Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/drivers/mmc/core/mmc.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
   6 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/slab.h>
  16#include <linux/stat.h>
  17#include <linux/pm_runtime.h>
  18
  19#include <linux/mmc/host.h>
  20#include <linux/mmc/card.h>
  21#include <linux/mmc/mmc.h>
  22
  23#include "core.h"
 
  24#include "host.h"
  25#include "bus.h"
  26#include "mmc_ops.h"
 
  27#include "sd_ops.h"
 
 
 
  28
  29static const unsigned int tran_exp[] = {
  30	10000,		100000,		1000000,	10000000,
  31	0,		0,		0,		0
  32};
  33
  34static const unsigned char tran_mant[] = {
  35	0,	10,	12,	13,	15,	20,	25,	30,
  36	35,	40,	45,	50,	55,	60,	70,	80,
  37};
  38
  39static const unsigned int tacc_exp[] = {
  40	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
  41};
  42
  43static const unsigned int tacc_mant[] = {
  44	0,	10,	12,	13,	15,	20,	25,	30,
  45	35,	40,	45,	50,	55,	60,	70,	80,
  46};
  47
  48#define UNSTUFF_BITS(resp,start,size)					\
  49	({								\
  50		const int __size = size;				\
  51		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
  52		const int __off = 3 - ((start) / 32);			\
  53		const int __shft = (start) & 31;			\
  54		u32 __res;						\
  55									\
  56		__res = resp[__off] >> __shft;				\
  57		if (__size + __shft > 32)				\
  58			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
  59		__res & __mask;						\
  60	})
  61
  62/*
  63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
  64 */
  65static int mmc_decode_cid(struct mmc_card *card)
  66{
  67	u32 *resp = card->raw_cid;
  68
  69	/*
  70	 * The selection of the format here is based upon published
  71	 * specs from sandisk and from what people have reported.
  72	 */
  73	switch (card->csd.mmca_vsn) {
  74	case 0: /* MMC v1.0 - v1.2 */
  75	case 1: /* MMC v1.4 */
  76		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
  77		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
  78		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
  79		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
  80		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
  81		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
  82		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
  83		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
  84		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
  85		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
  86		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
  87		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
  88		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
  89		break;
  90
  91	case 2: /* MMC v2.0 - v2.2 */
  92	case 3: /* MMC v3.1 - v3.3 */
  93	case 4: /* MMC v4 */
  94		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
  95		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
  96		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
  97		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
  98		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
  99		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
 100		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
 101		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
 102		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
 103		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
 104		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
 105		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
 106		break;
 107
 108	default:
 109		pr_err("%s: card has unknown MMCA version %d\n",
 110			mmc_hostname(card->host), card->csd.mmca_vsn);
 111		return -EINVAL;
 112	}
 113
 114	return 0;
 115}
 116
 117static void mmc_set_erase_size(struct mmc_card *card)
 118{
 119	if (card->ext_csd.erase_group_def & 1)
 120		card->erase_size = card->ext_csd.hc_erase_size;
 121	else
 122		card->erase_size = card->csd.erase_size;
 123
 124	mmc_init_erase(card);
 125}
 126
 127/*
 128 * Given a 128-bit response, decode to our card CSD structure.
 129 */
 130static int mmc_decode_csd(struct mmc_card *card)
 131{
 132	struct mmc_csd *csd = &card->csd;
 133	unsigned int e, m, a, b;
 134	u32 *resp = card->raw_csd;
 135
 136	/*
 137	 * We only understand CSD structure v1.1 and v1.2.
 138	 * v1.2 has extra information in bits 15, 11 and 10.
 139	 * We also support eMMC v4.4 & v4.41.
 140	 */
 141	csd->structure = UNSTUFF_BITS(resp, 126, 2);
 142	if (csd->structure == 0) {
 143		pr_err("%s: unrecognised CSD structure version %d\n",
 144			mmc_hostname(card->host), csd->structure);
 145		return -EINVAL;
 146	}
 147
 148	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
 149	m = UNSTUFF_BITS(resp, 115, 4);
 150	e = UNSTUFF_BITS(resp, 112, 3);
 151	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
 152	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
 153
 154	m = UNSTUFF_BITS(resp, 99, 4);
 155	e = UNSTUFF_BITS(resp, 96, 3);
 156	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
 157	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
 158
 159	e = UNSTUFF_BITS(resp, 47, 3);
 160	m = UNSTUFF_BITS(resp, 62, 12);
 161	csd->capacity	  = (1 + m) << (e + 2);
 162
 163	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
 164	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
 165	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
 166	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
 167	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
 168	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
 169	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
 170	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
 171
 172	if (csd->write_blkbits >= 9) {
 173		a = UNSTUFF_BITS(resp, 42, 5);
 174		b = UNSTUFF_BITS(resp, 37, 5);
 175		csd->erase_size = (a + 1) * (b + 1);
 176		csd->erase_size <<= csd->write_blkbits - 9;
 177	}
 178
 179	return 0;
 180}
 181
 182static void mmc_select_card_type(struct mmc_card *card)
 183{
 184	struct mmc_host *host = card->host;
 185	u8 card_type = card->ext_csd.raw_card_type;
 186	u32 caps = host->caps, caps2 = host->caps2;
 187	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
 188	unsigned int avail_type = 0;
 189
 190	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 191	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
 192		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
 193		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
 194	}
 195
 196	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 197	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
 198		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
 199		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
 200	}
 201
 202	if (caps & MMC_CAP_1_8V_DDR &&
 203	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
 204		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 205		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
 206	}
 207
 208	if (caps & MMC_CAP_1_2V_DDR &&
 209	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
 210		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 211		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
 212	}
 213
 214	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
 215	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
 216		hs200_max_dtr = MMC_HS200_MAX_DTR;
 217		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
 218	}
 219
 220	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
 221	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
 222		hs200_max_dtr = MMC_HS200_MAX_DTR;
 223		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
 224	}
 225
 226	if (caps2 & MMC_CAP2_HS400_1_8V &&
 227	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
 228		hs200_max_dtr = MMC_HS200_MAX_DTR;
 229		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
 230	}
 231
 232	if (caps2 & MMC_CAP2_HS400_1_2V &&
 233	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
 234		hs200_max_dtr = MMC_HS200_MAX_DTR;
 235		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
 236	}
 237
 
 
 
 
 
 238	card->ext_csd.hs_max_dtr = hs_max_dtr;
 239	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
 240	card->mmc_avail_type = avail_type;
 241}
 242
 243static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
 244{
 245	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 246
 247	/*
 248	 * Disable these attributes by default
 249	 */
 250	card->ext_csd.enhanced_area_offset = -EINVAL;
 251	card->ext_csd.enhanced_area_size = -EINVAL;
 252
 253	/*
 254	 * Enhanced area feature support -- check whether the eMMC
 255	 * card has the Enhanced area enabled.  If so, export enhanced
 256	 * area offset and size to user by adding sysfs interface.
 257	 */
 258	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
 259	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
 260		if (card->ext_csd.partition_setting_completed) {
 261			hc_erase_grp_sz =
 262				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 263			hc_wp_grp_sz =
 264				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 265
 266			/*
 267			 * calculate the enhanced data area offset, in bytes
 268			 */
 269			card->ext_csd.enhanced_area_offset =
 270				(((unsigned long long)ext_csd[139]) << 24) +
 271				(((unsigned long long)ext_csd[138]) << 16) +
 272				(((unsigned long long)ext_csd[137]) << 8) +
 273				(((unsigned long long)ext_csd[136]));
 274			if (mmc_card_blockaddr(card))
 275				card->ext_csd.enhanced_area_offset <<= 9;
 276			/*
 277			 * calculate the enhanced data area size, in kilobytes
 278			 */
 279			card->ext_csd.enhanced_area_size =
 280				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
 281				ext_csd[140];
 282			card->ext_csd.enhanced_area_size *=
 283				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
 284			card->ext_csd.enhanced_area_size <<= 9;
 285		} else {
 286			pr_warn("%s: defines enhanced area without partition setting complete\n",
 287				mmc_hostname(card->host));
 288		}
 289	}
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 292static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
 293{
 294	int idx;
 295	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 296	unsigned int part_size;
 297
 298	/*
 299	 * General purpose partition feature support --
 300	 * If ext_csd has the size of general purpose partitions,
 301	 * set size, part_cfg, partition name in mmc_part.
 302	 */
 303	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
 304	    EXT_CSD_PART_SUPPORT_PART_EN) {
 305		hc_erase_grp_sz =
 306			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 307		hc_wp_grp_sz =
 308			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 309
 310		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
 311			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
 312			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
 313			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
 314				continue;
 315			if (card->ext_csd.partition_setting_completed == 0) {
 316				pr_warn("%s: has partition size defined without partition complete\n",
 317					mmc_hostname(card->host));
 318				break;
 319			}
 320			part_size =
 321				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
 322				<< 16) +
 323				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
 324				<< 8) +
 325				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
 326			part_size *= (size_t)(hc_erase_grp_sz *
 327				hc_wp_grp_sz);
 328			mmc_part_add(card, part_size << 19,
 329				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
 330				"gp%d", idx, false,
 331				MMC_BLK_DATA_AREA_GP);
 332		}
 333	}
 334}
 335
 
 
 
 336/*
 337 * Decode extended CSD.
 338 */
 339static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
 340{
 341	int err = 0, idx;
 342	unsigned int part_size;
 343	struct device_node *np;
 344	bool broken_hpi = false;
 345
 346	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
 347	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
 348	if (card->csd.structure == 3) {
 349		if (card->ext_csd.raw_ext_csd_structure > 2) {
 350			pr_err("%s: unrecognised EXT_CSD structure "
 351				"version %d\n", mmc_hostname(card->host),
 352					card->ext_csd.raw_ext_csd_structure);
 353			err = -EINVAL;
 354			goto out;
 355		}
 356	}
 357
 358	np = mmc_of_find_child_device(card->host, 0);
 359	if (np && of_device_is_compatible(np, "mmc-card"))
 360		broken_hpi = of_property_read_bool(np, "broken-hpi");
 361	of_node_put(np);
 362
 363	/*
 364	 * The EXT_CSD format is meant to be forward compatible. As long
 365	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
 366	 * are authorized, see JEDEC JESD84-B50 section B.8.
 367	 */
 368	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
 369
 
 
 
 370	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
 371	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
 372	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
 373	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
 374	if (card->ext_csd.rev >= 2) {
 375		card->ext_csd.sectors =
 376			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
 377			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
 378			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
 379			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
 380
 381		/* Cards with density > 2GiB are sector addressed */
 382		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
 383			mmc_card_set_blockaddr(card);
 384	}
 385
 
 386	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
 387	mmc_select_card_type(card);
 388
 389	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
 390	card->ext_csd.raw_erase_timeout_mult =
 391		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 392	card->ext_csd.raw_hc_erase_grp_size =
 393		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 394	if (card->ext_csd.rev >= 3) {
 395		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
 396		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
 397
 398		/* EXT_CSD value is in units of 10ms, but we store in ms */
 399		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
 
 
 
 
 400
 401		/* Sleep / awake timeout in 100ns units */
 402		if (sa_shift > 0 && sa_shift <= 0x17)
 403			card->ext_csd.sa_timeout =
 404					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
 405		card->ext_csd.erase_group_def =
 406			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
 407		card->ext_csd.hc_erase_timeout = 300 *
 408			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 409		card->ext_csd.hc_erase_size =
 410			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
 411
 412		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
 413
 414		/*
 415		 * There are two boot regions of equal size, defined in
 416		 * multiples of 128K.
 417		 */
 418		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
 419			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
 420				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
 421				mmc_part_add(card, part_size,
 422					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
 423					"boot%d", idx, true,
 424					MMC_BLK_DATA_AREA_BOOT);
 425			}
 426		}
 427	}
 428
 429	card->ext_csd.raw_hc_erase_gap_size =
 430		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 431	card->ext_csd.raw_sec_trim_mult =
 432		ext_csd[EXT_CSD_SEC_TRIM_MULT];
 433	card->ext_csd.raw_sec_erase_mult =
 434		ext_csd[EXT_CSD_SEC_ERASE_MULT];
 435	card->ext_csd.raw_sec_feature_support =
 436		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 437	card->ext_csd.raw_trim_mult =
 438		ext_csd[EXT_CSD_TRIM_MULT];
 439	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
 440	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
 441	if (card->ext_csd.rev >= 4) {
 442		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
 443		    EXT_CSD_PART_SETTING_COMPLETED)
 444			card->ext_csd.partition_setting_completed = 1;
 445		else
 446			card->ext_csd.partition_setting_completed = 0;
 447
 448		mmc_manage_enhanced_area(card, ext_csd);
 449
 450		mmc_manage_gp_partitions(card, ext_csd);
 451
 452		card->ext_csd.sec_trim_mult =
 453			ext_csd[EXT_CSD_SEC_TRIM_MULT];
 454		card->ext_csd.sec_erase_mult =
 455			ext_csd[EXT_CSD_SEC_ERASE_MULT];
 456		card->ext_csd.sec_feature_support =
 457			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 458		card->ext_csd.trim_timeout = 300 *
 459			ext_csd[EXT_CSD_TRIM_MULT];
 460
 461		/*
 462		 * Note that the call to mmc_part_add above defaults to read
 463		 * only. If this default assumption is changed, the call must
 464		 * take into account the value of boot_locked below.
 465		 */
 466		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
 467		card->ext_csd.boot_ro_lockable = true;
 468
 469		/* Save power class values */
 470		card->ext_csd.raw_pwr_cl_52_195 =
 471			ext_csd[EXT_CSD_PWR_CL_52_195];
 472		card->ext_csd.raw_pwr_cl_26_195 =
 473			ext_csd[EXT_CSD_PWR_CL_26_195];
 474		card->ext_csd.raw_pwr_cl_52_360 =
 475			ext_csd[EXT_CSD_PWR_CL_52_360];
 476		card->ext_csd.raw_pwr_cl_26_360 =
 477			ext_csd[EXT_CSD_PWR_CL_26_360];
 478		card->ext_csd.raw_pwr_cl_200_195 =
 479			ext_csd[EXT_CSD_PWR_CL_200_195];
 480		card->ext_csd.raw_pwr_cl_200_360 =
 481			ext_csd[EXT_CSD_PWR_CL_200_360];
 482		card->ext_csd.raw_pwr_cl_ddr_52_195 =
 483			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
 484		card->ext_csd.raw_pwr_cl_ddr_52_360 =
 485			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
 486		card->ext_csd.raw_pwr_cl_ddr_200_360 =
 487			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
 488	}
 489
 490	if (card->ext_csd.rev >= 5) {
 491		/* Adjust production date as per JEDEC JESD84-B451 */
 492		if (card->cid.year < 2010)
 493			card->cid.year += 16;
 494
 495		/* check whether the eMMC card supports BKOPS */
 496		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
 
 497			card->ext_csd.bkops = 1;
 498			card->ext_csd.man_bkops_en =
 499					(ext_csd[EXT_CSD_BKOPS_EN] &
 500						EXT_CSD_MANUAL_BKOPS_MASK);
 501			card->ext_csd.raw_bkops_status =
 502				ext_csd[EXT_CSD_BKOPS_STATUS];
 503			if (!card->ext_csd.man_bkops_en)
 504				pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
 
 
 
 
 
 
 505					mmc_hostname(card->host));
 506		}
 507
 508		/* check whether the eMMC card supports HPI */
 509		if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
 
 510			card->ext_csd.hpi = 1;
 511			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
 512				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
 513			else
 514				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
 515			/*
 516			 * Indicate the maximum timeout to close
 517			 * a command interrupted by HPI
 518			 */
 519			card->ext_csd.out_of_int_time =
 520				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
 521		}
 522
 523		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
 524		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
 525
 526		/*
 527		 * RPMB regions are defined in multiples of 128K.
 528		 */
 529		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
 530		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
 531			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
 532				EXT_CSD_PART_CONFIG_ACC_RPMB,
 533				"rpmb", 0, false,
 534				MMC_BLK_DATA_AREA_RPMB);
 535		}
 536	}
 537
 538	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
 539	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
 540		card->erased_byte = 0xFF;
 541	else
 542		card->erased_byte = 0x0;
 543
 544	/* eMMC v4.5 or later */
 
 545	if (card->ext_csd.rev >= 6) {
 546		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
 547
 548		card->ext_csd.generic_cmd6_time = 10 *
 549			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
 550		card->ext_csd.power_off_longtime = 10 *
 551			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
 552
 553		card->ext_csd.cache_size =
 554			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
 555			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
 556			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
 557			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
 558
 559		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
 560			card->ext_csd.data_sector_size = 4096;
 561		else
 562			card->ext_csd.data_sector_size = 512;
 563
 564		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
 565		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
 566			card->ext_csd.data_tag_unit_size =
 567			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
 568			(card->ext_csd.data_sector_size);
 569		} else {
 570			card->ext_csd.data_tag_unit_size = 0;
 571		}
 572
 573		card->ext_csd.max_packed_writes =
 574			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
 575		card->ext_csd.max_packed_reads =
 576			ext_csd[EXT_CSD_MAX_PACKED_READS];
 577	} else {
 578		card->ext_csd.data_sector_size = 512;
 579	}
 580
 581	/* eMMC v5 or later */
 582	if (card->ext_csd.rev >= 7) {
 583		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
 584		       MMC_FIRMWARE_LEN);
 585		card->ext_csd.ffu_capable =
 586			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
 587			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	}
 589out:
 590	return err;
 591}
 592
 593static int mmc_read_ext_csd(struct mmc_card *card)
 594{
 595	u8 *ext_csd;
 596	int err;
 597
 598	if (!mmc_can_ext_csd(card))
 599		return 0;
 600
 601	err = mmc_get_ext_csd(card, &ext_csd);
 602	if (err) {
 603		/* If the host or the card can't do the switch,
 604		 * fail more gracefully. */
 605		if ((err != -EINVAL)
 606		 && (err != -ENOSYS)
 607		 && (err != -EFAULT))
 608			return err;
 609
 610		/*
 611		 * High capacity cards should have this "magic" size
 612		 * stored in their CSD.
 613		 */
 614		if (card->csd.capacity == (4096 * 512)) {
 615			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
 616				mmc_hostname(card->host));
 617		} else {
 618			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
 619				mmc_hostname(card->host));
 620			err = 0;
 621		}
 622
 623		return err;
 624	}
 625
 626	err = mmc_decode_ext_csd(card, ext_csd);
 627	kfree(ext_csd);
 628	return err;
 629}
 630
 631static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
 632{
 633	u8 *bw_ext_csd;
 634	int err;
 635
 636	if (bus_width == MMC_BUS_WIDTH_1)
 637		return 0;
 638
 639	err = mmc_get_ext_csd(card, &bw_ext_csd);
 640	if (err)
 641		return err;
 642
 643	/* only compare read only fields */
 644	err = !((card->ext_csd.raw_partition_support ==
 645			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
 646		(card->ext_csd.raw_erased_mem_count ==
 647			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
 648		(card->ext_csd.rev ==
 649			bw_ext_csd[EXT_CSD_REV]) &&
 650		(card->ext_csd.raw_ext_csd_structure ==
 651			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
 652		(card->ext_csd.raw_card_type ==
 653			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
 654		(card->ext_csd.raw_s_a_timeout ==
 655			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
 656		(card->ext_csd.raw_hc_erase_gap_size ==
 657			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
 658		(card->ext_csd.raw_erase_timeout_mult ==
 659			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
 660		(card->ext_csd.raw_hc_erase_grp_size ==
 661			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
 662		(card->ext_csd.raw_sec_trim_mult ==
 663			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
 664		(card->ext_csd.raw_sec_erase_mult ==
 665			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
 666		(card->ext_csd.raw_sec_feature_support ==
 667			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
 668		(card->ext_csd.raw_trim_mult ==
 669			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
 670		(card->ext_csd.raw_sectors[0] ==
 671			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
 672		(card->ext_csd.raw_sectors[1] ==
 673			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
 674		(card->ext_csd.raw_sectors[2] ==
 675			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
 676		(card->ext_csd.raw_sectors[3] ==
 677			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
 678		(card->ext_csd.raw_pwr_cl_52_195 ==
 679			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
 680		(card->ext_csd.raw_pwr_cl_26_195 ==
 681			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
 682		(card->ext_csd.raw_pwr_cl_52_360 ==
 683			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
 684		(card->ext_csd.raw_pwr_cl_26_360 ==
 685			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
 686		(card->ext_csd.raw_pwr_cl_200_195 ==
 687			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
 688		(card->ext_csd.raw_pwr_cl_200_360 ==
 689			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
 690		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
 691			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
 692		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
 693			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
 694		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
 695			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
 696
 697	if (err)
 698		err = -EINVAL;
 699
 700	kfree(bw_ext_csd);
 701	return err;
 702}
 703
 704MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
 705	card->raw_cid[2], card->raw_cid[3]);
 706MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
 707	card->raw_csd[2], card->raw_csd[3]);
 708MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
 709MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
 710MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
 711MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
 712MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
 713MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
 714MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
 715MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
 716MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
 
 
 
 
 
 717MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
 718MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
 719		card->ext_csd.enhanced_area_offset);
 720MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
 721MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
 722MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
 
 
 
 723
 724static ssize_t mmc_fwrev_show(struct device *dev,
 725			      struct device_attribute *attr,
 726			      char *buf)
 727{
 728	struct mmc_card *card = mmc_dev_to_card(dev);
 729
 730	if (card->ext_csd.rev < 7) {
 731		return sprintf(buf, "0x%x\n", card->cid.fwrev);
 732	} else {
 733		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
 734			       card->ext_csd.fwrev);
 735	}
 736}
 737
 738static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740static struct attribute *mmc_std_attrs[] = {
 741	&dev_attr_cid.attr,
 742	&dev_attr_csd.attr,
 743	&dev_attr_date.attr,
 744	&dev_attr_erase_size.attr,
 745	&dev_attr_preferred_erase_size.attr,
 746	&dev_attr_fwrev.attr,
 747	&dev_attr_ffu_capable.attr,
 748	&dev_attr_hwrev.attr,
 749	&dev_attr_manfid.attr,
 750	&dev_attr_name.attr,
 751	&dev_attr_oemid.attr,
 752	&dev_attr_prv.attr,
 
 
 
 753	&dev_attr_serial.attr,
 754	&dev_attr_enhanced_area_offset.attr,
 755	&dev_attr_enhanced_area_size.attr,
 756	&dev_attr_raw_rpmb_size_mult.attr,
 757	&dev_attr_rel_sectors.attr,
 
 
 
 
 758	NULL,
 759};
 760ATTRIBUTE_GROUPS(mmc_std);
 761
 762static struct device_type mmc_type = {
 763	.groups = mmc_std_groups,
 764};
 765
 766/*
 767 * Select the PowerClass for the current bus width
 768 * If power class is defined for 4/8 bit bus in the
 769 * extended CSD register, select it by executing the
 770 * mmc_switch command.
 771 */
 772static int __mmc_select_powerclass(struct mmc_card *card,
 773				   unsigned int bus_width)
 774{
 775	struct mmc_host *host = card->host;
 776	struct mmc_ext_csd *ext_csd = &card->ext_csd;
 777	unsigned int pwrclass_val = 0;
 778	int err = 0;
 779
 780	switch (1 << host->ios.vdd) {
 781	case MMC_VDD_165_195:
 782		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 783			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
 784		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 785			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 786				ext_csd->raw_pwr_cl_52_195 :
 787				ext_csd->raw_pwr_cl_ddr_52_195;
 788		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 789			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
 790		break;
 791	case MMC_VDD_27_28:
 792	case MMC_VDD_28_29:
 793	case MMC_VDD_29_30:
 794	case MMC_VDD_30_31:
 795	case MMC_VDD_31_32:
 796	case MMC_VDD_32_33:
 797	case MMC_VDD_33_34:
 798	case MMC_VDD_34_35:
 799	case MMC_VDD_35_36:
 800		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 801			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
 802		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 803			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 804				ext_csd->raw_pwr_cl_52_360 :
 805				ext_csd->raw_pwr_cl_ddr_52_360;
 806		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 807			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
 808				ext_csd->raw_pwr_cl_ddr_200_360 :
 809				ext_csd->raw_pwr_cl_200_360;
 810		break;
 811	default:
 812		pr_warn("%s: Voltage range not supported for power class\n",
 813			mmc_hostname(host));
 814		return -EINVAL;
 815	}
 816
 817	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
 818		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
 819				EXT_CSD_PWR_CL_8BIT_SHIFT;
 820	else
 821		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
 822				EXT_CSD_PWR_CL_4BIT_SHIFT;
 823
 824	/* If the power class is different from the default value */
 825	if (pwrclass_val > 0) {
 826		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 827				 EXT_CSD_POWER_CLASS,
 828				 pwrclass_val,
 829				 card->ext_csd.generic_cmd6_time);
 830	}
 831
 832	return err;
 833}
 834
 835static int mmc_select_powerclass(struct mmc_card *card)
 836{
 837	struct mmc_host *host = card->host;
 838	u32 bus_width, ext_csd_bits;
 839	int err, ddr;
 840
 841	/* Power class selection is supported for versions >= 4.0 */
 842	if (!mmc_can_ext_csd(card))
 843		return 0;
 844
 845	bus_width = host->ios.bus_width;
 846	/* Power class values are defined only for 4/8 bit bus */
 847	if (bus_width == MMC_BUS_WIDTH_1)
 848		return 0;
 849
 850	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
 851	if (ddr)
 852		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 853			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
 854	else
 855		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 856			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
 857
 858	err = __mmc_select_powerclass(card, ext_csd_bits);
 859	if (err)
 860		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
 861			mmc_hostname(host), 1 << bus_width, ddr);
 862
 863	return err;
 864}
 865
 866/*
 867 * Set the bus speed for the selected speed mode.
 868 */
 869static void mmc_set_bus_speed(struct mmc_card *card)
 870{
 871	unsigned int max_dtr = (unsigned int)-1;
 872
 873	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
 874	     max_dtr > card->ext_csd.hs200_max_dtr)
 875		max_dtr = card->ext_csd.hs200_max_dtr;
 876	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
 877		max_dtr = card->ext_csd.hs_max_dtr;
 878	else if (max_dtr > card->csd.max_dtr)
 879		max_dtr = card->csd.max_dtr;
 880
 881	mmc_set_clock(card->host, max_dtr);
 882}
 883
 884/*
 885 * Select the bus width amoung 4-bit and 8-bit(SDR).
 886 * If the bus width is changed successfully, return the selected width value.
 887 * Zero is returned instead of error value if the wide width is not supported.
 888 */
 889static int mmc_select_bus_width(struct mmc_card *card)
 890{
 891	static unsigned ext_csd_bits[] = {
 892		EXT_CSD_BUS_WIDTH_8,
 893		EXT_CSD_BUS_WIDTH_4,
 894	};
 895	static unsigned bus_widths[] = {
 896		MMC_BUS_WIDTH_8,
 897		MMC_BUS_WIDTH_4,
 898	};
 899	struct mmc_host *host = card->host;
 900	unsigned idx, bus_width = 0;
 901	int err = 0;
 902
 903	if (!mmc_can_ext_csd(card) ||
 904	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
 905		return 0;
 906
 907	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
 908
 909	/*
 910	 * Unlike SD, MMC cards dont have a configuration register to notify
 911	 * supported bus width. So bus test command should be run to identify
 912	 * the supported bus width or compare the ext csd values of current
 913	 * bus width and ext csd values of 1 bit mode read earlier.
 914	 */
 915	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
 916		/*
 917		 * Host is capable of 8bit transfer, then switch
 918		 * the device to work in 8bit transfer mode. If the
 919		 * mmc switch command returns error then switch to
 920		 * 4bit transfer mode. On success set the corresponding
 921		 * bus width on the host.
 922		 */
 923		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 924				 EXT_CSD_BUS_WIDTH,
 925				 ext_csd_bits[idx],
 926				 card->ext_csd.generic_cmd6_time);
 927		if (err)
 928			continue;
 929
 930		bus_width = bus_widths[idx];
 931		mmc_set_bus_width(host, bus_width);
 932
 933		/*
 934		 * If controller can't handle bus width test,
 935		 * compare ext_csd previously read in 1 bit mode
 936		 * against ext_csd at new bus width
 937		 */
 938		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
 939			err = mmc_compare_ext_csds(card, bus_width);
 940		else
 941			err = mmc_bus_test(card, bus_width);
 942
 943		if (!err) {
 944			err = bus_width;
 945			break;
 946		} else {
 947			pr_warn("%s: switch to bus width %d failed\n",
 948				mmc_hostname(host), 1 << bus_width);
 949		}
 950	}
 951
 952	return err;
 953}
 954
 955/*
 956 * Switch to the high-speed mode
 957 */
 958static int mmc_select_hs(struct mmc_card *card)
 959{
 960	int err;
 961
 962	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 963			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
 964			   card->ext_csd.generic_cmd6_time,
 965			   true, true, true);
 966	if (!err)
 967		mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
 
 968
 969	return err;
 970}
 971
 972/*
 973 * Activate wide bus and DDR if supported.
 974 */
 975static int mmc_select_hs_ddr(struct mmc_card *card)
 976{
 977	struct mmc_host *host = card->host;
 978	u32 bus_width, ext_csd_bits;
 979	int err = 0;
 980
 981	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
 982		return 0;
 983
 984	bus_width = host->ios.bus_width;
 985	if (bus_width == MMC_BUS_WIDTH_1)
 986		return 0;
 987
 988	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 989		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
 990
 991	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 992			EXT_CSD_BUS_WIDTH,
 993			ext_csd_bits,
 994			card->ext_csd.generic_cmd6_time);
 
 
 995	if (err) {
 996		pr_err("%s: switch to bus width %d ddr failed\n",
 997			mmc_hostname(host), 1 << bus_width);
 998		return err;
 999	}
1000
1001	/*
1002	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1003	 * signaling.
1004	 *
1005	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1006	 *
1007	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1008	 * in the JEDEC spec for DDR.
1009	 *
1010	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1011	 * host controller can support this, like some of the SDHCI
1012	 * controller which connect to an eMMC device. Some of these
1013	 * host controller still needs to use 1.8v vccq for supporting
1014	 * DDR mode.
1015	 *
1016	 * So the sequence will be:
1017	 * if (host and device can both support 1.2v IO)
1018	 *	use 1.2v IO;
1019	 * else if (host and device can both support 1.8v IO)
1020	 *	use 1.8v IO;
1021	 * so if host and device can only support 3.3v IO, this is the
1022	 * last choice.
1023	 *
1024	 * WARNING: eMMC rules are NOT the same as SD DDR
1025	 */
1026	err = -EINVAL;
1027	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1028		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
 
 
1029
1030	if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1031		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
 
1032
1033	/* make sure vccq is 3.3v after switching disaster */
1034	if (err)
1035		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1036
1037	if (!err)
1038		mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1039
1040	return err;
1041}
1042
1043/* Caller must hold re-tuning */
1044static int mmc_switch_status(struct mmc_card *card)
1045{
1046	u32 status;
1047	int err;
1048
1049	err = mmc_send_status(card, &status);
1050	if (err)
1051		return err;
1052
1053	return mmc_switch_status_error(card->host, status);
1054}
1055
1056static int mmc_select_hs400(struct mmc_card *card)
1057{
1058	struct mmc_host *host = card->host;
1059	bool send_status = true;
1060	unsigned int max_dtr;
1061	int err = 0;
1062	u8 val;
1063
1064	/*
1065	 * HS400 mode requires 8-bit bus width
1066	 */
1067	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1068	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1069		return 0;
1070
1071	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1072		send_status = false;
1073
1074	/* Reduce frequency to HS frequency */
1075	max_dtr = card->ext_csd.hs_max_dtr;
1076	mmc_set_clock(host, max_dtr);
1077
1078	/* Switch card to HS mode */
1079	val = EXT_CSD_TIMING_HS;
1080	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1081			   EXT_CSD_HS_TIMING, val,
1082			   card->ext_csd.generic_cmd6_time,
1083			   true, send_status, true);
1084	if (err) {
1085		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1086			mmc_hostname(host), err);
1087		return err;
1088	}
1089
1090	/* Set host controller to HS timing */
1091	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1092
1093	if (!send_status) {
1094		err = mmc_switch_status(card);
1095		if (err)
1096			goto out_err;
1097	}
 
 
1098
1099	/* Switch card to DDR */
1100	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1101			 EXT_CSD_BUS_WIDTH,
1102			 EXT_CSD_DDR_BUS_WIDTH_8,
1103			 card->ext_csd.generic_cmd6_time);
1104	if (err) {
1105		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1106			mmc_hostname(host), err);
1107		return err;
1108	}
1109
1110	/* Switch card to HS400 */
1111	val = EXT_CSD_TIMING_HS400 |
1112	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1113	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1114			   EXT_CSD_HS_TIMING, val,
1115			   card->ext_csd.generic_cmd6_time,
1116			   true, send_status, true);
1117	if (err) {
1118		pr_err("%s: switch to hs400 failed, err:%d\n",
1119			 mmc_hostname(host), err);
1120		return err;
1121	}
1122
1123	/* Set host controller to HS400 timing and frequency */
1124	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1125	mmc_set_bus_speed(card);
1126
1127	if (!send_status) {
1128		err = mmc_switch_status(card);
1129		if (err)
1130			goto out_err;
1131	}
1132
1133	return 0;
1134
1135out_err:
1136	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1137	       __func__, err);
1138	return err;
1139}
1140
1141int mmc_hs200_to_hs400(struct mmc_card *card)
1142{
1143	return mmc_select_hs400(card);
1144}
1145
1146int mmc_hs400_to_hs200(struct mmc_card *card)
1147{
1148	struct mmc_host *host = card->host;
1149	bool send_status = true;
1150	unsigned int max_dtr;
1151	int err;
1152	u8 val;
1153
1154	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1155		send_status = false;
1156
1157	/* Reduce frequency to HS */
1158	max_dtr = card->ext_csd.hs_max_dtr;
1159	mmc_set_clock(host, max_dtr);
1160
1161	/* Switch HS400 to HS DDR */
1162	val = EXT_CSD_TIMING_HS;
1163	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1164			   val, card->ext_csd.generic_cmd6_time,
1165			   true, send_status, true);
1166	if (err)
1167		goto out_err;
1168
1169	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1170
1171	if (!send_status) {
1172		err = mmc_switch_status(card);
1173		if (err)
1174			goto out_err;
1175	}
1176
1177	/* Switch HS DDR to HS */
1178	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1179			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1180			   true, send_status, true);
1181	if (err)
1182		goto out_err;
1183
1184	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185
1186	if (!send_status) {
1187		err = mmc_switch_status(card);
1188		if (err)
1189			goto out_err;
1190	}
1191
1192	/* Switch HS to HS200 */
1193	val = EXT_CSD_TIMING_HS200 |
1194	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1195	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1196			   val, card->ext_csd.generic_cmd6_time, true,
1197			   send_status, true);
1198	if (err)
1199		goto out_err;
1200
1201	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1202
1203	if (!send_status) {
1204		err = mmc_switch_status(card);
1205		if (err)
1206			goto out_err;
1207	}
 
 
 
1208
1209	mmc_set_bus_speed(card);
1210
1211	return 0;
1212
1213out_err:
1214	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1215	       __func__, err);
1216	return err;
1217}
1218
1219static void mmc_select_driver_type(struct mmc_card *card)
1220{
1221	int card_drv_type, drive_strength, drv_type;
 
1222
1223	card_drv_type = card->ext_csd.raw_driver_strength |
1224			mmc_driver_type_mask(0);
1225
1226	drive_strength = mmc_select_drive_strength(card,
1227						   card->ext_csd.hs200_max_dtr,
1228						   card_drv_type, &drv_type);
 
 
 
 
1229
1230	card->drive_strength = drive_strength;
1231
1232	if (drv_type)
1233		mmc_set_driver_type(card->host, drv_type);
1234}
1235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236/*
1237 * For device supporting HS200 mode, the following sequence
1238 * should be done before executing the tuning process.
1239 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1240 * 2. switch to HS200 mode
1241 * 3. set the clock to > 52Mhz and <=200MHz
1242 */
1243static int mmc_select_hs200(struct mmc_card *card)
1244{
1245	struct mmc_host *host = card->host;
1246	bool send_status = true;
1247	unsigned int old_timing;
1248	int err = -EINVAL;
1249	u8 val;
1250
 
1251	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1252		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1253
1254	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1255		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1256
1257	/* If fails try again during next card power cycle */
1258	if (err)
1259		goto err;
1260
1261	mmc_select_driver_type(card);
1262
1263	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1264		send_status = false;
1265
1266	/*
1267	 * Set the bus width(4 or 8) with host's support and
1268	 * switch to HS200 mode if bus width is set successfully.
1269	 */
1270	err = mmc_select_bus_width(card);
1271	if (!IS_ERR_VALUE(err)) {
1272		val = EXT_CSD_TIMING_HS200 |
1273		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1274		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1275				   EXT_CSD_HS_TIMING, val,
1276				   card->ext_csd.generic_cmd6_time,
1277				   true, send_status, true);
1278		if (err)
1279			goto err;
1280		old_timing = host->ios.timing;
1281		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1282		if (!send_status) {
1283			err = mmc_switch_status(card);
1284			/*
1285			 * mmc_select_timing() assumes timing has not changed if
1286			 * it is a switch error.
1287			 */
1288			if (err == -EBADMSG)
1289				mmc_set_timing(host, old_timing);
1290		}
 
 
 
 
 
1291	}
1292err:
1293	if (err)
 
 
 
 
1294		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1295		       __func__, err);
 
1296	return err;
1297}
1298
1299/*
1300 * Activate High Speed or HS200 mode if supported.
1301 */
1302static int mmc_select_timing(struct mmc_card *card)
1303{
1304	int err = 0;
1305
1306	if (!mmc_can_ext_csd(card))
1307		goto bus_speed;
1308
1309	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
 
 
1310		err = mmc_select_hs200(card);
1311	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1312		err = mmc_select_hs(card);
1313
1314	if (err && err != -EBADMSG)
1315		return err;
1316
1317	if (err) {
1318		pr_warn("%s: switch to %s failed\n",
1319			mmc_card_hs(card) ? "high-speed" :
1320			(mmc_card_hs200(card) ? "hs200" : ""),
1321			mmc_hostname(card->host));
1322		err = 0;
1323	}
1324
1325bus_speed:
1326	/*
1327	 * Set the bus speed to the selected bus timing.
1328	 * If timing is not selected, backward compatible is the default.
1329	 */
1330	mmc_set_bus_speed(card);
1331	return err;
1332}
1333
1334/*
1335 * Execute tuning sequence to seek the proper bus operating
1336 * conditions for HS200 and HS400, which sends CMD21 to the device.
1337 */
1338static int mmc_hs200_tuning(struct mmc_card *card)
1339{
1340	struct mmc_host *host = card->host;
1341
1342	/*
1343	 * Timing should be adjusted to the HS400 target
1344	 * operation frequency for tuning process
1345	 */
1346	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1347	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1348		if (host->ops->prepare_hs400_tuning)
1349			host->ops->prepare_hs400_tuning(host, &host->ios);
1350
1351	return mmc_execute_tuning(card);
1352}
1353
1354/*
1355 * Handle the detection and initialisation of a card.
1356 *
1357 * In the case of a resume, "oldcard" will contain the card
1358 * we're trying to reinitialise.
1359 */
1360static int mmc_init_card(struct mmc_host *host, u32 ocr,
1361	struct mmc_card *oldcard)
1362{
1363	struct mmc_card *card;
1364	int err;
1365	u32 cid[4];
1366	u32 rocr;
1367
1368	BUG_ON(!host);
1369	WARN_ON(!host->claimed);
1370
1371	/* Set correct bus mode for MMC before attempting init */
1372	if (!mmc_host_is_spi(host))
1373		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1374
1375	/*
1376	 * Since we're changing the OCR value, we seem to
1377	 * need to tell some cards to go back to the idle
1378	 * state.  We wait 1ms to give cards time to
1379	 * respond.
1380	 * mmc_go_idle is needed for eMMC that are asleep
1381	 */
1382	mmc_go_idle(host);
1383
1384	/* The extra bit indicates that we support high capacity */
1385	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1386	if (err)
1387		goto err;
1388
1389	/*
1390	 * For SPI, enable CRC as appropriate.
1391	 */
1392	if (mmc_host_is_spi(host)) {
1393		err = mmc_spi_set_crc(host, use_spi_crc);
1394		if (err)
1395			goto err;
1396	}
1397
1398	/*
1399	 * Fetch CID from card.
1400	 */
1401	if (mmc_host_is_spi(host))
1402		err = mmc_send_cid(host, cid);
1403	else
1404		err = mmc_all_send_cid(host, cid);
1405	if (err)
1406		goto err;
1407
1408	if (oldcard) {
1409		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1410			err = -ENOENT;
1411			goto err;
1412		}
1413
1414		card = oldcard;
1415	} else {
1416		/*
1417		 * Allocate card structure.
1418		 */
1419		card = mmc_alloc_card(host, &mmc_type);
1420		if (IS_ERR(card)) {
1421			err = PTR_ERR(card);
1422			goto err;
1423		}
1424
1425		card->ocr = ocr;
1426		card->type = MMC_TYPE_MMC;
1427		card->rca = 1;
1428		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1429	}
1430
1431	/*
1432	 * Call the optional HC's init_card function to handle quirks.
1433	 */
1434	if (host->ops->init_card)
1435		host->ops->init_card(host, card);
1436
1437	/*
1438	 * For native busses:  set card RCA and quit open drain mode.
1439	 */
1440	if (!mmc_host_is_spi(host)) {
1441		err = mmc_set_relative_addr(card);
1442		if (err)
1443			goto free_card;
1444
1445		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1446	}
1447
1448	if (!oldcard) {
1449		/*
1450		 * Fetch CSD from card.
1451		 */
1452		err = mmc_send_csd(card, card->raw_csd);
1453		if (err)
1454			goto free_card;
1455
1456		err = mmc_decode_csd(card);
1457		if (err)
1458			goto free_card;
1459		err = mmc_decode_cid(card);
1460		if (err)
1461			goto free_card;
1462	}
1463
1464	/*
1465	 * handling only for cards supporting DSR and hosts requesting
1466	 * DSR configuration
1467	 */
1468	if (card->csd.dsr_imp && host->dsr_req)
1469		mmc_set_dsr(host);
1470
1471	/*
1472	 * Select card, as all following commands rely on that.
1473	 */
1474	if (!mmc_host_is_spi(host)) {
1475		err = mmc_select_card(card);
1476		if (err)
1477			goto free_card;
1478	}
1479
1480	if (!oldcard) {
1481		/* Read extended CSD. */
1482		err = mmc_read_ext_csd(card);
1483		if (err)
1484			goto free_card;
1485
1486		/* If doing byte addressing, check if required to do sector
 
1487		 * addressing.  Handle the case of <2GB cards needing sector
1488		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1489		 * ocr register has bit 30 set for sector addressing.
1490		 */
1491		if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
1492			mmc_card_set_blockaddr(card);
1493
1494		/* Erase size depends on CSD and Extended CSD */
1495		mmc_set_erase_size(card);
1496	}
1497
1498	/*
1499	 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1500	 * bit.  This bit will be lost every time after a reset or power off.
1501	 */
1502	if (card->ext_csd.partition_setting_completed ||
1503	    (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1504		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1505				 EXT_CSD_ERASE_GROUP_DEF, 1,
1506				 card->ext_csd.generic_cmd6_time);
1507
1508		if (err && err != -EBADMSG)
1509			goto free_card;
1510
1511		if (err) {
1512			err = 0;
1513			/*
1514			 * Just disable enhanced area off & sz
1515			 * will try to enable ERASE_GROUP_DEF
1516			 * during next time reinit
1517			 */
1518			card->ext_csd.enhanced_area_offset = -EINVAL;
1519			card->ext_csd.enhanced_area_size = -EINVAL;
1520		} else {
1521			card->ext_csd.erase_group_def = 1;
1522			/*
1523			 * enable ERASE_GRP_DEF successfully.
1524			 * This will affect the erase size, so
1525			 * here need to reset erase size
1526			 */
1527			mmc_set_erase_size(card);
1528		}
1529	}
1530
1531	/*
1532	 * Ensure eMMC user default partition is enabled
1533	 */
1534	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1535		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1536		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1537				 card->ext_csd.part_config,
1538				 card->ext_csd.part_time);
1539		if (err && err != -EBADMSG)
1540			goto free_card;
1541	}
1542
1543	/*
1544	 * Enable power_off_notification byte in the ext_csd register
1545	 */
1546	if (card->ext_csd.rev >= 6) {
1547		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1548				 EXT_CSD_POWER_OFF_NOTIFICATION,
1549				 EXT_CSD_POWER_ON,
1550				 card->ext_csd.generic_cmd6_time);
1551		if (err && err != -EBADMSG)
1552			goto free_card;
1553
1554		/*
1555		 * The err can be -EBADMSG or 0,
1556		 * so check for success and update the flag
1557		 */
1558		if (!err)
1559			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1560	}
1561
1562	/*
1563	 * Select timing interface
1564	 */
1565	err = mmc_select_timing(card);
1566	if (err)
1567		goto free_card;
1568
1569	if (mmc_card_hs200(card)) {
1570		err = mmc_hs200_tuning(card);
1571		if (err)
1572			goto free_card;
1573
1574		err = mmc_select_hs400(card);
1575		if (err)
1576			goto free_card;
1577	} else if (mmc_card_hs(card)) {
1578		/* Select the desired bus width optionally */
1579		err = mmc_select_bus_width(card);
1580		if (!IS_ERR_VALUE(err)) {
1581			err = mmc_select_hs_ddr(card);
1582			if (err)
1583				goto free_card;
1584		}
1585	}
1586
1587	/*
1588	 * Choose the power class with selected bus interface
1589	 */
1590	mmc_select_powerclass(card);
1591
1592	/*
1593	 * Enable HPI feature (if supported)
1594	 */
1595	if (card->ext_csd.hpi) {
1596		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1597				EXT_CSD_HPI_MGMT, 1,
1598				card->ext_csd.generic_cmd6_time);
1599		if (err && err != -EBADMSG)
1600			goto free_card;
1601		if (err) {
1602			pr_warn("%s: Enabling HPI failed\n",
1603				mmc_hostname(card->host));
1604			err = 0;
1605		} else
1606			card->ext_csd.hpi_en = 1;
1607	}
1608
1609	/*
1610	 * If cache size is higher than 0, this indicates
1611	 * the existence of cache and it can be turned on.
1612	 */
1613	if (card->ext_csd.cache_size > 0) {
 
1614		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1615				EXT_CSD_CACHE_CTRL, 1,
1616				card->ext_csd.generic_cmd6_time);
1617		if (err && err != -EBADMSG)
1618			goto free_card;
1619
1620		/*
1621		 * Only if no error, cache is turned on successfully.
1622		 */
1623		if (err) {
1624			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1625				mmc_hostname(card->host), err);
1626			card->ext_csd.cache_ctrl = 0;
1627			err = 0;
1628		} else {
1629			card->ext_csd.cache_ctrl = 1;
1630		}
1631	}
1632
1633	/*
1634	 * The mandatory minimum values are defined for packed command.
1635	 * read: 5, write: 3
1636	 */
1637	if (card->ext_csd.max_packed_writes >= 3 &&
1638	    card->ext_csd.max_packed_reads >= 5 &&
1639	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1640		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1641				EXT_CSD_EXP_EVENTS_CTRL,
1642				EXT_CSD_PACKED_EVENT_EN,
1643				card->ext_csd.generic_cmd6_time);
1644		if (err && err != -EBADMSG)
1645			goto free_card;
1646		if (err) {
1647			pr_warn("%s: Enabling packed event failed\n",
1648				mmc_hostname(card->host));
1649			card->ext_csd.packed_event_en = 0;
 
1650			err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651		} else {
1652			card->ext_csd.packed_event_en = 1;
 
 
1653		}
1654	}
1655
1656	if (!oldcard)
1657		host->card = card;
1658
1659	return 0;
1660
1661free_card:
1662	if (!oldcard)
1663		mmc_remove_card(card);
1664err:
1665	return err;
1666}
1667
1668static int mmc_can_sleep(struct mmc_card *card)
1669{
1670	return (card && card->ext_csd.rev >= 3);
1671}
1672
1673static int mmc_sleep(struct mmc_host *host)
1674{
1675	struct mmc_command cmd = {0};
1676	struct mmc_card *card = host->card;
1677	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1678	int err;
1679
1680	/* Re-tuning can't be done once the card is deselected */
1681	mmc_retune_hold(host);
1682
1683	err = mmc_deselect_cards(host);
1684	if (err)
1685		goto out_release;
1686
1687	cmd.opcode = MMC_SLEEP_AWAKE;
1688	cmd.arg = card->rca << 16;
1689	cmd.arg |= 1 << 15;
1690
1691	/*
1692	 * If the max_busy_timeout of the host is specified, validate it against
1693	 * the sleep cmd timeout. A failure means we need to prevent the host
1694	 * from doing hw busy detection, which is done by converting to a R1
1695	 * response instead of a R1B.
1696	 */
1697	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1698		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699	} else {
1700		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1701		cmd.busy_timeout = timeout_ms;
1702	}
1703
1704	err = mmc_wait_for_cmd(host, &cmd, 0);
1705	if (err)
1706		goto out_release;
1707
1708	/*
1709	 * If the host does not wait while the card signals busy, then we will
1710	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1711	 * SEND_STATUS command to poll the status because that command (and most
1712	 * others) is invalid while the card sleeps.
1713	 */
1714	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1715		mmc_delay(timeout_ms);
1716
1717out_release:
1718	mmc_retune_release(host);
1719	return err;
1720}
1721
1722static int mmc_can_poweroff_notify(const struct mmc_card *card)
1723{
1724	return card &&
1725		mmc_card_mmc(card) &&
1726		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1727}
1728
1729static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1730{
1731	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1732	int err;
1733
1734	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1735	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1736		timeout = card->ext_csd.power_off_longtime;
1737
1738	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1739			EXT_CSD_POWER_OFF_NOTIFICATION,
1740			notify_type, timeout, true, false, false);
1741	if (err)
1742		pr_err("%s: Power Off Notification timed out, %u\n",
1743		       mmc_hostname(card->host), timeout);
1744
1745	/* Disable the power off notification after the switch operation. */
1746	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1747
1748	return err;
1749}
1750
1751/*
1752 * Host is being removed. Free up the current card.
1753 */
1754static void mmc_remove(struct mmc_host *host)
1755{
1756	BUG_ON(!host);
1757	BUG_ON(!host->card);
1758
1759	mmc_remove_card(host->card);
1760	host->card = NULL;
1761}
1762
1763/*
1764 * Card detection - card is alive.
1765 */
1766static int mmc_alive(struct mmc_host *host)
1767{
1768	return mmc_send_status(host->card, NULL);
1769}
1770
1771/*
1772 * Card detection callback from host.
1773 */
1774static void mmc_detect(struct mmc_host *host)
1775{
1776	int err;
1777
1778	BUG_ON(!host);
1779	BUG_ON(!host->card);
1780
1781	mmc_get_card(host->card);
1782
1783	/*
1784	 * Just check if our card has been removed.
1785	 */
1786	err = _mmc_detect_card_removed(host);
1787
1788	mmc_put_card(host->card);
1789
1790	if (err) {
1791		mmc_remove(host);
1792
1793		mmc_claim_host(host);
1794		mmc_detach_bus(host);
1795		mmc_power_off(host);
1796		mmc_release_host(host);
1797	}
1798}
1799
1800static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1801{
1802	int err = 0;
1803	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1804					EXT_CSD_POWER_OFF_LONG;
1805
1806	BUG_ON(!host);
1807	BUG_ON(!host->card);
1808
1809	mmc_claim_host(host);
1810
1811	if (mmc_card_suspended(host->card))
1812		goto out;
1813
1814	if (mmc_card_doing_bkops(host->card)) {
1815		err = mmc_stop_bkops(host->card);
1816		if (err)
1817			goto out;
1818	}
1819
1820	err = mmc_flush_cache(host->card);
1821	if (err)
1822		goto out;
1823
1824	if (mmc_can_poweroff_notify(host->card) &&
1825		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1826		err = mmc_poweroff_notify(host->card, notify_type);
1827	else if (mmc_can_sleep(host->card))
1828		err = mmc_sleep(host);
1829	else if (!mmc_host_is_spi(host))
1830		err = mmc_deselect_cards(host);
1831
1832	if (!err) {
1833		mmc_power_off(host);
1834		mmc_card_set_suspended(host->card);
1835	}
1836out:
1837	mmc_release_host(host);
1838	return err;
1839}
1840
1841/*
1842 * Suspend callback
1843 */
1844static int mmc_suspend(struct mmc_host *host)
1845{
1846	int err;
1847
1848	err = _mmc_suspend(host, true);
1849	if (!err) {
1850		pm_runtime_disable(&host->card->dev);
1851		pm_runtime_set_suspended(&host->card->dev);
1852	}
1853
1854	return err;
1855}
1856
1857/*
1858 * This function tries to determine if the same card is still present
1859 * and, if so, restore all state to it.
1860 */
1861static int _mmc_resume(struct mmc_host *host)
1862{
1863	int err = 0;
1864
1865	BUG_ON(!host);
1866	BUG_ON(!host->card);
1867
1868	mmc_claim_host(host);
1869
1870	if (!mmc_card_suspended(host->card))
1871		goto out;
1872
1873	mmc_power_up(host, host->card->ocr);
1874	err = mmc_init_card(host, host->card->ocr, host->card);
1875	mmc_card_clr_suspended(host->card);
1876
1877out:
1878	mmc_release_host(host);
1879	return err;
1880}
1881
1882/*
1883 * Shutdown callback
1884 */
1885static int mmc_shutdown(struct mmc_host *host)
1886{
1887	int err = 0;
1888
1889	/*
1890	 * In a specific case for poweroff notify, we need to resume the card
1891	 * before we can shutdown it properly.
1892	 */
1893	if (mmc_can_poweroff_notify(host->card) &&
1894		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1895		err = _mmc_resume(host);
1896
1897	if (!err)
1898		err = _mmc_suspend(host, false);
1899
1900	return err;
1901}
1902
1903/*
1904 * Callback for resume.
1905 */
1906static int mmc_resume(struct mmc_host *host)
1907{
1908	pm_runtime_enable(&host->card->dev);
1909	return 0;
1910}
1911
1912/*
1913 * Callback for runtime_suspend.
1914 */
1915static int mmc_runtime_suspend(struct mmc_host *host)
1916{
1917	int err;
1918
1919	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1920		return 0;
1921
1922	err = _mmc_suspend(host, true);
1923	if (err)
1924		pr_err("%s: error %d doing aggressive suspend\n",
1925			mmc_hostname(host), err);
1926
1927	return err;
1928}
1929
1930/*
1931 * Callback for runtime_resume.
1932 */
1933static int mmc_runtime_resume(struct mmc_host *host)
1934{
1935	int err;
1936
1937	err = _mmc_resume(host);
1938	if (err && err != -ENOMEDIUM)
1939		pr_err("%s: error %d doing runtime resume\n",
1940			mmc_hostname(host), err);
1941
1942	return 0;
1943}
1944
1945int mmc_can_reset(struct mmc_card *card)
1946{
1947	u8 rst_n_function;
1948
1949	rst_n_function = card->ext_csd.rst_n_function;
1950	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1951		return 0;
1952	return 1;
1953}
1954EXPORT_SYMBOL(mmc_can_reset);
1955
1956static int mmc_reset(struct mmc_host *host)
1957{
1958	struct mmc_card *card = host->card;
1959
1960	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1961		return -EOPNOTSUPP;
1962
1963	if (!mmc_can_reset(card))
1964		return -EOPNOTSUPP;
1965
1966	mmc_set_clock(host, host->f_init);
1967
1968	host->ops->hw_reset(host);
1969
1970	/* Set initial state and call mmc_set_ios */
1971	mmc_set_initial_state(host);
1972
 
 
 
 
 
 
 
 
 
 
 
 
1973	return mmc_init_card(host, card->ocr, card);
1974}
1975
1976static const struct mmc_bus_ops mmc_ops = {
1977	.remove = mmc_remove,
1978	.detect = mmc_detect,
1979	.suspend = mmc_suspend,
1980	.resume = mmc_resume,
1981	.runtime_suspend = mmc_runtime_suspend,
1982	.runtime_resume = mmc_runtime_resume,
1983	.alive = mmc_alive,
1984	.shutdown = mmc_shutdown,
1985	.reset = mmc_reset,
1986};
1987
1988/*
1989 * Starting point for MMC card init.
1990 */
1991int mmc_attach_mmc(struct mmc_host *host)
1992{
1993	int err;
1994	u32 ocr, rocr;
1995
1996	BUG_ON(!host);
1997	WARN_ON(!host->claimed);
1998
1999	/* Set correct bus mode for MMC before attempting attach */
2000	if (!mmc_host_is_spi(host))
2001		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2002
2003	err = mmc_send_op_cond(host, 0, &ocr);
2004	if (err)
2005		return err;
2006
2007	mmc_attach_bus(host, &mmc_ops);
2008	if (host->ocr_avail_mmc)
2009		host->ocr_avail = host->ocr_avail_mmc;
2010
2011	/*
2012	 * We need to get OCR a different way for SPI.
2013	 */
2014	if (mmc_host_is_spi(host)) {
2015		err = mmc_spi_read_ocr(host, 1, &ocr);
2016		if (err)
2017			goto err;
2018	}
2019
2020	rocr = mmc_select_voltage(host, ocr);
2021
2022	/*
2023	 * Can we support the voltage of the card?
2024	 */
2025	if (!rocr) {
2026		err = -EINVAL;
2027		goto err;
2028	}
2029
2030	/*
2031	 * Detect and init the card.
2032	 */
2033	err = mmc_init_card(host, rocr, NULL);
2034	if (err)
2035		goto err;
2036
2037	mmc_release_host(host);
2038	err = mmc_add_card(host->card);
2039	if (err)
2040		goto remove_card;
2041
2042	mmc_claim_host(host);
2043	return 0;
2044
2045remove_card:
2046	mmc_remove_card(host->card);
2047	mmc_claim_host(host);
2048	host->card = NULL;
2049err:
2050	mmc_detach_bus(host);
2051
2052	pr_err("%s: error %d whilst initialising MMC card\n",
2053		mmc_hostname(host), err);
2054
2055	return err;
2056}
v4.17
   1/*
   2 *  linux/drivers/mmc/core/mmc.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
   6 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/slab.h>
  16#include <linux/stat.h>
  17#include <linux/pm_runtime.h>
  18
  19#include <linux/mmc/host.h>
  20#include <linux/mmc/card.h>
  21#include <linux/mmc/mmc.h>
  22
  23#include "core.h"
  24#include "card.h"
  25#include "host.h"
  26#include "bus.h"
  27#include "mmc_ops.h"
  28#include "quirks.h"
  29#include "sd_ops.h"
  30#include "pwrseq.h"
  31
  32#define DEFAULT_CMD6_TIMEOUT_MS	500
  33
  34static const unsigned int tran_exp[] = {
  35	10000,		100000,		1000000,	10000000,
  36	0,		0,		0,		0
  37};
  38
  39static const unsigned char tran_mant[] = {
  40	0,	10,	12,	13,	15,	20,	25,	30,
  41	35,	40,	45,	50,	55,	60,	70,	80,
  42};
  43
  44static const unsigned int taac_exp[] = {
  45	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
  46};
  47
  48static const unsigned int taac_mant[] = {
  49	0,	10,	12,	13,	15,	20,	25,	30,
  50	35,	40,	45,	50,	55,	60,	70,	80,
  51};
  52
  53#define UNSTUFF_BITS(resp,start,size)					\
  54	({								\
  55		const int __size = size;				\
  56		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
  57		const int __off = 3 - ((start) / 32);			\
  58		const int __shft = (start) & 31;			\
  59		u32 __res;						\
  60									\
  61		__res = resp[__off] >> __shft;				\
  62		if (__size + __shft > 32)				\
  63			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
  64		__res & __mask;						\
  65	})
  66
  67/*
  68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
  69 */
  70static int mmc_decode_cid(struct mmc_card *card)
  71{
  72	u32 *resp = card->raw_cid;
  73
  74	/*
  75	 * The selection of the format here is based upon published
  76	 * specs from sandisk and from what people have reported.
  77	 */
  78	switch (card->csd.mmca_vsn) {
  79	case 0: /* MMC v1.0 - v1.2 */
  80	case 1: /* MMC v1.4 */
  81		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
  82		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
  83		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
  84		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
  85		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
  86		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
  87		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
  88		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
  89		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
  90		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
  91		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
  92		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
  93		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
  94		break;
  95
  96	case 2: /* MMC v2.0 - v2.2 */
  97	case 3: /* MMC v3.1 - v3.3 */
  98	case 4: /* MMC v4 */
  99		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
 100		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
 101		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
 102		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
 103		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
 104		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
 105		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
 106		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
 107		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
 108		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
 109		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
 110		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
 111		break;
 112
 113	default:
 114		pr_err("%s: card has unknown MMCA version %d\n",
 115			mmc_hostname(card->host), card->csd.mmca_vsn);
 116		return -EINVAL;
 117	}
 118
 119	return 0;
 120}
 121
 122static void mmc_set_erase_size(struct mmc_card *card)
 123{
 124	if (card->ext_csd.erase_group_def & 1)
 125		card->erase_size = card->ext_csd.hc_erase_size;
 126	else
 127		card->erase_size = card->csd.erase_size;
 128
 129	mmc_init_erase(card);
 130}
 131
 132/*
 133 * Given a 128-bit response, decode to our card CSD structure.
 134 */
 135static int mmc_decode_csd(struct mmc_card *card)
 136{
 137	struct mmc_csd *csd = &card->csd;
 138	unsigned int e, m, a, b;
 139	u32 *resp = card->raw_csd;
 140
 141	/*
 142	 * We only understand CSD structure v1.1 and v1.2.
 143	 * v1.2 has extra information in bits 15, 11 and 10.
 144	 * We also support eMMC v4.4 & v4.41.
 145	 */
 146	csd->structure = UNSTUFF_BITS(resp, 126, 2);
 147	if (csd->structure == 0) {
 148		pr_err("%s: unrecognised CSD structure version %d\n",
 149			mmc_hostname(card->host), csd->structure);
 150		return -EINVAL;
 151	}
 152
 153	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
 154	m = UNSTUFF_BITS(resp, 115, 4);
 155	e = UNSTUFF_BITS(resp, 112, 3);
 156	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
 157	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
 158
 159	m = UNSTUFF_BITS(resp, 99, 4);
 160	e = UNSTUFF_BITS(resp, 96, 3);
 161	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
 162	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
 163
 164	e = UNSTUFF_BITS(resp, 47, 3);
 165	m = UNSTUFF_BITS(resp, 62, 12);
 166	csd->capacity	  = (1 + m) << (e + 2);
 167
 168	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
 169	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
 170	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
 171	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
 172	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
 173	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
 174	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
 175	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
 176
 177	if (csd->write_blkbits >= 9) {
 178		a = UNSTUFF_BITS(resp, 42, 5);
 179		b = UNSTUFF_BITS(resp, 37, 5);
 180		csd->erase_size = (a + 1) * (b + 1);
 181		csd->erase_size <<= csd->write_blkbits - 9;
 182	}
 183
 184	return 0;
 185}
 186
 187static void mmc_select_card_type(struct mmc_card *card)
 188{
 189	struct mmc_host *host = card->host;
 190	u8 card_type = card->ext_csd.raw_card_type;
 191	u32 caps = host->caps, caps2 = host->caps2;
 192	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
 193	unsigned int avail_type = 0;
 194
 195	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 196	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
 197		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
 198		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
 199	}
 200
 201	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 202	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
 203		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
 204		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
 205	}
 206
 207	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
 208	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
 209		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 210		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
 211	}
 212
 213	if (caps & MMC_CAP_1_2V_DDR &&
 214	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
 215		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 216		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
 217	}
 218
 219	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
 220	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
 221		hs200_max_dtr = MMC_HS200_MAX_DTR;
 222		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
 223	}
 224
 225	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
 226	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
 227		hs200_max_dtr = MMC_HS200_MAX_DTR;
 228		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
 229	}
 230
 231	if (caps2 & MMC_CAP2_HS400_1_8V &&
 232	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
 233		hs200_max_dtr = MMC_HS200_MAX_DTR;
 234		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
 235	}
 236
 237	if (caps2 & MMC_CAP2_HS400_1_2V &&
 238	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
 239		hs200_max_dtr = MMC_HS200_MAX_DTR;
 240		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
 241	}
 242
 243	if ((caps2 & MMC_CAP2_HS400_ES) &&
 244	    card->ext_csd.strobe_support &&
 245	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
 246		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
 247
 248	card->ext_csd.hs_max_dtr = hs_max_dtr;
 249	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
 250	card->mmc_avail_type = avail_type;
 251}
 252
 253static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
 254{
 255	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 256
 257	/*
 258	 * Disable these attributes by default
 259	 */
 260	card->ext_csd.enhanced_area_offset = -EINVAL;
 261	card->ext_csd.enhanced_area_size = -EINVAL;
 262
 263	/*
 264	 * Enhanced area feature support -- check whether the eMMC
 265	 * card has the Enhanced area enabled.  If so, export enhanced
 266	 * area offset and size to user by adding sysfs interface.
 267	 */
 268	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
 269	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
 270		if (card->ext_csd.partition_setting_completed) {
 271			hc_erase_grp_sz =
 272				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 273			hc_wp_grp_sz =
 274				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 275
 276			/*
 277			 * calculate the enhanced data area offset, in bytes
 278			 */
 279			card->ext_csd.enhanced_area_offset =
 280				(((unsigned long long)ext_csd[139]) << 24) +
 281				(((unsigned long long)ext_csd[138]) << 16) +
 282				(((unsigned long long)ext_csd[137]) << 8) +
 283				(((unsigned long long)ext_csd[136]));
 284			if (mmc_card_blockaddr(card))
 285				card->ext_csd.enhanced_area_offset <<= 9;
 286			/*
 287			 * calculate the enhanced data area size, in kilobytes
 288			 */
 289			card->ext_csd.enhanced_area_size =
 290				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
 291				ext_csd[140];
 292			card->ext_csd.enhanced_area_size *=
 293				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
 294			card->ext_csd.enhanced_area_size <<= 9;
 295		} else {
 296			pr_warn("%s: defines enhanced area without partition setting complete\n",
 297				mmc_hostname(card->host));
 298		}
 299	}
 300}
 301
 302static void mmc_part_add(struct mmc_card *card, unsigned int size,
 303			 unsigned int part_cfg, char *name, int idx, bool ro,
 304			 int area_type)
 305{
 306	card->part[card->nr_parts].size = size;
 307	card->part[card->nr_parts].part_cfg = part_cfg;
 308	sprintf(card->part[card->nr_parts].name, name, idx);
 309	card->part[card->nr_parts].force_ro = ro;
 310	card->part[card->nr_parts].area_type = area_type;
 311	card->nr_parts++;
 312}
 313
 314static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
 315{
 316	int idx;
 317	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 318	unsigned int part_size;
 319
 320	/*
 321	 * General purpose partition feature support --
 322	 * If ext_csd has the size of general purpose partitions,
 323	 * set size, part_cfg, partition name in mmc_part.
 324	 */
 325	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
 326	    EXT_CSD_PART_SUPPORT_PART_EN) {
 327		hc_erase_grp_sz =
 328			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 329		hc_wp_grp_sz =
 330			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 331
 332		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
 333			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
 334			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
 335			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
 336				continue;
 337			if (card->ext_csd.partition_setting_completed == 0) {
 338				pr_warn("%s: has partition size defined without partition complete\n",
 339					mmc_hostname(card->host));
 340				break;
 341			}
 342			part_size =
 343				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
 344				<< 16) +
 345				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
 346				<< 8) +
 347				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
 348			part_size *= (size_t)(hc_erase_grp_sz *
 349				hc_wp_grp_sz);
 350			mmc_part_add(card, part_size << 19,
 351				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
 352				"gp%d", idx, false,
 353				MMC_BLK_DATA_AREA_GP);
 354		}
 355	}
 356}
 357
 358/* Minimum partition switch timeout in milliseconds */
 359#define MMC_MIN_PART_SWITCH_TIME	300
 360
 361/*
 362 * Decode extended CSD.
 363 */
 364static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
 365{
 366	int err = 0, idx;
 367	unsigned int part_size;
 368	struct device_node *np;
 369	bool broken_hpi = false;
 370
 371	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
 372	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
 373	if (card->csd.structure == 3) {
 374		if (card->ext_csd.raw_ext_csd_structure > 2) {
 375			pr_err("%s: unrecognised EXT_CSD structure "
 376				"version %d\n", mmc_hostname(card->host),
 377					card->ext_csd.raw_ext_csd_structure);
 378			err = -EINVAL;
 379			goto out;
 380		}
 381	}
 382
 383	np = mmc_of_find_child_device(card->host, 0);
 384	if (np && of_device_is_compatible(np, "mmc-card"))
 385		broken_hpi = of_property_read_bool(np, "broken-hpi");
 386	of_node_put(np);
 387
 388	/*
 389	 * The EXT_CSD format is meant to be forward compatible. As long
 390	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
 391	 * are authorized, see JEDEC JESD84-B50 section B.8.
 392	 */
 393	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
 394
 395	/* fixup device after ext_csd revision field is updated */
 396	mmc_fixup_device(card, mmc_ext_csd_fixups);
 397
 398	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
 399	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
 400	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
 401	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
 402	if (card->ext_csd.rev >= 2) {
 403		card->ext_csd.sectors =
 404			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
 405			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
 406			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
 407			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
 408
 409		/* Cards with density > 2GiB are sector addressed */
 410		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
 411			mmc_card_set_blockaddr(card);
 412	}
 413
 414	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
 415	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
 416	mmc_select_card_type(card);
 417
 418	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
 419	card->ext_csd.raw_erase_timeout_mult =
 420		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 421	card->ext_csd.raw_hc_erase_grp_size =
 422		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 423	if (card->ext_csd.rev >= 3) {
 424		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
 425		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
 426
 427		/* EXT_CSD value is in units of 10ms, but we store in ms */
 428		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
 429		/* Some eMMC set the value too low so set a minimum */
 430		if (card->ext_csd.part_time &&
 431		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
 432			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
 433
 434		/* Sleep / awake timeout in 100ns units */
 435		if (sa_shift > 0 && sa_shift <= 0x17)
 436			card->ext_csd.sa_timeout =
 437					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
 438		card->ext_csd.erase_group_def =
 439			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
 440		card->ext_csd.hc_erase_timeout = 300 *
 441			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 442		card->ext_csd.hc_erase_size =
 443			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
 444
 445		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
 446
 447		/*
 448		 * There are two boot regions of equal size, defined in
 449		 * multiples of 128K.
 450		 */
 451		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
 452			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
 453				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
 454				mmc_part_add(card, part_size,
 455					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
 456					"boot%d", idx, true,
 457					MMC_BLK_DATA_AREA_BOOT);
 458			}
 459		}
 460	}
 461
 462	card->ext_csd.raw_hc_erase_gap_size =
 463		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 464	card->ext_csd.raw_sec_trim_mult =
 465		ext_csd[EXT_CSD_SEC_TRIM_MULT];
 466	card->ext_csd.raw_sec_erase_mult =
 467		ext_csd[EXT_CSD_SEC_ERASE_MULT];
 468	card->ext_csd.raw_sec_feature_support =
 469		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 470	card->ext_csd.raw_trim_mult =
 471		ext_csd[EXT_CSD_TRIM_MULT];
 472	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
 473	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
 474	if (card->ext_csd.rev >= 4) {
 475		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
 476		    EXT_CSD_PART_SETTING_COMPLETED)
 477			card->ext_csd.partition_setting_completed = 1;
 478		else
 479			card->ext_csd.partition_setting_completed = 0;
 480
 481		mmc_manage_enhanced_area(card, ext_csd);
 482
 483		mmc_manage_gp_partitions(card, ext_csd);
 484
 485		card->ext_csd.sec_trim_mult =
 486			ext_csd[EXT_CSD_SEC_TRIM_MULT];
 487		card->ext_csd.sec_erase_mult =
 488			ext_csd[EXT_CSD_SEC_ERASE_MULT];
 489		card->ext_csd.sec_feature_support =
 490			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 491		card->ext_csd.trim_timeout = 300 *
 492			ext_csd[EXT_CSD_TRIM_MULT];
 493
 494		/*
 495		 * Note that the call to mmc_part_add above defaults to read
 496		 * only. If this default assumption is changed, the call must
 497		 * take into account the value of boot_locked below.
 498		 */
 499		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
 500		card->ext_csd.boot_ro_lockable = true;
 501
 502		/* Save power class values */
 503		card->ext_csd.raw_pwr_cl_52_195 =
 504			ext_csd[EXT_CSD_PWR_CL_52_195];
 505		card->ext_csd.raw_pwr_cl_26_195 =
 506			ext_csd[EXT_CSD_PWR_CL_26_195];
 507		card->ext_csd.raw_pwr_cl_52_360 =
 508			ext_csd[EXT_CSD_PWR_CL_52_360];
 509		card->ext_csd.raw_pwr_cl_26_360 =
 510			ext_csd[EXT_CSD_PWR_CL_26_360];
 511		card->ext_csd.raw_pwr_cl_200_195 =
 512			ext_csd[EXT_CSD_PWR_CL_200_195];
 513		card->ext_csd.raw_pwr_cl_200_360 =
 514			ext_csd[EXT_CSD_PWR_CL_200_360];
 515		card->ext_csd.raw_pwr_cl_ddr_52_195 =
 516			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
 517		card->ext_csd.raw_pwr_cl_ddr_52_360 =
 518			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
 519		card->ext_csd.raw_pwr_cl_ddr_200_360 =
 520			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
 521	}
 522
 523	if (card->ext_csd.rev >= 5) {
 524		/* Adjust production date as per JEDEC JESD84-B451 */
 525		if (card->cid.year < 2010)
 526			card->cid.year += 16;
 527
 528		/* check whether the eMMC card supports BKOPS */
 529		if (!mmc_card_broken_hpi(card) &&
 530		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
 531			card->ext_csd.bkops = 1;
 532			card->ext_csd.man_bkops_en =
 533					(ext_csd[EXT_CSD_BKOPS_EN] &
 534						EXT_CSD_MANUAL_BKOPS_MASK);
 535			card->ext_csd.raw_bkops_status =
 536				ext_csd[EXT_CSD_BKOPS_STATUS];
 537			if (card->ext_csd.man_bkops_en)
 538				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
 539					mmc_hostname(card->host));
 540			card->ext_csd.auto_bkops_en =
 541					(ext_csd[EXT_CSD_BKOPS_EN] &
 542						EXT_CSD_AUTO_BKOPS_MASK);
 543			if (card->ext_csd.auto_bkops_en)
 544				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
 545					mmc_hostname(card->host));
 546		}
 547
 548		/* check whether the eMMC card supports HPI */
 549		if (!mmc_card_broken_hpi(card) &&
 550		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
 551			card->ext_csd.hpi = 1;
 552			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
 553				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
 554			else
 555				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
 556			/*
 557			 * Indicate the maximum timeout to close
 558			 * a command interrupted by HPI
 559			 */
 560			card->ext_csd.out_of_int_time =
 561				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
 562		}
 563
 564		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
 565		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
 566
 567		/*
 568		 * RPMB regions are defined in multiples of 128K.
 569		 */
 570		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
 571		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
 572			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
 573				EXT_CSD_PART_CONFIG_ACC_RPMB,
 574				"rpmb", 0, false,
 575				MMC_BLK_DATA_AREA_RPMB);
 576		}
 577	}
 578
 579	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
 580	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
 581		card->erased_byte = 0xFF;
 582	else
 583		card->erased_byte = 0x0;
 584
 585	/* eMMC v4.5 or later */
 586	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
 587	if (card->ext_csd.rev >= 6) {
 588		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
 589
 590		card->ext_csd.generic_cmd6_time = 10 *
 591			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
 592		card->ext_csd.power_off_longtime = 10 *
 593			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
 594
 595		card->ext_csd.cache_size =
 596			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
 597			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
 598			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
 599			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
 600
 601		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
 602			card->ext_csd.data_sector_size = 4096;
 603		else
 604			card->ext_csd.data_sector_size = 512;
 605
 606		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
 607		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
 608			card->ext_csd.data_tag_unit_size =
 609			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
 610			(card->ext_csd.data_sector_size);
 611		} else {
 612			card->ext_csd.data_tag_unit_size = 0;
 613		}
 614
 615		card->ext_csd.max_packed_writes =
 616			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
 617		card->ext_csd.max_packed_reads =
 618			ext_csd[EXT_CSD_MAX_PACKED_READS];
 619	} else {
 620		card->ext_csd.data_sector_size = 512;
 621	}
 622
 623	/* eMMC v5 or later */
 624	if (card->ext_csd.rev >= 7) {
 625		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
 626		       MMC_FIRMWARE_LEN);
 627		card->ext_csd.ffu_capable =
 628			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
 629			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
 630
 631		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
 632		card->ext_csd.device_life_time_est_typ_a =
 633			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
 634		card->ext_csd.device_life_time_est_typ_b =
 635			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
 636	}
 637
 638	/* eMMC v5.1 or later */
 639	if (card->ext_csd.rev >= 8) {
 640		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
 641					     EXT_CSD_CMDQ_SUPPORTED;
 642		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
 643					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
 644		/* Exclude inefficiently small queue depths */
 645		if (card->ext_csd.cmdq_depth <= 2) {
 646			card->ext_csd.cmdq_support = false;
 647			card->ext_csd.cmdq_depth = 0;
 648		}
 649		if (card->ext_csd.cmdq_support) {
 650			pr_debug("%s: Command Queue supported depth %u\n",
 651				 mmc_hostname(card->host),
 652				 card->ext_csd.cmdq_depth);
 653		}
 654	}
 655out:
 656	return err;
 657}
 658
 659static int mmc_read_ext_csd(struct mmc_card *card)
 660{
 661	u8 *ext_csd;
 662	int err;
 663
 664	if (!mmc_can_ext_csd(card))
 665		return 0;
 666
 667	err = mmc_get_ext_csd(card, &ext_csd);
 668	if (err) {
 669		/* If the host or the card can't do the switch,
 670		 * fail more gracefully. */
 671		if ((err != -EINVAL)
 672		 && (err != -ENOSYS)
 673		 && (err != -EFAULT))
 674			return err;
 675
 676		/*
 677		 * High capacity cards should have this "magic" size
 678		 * stored in their CSD.
 679		 */
 680		if (card->csd.capacity == (4096 * 512)) {
 681			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
 682				mmc_hostname(card->host));
 683		} else {
 684			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
 685				mmc_hostname(card->host));
 686			err = 0;
 687		}
 688
 689		return err;
 690	}
 691
 692	err = mmc_decode_ext_csd(card, ext_csd);
 693	kfree(ext_csd);
 694	return err;
 695}
 696
 697static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
 698{
 699	u8 *bw_ext_csd;
 700	int err;
 701
 702	if (bus_width == MMC_BUS_WIDTH_1)
 703		return 0;
 704
 705	err = mmc_get_ext_csd(card, &bw_ext_csd);
 706	if (err)
 707		return err;
 708
 709	/* only compare read only fields */
 710	err = !((card->ext_csd.raw_partition_support ==
 711			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
 712		(card->ext_csd.raw_erased_mem_count ==
 713			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
 714		(card->ext_csd.rev ==
 715			bw_ext_csd[EXT_CSD_REV]) &&
 716		(card->ext_csd.raw_ext_csd_structure ==
 717			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
 718		(card->ext_csd.raw_card_type ==
 719			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
 720		(card->ext_csd.raw_s_a_timeout ==
 721			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
 722		(card->ext_csd.raw_hc_erase_gap_size ==
 723			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
 724		(card->ext_csd.raw_erase_timeout_mult ==
 725			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
 726		(card->ext_csd.raw_hc_erase_grp_size ==
 727			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
 728		(card->ext_csd.raw_sec_trim_mult ==
 729			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
 730		(card->ext_csd.raw_sec_erase_mult ==
 731			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
 732		(card->ext_csd.raw_sec_feature_support ==
 733			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
 734		(card->ext_csd.raw_trim_mult ==
 735			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
 736		(card->ext_csd.raw_sectors[0] ==
 737			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
 738		(card->ext_csd.raw_sectors[1] ==
 739			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
 740		(card->ext_csd.raw_sectors[2] ==
 741			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
 742		(card->ext_csd.raw_sectors[3] ==
 743			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
 744		(card->ext_csd.raw_pwr_cl_52_195 ==
 745			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
 746		(card->ext_csd.raw_pwr_cl_26_195 ==
 747			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
 748		(card->ext_csd.raw_pwr_cl_52_360 ==
 749			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
 750		(card->ext_csd.raw_pwr_cl_26_360 ==
 751			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
 752		(card->ext_csd.raw_pwr_cl_200_195 ==
 753			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
 754		(card->ext_csd.raw_pwr_cl_200_360 ==
 755			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
 756		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
 757			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
 758		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
 759			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
 760		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
 761			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
 762
 763	if (err)
 764		err = -EINVAL;
 765
 766	kfree(bw_ext_csd);
 767	return err;
 768}
 769
 770MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
 771	card->raw_cid[2], card->raw_cid[3]);
 772MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
 773	card->raw_csd[2], card->raw_csd[3]);
 774MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
 775MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
 776MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
 777MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
 778MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
 779MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
 780MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
 781MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
 782MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
 783MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
 784MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
 785MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
 786	card->ext_csd.device_life_time_est_typ_a,
 787	card->ext_csd.device_life_time_est_typ_b);
 788MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
 789MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
 790		card->ext_csd.enhanced_area_offset);
 791MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
 792MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
 793MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
 794MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
 795MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
 796MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
 797
 798static ssize_t mmc_fwrev_show(struct device *dev,
 799			      struct device_attribute *attr,
 800			      char *buf)
 801{
 802	struct mmc_card *card = mmc_dev_to_card(dev);
 803
 804	if (card->ext_csd.rev < 7) {
 805		return sprintf(buf, "0x%x\n", card->cid.fwrev);
 806	} else {
 807		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
 808			       card->ext_csd.fwrev);
 809	}
 810}
 811
 812static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
 813
 814static ssize_t mmc_dsr_show(struct device *dev,
 815			    struct device_attribute *attr,
 816			    char *buf)
 817{
 818	struct mmc_card *card = mmc_dev_to_card(dev);
 819	struct mmc_host *host = card->host;
 820
 821	if (card->csd.dsr_imp && host->dsr_req)
 822		return sprintf(buf, "0x%x\n", host->dsr);
 823	else
 824		/* return default DSR value */
 825		return sprintf(buf, "0x%x\n", 0x404);
 826}
 827
 828static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
 829
 830static struct attribute *mmc_std_attrs[] = {
 831	&dev_attr_cid.attr,
 832	&dev_attr_csd.attr,
 833	&dev_attr_date.attr,
 834	&dev_attr_erase_size.attr,
 835	&dev_attr_preferred_erase_size.attr,
 836	&dev_attr_fwrev.attr,
 837	&dev_attr_ffu_capable.attr,
 838	&dev_attr_hwrev.attr,
 839	&dev_attr_manfid.attr,
 840	&dev_attr_name.attr,
 841	&dev_attr_oemid.attr,
 842	&dev_attr_prv.attr,
 843	&dev_attr_rev.attr,
 844	&dev_attr_pre_eol_info.attr,
 845	&dev_attr_life_time.attr,
 846	&dev_attr_serial.attr,
 847	&dev_attr_enhanced_area_offset.attr,
 848	&dev_attr_enhanced_area_size.attr,
 849	&dev_attr_raw_rpmb_size_mult.attr,
 850	&dev_attr_rel_sectors.attr,
 851	&dev_attr_ocr.attr,
 852	&dev_attr_rca.attr,
 853	&dev_attr_dsr.attr,
 854	&dev_attr_cmdq_en.attr,
 855	NULL,
 856};
 857ATTRIBUTE_GROUPS(mmc_std);
 858
 859static struct device_type mmc_type = {
 860	.groups = mmc_std_groups,
 861};
 862
 863/*
 864 * Select the PowerClass for the current bus width
 865 * If power class is defined for 4/8 bit bus in the
 866 * extended CSD register, select it by executing the
 867 * mmc_switch command.
 868 */
 869static int __mmc_select_powerclass(struct mmc_card *card,
 870				   unsigned int bus_width)
 871{
 872	struct mmc_host *host = card->host;
 873	struct mmc_ext_csd *ext_csd = &card->ext_csd;
 874	unsigned int pwrclass_val = 0;
 875	int err = 0;
 876
 877	switch (1 << host->ios.vdd) {
 878	case MMC_VDD_165_195:
 879		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 880			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
 881		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 882			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 883				ext_csd->raw_pwr_cl_52_195 :
 884				ext_csd->raw_pwr_cl_ddr_52_195;
 885		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 886			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
 887		break;
 888	case MMC_VDD_27_28:
 889	case MMC_VDD_28_29:
 890	case MMC_VDD_29_30:
 891	case MMC_VDD_30_31:
 892	case MMC_VDD_31_32:
 893	case MMC_VDD_32_33:
 894	case MMC_VDD_33_34:
 895	case MMC_VDD_34_35:
 896	case MMC_VDD_35_36:
 897		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 898			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
 899		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 900			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 901				ext_csd->raw_pwr_cl_52_360 :
 902				ext_csd->raw_pwr_cl_ddr_52_360;
 903		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 904			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
 905				ext_csd->raw_pwr_cl_ddr_200_360 :
 906				ext_csd->raw_pwr_cl_200_360;
 907		break;
 908	default:
 909		pr_warn("%s: Voltage range not supported for power class\n",
 910			mmc_hostname(host));
 911		return -EINVAL;
 912	}
 913
 914	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
 915		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
 916				EXT_CSD_PWR_CL_8BIT_SHIFT;
 917	else
 918		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
 919				EXT_CSD_PWR_CL_4BIT_SHIFT;
 920
 921	/* If the power class is different from the default value */
 922	if (pwrclass_val > 0) {
 923		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 924				 EXT_CSD_POWER_CLASS,
 925				 pwrclass_val,
 926				 card->ext_csd.generic_cmd6_time);
 927	}
 928
 929	return err;
 930}
 931
 932static int mmc_select_powerclass(struct mmc_card *card)
 933{
 934	struct mmc_host *host = card->host;
 935	u32 bus_width, ext_csd_bits;
 936	int err, ddr;
 937
 938	/* Power class selection is supported for versions >= 4.0 */
 939	if (!mmc_can_ext_csd(card))
 940		return 0;
 941
 942	bus_width = host->ios.bus_width;
 943	/* Power class values are defined only for 4/8 bit bus */
 944	if (bus_width == MMC_BUS_WIDTH_1)
 945		return 0;
 946
 947	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
 948	if (ddr)
 949		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 950			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
 951	else
 952		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 953			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
 954
 955	err = __mmc_select_powerclass(card, ext_csd_bits);
 956	if (err)
 957		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
 958			mmc_hostname(host), 1 << bus_width, ddr);
 959
 960	return err;
 961}
 962
 963/*
 964 * Set the bus speed for the selected speed mode.
 965 */
 966static void mmc_set_bus_speed(struct mmc_card *card)
 967{
 968	unsigned int max_dtr = (unsigned int)-1;
 969
 970	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
 971	     max_dtr > card->ext_csd.hs200_max_dtr)
 972		max_dtr = card->ext_csd.hs200_max_dtr;
 973	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
 974		max_dtr = card->ext_csd.hs_max_dtr;
 975	else if (max_dtr > card->csd.max_dtr)
 976		max_dtr = card->csd.max_dtr;
 977
 978	mmc_set_clock(card->host, max_dtr);
 979}
 980
 981/*
 982 * Select the bus width amoung 4-bit and 8-bit(SDR).
 983 * If the bus width is changed successfully, return the selected width value.
 984 * Zero is returned instead of error value if the wide width is not supported.
 985 */
 986static int mmc_select_bus_width(struct mmc_card *card)
 987{
 988	static unsigned ext_csd_bits[] = {
 989		EXT_CSD_BUS_WIDTH_8,
 990		EXT_CSD_BUS_WIDTH_4,
 991	};
 992	static unsigned bus_widths[] = {
 993		MMC_BUS_WIDTH_8,
 994		MMC_BUS_WIDTH_4,
 995	};
 996	struct mmc_host *host = card->host;
 997	unsigned idx, bus_width = 0;
 998	int err = 0;
 999
1000	if (!mmc_can_ext_csd(card) ||
1001	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002		return 0;
1003
1004	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005
1006	/*
1007	 * Unlike SD, MMC cards dont have a configuration register to notify
1008	 * supported bus width. So bus test command should be run to identify
1009	 * the supported bus width or compare the ext csd values of current
1010	 * bus width and ext csd values of 1 bit mode read earlier.
1011	 */
1012	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013		/*
1014		 * Host is capable of 8bit transfer, then switch
1015		 * the device to work in 8bit transfer mode. If the
1016		 * mmc switch command returns error then switch to
1017		 * 4bit transfer mode. On success set the corresponding
1018		 * bus width on the host.
1019		 */
1020		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021				 EXT_CSD_BUS_WIDTH,
1022				 ext_csd_bits[idx],
1023				 card->ext_csd.generic_cmd6_time);
1024		if (err)
1025			continue;
1026
1027		bus_width = bus_widths[idx];
1028		mmc_set_bus_width(host, bus_width);
1029
1030		/*
1031		 * If controller can't handle bus width test,
1032		 * compare ext_csd previously read in 1 bit mode
1033		 * against ext_csd at new bus width
1034		 */
1035		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036			err = mmc_compare_ext_csds(card, bus_width);
1037		else
1038			err = mmc_bus_test(card, bus_width);
1039
1040		if (!err) {
1041			err = bus_width;
1042			break;
1043		} else {
1044			pr_warn("%s: switch to bus width %d failed\n",
1045				mmc_hostname(host), 1 << bus_width);
1046		}
1047	}
1048
1049	return err;
1050}
1051
1052/*
1053 * Switch to the high-speed mode
1054 */
1055static int mmc_select_hs(struct mmc_card *card)
1056{
1057	int err;
1058
1059	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062			   true, true, true);
1063	if (err)
1064		pr_warn("%s: switch to high-speed failed, err:%d\n",
1065			mmc_hostname(card->host), err);
1066
1067	return err;
1068}
1069
1070/*
1071 * Activate wide bus and DDR if supported.
1072 */
1073static int mmc_select_hs_ddr(struct mmc_card *card)
1074{
1075	struct mmc_host *host = card->host;
1076	u32 bus_width, ext_csd_bits;
1077	int err = 0;
1078
1079	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080		return 0;
1081
1082	bus_width = host->ios.bus_width;
1083	if (bus_width == MMC_BUS_WIDTH_1)
1084		return 0;
1085
1086	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088
1089	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090			   EXT_CSD_BUS_WIDTH,
1091			   ext_csd_bits,
1092			   card->ext_csd.generic_cmd6_time,
1093			   MMC_TIMING_MMC_DDR52,
1094			   true, true, true);
1095	if (err) {
1096		pr_err("%s: switch to bus width %d ddr failed\n",
1097			mmc_hostname(host), 1 << bus_width);
1098		return err;
1099	}
1100
1101	/*
1102	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103	 * signaling.
1104	 *
1105	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106	 *
1107	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108	 * in the JEDEC spec for DDR.
1109	 *
1110	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111	 * host controller can support this, like some of the SDHCI
1112	 * controller which connect to an eMMC device. Some of these
1113	 * host controller still needs to use 1.8v vccq for supporting
1114	 * DDR mode.
1115	 *
1116	 * So the sequence will be:
1117	 * if (host and device can both support 1.2v IO)
1118	 *	use 1.2v IO;
1119	 * else if (host and device can both support 1.8v IO)
1120	 *	use 1.8v IO;
1121	 * so if host and device can only support 3.3v IO, this is the
1122	 * last choice.
1123	 *
1124	 * WARNING: eMMC rules are NOT the same as SD DDR
1125	 */
1126	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128		if (!err)
1129			return 0;
1130	}
1131
1132	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133	    host->caps & MMC_CAP_1_8V_DDR)
1134		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135
1136	/* make sure vccq is 3.3v after switching disaster */
1137	if (err)
1138		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
 
 
 
1139
1140	return err;
1141}
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
1143static int mmc_select_hs400(struct mmc_card *card)
1144{
1145	struct mmc_host *host = card->host;
 
1146	unsigned int max_dtr;
1147	int err = 0;
1148	u8 val;
1149
1150	/*
1151	 * HS400 mode requires 8-bit bus width
1152	 */
1153	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1155		return 0;
1156
 
 
 
 
 
 
 
1157	/* Switch card to HS mode */
1158	val = EXT_CSD_TIMING_HS;
1159	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160			   EXT_CSD_HS_TIMING, val,
1161			   card->ext_csd.generic_cmd6_time, 0,
1162			   true, false, true);
1163	if (err) {
1164		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165			mmc_hostname(host), err);
1166		return err;
1167	}
1168
1169	/* Set host controller to HS timing */
1170	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171
1172	/* Reduce frequency to HS frequency */
1173	max_dtr = card->ext_csd.hs_max_dtr;
1174	mmc_set_clock(host, max_dtr);
1175
1176	err = mmc_switch_status(card);
1177	if (err)
1178		goto out_err;
1179
1180	/* Switch card to DDR */
1181	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1182			 EXT_CSD_BUS_WIDTH,
1183			 EXT_CSD_DDR_BUS_WIDTH_8,
1184			 card->ext_csd.generic_cmd6_time);
1185	if (err) {
1186		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187			mmc_hostname(host), err);
1188		return err;
1189	}
1190
1191	/* Switch card to HS400 */
1192	val = EXT_CSD_TIMING_HS400 |
1193	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195			   EXT_CSD_HS_TIMING, val,
1196			   card->ext_csd.generic_cmd6_time, 0,
1197			   true, false, true);
1198	if (err) {
1199		pr_err("%s: switch to hs400 failed, err:%d\n",
1200			 mmc_hostname(host), err);
1201		return err;
1202	}
1203
1204	/* Set host controller to HS400 timing and frequency */
1205	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206	mmc_set_bus_speed(card);
1207
1208	err = mmc_switch_status(card);
1209	if (err)
1210		goto out_err;
 
 
1211
1212	return 0;
1213
1214out_err:
1215	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1216	       __func__, err);
1217	return err;
1218}
1219
1220int mmc_hs200_to_hs400(struct mmc_card *card)
1221{
1222	return mmc_select_hs400(card);
1223}
1224
1225int mmc_hs400_to_hs200(struct mmc_card *card)
1226{
1227	struct mmc_host *host = card->host;
 
1228	unsigned int max_dtr;
1229	int err;
1230	u8 val;
1231
 
 
 
1232	/* Reduce frequency to HS */
1233	max_dtr = card->ext_csd.hs_max_dtr;
1234	mmc_set_clock(host, max_dtr);
1235
1236	/* Switch HS400 to HS DDR */
1237	val = EXT_CSD_TIMING_HS;
1238	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239			   val, card->ext_csd.generic_cmd6_time, 0,
1240			   true, false, true);
1241	if (err)
1242		goto out_err;
1243
1244	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1245
1246	err = mmc_switch_status(card);
1247	if (err)
1248		goto out_err;
 
 
1249
1250	/* Switch HS DDR to HS */
1251	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253			   0, true, false, true);
1254	if (err)
1255		goto out_err;
1256
1257	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1258
1259	err = mmc_switch_status(card);
1260	if (err)
1261		goto out_err;
 
 
1262
1263	/* Switch HS to HS200 */
1264	val = EXT_CSD_TIMING_HS200 |
1265	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267			   val, card->ext_csd.generic_cmd6_time, 0,
1268			   true, false, true);
1269	if (err)
1270		goto out_err;
1271
1272	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1273
1274	/*
1275	 * For HS200, CRC errors are not a reliable way to know the switch
1276	 * failed. If there really is a problem, we would expect tuning will
1277	 * fail and the result ends up the same.
1278	 */
1279	err = __mmc_switch_status(card, false);
1280	if (err)
1281		goto out_err;
1282
1283	mmc_set_bus_speed(card);
1284
1285	return 0;
1286
1287out_err:
1288	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1289	       __func__, err);
1290	return err;
1291}
1292
1293static void mmc_select_driver_type(struct mmc_card *card)
1294{
1295	int card_drv_type, drive_strength, drv_type = 0;
1296	int fixed_drv_type = card->host->fixed_drv_type;
1297
1298	card_drv_type = card->ext_csd.raw_driver_strength |
1299			mmc_driver_type_mask(0);
1300
1301	if (fixed_drv_type >= 0)
1302		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1303				 ? fixed_drv_type : 0;
1304	else
1305		drive_strength = mmc_select_drive_strength(card,
1306							   card->ext_csd.hs200_max_dtr,
1307							   card_drv_type, &drv_type);
1308
1309	card->drive_strength = drive_strength;
1310
1311	if (drv_type)
1312		mmc_set_driver_type(card->host, drv_type);
1313}
1314
1315static int mmc_select_hs400es(struct mmc_card *card)
1316{
1317	struct mmc_host *host = card->host;
1318	int err = -EINVAL;
1319	u8 val;
1320
1321	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1322		err = -ENOTSUPP;
1323		goto out_err;
1324	}
1325
1326	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1327		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1328
1329	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1330		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1331
1332	/* If fails try again during next card power cycle */
1333	if (err)
1334		goto out_err;
1335
1336	err = mmc_select_bus_width(card);
1337	if (err < 0)
1338		goto out_err;
1339
1340	/* Switch card to HS mode */
1341	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1342			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1343			   card->ext_csd.generic_cmd6_time, 0,
1344			   true, false, true);
1345	if (err) {
1346		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1347			mmc_hostname(host), err);
1348		goto out_err;
1349	}
1350
1351	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1352	err = mmc_switch_status(card);
1353	if (err)
1354		goto out_err;
1355
1356	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1357
1358	/* Switch card to DDR with strobe bit */
1359	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1360	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1361			 EXT_CSD_BUS_WIDTH,
1362			 val,
1363			 card->ext_csd.generic_cmd6_time);
1364	if (err) {
1365		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1366			mmc_hostname(host), err);
1367		goto out_err;
1368	}
1369
1370	mmc_select_driver_type(card);
1371
1372	/* Switch card to HS400 */
1373	val = EXT_CSD_TIMING_HS400 |
1374	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376			   EXT_CSD_HS_TIMING, val,
1377			   card->ext_csd.generic_cmd6_time, 0,
1378			   true, false, true);
1379	if (err) {
1380		pr_err("%s: switch to hs400es failed, err:%d\n",
1381			mmc_hostname(host), err);
1382		goto out_err;
1383	}
1384
1385	/* Set host controller to HS400 timing and frequency */
1386	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1387
1388	/* Controller enable enhanced strobe function */
1389	host->ios.enhanced_strobe = true;
1390	if (host->ops->hs400_enhanced_strobe)
1391		host->ops->hs400_enhanced_strobe(host, &host->ios);
1392
1393	err = mmc_switch_status(card);
1394	if (err)
1395		goto out_err;
1396
1397	return 0;
1398
1399out_err:
1400	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1401	       __func__, err);
1402	return err;
1403}
1404
1405/*
1406 * For device supporting HS200 mode, the following sequence
1407 * should be done before executing the tuning process.
1408 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1409 * 2. switch to HS200 mode
1410 * 3. set the clock to > 52Mhz and <=200MHz
1411 */
1412static int mmc_select_hs200(struct mmc_card *card)
1413{
1414	struct mmc_host *host = card->host;
1415	unsigned int old_timing, old_signal_voltage;
 
1416	int err = -EINVAL;
1417	u8 val;
1418
1419	old_signal_voltage = host->ios.signal_voltage;
1420	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1421		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1422
1423	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1424		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1425
1426	/* If fails try again during next card power cycle */
1427	if (err)
1428		return err;
1429
1430	mmc_select_driver_type(card);
1431
 
 
 
1432	/*
1433	 * Set the bus width(4 or 8) with host's support and
1434	 * switch to HS200 mode if bus width is set successfully.
1435	 */
1436	err = mmc_select_bus_width(card);
1437	if (err > 0) {
1438		val = EXT_CSD_TIMING_HS200 |
1439		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1440		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1441				   EXT_CSD_HS_TIMING, val,
1442				   card->ext_csd.generic_cmd6_time, 0,
1443				   true, false, true);
1444		if (err)
1445			goto err;
1446		old_timing = host->ios.timing;
1447		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1448
1449		/*
1450		 * For HS200, CRC errors are not a reliable way to know the
1451		 * switch failed. If there really is a problem, we would expect
1452		 * tuning will fail and the result ends up the same.
1453		 */
1454		err = __mmc_switch_status(card, false);
1455
1456		/*
1457		 * mmc_select_timing() assumes timing has not changed if
1458		 * it is a switch error.
1459		 */
1460		if (err == -EBADMSG)
1461			mmc_set_timing(host, old_timing);
1462	}
1463err:
1464	if (err) {
1465		/* fall back to the old signal voltage, if fails report error */
1466		if (mmc_set_signal_voltage(host, old_signal_voltage))
1467			err = -EIO;
1468
1469		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1470		       __func__, err);
1471	}
1472	return err;
1473}
1474
1475/*
1476 * Activate High Speed, HS200 or HS400ES mode if supported.
1477 */
1478static int mmc_select_timing(struct mmc_card *card)
1479{
1480	int err = 0;
1481
1482	if (!mmc_can_ext_csd(card))
1483		goto bus_speed;
1484
1485	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1486		err = mmc_select_hs400es(card);
1487	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1488		err = mmc_select_hs200(card);
1489	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1490		err = mmc_select_hs(card);
1491
1492	if (err && err != -EBADMSG)
1493		return err;
1494
 
 
 
 
 
 
 
 
1495bus_speed:
1496	/*
1497	 * Set the bus speed to the selected bus timing.
1498	 * If timing is not selected, backward compatible is the default.
1499	 */
1500	mmc_set_bus_speed(card);
1501	return 0;
1502}
1503
1504/*
1505 * Execute tuning sequence to seek the proper bus operating
1506 * conditions for HS200 and HS400, which sends CMD21 to the device.
1507 */
1508static int mmc_hs200_tuning(struct mmc_card *card)
1509{
1510	struct mmc_host *host = card->host;
1511
1512	/*
1513	 * Timing should be adjusted to the HS400 target
1514	 * operation frequency for tuning process
1515	 */
1516	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1517	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1518		if (host->ops->prepare_hs400_tuning)
1519			host->ops->prepare_hs400_tuning(host, &host->ios);
1520
1521	return mmc_execute_tuning(card);
1522}
1523
1524/*
1525 * Handle the detection and initialisation of a card.
1526 *
1527 * In the case of a resume, "oldcard" will contain the card
1528 * we're trying to reinitialise.
1529 */
1530static int mmc_init_card(struct mmc_host *host, u32 ocr,
1531	struct mmc_card *oldcard)
1532{
1533	struct mmc_card *card;
1534	int err;
1535	u32 cid[4];
1536	u32 rocr;
1537
 
1538	WARN_ON(!host->claimed);
1539
1540	/* Set correct bus mode for MMC before attempting init */
1541	if (!mmc_host_is_spi(host))
1542		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1543
1544	/*
1545	 * Since we're changing the OCR value, we seem to
1546	 * need to tell some cards to go back to the idle
1547	 * state.  We wait 1ms to give cards time to
1548	 * respond.
1549	 * mmc_go_idle is needed for eMMC that are asleep
1550	 */
1551	mmc_go_idle(host);
1552
1553	/* The extra bit indicates that we support high capacity */
1554	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1555	if (err)
1556		goto err;
1557
1558	/*
1559	 * For SPI, enable CRC as appropriate.
1560	 */
1561	if (mmc_host_is_spi(host)) {
1562		err = mmc_spi_set_crc(host, use_spi_crc);
1563		if (err)
1564			goto err;
1565	}
1566
1567	/*
1568	 * Fetch CID from card.
1569	 */
1570	err = mmc_send_cid(host, cid);
 
 
 
1571	if (err)
1572		goto err;
1573
1574	if (oldcard) {
1575		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1576			err = -ENOENT;
1577			goto err;
1578		}
1579
1580		card = oldcard;
1581	} else {
1582		/*
1583		 * Allocate card structure.
1584		 */
1585		card = mmc_alloc_card(host, &mmc_type);
1586		if (IS_ERR(card)) {
1587			err = PTR_ERR(card);
1588			goto err;
1589		}
1590
1591		card->ocr = ocr;
1592		card->type = MMC_TYPE_MMC;
1593		card->rca = 1;
1594		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1595	}
1596
1597	/*
1598	 * Call the optional HC's init_card function to handle quirks.
1599	 */
1600	if (host->ops->init_card)
1601		host->ops->init_card(host, card);
1602
1603	/*
1604	 * For native busses:  set card RCA and quit open drain mode.
1605	 */
1606	if (!mmc_host_is_spi(host)) {
1607		err = mmc_set_relative_addr(card);
1608		if (err)
1609			goto free_card;
1610
1611		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1612	}
1613
1614	if (!oldcard) {
1615		/*
1616		 * Fetch CSD from card.
1617		 */
1618		err = mmc_send_csd(card, card->raw_csd);
1619		if (err)
1620			goto free_card;
1621
1622		err = mmc_decode_csd(card);
1623		if (err)
1624			goto free_card;
1625		err = mmc_decode_cid(card);
1626		if (err)
1627			goto free_card;
1628	}
1629
1630	/*
1631	 * handling only for cards supporting DSR and hosts requesting
1632	 * DSR configuration
1633	 */
1634	if (card->csd.dsr_imp && host->dsr_req)
1635		mmc_set_dsr(host);
1636
1637	/*
1638	 * Select card, as all following commands rely on that.
1639	 */
1640	if (!mmc_host_is_spi(host)) {
1641		err = mmc_select_card(card);
1642		if (err)
1643			goto free_card;
1644	}
1645
1646	if (!oldcard) {
1647		/* Read extended CSD. */
1648		err = mmc_read_ext_csd(card);
1649		if (err)
1650			goto free_card;
1651
1652		/*
1653		 * If doing byte addressing, check if required to do sector
1654		 * addressing.  Handle the case of <2GB cards needing sector
1655		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1656		 * ocr register has bit 30 set for sector addressing.
1657		 */
1658		if (rocr & BIT(30))
1659			mmc_card_set_blockaddr(card);
1660
1661		/* Erase size depends on CSD and Extended CSD */
1662		mmc_set_erase_size(card);
1663	}
1664
1665	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1666	if (card->ext_csd.rev >= 3) {
 
 
 
 
1667		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1668				 EXT_CSD_ERASE_GROUP_DEF, 1,
1669				 card->ext_csd.generic_cmd6_time);
1670
1671		if (err && err != -EBADMSG)
1672			goto free_card;
1673
1674		if (err) {
1675			err = 0;
1676			/*
1677			 * Just disable enhanced area off & sz
1678			 * will try to enable ERASE_GROUP_DEF
1679			 * during next time reinit
1680			 */
1681			card->ext_csd.enhanced_area_offset = -EINVAL;
1682			card->ext_csd.enhanced_area_size = -EINVAL;
1683		} else {
1684			card->ext_csd.erase_group_def = 1;
1685			/*
1686			 * enable ERASE_GRP_DEF successfully.
1687			 * This will affect the erase size, so
1688			 * here need to reset erase size
1689			 */
1690			mmc_set_erase_size(card);
1691		}
1692	}
1693
1694	/*
1695	 * Ensure eMMC user default partition is enabled
1696	 */
1697	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1698		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1699		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1700				 card->ext_csd.part_config,
1701				 card->ext_csd.part_time);
1702		if (err && err != -EBADMSG)
1703			goto free_card;
1704	}
1705
1706	/*
1707	 * Enable power_off_notification byte in the ext_csd register
1708	 */
1709	if (card->ext_csd.rev >= 6) {
1710		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711				 EXT_CSD_POWER_OFF_NOTIFICATION,
1712				 EXT_CSD_POWER_ON,
1713				 card->ext_csd.generic_cmd6_time);
1714		if (err && err != -EBADMSG)
1715			goto free_card;
1716
1717		/*
1718		 * The err can be -EBADMSG or 0,
1719		 * so check for success and update the flag
1720		 */
1721		if (!err)
1722			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1723	}
1724
1725	/*
1726	 * Select timing interface
1727	 */
1728	err = mmc_select_timing(card);
1729	if (err)
1730		goto free_card;
1731
1732	if (mmc_card_hs200(card)) {
1733		err = mmc_hs200_tuning(card);
1734		if (err)
1735			goto free_card;
1736
1737		err = mmc_select_hs400(card);
1738		if (err)
1739			goto free_card;
1740	} else if (!mmc_card_hs400es(card)) {
1741		/* Select the desired bus width optionally */
1742		err = mmc_select_bus_width(card);
1743		if (err > 0 && mmc_card_hs(card)) {
1744			err = mmc_select_hs_ddr(card);
1745			if (err)
1746				goto free_card;
1747		}
1748	}
1749
1750	/*
1751	 * Choose the power class with selected bus interface
1752	 */
1753	mmc_select_powerclass(card);
1754
1755	/*
1756	 * Enable HPI feature (if supported)
1757	 */
1758	if (card->ext_csd.hpi) {
1759		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1760				EXT_CSD_HPI_MGMT, 1,
1761				card->ext_csd.generic_cmd6_time);
1762		if (err && err != -EBADMSG)
1763			goto free_card;
1764		if (err) {
1765			pr_warn("%s: Enabling HPI failed\n",
1766				mmc_hostname(card->host));
1767			err = 0;
1768		} else
1769			card->ext_csd.hpi_en = 1;
1770	}
1771
1772	/*
1773	 * If cache size is higher than 0, this indicates
1774	 * the existence of cache and it can be turned on.
1775	 */
1776	if (!mmc_card_broken_hpi(card) &&
1777	    card->ext_csd.cache_size > 0) {
1778		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779				EXT_CSD_CACHE_CTRL, 1,
1780				card->ext_csd.generic_cmd6_time);
1781		if (err && err != -EBADMSG)
1782			goto free_card;
1783
1784		/*
1785		 * Only if no error, cache is turned on successfully.
1786		 */
1787		if (err) {
1788			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1789				mmc_hostname(card->host), err);
1790			card->ext_csd.cache_ctrl = 0;
1791			err = 0;
1792		} else {
1793			card->ext_csd.cache_ctrl = 1;
1794		}
1795	}
1796
1797	/*
1798	 * Enable Command Queue if supported. Note that Packed Commands cannot
1799	 * be used with Command Queue.
1800	 */
1801	card->ext_csd.cmdq_en = false;
1802	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1803		err = mmc_cmdq_enable(card);
 
 
 
 
1804		if (err && err != -EBADMSG)
1805			goto free_card;
1806		if (err) {
1807			pr_warn("%s: Enabling CMDQ failed\n",
1808				mmc_hostname(card->host));
1809			card->ext_csd.cmdq_support = false;
1810			card->ext_csd.cmdq_depth = 0;
1811			err = 0;
1812		}
1813	}
1814	/*
1815	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1816	 * disabled for a time, so a flag is needed to indicate to re-enable the
1817	 * Command Queue.
1818	 */
1819	card->reenable_cmdq = card->ext_csd.cmdq_en;
1820
1821	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1822		err = host->cqe_ops->cqe_enable(host, card);
1823		if (err) {
1824			pr_err("%s: Failed to enable CQE, error %d\n",
1825				mmc_hostname(host), err);
1826		} else {
1827			host->cqe_enabled = true;
1828			pr_info("%s: Command Queue Engine enabled\n",
1829				mmc_hostname(host));
1830		}
1831	}
1832
1833	if (!oldcard)
1834		host->card = card;
1835
1836	return 0;
1837
1838free_card:
1839	if (!oldcard)
1840		mmc_remove_card(card);
1841err:
1842	return err;
1843}
1844
1845static int mmc_can_sleep(struct mmc_card *card)
1846{
1847	return (card && card->ext_csd.rev >= 3);
1848}
1849
1850static int mmc_sleep(struct mmc_host *host)
1851{
1852	struct mmc_command cmd = {};
1853	struct mmc_card *card = host->card;
1854	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1855	int err;
1856
1857	/* Re-tuning can't be done once the card is deselected */
1858	mmc_retune_hold(host);
1859
1860	err = mmc_deselect_cards(host);
1861	if (err)
1862		goto out_release;
1863
1864	cmd.opcode = MMC_SLEEP_AWAKE;
1865	cmd.arg = card->rca << 16;
1866	cmd.arg |= 1 << 15;
1867
1868	/*
1869	 * If the max_busy_timeout of the host is specified, validate it against
1870	 * the sleep cmd timeout. A failure means we need to prevent the host
1871	 * from doing hw busy detection, which is done by converting to a R1
1872	 * response instead of a R1B.
1873	 */
1874	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1875		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1876	} else {
1877		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1878		cmd.busy_timeout = timeout_ms;
1879	}
1880
1881	err = mmc_wait_for_cmd(host, &cmd, 0);
1882	if (err)
1883		goto out_release;
1884
1885	/*
1886	 * If the host does not wait while the card signals busy, then we will
1887	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1888	 * SEND_STATUS command to poll the status because that command (and most
1889	 * others) is invalid while the card sleeps.
1890	 */
1891	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1892		mmc_delay(timeout_ms);
1893
1894out_release:
1895	mmc_retune_release(host);
1896	return err;
1897}
1898
1899static int mmc_can_poweroff_notify(const struct mmc_card *card)
1900{
1901	return card &&
1902		mmc_card_mmc(card) &&
1903		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1904}
1905
1906static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1907{
1908	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1909	int err;
1910
1911	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1912	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1913		timeout = card->ext_csd.power_off_longtime;
1914
1915	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1916			EXT_CSD_POWER_OFF_NOTIFICATION,
1917			notify_type, timeout, 0, true, false, false);
1918	if (err)
1919		pr_err("%s: Power Off Notification timed out, %u\n",
1920		       mmc_hostname(card->host), timeout);
1921
1922	/* Disable the power off notification after the switch operation. */
1923	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1924
1925	return err;
1926}
1927
1928/*
1929 * Host is being removed. Free up the current card.
1930 */
1931static void mmc_remove(struct mmc_host *host)
1932{
 
 
 
1933	mmc_remove_card(host->card);
1934	host->card = NULL;
1935}
1936
1937/*
1938 * Card detection - card is alive.
1939 */
1940static int mmc_alive(struct mmc_host *host)
1941{
1942	return mmc_send_status(host->card, NULL);
1943}
1944
1945/*
1946 * Card detection callback from host.
1947 */
1948static void mmc_detect(struct mmc_host *host)
1949{
1950	int err;
1951
1952	mmc_get_card(host->card, NULL);
 
 
 
1953
1954	/*
1955	 * Just check if our card has been removed.
1956	 */
1957	err = _mmc_detect_card_removed(host);
1958
1959	mmc_put_card(host->card, NULL);
1960
1961	if (err) {
1962		mmc_remove(host);
1963
1964		mmc_claim_host(host);
1965		mmc_detach_bus(host);
1966		mmc_power_off(host);
1967		mmc_release_host(host);
1968	}
1969}
1970
1971static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1972{
1973	int err = 0;
1974	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1975					EXT_CSD_POWER_OFF_LONG;
1976
 
 
 
1977	mmc_claim_host(host);
1978
1979	if (mmc_card_suspended(host->card))
1980		goto out;
1981
1982	if (mmc_card_doing_bkops(host->card)) {
1983		err = mmc_stop_bkops(host->card);
1984		if (err)
1985			goto out;
1986	}
1987
1988	err = mmc_flush_cache(host->card);
1989	if (err)
1990		goto out;
1991
1992	if (mmc_can_poweroff_notify(host->card) &&
1993		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1994		err = mmc_poweroff_notify(host->card, notify_type);
1995	else if (mmc_can_sleep(host->card))
1996		err = mmc_sleep(host);
1997	else if (!mmc_host_is_spi(host))
1998		err = mmc_deselect_cards(host);
1999
2000	if (!err) {
2001		mmc_power_off(host);
2002		mmc_card_set_suspended(host->card);
2003	}
2004out:
2005	mmc_release_host(host);
2006	return err;
2007}
2008
2009/*
2010 * Suspend callback
2011 */
2012static int mmc_suspend(struct mmc_host *host)
2013{
2014	int err;
2015
2016	err = _mmc_suspend(host, true);
2017	if (!err) {
2018		pm_runtime_disable(&host->card->dev);
2019		pm_runtime_set_suspended(&host->card->dev);
2020	}
2021
2022	return err;
2023}
2024
2025/*
2026 * This function tries to determine if the same card is still present
2027 * and, if so, restore all state to it.
2028 */
2029static int _mmc_resume(struct mmc_host *host)
2030{
2031	int err = 0;
2032
 
 
 
2033	mmc_claim_host(host);
2034
2035	if (!mmc_card_suspended(host->card))
2036		goto out;
2037
2038	mmc_power_up(host, host->card->ocr);
2039	err = mmc_init_card(host, host->card->ocr, host->card);
2040	mmc_card_clr_suspended(host->card);
2041
2042out:
2043	mmc_release_host(host);
2044	return err;
2045}
2046
2047/*
2048 * Shutdown callback
2049 */
2050static int mmc_shutdown(struct mmc_host *host)
2051{
2052	int err = 0;
2053
2054	/*
2055	 * In a specific case for poweroff notify, we need to resume the card
2056	 * before we can shutdown it properly.
2057	 */
2058	if (mmc_can_poweroff_notify(host->card) &&
2059		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2060		err = _mmc_resume(host);
2061
2062	if (!err)
2063		err = _mmc_suspend(host, false);
2064
2065	return err;
2066}
2067
2068/*
2069 * Callback for resume.
2070 */
2071static int mmc_resume(struct mmc_host *host)
2072{
2073	pm_runtime_enable(&host->card->dev);
2074	return 0;
2075}
2076
2077/*
2078 * Callback for runtime_suspend.
2079 */
2080static int mmc_runtime_suspend(struct mmc_host *host)
2081{
2082	int err;
2083
2084	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2085		return 0;
2086
2087	err = _mmc_suspend(host, true);
2088	if (err)
2089		pr_err("%s: error %d doing aggressive suspend\n",
2090			mmc_hostname(host), err);
2091
2092	return err;
2093}
2094
2095/*
2096 * Callback for runtime_resume.
2097 */
2098static int mmc_runtime_resume(struct mmc_host *host)
2099{
2100	int err;
2101
2102	err = _mmc_resume(host);
2103	if (err && err != -ENOMEDIUM)
2104		pr_err("%s: error %d doing runtime resume\n",
2105			mmc_hostname(host), err);
2106
2107	return 0;
2108}
2109
2110static int mmc_can_reset(struct mmc_card *card)
2111{
2112	u8 rst_n_function;
2113
2114	rst_n_function = card->ext_csd.rst_n_function;
2115	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2116		return 0;
2117	return 1;
2118}
 
2119
2120static int mmc_reset(struct mmc_host *host)
2121{
2122	struct mmc_card *card = host->card;
2123
2124	/*
2125	 * In the case of recovery, we can't expect flushing the cache to work
2126	 * always, but we have a go and ignore errors.
2127	 */
2128	mmc_flush_cache(host->card);
 
 
 
 
 
 
 
2129
2130	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2131	     mmc_can_reset(card)) {
2132		/* If the card accept RST_n signal, send it. */
2133		mmc_set_clock(host, host->f_init);
2134		host->ops->hw_reset(host);
2135		/* Set initial state and call mmc_set_ios */
2136		mmc_set_initial_state(host);
2137	} else {
2138		/* Do a brute force power cycle */
2139		mmc_power_cycle(host, card->ocr);
2140		mmc_pwrseq_reset(host);
2141	}
2142	return mmc_init_card(host, card->ocr, card);
2143}
2144
2145static const struct mmc_bus_ops mmc_ops = {
2146	.remove = mmc_remove,
2147	.detect = mmc_detect,
2148	.suspend = mmc_suspend,
2149	.resume = mmc_resume,
2150	.runtime_suspend = mmc_runtime_suspend,
2151	.runtime_resume = mmc_runtime_resume,
2152	.alive = mmc_alive,
2153	.shutdown = mmc_shutdown,
2154	.reset = mmc_reset,
2155};
2156
2157/*
2158 * Starting point for MMC card init.
2159 */
2160int mmc_attach_mmc(struct mmc_host *host)
2161{
2162	int err;
2163	u32 ocr, rocr;
2164
 
2165	WARN_ON(!host->claimed);
2166
2167	/* Set correct bus mode for MMC before attempting attach */
2168	if (!mmc_host_is_spi(host))
2169		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2170
2171	err = mmc_send_op_cond(host, 0, &ocr);
2172	if (err)
2173		return err;
2174
2175	mmc_attach_bus(host, &mmc_ops);
2176	if (host->ocr_avail_mmc)
2177		host->ocr_avail = host->ocr_avail_mmc;
2178
2179	/*
2180	 * We need to get OCR a different way for SPI.
2181	 */
2182	if (mmc_host_is_spi(host)) {
2183		err = mmc_spi_read_ocr(host, 1, &ocr);
2184		if (err)
2185			goto err;
2186	}
2187
2188	rocr = mmc_select_voltage(host, ocr);
2189
2190	/*
2191	 * Can we support the voltage of the card?
2192	 */
2193	if (!rocr) {
2194		err = -EINVAL;
2195		goto err;
2196	}
2197
2198	/*
2199	 * Detect and init the card.
2200	 */
2201	err = mmc_init_card(host, rocr, NULL);
2202	if (err)
2203		goto err;
2204
2205	mmc_release_host(host);
2206	err = mmc_add_card(host->card);
2207	if (err)
2208		goto remove_card;
2209
2210	mmc_claim_host(host);
2211	return 0;
2212
2213remove_card:
2214	mmc_remove_card(host->card);
2215	mmc_claim_host(host);
2216	host->card = NULL;
2217err:
2218	mmc_detach_bus(host);
2219
2220	pr_err("%s: error %d whilst initialising MMC card\n",
2221		mmc_hostname(host), err);
2222
2223	return err;
2224}