Loading...
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32};
33
34static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37};
38
39static const unsigned int tacc_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41};
42
43static const unsigned int tacc_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46};
47
48#define UNSTUFF_BITS(resp,start,size) \
49 ({ \
50 const int __size = size; \
51 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
52 const int __off = 3 - ((start) / 32); \
53 const int __shft = (start) & 31; \
54 u32 __res; \
55 \
56 __res = resp[__off] >> __shft; \
57 if (__size + __shft > 32) \
58 __res |= resp[__off-1] << ((32 - __shft) % 32); \
59 __res & __mask; \
60 })
61
62/*
63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
64 */
65static int mmc_decode_cid(struct mmc_card *card)
66{
67 u32 *resp = card->raw_cid;
68
69 /*
70 * The selection of the format here is based upon published
71 * specs from sandisk and from what people have reported.
72 */
73 switch (card->csd.mmca_vsn) {
74 case 0: /* MMC v1.0 - v1.2 */
75 case 1: /* MMC v1.4 */
76 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
77 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
78 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
79 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
80 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
81 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
82 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
83 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
84 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
85 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
86 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
87 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
88 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
89 break;
90
91 case 2: /* MMC v2.0 - v2.2 */
92 case 3: /* MMC v3.1 - v3.3 */
93 case 4: /* MMC v4 */
94 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
95 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
96 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
97 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
98 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
99 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
100 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
101 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
102 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
103 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
104 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
105 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
106 break;
107
108 default:
109 pr_err("%s: card has unknown MMCA version %d\n",
110 mmc_hostname(card->host), card->csd.mmca_vsn);
111 return -EINVAL;
112 }
113
114 return 0;
115}
116
117static void mmc_set_erase_size(struct mmc_card *card)
118{
119 if (card->ext_csd.erase_group_def & 1)
120 card->erase_size = card->ext_csd.hc_erase_size;
121 else
122 card->erase_size = card->csd.erase_size;
123
124 mmc_init_erase(card);
125}
126
127/*
128 * Given a 128-bit response, decode to our card CSD structure.
129 */
130static int mmc_decode_csd(struct mmc_card *card)
131{
132 struct mmc_csd *csd = &card->csd;
133 unsigned int e, m, a, b;
134 u32 *resp = card->raw_csd;
135
136 /*
137 * We only understand CSD structure v1.1 and v1.2.
138 * v1.2 has extra information in bits 15, 11 and 10.
139 * We also support eMMC v4.4 & v4.41.
140 */
141 csd->structure = UNSTUFF_BITS(resp, 126, 2);
142 if (csd->structure == 0) {
143 pr_err("%s: unrecognised CSD structure version %d\n",
144 mmc_hostname(card->host), csd->structure);
145 return -EINVAL;
146 }
147
148 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
149 m = UNSTUFF_BITS(resp, 115, 4);
150 e = UNSTUFF_BITS(resp, 112, 3);
151 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
152 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
153
154 m = UNSTUFF_BITS(resp, 99, 4);
155 e = UNSTUFF_BITS(resp, 96, 3);
156 csd->max_dtr = tran_exp[e] * tran_mant[m];
157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
158
159 e = UNSTUFF_BITS(resp, 47, 3);
160 m = UNSTUFF_BITS(resp, 62, 12);
161 csd->capacity = (1 + m) << (e + 2);
162
163 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
164 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
165 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
166 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
167 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
168 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
169 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
170 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
171
172 if (csd->write_blkbits >= 9) {
173 a = UNSTUFF_BITS(resp, 42, 5);
174 b = UNSTUFF_BITS(resp, 37, 5);
175 csd->erase_size = (a + 1) * (b + 1);
176 csd->erase_size <<= csd->write_blkbits - 9;
177 }
178
179 return 0;
180}
181
182static void mmc_select_card_type(struct mmc_card *card)
183{
184 struct mmc_host *host = card->host;
185 u8 card_type = card->ext_csd.raw_card_type;
186 u32 caps = host->caps, caps2 = host->caps2;
187 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
188 unsigned int avail_type = 0;
189
190 if (caps & MMC_CAP_MMC_HIGHSPEED &&
191 card_type & EXT_CSD_CARD_TYPE_HS_26) {
192 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
193 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
194 }
195
196 if (caps & MMC_CAP_MMC_HIGHSPEED &&
197 card_type & EXT_CSD_CARD_TYPE_HS_52) {
198 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
199 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
200 }
201
202 if (caps & MMC_CAP_1_8V_DDR &&
203 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
204 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
206 }
207
208 if (caps & MMC_CAP_1_2V_DDR &&
209 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
212 }
213
214 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
215 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
216 hs200_max_dtr = MMC_HS200_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
218 }
219
220 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
221 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
222 hs200_max_dtr = MMC_HS200_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
224 }
225
226 if (caps2 & MMC_CAP2_HS400_1_8V &&
227 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
230 }
231
232 if (caps2 & MMC_CAP2_HS400_1_2V &&
233 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
236 }
237
238 card->ext_csd.hs_max_dtr = hs_max_dtr;
239 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
240 card->mmc_avail_type = avail_type;
241}
242
243static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
244{
245 u8 hc_erase_grp_sz, hc_wp_grp_sz;
246
247 /*
248 * Disable these attributes by default
249 */
250 card->ext_csd.enhanced_area_offset = -EINVAL;
251 card->ext_csd.enhanced_area_size = -EINVAL;
252
253 /*
254 * Enhanced area feature support -- check whether the eMMC
255 * card has the Enhanced area enabled. If so, export enhanced
256 * area offset and size to user by adding sysfs interface.
257 */
258 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
259 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
260 if (card->ext_csd.partition_setting_completed) {
261 hc_erase_grp_sz =
262 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
263 hc_wp_grp_sz =
264 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
265
266 /*
267 * calculate the enhanced data area offset, in bytes
268 */
269 card->ext_csd.enhanced_area_offset =
270 (((unsigned long long)ext_csd[139]) << 24) +
271 (((unsigned long long)ext_csd[138]) << 16) +
272 (((unsigned long long)ext_csd[137]) << 8) +
273 (((unsigned long long)ext_csd[136]));
274 if (mmc_card_blockaddr(card))
275 card->ext_csd.enhanced_area_offset <<= 9;
276 /*
277 * calculate the enhanced data area size, in kilobytes
278 */
279 card->ext_csd.enhanced_area_size =
280 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
281 ext_csd[140];
282 card->ext_csd.enhanced_area_size *=
283 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
284 card->ext_csd.enhanced_area_size <<= 9;
285 } else {
286 pr_warn("%s: defines enhanced area without partition setting complete\n",
287 mmc_hostname(card->host));
288 }
289 }
290}
291
292static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
293{
294 int idx;
295 u8 hc_erase_grp_sz, hc_wp_grp_sz;
296 unsigned int part_size;
297
298 /*
299 * General purpose partition feature support --
300 * If ext_csd has the size of general purpose partitions,
301 * set size, part_cfg, partition name in mmc_part.
302 */
303 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
304 EXT_CSD_PART_SUPPORT_PART_EN) {
305 hc_erase_grp_sz =
306 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
307 hc_wp_grp_sz =
308 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
309
310 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
311 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
312 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
313 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
314 continue;
315 if (card->ext_csd.partition_setting_completed == 0) {
316 pr_warn("%s: has partition size defined without partition complete\n",
317 mmc_hostname(card->host));
318 break;
319 }
320 part_size =
321 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
322 << 16) +
323 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
324 << 8) +
325 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
326 part_size *= (size_t)(hc_erase_grp_sz *
327 hc_wp_grp_sz);
328 mmc_part_add(card, part_size << 19,
329 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
330 "gp%d", idx, false,
331 MMC_BLK_DATA_AREA_GP);
332 }
333 }
334}
335
336/*
337 * Decode extended CSD.
338 */
339static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
340{
341 int err = 0, idx;
342 unsigned int part_size;
343 struct device_node *np;
344 bool broken_hpi = false;
345
346 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
347 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
348 if (card->csd.structure == 3) {
349 if (card->ext_csd.raw_ext_csd_structure > 2) {
350 pr_err("%s: unrecognised EXT_CSD structure "
351 "version %d\n", mmc_hostname(card->host),
352 card->ext_csd.raw_ext_csd_structure);
353 err = -EINVAL;
354 goto out;
355 }
356 }
357
358 np = mmc_of_find_child_device(card->host, 0);
359 if (np && of_device_is_compatible(np, "mmc-card"))
360 broken_hpi = of_property_read_bool(np, "broken-hpi");
361 of_node_put(np);
362
363 /*
364 * The EXT_CSD format is meant to be forward compatible. As long
365 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
366 * are authorized, see JEDEC JESD84-B50 section B.8.
367 */
368 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
369
370 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
371 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
372 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
373 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
374 if (card->ext_csd.rev >= 2) {
375 card->ext_csd.sectors =
376 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
377 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
378 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
379 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
380
381 /* Cards with density > 2GiB are sector addressed */
382 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
383 mmc_card_set_blockaddr(card);
384 }
385
386 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
387 mmc_select_card_type(card);
388
389 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
390 card->ext_csd.raw_erase_timeout_mult =
391 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
392 card->ext_csd.raw_hc_erase_grp_size =
393 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
394 if (card->ext_csd.rev >= 3) {
395 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
396 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
397
398 /* EXT_CSD value is in units of 10ms, but we store in ms */
399 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
400
401 /* Sleep / awake timeout in 100ns units */
402 if (sa_shift > 0 && sa_shift <= 0x17)
403 card->ext_csd.sa_timeout =
404 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
405 card->ext_csd.erase_group_def =
406 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
407 card->ext_csd.hc_erase_timeout = 300 *
408 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
409 card->ext_csd.hc_erase_size =
410 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
411
412 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
413
414 /*
415 * There are two boot regions of equal size, defined in
416 * multiples of 128K.
417 */
418 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
419 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
420 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
421 mmc_part_add(card, part_size,
422 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
423 "boot%d", idx, true,
424 MMC_BLK_DATA_AREA_BOOT);
425 }
426 }
427 }
428
429 card->ext_csd.raw_hc_erase_gap_size =
430 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
431 card->ext_csd.raw_sec_trim_mult =
432 ext_csd[EXT_CSD_SEC_TRIM_MULT];
433 card->ext_csd.raw_sec_erase_mult =
434 ext_csd[EXT_CSD_SEC_ERASE_MULT];
435 card->ext_csd.raw_sec_feature_support =
436 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
437 card->ext_csd.raw_trim_mult =
438 ext_csd[EXT_CSD_TRIM_MULT];
439 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
440 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
441 if (card->ext_csd.rev >= 4) {
442 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
443 EXT_CSD_PART_SETTING_COMPLETED)
444 card->ext_csd.partition_setting_completed = 1;
445 else
446 card->ext_csd.partition_setting_completed = 0;
447
448 mmc_manage_enhanced_area(card, ext_csd);
449
450 mmc_manage_gp_partitions(card, ext_csd);
451
452 card->ext_csd.sec_trim_mult =
453 ext_csd[EXT_CSD_SEC_TRIM_MULT];
454 card->ext_csd.sec_erase_mult =
455 ext_csd[EXT_CSD_SEC_ERASE_MULT];
456 card->ext_csd.sec_feature_support =
457 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
458 card->ext_csd.trim_timeout = 300 *
459 ext_csd[EXT_CSD_TRIM_MULT];
460
461 /*
462 * Note that the call to mmc_part_add above defaults to read
463 * only. If this default assumption is changed, the call must
464 * take into account the value of boot_locked below.
465 */
466 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
467 card->ext_csd.boot_ro_lockable = true;
468
469 /* Save power class values */
470 card->ext_csd.raw_pwr_cl_52_195 =
471 ext_csd[EXT_CSD_PWR_CL_52_195];
472 card->ext_csd.raw_pwr_cl_26_195 =
473 ext_csd[EXT_CSD_PWR_CL_26_195];
474 card->ext_csd.raw_pwr_cl_52_360 =
475 ext_csd[EXT_CSD_PWR_CL_52_360];
476 card->ext_csd.raw_pwr_cl_26_360 =
477 ext_csd[EXT_CSD_PWR_CL_26_360];
478 card->ext_csd.raw_pwr_cl_200_195 =
479 ext_csd[EXT_CSD_PWR_CL_200_195];
480 card->ext_csd.raw_pwr_cl_200_360 =
481 ext_csd[EXT_CSD_PWR_CL_200_360];
482 card->ext_csd.raw_pwr_cl_ddr_52_195 =
483 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
484 card->ext_csd.raw_pwr_cl_ddr_52_360 =
485 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
486 card->ext_csd.raw_pwr_cl_ddr_200_360 =
487 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
488 }
489
490 if (card->ext_csd.rev >= 5) {
491 /* Adjust production date as per JEDEC JESD84-B451 */
492 if (card->cid.year < 2010)
493 card->cid.year += 16;
494
495 /* check whether the eMMC card supports BKOPS */
496 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
497 card->ext_csd.bkops = 1;
498 card->ext_csd.man_bkops_en =
499 (ext_csd[EXT_CSD_BKOPS_EN] &
500 EXT_CSD_MANUAL_BKOPS_MASK);
501 card->ext_csd.raw_bkops_status =
502 ext_csd[EXT_CSD_BKOPS_STATUS];
503 if (!card->ext_csd.man_bkops_en)
504 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
505 mmc_hostname(card->host));
506 }
507
508 /* check whether the eMMC card supports HPI */
509 if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
510 card->ext_csd.hpi = 1;
511 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
512 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
513 else
514 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
515 /*
516 * Indicate the maximum timeout to close
517 * a command interrupted by HPI
518 */
519 card->ext_csd.out_of_int_time =
520 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
521 }
522
523 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
524 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
525
526 /*
527 * RPMB regions are defined in multiples of 128K.
528 */
529 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
530 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
531 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
532 EXT_CSD_PART_CONFIG_ACC_RPMB,
533 "rpmb", 0, false,
534 MMC_BLK_DATA_AREA_RPMB);
535 }
536 }
537
538 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
539 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
540 card->erased_byte = 0xFF;
541 else
542 card->erased_byte = 0x0;
543
544 /* eMMC v4.5 or later */
545 if (card->ext_csd.rev >= 6) {
546 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
547
548 card->ext_csd.generic_cmd6_time = 10 *
549 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
550 card->ext_csd.power_off_longtime = 10 *
551 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
552
553 card->ext_csd.cache_size =
554 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
555 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
556 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
557 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
558
559 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
560 card->ext_csd.data_sector_size = 4096;
561 else
562 card->ext_csd.data_sector_size = 512;
563
564 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
565 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
566 card->ext_csd.data_tag_unit_size =
567 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
568 (card->ext_csd.data_sector_size);
569 } else {
570 card->ext_csd.data_tag_unit_size = 0;
571 }
572
573 card->ext_csd.max_packed_writes =
574 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
575 card->ext_csd.max_packed_reads =
576 ext_csd[EXT_CSD_MAX_PACKED_READS];
577 } else {
578 card->ext_csd.data_sector_size = 512;
579 }
580
581 /* eMMC v5 or later */
582 if (card->ext_csd.rev >= 7) {
583 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
584 MMC_FIRMWARE_LEN);
585 card->ext_csd.ffu_capable =
586 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
587 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
588 }
589out:
590 return err;
591}
592
593static int mmc_read_ext_csd(struct mmc_card *card)
594{
595 u8 *ext_csd;
596 int err;
597
598 if (!mmc_can_ext_csd(card))
599 return 0;
600
601 err = mmc_get_ext_csd(card, &ext_csd);
602 if (err) {
603 /* If the host or the card can't do the switch,
604 * fail more gracefully. */
605 if ((err != -EINVAL)
606 && (err != -ENOSYS)
607 && (err != -EFAULT))
608 return err;
609
610 /*
611 * High capacity cards should have this "magic" size
612 * stored in their CSD.
613 */
614 if (card->csd.capacity == (4096 * 512)) {
615 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
616 mmc_hostname(card->host));
617 } else {
618 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
619 mmc_hostname(card->host));
620 err = 0;
621 }
622
623 return err;
624 }
625
626 err = mmc_decode_ext_csd(card, ext_csd);
627 kfree(ext_csd);
628 return err;
629}
630
631static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
632{
633 u8 *bw_ext_csd;
634 int err;
635
636 if (bus_width == MMC_BUS_WIDTH_1)
637 return 0;
638
639 err = mmc_get_ext_csd(card, &bw_ext_csd);
640 if (err)
641 return err;
642
643 /* only compare read only fields */
644 err = !((card->ext_csd.raw_partition_support ==
645 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
646 (card->ext_csd.raw_erased_mem_count ==
647 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
648 (card->ext_csd.rev ==
649 bw_ext_csd[EXT_CSD_REV]) &&
650 (card->ext_csd.raw_ext_csd_structure ==
651 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
652 (card->ext_csd.raw_card_type ==
653 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
654 (card->ext_csd.raw_s_a_timeout ==
655 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
656 (card->ext_csd.raw_hc_erase_gap_size ==
657 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
658 (card->ext_csd.raw_erase_timeout_mult ==
659 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
660 (card->ext_csd.raw_hc_erase_grp_size ==
661 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
662 (card->ext_csd.raw_sec_trim_mult ==
663 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
664 (card->ext_csd.raw_sec_erase_mult ==
665 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
666 (card->ext_csd.raw_sec_feature_support ==
667 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
668 (card->ext_csd.raw_trim_mult ==
669 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
670 (card->ext_csd.raw_sectors[0] ==
671 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
672 (card->ext_csd.raw_sectors[1] ==
673 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
674 (card->ext_csd.raw_sectors[2] ==
675 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
676 (card->ext_csd.raw_sectors[3] ==
677 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
678 (card->ext_csd.raw_pwr_cl_52_195 ==
679 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
680 (card->ext_csd.raw_pwr_cl_26_195 ==
681 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
682 (card->ext_csd.raw_pwr_cl_52_360 ==
683 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
684 (card->ext_csd.raw_pwr_cl_26_360 ==
685 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
686 (card->ext_csd.raw_pwr_cl_200_195 ==
687 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
688 (card->ext_csd.raw_pwr_cl_200_360 ==
689 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
690 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
691 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
692 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
693 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
694 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
695 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
696
697 if (err)
698 err = -EINVAL;
699
700 kfree(bw_ext_csd);
701 return err;
702}
703
704MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
705 card->raw_cid[2], card->raw_cid[3]);
706MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
707 card->raw_csd[2], card->raw_csd[3]);
708MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
709MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
710MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
711MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
712MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
713MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
714MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
715MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
716MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
717MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
718MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
719 card->ext_csd.enhanced_area_offset);
720MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
721MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
722MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
723
724static ssize_t mmc_fwrev_show(struct device *dev,
725 struct device_attribute *attr,
726 char *buf)
727{
728 struct mmc_card *card = mmc_dev_to_card(dev);
729
730 if (card->ext_csd.rev < 7) {
731 return sprintf(buf, "0x%x\n", card->cid.fwrev);
732 } else {
733 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
734 card->ext_csd.fwrev);
735 }
736}
737
738static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
739
740static struct attribute *mmc_std_attrs[] = {
741 &dev_attr_cid.attr,
742 &dev_attr_csd.attr,
743 &dev_attr_date.attr,
744 &dev_attr_erase_size.attr,
745 &dev_attr_preferred_erase_size.attr,
746 &dev_attr_fwrev.attr,
747 &dev_attr_ffu_capable.attr,
748 &dev_attr_hwrev.attr,
749 &dev_attr_manfid.attr,
750 &dev_attr_name.attr,
751 &dev_attr_oemid.attr,
752 &dev_attr_prv.attr,
753 &dev_attr_serial.attr,
754 &dev_attr_enhanced_area_offset.attr,
755 &dev_attr_enhanced_area_size.attr,
756 &dev_attr_raw_rpmb_size_mult.attr,
757 &dev_attr_rel_sectors.attr,
758 NULL,
759};
760ATTRIBUTE_GROUPS(mmc_std);
761
762static struct device_type mmc_type = {
763 .groups = mmc_std_groups,
764};
765
766/*
767 * Select the PowerClass for the current bus width
768 * If power class is defined for 4/8 bit bus in the
769 * extended CSD register, select it by executing the
770 * mmc_switch command.
771 */
772static int __mmc_select_powerclass(struct mmc_card *card,
773 unsigned int bus_width)
774{
775 struct mmc_host *host = card->host;
776 struct mmc_ext_csd *ext_csd = &card->ext_csd;
777 unsigned int pwrclass_val = 0;
778 int err = 0;
779
780 switch (1 << host->ios.vdd) {
781 case MMC_VDD_165_195:
782 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
783 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
784 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
785 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
786 ext_csd->raw_pwr_cl_52_195 :
787 ext_csd->raw_pwr_cl_ddr_52_195;
788 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
789 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
790 break;
791 case MMC_VDD_27_28:
792 case MMC_VDD_28_29:
793 case MMC_VDD_29_30:
794 case MMC_VDD_30_31:
795 case MMC_VDD_31_32:
796 case MMC_VDD_32_33:
797 case MMC_VDD_33_34:
798 case MMC_VDD_34_35:
799 case MMC_VDD_35_36:
800 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
801 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
802 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
803 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
804 ext_csd->raw_pwr_cl_52_360 :
805 ext_csd->raw_pwr_cl_ddr_52_360;
806 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
807 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
808 ext_csd->raw_pwr_cl_ddr_200_360 :
809 ext_csd->raw_pwr_cl_200_360;
810 break;
811 default:
812 pr_warn("%s: Voltage range not supported for power class\n",
813 mmc_hostname(host));
814 return -EINVAL;
815 }
816
817 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
818 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
819 EXT_CSD_PWR_CL_8BIT_SHIFT;
820 else
821 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
822 EXT_CSD_PWR_CL_4BIT_SHIFT;
823
824 /* If the power class is different from the default value */
825 if (pwrclass_val > 0) {
826 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
827 EXT_CSD_POWER_CLASS,
828 pwrclass_val,
829 card->ext_csd.generic_cmd6_time);
830 }
831
832 return err;
833}
834
835static int mmc_select_powerclass(struct mmc_card *card)
836{
837 struct mmc_host *host = card->host;
838 u32 bus_width, ext_csd_bits;
839 int err, ddr;
840
841 /* Power class selection is supported for versions >= 4.0 */
842 if (!mmc_can_ext_csd(card))
843 return 0;
844
845 bus_width = host->ios.bus_width;
846 /* Power class values are defined only for 4/8 bit bus */
847 if (bus_width == MMC_BUS_WIDTH_1)
848 return 0;
849
850 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
851 if (ddr)
852 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
853 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
854 else
855 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
856 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
857
858 err = __mmc_select_powerclass(card, ext_csd_bits);
859 if (err)
860 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
861 mmc_hostname(host), 1 << bus_width, ddr);
862
863 return err;
864}
865
866/*
867 * Set the bus speed for the selected speed mode.
868 */
869static void mmc_set_bus_speed(struct mmc_card *card)
870{
871 unsigned int max_dtr = (unsigned int)-1;
872
873 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
874 max_dtr > card->ext_csd.hs200_max_dtr)
875 max_dtr = card->ext_csd.hs200_max_dtr;
876 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
877 max_dtr = card->ext_csd.hs_max_dtr;
878 else if (max_dtr > card->csd.max_dtr)
879 max_dtr = card->csd.max_dtr;
880
881 mmc_set_clock(card->host, max_dtr);
882}
883
884/*
885 * Select the bus width amoung 4-bit and 8-bit(SDR).
886 * If the bus width is changed successfully, return the selected width value.
887 * Zero is returned instead of error value if the wide width is not supported.
888 */
889static int mmc_select_bus_width(struct mmc_card *card)
890{
891 static unsigned ext_csd_bits[] = {
892 EXT_CSD_BUS_WIDTH_8,
893 EXT_CSD_BUS_WIDTH_4,
894 };
895 static unsigned bus_widths[] = {
896 MMC_BUS_WIDTH_8,
897 MMC_BUS_WIDTH_4,
898 };
899 struct mmc_host *host = card->host;
900 unsigned idx, bus_width = 0;
901 int err = 0;
902
903 if (!mmc_can_ext_csd(card) ||
904 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
905 return 0;
906
907 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
908
909 /*
910 * Unlike SD, MMC cards dont have a configuration register to notify
911 * supported bus width. So bus test command should be run to identify
912 * the supported bus width or compare the ext csd values of current
913 * bus width and ext csd values of 1 bit mode read earlier.
914 */
915 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
916 /*
917 * Host is capable of 8bit transfer, then switch
918 * the device to work in 8bit transfer mode. If the
919 * mmc switch command returns error then switch to
920 * 4bit transfer mode. On success set the corresponding
921 * bus width on the host.
922 */
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_BUS_WIDTH,
925 ext_csd_bits[idx],
926 card->ext_csd.generic_cmd6_time);
927 if (err)
928 continue;
929
930 bus_width = bus_widths[idx];
931 mmc_set_bus_width(host, bus_width);
932
933 /*
934 * If controller can't handle bus width test,
935 * compare ext_csd previously read in 1 bit mode
936 * against ext_csd at new bus width
937 */
938 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
939 err = mmc_compare_ext_csds(card, bus_width);
940 else
941 err = mmc_bus_test(card, bus_width);
942
943 if (!err) {
944 err = bus_width;
945 break;
946 } else {
947 pr_warn("%s: switch to bus width %d failed\n",
948 mmc_hostname(host), 1 << bus_width);
949 }
950 }
951
952 return err;
953}
954
955/*
956 * Switch to the high-speed mode
957 */
958static int mmc_select_hs(struct mmc_card *card)
959{
960 int err;
961
962 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
963 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
964 card->ext_csd.generic_cmd6_time,
965 true, true, true);
966 if (!err)
967 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
968
969 return err;
970}
971
972/*
973 * Activate wide bus and DDR if supported.
974 */
975static int mmc_select_hs_ddr(struct mmc_card *card)
976{
977 struct mmc_host *host = card->host;
978 u32 bus_width, ext_csd_bits;
979 int err = 0;
980
981 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
982 return 0;
983
984 bus_width = host->ios.bus_width;
985 if (bus_width == MMC_BUS_WIDTH_1)
986 return 0;
987
988 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
989 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
990
991 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 EXT_CSD_BUS_WIDTH,
993 ext_csd_bits,
994 card->ext_csd.generic_cmd6_time);
995 if (err) {
996 pr_err("%s: switch to bus width %d ddr failed\n",
997 mmc_hostname(host), 1 << bus_width);
998 return err;
999 }
1000
1001 /*
1002 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1003 * signaling.
1004 *
1005 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1006 *
1007 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1008 * in the JEDEC spec for DDR.
1009 *
1010 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1011 * host controller can support this, like some of the SDHCI
1012 * controller which connect to an eMMC device. Some of these
1013 * host controller still needs to use 1.8v vccq for supporting
1014 * DDR mode.
1015 *
1016 * So the sequence will be:
1017 * if (host and device can both support 1.2v IO)
1018 * use 1.2v IO;
1019 * else if (host and device can both support 1.8v IO)
1020 * use 1.8v IO;
1021 * so if host and device can only support 3.3v IO, this is the
1022 * last choice.
1023 *
1024 * WARNING: eMMC rules are NOT the same as SD DDR
1025 */
1026 err = -EINVAL;
1027 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1028 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1029
1030 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1031 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1032
1033 /* make sure vccq is 3.3v after switching disaster */
1034 if (err)
1035 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1036
1037 if (!err)
1038 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1039
1040 return err;
1041}
1042
1043/* Caller must hold re-tuning */
1044static int mmc_switch_status(struct mmc_card *card)
1045{
1046 u32 status;
1047 int err;
1048
1049 err = mmc_send_status(card, &status);
1050 if (err)
1051 return err;
1052
1053 return mmc_switch_status_error(card->host, status);
1054}
1055
1056static int mmc_select_hs400(struct mmc_card *card)
1057{
1058 struct mmc_host *host = card->host;
1059 bool send_status = true;
1060 unsigned int max_dtr;
1061 int err = 0;
1062 u8 val;
1063
1064 /*
1065 * HS400 mode requires 8-bit bus width
1066 */
1067 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1068 host->ios.bus_width == MMC_BUS_WIDTH_8))
1069 return 0;
1070
1071 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1072 send_status = false;
1073
1074 /* Reduce frequency to HS frequency */
1075 max_dtr = card->ext_csd.hs_max_dtr;
1076 mmc_set_clock(host, max_dtr);
1077
1078 /* Switch card to HS mode */
1079 val = EXT_CSD_TIMING_HS;
1080 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1081 EXT_CSD_HS_TIMING, val,
1082 card->ext_csd.generic_cmd6_time,
1083 true, send_status, true);
1084 if (err) {
1085 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1086 mmc_hostname(host), err);
1087 return err;
1088 }
1089
1090 /* Set host controller to HS timing */
1091 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1092
1093 if (!send_status) {
1094 err = mmc_switch_status(card);
1095 if (err)
1096 goto out_err;
1097 }
1098
1099 /* Switch card to DDR */
1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1101 EXT_CSD_BUS_WIDTH,
1102 EXT_CSD_DDR_BUS_WIDTH_8,
1103 card->ext_csd.generic_cmd6_time);
1104 if (err) {
1105 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1106 mmc_hostname(host), err);
1107 return err;
1108 }
1109
1110 /* Switch card to HS400 */
1111 val = EXT_CSD_TIMING_HS400 |
1112 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1113 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1114 EXT_CSD_HS_TIMING, val,
1115 card->ext_csd.generic_cmd6_time,
1116 true, send_status, true);
1117 if (err) {
1118 pr_err("%s: switch to hs400 failed, err:%d\n",
1119 mmc_hostname(host), err);
1120 return err;
1121 }
1122
1123 /* Set host controller to HS400 timing and frequency */
1124 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1125 mmc_set_bus_speed(card);
1126
1127 if (!send_status) {
1128 err = mmc_switch_status(card);
1129 if (err)
1130 goto out_err;
1131 }
1132
1133 return 0;
1134
1135out_err:
1136 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1137 __func__, err);
1138 return err;
1139}
1140
1141int mmc_hs200_to_hs400(struct mmc_card *card)
1142{
1143 return mmc_select_hs400(card);
1144}
1145
1146int mmc_hs400_to_hs200(struct mmc_card *card)
1147{
1148 struct mmc_host *host = card->host;
1149 bool send_status = true;
1150 unsigned int max_dtr;
1151 int err;
1152 u8 val;
1153
1154 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1155 send_status = false;
1156
1157 /* Reduce frequency to HS */
1158 max_dtr = card->ext_csd.hs_max_dtr;
1159 mmc_set_clock(host, max_dtr);
1160
1161 /* Switch HS400 to HS DDR */
1162 val = EXT_CSD_TIMING_HS;
1163 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1164 val, card->ext_csd.generic_cmd6_time,
1165 true, send_status, true);
1166 if (err)
1167 goto out_err;
1168
1169 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1170
1171 if (!send_status) {
1172 err = mmc_switch_status(card);
1173 if (err)
1174 goto out_err;
1175 }
1176
1177 /* Switch HS DDR to HS */
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1179 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1180 true, send_status, true);
1181 if (err)
1182 goto out_err;
1183
1184 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185
1186 if (!send_status) {
1187 err = mmc_switch_status(card);
1188 if (err)
1189 goto out_err;
1190 }
1191
1192 /* Switch HS to HS200 */
1193 val = EXT_CSD_TIMING_HS200 |
1194 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1195 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1196 val, card->ext_csd.generic_cmd6_time, true,
1197 send_status, true);
1198 if (err)
1199 goto out_err;
1200
1201 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1202
1203 if (!send_status) {
1204 err = mmc_switch_status(card);
1205 if (err)
1206 goto out_err;
1207 }
1208
1209 mmc_set_bus_speed(card);
1210
1211 return 0;
1212
1213out_err:
1214 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1215 __func__, err);
1216 return err;
1217}
1218
1219static void mmc_select_driver_type(struct mmc_card *card)
1220{
1221 int card_drv_type, drive_strength, drv_type;
1222
1223 card_drv_type = card->ext_csd.raw_driver_strength |
1224 mmc_driver_type_mask(0);
1225
1226 drive_strength = mmc_select_drive_strength(card,
1227 card->ext_csd.hs200_max_dtr,
1228 card_drv_type, &drv_type);
1229
1230 card->drive_strength = drive_strength;
1231
1232 if (drv_type)
1233 mmc_set_driver_type(card->host, drv_type);
1234}
1235
1236/*
1237 * For device supporting HS200 mode, the following sequence
1238 * should be done before executing the tuning process.
1239 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1240 * 2. switch to HS200 mode
1241 * 3. set the clock to > 52Mhz and <=200MHz
1242 */
1243static int mmc_select_hs200(struct mmc_card *card)
1244{
1245 struct mmc_host *host = card->host;
1246 bool send_status = true;
1247 unsigned int old_timing;
1248 int err = -EINVAL;
1249 u8 val;
1250
1251 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1252 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1253
1254 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1255 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1256
1257 /* If fails try again during next card power cycle */
1258 if (err)
1259 goto err;
1260
1261 mmc_select_driver_type(card);
1262
1263 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1264 send_status = false;
1265
1266 /*
1267 * Set the bus width(4 or 8) with host's support and
1268 * switch to HS200 mode if bus width is set successfully.
1269 */
1270 err = mmc_select_bus_width(card);
1271 if (!IS_ERR_VALUE(err)) {
1272 val = EXT_CSD_TIMING_HS200 |
1273 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1274 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1275 EXT_CSD_HS_TIMING, val,
1276 card->ext_csd.generic_cmd6_time,
1277 true, send_status, true);
1278 if (err)
1279 goto err;
1280 old_timing = host->ios.timing;
1281 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1282 if (!send_status) {
1283 err = mmc_switch_status(card);
1284 /*
1285 * mmc_select_timing() assumes timing has not changed if
1286 * it is a switch error.
1287 */
1288 if (err == -EBADMSG)
1289 mmc_set_timing(host, old_timing);
1290 }
1291 }
1292err:
1293 if (err)
1294 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1295 __func__, err);
1296 return err;
1297}
1298
1299/*
1300 * Activate High Speed or HS200 mode if supported.
1301 */
1302static int mmc_select_timing(struct mmc_card *card)
1303{
1304 int err = 0;
1305
1306 if (!mmc_can_ext_csd(card))
1307 goto bus_speed;
1308
1309 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1310 err = mmc_select_hs200(card);
1311 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1312 err = mmc_select_hs(card);
1313
1314 if (err && err != -EBADMSG)
1315 return err;
1316
1317 if (err) {
1318 pr_warn("%s: switch to %s failed\n",
1319 mmc_card_hs(card) ? "high-speed" :
1320 (mmc_card_hs200(card) ? "hs200" : ""),
1321 mmc_hostname(card->host));
1322 err = 0;
1323 }
1324
1325bus_speed:
1326 /*
1327 * Set the bus speed to the selected bus timing.
1328 * If timing is not selected, backward compatible is the default.
1329 */
1330 mmc_set_bus_speed(card);
1331 return err;
1332}
1333
1334/*
1335 * Execute tuning sequence to seek the proper bus operating
1336 * conditions for HS200 and HS400, which sends CMD21 to the device.
1337 */
1338static int mmc_hs200_tuning(struct mmc_card *card)
1339{
1340 struct mmc_host *host = card->host;
1341
1342 /*
1343 * Timing should be adjusted to the HS400 target
1344 * operation frequency for tuning process
1345 */
1346 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1347 host->ios.bus_width == MMC_BUS_WIDTH_8)
1348 if (host->ops->prepare_hs400_tuning)
1349 host->ops->prepare_hs400_tuning(host, &host->ios);
1350
1351 return mmc_execute_tuning(card);
1352}
1353
1354/*
1355 * Handle the detection and initialisation of a card.
1356 *
1357 * In the case of a resume, "oldcard" will contain the card
1358 * we're trying to reinitialise.
1359 */
1360static int mmc_init_card(struct mmc_host *host, u32 ocr,
1361 struct mmc_card *oldcard)
1362{
1363 struct mmc_card *card;
1364 int err;
1365 u32 cid[4];
1366 u32 rocr;
1367
1368 BUG_ON(!host);
1369 WARN_ON(!host->claimed);
1370
1371 /* Set correct bus mode for MMC before attempting init */
1372 if (!mmc_host_is_spi(host))
1373 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1374
1375 /*
1376 * Since we're changing the OCR value, we seem to
1377 * need to tell some cards to go back to the idle
1378 * state. We wait 1ms to give cards time to
1379 * respond.
1380 * mmc_go_idle is needed for eMMC that are asleep
1381 */
1382 mmc_go_idle(host);
1383
1384 /* The extra bit indicates that we support high capacity */
1385 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1386 if (err)
1387 goto err;
1388
1389 /*
1390 * For SPI, enable CRC as appropriate.
1391 */
1392 if (mmc_host_is_spi(host)) {
1393 err = mmc_spi_set_crc(host, use_spi_crc);
1394 if (err)
1395 goto err;
1396 }
1397
1398 /*
1399 * Fetch CID from card.
1400 */
1401 if (mmc_host_is_spi(host))
1402 err = mmc_send_cid(host, cid);
1403 else
1404 err = mmc_all_send_cid(host, cid);
1405 if (err)
1406 goto err;
1407
1408 if (oldcard) {
1409 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1410 err = -ENOENT;
1411 goto err;
1412 }
1413
1414 card = oldcard;
1415 } else {
1416 /*
1417 * Allocate card structure.
1418 */
1419 card = mmc_alloc_card(host, &mmc_type);
1420 if (IS_ERR(card)) {
1421 err = PTR_ERR(card);
1422 goto err;
1423 }
1424
1425 card->ocr = ocr;
1426 card->type = MMC_TYPE_MMC;
1427 card->rca = 1;
1428 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1429 }
1430
1431 /*
1432 * Call the optional HC's init_card function to handle quirks.
1433 */
1434 if (host->ops->init_card)
1435 host->ops->init_card(host, card);
1436
1437 /*
1438 * For native busses: set card RCA and quit open drain mode.
1439 */
1440 if (!mmc_host_is_spi(host)) {
1441 err = mmc_set_relative_addr(card);
1442 if (err)
1443 goto free_card;
1444
1445 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1446 }
1447
1448 if (!oldcard) {
1449 /*
1450 * Fetch CSD from card.
1451 */
1452 err = mmc_send_csd(card, card->raw_csd);
1453 if (err)
1454 goto free_card;
1455
1456 err = mmc_decode_csd(card);
1457 if (err)
1458 goto free_card;
1459 err = mmc_decode_cid(card);
1460 if (err)
1461 goto free_card;
1462 }
1463
1464 /*
1465 * handling only for cards supporting DSR and hosts requesting
1466 * DSR configuration
1467 */
1468 if (card->csd.dsr_imp && host->dsr_req)
1469 mmc_set_dsr(host);
1470
1471 /*
1472 * Select card, as all following commands rely on that.
1473 */
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1476 if (err)
1477 goto free_card;
1478 }
1479
1480 if (!oldcard) {
1481 /* Read extended CSD. */
1482 err = mmc_read_ext_csd(card);
1483 if (err)
1484 goto free_card;
1485
1486 /* If doing byte addressing, check if required to do sector
1487 * addressing. Handle the case of <2GB cards needing sector
1488 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1489 * ocr register has bit 30 set for sector addressing.
1490 */
1491 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
1492 mmc_card_set_blockaddr(card);
1493
1494 /* Erase size depends on CSD and Extended CSD */
1495 mmc_set_erase_size(card);
1496 }
1497
1498 /*
1499 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1500 * bit. This bit will be lost every time after a reset or power off.
1501 */
1502 if (card->ext_csd.partition_setting_completed ||
1503 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1504 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1505 EXT_CSD_ERASE_GROUP_DEF, 1,
1506 card->ext_csd.generic_cmd6_time);
1507
1508 if (err && err != -EBADMSG)
1509 goto free_card;
1510
1511 if (err) {
1512 err = 0;
1513 /*
1514 * Just disable enhanced area off & sz
1515 * will try to enable ERASE_GROUP_DEF
1516 * during next time reinit
1517 */
1518 card->ext_csd.enhanced_area_offset = -EINVAL;
1519 card->ext_csd.enhanced_area_size = -EINVAL;
1520 } else {
1521 card->ext_csd.erase_group_def = 1;
1522 /*
1523 * enable ERASE_GRP_DEF successfully.
1524 * This will affect the erase size, so
1525 * here need to reset erase size
1526 */
1527 mmc_set_erase_size(card);
1528 }
1529 }
1530
1531 /*
1532 * Ensure eMMC user default partition is enabled
1533 */
1534 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1535 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1536 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1537 card->ext_csd.part_config,
1538 card->ext_csd.part_time);
1539 if (err && err != -EBADMSG)
1540 goto free_card;
1541 }
1542
1543 /*
1544 * Enable power_off_notification byte in the ext_csd register
1545 */
1546 if (card->ext_csd.rev >= 6) {
1547 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1548 EXT_CSD_POWER_OFF_NOTIFICATION,
1549 EXT_CSD_POWER_ON,
1550 card->ext_csd.generic_cmd6_time);
1551 if (err && err != -EBADMSG)
1552 goto free_card;
1553
1554 /*
1555 * The err can be -EBADMSG or 0,
1556 * so check for success and update the flag
1557 */
1558 if (!err)
1559 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1560 }
1561
1562 /*
1563 * Select timing interface
1564 */
1565 err = mmc_select_timing(card);
1566 if (err)
1567 goto free_card;
1568
1569 if (mmc_card_hs200(card)) {
1570 err = mmc_hs200_tuning(card);
1571 if (err)
1572 goto free_card;
1573
1574 err = mmc_select_hs400(card);
1575 if (err)
1576 goto free_card;
1577 } else if (mmc_card_hs(card)) {
1578 /* Select the desired bus width optionally */
1579 err = mmc_select_bus_width(card);
1580 if (!IS_ERR_VALUE(err)) {
1581 err = mmc_select_hs_ddr(card);
1582 if (err)
1583 goto free_card;
1584 }
1585 }
1586
1587 /*
1588 * Choose the power class with selected bus interface
1589 */
1590 mmc_select_powerclass(card);
1591
1592 /*
1593 * Enable HPI feature (if supported)
1594 */
1595 if (card->ext_csd.hpi) {
1596 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1597 EXT_CSD_HPI_MGMT, 1,
1598 card->ext_csd.generic_cmd6_time);
1599 if (err && err != -EBADMSG)
1600 goto free_card;
1601 if (err) {
1602 pr_warn("%s: Enabling HPI failed\n",
1603 mmc_hostname(card->host));
1604 err = 0;
1605 } else
1606 card->ext_csd.hpi_en = 1;
1607 }
1608
1609 /*
1610 * If cache size is higher than 0, this indicates
1611 * the existence of cache and it can be turned on.
1612 */
1613 if (card->ext_csd.cache_size > 0) {
1614 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1615 EXT_CSD_CACHE_CTRL, 1,
1616 card->ext_csd.generic_cmd6_time);
1617 if (err && err != -EBADMSG)
1618 goto free_card;
1619
1620 /*
1621 * Only if no error, cache is turned on successfully.
1622 */
1623 if (err) {
1624 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1625 mmc_hostname(card->host), err);
1626 card->ext_csd.cache_ctrl = 0;
1627 err = 0;
1628 } else {
1629 card->ext_csd.cache_ctrl = 1;
1630 }
1631 }
1632
1633 /*
1634 * The mandatory minimum values are defined for packed command.
1635 * read: 5, write: 3
1636 */
1637 if (card->ext_csd.max_packed_writes >= 3 &&
1638 card->ext_csd.max_packed_reads >= 5 &&
1639 host->caps2 & MMC_CAP2_PACKED_CMD) {
1640 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1641 EXT_CSD_EXP_EVENTS_CTRL,
1642 EXT_CSD_PACKED_EVENT_EN,
1643 card->ext_csd.generic_cmd6_time);
1644 if (err && err != -EBADMSG)
1645 goto free_card;
1646 if (err) {
1647 pr_warn("%s: Enabling packed event failed\n",
1648 mmc_hostname(card->host));
1649 card->ext_csd.packed_event_en = 0;
1650 err = 0;
1651 } else {
1652 card->ext_csd.packed_event_en = 1;
1653 }
1654 }
1655
1656 if (!oldcard)
1657 host->card = card;
1658
1659 return 0;
1660
1661free_card:
1662 if (!oldcard)
1663 mmc_remove_card(card);
1664err:
1665 return err;
1666}
1667
1668static int mmc_can_sleep(struct mmc_card *card)
1669{
1670 return (card && card->ext_csd.rev >= 3);
1671}
1672
1673static int mmc_sleep(struct mmc_host *host)
1674{
1675 struct mmc_command cmd = {0};
1676 struct mmc_card *card = host->card;
1677 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1678 int err;
1679
1680 /* Re-tuning can't be done once the card is deselected */
1681 mmc_retune_hold(host);
1682
1683 err = mmc_deselect_cards(host);
1684 if (err)
1685 goto out_release;
1686
1687 cmd.opcode = MMC_SLEEP_AWAKE;
1688 cmd.arg = card->rca << 16;
1689 cmd.arg |= 1 << 15;
1690
1691 /*
1692 * If the max_busy_timeout of the host is specified, validate it against
1693 * the sleep cmd timeout. A failure means we need to prevent the host
1694 * from doing hw busy detection, which is done by converting to a R1
1695 * response instead of a R1B.
1696 */
1697 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1698 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699 } else {
1700 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1701 cmd.busy_timeout = timeout_ms;
1702 }
1703
1704 err = mmc_wait_for_cmd(host, &cmd, 0);
1705 if (err)
1706 goto out_release;
1707
1708 /*
1709 * If the host does not wait while the card signals busy, then we will
1710 * will have to wait the sleep/awake timeout. Note, we cannot use the
1711 * SEND_STATUS command to poll the status because that command (and most
1712 * others) is invalid while the card sleeps.
1713 */
1714 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1715 mmc_delay(timeout_ms);
1716
1717out_release:
1718 mmc_retune_release(host);
1719 return err;
1720}
1721
1722static int mmc_can_poweroff_notify(const struct mmc_card *card)
1723{
1724 return card &&
1725 mmc_card_mmc(card) &&
1726 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1727}
1728
1729static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1730{
1731 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1732 int err;
1733
1734 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1735 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1736 timeout = card->ext_csd.power_off_longtime;
1737
1738 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1739 EXT_CSD_POWER_OFF_NOTIFICATION,
1740 notify_type, timeout, true, false, false);
1741 if (err)
1742 pr_err("%s: Power Off Notification timed out, %u\n",
1743 mmc_hostname(card->host), timeout);
1744
1745 /* Disable the power off notification after the switch operation. */
1746 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1747
1748 return err;
1749}
1750
1751/*
1752 * Host is being removed. Free up the current card.
1753 */
1754static void mmc_remove(struct mmc_host *host)
1755{
1756 BUG_ON(!host);
1757 BUG_ON(!host->card);
1758
1759 mmc_remove_card(host->card);
1760 host->card = NULL;
1761}
1762
1763/*
1764 * Card detection - card is alive.
1765 */
1766static int mmc_alive(struct mmc_host *host)
1767{
1768 return mmc_send_status(host->card, NULL);
1769}
1770
1771/*
1772 * Card detection callback from host.
1773 */
1774static void mmc_detect(struct mmc_host *host)
1775{
1776 int err;
1777
1778 BUG_ON(!host);
1779 BUG_ON(!host->card);
1780
1781 mmc_get_card(host->card);
1782
1783 /*
1784 * Just check if our card has been removed.
1785 */
1786 err = _mmc_detect_card_removed(host);
1787
1788 mmc_put_card(host->card);
1789
1790 if (err) {
1791 mmc_remove(host);
1792
1793 mmc_claim_host(host);
1794 mmc_detach_bus(host);
1795 mmc_power_off(host);
1796 mmc_release_host(host);
1797 }
1798}
1799
1800static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1801{
1802 int err = 0;
1803 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1804 EXT_CSD_POWER_OFF_LONG;
1805
1806 BUG_ON(!host);
1807 BUG_ON(!host->card);
1808
1809 mmc_claim_host(host);
1810
1811 if (mmc_card_suspended(host->card))
1812 goto out;
1813
1814 if (mmc_card_doing_bkops(host->card)) {
1815 err = mmc_stop_bkops(host->card);
1816 if (err)
1817 goto out;
1818 }
1819
1820 err = mmc_flush_cache(host->card);
1821 if (err)
1822 goto out;
1823
1824 if (mmc_can_poweroff_notify(host->card) &&
1825 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1826 err = mmc_poweroff_notify(host->card, notify_type);
1827 else if (mmc_can_sleep(host->card))
1828 err = mmc_sleep(host);
1829 else if (!mmc_host_is_spi(host))
1830 err = mmc_deselect_cards(host);
1831
1832 if (!err) {
1833 mmc_power_off(host);
1834 mmc_card_set_suspended(host->card);
1835 }
1836out:
1837 mmc_release_host(host);
1838 return err;
1839}
1840
1841/*
1842 * Suspend callback
1843 */
1844static int mmc_suspend(struct mmc_host *host)
1845{
1846 int err;
1847
1848 err = _mmc_suspend(host, true);
1849 if (!err) {
1850 pm_runtime_disable(&host->card->dev);
1851 pm_runtime_set_suspended(&host->card->dev);
1852 }
1853
1854 return err;
1855}
1856
1857/*
1858 * This function tries to determine if the same card is still present
1859 * and, if so, restore all state to it.
1860 */
1861static int _mmc_resume(struct mmc_host *host)
1862{
1863 int err = 0;
1864
1865 BUG_ON(!host);
1866 BUG_ON(!host->card);
1867
1868 mmc_claim_host(host);
1869
1870 if (!mmc_card_suspended(host->card))
1871 goto out;
1872
1873 mmc_power_up(host, host->card->ocr);
1874 err = mmc_init_card(host, host->card->ocr, host->card);
1875 mmc_card_clr_suspended(host->card);
1876
1877out:
1878 mmc_release_host(host);
1879 return err;
1880}
1881
1882/*
1883 * Shutdown callback
1884 */
1885static int mmc_shutdown(struct mmc_host *host)
1886{
1887 int err = 0;
1888
1889 /*
1890 * In a specific case for poweroff notify, we need to resume the card
1891 * before we can shutdown it properly.
1892 */
1893 if (mmc_can_poweroff_notify(host->card) &&
1894 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1895 err = _mmc_resume(host);
1896
1897 if (!err)
1898 err = _mmc_suspend(host, false);
1899
1900 return err;
1901}
1902
1903/*
1904 * Callback for resume.
1905 */
1906static int mmc_resume(struct mmc_host *host)
1907{
1908 pm_runtime_enable(&host->card->dev);
1909 return 0;
1910}
1911
1912/*
1913 * Callback for runtime_suspend.
1914 */
1915static int mmc_runtime_suspend(struct mmc_host *host)
1916{
1917 int err;
1918
1919 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1920 return 0;
1921
1922 err = _mmc_suspend(host, true);
1923 if (err)
1924 pr_err("%s: error %d doing aggressive suspend\n",
1925 mmc_hostname(host), err);
1926
1927 return err;
1928}
1929
1930/*
1931 * Callback for runtime_resume.
1932 */
1933static int mmc_runtime_resume(struct mmc_host *host)
1934{
1935 int err;
1936
1937 err = _mmc_resume(host);
1938 if (err && err != -ENOMEDIUM)
1939 pr_err("%s: error %d doing runtime resume\n",
1940 mmc_hostname(host), err);
1941
1942 return 0;
1943}
1944
1945int mmc_can_reset(struct mmc_card *card)
1946{
1947 u8 rst_n_function;
1948
1949 rst_n_function = card->ext_csd.rst_n_function;
1950 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1951 return 0;
1952 return 1;
1953}
1954EXPORT_SYMBOL(mmc_can_reset);
1955
1956static int mmc_reset(struct mmc_host *host)
1957{
1958 struct mmc_card *card = host->card;
1959
1960 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1961 return -EOPNOTSUPP;
1962
1963 if (!mmc_can_reset(card))
1964 return -EOPNOTSUPP;
1965
1966 mmc_set_clock(host, host->f_init);
1967
1968 host->ops->hw_reset(host);
1969
1970 /* Set initial state and call mmc_set_ios */
1971 mmc_set_initial_state(host);
1972
1973 return mmc_init_card(host, card->ocr, card);
1974}
1975
1976static const struct mmc_bus_ops mmc_ops = {
1977 .remove = mmc_remove,
1978 .detect = mmc_detect,
1979 .suspend = mmc_suspend,
1980 .resume = mmc_resume,
1981 .runtime_suspend = mmc_runtime_suspend,
1982 .runtime_resume = mmc_runtime_resume,
1983 .alive = mmc_alive,
1984 .shutdown = mmc_shutdown,
1985 .reset = mmc_reset,
1986};
1987
1988/*
1989 * Starting point for MMC card init.
1990 */
1991int mmc_attach_mmc(struct mmc_host *host)
1992{
1993 int err;
1994 u32 ocr, rocr;
1995
1996 BUG_ON(!host);
1997 WARN_ON(!host->claimed);
1998
1999 /* Set correct bus mode for MMC before attempting attach */
2000 if (!mmc_host_is_spi(host))
2001 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2002
2003 err = mmc_send_op_cond(host, 0, &ocr);
2004 if (err)
2005 return err;
2006
2007 mmc_attach_bus(host, &mmc_ops);
2008 if (host->ocr_avail_mmc)
2009 host->ocr_avail = host->ocr_avail_mmc;
2010
2011 /*
2012 * We need to get OCR a different way for SPI.
2013 */
2014 if (mmc_host_is_spi(host)) {
2015 err = mmc_spi_read_ocr(host, 1, &ocr);
2016 if (err)
2017 goto err;
2018 }
2019
2020 rocr = mmc_select_voltage(host, ocr);
2021
2022 /*
2023 * Can we support the voltage of the card?
2024 */
2025 if (!rocr) {
2026 err = -EINVAL;
2027 goto err;
2028 }
2029
2030 /*
2031 * Detect and init the card.
2032 */
2033 err = mmc_init_card(host, rocr, NULL);
2034 if (err)
2035 goto err;
2036
2037 mmc_release_host(host);
2038 err = mmc_add_card(host->card);
2039 if (err)
2040 goto remove_card;
2041
2042 mmc_claim_host(host);
2043 return 0;
2044
2045remove_card:
2046 mmc_remove_card(host->card);
2047 mmc_claim_host(host);
2048 host->card = NULL;
2049err:
2050 mmc_detach_bus(host);
2051
2052 pr_err("%s: error %d whilst initialising MMC card\n",
2053 mmc_hostname(host), err);
2054
2055 return err;
2056}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "card.h"
22#include "host.h"
23#include "bus.h"
24#include "mmc_ops.h"
25#include "quirks.h"
26#include "sd_ops.h"
27#include "pwrseq.h"
28
29#define DEFAULT_CMD6_TIMEOUT_MS 500
30#define MIN_CACHE_EN_TIMEOUT_MS 1600
31
32static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
35};
36
37static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
40};
41
42static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
44};
45
46static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
49};
50
51#define UNSTUFF_BITS(resp,start,size) \
52 ({ \
53 const int __size = size; \
54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
55 const int __off = 3 - ((start) / 32); \
56 const int __shft = (start) & 31; \
57 u32 __res; \
58 \
59 __res = resp[__off] >> __shft; \
60 if (__size + __shft > 32) \
61 __res |= resp[__off-1] << ((32 - __shft) % 32); \
62 __res & __mask; \
63 })
64
65/*
66 * Given the decoded CSD structure, decode the raw CID to our CID structure.
67 */
68static int mmc_decode_cid(struct mmc_card *card)
69{
70 u32 *resp = card->raw_cid;
71
72 /*
73 * The selection of the format here is based upon published
74 * specs from sandisk and from what people have reported.
75 */
76 switch (card->csd.mmca_vsn) {
77 case 0: /* MMC v1.0 - v1.2 */
78 case 1: /* MMC v1.4 */
79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
90 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
92 break;
93
94 case 2: /* MMC v2.0 - v2.2 */
95 case 3: /* MMC v3.1 - v3.3 */
96 case 4: /* MMC v4 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
107 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
109 break;
110
111 default:
112 pr_err("%s: card has unknown MMCA version %d\n",
113 mmc_hostname(card->host), card->csd.mmca_vsn);
114 return -EINVAL;
115 }
116
117 return 0;
118}
119
120static void mmc_set_erase_size(struct mmc_card *card)
121{
122 if (card->ext_csd.erase_group_def & 1)
123 card->erase_size = card->ext_csd.hc_erase_size;
124 else
125 card->erase_size = card->csd.erase_size;
126
127 mmc_init_erase(card);
128}
129
130/*
131 * Given a 128-bit response, decode to our card CSD structure.
132 */
133static int mmc_decode_csd(struct mmc_card *card)
134{
135 struct mmc_csd *csd = &card->csd;
136 unsigned int e, m, a, b;
137 u32 *resp = card->raw_csd;
138
139 /*
140 * We only understand CSD structure v1.1 and v1.2.
141 * v1.2 has extra information in bits 15, 11 and 10.
142 * We also support eMMC v4.4 & v4.41.
143 */
144 csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 if (csd->structure == 0) {
146 pr_err("%s: unrecognised CSD structure version %d\n",
147 mmc_hostname(card->host), csd->structure);
148 return -EINVAL;
149 }
150
151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
152 m = UNSTUFF_BITS(resp, 115, 4);
153 e = UNSTUFF_BITS(resp, 112, 3);
154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
156
157 m = UNSTUFF_BITS(resp, 99, 4);
158 e = UNSTUFF_BITS(resp, 96, 3);
159 csd->max_dtr = tran_exp[e] * tran_mant[m];
160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
161
162 e = UNSTUFF_BITS(resp, 47, 3);
163 m = UNSTUFF_BITS(resp, 62, 12);
164 csd->capacity = (1 + m) << (e + 2);
165
166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174
175 if (csd->write_blkbits >= 9) {
176 a = UNSTUFF_BITS(resp, 42, 5);
177 b = UNSTUFF_BITS(resp, 37, 5);
178 csd->erase_size = (a + 1) * (b + 1);
179 csd->erase_size <<= csd->write_blkbits - 9;
180 }
181
182 return 0;
183}
184
185static void mmc_select_card_type(struct mmc_card *card)
186{
187 struct mmc_host *host = card->host;
188 u8 card_type = card->ext_csd.raw_card_type;
189 u32 caps = host->caps, caps2 = host->caps2;
190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 unsigned int avail_type = 0;
192
193 if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 }
198
199 if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 }
204
205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 }
210
211 if (caps & MMC_CAP_1_2V_DDR &&
212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 }
216
217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 hs200_max_dtr = MMC_HS200_MAX_DTR;
220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 }
222
223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 hs200_max_dtr = MMC_HS200_MAX_DTR;
226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 }
228
229 if (caps2 & MMC_CAP2_HS400_1_8V &&
230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 hs200_max_dtr = MMC_HS200_MAX_DTR;
232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 }
234
235 if (caps2 & MMC_CAP2_HS400_1_2V &&
236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 hs200_max_dtr = MMC_HS200_MAX_DTR;
238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 }
240
241 if ((caps2 & MMC_CAP2_HS400_ES) &&
242 card->ext_csd.strobe_support &&
243 (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245
246 card->ext_csd.hs_max_dtr = hs_max_dtr;
247 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 card->mmc_avail_type = avail_type;
249}
250
251static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252{
253 u8 hc_erase_grp_sz, hc_wp_grp_sz;
254
255 /*
256 * Disable these attributes by default
257 */
258 card->ext_csd.enhanced_area_offset = -EINVAL;
259 card->ext_csd.enhanced_area_size = -EINVAL;
260
261 /*
262 * Enhanced area feature support -- check whether the eMMC
263 * card has the Enhanced area enabled. If so, export enhanced
264 * area offset and size to user by adding sysfs interface.
265 */
266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 if (card->ext_csd.partition_setting_completed) {
269 hc_erase_grp_sz =
270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 hc_wp_grp_sz =
272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273
274 /*
275 * calculate the enhanced data area offset, in bytes
276 */
277 card->ext_csd.enhanced_area_offset =
278 (((unsigned long long)ext_csd[139]) << 24) +
279 (((unsigned long long)ext_csd[138]) << 16) +
280 (((unsigned long long)ext_csd[137]) << 8) +
281 (((unsigned long long)ext_csd[136]));
282 if (mmc_card_blockaddr(card))
283 card->ext_csd.enhanced_area_offset <<= 9;
284 /*
285 * calculate the enhanced data area size, in kilobytes
286 */
287 card->ext_csd.enhanced_area_size =
288 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 ext_csd[140];
290 card->ext_csd.enhanced_area_size *=
291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 card->ext_csd.enhanced_area_size <<= 9;
293 } else {
294 pr_warn("%s: defines enhanced area without partition setting complete\n",
295 mmc_hostname(card->host));
296 }
297 }
298}
299
300static void mmc_part_add(struct mmc_card *card, unsigned int size,
301 unsigned int part_cfg, char *name, int idx, bool ro,
302 int area_type)
303{
304 card->part[card->nr_parts].size = size;
305 card->part[card->nr_parts].part_cfg = part_cfg;
306 sprintf(card->part[card->nr_parts].name, name, idx);
307 card->part[card->nr_parts].force_ro = ro;
308 card->part[card->nr_parts].area_type = area_type;
309 card->nr_parts++;
310}
311
312static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313{
314 int idx;
315 u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 unsigned int part_size;
317
318 /*
319 * General purpose partition feature support --
320 * If ext_csd has the size of general purpose partitions,
321 * set size, part_cfg, partition name in mmc_part.
322 */
323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 EXT_CSD_PART_SUPPORT_PART_EN) {
325 hc_erase_grp_sz =
326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 hc_wp_grp_sz =
328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329
330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 continue;
335 if (card->ext_csd.partition_setting_completed == 0) {
336 pr_warn("%s: has partition size defined without partition complete\n",
337 mmc_hostname(card->host));
338 break;
339 }
340 part_size =
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 << 16) +
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 << 8) +
345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 part_size *= (size_t)(hc_erase_grp_sz *
347 hc_wp_grp_sz);
348 mmc_part_add(card, part_size << 19,
349 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 "gp%d", idx, false,
351 MMC_BLK_DATA_AREA_GP);
352 }
353 }
354}
355
356/* Minimum partition switch timeout in milliseconds */
357#define MMC_MIN_PART_SWITCH_TIME 300
358
359/*
360 * Decode extended CSD.
361 */
362static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363{
364 int err = 0, idx;
365 unsigned int part_size;
366 struct device_node *np;
367 bool broken_hpi = false;
368
369 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 if (card->csd.structure == 3) {
372 if (card->ext_csd.raw_ext_csd_structure > 2) {
373 pr_err("%s: unrecognised EXT_CSD structure "
374 "version %d\n", mmc_hostname(card->host),
375 card->ext_csd.raw_ext_csd_structure);
376 err = -EINVAL;
377 goto out;
378 }
379 }
380
381 np = mmc_of_find_child_device(card->host, 0);
382 if (np && of_device_is_compatible(np, "mmc-card"))
383 broken_hpi = of_property_read_bool(np, "broken-hpi");
384 of_node_put(np);
385
386 /*
387 * The EXT_CSD format is meant to be forward compatible. As long
388 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 * are authorized, see JEDEC JESD84-B50 section B.8.
390 */
391 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392
393 /* fixup device after ext_csd revision field is updated */
394 mmc_fixup_device(card, mmc_ext_csd_fixups);
395
396 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 if (card->ext_csd.rev >= 2) {
401 card->ext_csd.sectors =
402 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406
407 /* Cards with density > 2GiB are sector addressed */
408 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 mmc_card_set_blockaddr(card);
410 }
411
412 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 mmc_select_card_type(card);
415
416 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 card->ext_csd.raw_erase_timeout_mult =
418 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 card->ext_csd.raw_hc_erase_grp_size =
420 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 if (card->ext_csd.rev >= 3) {
422 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
423 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
424
425 /* EXT_CSD value is in units of 10ms, but we store in ms */
426 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
427 /* Some eMMC set the value too low so set a minimum */
428 if (card->ext_csd.part_time &&
429 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
430 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
431
432 /* Sleep / awake timeout in 100ns units */
433 if (sa_shift > 0 && sa_shift <= 0x17)
434 card->ext_csd.sa_timeout =
435 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
436 card->ext_csd.erase_group_def =
437 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
438 card->ext_csd.hc_erase_timeout = 300 *
439 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
440 card->ext_csd.hc_erase_size =
441 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
442
443 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
444
445 /*
446 * There are two boot regions of equal size, defined in
447 * multiples of 128K.
448 */
449 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
450 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
451 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
452 mmc_part_add(card, part_size,
453 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
454 "boot%d", idx, true,
455 MMC_BLK_DATA_AREA_BOOT);
456 }
457 }
458 }
459
460 card->ext_csd.raw_hc_erase_gap_size =
461 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
462 card->ext_csd.raw_sec_trim_mult =
463 ext_csd[EXT_CSD_SEC_TRIM_MULT];
464 card->ext_csd.raw_sec_erase_mult =
465 ext_csd[EXT_CSD_SEC_ERASE_MULT];
466 card->ext_csd.raw_sec_feature_support =
467 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
468 card->ext_csd.raw_trim_mult =
469 ext_csd[EXT_CSD_TRIM_MULT];
470 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
471 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
472 if (card->ext_csd.rev >= 4) {
473 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
474 EXT_CSD_PART_SETTING_COMPLETED)
475 card->ext_csd.partition_setting_completed = 1;
476 else
477 card->ext_csd.partition_setting_completed = 0;
478
479 mmc_manage_enhanced_area(card, ext_csd);
480
481 mmc_manage_gp_partitions(card, ext_csd);
482
483 card->ext_csd.sec_trim_mult =
484 ext_csd[EXT_CSD_SEC_TRIM_MULT];
485 card->ext_csd.sec_erase_mult =
486 ext_csd[EXT_CSD_SEC_ERASE_MULT];
487 card->ext_csd.sec_feature_support =
488 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
489 card->ext_csd.trim_timeout = 300 *
490 ext_csd[EXT_CSD_TRIM_MULT];
491
492 /*
493 * Note that the call to mmc_part_add above defaults to read
494 * only. If this default assumption is changed, the call must
495 * take into account the value of boot_locked below.
496 */
497 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
498 card->ext_csd.boot_ro_lockable = true;
499
500 /* Save power class values */
501 card->ext_csd.raw_pwr_cl_52_195 =
502 ext_csd[EXT_CSD_PWR_CL_52_195];
503 card->ext_csd.raw_pwr_cl_26_195 =
504 ext_csd[EXT_CSD_PWR_CL_26_195];
505 card->ext_csd.raw_pwr_cl_52_360 =
506 ext_csd[EXT_CSD_PWR_CL_52_360];
507 card->ext_csd.raw_pwr_cl_26_360 =
508 ext_csd[EXT_CSD_PWR_CL_26_360];
509 card->ext_csd.raw_pwr_cl_200_195 =
510 ext_csd[EXT_CSD_PWR_CL_200_195];
511 card->ext_csd.raw_pwr_cl_200_360 =
512 ext_csd[EXT_CSD_PWR_CL_200_360];
513 card->ext_csd.raw_pwr_cl_ddr_52_195 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
515 card->ext_csd.raw_pwr_cl_ddr_52_360 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
517 card->ext_csd.raw_pwr_cl_ddr_200_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
519 }
520
521 if (card->ext_csd.rev >= 5) {
522 /* Adjust production date as per JEDEC JESD84-B451 */
523 if (card->cid.year < 2010)
524 card->cid.year += 16;
525
526 /* check whether the eMMC card supports BKOPS */
527 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
528 card->ext_csd.bkops = 1;
529 card->ext_csd.man_bkops_en =
530 (ext_csd[EXT_CSD_BKOPS_EN] &
531 EXT_CSD_MANUAL_BKOPS_MASK);
532 card->ext_csd.raw_bkops_status =
533 ext_csd[EXT_CSD_BKOPS_STATUS];
534 if (card->ext_csd.man_bkops_en)
535 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
536 mmc_hostname(card->host));
537 card->ext_csd.auto_bkops_en =
538 (ext_csd[EXT_CSD_BKOPS_EN] &
539 EXT_CSD_AUTO_BKOPS_MASK);
540 if (card->ext_csd.auto_bkops_en)
541 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
542 mmc_hostname(card->host));
543 }
544
545 /* check whether the eMMC card supports HPI */
546 if (!mmc_card_broken_hpi(card) &&
547 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
548 card->ext_csd.hpi = 1;
549 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
550 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
551 else
552 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
553 /*
554 * Indicate the maximum timeout to close
555 * a command interrupted by HPI
556 */
557 card->ext_csd.out_of_int_time =
558 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
559 }
560
561 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
562 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
563
564 /*
565 * RPMB regions are defined in multiples of 128K.
566 */
567 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
568 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
569 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
570 EXT_CSD_PART_CONFIG_ACC_RPMB,
571 "rpmb", 0, false,
572 MMC_BLK_DATA_AREA_RPMB);
573 }
574 }
575
576 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
577 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
578 card->erased_byte = 0xFF;
579 else
580 card->erased_byte = 0x0;
581
582 /* eMMC v4.5 or later */
583 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
584 if (card->ext_csd.rev >= 6) {
585 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
586
587 card->ext_csd.generic_cmd6_time = 10 *
588 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
589 card->ext_csd.power_off_longtime = 10 *
590 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
591
592 card->ext_csd.cache_size =
593 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
594 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
595 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
596 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
597
598 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
599 card->ext_csd.data_sector_size = 4096;
600 else
601 card->ext_csd.data_sector_size = 512;
602
603 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
604 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
605 card->ext_csd.data_tag_unit_size =
606 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
607 (card->ext_csd.data_sector_size);
608 } else {
609 card->ext_csd.data_tag_unit_size = 0;
610 }
611
612 card->ext_csd.max_packed_writes =
613 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
614 card->ext_csd.max_packed_reads =
615 ext_csd[EXT_CSD_MAX_PACKED_READS];
616 } else {
617 card->ext_csd.data_sector_size = 512;
618 }
619
620 /* eMMC v5 or later */
621 if (card->ext_csd.rev >= 7) {
622 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
623 MMC_FIRMWARE_LEN);
624 card->ext_csd.ffu_capable =
625 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
626 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
627
628 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
629 card->ext_csd.device_life_time_est_typ_a =
630 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
631 card->ext_csd.device_life_time_est_typ_b =
632 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
633 }
634
635 /* eMMC v5.1 or later */
636 if (card->ext_csd.rev >= 8) {
637 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
638 EXT_CSD_CMDQ_SUPPORTED;
639 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
640 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
641 /* Exclude inefficiently small queue depths */
642 if (card->ext_csd.cmdq_depth <= 2) {
643 card->ext_csd.cmdq_support = false;
644 card->ext_csd.cmdq_depth = 0;
645 }
646 if (card->ext_csd.cmdq_support) {
647 pr_debug("%s: Command Queue supported depth %u\n",
648 mmc_hostname(card->host),
649 card->ext_csd.cmdq_depth);
650 }
651 }
652out:
653 return err;
654}
655
656static int mmc_read_ext_csd(struct mmc_card *card)
657{
658 u8 *ext_csd;
659 int err;
660
661 if (!mmc_can_ext_csd(card))
662 return 0;
663
664 err = mmc_get_ext_csd(card, &ext_csd);
665 if (err) {
666 /* If the host or the card can't do the switch,
667 * fail more gracefully. */
668 if ((err != -EINVAL)
669 && (err != -ENOSYS)
670 && (err != -EFAULT))
671 return err;
672
673 /*
674 * High capacity cards should have this "magic" size
675 * stored in their CSD.
676 */
677 if (card->csd.capacity == (4096 * 512)) {
678 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
679 mmc_hostname(card->host));
680 } else {
681 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
682 mmc_hostname(card->host));
683 err = 0;
684 }
685
686 return err;
687 }
688
689 err = mmc_decode_ext_csd(card, ext_csd);
690 kfree(ext_csd);
691 return err;
692}
693
694static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
695{
696 u8 *bw_ext_csd;
697 int err;
698
699 if (bus_width == MMC_BUS_WIDTH_1)
700 return 0;
701
702 err = mmc_get_ext_csd(card, &bw_ext_csd);
703 if (err)
704 return err;
705
706 /* only compare read only fields */
707 err = !((card->ext_csd.raw_partition_support ==
708 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
709 (card->ext_csd.raw_erased_mem_count ==
710 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
711 (card->ext_csd.rev ==
712 bw_ext_csd[EXT_CSD_REV]) &&
713 (card->ext_csd.raw_ext_csd_structure ==
714 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
715 (card->ext_csd.raw_card_type ==
716 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
717 (card->ext_csd.raw_s_a_timeout ==
718 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
719 (card->ext_csd.raw_hc_erase_gap_size ==
720 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
721 (card->ext_csd.raw_erase_timeout_mult ==
722 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
723 (card->ext_csd.raw_hc_erase_grp_size ==
724 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
725 (card->ext_csd.raw_sec_trim_mult ==
726 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
727 (card->ext_csd.raw_sec_erase_mult ==
728 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
729 (card->ext_csd.raw_sec_feature_support ==
730 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
731 (card->ext_csd.raw_trim_mult ==
732 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
733 (card->ext_csd.raw_sectors[0] ==
734 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
735 (card->ext_csd.raw_sectors[1] ==
736 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
737 (card->ext_csd.raw_sectors[2] ==
738 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
739 (card->ext_csd.raw_sectors[3] ==
740 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
741 (card->ext_csd.raw_pwr_cl_52_195 ==
742 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
743 (card->ext_csd.raw_pwr_cl_26_195 ==
744 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
745 (card->ext_csd.raw_pwr_cl_52_360 ==
746 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
747 (card->ext_csd.raw_pwr_cl_26_360 ==
748 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
749 (card->ext_csd.raw_pwr_cl_200_195 ==
750 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
751 (card->ext_csd.raw_pwr_cl_200_360 ==
752 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
753 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
754 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
755 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
756 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
757 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
759
760 if (err)
761 err = -EINVAL;
762
763 kfree(bw_ext_csd);
764 return err;
765}
766
767MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
768 card->raw_cid[2], card->raw_cid[3]);
769MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
770 card->raw_csd[2], card->raw_csd[3]);
771MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
772MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
773MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
774MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
775MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
776MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
777MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
778MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
779MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
780MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
781MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
782MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
783 card->ext_csd.device_life_time_est_typ_a,
784 card->ext_csd.device_life_time_est_typ_b);
785MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
786MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
787 card->ext_csd.enhanced_area_offset);
788MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
789MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
790MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
791MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
792MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
793MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
794
795static ssize_t mmc_fwrev_show(struct device *dev,
796 struct device_attribute *attr,
797 char *buf)
798{
799 struct mmc_card *card = mmc_dev_to_card(dev);
800
801 if (card->ext_csd.rev < 7) {
802 return sprintf(buf, "0x%x\n", card->cid.fwrev);
803 } else {
804 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
805 card->ext_csd.fwrev);
806 }
807}
808
809static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
810
811static ssize_t mmc_dsr_show(struct device *dev,
812 struct device_attribute *attr,
813 char *buf)
814{
815 struct mmc_card *card = mmc_dev_to_card(dev);
816 struct mmc_host *host = card->host;
817
818 if (card->csd.dsr_imp && host->dsr_req)
819 return sprintf(buf, "0x%x\n", host->dsr);
820 else
821 /* return default DSR value */
822 return sprintf(buf, "0x%x\n", 0x404);
823}
824
825static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
826
827static struct attribute *mmc_std_attrs[] = {
828 &dev_attr_cid.attr,
829 &dev_attr_csd.attr,
830 &dev_attr_date.attr,
831 &dev_attr_erase_size.attr,
832 &dev_attr_preferred_erase_size.attr,
833 &dev_attr_fwrev.attr,
834 &dev_attr_ffu_capable.attr,
835 &dev_attr_hwrev.attr,
836 &dev_attr_manfid.attr,
837 &dev_attr_name.attr,
838 &dev_attr_oemid.attr,
839 &dev_attr_prv.attr,
840 &dev_attr_rev.attr,
841 &dev_attr_pre_eol_info.attr,
842 &dev_attr_life_time.attr,
843 &dev_attr_serial.attr,
844 &dev_attr_enhanced_area_offset.attr,
845 &dev_attr_enhanced_area_size.attr,
846 &dev_attr_raw_rpmb_size_mult.attr,
847 &dev_attr_rel_sectors.attr,
848 &dev_attr_ocr.attr,
849 &dev_attr_rca.attr,
850 &dev_attr_dsr.attr,
851 &dev_attr_cmdq_en.attr,
852 NULL,
853};
854ATTRIBUTE_GROUPS(mmc_std);
855
856static struct device_type mmc_type = {
857 .groups = mmc_std_groups,
858};
859
860/*
861 * Select the PowerClass for the current bus width
862 * If power class is defined for 4/8 bit bus in the
863 * extended CSD register, select it by executing the
864 * mmc_switch command.
865 */
866static int __mmc_select_powerclass(struct mmc_card *card,
867 unsigned int bus_width)
868{
869 struct mmc_host *host = card->host;
870 struct mmc_ext_csd *ext_csd = &card->ext_csd;
871 unsigned int pwrclass_val = 0;
872 int err = 0;
873
874 switch (1 << host->ios.vdd) {
875 case MMC_VDD_165_195:
876 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
877 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
878 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
879 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
880 ext_csd->raw_pwr_cl_52_195 :
881 ext_csd->raw_pwr_cl_ddr_52_195;
882 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
883 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
884 break;
885 case MMC_VDD_27_28:
886 case MMC_VDD_28_29:
887 case MMC_VDD_29_30:
888 case MMC_VDD_30_31:
889 case MMC_VDD_31_32:
890 case MMC_VDD_32_33:
891 case MMC_VDD_33_34:
892 case MMC_VDD_34_35:
893 case MMC_VDD_35_36:
894 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
895 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
896 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
897 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
898 ext_csd->raw_pwr_cl_52_360 :
899 ext_csd->raw_pwr_cl_ddr_52_360;
900 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
901 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
902 ext_csd->raw_pwr_cl_ddr_200_360 :
903 ext_csd->raw_pwr_cl_200_360;
904 break;
905 default:
906 pr_warn("%s: Voltage range not supported for power class\n",
907 mmc_hostname(host));
908 return -EINVAL;
909 }
910
911 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
912 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
913 EXT_CSD_PWR_CL_8BIT_SHIFT;
914 else
915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
916 EXT_CSD_PWR_CL_4BIT_SHIFT;
917
918 /* If the power class is different from the default value */
919 if (pwrclass_val > 0) {
920 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
921 EXT_CSD_POWER_CLASS,
922 pwrclass_val,
923 card->ext_csd.generic_cmd6_time);
924 }
925
926 return err;
927}
928
929static int mmc_select_powerclass(struct mmc_card *card)
930{
931 struct mmc_host *host = card->host;
932 u32 bus_width, ext_csd_bits;
933 int err, ddr;
934
935 /* Power class selection is supported for versions >= 4.0 */
936 if (!mmc_can_ext_csd(card))
937 return 0;
938
939 bus_width = host->ios.bus_width;
940 /* Power class values are defined only for 4/8 bit bus */
941 if (bus_width == MMC_BUS_WIDTH_1)
942 return 0;
943
944 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
945 if (ddr)
946 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
947 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
948 else
949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
951
952 err = __mmc_select_powerclass(card, ext_csd_bits);
953 if (err)
954 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
955 mmc_hostname(host), 1 << bus_width, ddr);
956
957 return err;
958}
959
960/*
961 * Set the bus speed for the selected speed mode.
962 */
963static void mmc_set_bus_speed(struct mmc_card *card)
964{
965 unsigned int max_dtr = (unsigned int)-1;
966
967 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
968 max_dtr > card->ext_csd.hs200_max_dtr)
969 max_dtr = card->ext_csd.hs200_max_dtr;
970 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
971 max_dtr = card->ext_csd.hs_max_dtr;
972 else if (max_dtr > card->csd.max_dtr)
973 max_dtr = card->csd.max_dtr;
974
975 mmc_set_clock(card->host, max_dtr);
976}
977
978/*
979 * Select the bus width amoung 4-bit and 8-bit(SDR).
980 * If the bus width is changed successfully, return the selected width value.
981 * Zero is returned instead of error value if the wide width is not supported.
982 */
983static int mmc_select_bus_width(struct mmc_card *card)
984{
985 static unsigned ext_csd_bits[] = {
986 EXT_CSD_BUS_WIDTH_8,
987 EXT_CSD_BUS_WIDTH_4,
988 };
989 static unsigned bus_widths[] = {
990 MMC_BUS_WIDTH_8,
991 MMC_BUS_WIDTH_4,
992 };
993 struct mmc_host *host = card->host;
994 unsigned idx, bus_width = 0;
995 int err = 0;
996
997 if (!mmc_can_ext_csd(card) ||
998 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
999 return 0;
1000
1001 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1002
1003 /*
1004 * Unlike SD, MMC cards dont have a configuration register to notify
1005 * supported bus width. So bus test command should be run to identify
1006 * the supported bus width or compare the ext csd values of current
1007 * bus width and ext csd values of 1 bit mode read earlier.
1008 */
1009 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1010 /*
1011 * Host is capable of 8bit transfer, then switch
1012 * the device to work in 8bit transfer mode. If the
1013 * mmc switch command returns error then switch to
1014 * 4bit transfer mode. On success set the corresponding
1015 * bus width on the host.
1016 */
1017 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1018 EXT_CSD_BUS_WIDTH,
1019 ext_csd_bits[idx],
1020 card->ext_csd.generic_cmd6_time);
1021 if (err)
1022 continue;
1023
1024 bus_width = bus_widths[idx];
1025 mmc_set_bus_width(host, bus_width);
1026
1027 /*
1028 * If controller can't handle bus width test,
1029 * compare ext_csd previously read in 1 bit mode
1030 * against ext_csd at new bus width
1031 */
1032 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1033 err = mmc_compare_ext_csds(card, bus_width);
1034 else
1035 err = mmc_bus_test(card, bus_width);
1036
1037 if (!err) {
1038 err = bus_width;
1039 break;
1040 } else {
1041 pr_warn("%s: switch to bus width %d failed\n",
1042 mmc_hostname(host), 1 << bus_width);
1043 }
1044 }
1045
1046 return err;
1047}
1048
1049/*
1050 * Switch to the high-speed mode
1051 */
1052static int mmc_select_hs(struct mmc_card *card)
1053{
1054 int err;
1055
1056 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1057 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1058 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1059 true, true, true);
1060 if (err)
1061 pr_warn("%s: switch to high-speed failed, err:%d\n",
1062 mmc_hostname(card->host), err);
1063
1064 return err;
1065}
1066
1067/*
1068 * Activate wide bus and DDR if supported.
1069 */
1070static int mmc_select_hs_ddr(struct mmc_card *card)
1071{
1072 struct mmc_host *host = card->host;
1073 u32 bus_width, ext_csd_bits;
1074 int err = 0;
1075
1076 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1077 return 0;
1078
1079 bus_width = host->ios.bus_width;
1080 if (bus_width == MMC_BUS_WIDTH_1)
1081 return 0;
1082
1083 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1084 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1085
1086 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1087 EXT_CSD_BUS_WIDTH,
1088 ext_csd_bits,
1089 card->ext_csd.generic_cmd6_time,
1090 MMC_TIMING_MMC_DDR52,
1091 true, true, true);
1092 if (err) {
1093 pr_err("%s: switch to bus width %d ddr failed\n",
1094 mmc_hostname(host), 1 << bus_width);
1095 return err;
1096 }
1097
1098 /*
1099 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1100 * signaling.
1101 *
1102 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1103 *
1104 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1105 * in the JEDEC spec for DDR.
1106 *
1107 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1108 * host controller can support this, like some of the SDHCI
1109 * controller which connect to an eMMC device. Some of these
1110 * host controller still needs to use 1.8v vccq for supporting
1111 * DDR mode.
1112 *
1113 * So the sequence will be:
1114 * if (host and device can both support 1.2v IO)
1115 * use 1.2v IO;
1116 * else if (host and device can both support 1.8v IO)
1117 * use 1.8v IO;
1118 * so if host and device can only support 3.3v IO, this is the
1119 * last choice.
1120 *
1121 * WARNING: eMMC rules are NOT the same as SD DDR
1122 */
1123 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1124 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1125 if (!err)
1126 return 0;
1127 }
1128
1129 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1130 host->caps & MMC_CAP_1_8V_DDR)
1131 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1132
1133 /* make sure vccq is 3.3v after switching disaster */
1134 if (err)
1135 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1136
1137 return err;
1138}
1139
1140static int mmc_select_hs400(struct mmc_card *card)
1141{
1142 struct mmc_host *host = card->host;
1143 unsigned int max_dtr;
1144 int err = 0;
1145 u8 val;
1146
1147 /*
1148 * HS400 mode requires 8-bit bus width
1149 */
1150 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1151 host->ios.bus_width == MMC_BUS_WIDTH_8))
1152 return 0;
1153
1154 /* Switch card to HS mode */
1155 val = EXT_CSD_TIMING_HS;
1156 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1157 EXT_CSD_HS_TIMING, val,
1158 card->ext_csd.generic_cmd6_time, 0,
1159 true, false, true);
1160 if (err) {
1161 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1162 mmc_hostname(host), err);
1163 return err;
1164 }
1165
1166 /* Set host controller to HS timing */
1167 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1168
1169 /* Prepare host to downgrade to HS timing */
1170 if (host->ops->hs400_downgrade)
1171 host->ops->hs400_downgrade(host);
1172
1173 /* Reduce frequency to HS frequency */
1174 max_dtr = card->ext_csd.hs_max_dtr;
1175 mmc_set_clock(host, max_dtr);
1176
1177 err = mmc_switch_status(card);
1178 if (err)
1179 goto out_err;
1180
1181 if (host->ops->hs400_prepare_ddr)
1182 host->ops->hs400_prepare_ddr(host);
1183
1184 /* Switch card to DDR */
1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 EXT_CSD_BUS_WIDTH,
1187 EXT_CSD_DDR_BUS_WIDTH_8,
1188 card->ext_csd.generic_cmd6_time);
1189 if (err) {
1190 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1191 mmc_hostname(host), err);
1192 return err;
1193 }
1194
1195 /* Switch card to HS400 */
1196 val = EXT_CSD_TIMING_HS400 |
1197 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1198 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 EXT_CSD_HS_TIMING, val,
1200 card->ext_csd.generic_cmd6_time, 0,
1201 true, false, true);
1202 if (err) {
1203 pr_err("%s: switch to hs400 failed, err:%d\n",
1204 mmc_hostname(host), err);
1205 return err;
1206 }
1207
1208 /* Set host controller to HS400 timing and frequency */
1209 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1210 mmc_set_bus_speed(card);
1211
1212 if (host->ops->hs400_complete)
1213 host->ops->hs400_complete(host);
1214
1215 err = mmc_switch_status(card);
1216 if (err)
1217 goto out_err;
1218
1219 return 0;
1220
1221out_err:
1222 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1223 __func__, err);
1224 return err;
1225}
1226
1227int mmc_hs200_to_hs400(struct mmc_card *card)
1228{
1229 return mmc_select_hs400(card);
1230}
1231
1232int mmc_hs400_to_hs200(struct mmc_card *card)
1233{
1234 struct mmc_host *host = card->host;
1235 unsigned int max_dtr;
1236 int err;
1237 u8 val;
1238
1239 /* Reduce frequency to HS */
1240 max_dtr = card->ext_csd.hs_max_dtr;
1241 mmc_set_clock(host, max_dtr);
1242
1243 /* Switch HS400 to HS DDR */
1244 val = EXT_CSD_TIMING_HS;
1245 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1246 val, card->ext_csd.generic_cmd6_time, 0,
1247 true, false, true);
1248 if (err)
1249 goto out_err;
1250
1251 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1252
1253 err = mmc_switch_status(card);
1254 if (err)
1255 goto out_err;
1256
1257 /* Switch HS DDR to HS */
1258 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1259 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1260 0, true, false, true);
1261 if (err)
1262 goto out_err;
1263
1264 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1265
1266 if (host->ops->hs400_downgrade)
1267 host->ops->hs400_downgrade(host);
1268
1269 err = mmc_switch_status(card);
1270 if (err)
1271 goto out_err;
1272
1273 /* Switch HS to HS200 */
1274 val = EXT_CSD_TIMING_HS200 |
1275 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1276 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1277 val, card->ext_csd.generic_cmd6_time, 0,
1278 true, false, true);
1279 if (err)
1280 goto out_err;
1281
1282 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1283
1284 /*
1285 * For HS200, CRC errors are not a reliable way to know the switch
1286 * failed. If there really is a problem, we would expect tuning will
1287 * fail and the result ends up the same.
1288 */
1289 err = __mmc_switch_status(card, false);
1290 if (err)
1291 goto out_err;
1292
1293 mmc_set_bus_speed(card);
1294
1295 /* Prepare tuning for HS400 mode. */
1296 if (host->ops->prepare_hs400_tuning)
1297 host->ops->prepare_hs400_tuning(host, &host->ios);
1298
1299 return 0;
1300
1301out_err:
1302 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1303 __func__, err);
1304 return err;
1305}
1306
1307static void mmc_select_driver_type(struct mmc_card *card)
1308{
1309 int card_drv_type, drive_strength, drv_type = 0;
1310 int fixed_drv_type = card->host->fixed_drv_type;
1311
1312 card_drv_type = card->ext_csd.raw_driver_strength |
1313 mmc_driver_type_mask(0);
1314
1315 if (fixed_drv_type >= 0)
1316 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1317 ? fixed_drv_type : 0;
1318 else
1319 drive_strength = mmc_select_drive_strength(card,
1320 card->ext_csd.hs200_max_dtr,
1321 card_drv_type, &drv_type);
1322
1323 card->drive_strength = drive_strength;
1324
1325 if (drv_type)
1326 mmc_set_driver_type(card->host, drv_type);
1327}
1328
1329static int mmc_select_hs400es(struct mmc_card *card)
1330{
1331 struct mmc_host *host = card->host;
1332 int err = -EINVAL;
1333 u8 val;
1334
1335 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1336 err = -ENOTSUPP;
1337 goto out_err;
1338 }
1339
1340 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1341 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1342
1343 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1344 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1345
1346 /* If fails try again during next card power cycle */
1347 if (err)
1348 goto out_err;
1349
1350 err = mmc_select_bus_width(card);
1351 if (err != MMC_BUS_WIDTH_8) {
1352 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1353 mmc_hostname(host), err);
1354 err = err < 0 ? err : -ENOTSUPP;
1355 goto out_err;
1356 }
1357
1358 /* Switch card to HS mode */
1359 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1360 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1361 card->ext_csd.generic_cmd6_time, 0,
1362 true, false, true);
1363 if (err) {
1364 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1365 mmc_hostname(host), err);
1366 goto out_err;
1367 }
1368
1369 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1370 err = mmc_switch_status(card);
1371 if (err)
1372 goto out_err;
1373
1374 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1375
1376 /* Switch card to DDR with strobe bit */
1377 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1378 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1379 EXT_CSD_BUS_WIDTH,
1380 val,
1381 card->ext_csd.generic_cmd6_time);
1382 if (err) {
1383 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1384 mmc_hostname(host), err);
1385 goto out_err;
1386 }
1387
1388 mmc_select_driver_type(card);
1389
1390 /* Switch card to HS400 */
1391 val = EXT_CSD_TIMING_HS400 |
1392 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1393 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1394 EXT_CSD_HS_TIMING, val,
1395 card->ext_csd.generic_cmd6_time, 0,
1396 true, false, true);
1397 if (err) {
1398 pr_err("%s: switch to hs400es failed, err:%d\n",
1399 mmc_hostname(host), err);
1400 goto out_err;
1401 }
1402
1403 /* Set host controller to HS400 timing and frequency */
1404 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1405
1406 /* Controller enable enhanced strobe function */
1407 host->ios.enhanced_strobe = true;
1408 if (host->ops->hs400_enhanced_strobe)
1409 host->ops->hs400_enhanced_strobe(host, &host->ios);
1410
1411 err = mmc_switch_status(card);
1412 if (err)
1413 goto out_err;
1414
1415 return 0;
1416
1417out_err:
1418 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1419 __func__, err);
1420 return err;
1421}
1422
1423/*
1424 * For device supporting HS200 mode, the following sequence
1425 * should be done before executing the tuning process.
1426 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1427 * 2. switch to HS200 mode
1428 * 3. set the clock to > 52Mhz and <=200MHz
1429 */
1430static int mmc_select_hs200(struct mmc_card *card)
1431{
1432 struct mmc_host *host = card->host;
1433 unsigned int old_timing, old_signal_voltage;
1434 int err = -EINVAL;
1435 u8 val;
1436
1437 old_signal_voltage = host->ios.signal_voltage;
1438 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1439 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1440
1441 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1442 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1443
1444 /* If fails try again during next card power cycle */
1445 if (err)
1446 return err;
1447
1448 mmc_select_driver_type(card);
1449
1450 /*
1451 * Set the bus width(4 or 8) with host's support and
1452 * switch to HS200 mode if bus width is set successfully.
1453 */
1454 err = mmc_select_bus_width(card);
1455 if (err > 0) {
1456 val = EXT_CSD_TIMING_HS200 |
1457 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1458 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1459 EXT_CSD_HS_TIMING, val,
1460 card->ext_csd.generic_cmd6_time, 0,
1461 true, false, true);
1462 if (err)
1463 goto err;
1464 old_timing = host->ios.timing;
1465 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1466
1467 /*
1468 * For HS200, CRC errors are not a reliable way to know the
1469 * switch failed. If there really is a problem, we would expect
1470 * tuning will fail and the result ends up the same.
1471 */
1472 err = __mmc_switch_status(card, false);
1473
1474 /*
1475 * mmc_select_timing() assumes timing has not changed if
1476 * it is a switch error.
1477 */
1478 if (err == -EBADMSG)
1479 mmc_set_timing(host, old_timing);
1480 }
1481err:
1482 if (err) {
1483 /* fall back to the old signal voltage, if fails report error */
1484 if (mmc_set_signal_voltage(host, old_signal_voltage))
1485 err = -EIO;
1486
1487 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1488 __func__, err);
1489 }
1490 return err;
1491}
1492
1493/*
1494 * Activate High Speed, HS200 or HS400ES mode if supported.
1495 */
1496static int mmc_select_timing(struct mmc_card *card)
1497{
1498 int err = 0;
1499
1500 if (!mmc_can_ext_csd(card))
1501 goto bus_speed;
1502
1503 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1504 err = mmc_select_hs400es(card);
1505 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1506 err = mmc_select_hs200(card);
1507 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1508 err = mmc_select_hs(card);
1509
1510 if (err && err != -EBADMSG)
1511 return err;
1512
1513bus_speed:
1514 /*
1515 * Set the bus speed to the selected bus timing.
1516 * If timing is not selected, backward compatible is the default.
1517 */
1518 mmc_set_bus_speed(card);
1519 return 0;
1520}
1521
1522/*
1523 * Execute tuning sequence to seek the proper bus operating
1524 * conditions for HS200 and HS400, which sends CMD21 to the device.
1525 */
1526static int mmc_hs200_tuning(struct mmc_card *card)
1527{
1528 struct mmc_host *host = card->host;
1529
1530 /*
1531 * Timing should be adjusted to the HS400 target
1532 * operation frequency for tuning process
1533 */
1534 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1535 host->ios.bus_width == MMC_BUS_WIDTH_8)
1536 if (host->ops->prepare_hs400_tuning)
1537 host->ops->prepare_hs400_tuning(host, &host->ios);
1538
1539 return mmc_execute_tuning(card);
1540}
1541
1542/*
1543 * Handle the detection and initialisation of a card.
1544 *
1545 * In the case of a resume, "oldcard" will contain the card
1546 * we're trying to reinitialise.
1547 */
1548static int mmc_init_card(struct mmc_host *host, u32 ocr,
1549 struct mmc_card *oldcard)
1550{
1551 struct mmc_card *card;
1552 int err;
1553 u32 cid[4];
1554 u32 rocr;
1555
1556 WARN_ON(!host->claimed);
1557
1558 /* Set correct bus mode for MMC before attempting init */
1559 if (!mmc_host_is_spi(host))
1560 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1561
1562 /*
1563 * Since we're changing the OCR value, we seem to
1564 * need to tell some cards to go back to the idle
1565 * state. We wait 1ms to give cards time to
1566 * respond.
1567 * mmc_go_idle is needed for eMMC that are asleep
1568 */
1569 mmc_go_idle(host);
1570
1571 /* The extra bit indicates that we support high capacity */
1572 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1573 if (err)
1574 goto err;
1575
1576 /*
1577 * For SPI, enable CRC as appropriate.
1578 */
1579 if (mmc_host_is_spi(host)) {
1580 err = mmc_spi_set_crc(host, use_spi_crc);
1581 if (err)
1582 goto err;
1583 }
1584
1585 /*
1586 * Fetch CID from card.
1587 */
1588 err = mmc_send_cid(host, cid);
1589 if (err)
1590 goto err;
1591
1592 if (oldcard) {
1593 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1594 pr_debug("%s: Perhaps the card was replaced\n",
1595 mmc_hostname(host));
1596 err = -ENOENT;
1597 goto err;
1598 }
1599
1600 card = oldcard;
1601 } else {
1602 /*
1603 * Allocate card structure.
1604 */
1605 card = mmc_alloc_card(host, &mmc_type);
1606 if (IS_ERR(card)) {
1607 err = PTR_ERR(card);
1608 goto err;
1609 }
1610
1611 card->ocr = ocr;
1612 card->type = MMC_TYPE_MMC;
1613 card->rca = 1;
1614 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1615 }
1616
1617 /*
1618 * Call the optional HC's init_card function to handle quirks.
1619 */
1620 if (host->ops->init_card)
1621 host->ops->init_card(host, card);
1622
1623 /*
1624 * For native busses: set card RCA and quit open drain mode.
1625 */
1626 if (!mmc_host_is_spi(host)) {
1627 err = mmc_set_relative_addr(card);
1628 if (err)
1629 goto free_card;
1630
1631 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1632 }
1633
1634 if (!oldcard) {
1635 /*
1636 * Fetch CSD from card.
1637 */
1638 err = mmc_send_csd(card, card->raw_csd);
1639 if (err)
1640 goto free_card;
1641
1642 err = mmc_decode_csd(card);
1643 if (err)
1644 goto free_card;
1645 err = mmc_decode_cid(card);
1646 if (err)
1647 goto free_card;
1648 }
1649
1650 /*
1651 * handling only for cards supporting DSR and hosts requesting
1652 * DSR configuration
1653 */
1654 if (card->csd.dsr_imp && host->dsr_req)
1655 mmc_set_dsr(host);
1656
1657 /*
1658 * Select card, as all following commands rely on that.
1659 */
1660 if (!mmc_host_is_spi(host)) {
1661 err = mmc_select_card(card);
1662 if (err)
1663 goto free_card;
1664 }
1665
1666 if (!oldcard) {
1667 /* Read extended CSD. */
1668 err = mmc_read_ext_csd(card);
1669 if (err)
1670 goto free_card;
1671
1672 /*
1673 * If doing byte addressing, check if required to do sector
1674 * addressing. Handle the case of <2GB cards needing sector
1675 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1676 * ocr register has bit 30 set for sector addressing.
1677 */
1678 if (rocr & BIT(30))
1679 mmc_card_set_blockaddr(card);
1680
1681 /* Erase size depends on CSD and Extended CSD */
1682 mmc_set_erase_size(card);
1683 }
1684
1685 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1686 if (card->ext_csd.rev >= 3) {
1687 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1688 EXT_CSD_ERASE_GROUP_DEF, 1,
1689 card->ext_csd.generic_cmd6_time);
1690
1691 if (err && err != -EBADMSG)
1692 goto free_card;
1693
1694 if (err) {
1695 err = 0;
1696 /*
1697 * Just disable enhanced area off & sz
1698 * will try to enable ERASE_GROUP_DEF
1699 * during next time reinit
1700 */
1701 card->ext_csd.enhanced_area_offset = -EINVAL;
1702 card->ext_csd.enhanced_area_size = -EINVAL;
1703 } else {
1704 card->ext_csd.erase_group_def = 1;
1705 /*
1706 * enable ERASE_GRP_DEF successfully.
1707 * This will affect the erase size, so
1708 * here need to reset erase size
1709 */
1710 mmc_set_erase_size(card);
1711 }
1712 }
1713
1714 /*
1715 * Ensure eMMC user default partition is enabled
1716 */
1717 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1718 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1719 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1720 card->ext_csd.part_config,
1721 card->ext_csd.part_time);
1722 if (err && err != -EBADMSG)
1723 goto free_card;
1724 }
1725
1726 /*
1727 * Enable power_off_notification byte in the ext_csd register
1728 */
1729 if (card->ext_csd.rev >= 6) {
1730 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1731 EXT_CSD_POWER_OFF_NOTIFICATION,
1732 EXT_CSD_POWER_ON,
1733 card->ext_csd.generic_cmd6_time);
1734 if (err && err != -EBADMSG)
1735 goto free_card;
1736
1737 /*
1738 * The err can be -EBADMSG or 0,
1739 * so check for success and update the flag
1740 */
1741 if (!err)
1742 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1743 }
1744
1745 /* set erase_arg */
1746 if (mmc_can_discard(card))
1747 card->erase_arg = MMC_DISCARD_ARG;
1748 else if (mmc_can_trim(card))
1749 card->erase_arg = MMC_TRIM_ARG;
1750 else
1751 card->erase_arg = MMC_ERASE_ARG;
1752
1753 /*
1754 * Select timing interface
1755 */
1756 err = mmc_select_timing(card);
1757 if (err)
1758 goto free_card;
1759
1760 if (mmc_card_hs200(card)) {
1761 err = mmc_hs200_tuning(card);
1762 if (err)
1763 goto free_card;
1764
1765 err = mmc_select_hs400(card);
1766 if (err)
1767 goto free_card;
1768 } else if (!mmc_card_hs400es(card)) {
1769 /* Select the desired bus width optionally */
1770 err = mmc_select_bus_width(card);
1771 if (err > 0 && mmc_card_hs(card)) {
1772 err = mmc_select_hs_ddr(card);
1773 if (err)
1774 goto free_card;
1775 }
1776 }
1777
1778 /*
1779 * Choose the power class with selected bus interface
1780 */
1781 mmc_select_powerclass(card);
1782
1783 /*
1784 * Enable HPI feature (if supported)
1785 */
1786 if (card->ext_csd.hpi) {
1787 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1788 EXT_CSD_HPI_MGMT, 1,
1789 card->ext_csd.generic_cmd6_time);
1790 if (err && err != -EBADMSG)
1791 goto free_card;
1792 if (err) {
1793 pr_warn("%s: Enabling HPI failed\n",
1794 mmc_hostname(card->host));
1795 card->ext_csd.hpi_en = 0;
1796 err = 0;
1797 } else {
1798 card->ext_csd.hpi_en = 1;
1799 }
1800 }
1801
1802 /*
1803 * If cache size is higher than 0, this indicates the existence of cache
1804 * and it can be turned on. Note that some eMMCs from Micron has been
1805 * reported to need ~800 ms timeout, while enabling the cache after
1806 * sudden power failure tests. Let's extend the timeout to a minimum of
1807 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1808 */
1809 if (card->ext_csd.cache_size > 0) {
1810 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1811
1812 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1813 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1814 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1815 if (err && err != -EBADMSG)
1816 goto free_card;
1817
1818 /*
1819 * Only if no error, cache is turned on successfully.
1820 */
1821 if (err) {
1822 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1823 mmc_hostname(card->host), err);
1824 card->ext_csd.cache_ctrl = 0;
1825 err = 0;
1826 } else {
1827 card->ext_csd.cache_ctrl = 1;
1828 }
1829 }
1830
1831 /*
1832 * Enable Command Queue if supported. Note that Packed Commands cannot
1833 * be used with Command Queue.
1834 */
1835 card->ext_csd.cmdq_en = false;
1836 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1837 err = mmc_cmdq_enable(card);
1838 if (err && err != -EBADMSG)
1839 goto free_card;
1840 if (err) {
1841 pr_warn("%s: Enabling CMDQ failed\n",
1842 mmc_hostname(card->host));
1843 card->ext_csd.cmdq_support = false;
1844 card->ext_csd.cmdq_depth = 0;
1845 err = 0;
1846 }
1847 }
1848 /*
1849 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1850 * disabled for a time, so a flag is needed to indicate to re-enable the
1851 * Command Queue.
1852 */
1853 card->reenable_cmdq = card->ext_csd.cmdq_en;
1854
1855 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1856 err = host->cqe_ops->cqe_enable(host, card);
1857 if (err) {
1858 pr_err("%s: Failed to enable CQE, error %d\n",
1859 mmc_hostname(host), err);
1860 } else {
1861 host->cqe_enabled = true;
1862 pr_info("%s: Command Queue Engine enabled\n",
1863 mmc_hostname(host));
1864 }
1865 }
1866
1867 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1868 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1869 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1870 mmc_hostname(host));
1871 err = -EINVAL;
1872 goto free_card;
1873 }
1874
1875 if (!oldcard)
1876 host->card = card;
1877
1878 return 0;
1879
1880free_card:
1881 if (!oldcard)
1882 mmc_remove_card(card);
1883err:
1884 return err;
1885}
1886
1887static int mmc_can_sleep(struct mmc_card *card)
1888{
1889 return (card && card->ext_csd.rev >= 3);
1890}
1891
1892static int mmc_sleep(struct mmc_host *host)
1893{
1894 struct mmc_command cmd = {};
1895 struct mmc_card *card = host->card;
1896 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1897 int err;
1898
1899 /* Re-tuning can't be done once the card is deselected */
1900 mmc_retune_hold(host);
1901
1902 err = mmc_deselect_cards(host);
1903 if (err)
1904 goto out_release;
1905
1906 cmd.opcode = MMC_SLEEP_AWAKE;
1907 cmd.arg = card->rca << 16;
1908 cmd.arg |= 1 << 15;
1909
1910 /*
1911 * If the max_busy_timeout of the host is specified, validate it against
1912 * the sleep cmd timeout. A failure means we need to prevent the host
1913 * from doing hw busy detection, which is done by converting to a R1
1914 * response instead of a R1B.
1915 */
1916 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1917 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1918 } else {
1919 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1920 cmd.busy_timeout = timeout_ms;
1921 }
1922
1923 err = mmc_wait_for_cmd(host, &cmd, 0);
1924 if (err)
1925 goto out_release;
1926
1927 /*
1928 * If the host does not wait while the card signals busy, then we will
1929 * will have to wait the sleep/awake timeout. Note, we cannot use the
1930 * SEND_STATUS command to poll the status because that command (and most
1931 * others) is invalid while the card sleeps.
1932 */
1933 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1934 mmc_delay(timeout_ms);
1935
1936out_release:
1937 mmc_retune_release(host);
1938 return err;
1939}
1940
1941static int mmc_can_poweroff_notify(const struct mmc_card *card)
1942{
1943 return card &&
1944 mmc_card_mmc(card) &&
1945 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1946}
1947
1948static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1949{
1950 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1951 int err;
1952
1953 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1954 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1955 timeout = card->ext_csd.power_off_longtime;
1956
1957 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1958 EXT_CSD_POWER_OFF_NOTIFICATION,
1959 notify_type, timeout, 0, true, false, false);
1960 if (err)
1961 pr_err("%s: Power Off Notification timed out, %u\n",
1962 mmc_hostname(card->host), timeout);
1963
1964 /* Disable the power off notification after the switch operation. */
1965 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1966
1967 return err;
1968}
1969
1970/*
1971 * Host is being removed. Free up the current card.
1972 */
1973static void mmc_remove(struct mmc_host *host)
1974{
1975 mmc_remove_card(host->card);
1976 host->card = NULL;
1977}
1978
1979/*
1980 * Card detection - card is alive.
1981 */
1982static int mmc_alive(struct mmc_host *host)
1983{
1984 return mmc_send_status(host->card, NULL);
1985}
1986
1987/*
1988 * Card detection callback from host.
1989 */
1990static void mmc_detect(struct mmc_host *host)
1991{
1992 int err;
1993
1994 mmc_get_card(host->card, NULL);
1995
1996 /*
1997 * Just check if our card has been removed.
1998 */
1999 err = _mmc_detect_card_removed(host);
2000
2001 mmc_put_card(host->card, NULL);
2002
2003 if (err) {
2004 mmc_remove(host);
2005
2006 mmc_claim_host(host);
2007 mmc_detach_bus(host);
2008 mmc_power_off(host);
2009 mmc_release_host(host);
2010 }
2011}
2012
2013static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2014{
2015 int err = 0;
2016 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2017 EXT_CSD_POWER_OFF_LONG;
2018
2019 mmc_claim_host(host);
2020
2021 if (mmc_card_suspended(host->card))
2022 goto out;
2023
2024 err = mmc_flush_cache(host->card);
2025 if (err)
2026 goto out;
2027
2028 if (mmc_can_poweroff_notify(host->card) &&
2029 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2030 err = mmc_poweroff_notify(host->card, notify_type);
2031 else if (mmc_can_sleep(host->card))
2032 err = mmc_sleep(host);
2033 else if (!mmc_host_is_spi(host))
2034 err = mmc_deselect_cards(host);
2035
2036 if (!err) {
2037 mmc_power_off(host);
2038 mmc_card_set_suspended(host->card);
2039 }
2040out:
2041 mmc_release_host(host);
2042 return err;
2043}
2044
2045/*
2046 * Suspend callback
2047 */
2048static int mmc_suspend(struct mmc_host *host)
2049{
2050 int err;
2051
2052 err = _mmc_suspend(host, true);
2053 if (!err) {
2054 pm_runtime_disable(&host->card->dev);
2055 pm_runtime_set_suspended(&host->card->dev);
2056 }
2057
2058 return err;
2059}
2060
2061/*
2062 * This function tries to determine if the same card is still present
2063 * and, if so, restore all state to it.
2064 */
2065static int _mmc_resume(struct mmc_host *host)
2066{
2067 int err = 0;
2068
2069 mmc_claim_host(host);
2070
2071 if (!mmc_card_suspended(host->card))
2072 goto out;
2073
2074 mmc_power_up(host, host->card->ocr);
2075 err = mmc_init_card(host, host->card->ocr, host->card);
2076 mmc_card_clr_suspended(host->card);
2077
2078out:
2079 mmc_release_host(host);
2080 return err;
2081}
2082
2083/*
2084 * Shutdown callback
2085 */
2086static int mmc_shutdown(struct mmc_host *host)
2087{
2088 int err = 0;
2089
2090 /*
2091 * In a specific case for poweroff notify, we need to resume the card
2092 * before we can shutdown it properly.
2093 */
2094 if (mmc_can_poweroff_notify(host->card) &&
2095 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2096 err = _mmc_resume(host);
2097
2098 if (!err)
2099 err = _mmc_suspend(host, false);
2100
2101 return err;
2102}
2103
2104/*
2105 * Callback for resume.
2106 */
2107static int mmc_resume(struct mmc_host *host)
2108{
2109 pm_runtime_enable(&host->card->dev);
2110 return 0;
2111}
2112
2113/*
2114 * Callback for runtime_suspend.
2115 */
2116static int mmc_runtime_suspend(struct mmc_host *host)
2117{
2118 int err;
2119
2120 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2121 return 0;
2122
2123 err = _mmc_suspend(host, true);
2124 if (err)
2125 pr_err("%s: error %d doing aggressive suspend\n",
2126 mmc_hostname(host), err);
2127
2128 return err;
2129}
2130
2131/*
2132 * Callback for runtime_resume.
2133 */
2134static int mmc_runtime_resume(struct mmc_host *host)
2135{
2136 int err;
2137
2138 err = _mmc_resume(host);
2139 if (err && err != -ENOMEDIUM)
2140 pr_err("%s: error %d doing runtime resume\n",
2141 mmc_hostname(host), err);
2142
2143 return 0;
2144}
2145
2146static int mmc_can_reset(struct mmc_card *card)
2147{
2148 u8 rst_n_function;
2149
2150 rst_n_function = card->ext_csd.rst_n_function;
2151 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2152 return 0;
2153 return 1;
2154}
2155
2156static int _mmc_hw_reset(struct mmc_host *host)
2157{
2158 struct mmc_card *card = host->card;
2159
2160 /*
2161 * In the case of recovery, we can't expect flushing the cache to work
2162 * always, but we have a go and ignore errors.
2163 */
2164 mmc_flush_cache(host->card);
2165
2166 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2167 mmc_can_reset(card)) {
2168 /* If the card accept RST_n signal, send it. */
2169 mmc_set_clock(host, host->f_init);
2170 host->ops->hw_reset(host);
2171 /* Set initial state and call mmc_set_ios */
2172 mmc_set_initial_state(host);
2173 } else {
2174 /* Do a brute force power cycle */
2175 mmc_power_cycle(host, card->ocr);
2176 mmc_pwrseq_reset(host);
2177 }
2178 return mmc_init_card(host, card->ocr, card);
2179}
2180
2181static const struct mmc_bus_ops mmc_ops = {
2182 .remove = mmc_remove,
2183 .detect = mmc_detect,
2184 .suspend = mmc_suspend,
2185 .resume = mmc_resume,
2186 .runtime_suspend = mmc_runtime_suspend,
2187 .runtime_resume = mmc_runtime_resume,
2188 .alive = mmc_alive,
2189 .shutdown = mmc_shutdown,
2190 .hw_reset = _mmc_hw_reset,
2191};
2192
2193/*
2194 * Starting point for MMC card init.
2195 */
2196int mmc_attach_mmc(struct mmc_host *host)
2197{
2198 int err;
2199 u32 ocr, rocr;
2200
2201 WARN_ON(!host->claimed);
2202
2203 /* Set correct bus mode for MMC before attempting attach */
2204 if (!mmc_host_is_spi(host))
2205 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2206
2207 err = mmc_send_op_cond(host, 0, &ocr);
2208 if (err)
2209 return err;
2210
2211 mmc_attach_bus(host, &mmc_ops);
2212 if (host->ocr_avail_mmc)
2213 host->ocr_avail = host->ocr_avail_mmc;
2214
2215 /*
2216 * We need to get OCR a different way for SPI.
2217 */
2218 if (mmc_host_is_spi(host)) {
2219 err = mmc_spi_read_ocr(host, 1, &ocr);
2220 if (err)
2221 goto err;
2222 }
2223
2224 rocr = mmc_select_voltage(host, ocr);
2225
2226 /*
2227 * Can we support the voltage of the card?
2228 */
2229 if (!rocr) {
2230 err = -EINVAL;
2231 goto err;
2232 }
2233
2234 /*
2235 * Detect and init the card.
2236 */
2237 err = mmc_init_card(host, rocr, NULL);
2238 if (err)
2239 goto err;
2240
2241 mmc_release_host(host);
2242 err = mmc_add_card(host->card);
2243 if (err)
2244 goto remove_card;
2245
2246 mmc_claim_host(host);
2247 return 0;
2248
2249remove_card:
2250 mmc_remove_card(host->card);
2251 mmc_claim_host(host);
2252 host->card = NULL;
2253err:
2254 mmc_detach_bus(host);
2255
2256 pr_err("%s: error %d whilst initialising MMC card\n",
2257 mmc_hostname(host), err);
2258
2259 return err;
2260}