Loading...
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32};
33
34static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37};
38
39static const unsigned int tacc_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41};
42
43static const unsigned int tacc_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46};
47
48#define UNSTUFF_BITS(resp,start,size) \
49 ({ \
50 const int __size = size; \
51 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
52 const int __off = 3 - ((start) / 32); \
53 const int __shft = (start) & 31; \
54 u32 __res; \
55 \
56 __res = resp[__off] >> __shft; \
57 if (__size + __shft > 32) \
58 __res |= resp[__off-1] << ((32 - __shft) % 32); \
59 __res & __mask; \
60 })
61
62/*
63 * Given the decoded CSD structure, decode the raw CID to our CID structure.
64 */
65static int mmc_decode_cid(struct mmc_card *card)
66{
67 u32 *resp = card->raw_cid;
68
69 /*
70 * The selection of the format here is based upon published
71 * specs from sandisk and from what people have reported.
72 */
73 switch (card->csd.mmca_vsn) {
74 case 0: /* MMC v1.0 - v1.2 */
75 case 1: /* MMC v1.4 */
76 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
77 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
78 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
79 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
80 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
81 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
82 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
83 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
84 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
85 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
86 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
87 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
88 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
89 break;
90
91 case 2: /* MMC v2.0 - v2.2 */
92 case 3: /* MMC v3.1 - v3.3 */
93 case 4: /* MMC v4 */
94 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
95 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
96 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
97 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
98 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
99 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
100 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
101 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
102 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
103 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
104 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
105 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
106 break;
107
108 default:
109 pr_err("%s: card has unknown MMCA version %d\n",
110 mmc_hostname(card->host), card->csd.mmca_vsn);
111 return -EINVAL;
112 }
113
114 return 0;
115}
116
117static void mmc_set_erase_size(struct mmc_card *card)
118{
119 if (card->ext_csd.erase_group_def & 1)
120 card->erase_size = card->ext_csd.hc_erase_size;
121 else
122 card->erase_size = card->csd.erase_size;
123
124 mmc_init_erase(card);
125}
126
127/*
128 * Given a 128-bit response, decode to our card CSD structure.
129 */
130static int mmc_decode_csd(struct mmc_card *card)
131{
132 struct mmc_csd *csd = &card->csd;
133 unsigned int e, m, a, b;
134 u32 *resp = card->raw_csd;
135
136 /*
137 * We only understand CSD structure v1.1 and v1.2.
138 * v1.2 has extra information in bits 15, 11 and 10.
139 * We also support eMMC v4.4 & v4.41.
140 */
141 csd->structure = UNSTUFF_BITS(resp, 126, 2);
142 if (csd->structure == 0) {
143 pr_err("%s: unrecognised CSD structure version %d\n",
144 mmc_hostname(card->host), csd->structure);
145 return -EINVAL;
146 }
147
148 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
149 m = UNSTUFF_BITS(resp, 115, 4);
150 e = UNSTUFF_BITS(resp, 112, 3);
151 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
152 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
153
154 m = UNSTUFF_BITS(resp, 99, 4);
155 e = UNSTUFF_BITS(resp, 96, 3);
156 csd->max_dtr = tran_exp[e] * tran_mant[m];
157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
158
159 e = UNSTUFF_BITS(resp, 47, 3);
160 m = UNSTUFF_BITS(resp, 62, 12);
161 csd->capacity = (1 + m) << (e + 2);
162
163 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
164 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
165 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
166 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
167 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
168 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
169 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
170 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
171
172 if (csd->write_blkbits >= 9) {
173 a = UNSTUFF_BITS(resp, 42, 5);
174 b = UNSTUFF_BITS(resp, 37, 5);
175 csd->erase_size = (a + 1) * (b + 1);
176 csd->erase_size <<= csd->write_blkbits - 9;
177 }
178
179 return 0;
180}
181
182static void mmc_select_card_type(struct mmc_card *card)
183{
184 struct mmc_host *host = card->host;
185 u8 card_type = card->ext_csd.raw_card_type;
186 u32 caps = host->caps, caps2 = host->caps2;
187 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
188 unsigned int avail_type = 0;
189
190 if (caps & MMC_CAP_MMC_HIGHSPEED &&
191 card_type & EXT_CSD_CARD_TYPE_HS_26) {
192 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
193 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
194 }
195
196 if (caps & MMC_CAP_MMC_HIGHSPEED &&
197 card_type & EXT_CSD_CARD_TYPE_HS_52) {
198 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
199 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
200 }
201
202 if (caps & MMC_CAP_1_8V_DDR &&
203 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
204 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
206 }
207
208 if (caps & MMC_CAP_1_2V_DDR &&
209 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
212 }
213
214 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
215 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
216 hs200_max_dtr = MMC_HS200_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
218 }
219
220 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
221 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
222 hs200_max_dtr = MMC_HS200_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
224 }
225
226 if (caps2 & MMC_CAP2_HS400_1_8V &&
227 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
230 }
231
232 if (caps2 & MMC_CAP2_HS400_1_2V &&
233 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
236 }
237
238 card->ext_csd.hs_max_dtr = hs_max_dtr;
239 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
240 card->mmc_avail_type = avail_type;
241}
242
243static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
244{
245 u8 hc_erase_grp_sz, hc_wp_grp_sz;
246
247 /*
248 * Disable these attributes by default
249 */
250 card->ext_csd.enhanced_area_offset = -EINVAL;
251 card->ext_csd.enhanced_area_size = -EINVAL;
252
253 /*
254 * Enhanced area feature support -- check whether the eMMC
255 * card has the Enhanced area enabled. If so, export enhanced
256 * area offset and size to user by adding sysfs interface.
257 */
258 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
259 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
260 if (card->ext_csd.partition_setting_completed) {
261 hc_erase_grp_sz =
262 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
263 hc_wp_grp_sz =
264 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
265
266 /*
267 * calculate the enhanced data area offset, in bytes
268 */
269 card->ext_csd.enhanced_area_offset =
270 (((unsigned long long)ext_csd[139]) << 24) +
271 (((unsigned long long)ext_csd[138]) << 16) +
272 (((unsigned long long)ext_csd[137]) << 8) +
273 (((unsigned long long)ext_csd[136]));
274 if (mmc_card_blockaddr(card))
275 card->ext_csd.enhanced_area_offset <<= 9;
276 /*
277 * calculate the enhanced data area size, in kilobytes
278 */
279 card->ext_csd.enhanced_area_size =
280 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
281 ext_csd[140];
282 card->ext_csd.enhanced_area_size *=
283 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
284 card->ext_csd.enhanced_area_size <<= 9;
285 } else {
286 pr_warn("%s: defines enhanced area without partition setting complete\n",
287 mmc_hostname(card->host));
288 }
289 }
290}
291
292static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
293{
294 int idx;
295 u8 hc_erase_grp_sz, hc_wp_grp_sz;
296 unsigned int part_size;
297
298 /*
299 * General purpose partition feature support --
300 * If ext_csd has the size of general purpose partitions,
301 * set size, part_cfg, partition name in mmc_part.
302 */
303 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
304 EXT_CSD_PART_SUPPORT_PART_EN) {
305 hc_erase_grp_sz =
306 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
307 hc_wp_grp_sz =
308 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
309
310 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
311 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
312 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
313 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
314 continue;
315 if (card->ext_csd.partition_setting_completed == 0) {
316 pr_warn("%s: has partition size defined without partition complete\n",
317 mmc_hostname(card->host));
318 break;
319 }
320 part_size =
321 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
322 << 16) +
323 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
324 << 8) +
325 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
326 part_size *= (size_t)(hc_erase_grp_sz *
327 hc_wp_grp_sz);
328 mmc_part_add(card, part_size << 19,
329 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
330 "gp%d", idx, false,
331 MMC_BLK_DATA_AREA_GP);
332 }
333 }
334}
335
336/*
337 * Decode extended CSD.
338 */
339static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
340{
341 int err = 0, idx;
342 unsigned int part_size;
343 struct device_node *np;
344 bool broken_hpi = false;
345
346 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
347 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
348 if (card->csd.structure == 3) {
349 if (card->ext_csd.raw_ext_csd_structure > 2) {
350 pr_err("%s: unrecognised EXT_CSD structure "
351 "version %d\n", mmc_hostname(card->host),
352 card->ext_csd.raw_ext_csd_structure);
353 err = -EINVAL;
354 goto out;
355 }
356 }
357
358 np = mmc_of_find_child_device(card->host, 0);
359 if (np && of_device_is_compatible(np, "mmc-card"))
360 broken_hpi = of_property_read_bool(np, "broken-hpi");
361 of_node_put(np);
362
363 /*
364 * The EXT_CSD format is meant to be forward compatible. As long
365 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
366 * are authorized, see JEDEC JESD84-B50 section B.8.
367 */
368 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
369
370 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
371 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
372 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
373 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
374 if (card->ext_csd.rev >= 2) {
375 card->ext_csd.sectors =
376 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
377 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
378 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
379 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
380
381 /* Cards with density > 2GiB are sector addressed */
382 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
383 mmc_card_set_blockaddr(card);
384 }
385
386 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
387 mmc_select_card_type(card);
388
389 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
390 card->ext_csd.raw_erase_timeout_mult =
391 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
392 card->ext_csd.raw_hc_erase_grp_size =
393 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
394 if (card->ext_csd.rev >= 3) {
395 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
396 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
397
398 /* EXT_CSD value is in units of 10ms, but we store in ms */
399 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
400
401 /* Sleep / awake timeout in 100ns units */
402 if (sa_shift > 0 && sa_shift <= 0x17)
403 card->ext_csd.sa_timeout =
404 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
405 card->ext_csd.erase_group_def =
406 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
407 card->ext_csd.hc_erase_timeout = 300 *
408 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
409 card->ext_csd.hc_erase_size =
410 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
411
412 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
413
414 /*
415 * There are two boot regions of equal size, defined in
416 * multiples of 128K.
417 */
418 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
419 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
420 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
421 mmc_part_add(card, part_size,
422 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
423 "boot%d", idx, true,
424 MMC_BLK_DATA_AREA_BOOT);
425 }
426 }
427 }
428
429 card->ext_csd.raw_hc_erase_gap_size =
430 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
431 card->ext_csd.raw_sec_trim_mult =
432 ext_csd[EXT_CSD_SEC_TRIM_MULT];
433 card->ext_csd.raw_sec_erase_mult =
434 ext_csd[EXT_CSD_SEC_ERASE_MULT];
435 card->ext_csd.raw_sec_feature_support =
436 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
437 card->ext_csd.raw_trim_mult =
438 ext_csd[EXT_CSD_TRIM_MULT];
439 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
440 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
441 if (card->ext_csd.rev >= 4) {
442 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
443 EXT_CSD_PART_SETTING_COMPLETED)
444 card->ext_csd.partition_setting_completed = 1;
445 else
446 card->ext_csd.partition_setting_completed = 0;
447
448 mmc_manage_enhanced_area(card, ext_csd);
449
450 mmc_manage_gp_partitions(card, ext_csd);
451
452 card->ext_csd.sec_trim_mult =
453 ext_csd[EXT_CSD_SEC_TRIM_MULT];
454 card->ext_csd.sec_erase_mult =
455 ext_csd[EXT_CSD_SEC_ERASE_MULT];
456 card->ext_csd.sec_feature_support =
457 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
458 card->ext_csd.trim_timeout = 300 *
459 ext_csd[EXT_CSD_TRIM_MULT];
460
461 /*
462 * Note that the call to mmc_part_add above defaults to read
463 * only. If this default assumption is changed, the call must
464 * take into account the value of boot_locked below.
465 */
466 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
467 card->ext_csd.boot_ro_lockable = true;
468
469 /* Save power class values */
470 card->ext_csd.raw_pwr_cl_52_195 =
471 ext_csd[EXT_CSD_PWR_CL_52_195];
472 card->ext_csd.raw_pwr_cl_26_195 =
473 ext_csd[EXT_CSD_PWR_CL_26_195];
474 card->ext_csd.raw_pwr_cl_52_360 =
475 ext_csd[EXT_CSD_PWR_CL_52_360];
476 card->ext_csd.raw_pwr_cl_26_360 =
477 ext_csd[EXT_CSD_PWR_CL_26_360];
478 card->ext_csd.raw_pwr_cl_200_195 =
479 ext_csd[EXT_CSD_PWR_CL_200_195];
480 card->ext_csd.raw_pwr_cl_200_360 =
481 ext_csd[EXT_CSD_PWR_CL_200_360];
482 card->ext_csd.raw_pwr_cl_ddr_52_195 =
483 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
484 card->ext_csd.raw_pwr_cl_ddr_52_360 =
485 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
486 card->ext_csd.raw_pwr_cl_ddr_200_360 =
487 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
488 }
489
490 if (card->ext_csd.rev >= 5) {
491 /* Adjust production date as per JEDEC JESD84-B451 */
492 if (card->cid.year < 2010)
493 card->cid.year += 16;
494
495 /* check whether the eMMC card supports BKOPS */
496 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
497 card->ext_csd.bkops = 1;
498 card->ext_csd.man_bkops_en =
499 (ext_csd[EXT_CSD_BKOPS_EN] &
500 EXT_CSD_MANUAL_BKOPS_MASK);
501 card->ext_csd.raw_bkops_status =
502 ext_csd[EXT_CSD_BKOPS_STATUS];
503 if (!card->ext_csd.man_bkops_en)
504 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
505 mmc_hostname(card->host));
506 }
507
508 /* check whether the eMMC card supports HPI */
509 if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
510 card->ext_csd.hpi = 1;
511 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
512 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
513 else
514 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
515 /*
516 * Indicate the maximum timeout to close
517 * a command interrupted by HPI
518 */
519 card->ext_csd.out_of_int_time =
520 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
521 }
522
523 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
524 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
525
526 /*
527 * RPMB regions are defined in multiples of 128K.
528 */
529 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
530 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
531 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
532 EXT_CSD_PART_CONFIG_ACC_RPMB,
533 "rpmb", 0, false,
534 MMC_BLK_DATA_AREA_RPMB);
535 }
536 }
537
538 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
539 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
540 card->erased_byte = 0xFF;
541 else
542 card->erased_byte = 0x0;
543
544 /* eMMC v4.5 or later */
545 if (card->ext_csd.rev >= 6) {
546 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
547
548 card->ext_csd.generic_cmd6_time = 10 *
549 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
550 card->ext_csd.power_off_longtime = 10 *
551 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
552
553 card->ext_csd.cache_size =
554 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
555 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
556 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
557 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
558
559 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
560 card->ext_csd.data_sector_size = 4096;
561 else
562 card->ext_csd.data_sector_size = 512;
563
564 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
565 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
566 card->ext_csd.data_tag_unit_size =
567 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
568 (card->ext_csd.data_sector_size);
569 } else {
570 card->ext_csd.data_tag_unit_size = 0;
571 }
572
573 card->ext_csd.max_packed_writes =
574 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
575 card->ext_csd.max_packed_reads =
576 ext_csd[EXT_CSD_MAX_PACKED_READS];
577 } else {
578 card->ext_csd.data_sector_size = 512;
579 }
580
581 /* eMMC v5 or later */
582 if (card->ext_csd.rev >= 7) {
583 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
584 MMC_FIRMWARE_LEN);
585 card->ext_csd.ffu_capable =
586 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
587 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
588 }
589out:
590 return err;
591}
592
593static int mmc_read_ext_csd(struct mmc_card *card)
594{
595 u8 *ext_csd;
596 int err;
597
598 if (!mmc_can_ext_csd(card))
599 return 0;
600
601 err = mmc_get_ext_csd(card, &ext_csd);
602 if (err) {
603 /* If the host or the card can't do the switch,
604 * fail more gracefully. */
605 if ((err != -EINVAL)
606 && (err != -ENOSYS)
607 && (err != -EFAULT))
608 return err;
609
610 /*
611 * High capacity cards should have this "magic" size
612 * stored in their CSD.
613 */
614 if (card->csd.capacity == (4096 * 512)) {
615 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
616 mmc_hostname(card->host));
617 } else {
618 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
619 mmc_hostname(card->host));
620 err = 0;
621 }
622
623 return err;
624 }
625
626 err = mmc_decode_ext_csd(card, ext_csd);
627 kfree(ext_csd);
628 return err;
629}
630
631static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
632{
633 u8 *bw_ext_csd;
634 int err;
635
636 if (bus_width == MMC_BUS_WIDTH_1)
637 return 0;
638
639 err = mmc_get_ext_csd(card, &bw_ext_csd);
640 if (err)
641 return err;
642
643 /* only compare read only fields */
644 err = !((card->ext_csd.raw_partition_support ==
645 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
646 (card->ext_csd.raw_erased_mem_count ==
647 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
648 (card->ext_csd.rev ==
649 bw_ext_csd[EXT_CSD_REV]) &&
650 (card->ext_csd.raw_ext_csd_structure ==
651 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
652 (card->ext_csd.raw_card_type ==
653 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
654 (card->ext_csd.raw_s_a_timeout ==
655 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
656 (card->ext_csd.raw_hc_erase_gap_size ==
657 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
658 (card->ext_csd.raw_erase_timeout_mult ==
659 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
660 (card->ext_csd.raw_hc_erase_grp_size ==
661 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
662 (card->ext_csd.raw_sec_trim_mult ==
663 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
664 (card->ext_csd.raw_sec_erase_mult ==
665 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
666 (card->ext_csd.raw_sec_feature_support ==
667 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
668 (card->ext_csd.raw_trim_mult ==
669 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
670 (card->ext_csd.raw_sectors[0] ==
671 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
672 (card->ext_csd.raw_sectors[1] ==
673 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
674 (card->ext_csd.raw_sectors[2] ==
675 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
676 (card->ext_csd.raw_sectors[3] ==
677 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
678 (card->ext_csd.raw_pwr_cl_52_195 ==
679 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
680 (card->ext_csd.raw_pwr_cl_26_195 ==
681 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
682 (card->ext_csd.raw_pwr_cl_52_360 ==
683 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
684 (card->ext_csd.raw_pwr_cl_26_360 ==
685 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
686 (card->ext_csd.raw_pwr_cl_200_195 ==
687 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
688 (card->ext_csd.raw_pwr_cl_200_360 ==
689 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
690 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
691 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
692 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
693 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
694 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
695 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
696
697 if (err)
698 err = -EINVAL;
699
700 kfree(bw_ext_csd);
701 return err;
702}
703
704MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
705 card->raw_cid[2], card->raw_cid[3]);
706MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
707 card->raw_csd[2], card->raw_csd[3]);
708MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
709MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
710MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
711MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
712MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
713MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
714MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
715MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
716MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
717MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
718MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
719 card->ext_csd.enhanced_area_offset);
720MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
721MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
722MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
723
724static ssize_t mmc_fwrev_show(struct device *dev,
725 struct device_attribute *attr,
726 char *buf)
727{
728 struct mmc_card *card = mmc_dev_to_card(dev);
729
730 if (card->ext_csd.rev < 7) {
731 return sprintf(buf, "0x%x\n", card->cid.fwrev);
732 } else {
733 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
734 card->ext_csd.fwrev);
735 }
736}
737
738static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
739
740static struct attribute *mmc_std_attrs[] = {
741 &dev_attr_cid.attr,
742 &dev_attr_csd.attr,
743 &dev_attr_date.attr,
744 &dev_attr_erase_size.attr,
745 &dev_attr_preferred_erase_size.attr,
746 &dev_attr_fwrev.attr,
747 &dev_attr_ffu_capable.attr,
748 &dev_attr_hwrev.attr,
749 &dev_attr_manfid.attr,
750 &dev_attr_name.attr,
751 &dev_attr_oemid.attr,
752 &dev_attr_prv.attr,
753 &dev_attr_serial.attr,
754 &dev_attr_enhanced_area_offset.attr,
755 &dev_attr_enhanced_area_size.attr,
756 &dev_attr_raw_rpmb_size_mult.attr,
757 &dev_attr_rel_sectors.attr,
758 NULL,
759};
760ATTRIBUTE_GROUPS(mmc_std);
761
762static struct device_type mmc_type = {
763 .groups = mmc_std_groups,
764};
765
766/*
767 * Select the PowerClass for the current bus width
768 * If power class is defined for 4/8 bit bus in the
769 * extended CSD register, select it by executing the
770 * mmc_switch command.
771 */
772static int __mmc_select_powerclass(struct mmc_card *card,
773 unsigned int bus_width)
774{
775 struct mmc_host *host = card->host;
776 struct mmc_ext_csd *ext_csd = &card->ext_csd;
777 unsigned int pwrclass_val = 0;
778 int err = 0;
779
780 switch (1 << host->ios.vdd) {
781 case MMC_VDD_165_195:
782 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
783 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
784 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
785 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
786 ext_csd->raw_pwr_cl_52_195 :
787 ext_csd->raw_pwr_cl_ddr_52_195;
788 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
789 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
790 break;
791 case MMC_VDD_27_28:
792 case MMC_VDD_28_29:
793 case MMC_VDD_29_30:
794 case MMC_VDD_30_31:
795 case MMC_VDD_31_32:
796 case MMC_VDD_32_33:
797 case MMC_VDD_33_34:
798 case MMC_VDD_34_35:
799 case MMC_VDD_35_36:
800 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
801 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
802 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
803 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
804 ext_csd->raw_pwr_cl_52_360 :
805 ext_csd->raw_pwr_cl_ddr_52_360;
806 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
807 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
808 ext_csd->raw_pwr_cl_ddr_200_360 :
809 ext_csd->raw_pwr_cl_200_360;
810 break;
811 default:
812 pr_warn("%s: Voltage range not supported for power class\n",
813 mmc_hostname(host));
814 return -EINVAL;
815 }
816
817 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
818 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
819 EXT_CSD_PWR_CL_8BIT_SHIFT;
820 else
821 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
822 EXT_CSD_PWR_CL_4BIT_SHIFT;
823
824 /* If the power class is different from the default value */
825 if (pwrclass_val > 0) {
826 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
827 EXT_CSD_POWER_CLASS,
828 pwrclass_val,
829 card->ext_csd.generic_cmd6_time);
830 }
831
832 return err;
833}
834
835static int mmc_select_powerclass(struct mmc_card *card)
836{
837 struct mmc_host *host = card->host;
838 u32 bus_width, ext_csd_bits;
839 int err, ddr;
840
841 /* Power class selection is supported for versions >= 4.0 */
842 if (!mmc_can_ext_csd(card))
843 return 0;
844
845 bus_width = host->ios.bus_width;
846 /* Power class values are defined only for 4/8 bit bus */
847 if (bus_width == MMC_BUS_WIDTH_1)
848 return 0;
849
850 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
851 if (ddr)
852 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
853 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
854 else
855 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
856 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
857
858 err = __mmc_select_powerclass(card, ext_csd_bits);
859 if (err)
860 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
861 mmc_hostname(host), 1 << bus_width, ddr);
862
863 return err;
864}
865
866/*
867 * Set the bus speed for the selected speed mode.
868 */
869static void mmc_set_bus_speed(struct mmc_card *card)
870{
871 unsigned int max_dtr = (unsigned int)-1;
872
873 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
874 max_dtr > card->ext_csd.hs200_max_dtr)
875 max_dtr = card->ext_csd.hs200_max_dtr;
876 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
877 max_dtr = card->ext_csd.hs_max_dtr;
878 else if (max_dtr > card->csd.max_dtr)
879 max_dtr = card->csd.max_dtr;
880
881 mmc_set_clock(card->host, max_dtr);
882}
883
884/*
885 * Select the bus width amoung 4-bit and 8-bit(SDR).
886 * If the bus width is changed successfully, return the selected width value.
887 * Zero is returned instead of error value if the wide width is not supported.
888 */
889static int mmc_select_bus_width(struct mmc_card *card)
890{
891 static unsigned ext_csd_bits[] = {
892 EXT_CSD_BUS_WIDTH_8,
893 EXT_CSD_BUS_WIDTH_4,
894 };
895 static unsigned bus_widths[] = {
896 MMC_BUS_WIDTH_8,
897 MMC_BUS_WIDTH_4,
898 };
899 struct mmc_host *host = card->host;
900 unsigned idx, bus_width = 0;
901 int err = 0;
902
903 if (!mmc_can_ext_csd(card) ||
904 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
905 return 0;
906
907 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
908
909 /*
910 * Unlike SD, MMC cards dont have a configuration register to notify
911 * supported bus width. So bus test command should be run to identify
912 * the supported bus width or compare the ext csd values of current
913 * bus width and ext csd values of 1 bit mode read earlier.
914 */
915 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
916 /*
917 * Host is capable of 8bit transfer, then switch
918 * the device to work in 8bit transfer mode. If the
919 * mmc switch command returns error then switch to
920 * 4bit transfer mode. On success set the corresponding
921 * bus width on the host.
922 */
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_BUS_WIDTH,
925 ext_csd_bits[idx],
926 card->ext_csd.generic_cmd6_time);
927 if (err)
928 continue;
929
930 bus_width = bus_widths[idx];
931 mmc_set_bus_width(host, bus_width);
932
933 /*
934 * If controller can't handle bus width test,
935 * compare ext_csd previously read in 1 bit mode
936 * against ext_csd at new bus width
937 */
938 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
939 err = mmc_compare_ext_csds(card, bus_width);
940 else
941 err = mmc_bus_test(card, bus_width);
942
943 if (!err) {
944 err = bus_width;
945 break;
946 } else {
947 pr_warn("%s: switch to bus width %d failed\n",
948 mmc_hostname(host), 1 << bus_width);
949 }
950 }
951
952 return err;
953}
954
955/*
956 * Switch to the high-speed mode
957 */
958static int mmc_select_hs(struct mmc_card *card)
959{
960 int err;
961
962 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
963 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
964 card->ext_csd.generic_cmd6_time,
965 true, true, true);
966 if (!err)
967 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
968
969 return err;
970}
971
972/*
973 * Activate wide bus and DDR if supported.
974 */
975static int mmc_select_hs_ddr(struct mmc_card *card)
976{
977 struct mmc_host *host = card->host;
978 u32 bus_width, ext_csd_bits;
979 int err = 0;
980
981 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
982 return 0;
983
984 bus_width = host->ios.bus_width;
985 if (bus_width == MMC_BUS_WIDTH_1)
986 return 0;
987
988 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
989 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
990
991 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 EXT_CSD_BUS_WIDTH,
993 ext_csd_bits,
994 card->ext_csd.generic_cmd6_time);
995 if (err) {
996 pr_err("%s: switch to bus width %d ddr failed\n",
997 mmc_hostname(host), 1 << bus_width);
998 return err;
999 }
1000
1001 /*
1002 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1003 * signaling.
1004 *
1005 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1006 *
1007 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1008 * in the JEDEC spec for DDR.
1009 *
1010 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1011 * host controller can support this, like some of the SDHCI
1012 * controller which connect to an eMMC device. Some of these
1013 * host controller still needs to use 1.8v vccq for supporting
1014 * DDR mode.
1015 *
1016 * So the sequence will be:
1017 * if (host and device can both support 1.2v IO)
1018 * use 1.2v IO;
1019 * else if (host and device can both support 1.8v IO)
1020 * use 1.8v IO;
1021 * so if host and device can only support 3.3v IO, this is the
1022 * last choice.
1023 *
1024 * WARNING: eMMC rules are NOT the same as SD DDR
1025 */
1026 err = -EINVAL;
1027 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1028 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1029
1030 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1031 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1032
1033 /* make sure vccq is 3.3v after switching disaster */
1034 if (err)
1035 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1036
1037 if (!err)
1038 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1039
1040 return err;
1041}
1042
1043/* Caller must hold re-tuning */
1044static int mmc_switch_status(struct mmc_card *card)
1045{
1046 u32 status;
1047 int err;
1048
1049 err = mmc_send_status(card, &status);
1050 if (err)
1051 return err;
1052
1053 return mmc_switch_status_error(card->host, status);
1054}
1055
1056static int mmc_select_hs400(struct mmc_card *card)
1057{
1058 struct mmc_host *host = card->host;
1059 bool send_status = true;
1060 unsigned int max_dtr;
1061 int err = 0;
1062 u8 val;
1063
1064 /*
1065 * HS400 mode requires 8-bit bus width
1066 */
1067 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1068 host->ios.bus_width == MMC_BUS_WIDTH_8))
1069 return 0;
1070
1071 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1072 send_status = false;
1073
1074 /* Reduce frequency to HS frequency */
1075 max_dtr = card->ext_csd.hs_max_dtr;
1076 mmc_set_clock(host, max_dtr);
1077
1078 /* Switch card to HS mode */
1079 val = EXT_CSD_TIMING_HS;
1080 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1081 EXT_CSD_HS_TIMING, val,
1082 card->ext_csd.generic_cmd6_time,
1083 true, send_status, true);
1084 if (err) {
1085 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1086 mmc_hostname(host), err);
1087 return err;
1088 }
1089
1090 /* Set host controller to HS timing */
1091 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1092
1093 if (!send_status) {
1094 err = mmc_switch_status(card);
1095 if (err)
1096 goto out_err;
1097 }
1098
1099 /* Switch card to DDR */
1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1101 EXT_CSD_BUS_WIDTH,
1102 EXT_CSD_DDR_BUS_WIDTH_8,
1103 card->ext_csd.generic_cmd6_time);
1104 if (err) {
1105 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1106 mmc_hostname(host), err);
1107 return err;
1108 }
1109
1110 /* Switch card to HS400 */
1111 val = EXT_CSD_TIMING_HS400 |
1112 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1113 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1114 EXT_CSD_HS_TIMING, val,
1115 card->ext_csd.generic_cmd6_time,
1116 true, send_status, true);
1117 if (err) {
1118 pr_err("%s: switch to hs400 failed, err:%d\n",
1119 mmc_hostname(host), err);
1120 return err;
1121 }
1122
1123 /* Set host controller to HS400 timing and frequency */
1124 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1125 mmc_set_bus_speed(card);
1126
1127 if (!send_status) {
1128 err = mmc_switch_status(card);
1129 if (err)
1130 goto out_err;
1131 }
1132
1133 return 0;
1134
1135out_err:
1136 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1137 __func__, err);
1138 return err;
1139}
1140
1141int mmc_hs200_to_hs400(struct mmc_card *card)
1142{
1143 return mmc_select_hs400(card);
1144}
1145
1146int mmc_hs400_to_hs200(struct mmc_card *card)
1147{
1148 struct mmc_host *host = card->host;
1149 bool send_status = true;
1150 unsigned int max_dtr;
1151 int err;
1152 u8 val;
1153
1154 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1155 send_status = false;
1156
1157 /* Reduce frequency to HS */
1158 max_dtr = card->ext_csd.hs_max_dtr;
1159 mmc_set_clock(host, max_dtr);
1160
1161 /* Switch HS400 to HS DDR */
1162 val = EXT_CSD_TIMING_HS;
1163 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1164 val, card->ext_csd.generic_cmd6_time,
1165 true, send_status, true);
1166 if (err)
1167 goto out_err;
1168
1169 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1170
1171 if (!send_status) {
1172 err = mmc_switch_status(card);
1173 if (err)
1174 goto out_err;
1175 }
1176
1177 /* Switch HS DDR to HS */
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1179 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1180 true, send_status, true);
1181 if (err)
1182 goto out_err;
1183
1184 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185
1186 if (!send_status) {
1187 err = mmc_switch_status(card);
1188 if (err)
1189 goto out_err;
1190 }
1191
1192 /* Switch HS to HS200 */
1193 val = EXT_CSD_TIMING_HS200 |
1194 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1195 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1196 val, card->ext_csd.generic_cmd6_time, true,
1197 send_status, true);
1198 if (err)
1199 goto out_err;
1200
1201 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1202
1203 if (!send_status) {
1204 err = mmc_switch_status(card);
1205 if (err)
1206 goto out_err;
1207 }
1208
1209 mmc_set_bus_speed(card);
1210
1211 return 0;
1212
1213out_err:
1214 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1215 __func__, err);
1216 return err;
1217}
1218
1219static void mmc_select_driver_type(struct mmc_card *card)
1220{
1221 int card_drv_type, drive_strength, drv_type;
1222
1223 card_drv_type = card->ext_csd.raw_driver_strength |
1224 mmc_driver_type_mask(0);
1225
1226 drive_strength = mmc_select_drive_strength(card,
1227 card->ext_csd.hs200_max_dtr,
1228 card_drv_type, &drv_type);
1229
1230 card->drive_strength = drive_strength;
1231
1232 if (drv_type)
1233 mmc_set_driver_type(card->host, drv_type);
1234}
1235
1236/*
1237 * For device supporting HS200 mode, the following sequence
1238 * should be done before executing the tuning process.
1239 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1240 * 2. switch to HS200 mode
1241 * 3. set the clock to > 52Mhz and <=200MHz
1242 */
1243static int mmc_select_hs200(struct mmc_card *card)
1244{
1245 struct mmc_host *host = card->host;
1246 bool send_status = true;
1247 unsigned int old_timing;
1248 int err = -EINVAL;
1249 u8 val;
1250
1251 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1252 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1253
1254 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1255 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1256
1257 /* If fails try again during next card power cycle */
1258 if (err)
1259 goto err;
1260
1261 mmc_select_driver_type(card);
1262
1263 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY)
1264 send_status = false;
1265
1266 /*
1267 * Set the bus width(4 or 8) with host's support and
1268 * switch to HS200 mode if bus width is set successfully.
1269 */
1270 err = mmc_select_bus_width(card);
1271 if (!IS_ERR_VALUE(err)) {
1272 val = EXT_CSD_TIMING_HS200 |
1273 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1274 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1275 EXT_CSD_HS_TIMING, val,
1276 card->ext_csd.generic_cmd6_time,
1277 true, send_status, true);
1278 if (err)
1279 goto err;
1280 old_timing = host->ios.timing;
1281 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1282 if (!send_status) {
1283 err = mmc_switch_status(card);
1284 /*
1285 * mmc_select_timing() assumes timing has not changed if
1286 * it is a switch error.
1287 */
1288 if (err == -EBADMSG)
1289 mmc_set_timing(host, old_timing);
1290 }
1291 }
1292err:
1293 if (err)
1294 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1295 __func__, err);
1296 return err;
1297}
1298
1299/*
1300 * Activate High Speed or HS200 mode if supported.
1301 */
1302static int mmc_select_timing(struct mmc_card *card)
1303{
1304 int err = 0;
1305
1306 if (!mmc_can_ext_csd(card))
1307 goto bus_speed;
1308
1309 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1310 err = mmc_select_hs200(card);
1311 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1312 err = mmc_select_hs(card);
1313
1314 if (err && err != -EBADMSG)
1315 return err;
1316
1317 if (err) {
1318 pr_warn("%s: switch to %s failed\n",
1319 mmc_card_hs(card) ? "high-speed" :
1320 (mmc_card_hs200(card) ? "hs200" : ""),
1321 mmc_hostname(card->host));
1322 err = 0;
1323 }
1324
1325bus_speed:
1326 /*
1327 * Set the bus speed to the selected bus timing.
1328 * If timing is not selected, backward compatible is the default.
1329 */
1330 mmc_set_bus_speed(card);
1331 return err;
1332}
1333
1334/*
1335 * Execute tuning sequence to seek the proper bus operating
1336 * conditions for HS200 and HS400, which sends CMD21 to the device.
1337 */
1338static int mmc_hs200_tuning(struct mmc_card *card)
1339{
1340 struct mmc_host *host = card->host;
1341
1342 /*
1343 * Timing should be adjusted to the HS400 target
1344 * operation frequency for tuning process
1345 */
1346 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1347 host->ios.bus_width == MMC_BUS_WIDTH_8)
1348 if (host->ops->prepare_hs400_tuning)
1349 host->ops->prepare_hs400_tuning(host, &host->ios);
1350
1351 return mmc_execute_tuning(card);
1352}
1353
1354/*
1355 * Handle the detection and initialisation of a card.
1356 *
1357 * In the case of a resume, "oldcard" will contain the card
1358 * we're trying to reinitialise.
1359 */
1360static int mmc_init_card(struct mmc_host *host, u32 ocr,
1361 struct mmc_card *oldcard)
1362{
1363 struct mmc_card *card;
1364 int err;
1365 u32 cid[4];
1366 u32 rocr;
1367
1368 BUG_ON(!host);
1369 WARN_ON(!host->claimed);
1370
1371 /* Set correct bus mode for MMC before attempting init */
1372 if (!mmc_host_is_spi(host))
1373 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1374
1375 /*
1376 * Since we're changing the OCR value, we seem to
1377 * need to tell some cards to go back to the idle
1378 * state. We wait 1ms to give cards time to
1379 * respond.
1380 * mmc_go_idle is needed for eMMC that are asleep
1381 */
1382 mmc_go_idle(host);
1383
1384 /* The extra bit indicates that we support high capacity */
1385 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1386 if (err)
1387 goto err;
1388
1389 /*
1390 * For SPI, enable CRC as appropriate.
1391 */
1392 if (mmc_host_is_spi(host)) {
1393 err = mmc_spi_set_crc(host, use_spi_crc);
1394 if (err)
1395 goto err;
1396 }
1397
1398 /*
1399 * Fetch CID from card.
1400 */
1401 if (mmc_host_is_spi(host))
1402 err = mmc_send_cid(host, cid);
1403 else
1404 err = mmc_all_send_cid(host, cid);
1405 if (err)
1406 goto err;
1407
1408 if (oldcard) {
1409 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1410 err = -ENOENT;
1411 goto err;
1412 }
1413
1414 card = oldcard;
1415 } else {
1416 /*
1417 * Allocate card structure.
1418 */
1419 card = mmc_alloc_card(host, &mmc_type);
1420 if (IS_ERR(card)) {
1421 err = PTR_ERR(card);
1422 goto err;
1423 }
1424
1425 card->ocr = ocr;
1426 card->type = MMC_TYPE_MMC;
1427 card->rca = 1;
1428 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1429 }
1430
1431 /*
1432 * Call the optional HC's init_card function to handle quirks.
1433 */
1434 if (host->ops->init_card)
1435 host->ops->init_card(host, card);
1436
1437 /*
1438 * For native busses: set card RCA and quit open drain mode.
1439 */
1440 if (!mmc_host_is_spi(host)) {
1441 err = mmc_set_relative_addr(card);
1442 if (err)
1443 goto free_card;
1444
1445 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1446 }
1447
1448 if (!oldcard) {
1449 /*
1450 * Fetch CSD from card.
1451 */
1452 err = mmc_send_csd(card, card->raw_csd);
1453 if (err)
1454 goto free_card;
1455
1456 err = mmc_decode_csd(card);
1457 if (err)
1458 goto free_card;
1459 err = mmc_decode_cid(card);
1460 if (err)
1461 goto free_card;
1462 }
1463
1464 /*
1465 * handling only for cards supporting DSR and hosts requesting
1466 * DSR configuration
1467 */
1468 if (card->csd.dsr_imp && host->dsr_req)
1469 mmc_set_dsr(host);
1470
1471 /*
1472 * Select card, as all following commands rely on that.
1473 */
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1476 if (err)
1477 goto free_card;
1478 }
1479
1480 if (!oldcard) {
1481 /* Read extended CSD. */
1482 err = mmc_read_ext_csd(card);
1483 if (err)
1484 goto free_card;
1485
1486 /* If doing byte addressing, check if required to do sector
1487 * addressing. Handle the case of <2GB cards needing sector
1488 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1489 * ocr register has bit 30 set for sector addressing.
1490 */
1491 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
1492 mmc_card_set_blockaddr(card);
1493
1494 /* Erase size depends on CSD and Extended CSD */
1495 mmc_set_erase_size(card);
1496 }
1497
1498 /*
1499 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1500 * bit. This bit will be lost every time after a reset or power off.
1501 */
1502 if (card->ext_csd.partition_setting_completed ||
1503 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1504 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1505 EXT_CSD_ERASE_GROUP_DEF, 1,
1506 card->ext_csd.generic_cmd6_time);
1507
1508 if (err && err != -EBADMSG)
1509 goto free_card;
1510
1511 if (err) {
1512 err = 0;
1513 /*
1514 * Just disable enhanced area off & sz
1515 * will try to enable ERASE_GROUP_DEF
1516 * during next time reinit
1517 */
1518 card->ext_csd.enhanced_area_offset = -EINVAL;
1519 card->ext_csd.enhanced_area_size = -EINVAL;
1520 } else {
1521 card->ext_csd.erase_group_def = 1;
1522 /*
1523 * enable ERASE_GRP_DEF successfully.
1524 * This will affect the erase size, so
1525 * here need to reset erase size
1526 */
1527 mmc_set_erase_size(card);
1528 }
1529 }
1530
1531 /*
1532 * Ensure eMMC user default partition is enabled
1533 */
1534 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1535 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1536 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1537 card->ext_csd.part_config,
1538 card->ext_csd.part_time);
1539 if (err && err != -EBADMSG)
1540 goto free_card;
1541 }
1542
1543 /*
1544 * Enable power_off_notification byte in the ext_csd register
1545 */
1546 if (card->ext_csd.rev >= 6) {
1547 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1548 EXT_CSD_POWER_OFF_NOTIFICATION,
1549 EXT_CSD_POWER_ON,
1550 card->ext_csd.generic_cmd6_time);
1551 if (err && err != -EBADMSG)
1552 goto free_card;
1553
1554 /*
1555 * The err can be -EBADMSG or 0,
1556 * so check for success and update the flag
1557 */
1558 if (!err)
1559 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1560 }
1561
1562 /*
1563 * Select timing interface
1564 */
1565 err = mmc_select_timing(card);
1566 if (err)
1567 goto free_card;
1568
1569 if (mmc_card_hs200(card)) {
1570 err = mmc_hs200_tuning(card);
1571 if (err)
1572 goto free_card;
1573
1574 err = mmc_select_hs400(card);
1575 if (err)
1576 goto free_card;
1577 } else if (mmc_card_hs(card)) {
1578 /* Select the desired bus width optionally */
1579 err = mmc_select_bus_width(card);
1580 if (!IS_ERR_VALUE(err)) {
1581 err = mmc_select_hs_ddr(card);
1582 if (err)
1583 goto free_card;
1584 }
1585 }
1586
1587 /*
1588 * Choose the power class with selected bus interface
1589 */
1590 mmc_select_powerclass(card);
1591
1592 /*
1593 * Enable HPI feature (if supported)
1594 */
1595 if (card->ext_csd.hpi) {
1596 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1597 EXT_CSD_HPI_MGMT, 1,
1598 card->ext_csd.generic_cmd6_time);
1599 if (err && err != -EBADMSG)
1600 goto free_card;
1601 if (err) {
1602 pr_warn("%s: Enabling HPI failed\n",
1603 mmc_hostname(card->host));
1604 err = 0;
1605 } else
1606 card->ext_csd.hpi_en = 1;
1607 }
1608
1609 /*
1610 * If cache size is higher than 0, this indicates
1611 * the existence of cache and it can be turned on.
1612 */
1613 if (card->ext_csd.cache_size > 0) {
1614 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1615 EXT_CSD_CACHE_CTRL, 1,
1616 card->ext_csd.generic_cmd6_time);
1617 if (err && err != -EBADMSG)
1618 goto free_card;
1619
1620 /*
1621 * Only if no error, cache is turned on successfully.
1622 */
1623 if (err) {
1624 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1625 mmc_hostname(card->host), err);
1626 card->ext_csd.cache_ctrl = 0;
1627 err = 0;
1628 } else {
1629 card->ext_csd.cache_ctrl = 1;
1630 }
1631 }
1632
1633 /*
1634 * The mandatory minimum values are defined for packed command.
1635 * read: 5, write: 3
1636 */
1637 if (card->ext_csd.max_packed_writes >= 3 &&
1638 card->ext_csd.max_packed_reads >= 5 &&
1639 host->caps2 & MMC_CAP2_PACKED_CMD) {
1640 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1641 EXT_CSD_EXP_EVENTS_CTRL,
1642 EXT_CSD_PACKED_EVENT_EN,
1643 card->ext_csd.generic_cmd6_time);
1644 if (err && err != -EBADMSG)
1645 goto free_card;
1646 if (err) {
1647 pr_warn("%s: Enabling packed event failed\n",
1648 mmc_hostname(card->host));
1649 card->ext_csd.packed_event_en = 0;
1650 err = 0;
1651 } else {
1652 card->ext_csd.packed_event_en = 1;
1653 }
1654 }
1655
1656 if (!oldcard)
1657 host->card = card;
1658
1659 return 0;
1660
1661free_card:
1662 if (!oldcard)
1663 mmc_remove_card(card);
1664err:
1665 return err;
1666}
1667
1668static int mmc_can_sleep(struct mmc_card *card)
1669{
1670 return (card && card->ext_csd.rev >= 3);
1671}
1672
1673static int mmc_sleep(struct mmc_host *host)
1674{
1675 struct mmc_command cmd = {0};
1676 struct mmc_card *card = host->card;
1677 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1678 int err;
1679
1680 /* Re-tuning can't be done once the card is deselected */
1681 mmc_retune_hold(host);
1682
1683 err = mmc_deselect_cards(host);
1684 if (err)
1685 goto out_release;
1686
1687 cmd.opcode = MMC_SLEEP_AWAKE;
1688 cmd.arg = card->rca << 16;
1689 cmd.arg |= 1 << 15;
1690
1691 /*
1692 * If the max_busy_timeout of the host is specified, validate it against
1693 * the sleep cmd timeout. A failure means we need to prevent the host
1694 * from doing hw busy detection, which is done by converting to a R1
1695 * response instead of a R1B.
1696 */
1697 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1698 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699 } else {
1700 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1701 cmd.busy_timeout = timeout_ms;
1702 }
1703
1704 err = mmc_wait_for_cmd(host, &cmd, 0);
1705 if (err)
1706 goto out_release;
1707
1708 /*
1709 * If the host does not wait while the card signals busy, then we will
1710 * will have to wait the sleep/awake timeout. Note, we cannot use the
1711 * SEND_STATUS command to poll the status because that command (and most
1712 * others) is invalid while the card sleeps.
1713 */
1714 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1715 mmc_delay(timeout_ms);
1716
1717out_release:
1718 mmc_retune_release(host);
1719 return err;
1720}
1721
1722static int mmc_can_poweroff_notify(const struct mmc_card *card)
1723{
1724 return card &&
1725 mmc_card_mmc(card) &&
1726 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1727}
1728
1729static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1730{
1731 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1732 int err;
1733
1734 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1735 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1736 timeout = card->ext_csd.power_off_longtime;
1737
1738 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1739 EXT_CSD_POWER_OFF_NOTIFICATION,
1740 notify_type, timeout, true, false, false);
1741 if (err)
1742 pr_err("%s: Power Off Notification timed out, %u\n",
1743 mmc_hostname(card->host), timeout);
1744
1745 /* Disable the power off notification after the switch operation. */
1746 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1747
1748 return err;
1749}
1750
1751/*
1752 * Host is being removed. Free up the current card.
1753 */
1754static void mmc_remove(struct mmc_host *host)
1755{
1756 BUG_ON(!host);
1757 BUG_ON(!host->card);
1758
1759 mmc_remove_card(host->card);
1760 host->card = NULL;
1761}
1762
1763/*
1764 * Card detection - card is alive.
1765 */
1766static int mmc_alive(struct mmc_host *host)
1767{
1768 return mmc_send_status(host->card, NULL);
1769}
1770
1771/*
1772 * Card detection callback from host.
1773 */
1774static void mmc_detect(struct mmc_host *host)
1775{
1776 int err;
1777
1778 BUG_ON(!host);
1779 BUG_ON(!host->card);
1780
1781 mmc_get_card(host->card);
1782
1783 /*
1784 * Just check if our card has been removed.
1785 */
1786 err = _mmc_detect_card_removed(host);
1787
1788 mmc_put_card(host->card);
1789
1790 if (err) {
1791 mmc_remove(host);
1792
1793 mmc_claim_host(host);
1794 mmc_detach_bus(host);
1795 mmc_power_off(host);
1796 mmc_release_host(host);
1797 }
1798}
1799
1800static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1801{
1802 int err = 0;
1803 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1804 EXT_CSD_POWER_OFF_LONG;
1805
1806 BUG_ON(!host);
1807 BUG_ON(!host->card);
1808
1809 mmc_claim_host(host);
1810
1811 if (mmc_card_suspended(host->card))
1812 goto out;
1813
1814 if (mmc_card_doing_bkops(host->card)) {
1815 err = mmc_stop_bkops(host->card);
1816 if (err)
1817 goto out;
1818 }
1819
1820 err = mmc_flush_cache(host->card);
1821 if (err)
1822 goto out;
1823
1824 if (mmc_can_poweroff_notify(host->card) &&
1825 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1826 err = mmc_poweroff_notify(host->card, notify_type);
1827 else if (mmc_can_sleep(host->card))
1828 err = mmc_sleep(host);
1829 else if (!mmc_host_is_spi(host))
1830 err = mmc_deselect_cards(host);
1831
1832 if (!err) {
1833 mmc_power_off(host);
1834 mmc_card_set_suspended(host->card);
1835 }
1836out:
1837 mmc_release_host(host);
1838 return err;
1839}
1840
1841/*
1842 * Suspend callback
1843 */
1844static int mmc_suspend(struct mmc_host *host)
1845{
1846 int err;
1847
1848 err = _mmc_suspend(host, true);
1849 if (!err) {
1850 pm_runtime_disable(&host->card->dev);
1851 pm_runtime_set_suspended(&host->card->dev);
1852 }
1853
1854 return err;
1855}
1856
1857/*
1858 * This function tries to determine if the same card is still present
1859 * and, if so, restore all state to it.
1860 */
1861static int _mmc_resume(struct mmc_host *host)
1862{
1863 int err = 0;
1864
1865 BUG_ON(!host);
1866 BUG_ON(!host->card);
1867
1868 mmc_claim_host(host);
1869
1870 if (!mmc_card_suspended(host->card))
1871 goto out;
1872
1873 mmc_power_up(host, host->card->ocr);
1874 err = mmc_init_card(host, host->card->ocr, host->card);
1875 mmc_card_clr_suspended(host->card);
1876
1877out:
1878 mmc_release_host(host);
1879 return err;
1880}
1881
1882/*
1883 * Shutdown callback
1884 */
1885static int mmc_shutdown(struct mmc_host *host)
1886{
1887 int err = 0;
1888
1889 /*
1890 * In a specific case for poweroff notify, we need to resume the card
1891 * before we can shutdown it properly.
1892 */
1893 if (mmc_can_poweroff_notify(host->card) &&
1894 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1895 err = _mmc_resume(host);
1896
1897 if (!err)
1898 err = _mmc_suspend(host, false);
1899
1900 return err;
1901}
1902
1903/*
1904 * Callback for resume.
1905 */
1906static int mmc_resume(struct mmc_host *host)
1907{
1908 pm_runtime_enable(&host->card->dev);
1909 return 0;
1910}
1911
1912/*
1913 * Callback for runtime_suspend.
1914 */
1915static int mmc_runtime_suspend(struct mmc_host *host)
1916{
1917 int err;
1918
1919 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1920 return 0;
1921
1922 err = _mmc_suspend(host, true);
1923 if (err)
1924 pr_err("%s: error %d doing aggressive suspend\n",
1925 mmc_hostname(host), err);
1926
1927 return err;
1928}
1929
1930/*
1931 * Callback for runtime_resume.
1932 */
1933static int mmc_runtime_resume(struct mmc_host *host)
1934{
1935 int err;
1936
1937 err = _mmc_resume(host);
1938 if (err && err != -ENOMEDIUM)
1939 pr_err("%s: error %d doing runtime resume\n",
1940 mmc_hostname(host), err);
1941
1942 return 0;
1943}
1944
1945int mmc_can_reset(struct mmc_card *card)
1946{
1947 u8 rst_n_function;
1948
1949 rst_n_function = card->ext_csd.rst_n_function;
1950 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1951 return 0;
1952 return 1;
1953}
1954EXPORT_SYMBOL(mmc_can_reset);
1955
1956static int mmc_reset(struct mmc_host *host)
1957{
1958 struct mmc_card *card = host->card;
1959
1960 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1961 return -EOPNOTSUPP;
1962
1963 if (!mmc_can_reset(card))
1964 return -EOPNOTSUPP;
1965
1966 mmc_set_clock(host, host->f_init);
1967
1968 host->ops->hw_reset(host);
1969
1970 /* Set initial state and call mmc_set_ios */
1971 mmc_set_initial_state(host);
1972
1973 return mmc_init_card(host, card->ocr, card);
1974}
1975
1976static const struct mmc_bus_ops mmc_ops = {
1977 .remove = mmc_remove,
1978 .detect = mmc_detect,
1979 .suspend = mmc_suspend,
1980 .resume = mmc_resume,
1981 .runtime_suspend = mmc_runtime_suspend,
1982 .runtime_resume = mmc_runtime_resume,
1983 .alive = mmc_alive,
1984 .shutdown = mmc_shutdown,
1985 .reset = mmc_reset,
1986};
1987
1988/*
1989 * Starting point for MMC card init.
1990 */
1991int mmc_attach_mmc(struct mmc_host *host)
1992{
1993 int err;
1994 u32 ocr, rocr;
1995
1996 BUG_ON(!host);
1997 WARN_ON(!host->claimed);
1998
1999 /* Set correct bus mode for MMC before attempting attach */
2000 if (!mmc_host_is_spi(host))
2001 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2002
2003 err = mmc_send_op_cond(host, 0, &ocr);
2004 if (err)
2005 return err;
2006
2007 mmc_attach_bus(host, &mmc_ops);
2008 if (host->ocr_avail_mmc)
2009 host->ocr_avail = host->ocr_avail_mmc;
2010
2011 /*
2012 * We need to get OCR a different way for SPI.
2013 */
2014 if (mmc_host_is_spi(host)) {
2015 err = mmc_spi_read_ocr(host, 1, &ocr);
2016 if (err)
2017 goto err;
2018 }
2019
2020 rocr = mmc_select_voltage(host, ocr);
2021
2022 /*
2023 * Can we support the voltage of the card?
2024 */
2025 if (!rocr) {
2026 err = -EINVAL;
2027 goto err;
2028 }
2029
2030 /*
2031 * Detect and init the card.
2032 */
2033 err = mmc_init_card(host, rocr, NULL);
2034 if (err)
2035 goto err;
2036
2037 mmc_release_host(host);
2038 err = mmc_add_card(host->card);
2039 if (err)
2040 goto remove_card;
2041
2042 mmc_claim_host(host);
2043 return 0;
2044
2045remove_card:
2046 mmc_remove_card(host->card);
2047 mmc_claim_host(host);
2048 host->card = NULL;
2049err:
2050 mmc_detach_bus(host);
2051
2052 pr_err("%s: error %d whilst initialising MMC card\n",
2053 mmc_hostname(host), err);
2054
2055 return err;
2056}
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/slab.h>
15#include <linux/stat.h>
16
17#include <linux/mmc/host.h>
18#include <linux/mmc/card.h>
19#include <linux/mmc/mmc.h>
20
21#include "core.h"
22#include "bus.h"
23#include "mmc_ops.h"
24#include "sd_ops.h"
25
26static const unsigned int tran_exp[] = {
27 10000, 100000, 1000000, 10000000,
28 0, 0, 0, 0
29};
30
31static const unsigned char tran_mant[] = {
32 0, 10, 12, 13, 15, 20, 25, 30,
33 35, 40, 45, 50, 55, 60, 70, 80,
34};
35
36static const unsigned int tacc_exp[] = {
37 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
38};
39
40static const unsigned int tacc_mant[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
43};
44
45#define UNSTUFF_BITS(resp,start,size) \
46 ({ \
47 const int __size = size; \
48 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
49 const int __off = 3 - ((start) / 32); \
50 const int __shft = (start) & 31; \
51 u32 __res; \
52 \
53 __res = resp[__off] >> __shft; \
54 if (__size + __shft > 32) \
55 __res |= resp[__off-1] << ((32 - __shft) % 32); \
56 __res & __mask; \
57 })
58
59/*
60 * Given the decoded CSD structure, decode the raw CID to our CID structure.
61 */
62static int mmc_decode_cid(struct mmc_card *card)
63{
64 u32 *resp = card->raw_cid;
65
66 /*
67 * The selection of the format here is based upon published
68 * specs from sandisk and from what people have reported.
69 */
70 switch (card->csd.mmca_vsn) {
71 case 0: /* MMC v1.0 - v1.2 */
72 case 1: /* MMC v1.4 */
73 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
74 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
75 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
76 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
77 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
78 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
79 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
80 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
81 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
82 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
83 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
84 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
85 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
86 break;
87
88 case 2: /* MMC v2.0 - v2.2 */
89 case 3: /* MMC v3.1 - v3.3 */
90 case 4: /* MMC v4 */
91 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
92 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
93 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
94 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
95 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
96 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
97 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
98 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
99 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
100 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
101 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
102 break;
103
104 default:
105 pr_err("%s: card has unknown MMCA version %d\n",
106 mmc_hostname(card->host), card->csd.mmca_vsn);
107 return -EINVAL;
108 }
109
110 return 0;
111}
112
113static void mmc_set_erase_size(struct mmc_card *card)
114{
115 if (card->ext_csd.erase_group_def & 1)
116 card->erase_size = card->ext_csd.hc_erase_size;
117 else
118 card->erase_size = card->csd.erase_size;
119
120 mmc_init_erase(card);
121}
122
123/*
124 * Given a 128-bit response, decode to our card CSD structure.
125 */
126static int mmc_decode_csd(struct mmc_card *card)
127{
128 struct mmc_csd *csd = &card->csd;
129 unsigned int e, m, a, b;
130 u32 *resp = card->raw_csd;
131
132 /*
133 * We only understand CSD structure v1.1 and v1.2.
134 * v1.2 has extra information in bits 15, 11 and 10.
135 * We also support eMMC v4.4 & v4.41.
136 */
137 csd->structure = UNSTUFF_BITS(resp, 126, 2);
138 if (csd->structure == 0) {
139 pr_err("%s: unrecognised CSD structure version %d\n",
140 mmc_hostname(card->host), csd->structure);
141 return -EINVAL;
142 }
143
144 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
145 m = UNSTUFF_BITS(resp, 115, 4);
146 e = UNSTUFF_BITS(resp, 112, 3);
147 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
148 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
149
150 m = UNSTUFF_BITS(resp, 99, 4);
151 e = UNSTUFF_BITS(resp, 96, 3);
152 csd->max_dtr = tran_exp[e] * tran_mant[m];
153 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
154
155 e = UNSTUFF_BITS(resp, 47, 3);
156 m = UNSTUFF_BITS(resp, 62, 12);
157 csd->capacity = (1 + m) << (e + 2);
158
159 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
160 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
161 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
162 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
163 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
164 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
165 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
166
167 if (csd->write_blkbits >= 9) {
168 a = UNSTUFF_BITS(resp, 42, 5);
169 b = UNSTUFF_BITS(resp, 37, 5);
170 csd->erase_size = (a + 1) * (b + 1);
171 csd->erase_size <<= csd->write_blkbits - 9;
172 }
173
174 return 0;
175}
176
177/*
178 * Read extended CSD.
179 */
180static int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
181{
182 int err;
183 u8 *ext_csd;
184
185 BUG_ON(!card);
186 BUG_ON(!new_ext_csd);
187
188 *new_ext_csd = NULL;
189
190 if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
191 return 0;
192
193 /*
194 * As the ext_csd is so large and mostly unused, we don't store the
195 * raw block in mmc_card.
196 */
197 ext_csd = kmalloc(512, GFP_KERNEL);
198 if (!ext_csd) {
199 pr_err("%s: could not allocate a buffer to "
200 "receive the ext_csd.\n", mmc_hostname(card->host));
201 return -ENOMEM;
202 }
203
204 err = mmc_send_ext_csd(card, ext_csd);
205 if (err) {
206 kfree(ext_csd);
207 *new_ext_csd = NULL;
208
209 /* If the host or the card can't do the switch,
210 * fail more gracefully. */
211 if ((err != -EINVAL)
212 && (err != -ENOSYS)
213 && (err != -EFAULT))
214 return err;
215
216 /*
217 * High capacity cards should have this "magic" size
218 * stored in their CSD.
219 */
220 if (card->csd.capacity == (4096 * 512)) {
221 pr_err("%s: unable to read EXT_CSD "
222 "on a possible high capacity card. "
223 "Card will be ignored.\n",
224 mmc_hostname(card->host));
225 } else {
226 pr_warning("%s: unable to read "
227 "EXT_CSD, performance might "
228 "suffer.\n",
229 mmc_hostname(card->host));
230 err = 0;
231 }
232 } else
233 *new_ext_csd = ext_csd;
234
235 return err;
236}
237
238static void mmc_select_card_type(struct mmc_card *card)
239{
240 struct mmc_host *host = card->host;
241 u8 card_type = card->ext_csd.raw_card_type & EXT_CSD_CARD_TYPE_MASK;
242 unsigned int caps = host->caps, caps2 = host->caps2;
243 unsigned int hs_max_dtr = 0;
244
245 if (card_type & EXT_CSD_CARD_TYPE_26)
246 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
247
248 if (caps & MMC_CAP_MMC_HIGHSPEED &&
249 card_type & EXT_CSD_CARD_TYPE_52)
250 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
251
252 if ((caps & MMC_CAP_1_8V_DDR &&
253 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) ||
254 (caps & MMC_CAP_1_2V_DDR &&
255 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V))
256 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
257
258 if ((caps2 & MMC_CAP2_HS200_1_8V_SDR &&
259 card_type & EXT_CSD_CARD_TYPE_SDR_1_8V) ||
260 (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
261 card_type & EXT_CSD_CARD_TYPE_SDR_1_2V))
262 hs_max_dtr = MMC_HS200_MAX_DTR;
263
264 card->ext_csd.hs_max_dtr = hs_max_dtr;
265 card->ext_csd.card_type = card_type;
266}
267
268/*
269 * Decode extended CSD.
270 */
271static int mmc_read_ext_csd(struct mmc_card *card, u8 *ext_csd)
272{
273 int err = 0, idx;
274 unsigned int part_size;
275 u8 hc_erase_grp_sz = 0, hc_wp_grp_sz = 0;
276
277 BUG_ON(!card);
278
279 if (!ext_csd)
280 return 0;
281
282 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
283 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
284 if (card->csd.structure == 3) {
285 if (card->ext_csd.raw_ext_csd_structure > 2) {
286 pr_err("%s: unrecognised EXT_CSD structure "
287 "version %d\n", mmc_hostname(card->host),
288 card->ext_csd.raw_ext_csd_structure);
289 err = -EINVAL;
290 goto out;
291 }
292 }
293
294 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
295 if (card->ext_csd.rev > 6) {
296 pr_err("%s: unrecognised EXT_CSD revision %d\n",
297 mmc_hostname(card->host), card->ext_csd.rev);
298 err = -EINVAL;
299 goto out;
300 }
301
302 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
303 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
304 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
305 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
306 if (card->ext_csd.rev >= 2) {
307 card->ext_csd.sectors =
308 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
309 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
310 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
311 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
312
313 /* Cards with density > 2GiB are sector addressed */
314 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
315 mmc_card_set_blockaddr(card);
316 }
317
318 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
319 mmc_select_card_type(card);
320
321 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
322 card->ext_csd.raw_erase_timeout_mult =
323 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
324 card->ext_csd.raw_hc_erase_grp_size =
325 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
326 if (card->ext_csd.rev >= 3) {
327 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
328 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
329
330 /* EXT_CSD value is in units of 10ms, but we store in ms */
331 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
332
333 /* Sleep / awake timeout in 100ns units */
334 if (sa_shift > 0 && sa_shift <= 0x17)
335 card->ext_csd.sa_timeout =
336 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
337 card->ext_csd.erase_group_def =
338 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
339 card->ext_csd.hc_erase_timeout = 300 *
340 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
341 card->ext_csd.hc_erase_size =
342 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
343
344 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
345
346 /*
347 * There are two boot regions of equal size, defined in
348 * multiples of 128K.
349 */
350 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
351 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
352 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
353 mmc_part_add(card, part_size,
354 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
355 "boot%d", idx, true,
356 MMC_BLK_DATA_AREA_BOOT);
357 }
358 }
359 }
360
361 card->ext_csd.raw_hc_erase_gap_size =
362 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
363 card->ext_csd.raw_sec_trim_mult =
364 ext_csd[EXT_CSD_SEC_TRIM_MULT];
365 card->ext_csd.raw_sec_erase_mult =
366 ext_csd[EXT_CSD_SEC_ERASE_MULT];
367 card->ext_csd.raw_sec_feature_support =
368 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
369 card->ext_csd.raw_trim_mult =
370 ext_csd[EXT_CSD_TRIM_MULT];
371 if (card->ext_csd.rev >= 4) {
372 /*
373 * Enhanced area feature support -- check whether the eMMC
374 * card has the Enhanced area enabled. If so, export enhanced
375 * area offset and size to user by adding sysfs interface.
376 */
377 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
378 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
379 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
380 hc_erase_grp_sz =
381 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
382 hc_wp_grp_sz =
383 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
384
385 card->ext_csd.enhanced_area_en = 1;
386 /*
387 * calculate the enhanced data area offset, in bytes
388 */
389 card->ext_csd.enhanced_area_offset =
390 (ext_csd[139] << 24) + (ext_csd[138] << 16) +
391 (ext_csd[137] << 8) + ext_csd[136];
392 if (mmc_card_blockaddr(card))
393 card->ext_csd.enhanced_area_offset <<= 9;
394 /*
395 * calculate the enhanced data area size, in kilobytes
396 */
397 card->ext_csd.enhanced_area_size =
398 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
399 ext_csd[140];
400 card->ext_csd.enhanced_area_size *=
401 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
402 card->ext_csd.enhanced_area_size <<= 9;
403 } else {
404 /*
405 * If the enhanced area is not enabled, disable these
406 * device attributes.
407 */
408 card->ext_csd.enhanced_area_offset = -EINVAL;
409 card->ext_csd.enhanced_area_size = -EINVAL;
410 }
411
412 /*
413 * General purpose partition feature support --
414 * If ext_csd has the size of general purpose partitions,
415 * set size, part_cfg, partition name in mmc_part.
416 */
417 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
418 EXT_CSD_PART_SUPPORT_PART_EN) {
419 if (card->ext_csd.enhanced_area_en != 1) {
420 hc_erase_grp_sz =
421 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
422 hc_wp_grp_sz =
423 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
424
425 card->ext_csd.enhanced_area_en = 1;
426 }
427
428 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
429 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
430 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
431 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
432 continue;
433 part_size =
434 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
435 << 16) +
436 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
437 << 8) +
438 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
439 part_size *= (size_t)(hc_erase_grp_sz *
440 hc_wp_grp_sz);
441 mmc_part_add(card, part_size << 19,
442 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
443 "gp%d", idx, false,
444 MMC_BLK_DATA_AREA_GP);
445 }
446 }
447 card->ext_csd.sec_trim_mult =
448 ext_csd[EXT_CSD_SEC_TRIM_MULT];
449 card->ext_csd.sec_erase_mult =
450 ext_csd[EXT_CSD_SEC_ERASE_MULT];
451 card->ext_csd.sec_feature_support =
452 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
453 card->ext_csd.trim_timeout = 300 *
454 ext_csd[EXT_CSD_TRIM_MULT];
455
456 /*
457 * Note that the call to mmc_part_add above defaults to read
458 * only. If this default assumption is changed, the call must
459 * take into account the value of boot_locked below.
460 */
461 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
462 card->ext_csd.boot_ro_lockable = true;
463 }
464
465 if (card->ext_csd.rev >= 5) {
466 /* check whether the eMMC card supports HPI */
467 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1) {
468 card->ext_csd.hpi = 1;
469 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
470 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
471 else
472 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
473 /*
474 * Indicate the maximum timeout to close
475 * a command interrupted by HPI
476 */
477 card->ext_csd.out_of_int_time =
478 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
479 }
480
481 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
482 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
483 }
484
485 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
486 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
487 card->erased_byte = 0xFF;
488 else
489 card->erased_byte = 0x0;
490
491 /* eMMC v4.5 or later */
492 if (card->ext_csd.rev >= 6) {
493 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
494
495 card->ext_csd.generic_cmd6_time = 10 *
496 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
497 card->ext_csd.power_off_longtime = 10 *
498 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
499
500 card->ext_csd.cache_size =
501 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
502 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
503 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
504 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
505
506 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
507 card->ext_csd.data_sector_size = 4096;
508 else
509 card->ext_csd.data_sector_size = 512;
510
511 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
512 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
513 card->ext_csd.data_tag_unit_size =
514 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
515 (card->ext_csd.data_sector_size);
516 } else {
517 card->ext_csd.data_tag_unit_size = 0;
518 }
519 } else {
520 card->ext_csd.data_sector_size = 512;
521 }
522
523out:
524 return err;
525}
526
527static inline void mmc_free_ext_csd(u8 *ext_csd)
528{
529 kfree(ext_csd);
530}
531
532
533static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
534{
535 u8 *bw_ext_csd;
536 int err;
537
538 if (bus_width == MMC_BUS_WIDTH_1)
539 return 0;
540
541 err = mmc_get_ext_csd(card, &bw_ext_csd);
542
543 if (err || bw_ext_csd == NULL) {
544 err = -EINVAL;
545 goto out;
546 }
547
548 /* only compare read only fields */
549 err = !((card->ext_csd.raw_partition_support ==
550 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
551 (card->ext_csd.raw_erased_mem_count ==
552 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
553 (card->ext_csd.rev ==
554 bw_ext_csd[EXT_CSD_REV]) &&
555 (card->ext_csd.raw_ext_csd_structure ==
556 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
557 (card->ext_csd.raw_card_type ==
558 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
559 (card->ext_csd.raw_s_a_timeout ==
560 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
561 (card->ext_csd.raw_hc_erase_gap_size ==
562 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
563 (card->ext_csd.raw_erase_timeout_mult ==
564 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
565 (card->ext_csd.raw_hc_erase_grp_size ==
566 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
567 (card->ext_csd.raw_sec_trim_mult ==
568 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
569 (card->ext_csd.raw_sec_erase_mult ==
570 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
571 (card->ext_csd.raw_sec_feature_support ==
572 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
573 (card->ext_csd.raw_trim_mult ==
574 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
575 (card->ext_csd.raw_sectors[0] ==
576 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
577 (card->ext_csd.raw_sectors[1] ==
578 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
579 (card->ext_csd.raw_sectors[2] ==
580 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
581 (card->ext_csd.raw_sectors[3] ==
582 bw_ext_csd[EXT_CSD_SEC_CNT + 3]));
583 if (err)
584 err = -EINVAL;
585
586out:
587 mmc_free_ext_csd(bw_ext_csd);
588 return err;
589}
590
591MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
592 card->raw_cid[2], card->raw_cid[3]);
593MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
594 card->raw_csd[2], card->raw_csd[3]);
595MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
596MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
597MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
598MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
599MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
600MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
601MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
602MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
603MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
604MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
605 card->ext_csd.enhanced_area_offset);
606MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
607
608static struct attribute *mmc_std_attrs[] = {
609 &dev_attr_cid.attr,
610 &dev_attr_csd.attr,
611 &dev_attr_date.attr,
612 &dev_attr_erase_size.attr,
613 &dev_attr_preferred_erase_size.attr,
614 &dev_attr_fwrev.attr,
615 &dev_attr_hwrev.attr,
616 &dev_attr_manfid.attr,
617 &dev_attr_name.attr,
618 &dev_attr_oemid.attr,
619 &dev_attr_serial.attr,
620 &dev_attr_enhanced_area_offset.attr,
621 &dev_attr_enhanced_area_size.attr,
622 NULL,
623};
624
625static struct attribute_group mmc_std_attr_group = {
626 .attrs = mmc_std_attrs,
627};
628
629static const struct attribute_group *mmc_attr_groups[] = {
630 &mmc_std_attr_group,
631 NULL,
632};
633
634static struct device_type mmc_type = {
635 .groups = mmc_attr_groups,
636};
637
638/*
639 * Select the PowerClass for the current bus width
640 * If power class is defined for 4/8 bit bus in the
641 * extended CSD register, select it by executing the
642 * mmc_switch command.
643 */
644static int mmc_select_powerclass(struct mmc_card *card,
645 unsigned int bus_width, u8 *ext_csd)
646{
647 int err = 0;
648 unsigned int pwrclass_val;
649 unsigned int index = 0;
650 struct mmc_host *host;
651
652 BUG_ON(!card);
653
654 host = card->host;
655 BUG_ON(!host);
656
657 if (ext_csd == NULL)
658 return 0;
659
660 /* Power class selection is supported for versions >= 4.0 */
661 if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
662 return 0;
663
664 /* Power class values are defined only for 4/8 bit bus */
665 if (bus_width == EXT_CSD_BUS_WIDTH_1)
666 return 0;
667
668 switch (1 << host->ios.vdd) {
669 case MMC_VDD_165_195:
670 if (host->ios.clock <= 26000000)
671 index = EXT_CSD_PWR_CL_26_195;
672 else if (host->ios.clock <= 52000000)
673 index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
674 EXT_CSD_PWR_CL_52_195 :
675 EXT_CSD_PWR_CL_DDR_52_195;
676 else if (host->ios.clock <= 200000000)
677 index = EXT_CSD_PWR_CL_200_195;
678 break;
679 case MMC_VDD_27_28:
680 case MMC_VDD_28_29:
681 case MMC_VDD_29_30:
682 case MMC_VDD_30_31:
683 case MMC_VDD_31_32:
684 case MMC_VDD_32_33:
685 case MMC_VDD_33_34:
686 case MMC_VDD_34_35:
687 case MMC_VDD_35_36:
688 if (host->ios.clock <= 26000000)
689 index = EXT_CSD_PWR_CL_26_360;
690 else if (host->ios.clock <= 52000000)
691 index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
692 EXT_CSD_PWR_CL_52_360 :
693 EXT_CSD_PWR_CL_DDR_52_360;
694 else if (host->ios.clock <= 200000000)
695 index = EXT_CSD_PWR_CL_200_360;
696 break;
697 default:
698 pr_warning("%s: Voltage range not supported "
699 "for power class.\n", mmc_hostname(host));
700 return -EINVAL;
701 }
702
703 pwrclass_val = ext_csd[index];
704
705 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
706 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
707 EXT_CSD_PWR_CL_8BIT_SHIFT;
708 else
709 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
710 EXT_CSD_PWR_CL_4BIT_SHIFT;
711
712 /* If the power class is different from the default value */
713 if (pwrclass_val > 0) {
714 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
715 EXT_CSD_POWER_CLASS,
716 pwrclass_val,
717 card->ext_csd.generic_cmd6_time);
718 }
719
720 return err;
721}
722
723/*
724 * Selects the desired buswidth and switch to the HS200 mode
725 * if bus width set without error
726 */
727static int mmc_select_hs200(struct mmc_card *card)
728{
729 int idx, err = -EINVAL;
730 struct mmc_host *host;
731 static unsigned ext_csd_bits[] = {
732 EXT_CSD_BUS_WIDTH_4,
733 EXT_CSD_BUS_WIDTH_8,
734 };
735 static unsigned bus_widths[] = {
736 MMC_BUS_WIDTH_4,
737 MMC_BUS_WIDTH_8,
738 };
739
740 BUG_ON(!card);
741
742 host = card->host;
743
744 if (card->ext_csd.card_type & EXT_CSD_CARD_TYPE_SDR_1_2V &&
745 host->caps2 & MMC_CAP2_HS200_1_2V_SDR)
746 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120, 0);
747
748 if (err && card->ext_csd.card_type & EXT_CSD_CARD_TYPE_SDR_1_8V &&
749 host->caps2 & MMC_CAP2_HS200_1_8V_SDR)
750 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, 0);
751
752 /* If fails try again during next card power cycle */
753 if (err)
754 goto err;
755
756 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 1 : 0;
757
758 /*
759 * Unlike SD, MMC cards dont have a configuration register to notify
760 * supported bus width. So bus test command should be run to identify
761 * the supported bus width or compare the ext csd values of current
762 * bus width and ext csd values of 1 bit mode read earlier.
763 */
764 for (; idx >= 0; idx--) {
765
766 /*
767 * Host is capable of 8bit transfer, then switch
768 * the device to work in 8bit transfer mode. If the
769 * mmc switch command returns error then switch to
770 * 4bit transfer mode. On success set the corresponding
771 * bus width on the host.
772 */
773 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
774 EXT_CSD_BUS_WIDTH,
775 ext_csd_bits[idx],
776 card->ext_csd.generic_cmd6_time);
777 if (err)
778 continue;
779
780 mmc_set_bus_width(card->host, bus_widths[idx]);
781
782 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
783 err = mmc_compare_ext_csds(card, bus_widths[idx]);
784 else
785 err = mmc_bus_test(card, bus_widths[idx]);
786 if (!err)
787 break;
788 }
789
790 /* switch to HS200 mode if bus width set successfully */
791 if (!err)
792 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
793 EXT_CSD_HS_TIMING, 2, 0);
794err:
795 return err;
796}
797
798/*
799 * Handle the detection and initialisation of a card.
800 *
801 * In the case of a resume, "oldcard" will contain the card
802 * we're trying to reinitialise.
803 */
804static int mmc_init_card(struct mmc_host *host, u32 ocr,
805 struct mmc_card *oldcard)
806{
807 struct mmc_card *card;
808 int err, ddr = 0;
809 u32 cid[4];
810 unsigned int max_dtr;
811 u32 rocr;
812 u8 *ext_csd = NULL;
813
814 BUG_ON(!host);
815 WARN_ON(!host->claimed);
816
817 /* Set correct bus mode for MMC before attempting init */
818 if (!mmc_host_is_spi(host))
819 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
820
821 /* Initialization should be done at 3.3 V I/O voltage. */
822 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
823
824 /*
825 * Since we're changing the OCR value, we seem to
826 * need to tell some cards to go back to the idle
827 * state. We wait 1ms to give cards time to
828 * respond.
829 * mmc_go_idle is needed for eMMC that are asleep
830 */
831 mmc_go_idle(host);
832
833 /* The extra bit indicates that we support high capacity */
834 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
835 if (err)
836 goto err;
837
838 /*
839 * For SPI, enable CRC as appropriate.
840 */
841 if (mmc_host_is_spi(host)) {
842 err = mmc_spi_set_crc(host, use_spi_crc);
843 if (err)
844 goto err;
845 }
846
847 /*
848 * Fetch CID from card.
849 */
850 if (mmc_host_is_spi(host))
851 err = mmc_send_cid(host, cid);
852 else
853 err = mmc_all_send_cid(host, cid);
854 if (err)
855 goto err;
856
857 if (oldcard) {
858 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
859 err = -ENOENT;
860 goto err;
861 }
862
863 card = oldcard;
864 } else {
865 /*
866 * Allocate card structure.
867 */
868 card = mmc_alloc_card(host, &mmc_type);
869 if (IS_ERR(card)) {
870 err = PTR_ERR(card);
871 goto err;
872 }
873
874 card->type = MMC_TYPE_MMC;
875 card->rca = 1;
876 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
877 }
878
879 /*
880 * For native busses: set card RCA and quit open drain mode.
881 */
882 if (!mmc_host_is_spi(host)) {
883 err = mmc_set_relative_addr(card);
884 if (err)
885 goto free_card;
886
887 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
888 }
889
890 if (!oldcard) {
891 /*
892 * Fetch CSD from card.
893 */
894 err = mmc_send_csd(card, card->raw_csd);
895 if (err)
896 goto free_card;
897
898 err = mmc_decode_csd(card);
899 if (err)
900 goto free_card;
901 err = mmc_decode_cid(card);
902 if (err)
903 goto free_card;
904 }
905
906 /*
907 * Select card, as all following commands rely on that.
908 */
909 if (!mmc_host_is_spi(host)) {
910 err = mmc_select_card(card);
911 if (err)
912 goto free_card;
913 }
914
915 if (!oldcard) {
916 /*
917 * Fetch and process extended CSD.
918 */
919
920 err = mmc_get_ext_csd(card, &ext_csd);
921 if (err)
922 goto free_card;
923 err = mmc_read_ext_csd(card, ext_csd);
924 if (err)
925 goto free_card;
926
927 /* If doing byte addressing, check if required to do sector
928 * addressing. Handle the case of <2GB cards needing sector
929 * addressing. See section 8.1 JEDEC Standard JED84-A441;
930 * ocr register has bit 30 set for sector addressing.
931 */
932 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
933 mmc_card_set_blockaddr(card);
934
935 /* Erase size depends on CSD and Extended CSD */
936 mmc_set_erase_size(card);
937 }
938
939 /*
940 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
941 * bit. This bit will be lost every time after a reset or power off.
942 */
943 if (card->ext_csd.enhanced_area_en ||
944 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
945 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
946 EXT_CSD_ERASE_GROUP_DEF, 1,
947 card->ext_csd.generic_cmd6_time);
948
949 if (err && err != -EBADMSG)
950 goto free_card;
951
952 if (err) {
953 err = 0;
954 /*
955 * Just disable enhanced area off & sz
956 * will try to enable ERASE_GROUP_DEF
957 * during next time reinit
958 */
959 card->ext_csd.enhanced_area_offset = -EINVAL;
960 card->ext_csd.enhanced_area_size = -EINVAL;
961 } else {
962 card->ext_csd.erase_group_def = 1;
963 /*
964 * enable ERASE_GRP_DEF successfully.
965 * This will affect the erase size, so
966 * here need to reset erase size
967 */
968 mmc_set_erase_size(card);
969 }
970 }
971
972 /*
973 * Ensure eMMC user default partition is enabled
974 */
975 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
976 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
977 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
978 card->ext_csd.part_config,
979 card->ext_csd.part_time);
980 if (err && err != -EBADMSG)
981 goto free_card;
982 }
983
984 /*
985 * If the host supports the power_off_notify capability then
986 * set the notification byte in the ext_csd register of device
987 */
988 if ((host->caps2 & MMC_CAP2_POWEROFF_NOTIFY) &&
989 (card->ext_csd.rev >= 6)) {
990 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
991 EXT_CSD_POWER_OFF_NOTIFICATION,
992 EXT_CSD_POWER_ON,
993 card->ext_csd.generic_cmd6_time);
994 if (err && err != -EBADMSG)
995 goto free_card;
996
997 /*
998 * The err can be -EBADMSG or 0,
999 * so check for success and update the flag
1000 */
1001 if (!err)
1002 card->poweroff_notify_state = MMC_POWERED_ON;
1003 }
1004
1005 /*
1006 * Activate high speed (if supported)
1007 */
1008 if (card->ext_csd.hs_max_dtr != 0) {
1009 err = 0;
1010 if (card->ext_csd.hs_max_dtr > 52000000 &&
1011 host->caps2 & MMC_CAP2_HS200)
1012 err = mmc_select_hs200(card);
1013 else if (host->caps & MMC_CAP_MMC_HIGHSPEED)
1014 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1015 EXT_CSD_HS_TIMING, 1,
1016 card->ext_csd.generic_cmd6_time);
1017
1018 if (err && err != -EBADMSG)
1019 goto free_card;
1020
1021 if (err) {
1022 pr_warning("%s: switch to highspeed failed\n",
1023 mmc_hostname(card->host));
1024 err = 0;
1025 } else {
1026 if (card->ext_csd.hs_max_dtr > 52000000 &&
1027 host->caps2 & MMC_CAP2_HS200) {
1028 mmc_card_set_hs200(card);
1029 mmc_set_timing(card->host,
1030 MMC_TIMING_MMC_HS200);
1031 } else {
1032 mmc_card_set_highspeed(card);
1033 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Compute bus speed.
1040 */
1041 max_dtr = (unsigned int)-1;
1042
1043 if (mmc_card_highspeed(card) || mmc_card_hs200(card)) {
1044 if (max_dtr > card->ext_csd.hs_max_dtr)
1045 max_dtr = card->ext_csd.hs_max_dtr;
1046 } else if (max_dtr > card->csd.max_dtr) {
1047 max_dtr = card->csd.max_dtr;
1048 }
1049
1050 mmc_set_clock(host, max_dtr);
1051
1052 /*
1053 * Indicate DDR mode (if supported).
1054 */
1055 if (mmc_card_highspeed(card)) {
1056 if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
1057 && ((host->caps & (MMC_CAP_1_8V_DDR |
1058 MMC_CAP_UHS_DDR50))
1059 == (MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50)))
1060 ddr = MMC_1_8V_DDR_MODE;
1061 else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1062 && ((host->caps & (MMC_CAP_1_2V_DDR |
1063 MMC_CAP_UHS_DDR50))
1064 == (MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50)))
1065 ddr = MMC_1_2V_DDR_MODE;
1066 }
1067
1068 /*
1069 * Indicate HS200 SDR mode (if supported).
1070 */
1071 if (mmc_card_hs200(card)) {
1072 u32 ext_csd_bits;
1073 u32 bus_width = card->host->ios.bus_width;
1074
1075 /*
1076 * For devices supporting HS200 mode, the bus width has
1077 * to be set before executing the tuning function. If
1078 * set before tuning, then device will respond with CRC
1079 * errors for responses on CMD line. So for HS200 the
1080 * sequence will be
1081 * 1. set bus width 4bit / 8 bit (1 bit not supported)
1082 * 2. switch to HS200 mode
1083 * 3. set the clock to > 52Mhz <=200MHz and
1084 * 4. execute tuning for HS200
1085 */
1086 if ((host->caps2 & MMC_CAP2_HS200) &&
1087 card->host->ops->execute_tuning) {
1088 mmc_host_clk_hold(card->host);
1089 err = card->host->ops->execute_tuning(card->host,
1090 MMC_SEND_TUNING_BLOCK_HS200);
1091 mmc_host_clk_release(card->host);
1092 }
1093 if (err) {
1094 pr_warning("%s: tuning execution failed\n",
1095 mmc_hostname(card->host));
1096 goto err;
1097 }
1098
1099 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1100 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
1101 err = mmc_select_powerclass(card, ext_csd_bits, ext_csd);
1102 if (err)
1103 pr_warning("%s: power class selection to bus width %d"
1104 " failed\n", mmc_hostname(card->host),
1105 1 << bus_width);
1106 }
1107
1108 /*
1109 * Activate wide bus and DDR (if supported).
1110 */
1111 if (!mmc_card_hs200(card) &&
1112 (card->csd.mmca_vsn >= CSD_SPEC_VER_4) &&
1113 (host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) {
1114 static unsigned ext_csd_bits[][2] = {
1115 { EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8 },
1116 { EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4 },
1117 { EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1 },
1118 };
1119 static unsigned bus_widths[] = {
1120 MMC_BUS_WIDTH_8,
1121 MMC_BUS_WIDTH_4,
1122 MMC_BUS_WIDTH_1
1123 };
1124 unsigned idx, bus_width = 0;
1125
1126 if (host->caps & MMC_CAP_8_BIT_DATA)
1127 idx = 0;
1128 else
1129 idx = 1;
1130 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1131 bus_width = bus_widths[idx];
1132 if (bus_width == MMC_BUS_WIDTH_1)
1133 ddr = 0; /* no DDR for 1-bit width */
1134 err = mmc_select_powerclass(card, ext_csd_bits[idx][0],
1135 ext_csd);
1136 if (err)
1137 pr_warning("%s: power class selection to "
1138 "bus width %d failed\n",
1139 mmc_hostname(card->host),
1140 1 << bus_width);
1141
1142 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1143 EXT_CSD_BUS_WIDTH,
1144 ext_csd_bits[idx][0],
1145 card->ext_csd.generic_cmd6_time);
1146 if (!err) {
1147 mmc_set_bus_width(card->host, bus_width);
1148
1149 /*
1150 * If controller can't handle bus width test,
1151 * compare ext_csd previously read in 1 bit mode
1152 * against ext_csd at new bus width
1153 */
1154 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1155 err = mmc_compare_ext_csds(card,
1156 bus_width);
1157 else
1158 err = mmc_bus_test(card, bus_width);
1159 if (!err)
1160 break;
1161 }
1162 }
1163
1164 if (!err && ddr) {
1165 err = mmc_select_powerclass(card, ext_csd_bits[idx][1],
1166 ext_csd);
1167 if (err)
1168 pr_warning("%s: power class selection to "
1169 "bus width %d ddr %d failed\n",
1170 mmc_hostname(card->host),
1171 1 << bus_width, ddr);
1172
1173 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1174 EXT_CSD_BUS_WIDTH,
1175 ext_csd_bits[idx][1],
1176 card->ext_csd.generic_cmd6_time);
1177 }
1178 if (err) {
1179 pr_warning("%s: switch to bus width %d ddr %d "
1180 "failed\n", mmc_hostname(card->host),
1181 1 << bus_width, ddr);
1182 goto free_card;
1183 } else if (ddr) {
1184 /*
1185 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1186 * signaling.
1187 *
1188 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1189 *
1190 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1191 * in the JEDEC spec for DDR.
1192 *
1193 * Do not force change in vccq since we are obviously
1194 * working and no change to vccq is needed.
1195 *
1196 * WARNING: eMMC rules are NOT the same as SD DDR
1197 */
1198 if (ddr == MMC_1_2V_DDR_MODE) {
1199 err = mmc_set_signal_voltage(host,
1200 MMC_SIGNAL_VOLTAGE_120, 0);
1201 if (err)
1202 goto err;
1203 }
1204 mmc_card_set_ddr_mode(card);
1205 mmc_set_timing(card->host, MMC_TIMING_UHS_DDR50);
1206 mmc_set_bus_width(card->host, bus_width);
1207 }
1208 }
1209
1210 /*
1211 * Enable HPI feature (if supported)
1212 */
1213 if (card->ext_csd.hpi) {
1214 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1215 EXT_CSD_HPI_MGMT, 1,
1216 card->ext_csd.generic_cmd6_time);
1217 if (err && err != -EBADMSG)
1218 goto free_card;
1219 if (err) {
1220 pr_warning("%s: Enabling HPI failed\n",
1221 mmc_hostname(card->host));
1222 err = 0;
1223 } else
1224 card->ext_csd.hpi_en = 1;
1225 }
1226
1227 /*
1228 * If cache size is higher than 0, this indicates
1229 * the existence of cache and it can be turned on.
1230 */
1231 if ((host->caps2 & MMC_CAP2_CACHE_CTRL) &&
1232 card->ext_csd.cache_size > 0) {
1233 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1234 EXT_CSD_CACHE_CTRL, 1,
1235 card->ext_csd.generic_cmd6_time);
1236 if (err && err != -EBADMSG)
1237 goto free_card;
1238
1239 /*
1240 * Only if no error, cache is turned on successfully.
1241 */
1242 if (err) {
1243 pr_warning("%s: Cache is supported, "
1244 "but failed to turn on (%d)\n",
1245 mmc_hostname(card->host), err);
1246 card->ext_csd.cache_ctrl = 0;
1247 err = 0;
1248 } else {
1249 card->ext_csd.cache_ctrl = 1;
1250 }
1251 }
1252
1253 if (!oldcard)
1254 host->card = card;
1255
1256 mmc_free_ext_csd(ext_csd);
1257 return 0;
1258
1259free_card:
1260 if (!oldcard)
1261 mmc_remove_card(card);
1262err:
1263 mmc_free_ext_csd(ext_csd);
1264
1265 return err;
1266}
1267
1268/*
1269 * Host is being removed. Free up the current card.
1270 */
1271static void mmc_remove(struct mmc_host *host)
1272{
1273 BUG_ON(!host);
1274 BUG_ON(!host->card);
1275
1276 mmc_remove_card(host->card);
1277 host->card = NULL;
1278}
1279
1280/*
1281 * Card detection - card is alive.
1282 */
1283static int mmc_alive(struct mmc_host *host)
1284{
1285 return mmc_send_status(host->card, NULL);
1286}
1287
1288/*
1289 * Card detection callback from host.
1290 */
1291static void mmc_detect(struct mmc_host *host)
1292{
1293 int err;
1294
1295 BUG_ON(!host);
1296 BUG_ON(!host->card);
1297
1298 mmc_claim_host(host);
1299
1300 /*
1301 * Just check if our card has been removed.
1302 */
1303 err = _mmc_detect_card_removed(host);
1304
1305 mmc_release_host(host);
1306
1307 if (err) {
1308 mmc_remove(host);
1309
1310 mmc_claim_host(host);
1311 mmc_detach_bus(host);
1312 mmc_power_off(host);
1313 mmc_release_host(host);
1314 }
1315}
1316
1317/*
1318 * Suspend callback from host.
1319 */
1320static int mmc_suspend(struct mmc_host *host)
1321{
1322 int err = 0;
1323
1324 BUG_ON(!host);
1325 BUG_ON(!host->card);
1326
1327 mmc_claim_host(host);
1328 if (mmc_card_can_sleep(host)) {
1329 err = mmc_card_sleep(host);
1330 if (!err)
1331 mmc_card_set_sleep(host->card);
1332 } else if (!mmc_host_is_spi(host))
1333 err = mmc_deselect_cards(host);
1334 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
1335 mmc_release_host(host);
1336
1337 return err;
1338}
1339
1340/*
1341 * Resume callback from host.
1342 *
1343 * This function tries to determine if the same card is still present
1344 * and, if so, restore all state to it.
1345 */
1346static int mmc_resume(struct mmc_host *host)
1347{
1348 int err;
1349
1350 BUG_ON(!host);
1351 BUG_ON(!host->card);
1352
1353 mmc_claim_host(host);
1354 if (mmc_card_is_sleep(host->card)) {
1355 err = mmc_card_awake(host);
1356 mmc_card_clr_sleep(host->card);
1357 } else
1358 err = mmc_init_card(host, host->ocr, host->card);
1359 mmc_release_host(host);
1360
1361 return err;
1362}
1363
1364static int mmc_power_restore(struct mmc_host *host)
1365{
1366 int ret;
1367
1368 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
1369 mmc_card_clr_sleep(host->card);
1370 mmc_claim_host(host);
1371 ret = mmc_init_card(host, host->ocr, host->card);
1372 mmc_release_host(host);
1373
1374 return ret;
1375}
1376
1377static int mmc_sleep(struct mmc_host *host)
1378{
1379 struct mmc_card *card = host->card;
1380 int err = -ENOSYS;
1381
1382 if (card && card->ext_csd.rev >= 3) {
1383 err = mmc_card_sleepawake(host, 1);
1384 if (err < 0)
1385 pr_debug("%s: Error %d while putting card into sleep",
1386 mmc_hostname(host), err);
1387 }
1388
1389 return err;
1390}
1391
1392static int mmc_awake(struct mmc_host *host)
1393{
1394 struct mmc_card *card = host->card;
1395 int err = -ENOSYS;
1396
1397 if (card && card->ext_csd.rev >= 3) {
1398 err = mmc_card_sleepawake(host, 0);
1399 if (err < 0)
1400 pr_debug("%s: Error %d while awaking sleeping card",
1401 mmc_hostname(host), err);
1402 }
1403
1404 return err;
1405}
1406
1407static const struct mmc_bus_ops mmc_ops = {
1408 .awake = mmc_awake,
1409 .sleep = mmc_sleep,
1410 .remove = mmc_remove,
1411 .detect = mmc_detect,
1412 .suspend = NULL,
1413 .resume = NULL,
1414 .power_restore = mmc_power_restore,
1415 .alive = mmc_alive,
1416};
1417
1418static const struct mmc_bus_ops mmc_ops_unsafe = {
1419 .awake = mmc_awake,
1420 .sleep = mmc_sleep,
1421 .remove = mmc_remove,
1422 .detect = mmc_detect,
1423 .suspend = mmc_suspend,
1424 .resume = mmc_resume,
1425 .power_restore = mmc_power_restore,
1426 .alive = mmc_alive,
1427};
1428
1429static void mmc_attach_bus_ops(struct mmc_host *host)
1430{
1431 const struct mmc_bus_ops *bus_ops;
1432
1433 if (!mmc_card_is_removable(host))
1434 bus_ops = &mmc_ops_unsafe;
1435 else
1436 bus_ops = &mmc_ops;
1437 mmc_attach_bus(host, bus_ops);
1438}
1439
1440/*
1441 * Starting point for MMC card init.
1442 */
1443int mmc_attach_mmc(struct mmc_host *host)
1444{
1445 int err;
1446 u32 ocr;
1447
1448 BUG_ON(!host);
1449 WARN_ON(!host->claimed);
1450
1451 /* Set correct bus mode for MMC before attempting attach */
1452 if (!mmc_host_is_spi(host))
1453 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1454
1455 err = mmc_send_op_cond(host, 0, &ocr);
1456 if (err)
1457 return err;
1458
1459 mmc_attach_bus_ops(host);
1460 if (host->ocr_avail_mmc)
1461 host->ocr_avail = host->ocr_avail_mmc;
1462
1463 /*
1464 * We need to get OCR a different way for SPI.
1465 */
1466 if (mmc_host_is_spi(host)) {
1467 err = mmc_spi_read_ocr(host, 1, &ocr);
1468 if (err)
1469 goto err;
1470 }
1471
1472 /*
1473 * Sanity check the voltages that the card claims to
1474 * support.
1475 */
1476 if (ocr & 0x7F) {
1477 pr_warning("%s: card claims to support voltages "
1478 "below the defined range. These will be ignored.\n",
1479 mmc_hostname(host));
1480 ocr &= ~0x7F;
1481 }
1482
1483 host->ocr = mmc_select_voltage(host, ocr);
1484
1485 /*
1486 * Can we support the voltage of the card?
1487 */
1488 if (!host->ocr) {
1489 err = -EINVAL;
1490 goto err;
1491 }
1492
1493 /*
1494 * Detect and init the card.
1495 */
1496 err = mmc_init_card(host, host->ocr, NULL);
1497 if (err)
1498 goto err;
1499
1500 mmc_release_host(host);
1501 err = mmc_add_card(host->card);
1502 mmc_claim_host(host);
1503 if (err)
1504 goto remove_card;
1505
1506 return 0;
1507
1508remove_card:
1509 mmc_release_host(host);
1510 mmc_remove_card(host->card);
1511 mmc_claim_host(host);
1512 host->card = NULL;
1513err:
1514 mmc_detach_bus(host);
1515
1516 pr_err("%s: error %d whilst initialising MMC card\n",
1517 mmc_hostname(host), err);
1518
1519 return err;
1520}