode requires 8-bit bus width
1066 */
1067 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1068 host->ios.bus_width == MMC_BUS_WIDTH_8))
1069 return 0;
1070
1071 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1072 send_status = false;
1073
1074 /* Reduce frequency to HS frequency */
1075 max_dtr = card->ext_csd.hs_max_dtr;
1076 mmc_set_clock(host, max_dtr);
1077
1078 /* Switch card to HS mode */
1079 val = EXT_CSD_TIMING_HS;
1080 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1081 EXT_CSD_HS_TIMING, val,
1082 card->ext_csd.generic_cmd6_time,
1083 true, send_status, true);
1084 if (err) {
1085 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1086 mmc_hostname(host), err);
1087 return err;
1088 }
1089
1090 /* Set host controller to HS timing */
1091 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1092
1093 if (!send_status) {
1094 err = mmc_switch_status(card);
1095 if (err)
1096 goto out_err;
1097 }
1098
1099 /* Switch card to DDR */
1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1101 EXT_CSD_BUS_WIDTH,
1102 EXT_CSD_DDR_BUS_WIDTH_8,
1103 card->ext_csd.generic_cmd6_time);
1104 if (err) {
1105 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1106 mmc_hostname(host), err);
1107 return err;
1108 }
1109
1110 /* Switch card to HS400 */
1111 val = EXT_CSD_TIMING_HS400 |
1112 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1113 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1114 EXT_CSD_HS_TIMING, val,
1115 card->ext_csd.generic_cmd6_time,
1116 true, send_status, true);
1117 if (err) {
1118 pr_err("%s: switch to hs400 failed, err:%d\n",
1119 mmc_hostname(host), err);
1120 return err;
1121 }
1122
1123 /* Set host controller to HS400 timing and frequency */
1124 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1125 mmc_set_bus_speed(card);
1126
1127 if (!send_status) {
1128 err = mmc_switch_status(card);
1129 if (err)
1130 goto out_err;
1131 }
1132
1133 return 0;
1134
1135out_err:
1136 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1137 __func__, err);
1138 return err;
1139}
1140
1141int mmc_hs200_to_hs400(struct mmc_card *card)
1142{
1143 return mmc_select_hs400(card);
1144}
1145
1146int mmc_hs400_to_hs200(struct mmc_card *card)
1147{
1148 struct mmc_host *host = card->host;
1149 bool send_status = true;
1150 unsigned int max_dtr;
1151 int err;
1152 u8 val;
1153
1154 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1155 send_status = false;
1156
1157 /* Reduce frequency to HS */
1158 max_dtr = card->ext_csd.hs_max_dtr;
1159 mmc_set_clock(host, max_dtr);
1160
1161 /* Switch HS400 to HS DDR */
1162 val = EXT_CSD_TIMING_HS;
1163 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1164 val, card->ext_csd.generic_cmd6_time,
1165 true, send_status, true);
1166 if (err)
1167 goto out_err;
1168
1169 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1170
1171 if (!send_status) {
1172 err = mmc_switch_status(card);
1173 if (err)
1174 goto out_err;
1175 }
1176
1177 /* Switch HS DDR to HS */
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1179 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1180 true, send_status, true);
1181 if (err)
1182 goto out_err;
1183
1184 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185
1186 if (!send_status) {
1187 err = mmc_switch_status(card);
1188 if (err)
1189 goto out_err;
1190 }
1191
1192 /* Switch HS to HS200 */
1193 val = EXT_CSD_TIMING_HS200 |
1194 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1195 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1196 val, card->ext_csd.generic_cmd6_time, true,
1197 send_status, true);
1198 if (err)
1199 goto out_err;
1200
1201 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1202
1203 if (!send_status) {
1204 err = mmc_switch_status(card);
1205 if (err)
1206 goto out_err;
1207 }
1208
1209 mmc_set_bus_speed(card);
1210
1211 return 0;
1212
1213out_err:
1214 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1215 __func__, err);
1216 return err;
1217}
1218
1219static void mmc_select_driver_type(struct mmc_card *card)
1220{
1221 int card_drv_type, drive_strength, drv_type;
1222
1223 card_drv_type = card->ext_csd.raw_driver_strength |
1224 mmc_driver_type_mask(0);
1225
1226 drive_strength = mmc_select_drive_strength(card,
1227 card->ext_csd.hs200_max_dtr,
1228 card_drv_type, &drv_type);
1229
1230 card->drive_strength = drive_strength;
1231
1232 if (drv_type)
1233 mmc_set_driver_type(card->host, drv_type);
1234}
1235
1236/*
1237 * For device supporting HS200 mode, the following sequence
1238 * should be done before executing the tuning process.
1239 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1240 * 2. switch to HS200 mode
1241 * 3. set the clock to > 52Mhz and <=200MHz
1242 */
1243static int mmc_select_hs200(struct mmc_card *card)
1244{
1245 struct mmc_host *host = card->host;
1246 bool send_status = true;
1247 unsigned int old_timing;
1248 int err = -EINVAL;
1249 u8 val;
1250
1251 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1252 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1253
1254 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1255 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1256
1257 /* If fails try again during next card power cycle */
1258 if (err)
1259 goto err;
1260
1261 mmc_select_driver_type(card);
1262
1263 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1264 send_status = false;
1265
1266 /*
1267 * Set the bus width(4 or 8) with host's support and
1268 * switch to HS200 mode if bus width is set successfully.
1269 */
1270 err = mmc_select_bus_width(card);
1271 if (!IS_ERR_VALUE(err)) {
1272 val = EXT_CSD_TIMING_HS200 |
1273 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1274 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1275 EXT_CSD_HS_TIMING, val,
1276 card->ext_csd.generic_cmd6_time,
1277 true, send_status, true);
1278 if (err)
1279 goto err;
1280 old_timing = host->ios.timing;
1281 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1282 if (!send_status) {
1283 err = mmc_switch_status(card);
1284 /*
1285 * mmc_select_timing() assumes timing has not changed if
1286 * it is a switch error.
1287 */
1288 if (err == -EBADMSG)
1289 mmc_set_timing(host, old_timing);
1290 }
1291 }
1292err:
1293 if (err)
1294 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1295 __func__, err);
1296 return err;
1297}
1298
1299/*
1300 * Activate High Speed or HS200 mode if supported.
1301 */
1302static int mmc_select_timing(struct mmc_card *card)
1303{
1304 int err = 0;
1305
1306 if (!mmc_can_ext_csd(card))
1307 goto bus_speed;
1308
1309 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1310 err = mmc_select_hs200(card);
1311 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1312 err = mmc_select_hs(card);
1313
1314 if (err && err != -EBADMSG)
1315 return err;
1316
1317 if (err) {
1318 pr_warn("%s: switch to %s failed\n",
1319 mmc_card_hs(card) ? "high-speed" :
1320 (mmc_card_hs200(card) ? "hs200" : ""),
1321 mmc_hostname(card->host));
1322 err = 0;
1323 }
1324
1325bus_speed:
1326 /*
1327 * Set the bus speed to the selected bus timing.
1328 * If timing is not selected, backward compatible is the default.
1329 */
1330 mmc_set_bus_speed(card);
1331 return err;
1332}
1333
1334/*
1335 * Execute tuning sequence to seek the proper bus operating
1336 * conditions for HS200 and HS400, which sends CMD21 to the device.
1337 */
1338static int mmc_hs200_tuning(struct mmc_card *card)
1339{
1340 struct mmc_host *host = card->host;
1341
1342 /*
1343 * Timing should be adjusted to the HS400 target
1344 * operation frequency for tuning process
1345 */
1346 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1347 host->ios.bus_width == MMC_BUS_WIDTH_8)
1348 if (host->ops->prepare_hs400_tuning)
1349 host->ops->prepare_hs400_tuning(host, &host->ios);
1350
1351 return mmc_execute_tuning(card);
1352}
1353
1354/*
1355 * Handle the detection and initialisation of a card.
1356 *
1357 * In the case of a resume, "oldcard" will contain the card
1358 * we're trying to reinitialise.
1359 */
1360static int mmc_init_card(struct mmc_host *host, u32 ocr,
1361 struct mmc_card *oldcard)
1362{
1363 struct mmc_card *card;
1364 int err;
1365 u32 cid[4];
1366 u32 rocr;
1367
1368 BUG_ON(!host);
1369 WARN_ON(!host->claimed);
1370
1371 /* Set correct bus mode for MMC before attempting init */
1372 if (!mmc_host_is_spi(host))
1373 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1374
1375 /*
1376 * Since we're changing the OCR value, we seem to
1377 * need to tell some cards to go back to the idle
1378 * state. We wait 1ms to give cards time to
1379 * respond.
1380 * mmc_go_idle is needed for eMMC that are asleep
1381 */
1382 mmc_go_idle(host);
1383
1384 /* The extra bit indicates that we support high capacity */
1385 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1386 if (err)
1387 goto err;
1388
1389 /*
1390 * For SPI, enable CRC as appropriate.
1391 */
1392 if (mmc_host_is_spi(host)) {
1393 err = mmc_spi_set_crc(host, use_spi_crc);
1394 if (err)
1395 goto err;
1396 }
1397
1398 /*
1399 * Fetch CID from card.
1400 */
1401 if (mmc_host_is_spi(host))
1402 err = mmc_send_cid(host, cid);
1403 else
1404 err = mmc_all_send_cid(host, cid);
1405 if (err)
1406 goto err;
1407
1408 if (oldcard) {
1409 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1410 err = -ENOENT;
1411 goto err;
1412 }
1413
1414 card = oldcard;
1415 } else {
1416 /*
1417 * Allocate card structure.
1418 */
1419 card = mmc_alloc_card(host, &mmc_type);
1420 if (IS_ERR(card)) {
1421 err = PTR_ERR(card);
1422 goto err;
1423 }
1424
1425 card->ocr = ocr;
1426 card->type = MMC_TYPE_MMC;
1427 card->rca = 1;
1428 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1429 }
1430
1431 /*
1432 * Call the optional HC's init_card function to handle quirks.
1433 */
1434 if (host->ops->init_card)
1435 host->ops->init_card(host, card);
1436
1437 /*
1438 * For native busses: set card RCA and quit open drain mode.
1439 */
1440 if (!mmc_host_is_spi(host)) {
1441 err = mmc_set_relative_addr(card);
1442 if (err)
1443 goto free_card;
1444
1445 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1446 }
1447
1448 if (!oldcard) {
1449 /*
1450 * Fetch CSD from card.
1451 */
1452 err = mmc_send_csd(card, card->raw_csd);
1453 if (err)
1454 goto free_card;
1455
1456 err = mmc_decode_csd(card);
1457 if (err)
1458 goto free_card;
1459 err = mmc_decode_cid(card);
1460 if (err)
1461 goto free_card;
1462 }
1463
1464 /*
1465 * handling only for cards supporting DSR and hosts requesting
1466 * DSR configuration
1467 */
1468 if (card->csd.dsr_imp && host->dsr_req)
1469 mmc_set_dsr(host);
1470
1471 /*
1472 * Select card, as all following commands rely on that.
1473 */
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1476 if (err)
1477 goto free_card;
1478 }
1479
1480 if (!oldcard) {
1481 /* Read extended CSD. */
1482 err = mmc_read_ext_csd(card);
1483 if (err)
1484 goto free_card;
1485
1486 /* If doing byte addressing, check if required to do sector
1487 * addressing. Handle the case of <2GB cards needing sector
1488 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1489 * ocr register has bit 30 set for sector addressing.
1490 */
1491 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
1492 mmc_card_set_blockaddr(card);
1493
1494 /* Erase size depends on CSD and Extended CSD */
1495 mmc_set_erase_size(card);
1496 }
1497
1498 /*
1499 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1500 * bit. This bit will be lost every time after a reset or power off.
1501 */
1502 if (card->ext_csd.partition_setting_completed ||
1503 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1504 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1505 EXT_CSD_ERASE_GROUP_DEF, 1,
1506 card->ext_csd.generic_cmd6_time);
1507
1508 if (err && err != -EBADMSG)
1509 goto free_card;
1510
1511 if (err) {
1512 err = 0;
1513 /*
1514 * Just disable enhanced area off & sz
1515 * will try to enable ERASE_GROUP_DEF
1516 * during next time reinit
1517 */
1518 card->ext_csd.enhanced_area_offset = -EINVAL;
1519 card->ext_csd.enhanced_area_size = -EINVAL;
1520 } else {
1521 card->ext_csd.erase_group_def = 1;
1522 /*
1523 * enable ERASE_GRP_DEF successfully.
1524 * This will affect the erase size, so
1525 * here need to reset erase size
1526 */
1527 mmc_set_erase_size(card);
1528 }
1529 }
1530
1531 /*
1532 * Ensure eMMC user default partition is enabled
1533 */
1534 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1535 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1536 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1537 card->ext_csd.part_config,
1538 card->ext_csd.part_time);
1539 if (err && err != -EBADMSG)
1540 goto free_card;
1541 }
1542
1543 /*
1544 * Enable power_off_notification byte in the ext_csd register
1545 */
1546 if (card->ext_csd.rev >= 6) {
1547 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1548 EXT_CSD_POWER_OFF_NOTIFICATION,
1549 EXT_CSD_POWER_ON,
1550 card->ext_csd.generic_cmd6_time);
1551 if (err && err != -EBADMSG)
1552 goto free_card;
1553
1554 /*
1555 * The err can be -EBADMSG or 0,
1556 * so check for success and update the flag
1557 */
1558 if (!err)
1559 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1560 }
1561
1562 /*
1563 * Select timing interface
1564 */
1565 err = mmc_select_timing(card);
1566 if (err)
1567 goto free_card;
1568
1569 if (mmc_card_hs200(card)) {
1570 err = mmc_hs200_tuning(card);
1571 if (err)
1572 goto free_card;
1573
1574 err = mmc_select_hs400(card);
1575 if (err)
1576 goto free_card;
1577 } else if (mmc_card_hs(card)) {
1578 /* Select the desired bus width optionally */
1579 err = mmc_select_bus_width(card);
1580 if (!IS_ERR_VALUE(err)) {
1581 err = mmc_select_hs_ddr(card);
1582 if (err)
1583 goto free_card;
1584 }
1585 }
1586
1587 /*
1588 * Choose the power class with selected bus interface
1589 */
1590 mmc_select_powerclass(card);
1591
1592 /*
1593 * Enable HPI feature (if supported)
1594 */
1595 if (card->ext_csd.hpi) {
1596 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1597 EXT_CSD_HPI_MGMT, 1,
1598 card->ext_csd.generic_cmd6_time);
1599 if (err && err != -EBADMSG)
1600 goto free_card;
1601 if (err) {
1602 pr_warn("%s: Enabling HPI failed\n",
1603 mmc_hostname(card->host));
1604 err = 0;
1605 } else
1606 card->ext_csd.hpi_en = 1;
1607 }
1608
1609 /*
1610 * If cache size is higher than 0, this indicates
1611 * the existence of cache and it can be turned on.
1612 */
1613 if (card->ext_csd.cache_size > 0) {
1614 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1615 EXT_CSD_CACHE_CTRL, 1,
1616 card->ext_csd.generic_cmd6_time);
1617 if (err && err != -EBADMSG)
1618 goto free_card;
1619
1620 /*
1621 * Only if no error, cache is turned on successfully.
1622 */
1623 if (err) {
1624 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1625 mmc_hostname(card->host), err);
1626 card->ext_csd.cache_ctrl = 0;
1627 err = 0;
1628 } else {
1629 card->ext_csd.cache_ctrl = 1;
1630 }
1631 }
1632
1633 /*
1634 * The mandatory minimum values are defined for packed command.
1635 * read: 5, write: 3
1636 */
1637 if (card->ext_csd.max_packed_writes >= 3 &&
1638 card->ext_csd.max_packed_reads >= 5 &&
1639 host->caps2 & MMC_CAP2_PACKED_CMD) {
1640 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1641 EXT_CSD_EXP_EVENTS_CTRL,
1642 EXT_CSD_PACKED_EVENT_EN,
1643 card->ext_csd.generic_cmd6_time);
1644 if (err && err != -EBADMSG)
1645 goto free_card;
1646 if (err) {
1647 pr_warn("%s: Enabling packed event failed\n",
1648 mmc_hostname(card->host));
1649 card->ext_csd.packed_event_en = 0;
1650 err = 0;
1651 } else {
1652 card->ext_csd.packed_event_en = 1;
1653 }
1654 }
1655
1656 if (!oldcard)
1657 host->card = card;
1658
1659 return 0;
1660
1661free_card:
1662 if (!oldcard)
1663 mmc_remove_card(card);
1664err:
1665 return err;
1666}
1667
1668static int mmc_can_sleep(struct mmc_card *card)
1669{
1670 return (card && card->ext_csd.rev >= 3);
1671}
1672
1673static int mmc_sleep(struct mmc_host *host)
1674{
1675 struct mmc_command cmd = {0};
1676 struct mmc_card *card = host->card;
1677 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1678 int err;
1679
1680 /* Re-tuning can't be done once the card is deselected */
1681 mmc_retune_hold(host);
1682
1683 err = mmc_deselect_cards(host);
1684 if (err)
1685 goto out_release;
1686
1687 cmd.opcode = MMC_SLEEP_AWAKE;
1688 cmd.arg = card->rca << 16;
1689 cmd.arg |= 1 << 15;
1690
1691 /*
1692 * If the max_busy_timeout of the host is specified, validate it against
1693 * the sleep cmd timeout. A failure means we need to prevent the host
1694 * from doing hw busy detection, which is done by converting to a R1
1695 * response instead of a R1B.
1696 */
1697 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1698 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699 } else {
1700 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1701 cmd.busy_timeout = timeout_ms;
1702 }
1703
1704 err = mmc_wait_for_cmd(host, &cmd, 0);
1705 if (err)
1706 goto out_release;
1707
1708 /*
1709 * If the host does not wait while the card signals busy, then we will
1710 * will have to wait the sleep/awake timeout. Note, we cannot use the
1711 * SEND_STATUS command to poll the status because that command (and most
1712 * others) is invalid while the card sleeps.
1713 */
1714 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1715 mmc_delay(timeout_ms);
1716
1717out_release:
1718 mmc_retune_release(host);
1719 return err;
1720}
1721
1722static int mmc_can_poweroff_notify(const struct mmc_card *card)
1723{
1724 return card &&
1725 mmc_card_mmc(card) &&
1726 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1727}
1728
1729static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1730{
1731 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1732 int err;
1733
1734 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1735 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1736 timeout = card->ext_csd.power_off_longtime;
1737
1738 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1739 EXT_CSD_POWER_OFF_NOTIFICATION,
1740 notify_type, timeout, true, false, false);
1741 if (err)
1742 pr_err("%s: Power Off Notification timed out, %u\n",
1743 mmc_hostname(card->host), timeout);
1744
1745 /* Disable the power off notification after the switch operation. */
1746 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1747
1748 return err;
1749}
1750
1751/*
1752 * Host is being removed. Free up the current card.
1753 */
1754static void mmc_remove(struct mmc_host *host)
1755{
1756 BUG_ON(!host);
1757 BUG_ON(!host->card);
1758
1759 mmc_remove_card(host->card);
1760 host->card = NULL;
1761}
1762
1763/*
1764 * Card detection - card is alive.
1765 */
1766static int mmc_alive(struct mmc_host *host)
1767{
1768 return mmc_send_status(host->card, NULL);
1769}
1770
1771/*
1772 * Card detection callback from host.
1773 */
1774static void mmc_detect(struct mmc_host *host)
1775{
1776 int err;
1777
1778 BUG_ON(!host);
1779 BUG_ON(!host->card);
1780
1781 mmc_get_card(host->card);
1782
1783 /*
1784 * Just check if our card has been removed.
1785 */
1786 err = _mmc_detect_card_removed(host);
1787
1788 mmc_put_card(host->card);
1789
1790 if (err) {
1791 mmc_remove(host);
1792
1793 mmc_claim_host(host);
1794 mmc_detach_bus(host);
1795 mmc_power_off(host);
1796 mmc_release_host(host);
1797 }
1798}
1799
1800static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1801{
1802 int err = 0;
1803 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1804 EXT_CSD_POWER_OFF_LONG;
1805
1806 BUG_ON(!host);
1807 BUG_ON(!host->card);
1808
1809 mmc_claim_host(host);
1810
1811 if (mmc_card_suspended(host->card))
1812 goto out;
1813
1814 if (mmc_card_doing_bkops(host->card)) {
1815 err = mmc_stop_bkops(host->card);
1816 if (err)
1817 goto out;
1818 }
1819
1820 err = mmc_flush_cache(host->card);
1821 if (err)
1822 goto out;
1823
1824 if (mmc_can_poweroff_notify(host->card) &&
1825 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1826 err = mmc_poweroff_notify(host->card, notify_type);
1827 else if (mmc_can_sleep(host->card))
1828 err = mmc_sleep(host);
1829 else if (!mmc_host_is_spi(host))
1830 err = mmc_deselect_cards(host);
1831
1832 if (!err) {
1833 mmc_power_off(host);
1834 mmc_card_set_suspended(host->card);
1835 }
1836out:
1837 mmc_release_host(host);
1838 return err;
1839}
1840
1841/*
1842 * Suspend callback
1843 */
1844static int mmc_suspend(struct mmc_host *host)
1845{
1846 int err;
1847
1848 err = _mmc_suspend(host, true);
1849 if (!err) {
1850 pm_runtime_disable(&host->card->dev);
1851 pm_runtime_set_suspended(&host->card->dev);
1852 }
1853
1854 return err;
1855}
1856
1857/*
1858 * This function tries to determine if the same card is still present
1859 * and, if so, restore all state to it.
1860 */
1861static int _mmc_resume(struct mmc_host *host)
1862{
1863 int err = 0;
1864
1865 BUG_ON(!host);
1866 BUG_ON(!host->card);
1867
1868 mmc_claim_host(host);
1869
1870 if (!mmc_card_suspended(host->card))
1871 goto out;
1872
1873 mmc_power_up(host, host->card->ocr);
1874 err = mmc_init_card(host, host->card->ocr, host->card);
1875 mmc_card_clr_suspended(host->card);
1876
1877out:
1878 mmc_release_host(host);
1879 return err;
1880}
1881
1882/*
1883 * Shutdown callback
1884 */
1885static int mmc_shutdown(struct mmc_host *host)
1886{
1887 int err = 0;
1888
1889 /*
1890 * In a specific case for poweroff notify, we need to resume the card
1891 * before we can shutdown it properly.
1892 */
1893 if (mmc_can_poweroff_notify(host->card) &&
1894 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1895 err = _mmc_resume(host);
1896
1897 if (!err)
1898 err = _mmc_suspend(host, false);
1899
1900 return err;
1901}
1902
1903/*
1904 * Callback for resume.
1905 */
1906static int mmc_resume(struct mmc_host *host)
1907{
1908 pm_runtime_enable(&host->card->dev);
1909 return 0;
1910}
1911
1912/*
1913 * Callback for runtime_suspend.
1914 */
1915static int mmc_runtime_suspend(struct mmc_host *host)
1916{
1917 int err;
1918
1919 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1920 return 0;
1921
1922 err = _mmc_suspend(host, true);
1923 if (err)
1924 pr_err("%s: error %d doing aggressive suspend\n",
1925 mmc_hostname(host), err);
1926
1927 return err;
1928}
1929
1930/*
1931 * Callback for runtime_resume.
1932 */
1933static int mmc_runtime_resume(struct mmc_host *host)
1934{
1935 int err;
1936
1937 err = _mmc_resume(host);
1938 if (err && err != -ENOMEDIUM)
1939 pr_err("%s: error %d doing runtime resume\n",
1940 mmc_hostname(host), err);
1941
1942 return 0;
1943}
1944
1945int mmc_can_reset(struct mmc_card *card)
1946{
1947 u8 rst_n_function;
1948
1949 rst_n_function = card->ext_csd.rst_n_function;
1950 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1951 return 0;
1952 return 1;
1953}
1954EXPORT_SYMBOL(mmc_can_reset);
1955
1956static int mmc_reset(struct mmc_host *host)
1957{
1958 struct mmc_card *card = host->card;
1959
1960 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1961 return -EOPNOTSUPP;
1962
1963 if (!mmc_can_reset(card))
1964 return -EOPNOTSUPP;
1965
1966 mmc_set_clock(host, host->f_init);
1967
1968 host->ops->hw_reset(host);
1969
1970 /* Set initial state and call mmc_set_ios */
1971 mmc_set_initial_state(host);
1972
1973 return mmc_init_card(host, card->ocr, card);
1974}
1975
1976static const struct mmc_bus_ops mmc_ops = {
1977 .remove = mmc_remove,
1978 .detect = mmc_detect,
1979 .suspend = mmc_suspend,
1980 .resume = mmc_resume,
1981 .runtime_suspend = mmc_runtime_suspend,
1982 .runtime_resume = mmc_runtime_resume,
1983 .alive = mmc_alive,
1984 .shutdown = mmc_shutdown,
1985 .reset = mmc_reset,
1986};
1987
1988/*
1989 * Starting point for MMC card init.
1990 */
1991int mmc_attach_mmc(struct mmc_host *host)
1992{
1993 int err;
1994 u32 ocr, rocr;
1995
1996 BUG_ON(!host);
1997 WARN_ON(!host->claimed);
1998
1999 /* Set correct bus mode for MMC before attempting attach */
2000 if (!mmc_host_is_spi(host))
2001 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2002
2003 err = mmc_send_op_cond(host, 0, &ocr);
2004 if (err)
2005 return err;
2006
2007 mmc_attach_bus(host, &mmc_ops);
2008 if (host->ocr_avail_mmc)
2009 host->ocr_avail = host->ocr_avail_mmc;
2010
2011 /*
2012 * We need to get OCR a different way for SPI.
2013 */
2014 if (mmc_host_is_spi(host)) {
2015 err = mmc_spi_read_ocr(host, 1, &ocr);
2016 if (err)
2017 goto err;
2018 }
2019
2020 rocr = mmc_select_voltage(host, ocr);
2021
2022 /*
2023 * Can we support the voltage of the card?
2024 */
2025 if (!rocr) {
2026 err = -EINVAL;
2027 goto err;
2028 }
2029
2030 /*
2031 * Detect and init the card.
2032 */
2033 err = mmc_init_card(host, rocr, NULL);
2034 if (err)
2035 goto err;
2036
2037 mmc_release_host(host);
2038 err = mmc_add_card(host->card);
2039 if (err)
2040 goto remove_card;
2041
2042 mmc_claim_host(host);
2043 return 0;
2044
2045remove_card:
2046 mmc_remove_card(host->card);
2047 mmc_claim_host(host);
2048 host->card = NULL;
2049err:
2050 mmc_detach_bus(host);
2051
2052 pr_err("%s: error %d whilst initialising MMC card\n",
2053 mmc_hostname(host), err);
2054
2055 return err;
2056}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15#include <linux/random.h>
16#include <linux/sysfs.h>
17
18#include <linux/mmc/host.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21
22#include "core.h"
23#include "card.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "quirks.h"
28#include "sd_ops.h"
29#include "pwrseq.h"
30
31#define DEFAULT_CMD6_TIMEOUT_MS 500
32#define MIN_CACHE_EN_TIMEOUT_MS 1600
33#define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
34
35static const unsigned int tran_exp[] = {
36 10000, 100000, 1000000, 10000000,
37 0, 0, 0, 0
38};
39
40static const unsigned char tran_mant[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
43};
44
45static const unsigned int taac_exp[] = {
46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
47};
48
49static const unsigned int taac_mant[] = {
50 0, 10, 12, 13, 15, 20, 25, 30,
51 35, 40, 45, 50, 55, 60, 70, 80,
52};
53
54#define UNSTUFF_BITS(resp,start,size) \
55 ({ \
56 const int __size = size; \
57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
58 const int __off = 3 - ((start) / 32); \
59 const int __shft = (start) & 31; \
60 u32 __res; \
61 \
62 __res = resp[__off] >> __shft; \
63 if (__size + __shft > 32) \
64 __res |= resp[__off-1] << ((32 - __shft) % 32); \
65 __res & __mask; \
66 })
67
68/*
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 */
71static int mmc_decode_cid(struct mmc_card *card)
72{
73 u32 *resp = card->raw_cid;
74
75 /*
76 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 * matter that not all of it is unique, it's just bonus entropy.
78 */
79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80
81 /*
82 * The selection of the format here is based upon published
83 * specs from sandisk and from what people have reported.
84 */
85 switch (card->csd.mmca_vsn) {
86 case 0: /* MMC v1.0 - v1.2 */
87 case 1: /* MMC v1.4 */
88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
99 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
101 break;
102
103 case 2: /* MMC v2.0 - v2.2 */
104 case 3: /* MMC v3.1 - v3.3 */
105 case 4: /* MMC v4 */
106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
116 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
118 break;
119
120 default:
121 pr_err("%s: card has unknown MMCA version %d\n",
122 mmc_hostname(card->host), card->csd.mmca_vsn);
123 return -EINVAL;
124 }
125
126 return 0;
127}
128
129static void mmc_set_erase_size(struct mmc_card *card)
130{
131 if (card->ext_csd.erase_group_def & 1)
132 card->erase_size = card->ext_csd.hc_erase_size;
133 else
134 card->erase_size = card->csd.erase_size;
135
136 mmc_init_erase(card);
137}
138
139/*
140 * Given a 128-bit response, decode to our card CSD structure.
141 */
142static int mmc_decode_csd(struct mmc_card *card)
143{
144 struct mmc_csd *csd = &card->csd;
145 unsigned int e, m, a, b;
146 u32 *resp = card->raw_csd;
147
148 /*
149 * We only understand CSD structure v1.1 and v1.2.
150 * v1.2 has extra information in bits 15, 11 and 10.
151 * We also support eMMC v4.4 & v4.41.
152 */
153 csd->structure = UNSTUFF_BITS(resp, 126, 2);
154 if (csd->structure == 0) {
155 pr_err("%s: unrecognised CSD structure version %d\n",
156 mmc_hostname(card->host), csd->structure);
157 return -EINVAL;
158 }
159
160 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
161 m = UNSTUFF_BITS(resp, 115, 4);
162 e = UNSTUFF_BITS(resp, 112, 3);
163 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
164 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
165
166 m = UNSTUFF_BITS(resp, 99, 4);
167 e = UNSTUFF_BITS(resp, 96, 3);
168 csd->max_dtr = tran_exp[e] * tran_mant[m];
169 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
170
171 e = UNSTUFF_BITS(resp, 47, 3);
172 m = UNSTUFF_BITS(resp, 62, 12);
173 csd->capacity = (1 + m) << (e + 2);
174
175 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
176 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
177 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
178 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
179 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
180 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
181 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
182 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
183
184 if (csd->write_blkbits >= 9) {
185 a = UNSTUFF_BITS(resp, 42, 5);
186 b = UNSTUFF_BITS(resp, 37, 5);
187 csd->erase_size = (a + 1) * (b + 1);
188 csd->erase_size <<= csd->write_blkbits - 9;
189 }
190
191 return 0;
192}
193
194static void mmc_select_card_type(struct mmc_card *card)
195{
196 struct mmc_host *host = card->host;
197 u8 card_type = card->ext_csd.raw_card_type;
198 u32 caps = host->caps, caps2 = host->caps2;
199 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
200 unsigned int avail_type = 0;
201
202 if (caps & MMC_CAP_MMC_HIGHSPEED &&
203 card_type & EXT_CSD_CARD_TYPE_HS_26) {
204 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
206 }
207
208 if (caps & MMC_CAP_MMC_HIGHSPEED &&
209 card_type & EXT_CSD_CARD_TYPE_HS_52) {
210 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
212 }
213
214 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
215 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
218 }
219
220 if (caps & MMC_CAP_1_2V_DDR &&
221 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
222 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
224 }
225
226 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
227 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
230 }
231
232 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
233 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
236 }
237
238 if (caps2 & MMC_CAP2_HS400_1_8V &&
239 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
240 hs200_max_dtr = MMC_HS200_MAX_DTR;
241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
242 }
243
244 if (caps2 & MMC_CAP2_HS400_1_2V &&
245 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
246 hs200_max_dtr = MMC_HS200_MAX_DTR;
247 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
248 }
249
250 if ((caps2 & MMC_CAP2_HS400_ES) &&
251 card->ext_csd.strobe_support &&
252 (avail_type & EXT_CSD_CARD_TYPE_HS400))
253 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
254
255 card->ext_csd.hs_max_dtr = hs_max_dtr;
256 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
257 card->mmc_avail_type = avail_type;
258}
259
260static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
261{
262 u8 hc_erase_grp_sz, hc_wp_grp_sz;
263
264 /*
265 * Disable these attributes by default
266 */
267 card->ext_csd.enhanced_area_offset = -EINVAL;
268 card->ext_csd.enhanced_area_size = -EINVAL;
269
270 /*
271 * Enhanced area feature support -- check whether the eMMC
272 * card has the Enhanced area enabled. If so, export enhanced
273 * area offset and size to user by adding sysfs interface.
274 */
275 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
276 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
277 if (card->ext_csd.partition_setting_completed) {
278 hc_erase_grp_sz =
279 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
280 hc_wp_grp_sz =
281 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
282
283 /*
284 * calculate the enhanced data area offset, in bytes
285 */
286 card->ext_csd.enhanced_area_offset =
287 (((unsigned long long)ext_csd[139]) << 24) +
288 (((unsigned long long)ext_csd[138]) << 16) +
289 (((unsigned long long)ext_csd[137]) << 8) +
290 (((unsigned long long)ext_csd[136]));
291 if (mmc_card_blockaddr(card))
292 card->ext_csd.enhanced_area_offset <<= 9;
293 /*
294 * calculate the enhanced data area size, in kilobytes
295 */
296 card->ext_csd.enhanced_area_size =
297 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
298 ext_csd[140];
299 card->ext_csd.enhanced_area_size *=
300 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
301 card->ext_csd.enhanced_area_size <<= 9;
302 } else {
303 pr_warn("%s: defines enhanced area without partition setting complete\n",
304 mmc_hostname(card->host));
305 }
306 }
307}
308
309static void mmc_part_add(struct mmc_card *card, u64 size,
310 unsigned int part_cfg, char *name, int idx, bool ro,
311 int area_type)
312{
313 card->part[card->nr_parts].size = size;
314 card->part[card->nr_parts].part_cfg = part_cfg;
315 sprintf(card->part[card->nr_parts].name, name, idx);
316 card->part[card->nr_parts].force_ro = ro;
317 card->part[card->nr_parts].area_type = area_type;
318 card->nr_parts++;
319}
320
321static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
322{
323 int idx;
324 u8 hc_erase_grp_sz, hc_wp_grp_sz;
325 u64 part_size;
326
327 /*
328 * General purpose partition feature support --
329 * If ext_csd has the size of general purpose partitions,
330 * set size, part_cfg, partition name in mmc_part.
331 */
332 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
333 EXT_CSD_PART_SUPPORT_PART_EN) {
334 hc_erase_grp_sz =
335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
336 hc_wp_grp_sz =
337 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
338
339 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
340 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
341 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
342 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
343 continue;
344 if (card->ext_csd.partition_setting_completed == 0) {
345 pr_warn("%s: has partition size defined without partition complete\n",
346 mmc_hostname(card->host));
347 break;
348 }
349 part_size =
350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
351 << 16) +
352 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
353 << 8) +
354 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
355 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
356 mmc_part_add(card, part_size << 19,
357 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
358 "gp%d", idx, false,
359 MMC_BLK_DATA_AREA_GP);
360 }
361 }
362}
363
364/* Minimum partition switch timeout in milliseconds */
365#define MMC_MIN_PART_SWITCH_TIME 300
366
367/*
368 * Decode extended CSD.
369 */
370static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
371{
372 int err = 0, idx;
373 u64 part_size;
374 struct device_node *np;
375 bool broken_hpi = false;
376
377 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
378 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
379 if (card->csd.structure == 3) {
380 if (card->ext_csd.raw_ext_csd_structure > 2) {
381 pr_err("%s: unrecognised EXT_CSD structure "
382 "version %d\n", mmc_hostname(card->host),
383 card->ext_csd.raw_ext_csd_structure);
384 err = -EINVAL;
385 goto out;
386 }
387 }
388
389 np = mmc_of_find_child_device(card->host, 0);
390 if (np && of_device_is_compatible(np, "mmc-card"))
391 broken_hpi = of_property_read_bool(np, "broken-hpi");
392 of_node_put(np);
393
394 /*
395 * The EXT_CSD format is meant to be forward compatible. As long
396 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
397 * are authorized, see JEDEC JESD84-B50 section B.8.
398 */
399 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
400
401 /* fixup device after ext_csd revision field is updated */
402 mmc_fixup_device(card, mmc_ext_csd_fixups);
403
404 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
405 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
406 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
407 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
408 if (card->ext_csd.rev >= 2) {
409 card->ext_csd.sectors =
410 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
411 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
412 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
413 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
414
415 /* Cards with density > 2GiB are sector addressed */
416 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
417 mmc_card_set_blockaddr(card);
418 }
419
420 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
421 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
422 mmc_select_card_type(card);
423
424 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.raw_erase_timeout_mult =
426 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
427 card->ext_csd.raw_hc_erase_grp_size =
428 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
429 card->ext_csd.raw_boot_mult =
430 ext_csd[EXT_CSD_BOOT_MULT];
431 if (card->ext_csd.rev >= 3) {
432 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
433 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
434
435 /* EXT_CSD value is in units of 10ms, but we store in ms */
436 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
437
438 /* Sleep / awake timeout in 100ns units */
439 if (sa_shift > 0 && sa_shift <= 0x17)
440 card->ext_csd.sa_timeout =
441 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
442 card->ext_csd.erase_group_def =
443 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
444 card->ext_csd.hc_erase_timeout = 300 *
445 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
446 card->ext_csd.hc_erase_size =
447 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
448
449 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
450
451 /*
452 * There are two boot regions of equal size, defined in
453 * multiples of 128K.
454 */
455 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
456 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
457 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
458 mmc_part_add(card, part_size,
459 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
460 "boot%d", idx, true,
461 MMC_BLK_DATA_AREA_BOOT);
462 }
463 }
464 }
465
466 card->ext_csd.raw_hc_erase_gap_size =
467 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
468 card->ext_csd.raw_sec_trim_mult =
469 ext_csd[EXT_CSD_SEC_TRIM_MULT];
470 card->ext_csd.raw_sec_erase_mult =
471 ext_csd[EXT_CSD_SEC_ERASE_MULT];
472 card->ext_csd.raw_sec_feature_support =
473 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
474 card->ext_csd.raw_trim_mult =
475 ext_csd[EXT_CSD_TRIM_MULT];
476 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
477 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
478 if (card->ext_csd.rev >= 4) {
479 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
480 EXT_CSD_PART_SETTING_COMPLETED)
481 card->ext_csd.partition_setting_completed = 1;
482 else
483 card->ext_csd.partition_setting_completed = 0;
484
485 mmc_manage_enhanced_area(card, ext_csd);
486
487 mmc_manage_gp_partitions(card, ext_csd);
488
489 card->ext_csd.sec_trim_mult =
490 ext_csd[EXT_CSD_SEC_TRIM_MULT];
491 card->ext_csd.sec_erase_mult =
492 ext_csd[EXT_CSD_SEC_ERASE_MULT];
493 card->ext_csd.sec_feature_support =
494 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
495 card->ext_csd.trim_timeout = 300 *
496 ext_csd[EXT_CSD_TRIM_MULT];
497
498 /*
499 * Note that the call to mmc_part_add above defaults to read
500 * only. If this default assumption is changed, the call must
501 * take into account the value of boot_locked below.
502 */
503 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
504 card->ext_csd.boot_ro_lockable = true;
505
506 /* Save power class values */
507 card->ext_csd.raw_pwr_cl_52_195 =
508 ext_csd[EXT_CSD_PWR_CL_52_195];
509 card->ext_csd.raw_pwr_cl_26_195 =
510 ext_csd[EXT_CSD_PWR_CL_26_195];
511 card->ext_csd.raw_pwr_cl_52_360 =
512 ext_csd[EXT_CSD_PWR_CL_52_360];
513 card->ext_csd.raw_pwr_cl_26_360 =
514 ext_csd[EXT_CSD_PWR_CL_26_360];
515 card->ext_csd.raw_pwr_cl_200_195 =
516 ext_csd[EXT_CSD_PWR_CL_200_195];
517 card->ext_csd.raw_pwr_cl_200_360 =
518 ext_csd[EXT_CSD_PWR_CL_200_360];
519 card->ext_csd.raw_pwr_cl_ddr_52_195 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
521 card->ext_csd.raw_pwr_cl_ddr_52_360 =
522 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
523 card->ext_csd.raw_pwr_cl_ddr_200_360 =
524 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
525 }
526
527 if (card->ext_csd.rev >= 5) {
528 /* Adjust production date as per JEDEC JESD84-B451 */
529 if (card->cid.year < 2010)
530 card->cid.year += 16;
531
532 /* check whether the eMMC card supports BKOPS */
533 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
534 card->ext_csd.bkops = 1;
535 card->ext_csd.man_bkops_en =
536 (ext_csd[EXT_CSD_BKOPS_EN] &
537 EXT_CSD_MANUAL_BKOPS_MASK);
538 card->ext_csd.raw_bkops_status =
539 ext_csd[EXT_CSD_BKOPS_STATUS];
540 if (card->ext_csd.man_bkops_en)
541 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
542 mmc_hostname(card->host));
543 card->ext_csd.auto_bkops_en =
544 (ext_csd[EXT_CSD_BKOPS_EN] &
545 EXT_CSD_AUTO_BKOPS_MASK);
546 if (card->ext_csd.auto_bkops_en)
547 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
548 mmc_hostname(card->host));
549 }
550
551 /* check whether the eMMC card supports HPI */
552 if (!mmc_card_broken_hpi(card) &&
553 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
554 card->ext_csd.hpi = 1;
555 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
556 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
557 else
558 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
559 /*
560 * Indicate the maximum timeout to close
561 * a command interrupted by HPI
562 */
563 card->ext_csd.out_of_int_time =
564 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
565 }
566
567 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
568 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
569
570 /*
571 * RPMB regions are defined in multiples of 128K.
572 */
573 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
574 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
575 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
576 EXT_CSD_PART_CONFIG_ACC_RPMB,
577 "rpmb", 0, false,
578 MMC_BLK_DATA_AREA_RPMB);
579 }
580 }
581
582 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
583 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
584 card->erased_byte = 0xFF;
585 else
586 card->erased_byte = 0x0;
587
588 /* eMMC v4.5 or later */
589 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
590 if (card->ext_csd.rev >= 6) {
591 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
592
593 card->ext_csd.generic_cmd6_time = 10 *
594 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
595 card->ext_csd.power_off_longtime = 10 *
596 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
597
598 card->ext_csd.cache_size =
599 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
600 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
601 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
602 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
603
604 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
605 card->ext_csd.data_sector_size = 4096;
606 else
607 card->ext_csd.data_sector_size = 512;
608
609 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
610 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
611 card->ext_csd.data_tag_unit_size =
612 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
613 (card->ext_csd.data_sector_size);
614 } else {
615 card->ext_csd.data_tag_unit_size = 0;
616 }
617
618 card->ext_csd.max_packed_writes =
619 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
620 card->ext_csd.max_packed_reads =
621 ext_csd[EXT_CSD_MAX_PACKED_READS];
622 } else {
623 card->ext_csd.data_sector_size = 512;
624 }
625
626 /*
627 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
628 * when accessing a specific field", so use it here if there is no
629 * PARTITION_SWITCH_TIME.
630 */
631 if (!card->ext_csd.part_time)
632 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
633 /* Some eMMC set the value too low so set a minimum */
634 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
635 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
636
637 /* eMMC v5 or later */
638 if (card->ext_csd.rev >= 7) {
639 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
640 MMC_FIRMWARE_LEN);
641 card->ext_csd.ffu_capable =
642 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
643 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
644
645 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
646 card->ext_csd.device_life_time_est_typ_a =
647 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
648 card->ext_csd.device_life_time_est_typ_b =
649 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
650 }
651
652 /* eMMC v5.1 or later */
653 if (card->ext_csd.rev >= 8) {
654 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
655 EXT_CSD_CMDQ_SUPPORTED;
656 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
657 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
658 /* Exclude inefficiently small queue depths */
659 if (card->ext_csd.cmdq_depth <= 2) {
660 card->ext_csd.cmdq_support = false;
661 card->ext_csd.cmdq_depth = 0;
662 }
663 if (card->ext_csd.cmdq_support) {
664 pr_debug("%s: Command Queue supported depth %u\n",
665 mmc_hostname(card->host),
666 card->ext_csd.cmdq_depth);
667 }
668 card->ext_csd.enhanced_rpmb_supported =
669 (card->ext_csd.rel_param &
670 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
671 }
672out:
673 return err;
674}
675
676static int mmc_read_ext_csd(struct mmc_card *card)
677{
678 u8 *ext_csd;
679 int err;
680
681 if (!mmc_can_ext_csd(card))
682 return 0;
683
684 err = mmc_get_ext_csd(card, &ext_csd);
685 if (err) {
686 /* If the host or the card can't do the switch,
687 * fail more gracefully. */
688 if ((err != -EINVAL)
689 && (err != -ENOSYS)
690 && (err != -EFAULT))
691 return err;
692
693 /*
694 * High capacity cards should have this "magic" size
695 * stored in their CSD.
696 */
697 if (card->csd.capacity == (4096 * 512)) {
698 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
699 mmc_hostname(card->host));
700 } else {
701 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
702 mmc_hostname(card->host));
703 err = 0;
704 }
705
706 return err;
707 }
708
709 err = mmc_decode_ext_csd(card, ext_csd);
710 kfree(ext_csd);
711 return err;
712}
713
714static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
715{
716 u8 *bw_ext_csd;
717 int err;
718
719 if (bus_width == MMC_BUS_WIDTH_1)
720 return 0;
721
722 err = mmc_get_ext_csd(card, &bw_ext_csd);
723 if (err)
724 return err;
725
726 /* only compare read only fields */
727 err = !((card->ext_csd.raw_partition_support ==
728 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
729 (card->ext_csd.raw_erased_mem_count ==
730 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
731 (card->ext_csd.rev ==
732 bw_ext_csd[EXT_CSD_REV]) &&
733 (card->ext_csd.raw_ext_csd_structure ==
734 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
735 (card->ext_csd.raw_card_type ==
736 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
737 (card->ext_csd.raw_s_a_timeout ==
738 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
739 (card->ext_csd.raw_hc_erase_gap_size ==
740 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
741 (card->ext_csd.raw_erase_timeout_mult ==
742 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
743 (card->ext_csd.raw_hc_erase_grp_size ==
744 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
745 (card->ext_csd.raw_sec_trim_mult ==
746 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
747 (card->ext_csd.raw_sec_erase_mult ==
748 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
749 (card->ext_csd.raw_sec_feature_support ==
750 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
751 (card->ext_csd.raw_trim_mult ==
752 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
753 (card->ext_csd.raw_sectors[0] ==
754 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
755 (card->ext_csd.raw_sectors[1] ==
756 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
757 (card->ext_csd.raw_sectors[2] ==
758 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
759 (card->ext_csd.raw_sectors[3] ==
760 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
761 (card->ext_csd.raw_pwr_cl_52_195 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
763 (card->ext_csd.raw_pwr_cl_26_195 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
765 (card->ext_csd.raw_pwr_cl_52_360 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
767 (card->ext_csd.raw_pwr_cl_26_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
769 (card->ext_csd.raw_pwr_cl_200_195 ==
770 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
771 (card->ext_csd.raw_pwr_cl_200_360 ==
772 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
773 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
774 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
775 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
776 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
777 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
778 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
779
780 if (err)
781 err = -EINVAL;
782
783 kfree(bw_ext_csd);
784 return err;
785}
786
787MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
788 card->raw_cid[2], card->raw_cid[3]);
789MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
790 card->raw_csd[2], card->raw_csd[3]);
791MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
792MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
793MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
794MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
795MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
796MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
797MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
798MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
799MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
800MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
801MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
802MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
803 card->ext_csd.device_life_time_est_typ_a,
804 card->ext_csd.device_life_time_est_typ_b);
805MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
806MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
807 card->ext_csd.enhanced_area_offset);
808MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
809MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
810MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
811 card->ext_csd.enhanced_rpmb_supported);
812MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
813MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
814MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
815MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
816
817static ssize_t mmc_fwrev_show(struct device *dev,
818 struct device_attribute *attr,
819 char *buf)
820{
821 struct mmc_card *card = mmc_dev_to_card(dev);
822
823 if (card->ext_csd.rev < 7)
824 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
825 else
826 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
827 card->ext_csd.fwrev);
828}
829
830static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
831
832static ssize_t mmc_dsr_show(struct device *dev,
833 struct device_attribute *attr,
834 char *buf)
835{
836 struct mmc_card *card = mmc_dev_to_card(dev);
837 struct mmc_host *host = card->host;
838
839 if (card->csd.dsr_imp && host->dsr_req)
840 return sysfs_emit(buf, "0x%x\n", host->dsr);
841 else
842 /* return default DSR value */
843 return sysfs_emit(buf, "0x%x\n", 0x404);
844}
845
846static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
847
848static struct attribute *mmc_std_attrs[] = {
849 &dev_attr_cid.attr,
850 &dev_attr_csd.attr,
851 &dev_attr_date.attr,
852 &dev_attr_erase_size.attr,
853 &dev_attr_preferred_erase_size.attr,
854 &dev_attr_fwrev.attr,
855 &dev_attr_ffu_capable.attr,
856 &dev_attr_hwrev.attr,
857 &dev_attr_manfid.attr,
858 &dev_attr_name.attr,
859 &dev_attr_oemid.attr,
860 &dev_attr_prv.attr,
861 &dev_attr_rev.attr,
862 &dev_attr_pre_eol_info.attr,
863 &dev_attr_life_time.attr,
864 &dev_attr_serial.attr,
865 &dev_attr_enhanced_area_offset.attr,
866 &dev_attr_enhanced_area_size.attr,
867 &dev_attr_raw_rpmb_size_mult.attr,
868 &dev_attr_enhanced_rpmb_supported.attr,
869 &dev_attr_rel_sectors.attr,
870 &dev_attr_ocr.attr,
871 &dev_attr_rca.attr,
872 &dev_attr_dsr.attr,
873 &dev_attr_cmdq_en.attr,
874 NULL,
875};
876ATTRIBUTE_GROUPS(mmc_std);
877
878static struct device_type mmc_type = {
879 .groups = mmc_std_groups,
880};
881
882/*
883 * Select the PowerClass for the current bus width
884 * If power class is defined for 4/8 bit bus in the
885 * extended CSD register, select it by executing the
886 * mmc_switch command.
887 */
888static int __mmc_select_powerclass(struct mmc_card *card,
889 unsigned int bus_width)
890{
891 struct mmc_host *host = card->host;
892 struct mmc_ext_csd *ext_csd = &card->ext_csd;
893 unsigned int pwrclass_val = 0;
894 int err = 0;
895
896 switch (1 << host->ios.vdd) {
897 case MMC_VDD_165_195:
898 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
899 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
900 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
901 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
902 ext_csd->raw_pwr_cl_52_195 :
903 ext_csd->raw_pwr_cl_ddr_52_195;
904 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
905 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
906 break;
907 case MMC_VDD_27_28:
908 case MMC_VDD_28_29:
909 case MMC_VDD_29_30:
910 case MMC_VDD_30_31:
911 case MMC_VDD_31_32:
912 case MMC_VDD_32_33:
913 case MMC_VDD_33_34:
914 case MMC_VDD_34_35:
915 case MMC_VDD_35_36:
916 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
917 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
918 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
919 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
920 ext_csd->raw_pwr_cl_52_360 :
921 ext_csd->raw_pwr_cl_ddr_52_360;
922 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
923 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
924 ext_csd->raw_pwr_cl_ddr_200_360 :
925 ext_csd->raw_pwr_cl_200_360;
926 break;
927 default:
928 pr_warn("%s: Voltage range not supported for power class\n",
929 mmc_hostname(host));
930 return -EINVAL;
931 }
932
933 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
934 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
935 EXT_CSD_PWR_CL_8BIT_SHIFT;
936 else
937 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
938 EXT_CSD_PWR_CL_4BIT_SHIFT;
939
940 /* If the power class is different from the default value */
941 if (pwrclass_val > 0) {
942 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
943 EXT_CSD_POWER_CLASS,
944 pwrclass_val,
945 card->ext_csd.generic_cmd6_time);
946 }
947
948 return err;
949}
950
951static int mmc_select_powerclass(struct mmc_card *card)
952{
953 struct mmc_host *host = card->host;
954 u32 bus_width, ext_csd_bits;
955 int err, ddr;
956
957 /* Power class selection is supported for versions >= 4.0 */
958 if (!mmc_can_ext_csd(card))
959 return 0;
960
961 bus_width = host->ios.bus_width;
962 /* Power class values are defined only for 4/8 bit bus */
963 if (bus_width == MMC_BUS_WIDTH_1)
964 return 0;
965
966 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
967 if (ddr)
968 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
969 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
970 else
971 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
972 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
973
974 err = __mmc_select_powerclass(card, ext_csd_bits);
975 if (err)
976 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
977 mmc_hostname(host), 1 << bus_width, ddr);
978
979 return err;
980}
981
982/*
983 * Set the bus speed for the selected speed mode.
984 */
985static void mmc_set_bus_speed(struct mmc_card *card)
986{
987 unsigned int max_dtr = (unsigned int)-1;
988
989 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
990 max_dtr > card->ext_csd.hs200_max_dtr)
991 max_dtr = card->ext_csd.hs200_max_dtr;
992 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
993 max_dtr = card->ext_csd.hs_max_dtr;
994 else if (max_dtr > card->csd.max_dtr)
995 max_dtr = card->csd.max_dtr;
996
997 mmc_set_clock(card->host, max_dtr);
998}
999
1000/*
1001 * Select the bus width amoung 4-bit and 8-bit(SDR).
1002 * If the bus width is changed successfully, return the selected width value.
1003 * Zero is returned instead of error value if the wide width is not supported.
1004 */
1005static int mmc_select_bus_width(struct mmc_card *card)
1006{
1007 static unsigned ext_csd_bits[] = {
1008 EXT_CSD_BUS_WIDTH_8,
1009 EXT_CSD_BUS_WIDTH_4,
1010 };
1011 static unsigned bus_widths[] = {
1012 MMC_BUS_WIDTH_8,
1013 MMC_BUS_WIDTH_4,
1014 };
1015 struct mmc_host *host = card->host;
1016 unsigned idx, bus_width = 0;
1017 int err = 0;
1018
1019 if (!mmc_can_ext_csd(card) ||
1020 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1021 return 0;
1022
1023 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1024
1025 /*
1026 * Unlike SD, MMC cards dont have a configuration register to notify
1027 * supported bus width. So bus test command should be run to identify
1028 * the supported bus width or compare the ext csd values of current
1029 * bus width and ext csd values of 1 bit mode read earlier.
1030 */
1031 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1032 /*
1033 * Host is capable of 8bit transfer, then switch
1034 * the device to work in 8bit transfer mode. If the
1035 * mmc switch command returns error then switch to
1036 * 4bit transfer mode. On success set the corresponding
1037 * bus width on the host.
1038 */
1039 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1040 EXT_CSD_BUS_WIDTH,
1041 ext_csd_bits[idx],
1042 card->ext_csd.generic_cmd6_time);
1043 if (err)
1044 continue;
1045
1046 bus_width = bus_widths[idx];
1047 mmc_set_bus_width(host, bus_width);
1048
1049 /*
1050 * If controller can't handle bus width test,
1051 * compare ext_csd previously read in 1 bit mode
1052 * against ext_csd at new bus width
1053 */
1054 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1055 err = mmc_compare_ext_csds(card, bus_width);
1056 else
1057 err = mmc_bus_test(card, bus_width);
1058
1059 if (!err) {
1060 err = bus_width;
1061 break;
1062 } else {
1063 pr_warn("%s: switch to bus width %d failed\n",
1064 mmc_hostname(host), 1 << bus_width);
1065 }
1066 }
1067
1068 return err;
1069}
1070
1071/*
1072 * Switch to the high-speed mode
1073 */
1074static int mmc_select_hs(struct mmc_card *card)
1075{
1076 int err;
1077
1078 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1079 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1080 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1081 true, true, MMC_CMD_RETRIES);
1082 if (err)
1083 pr_warn("%s: switch to high-speed failed, err:%d\n",
1084 mmc_hostname(card->host), err);
1085
1086 return err;
1087}
1088
1089/*
1090 * Activate wide bus and DDR if supported.
1091 */
1092static int mmc_select_hs_ddr(struct mmc_card *card)
1093{
1094 struct mmc_host *host = card->host;
1095 u32 bus_width, ext_csd_bits;
1096 int err = 0;
1097
1098 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1099 return 0;
1100
1101 bus_width = host->ios.bus_width;
1102 if (bus_width == MMC_BUS_WIDTH_1)
1103 return 0;
1104
1105 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1106 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1107
1108 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109 EXT_CSD_BUS_WIDTH,
1110 ext_csd_bits,
1111 card->ext_csd.generic_cmd6_time,
1112 MMC_TIMING_MMC_DDR52,
1113 true, true, MMC_CMD_RETRIES);
1114 if (err) {
1115 pr_err("%s: switch to bus width %d ddr failed\n",
1116 mmc_hostname(host), 1 << bus_width);
1117 return err;
1118 }
1119
1120 /*
1121 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1122 * signaling.
1123 *
1124 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1125 *
1126 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1127 * in the JEDEC spec for DDR.
1128 *
1129 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1130 * host controller can support this, like some of the SDHCI
1131 * controller which connect to an eMMC device. Some of these
1132 * host controller still needs to use 1.8v vccq for supporting
1133 * DDR mode.
1134 *
1135 * So the sequence will be:
1136 * if (host and device can both support 1.2v IO)
1137 * use 1.2v IO;
1138 * else if (host and device can both support 1.8v IO)
1139 * use 1.8v IO;
1140 * so if host and device can only support 3.3v IO, this is the
1141 * last choice.
1142 *
1143 * WARNING: eMMC rules are NOT the same as SD DDR
1144 */
1145 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1147 if (!err)
1148 return 0;
1149 }
1150
1151 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1152 host->caps & MMC_CAP_1_8V_DDR)
1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1154
1155 /* make sure vccq is 3.3v after switching disaster */
1156 if (err)
1157 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1158
1159 return err;
1160}
1161
1162static int mmc_select_hs400(struct mmc_card *card)
1163{
1164 struct mmc_host *host = card->host;
1165 unsigned int max_dtr;
1166 int err = 0;
1167 u8 val;
1168
1169 /*
1170 * HS400 mode requires 8-bit bus width
1171 */
1172 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1173 host->ios.bus_width == MMC_BUS_WIDTH_8))
1174 return 0;
1175
1176 /* Switch card to HS mode */
1177 val = EXT_CSD_TIMING_HS;
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1179 EXT_CSD_HS_TIMING, val,
1180 card->ext_csd.generic_cmd6_time, 0,
1181 false, true, MMC_CMD_RETRIES);
1182 if (err) {
1183 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1184 mmc_hostname(host), err);
1185 return err;
1186 }
1187
1188 /* Prepare host to downgrade to HS timing */
1189 if (host->ops->hs400_downgrade)
1190 host->ops->hs400_downgrade(host);
1191
1192 /* Set host controller to HS timing */
1193 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1194
1195 /* Reduce frequency to HS frequency */
1196 max_dtr = card->ext_csd.hs_max_dtr;
1197 mmc_set_clock(host, max_dtr);
1198
1199 err = mmc_switch_status(card, true);
1200 if (err)
1201 goto out_err;
1202
1203 if (host->ops->hs400_prepare_ddr)
1204 host->ops->hs400_prepare_ddr(host);
1205
1206 /* Switch card to DDR */
1207 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1208 EXT_CSD_BUS_WIDTH,
1209 EXT_CSD_DDR_BUS_WIDTH_8,
1210 card->ext_csd.generic_cmd6_time);
1211 if (err) {
1212 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1213 mmc_hostname(host), err);
1214 return err;
1215 }
1216
1217 /* Switch card to HS400 */
1218 val = EXT_CSD_TIMING_HS400 |
1219 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1221 EXT_CSD_HS_TIMING, val,
1222 card->ext_csd.generic_cmd6_time, 0,
1223 false, true, MMC_CMD_RETRIES);
1224 if (err) {
1225 pr_err("%s: switch to hs400 failed, err:%d\n",
1226 mmc_hostname(host), err);
1227 return err;
1228 }
1229
1230 /* Set host controller to HS400 timing and frequency */
1231 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1232 mmc_set_bus_speed(card);
1233
1234 if (host->ops->execute_hs400_tuning) {
1235 mmc_retune_disable(host);
1236 err = host->ops->execute_hs400_tuning(host, card);
1237 mmc_retune_enable(host);
1238 if (err)
1239 goto out_err;
1240 }
1241
1242 if (host->ops->hs400_complete)
1243 host->ops->hs400_complete(host);
1244
1245 err = mmc_switch_status(card, true);
1246 if (err)
1247 goto out_err;
1248
1249 return 0;
1250
1251out_err:
1252 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1253 __func__, err);
1254 return err;
1255}
1256
1257int mmc_hs200_to_hs400(struct mmc_card *card)
1258{
1259 return mmc_select_hs400(card);
1260}
1261
1262int mmc_hs400_to_hs200(struct mmc_card *card)
1263{
1264 struct mmc_host *host = card->host;
1265 unsigned int max_dtr;
1266 int err;
1267 u8 val;
1268
1269 /* Reduce frequency to HS */
1270 max_dtr = card->ext_csd.hs_max_dtr;
1271 mmc_set_clock(host, max_dtr);
1272
1273 /* Switch HS400 to HS DDR */
1274 val = EXT_CSD_TIMING_HS;
1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276 val, card->ext_csd.generic_cmd6_time, 0,
1277 false, true, MMC_CMD_RETRIES);
1278 if (err)
1279 goto out_err;
1280
1281 if (host->ops->hs400_downgrade)
1282 host->ops->hs400_downgrade(host);
1283
1284 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1285
1286 err = mmc_switch_status(card, true);
1287 if (err)
1288 goto out_err;
1289
1290 /* Switch HS DDR to HS */
1291 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1292 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1293 0, false, true, MMC_CMD_RETRIES);
1294 if (err)
1295 goto out_err;
1296
1297 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1298
1299 err = mmc_switch_status(card, true);
1300 if (err)
1301 goto out_err;
1302
1303 /* Switch HS to HS200 */
1304 val = EXT_CSD_TIMING_HS200 |
1305 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1306 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1307 val, card->ext_csd.generic_cmd6_time, 0,
1308 false, true, MMC_CMD_RETRIES);
1309 if (err)
1310 goto out_err;
1311
1312 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1313
1314 /*
1315 * For HS200, CRC errors are not a reliable way to know the switch
1316 * failed. If there really is a problem, we would expect tuning will
1317 * fail and the result ends up the same.
1318 */
1319 err = mmc_switch_status(card, false);
1320 if (err)
1321 goto out_err;
1322
1323 mmc_set_bus_speed(card);
1324
1325 /* Prepare tuning for HS400 mode. */
1326 if (host->ops->prepare_hs400_tuning)
1327 host->ops->prepare_hs400_tuning(host, &host->ios);
1328
1329 return 0;
1330
1331out_err:
1332 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1333 __func__, err);
1334 return err;
1335}
1336
1337static void mmc_select_driver_type(struct mmc_card *card)
1338{
1339 int card_drv_type, drive_strength, drv_type = 0;
1340 int fixed_drv_type = card->host->fixed_drv_type;
1341
1342 card_drv_type = card->ext_csd.raw_driver_strength |
1343 mmc_driver_type_mask(0);
1344
1345 if (fixed_drv_type >= 0)
1346 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1347 ? fixed_drv_type : 0;
1348 else
1349 drive_strength = mmc_select_drive_strength(card,
1350 card->ext_csd.hs200_max_dtr,
1351 card_drv_type, &drv_type);
1352
1353 card->drive_strength = drive_strength;
1354
1355 if (drv_type)
1356 mmc_set_driver_type(card->host, drv_type);
1357}
1358
1359static int mmc_select_hs400es(struct mmc_card *card)
1360{
1361 struct mmc_host *host = card->host;
1362 int err = -EINVAL;
1363 u8 val;
1364
1365 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1366 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1367
1368 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1369 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1370
1371 /* If fails try again during next card power cycle */
1372 if (err)
1373 goto out_err;
1374
1375 err = mmc_select_bus_width(card);
1376 if (err != MMC_BUS_WIDTH_8) {
1377 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1378 mmc_hostname(host), err);
1379 err = err < 0 ? err : -ENOTSUPP;
1380 goto out_err;
1381 }
1382
1383 /* Switch card to HS mode */
1384 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1385 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1386 card->ext_csd.generic_cmd6_time, 0,
1387 false, true, MMC_CMD_RETRIES);
1388 if (err) {
1389 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1390 mmc_hostname(host), err);
1391 goto out_err;
1392 }
1393
1394 /*
1395 * Bump to HS timing and frequency. Some cards don't handle
1396 * SEND_STATUS reliably at the initial frequency.
1397 */
1398 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1399 mmc_set_bus_speed(card);
1400
1401 err = mmc_switch_status(card, true);
1402 if (err)
1403 goto out_err;
1404
1405 /* Switch card to DDR with strobe bit */
1406 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1407 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1408 EXT_CSD_BUS_WIDTH,
1409 val,
1410 card->ext_csd.generic_cmd6_time);
1411 if (err) {
1412 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1413 mmc_hostname(host), err);
1414 goto out_err;
1415 }
1416
1417 mmc_select_driver_type(card);
1418
1419 /* Switch card to HS400 */
1420 val = EXT_CSD_TIMING_HS400 |
1421 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1422 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1423 EXT_CSD_HS_TIMING, val,
1424 card->ext_csd.generic_cmd6_time, 0,
1425 false, true, MMC_CMD_RETRIES);
1426 if (err) {
1427 pr_err("%s: switch to hs400es failed, err:%d\n",
1428 mmc_hostname(host), err);
1429 goto out_err;
1430 }
1431
1432 /* Set host controller to HS400 timing and frequency */
1433 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1434
1435 /* Controller enable enhanced strobe function */
1436 host->ios.enhanced_strobe = true;
1437 if (host->ops->hs400_enhanced_strobe)
1438 host->ops->hs400_enhanced_strobe(host, &host->ios);
1439
1440 err = mmc_switch_status(card, true);
1441 if (err)
1442 goto out_err;
1443
1444 return 0;
1445
1446out_err:
1447 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1448 __func__, err);
1449 return err;
1450}
1451
1452/*
1453 * For device supporting HS200 mode, the following sequence
1454 * should be done before executing the tuning process.
1455 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1456 * 2. switch to HS200 mode
1457 * 3. set the clock to > 52Mhz and <=200MHz
1458 */
1459static int mmc_select_hs200(struct mmc_card *card)
1460{
1461 struct mmc_host *host = card->host;
1462 unsigned int old_timing, old_signal_voltage, old_clock;
1463 int err = -EINVAL;
1464 u8 val;
1465
1466 old_signal_voltage = host->ios.signal_voltage;
1467 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1468 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1469
1470 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1471 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1472
1473 /* If fails try again during next card power cycle */
1474 if (err)
1475 return err;
1476
1477 mmc_select_driver_type(card);
1478
1479 /*
1480 * Set the bus width(4 or 8) with host's support and
1481 * switch to HS200 mode if bus width is set successfully.
1482 */
1483 err = mmc_select_bus_width(card);
1484 if (err > 0) {
1485 val = EXT_CSD_TIMING_HS200 |
1486 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1487 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1488 EXT_CSD_HS_TIMING, val,
1489 card->ext_csd.generic_cmd6_time, 0,
1490 false, true, MMC_CMD_RETRIES);
1491 if (err)
1492 goto err;
1493
1494 /*
1495 * Bump to HS timing and frequency. Some cards don't handle
1496 * SEND_STATUS reliably at the initial frequency.
1497 * NB: We can't move to full (HS200) speeds until after we've
1498 * successfully switched over.
1499 */
1500 old_timing = host->ios.timing;
1501 old_clock = host->ios.clock;
1502 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1503 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1504
1505 /*
1506 * For HS200, CRC errors are not a reliable way to know the
1507 * switch failed. If there really is a problem, we would expect
1508 * tuning will fail and the result ends up the same.
1509 */
1510 err = mmc_switch_status(card, false);
1511
1512 /*
1513 * mmc_select_timing() assumes timing has not changed if
1514 * it is a switch error.
1515 */
1516 if (err == -EBADMSG) {
1517 mmc_set_clock(host, old_clock);
1518 mmc_set_timing(host, old_timing);
1519 }
1520 }
1521err:
1522 if (err) {
1523 /* fall back to the old signal voltage, if fails report error */
1524 if (mmc_set_signal_voltage(host, old_signal_voltage))
1525 err = -EIO;
1526
1527 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1528 __func__, err);
1529 }
1530 return err;
1531}
1532
1533/*
1534 * Activate High Speed, HS200 or HS400ES mode if supported.
1535 */
1536static int mmc_select_timing(struct mmc_card *card)
1537{
1538 int err = 0;
1539
1540 if (!mmc_can_ext_csd(card))
1541 goto bus_speed;
1542
1543 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1544 err = mmc_select_hs400es(card);
1545 goto out;
1546 }
1547
1548 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1549 err = mmc_select_hs200(card);
1550 if (err == -EBADMSG)
1551 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1552 else
1553 goto out;
1554 }
1555
1556 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1557 err = mmc_select_hs(card);
1558
1559out:
1560 if (err && err != -EBADMSG)
1561 return err;
1562
1563bus_speed:
1564 /*
1565 * Set the bus speed to the selected bus timing.
1566 * If timing is not selected, backward compatible is the default.
1567 */
1568 mmc_set_bus_speed(card);
1569 return 0;
1570}
1571
1572/*
1573 * Execute tuning sequence to seek the proper bus operating
1574 * conditions for HS200 and HS400, which sends CMD21 to the device.
1575 */
1576static int mmc_hs200_tuning(struct mmc_card *card)
1577{
1578 struct mmc_host *host = card->host;
1579
1580 /*
1581 * Timing should be adjusted to the HS400 target
1582 * operation frequency for tuning process
1583 */
1584 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1585 host->ios.bus_width == MMC_BUS_WIDTH_8)
1586 if (host->ops->prepare_hs400_tuning)
1587 host->ops->prepare_hs400_tuning(host, &host->ios);
1588
1589 return mmc_execute_tuning(card);
1590}
1591
1592/*
1593 * Handle the detection and initialisation of a card.
1594 *
1595 * In the case of a resume, "oldcard" will contain the card
1596 * we're trying to reinitialise.
1597 */
1598static int mmc_init_card(struct mmc_host *host, u32 ocr,
1599 struct mmc_card *oldcard)
1600{
1601 struct mmc_card *card;
1602 int err;
1603 u32 cid[4];
1604 u32 rocr;
1605
1606 WARN_ON(!host->claimed);
1607
1608 /* Set correct bus mode for MMC before attempting init */
1609 if (!mmc_host_is_spi(host))
1610 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1611
1612 /*
1613 * Since we're changing the OCR value, we seem to
1614 * need to tell some cards to go back to the idle
1615 * state. We wait 1ms to give cards time to
1616 * respond.
1617 * mmc_go_idle is needed for eMMC that are asleep
1618 */
1619 mmc_go_idle(host);
1620
1621 /* The extra bit indicates that we support high capacity */
1622 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1623 if (err)
1624 goto err;
1625
1626 /*
1627 * For SPI, enable CRC as appropriate.
1628 */
1629 if (mmc_host_is_spi(host)) {
1630 err = mmc_spi_set_crc(host, use_spi_crc);
1631 if (err)
1632 goto err;
1633 }
1634
1635 /*
1636 * Fetch CID from card.
1637 */
1638 err = mmc_send_cid(host, cid);
1639 if (err)
1640 goto err;
1641
1642 if (oldcard) {
1643 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1644 pr_debug("%s: Perhaps the card was replaced\n",
1645 mmc_hostname(host));
1646 err = -ENOENT;
1647 goto err;
1648 }
1649
1650 card = oldcard;
1651 } else {
1652 /*
1653 * Allocate card structure.
1654 */
1655 card = mmc_alloc_card(host, &mmc_type);
1656 if (IS_ERR(card)) {
1657 err = PTR_ERR(card);
1658 goto err;
1659 }
1660
1661 card->ocr = ocr;
1662 card->type = MMC_TYPE_MMC;
1663 card->rca = 1;
1664 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1665 }
1666
1667 /*
1668 * Call the optional HC's init_card function to handle quirks.
1669 */
1670 if (host->ops->init_card)
1671 host->ops->init_card(host, card);
1672
1673 /*
1674 * For native busses: set card RCA and quit open drain mode.
1675 */
1676 if (!mmc_host_is_spi(host)) {
1677 err = mmc_set_relative_addr(card);
1678 if (err)
1679 goto free_card;
1680
1681 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1682 }
1683
1684 if (!oldcard) {
1685 /*
1686 * Fetch CSD from card.
1687 */
1688 err = mmc_send_csd(card, card->raw_csd);
1689 if (err)
1690 goto free_card;
1691
1692 err = mmc_decode_csd(card);
1693 if (err)
1694 goto free_card;
1695 err = mmc_decode_cid(card);
1696 if (err)
1697 goto free_card;
1698 }
1699
1700 /*
1701 * handling only for cards supporting DSR and hosts requesting
1702 * DSR configuration
1703 */
1704 if (card->csd.dsr_imp && host->dsr_req)
1705 mmc_set_dsr(host);
1706
1707 /*
1708 * Select card, as all following commands rely on that.
1709 */
1710 if (!mmc_host_is_spi(host)) {
1711 err = mmc_select_card(card);
1712 if (err)
1713 goto free_card;
1714 }
1715
1716 if (!oldcard) {
1717 /* Read extended CSD. */
1718 err = mmc_read_ext_csd(card);
1719 if (err)
1720 goto free_card;
1721
1722 /*
1723 * If doing byte addressing, check if required to do sector
1724 * addressing. Handle the case of <2GB cards needing sector
1725 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1726 * ocr register has bit 30 set for sector addressing.
1727 */
1728 if (rocr & BIT(30))
1729 mmc_card_set_blockaddr(card);
1730
1731 /* Erase size depends on CSD and Extended CSD */
1732 mmc_set_erase_size(card);
1733 }
1734
1735 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1736 if (card->ext_csd.rev >= 3) {
1737 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1738 EXT_CSD_ERASE_GROUP_DEF, 1,
1739 card->ext_csd.generic_cmd6_time);
1740
1741 if (err && err != -EBADMSG)
1742 goto free_card;
1743
1744 if (err) {
1745 /*
1746 * Just disable enhanced area off & sz
1747 * will try to enable ERASE_GROUP_DEF
1748 * during next time reinit
1749 */
1750 card->ext_csd.enhanced_area_offset = -EINVAL;
1751 card->ext_csd.enhanced_area_size = -EINVAL;
1752 } else {
1753 card->ext_csd.erase_group_def = 1;
1754 /*
1755 * enable ERASE_GRP_DEF successfully.
1756 * This will affect the erase size, so
1757 * here need to reset erase size
1758 */
1759 mmc_set_erase_size(card);
1760 }
1761 }
1762
1763 /*
1764 * Ensure eMMC user default partition is enabled
1765 */
1766 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1767 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1768 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1769 card->ext_csd.part_config,
1770 card->ext_csd.part_time);
1771 if (err && err != -EBADMSG)
1772 goto free_card;
1773 }
1774
1775 /*
1776 * Enable power_off_notification byte in the ext_csd register
1777 */
1778 if (card->ext_csd.rev >= 6) {
1779 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1780 EXT_CSD_POWER_OFF_NOTIFICATION,
1781 EXT_CSD_POWER_ON,
1782 card->ext_csd.generic_cmd6_time);
1783 if (err && err != -EBADMSG)
1784 goto free_card;
1785
1786 /*
1787 * The err can be -EBADMSG or 0,
1788 * so check for success and update the flag
1789 */
1790 if (!err)
1791 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1792 }
1793
1794 /* set erase_arg */
1795 if (mmc_can_discard(card))
1796 card->erase_arg = MMC_DISCARD_ARG;
1797 else if (mmc_can_trim(card))
1798 card->erase_arg = MMC_TRIM_ARG;
1799 else
1800 card->erase_arg = MMC_ERASE_ARG;
1801
1802 /*
1803 * Select timing interface
1804 */
1805 err = mmc_select_timing(card);
1806 if (err)
1807 goto free_card;
1808
1809 if (mmc_card_hs200(card)) {
1810 host->doing_init_tune = 1;
1811
1812 err = mmc_hs200_tuning(card);
1813 if (!err)
1814 err = mmc_select_hs400(card);
1815
1816 host->doing_init_tune = 0;
1817
1818 if (err)
1819 goto free_card;
1820
1821 } else if (!mmc_card_hs400es(card)) {
1822 /* Select the desired bus width optionally */
1823 err = mmc_select_bus_width(card);
1824 if (err > 0 && mmc_card_hs(card)) {
1825 err = mmc_select_hs_ddr(card);
1826 if (err)
1827 goto free_card;
1828 }
1829 }
1830
1831 /*
1832 * Choose the power class with selected bus interface
1833 */
1834 mmc_select_powerclass(card);
1835
1836 /*
1837 * Enable HPI feature (if supported)
1838 */
1839 if (card->ext_csd.hpi) {
1840 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1841 EXT_CSD_HPI_MGMT, 1,
1842 card->ext_csd.generic_cmd6_time);
1843 if (err && err != -EBADMSG)
1844 goto free_card;
1845 if (err) {
1846 pr_warn("%s: Enabling HPI failed\n",
1847 mmc_hostname(card->host));
1848 card->ext_csd.hpi_en = 0;
1849 } else {
1850 card->ext_csd.hpi_en = 1;
1851 }
1852 }
1853
1854 /*
1855 * If cache size is higher than 0, this indicates the existence of cache
1856 * and it can be turned on. Note that some eMMCs from Micron has been
1857 * reported to need ~800 ms timeout, while enabling the cache after
1858 * sudden power failure tests. Let's extend the timeout to a minimum of
1859 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1860 */
1861 if (card->ext_csd.cache_size > 0) {
1862 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1863
1864 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1865 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1866 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1867 if (err && err != -EBADMSG)
1868 goto free_card;
1869
1870 /*
1871 * Only if no error, cache is turned on successfully.
1872 */
1873 if (err) {
1874 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1875 mmc_hostname(card->host), err);
1876 card->ext_csd.cache_ctrl = 0;
1877 } else {
1878 card->ext_csd.cache_ctrl = 1;
1879 }
1880 }
1881
1882 /*
1883 * Enable Command Queue if supported. Note that Packed Commands cannot
1884 * be used with Command Queue.
1885 */
1886 card->ext_csd.cmdq_en = false;
1887 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1888 err = mmc_cmdq_enable(card);
1889 if (err && err != -EBADMSG)
1890 goto free_card;
1891 if (err) {
1892 pr_warn("%s: Enabling CMDQ failed\n",
1893 mmc_hostname(card->host));
1894 card->ext_csd.cmdq_support = false;
1895 card->ext_csd.cmdq_depth = 0;
1896 }
1897 }
1898 /*
1899 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1900 * disabled for a time, so a flag is needed to indicate to re-enable the
1901 * Command Queue.
1902 */
1903 card->reenable_cmdq = card->ext_csd.cmdq_en;
1904
1905 if (host->cqe_ops && !host->cqe_enabled) {
1906 err = host->cqe_ops->cqe_enable(host, card);
1907 if (!err) {
1908 host->cqe_enabled = true;
1909
1910 if (card->ext_csd.cmdq_en) {
1911 pr_info("%s: Command Queue Engine enabled\n",
1912 mmc_hostname(host));
1913 } else {
1914 host->hsq_enabled = true;
1915 pr_info("%s: Host Software Queue enabled\n",
1916 mmc_hostname(host));
1917 }
1918 }
1919 }
1920
1921 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1922 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1923 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1924 mmc_hostname(host));
1925 err = -EINVAL;
1926 goto free_card;
1927 }
1928
1929 if (!oldcard)
1930 host->card = card;
1931
1932 return 0;
1933
1934free_card:
1935 if (!oldcard)
1936 mmc_remove_card(card);
1937err:
1938 return err;
1939}
1940
1941static int mmc_can_sleep(struct mmc_card *card)
1942{
1943 return card->ext_csd.rev >= 3;
1944}
1945
1946static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1947{
1948 struct mmc_host *host = cb_data;
1949
1950 *busy = host->ops->card_busy(host);
1951 return 0;
1952}
1953
1954static int mmc_sleep(struct mmc_host *host)
1955{
1956 struct mmc_command cmd = {};
1957 struct mmc_card *card = host->card;
1958 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1959 bool use_r1b_resp;
1960 int err;
1961
1962 /* Re-tuning can't be done once the card is deselected */
1963 mmc_retune_hold(host);
1964
1965 err = mmc_deselect_cards(host);
1966 if (err)
1967 goto out_release;
1968
1969 cmd.opcode = MMC_SLEEP_AWAKE;
1970 cmd.arg = card->rca << 16;
1971 cmd.arg |= 1 << 15;
1972 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1973
1974 err = mmc_wait_for_cmd(host, &cmd, 0);
1975 if (err)
1976 goto out_release;
1977
1978 /*
1979 * If the host does not wait while the card signals busy, then we can
1980 * try to poll, but only if the host supports HW polling, as the
1981 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1982 * to wait the sleep/awake timeout.
1983 */
1984 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1985 goto out_release;
1986
1987 if (!host->ops->card_busy) {
1988 mmc_delay(timeout_ms);
1989 goto out_release;
1990 }
1991
1992 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1993
1994out_release:
1995 mmc_retune_release(host);
1996 return err;
1997}
1998
1999static int mmc_can_poweroff_notify(const struct mmc_card *card)
2000{
2001 return card &&
2002 mmc_card_mmc(card) &&
2003 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2004}
2005
2006static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2007{
2008 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2009 int err;
2010
2011 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2012 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2013 timeout = card->ext_csd.power_off_longtime;
2014
2015 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2016 EXT_CSD_POWER_OFF_NOTIFICATION,
2017 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2018 if (err)
2019 pr_err("%s: Power Off Notification timed out, %u\n",
2020 mmc_hostname(card->host), timeout);
2021
2022 /* Disable the power off notification after the switch operation. */
2023 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2024
2025 return err;
2026}
2027
2028/*
2029 * Host is being removed. Free up the current card.
2030 */
2031static void mmc_remove(struct mmc_host *host)
2032{
2033 mmc_remove_card(host->card);
2034 host->card = NULL;
2035}
2036
2037/*
2038 * Card detection - card is alive.
2039 */
2040static int mmc_alive(struct mmc_host *host)
2041{
2042 return mmc_send_status(host->card, NULL);
2043}
2044
2045/*
2046 * Card detection callback from host.
2047 */
2048static void mmc_detect(struct mmc_host *host)
2049{
2050 int err;
2051
2052 mmc_get_card(host->card, NULL);
2053
2054 /*
2055 * Just check if our card has been removed.
2056 */
2057 err = _mmc_detect_card_removed(host);
2058
2059 mmc_put_card(host->card, NULL);
2060
2061 if (err) {
2062 mmc_remove(host);
2063
2064 mmc_claim_host(host);
2065 mmc_detach_bus(host);
2066 mmc_power_off(host);
2067 mmc_release_host(host);
2068 }
2069}
2070
2071static bool _mmc_cache_enabled(struct mmc_host *host)
2072{
2073 return host->card->ext_csd.cache_size > 0 &&
2074 host->card->ext_csd.cache_ctrl & 1;
2075}
2076
2077/*
2078 * Flush the internal cache of the eMMC to non-volatile storage.
2079 */
2080static int _mmc_flush_cache(struct mmc_host *host)
2081{
2082 int err = 0;
2083
2084 if (_mmc_cache_enabled(host)) {
2085 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2086 EXT_CSD_FLUSH_CACHE, 1,
2087 CACHE_FLUSH_TIMEOUT_MS);
2088 if (err)
2089 pr_err("%s: cache flush error %d\n",
2090 mmc_hostname(host), err);
2091 }
2092
2093 return err;
2094}
2095
2096static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2097{
2098 int err = 0;
2099 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2100 EXT_CSD_POWER_OFF_LONG;
2101
2102 mmc_claim_host(host);
2103
2104 if (mmc_card_suspended(host->card))
2105 goto out;
2106
2107 err = _mmc_flush_cache(host);
2108 if (err)
2109 goto out;
2110
2111 if (mmc_can_poweroff_notify(host->card) &&
2112 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2113 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2114 err = mmc_poweroff_notify(host->card, notify_type);
2115 else if (mmc_can_sleep(host->card))
2116 err = mmc_sleep(host);
2117 else if (!mmc_host_is_spi(host))
2118 err = mmc_deselect_cards(host);
2119
2120 if (!err) {
2121 mmc_power_off(host);
2122 mmc_card_set_suspended(host->card);
2123 }
2124out:
2125 mmc_release_host(host);
2126 return err;
2127}
2128
2129/*
2130 * Suspend callback
2131 */
2132static int mmc_suspend(struct mmc_host *host)
2133{
2134 int err;
2135
2136 err = _mmc_suspend(host, true);
2137 if (!err) {
2138 pm_runtime_disable(&host->card->dev);
2139 pm_runtime_set_suspended(&host->card->dev);
2140 }
2141
2142 return err;
2143}
2144
2145/*
2146 * This function tries to determine if the same card is still present
2147 * and, if so, restore all state to it.
2148 */
2149static int _mmc_resume(struct mmc_host *host)
2150{
2151 int err = 0;
2152
2153 mmc_claim_host(host);
2154
2155 if (!mmc_card_suspended(host->card))
2156 goto out;
2157
2158 mmc_power_up(host, host->card->ocr);
2159 err = mmc_init_card(host, host->card->ocr, host->card);
2160 mmc_card_clr_suspended(host->card);
2161
2162out:
2163 mmc_release_host(host);
2164 return err;
2165}
2166
2167/*
2168 * Shutdown callback
2169 */
2170static int mmc_shutdown(struct mmc_host *host)
2171{
2172 int err = 0;
2173
2174 /*
2175 * In a specific case for poweroff notify, we need to resume the card
2176 * before we can shutdown it properly.
2177 */
2178 if (mmc_can_poweroff_notify(host->card) &&
2179 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2180 err = _mmc_resume(host);
2181
2182 if (!err)
2183 err = _mmc_suspend(host, false);
2184
2185 return err;
2186}
2187
2188/*
2189 * Callback for resume.
2190 */
2191static int mmc_resume(struct mmc_host *host)
2192{
2193 pm_runtime_enable(&host->card->dev);
2194 return 0;
2195}
2196
2197/*
2198 * Callback for runtime_suspend.
2199 */
2200static int mmc_runtime_suspend(struct mmc_host *host)
2201{
2202 int err;
2203
2204 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2205 return 0;
2206
2207 err = _mmc_suspend(host, true);
2208 if (err)
2209 pr_err("%s: error %d doing aggressive suspend\n",
2210 mmc_hostname(host), err);
2211
2212 return err;
2213}
2214
2215/*
2216 * Callback for runtime_resume.
2217 */
2218static int mmc_runtime_resume(struct mmc_host *host)
2219{
2220 int err;
2221
2222 err = _mmc_resume(host);
2223 if (err && err != -ENOMEDIUM)
2224 pr_err("%s: error %d doing runtime resume\n",
2225 mmc_hostname(host), err);
2226
2227 return 0;
2228}
2229
2230static int mmc_can_reset(struct mmc_card *card)
2231{
2232 u8 rst_n_function;
2233
2234 rst_n_function = card->ext_csd.rst_n_function;
2235 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2236 return 0;
2237 return 1;
2238}
2239
2240static int _mmc_hw_reset(struct mmc_host *host)
2241{
2242 struct mmc_card *card = host->card;
2243
2244 /*
2245 * In the case of recovery, we can't expect flushing the cache to work
2246 * always, but we have a go and ignore errors.
2247 */
2248 _mmc_flush_cache(host);
2249
2250 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2251 mmc_can_reset(card)) {
2252 /* If the card accept RST_n signal, send it. */
2253 mmc_set_clock(host, host->f_init);
2254 host->ops->card_hw_reset(host);
2255 /* Set initial state and call mmc_set_ios */
2256 mmc_set_initial_state(host);
2257 } else {
2258 /* Do a brute force power cycle */
2259 mmc_power_cycle(host, card->ocr);
2260 mmc_pwrseq_reset(host);
2261 }
2262 return mmc_init_card(host, card->ocr, card);
2263}
2264
2265static const struct mmc_bus_ops mmc_ops = {
2266 .remove = mmc_remove,
2267 .detect = mmc_detect,
2268 .suspend = mmc_suspend,
2269 .resume = mmc_resume,
2270 .runtime_suspend = mmc_runtime_suspend,
2271 .runtime_resume = mmc_runtime_resume,
2272 .alive = mmc_alive,
2273 .shutdown = mmc_shutdown,
2274 .hw_reset = _mmc_hw_reset,
2275 .cache_enabled = _mmc_cache_enabled,
2276 .flush_cache = _mmc_flush_cache,
2277};
2278
2279/*
2280 * Starting point for MMC card init.
2281 */
2282int mmc_attach_mmc(struct mmc_host *host)
2283{
2284 int err;
2285 u32 ocr, rocr;
2286
2287 WARN_ON(!host->claimed);
2288
2289 /* Set correct bus mode for MMC before attempting attach */
2290 if (!mmc_host_is_spi(host))
2291 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2292
2293 err = mmc_send_op_cond(host, 0, &ocr);
2294 if (err)
2295 return err;
2296
2297 mmc_attach_bus(host, &mmc_ops);
2298 if (host->ocr_avail_mmc)
2299 host->ocr_avail = host->ocr_avail_mmc;
2300
2301 /*
2302 * We need to get OCR a different way for SPI.
2303 */
2304 if (mmc_host_is_spi(host)) {
2305 err = mmc_spi_read_ocr(host, 1, &ocr);
2306 if (err)
2307 goto err;
2308 }
2309
2310 rocr = mmc_select_voltage(host, ocr);
2311
2312 /*
2313 * Can we support the voltage of the card?
2314 */
2315 if (!rocr) {
2316 err = -EINVAL;
2317 goto err;
2318 }
2319
2320 /*
2321 * Detect and init the card.
2322 */
2323 err = mmc_init_card(host, rocr, NULL);
2324 if (err)
2325 goto err;
2326
2327 mmc_release_host(host);
2328 err = mmc_add_card(host->card);
2329 if (err)
2330 goto remove_card;
2331
2332 mmc_claim_host(host);
2333 return 0;
2334
2335remove_card:
2336 mmc_remove_card(host->card);
2337 mmc_claim_host(host);
2338 host->card = NULL;
2339err:
2340 mmc_detach_bus(host);
2341
2342 pr_err("%s: error %d whilst initialising MMC card\n",
2343 mmc_hostname(host), err);
2344
2345 return err;
2346}