Loading...
1config ARM64
2 def_bool y
3 select ACPI_CCA_REQUIRED if ACPI
4 select ACPI_GENERIC_GSI if ACPI
5 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
6 select ARCH_HAS_DEVMEM_IS_ALLOWED
7 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
8 select ARCH_HAS_ELF_RANDOMIZE
9 select ARCH_HAS_GCOV_PROFILE_ALL
10 select ARCH_HAS_SG_CHAIN
11 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
12 select ARCH_USE_CMPXCHG_LOCKREF
13 select ARCH_SUPPORTS_ATOMIC_RMW
14 select ARCH_WANT_OPTIONAL_GPIOLIB
15 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
16 select ARCH_WANT_FRAME_POINTERS
17 select ARCH_HAS_UBSAN_SANITIZE_ALL
18 select ARM_AMBA
19 select ARM_ARCH_TIMER
20 select ARM_GIC
21 select AUDIT_ARCH_COMPAT_GENERIC
22 select ARM_GIC_V2M if PCI_MSI
23 select ARM_GIC_V3
24 select ARM_GIC_V3_ITS if PCI_MSI
25 select ARM_PSCI_FW
26 select BUILDTIME_EXTABLE_SORT
27 select CLONE_BACKWARDS
28 select COMMON_CLK
29 select CPU_PM if (SUSPEND || CPU_IDLE)
30 select DCACHE_WORD_ACCESS
31 select EDAC_SUPPORT
32 select FRAME_POINTER
33 select GENERIC_ALLOCATOR
34 select GENERIC_CLOCKEVENTS
35 select GENERIC_CLOCKEVENTS_BROADCAST
36 select GENERIC_CPU_AUTOPROBE
37 select GENERIC_EARLY_IOREMAP
38 select GENERIC_IDLE_POLL_SETUP
39 select GENERIC_IRQ_PROBE
40 select GENERIC_IRQ_SHOW
41 select GENERIC_IRQ_SHOW_LEVEL
42 select GENERIC_PCI_IOMAP
43 select GENERIC_SCHED_CLOCK
44 select GENERIC_SMP_IDLE_THREAD
45 select GENERIC_STRNCPY_FROM_USER
46 select GENERIC_STRNLEN_USER
47 select GENERIC_TIME_VSYSCALL
48 select HANDLE_DOMAIN_IRQ
49 select HARDIRQS_SW_RESEND
50 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
51 select HAVE_ARCH_AUDITSYSCALL
52 select HAVE_ARCH_BITREVERSE
53 select HAVE_ARCH_HUGE_VMAP
54 select HAVE_ARCH_JUMP_LABEL
55 select HAVE_ARCH_KASAN if SPARSEMEM_VMEMMAP && !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
56 select HAVE_ARCH_KGDB
57 select HAVE_ARCH_MMAP_RND_BITS
58 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
59 select HAVE_ARCH_SECCOMP_FILTER
60 select HAVE_ARCH_TRACEHOOK
61 select HAVE_BPF_JIT
62 select HAVE_C_RECORDMCOUNT
63 select HAVE_CC_STACKPROTECTOR
64 select HAVE_CMPXCHG_DOUBLE
65 select HAVE_CMPXCHG_LOCAL
66 select HAVE_DEBUG_BUGVERBOSE
67 select HAVE_DEBUG_KMEMLEAK
68 select HAVE_DMA_API_DEBUG
69 select HAVE_DMA_CONTIGUOUS
70 select HAVE_DYNAMIC_FTRACE
71 select HAVE_EFFICIENT_UNALIGNED_ACCESS
72 select HAVE_FTRACE_MCOUNT_RECORD
73 select HAVE_FUNCTION_TRACER
74 select HAVE_FUNCTION_GRAPH_TRACER
75 select HAVE_GENERIC_DMA_COHERENT
76 select HAVE_HW_BREAKPOINT if PERF_EVENTS
77 select HAVE_IRQ_TIME_ACCOUNTING
78 select HAVE_MEMBLOCK
79 select HAVE_PATA_PLATFORM
80 select HAVE_PERF_EVENTS
81 select HAVE_PERF_REGS
82 select HAVE_PERF_USER_STACK_DUMP
83 select HAVE_RCU_TABLE_FREE
84 select HAVE_SYSCALL_TRACEPOINTS
85 select IOMMU_DMA if IOMMU_SUPPORT
86 select IRQ_DOMAIN
87 select IRQ_FORCED_THREADING
88 select MODULES_USE_ELF_RELA
89 select NO_BOOTMEM
90 select OF
91 select OF_EARLY_FLATTREE
92 select OF_RESERVED_MEM
93 select PERF_USE_VMALLOC
94 select POWER_RESET
95 select POWER_SUPPLY
96 select RTC_LIB
97 select SPARSE_IRQ
98 select SYSCTL_EXCEPTION_TRACE
99 select HAVE_CONTEXT_TRACKING
100 select HAVE_ARM_SMCCC
101 help
102 ARM 64-bit (AArch64) Linux support.
103
104config 64BIT
105 def_bool y
106
107config ARCH_PHYS_ADDR_T_64BIT
108 def_bool y
109
110config MMU
111 def_bool y
112
113config ARCH_MMAP_RND_BITS_MIN
114 default 14 if ARM64_64K_PAGES
115 default 16 if ARM64_16K_PAGES
116 default 18
117
118# max bits determined by the following formula:
119# VA_BITS - PAGE_SHIFT - 3
120config ARCH_MMAP_RND_BITS_MAX
121 default 19 if ARM64_VA_BITS=36
122 default 24 if ARM64_VA_BITS=39
123 default 27 if ARM64_VA_BITS=42
124 default 30 if ARM64_VA_BITS=47
125 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
126 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
127 default 33 if ARM64_VA_BITS=48
128 default 14 if ARM64_64K_PAGES
129 default 16 if ARM64_16K_PAGES
130 default 18
131
132config ARCH_MMAP_RND_COMPAT_BITS_MIN
133 default 7 if ARM64_64K_PAGES
134 default 9 if ARM64_16K_PAGES
135 default 11
136
137config ARCH_MMAP_RND_COMPAT_BITS_MAX
138 default 16
139
140config NO_IOPORT_MAP
141 def_bool y if !PCI
142
143config STACKTRACE_SUPPORT
144 def_bool y
145
146config ILLEGAL_POINTER_VALUE
147 hex
148 default 0xdead000000000000
149
150config LOCKDEP_SUPPORT
151 def_bool y
152
153config TRACE_IRQFLAGS_SUPPORT
154 def_bool y
155
156config RWSEM_XCHGADD_ALGORITHM
157 def_bool y
158
159config GENERIC_BUG
160 def_bool y
161 depends on BUG
162
163config GENERIC_BUG_RELATIVE_POINTERS
164 def_bool y
165 depends on GENERIC_BUG
166
167config GENERIC_HWEIGHT
168 def_bool y
169
170config GENERIC_CSUM
171 def_bool y
172
173config GENERIC_CALIBRATE_DELAY
174 def_bool y
175
176config ZONE_DMA
177 def_bool y
178
179config HAVE_GENERIC_RCU_GUP
180 def_bool y
181
182config ARCH_DMA_ADDR_T_64BIT
183 def_bool y
184
185config NEED_DMA_MAP_STATE
186 def_bool y
187
188config NEED_SG_DMA_LENGTH
189 def_bool y
190
191config SMP
192 def_bool y
193
194config SWIOTLB
195 def_bool y
196
197config IOMMU_HELPER
198 def_bool SWIOTLB
199
200config KERNEL_MODE_NEON
201 def_bool y
202
203config FIX_EARLYCON_MEM
204 def_bool y
205
206config PGTABLE_LEVELS
207 int
208 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
209 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
210 default 3 if ARM64_64K_PAGES && ARM64_VA_BITS_48
211 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
212 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
213 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
214
215source "init/Kconfig"
216
217source "kernel/Kconfig.freezer"
218
219source "arch/arm64/Kconfig.platforms"
220
221menu "Bus support"
222
223config PCI
224 bool "PCI support"
225 help
226 This feature enables support for PCI bus system. If you say Y
227 here, the kernel will include drivers and infrastructure code
228 to support PCI bus devices.
229
230config PCI_DOMAINS
231 def_bool PCI
232
233config PCI_DOMAINS_GENERIC
234 def_bool PCI
235
236config PCI_SYSCALL
237 def_bool PCI
238
239source "drivers/pci/Kconfig"
240
241endmenu
242
243menu "Kernel Features"
244
245menu "ARM errata workarounds via the alternatives framework"
246
247config ARM64_ERRATUM_826319
248 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
249 default y
250 help
251 This option adds an alternative code sequence to work around ARM
252 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
253 AXI master interface and an L2 cache.
254
255 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
256 and is unable to accept a certain write via this interface, it will
257 not progress on read data presented on the read data channel and the
258 system can deadlock.
259
260 The workaround promotes data cache clean instructions to
261 data cache clean-and-invalidate.
262 Please note that this does not necessarily enable the workaround,
263 as it depends on the alternative framework, which will only patch
264 the kernel if an affected CPU is detected.
265
266 If unsure, say Y.
267
268config ARM64_ERRATUM_827319
269 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
270 default y
271 help
272 This option adds an alternative code sequence to work around ARM
273 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
274 master interface and an L2 cache.
275
276 Under certain conditions this erratum can cause a clean line eviction
277 to occur at the same time as another transaction to the same address
278 on the AMBA 5 CHI interface, which can cause data corruption if the
279 interconnect reorders the two transactions.
280
281 The workaround promotes data cache clean instructions to
282 data cache clean-and-invalidate.
283 Please note that this does not necessarily enable the workaround,
284 as it depends on the alternative framework, which will only patch
285 the kernel if an affected CPU is detected.
286
287 If unsure, say Y.
288
289config ARM64_ERRATUM_824069
290 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
291 default y
292 help
293 This option adds an alternative code sequence to work around ARM
294 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
295 to a coherent interconnect.
296
297 If a Cortex-A53 processor is executing a store or prefetch for
298 write instruction at the same time as a processor in another
299 cluster is executing a cache maintenance operation to the same
300 address, then this erratum might cause a clean cache line to be
301 incorrectly marked as dirty.
302
303 The workaround promotes data cache clean instructions to
304 data cache clean-and-invalidate.
305 Please note that this option does not necessarily enable the
306 workaround, as it depends on the alternative framework, which will
307 only patch the kernel if an affected CPU is detected.
308
309 If unsure, say Y.
310
311config ARM64_ERRATUM_819472
312 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
313 default y
314 help
315 This option adds an alternative code sequence to work around ARM
316 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
317 present when it is connected to a coherent interconnect.
318
319 If the processor is executing a load and store exclusive sequence at
320 the same time as a processor in another cluster is executing a cache
321 maintenance operation to the same address, then this erratum might
322 cause data corruption.
323
324 The workaround promotes data cache clean instructions to
325 data cache clean-and-invalidate.
326 Please note that this does not necessarily enable the workaround,
327 as it depends on the alternative framework, which will only patch
328 the kernel if an affected CPU is detected.
329
330 If unsure, say Y.
331
332config ARM64_ERRATUM_832075
333 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
334 default y
335 help
336 This option adds an alternative code sequence to work around ARM
337 erratum 832075 on Cortex-A57 parts up to r1p2.
338
339 Affected Cortex-A57 parts might deadlock when exclusive load/store
340 instructions to Write-Back memory are mixed with Device loads.
341
342 The workaround is to promote device loads to use Load-Acquire
343 semantics.
344 Please note that this does not necessarily enable the workaround,
345 as it depends on the alternative framework, which will only patch
346 the kernel if an affected CPU is detected.
347
348 If unsure, say Y.
349
350config ARM64_ERRATUM_834220
351 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
352 depends on KVM
353 default y
354 help
355 This option adds an alternative code sequence to work around ARM
356 erratum 834220 on Cortex-A57 parts up to r1p2.
357
358 Affected Cortex-A57 parts might report a Stage 2 translation
359 fault as the result of a Stage 1 fault for load crossing a
360 page boundary when there is a permission or device memory
361 alignment fault at Stage 1 and a translation fault at Stage 2.
362
363 The workaround is to verify that the Stage 1 translation
364 doesn't generate a fault before handling the Stage 2 fault.
365 Please note that this does not necessarily enable the workaround,
366 as it depends on the alternative framework, which will only patch
367 the kernel if an affected CPU is detected.
368
369 If unsure, say Y.
370
371config ARM64_ERRATUM_845719
372 bool "Cortex-A53: 845719: a load might read incorrect data"
373 depends on COMPAT
374 default y
375 help
376 This option adds an alternative code sequence to work around ARM
377 erratum 845719 on Cortex-A53 parts up to r0p4.
378
379 When running a compat (AArch32) userspace on an affected Cortex-A53
380 part, a load at EL0 from a virtual address that matches the bottom 32
381 bits of the virtual address used by a recent load at (AArch64) EL1
382 might return incorrect data.
383
384 The workaround is to write the contextidr_el1 register on exception
385 return to a 32-bit task.
386 Please note that this does not necessarily enable the workaround,
387 as it depends on the alternative framework, which will only patch
388 the kernel if an affected CPU is detected.
389
390 If unsure, say Y.
391
392config ARM64_ERRATUM_843419
393 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
394 depends on MODULES
395 default y
396 select ARM64_MODULE_CMODEL_LARGE
397 help
398 This option builds kernel modules using the large memory model in
399 order to avoid the use of the ADRP instruction, which can cause
400 a subsequent memory access to use an incorrect address on Cortex-A53
401 parts up to r0p4.
402
403 Note that the kernel itself must be linked with a version of ld
404 which fixes potentially affected ADRP instructions through the
405 use of veneers.
406
407 If unsure, say Y.
408
409config CAVIUM_ERRATUM_22375
410 bool "Cavium erratum 22375, 24313"
411 default y
412 help
413 Enable workaround for erratum 22375, 24313.
414
415 This implements two gicv3-its errata workarounds for ThunderX. Both
416 with small impact affecting only ITS table allocation.
417
418 erratum 22375: only alloc 8MB table size
419 erratum 24313: ignore memory access type
420
421 The fixes are in ITS initialization and basically ignore memory access
422 type and table size provided by the TYPER and BASER registers.
423
424 If unsure, say Y.
425
426config CAVIUM_ERRATUM_23154
427 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
428 default y
429 help
430 The gicv3 of ThunderX requires a modified version for
431 reading the IAR status to ensure data synchronization
432 (access to icc_iar1_el1 is not sync'ed before and after).
433
434 If unsure, say Y.
435
436config CAVIUM_ERRATUM_27456
437 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
438 default y
439 help
440 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
441 instructions may cause the icache to become corrupted if it
442 contains data for a non-current ASID. The fix is to
443 invalidate the icache when changing the mm context.
444
445 If unsure, say Y.
446
447endmenu
448
449
450choice
451 prompt "Page size"
452 default ARM64_4K_PAGES
453 help
454 Page size (translation granule) configuration.
455
456config ARM64_4K_PAGES
457 bool "4KB"
458 help
459 This feature enables 4KB pages support.
460
461config ARM64_16K_PAGES
462 bool "16KB"
463 help
464 The system will use 16KB pages support. AArch32 emulation
465 requires applications compiled with 16K (or a multiple of 16K)
466 aligned segments.
467
468config ARM64_64K_PAGES
469 bool "64KB"
470 help
471 This feature enables 64KB pages support (4KB by default)
472 allowing only two levels of page tables and faster TLB
473 look-up. AArch32 emulation requires applications compiled
474 with 64K aligned segments.
475
476endchoice
477
478choice
479 prompt "Virtual address space size"
480 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
481 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
482 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
483 help
484 Allows choosing one of multiple possible virtual address
485 space sizes. The level of translation table is determined by
486 a combination of page size and virtual address space size.
487
488config ARM64_VA_BITS_36
489 bool "36-bit" if EXPERT
490 depends on ARM64_16K_PAGES
491
492config ARM64_VA_BITS_39
493 bool "39-bit"
494 depends on ARM64_4K_PAGES
495
496config ARM64_VA_BITS_42
497 bool "42-bit"
498 depends on ARM64_64K_PAGES
499
500config ARM64_VA_BITS_47
501 bool "47-bit"
502 depends on ARM64_16K_PAGES
503
504config ARM64_VA_BITS_48
505 bool "48-bit"
506
507endchoice
508
509config ARM64_VA_BITS
510 int
511 default 36 if ARM64_VA_BITS_36
512 default 39 if ARM64_VA_BITS_39
513 default 42 if ARM64_VA_BITS_42
514 default 47 if ARM64_VA_BITS_47
515 default 48 if ARM64_VA_BITS_48
516
517config CPU_BIG_ENDIAN
518 bool "Build big-endian kernel"
519 help
520 Say Y if you plan on running a kernel in big-endian mode.
521
522config SCHED_MC
523 bool "Multi-core scheduler support"
524 help
525 Multi-core scheduler support improves the CPU scheduler's decision
526 making when dealing with multi-core CPU chips at a cost of slightly
527 increased overhead in some places. If unsure say N here.
528
529config SCHED_SMT
530 bool "SMT scheduler support"
531 help
532 Improves the CPU scheduler's decision making when dealing with
533 MultiThreading at a cost of slightly increased overhead in some
534 places. If unsure say N here.
535
536config NR_CPUS
537 int "Maximum number of CPUs (2-4096)"
538 range 2 4096
539 # These have to remain sorted largest to smallest
540 default "64"
541
542config HOTPLUG_CPU
543 bool "Support for hot-pluggable CPUs"
544 select GENERIC_IRQ_MIGRATION
545 help
546 Say Y here to experiment with turning CPUs off and on. CPUs
547 can be controlled through /sys/devices/system/cpu.
548
549source kernel/Kconfig.preempt
550source kernel/Kconfig.hz
551
552config ARCH_SUPPORTS_DEBUG_PAGEALLOC
553 def_bool y
554
555config ARCH_HAS_HOLES_MEMORYMODEL
556 def_bool y if SPARSEMEM
557
558config ARCH_SPARSEMEM_ENABLE
559 def_bool y
560 select SPARSEMEM_VMEMMAP_ENABLE
561
562config ARCH_SPARSEMEM_DEFAULT
563 def_bool ARCH_SPARSEMEM_ENABLE
564
565config ARCH_SELECT_MEMORY_MODEL
566 def_bool ARCH_SPARSEMEM_ENABLE
567
568config HAVE_ARCH_PFN_VALID
569 def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
570
571config HW_PERF_EVENTS
572 def_bool y
573 depends on ARM_PMU
574
575config SYS_SUPPORTS_HUGETLBFS
576 def_bool y
577
578config ARCH_WANT_HUGE_PMD_SHARE
579 def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
580
581config HAVE_ARCH_TRANSPARENT_HUGEPAGE
582 def_bool y
583
584config ARCH_HAS_CACHE_LINE_SIZE
585 def_bool y
586
587source "mm/Kconfig"
588
589config SECCOMP
590 bool "Enable seccomp to safely compute untrusted bytecode"
591 ---help---
592 This kernel feature is useful for number crunching applications
593 that may need to compute untrusted bytecode during their
594 execution. By using pipes or other transports made available to
595 the process as file descriptors supporting the read/write
596 syscalls, it's possible to isolate those applications in
597 their own address space using seccomp. Once seccomp is
598 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
599 and the task is only allowed to execute a few safe syscalls
600 defined by each seccomp mode.
601
602config PARAVIRT
603 bool "Enable paravirtualization code"
604 help
605 This changes the kernel so it can modify itself when it is run
606 under a hypervisor, potentially improving performance significantly
607 over full virtualization.
608
609config PARAVIRT_TIME_ACCOUNTING
610 bool "Paravirtual steal time accounting"
611 select PARAVIRT
612 default n
613 help
614 Select this option to enable fine granularity task steal time
615 accounting. Time spent executing other tasks in parallel with
616 the current vCPU is discounted from the vCPU power. To account for
617 that, there can be a small performance impact.
618
619 If in doubt, say N here.
620
621config XEN_DOM0
622 def_bool y
623 depends on XEN
624
625config XEN
626 bool "Xen guest support on ARM64"
627 depends on ARM64 && OF
628 select SWIOTLB_XEN
629 select PARAVIRT
630 help
631 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
632
633config FORCE_MAX_ZONEORDER
634 int
635 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
636 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
637 default "11"
638 help
639 The kernel memory allocator divides physically contiguous memory
640 blocks into "zones", where each zone is a power of two number of
641 pages. This option selects the largest power of two that the kernel
642 keeps in the memory allocator. If you need to allocate very large
643 blocks of physically contiguous memory, then you may need to
644 increase this value.
645
646 This config option is actually maximum order plus one. For example,
647 a value of 11 means that the largest free memory block is 2^10 pages.
648
649 We make sure that we can allocate upto a HugePage size for each configuration.
650 Hence we have :
651 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
652
653 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
654 4M allocations matching the default size used by generic code.
655
656menuconfig ARMV8_DEPRECATED
657 bool "Emulate deprecated/obsolete ARMv8 instructions"
658 depends on COMPAT
659 help
660 Legacy software support may require certain instructions
661 that have been deprecated or obsoleted in the architecture.
662
663 Enable this config to enable selective emulation of these
664 features.
665
666 If unsure, say Y
667
668if ARMV8_DEPRECATED
669
670config SWP_EMULATION
671 bool "Emulate SWP/SWPB instructions"
672 help
673 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
674 they are always undefined. Say Y here to enable software
675 emulation of these instructions for userspace using LDXR/STXR.
676
677 In some older versions of glibc [<=2.8] SWP is used during futex
678 trylock() operations with the assumption that the code will not
679 be preempted. This invalid assumption may be more likely to fail
680 with SWP emulation enabled, leading to deadlock of the user
681 application.
682
683 NOTE: when accessing uncached shared regions, LDXR/STXR rely
684 on an external transaction monitoring block called a global
685 monitor to maintain update atomicity. If your system does not
686 implement a global monitor, this option can cause programs that
687 perform SWP operations to uncached memory to deadlock.
688
689 If unsure, say Y
690
691config CP15_BARRIER_EMULATION
692 bool "Emulate CP15 Barrier instructions"
693 help
694 The CP15 barrier instructions - CP15ISB, CP15DSB, and
695 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
696 strongly recommended to use the ISB, DSB, and DMB
697 instructions instead.
698
699 Say Y here to enable software emulation of these
700 instructions for AArch32 userspace code. When this option is
701 enabled, CP15 barrier usage is traced which can help
702 identify software that needs updating.
703
704 If unsure, say Y
705
706config SETEND_EMULATION
707 bool "Emulate SETEND instruction"
708 help
709 The SETEND instruction alters the data-endianness of the
710 AArch32 EL0, and is deprecated in ARMv8.
711
712 Say Y here to enable software emulation of the instruction
713 for AArch32 userspace code.
714
715 Note: All the cpus on the system must have mixed endian support at EL0
716 for this feature to be enabled. If a new CPU - which doesn't support mixed
717 endian - is hotplugged in after this feature has been enabled, there could
718 be unexpected results in the applications.
719
720 If unsure, say Y
721endif
722
723menu "ARMv8.1 architectural features"
724
725config ARM64_HW_AFDBM
726 bool "Support for hardware updates of the Access and Dirty page flags"
727 default y
728 help
729 The ARMv8.1 architecture extensions introduce support for
730 hardware updates of the access and dirty information in page
731 table entries. When enabled in TCR_EL1 (HA and HD bits) on
732 capable processors, accesses to pages with PTE_AF cleared will
733 set this bit instead of raising an access flag fault.
734 Similarly, writes to read-only pages with the DBM bit set will
735 clear the read-only bit (AP[2]) instead of raising a
736 permission fault.
737
738 Kernels built with this configuration option enabled continue
739 to work on pre-ARMv8.1 hardware and the performance impact is
740 minimal. If unsure, say Y.
741
742config ARM64_PAN
743 bool "Enable support for Privileged Access Never (PAN)"
744 default y
745 help
746 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
747 prevents the kernel or hypervisor from accessing user-space (EL0)
748 memory directly.
749
750 Choosing this option will cause any unprotected (not using
751 copy_to_user et al) memory access to fail with a permission fault.
752
753 The feature is detected at runtime, and will remain as a 'nop'
754 instruction if the cpu does not implement the feature.
755
756config ARM64_LSE_ATOMICS
757 bool "Atomic instructions"
758 help
759 As part of the Large System Extensions, ARMv8.1 introduces new
760 atomic instructions that are designed specifically to scale in
761 very large systems.
762
763 Say Y here to make use of these instructions for the in-kernel
764 atomic routines. This incurs a small overhead on CPUs that do
765 not support these instructions and requires the kernel to be
766 built with binutils >= 2.25.
767
768config ARM64_VHE
769 bool "Enable support for Virtualization Host Extensions (VHE)"
770 default y
771 help
772 Virtualization Host Extensions (VHE) allow the kernel to run
773 directly at EL2 (instead of EL1) on processors that support
774 it. This leads to better performance for KVM, as they reduce
775 the cost of the world switch.
776
777 Selecting this option allows the VHE feature to be detected
778 at runtime, and does not affect processors that do not
779 implement this feature.
780
781endmenu
782
783menu "ARMv8.2 architectural features"
784
785config ARM64_UAO
786 bool "Enable support for User Access Override (UAO)"
787 default y
788 help
789 User Access Override (UAO; part of the ARMv8.2 Extensions)
790 causes the 'unprivileged' variant of the load/store instructions to
791 be overriden to be privileged.
792
793 This option changes get_user() and friends to use the 'unprivileged'
794 variant of the load/store instructions. This ensures that user-space
795 really did have access to the supplied memory. When addr_limit is
796 set to kernel memory the UAO bit will be set, allowing privileged
797 access to kernel memory.
798
799 Choosing this option will cause copy_to_user() et al to use user-space
800 memory permissions.
801
802 The feature is detected at runtime, the kernel will use the
803 regular load/store instructions if the cpu does not implement the
804 feature.
805
806endmenu
807
808config ARM64_MODULE_CMODEL_LARGE
809 bool
810
811config ARM64_MODULE_PLTS
812 bool
813 select ARM64_MODULE_CMODEL_LARGE
814 select HAVE_MOD_ARCH_SPECIFIC
815
816config RELOCATABLE
817 bool
818 help
819 This builds the kernel as a Position Independent Executable (PIE),
820 which retains all relocation metadata required to relocate the
821 kernel binary at runtime to a different virtual address than the
822 address it was linked at.
823 Since AArch64 uses the RELA relocation format, this requires a
824 relocation pass at runtime even if the kernel is loaded at the
825 same address it was linked at.
826
827config RANDOMIZE_BASE
828 bool "Randomize the address of the kernel image"
829 select ARM64_MODULE_PLTS
830 select RELOCATABLE
831 help
832 Randomizes the virtual address at which the kernel image is
833 loaded, as a security feature that deters exploit attempts
834 relying on knowledge of the location of kernel internals.
835
836 It is the bootloader's job to provide entropy, by passing a
837 random u64 value in /chosen/kaslr-seed at kernel entry.
838
839 When booting via the UEFI stub, it will invoke the firmware's
840 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
841 to the kernel proper. In addition, it will randomise the physical
842 location of the kernel Image as well.
843
844 If unsure, say N.
845
846config RANDOMIZE_MODULE_REGION_FULL
847 bool "Randomize the module region independently from the core kernel"
848 depends on RANDOMIZE_BASE
849 default y
850 help
851 Randomizes the location of the module region without considering the
852 location of the core kernel. This way, it is impossible for modules
853 to leak information about the location of core kernel data structures
854 but it does imply that function calls between modules and the core
855 kernel will need to be resolved via veneers in the module PLT.
856
857 When this option is not set, the module region will be randomized over
858 a limited range that contains the [_stext, _etext] interval of the
859 core kernel, so branch relocations are always in range.
860
861endmenu
862
863menu "Boot options"
864
865config ARM64_ACPI_PARKING_PROTOCOL
866 bool "Enable support for the ARM64 ACPI parking protocol"
867 depends on ACPI
868 help
869 Enable support for the ARM64 ACPI parking protocol. If disabled
870 the kernel will not allow booting through the ARM64 ACPI parking
871 protocol even if the corresponding data is present in the ACPI
872 MADT table.
873
874config CMDLINE
875 string "Default kernel command string"
876 default ""
877 help
878 Provide a set of default command-line options at build time by
879 entering them here. As a minimum, you should specify the the
880 root device (e.g. root=/dev/nfs).
881
882config CMDLINE_FORCE
883 bool "Always use the default kernel command string"
884 help
885 Always use the default kernel command string, even if the boot
886 loader passes other arguments to the kernel.
887 This is useful if you cannot or don't want to change the
888 command-line options your boot loader passes to the kernel.
889
890config EFI_STUB
891 bool
892
893config EFI
894 bool "UEFI runtime support"
895 depends on OF && !CPU_BIG_ENDIAN
896 select LIBFDT
897 select UCS2_STRING
898 select EFI_PARAMS_FROM_FDT
899 select EFI_RUNTIME_WRAPPERS
900 select EFI_STUB
901 select EFI_ARMSTUB
902 default y
903 help
904 This option provides support for runtime services provided
905 by UEFI firmware (such as non-volatile variables, realtime
906 clock, and platform reset). A UEFI stub is also provided to
907 allow the kernel to be booted as an EFI application. This
908 is only useful on systems that have UEFI firmware.
909
910config DMI
911 bool "Enable support for SMBIOS (DMI) tables"
912 depends on EFI
913 default y
914 help
915 This enables SMBIOS/DMI feature for systems.
916
917 This option is only useful on systems that have UEFI firmware.
918 However, even with this option, the resultant kernel should
919 continue to boot on existing non-UEFI platforms.
920
921endmenu
922
923menu "Userspace binary formats"
924
925source "fs/Kconfig.binfmt"
926
927config COMPAT
928 bool "Kernel support for 32-bit EL0"
929 depends on ARM64_4K_PAGES || EXPERT
930 select COMPAT_BINFMT_ELF
931 select HAVE_UID16
932 select OLD_SIGSUSPEND3
933 select COMPAT_OLD_SIGACTION
934 help
935 This option enables support for a 32-bit EL0 running under a 64-bit
936 kernel at EL1. AArch32-specific components such as system calls,
937 the user helper functions, VFP support and the ptrace interface are
938 handled appropriately by the kernel.
939
940 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
941 that you will only be able to execute AArch32 binaries that were compiled
942 with page size aligned segments.
943
944 If you want to execute 32-bit userspace applications, say Y.
945
946config SYSVIPC_COMPAT
947 def_bool y
948 depends on COMPAT && SYSVIPC
949
950endmenu
951
952menu "Power management options"
953
954source "kernel/power/Kconfig"
955
956config ARCH_SUSPEND_POSSIBLE
957 def_bool y
958
959endmenu
960
961menu "CPU Power Management"
962
963source "drivers/cpuidle/Kconfig"
964
965source "drivers/cpufreq/Kconfig"
966
967endmenu
968
969source "net/Kconfig"
970
971source "drivers/Kconfig"
972
973source "drivers/firmware/Kconfig"
974
975source "drivers/acpi/Kconfig"
976
977source "fs/Kconfig"
978
979source "arch/arm64/kvm/Kconfig"
980
981source "arch/arm64/Kconfig.debug"
982
983source "security/Kconfig"
984
985source "crypto/Kconfig"
986if CRYPTO
987source "arch/arm64/crypto/Kconfig"
988endif
989
990source "lib/Kconfig"
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3 def_bool y
4 select ACPI_APMT if ACPI
5 select ACPI_CCA_REQUIRED if ACPI
6 select ACPI_GENERIC_GSI if ACPI
7 select ACPI_GTDT if ACPI
8 select ACPI_IORT if ACPI
9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10 select ACPI_MCFG if (ACPI && PCI)
11 select ACPI_SPCR_TABLE if ACPI
12 select ACPI_PPTT if ACPI
13 select ARCH_HAS_DEBUG_WX
14 select ARCH_BINFMT_ELF_EXTRA_PHDRS
15 select ARCH_BINFMT_ELF_STATE
16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18 select ARCH_ENABLE_MEMORY_HOTPLUG
19 select ARCH_ENABLE_MEMORY_HOTREMOVE
20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22 select ARCH_HAS_CACHE_LINE_SIZE
23 select ARCH_HAS_CURRENT_STACK_POINTER
24 select ARCH_HAS_DEBUG_VIRTUAL
25 select ARCH_HAS_DEBUG_VM_PGTABLE
26 select ARCH_HAS_DMA_PREP_COHERENT
27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28 select ARCH_HAS_FAST_MULTIPLIER
29 select ARCH_HAS_FORTIFY_SOURCE
30 select ARCH_HAS_GCOV_PROFILE_ALL
31 select ARCH_HAS_GIGANTIC_PAGE
32 select ARCH_HAS_KCOV
33 select ARCH_HAS_KEEPINITRD
34 select ARCH_HAS_MEMBARRIER_SYNC_CORE
35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37 select ARCH_HAS_PTE_DEVMAP
38 select ARCH_HAS_PTE_SPECIAL
39 select ARCH_HAS_SETUP_DMA_OPS
40 select ARCH_HAS_SET_DIRECT_MAP
41 select ARCH_HAS_SET_MEMORY
42 select ARCH_STACKWALK
43 select ARCH_HAS_STRICT_KERNEL_RWX
44 select ARCH_HAS_STRICT_MODULE_RWX
45 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
46 select ARCH_HAS_SYNC_DMA_FOR_CPU
47 select ARCH_HAS_SYSCALL_WRAPPER
48 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
49 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50 select ARCH_HAS_ZONE_DMA_SET if EXPERT
51 select ARCH_HAVE_ELF_PROT
52 select ARCH_HAVE_NMI_SAFE_CMPXCHG
53 select ARCH_HAVE_TRACE_MMIO_ACCESS
54 select ARCH_INLINE_READ_LOCK if !PREEMPTION
55 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80 select ARCH_KEEP_MEMBLOCK
81 select ARCH_USE_CMPXCHG_LOCKREF
82 select ARCH_USE_GNU_PROPERTY
83 select ARCH_USE_MEMTEST
84 select ARCH_USE_QUEUED_RWLOCKS
85 select ARCH_USE_QUEUED_SPINLOCKS
86 select ARCH_USE_SYM_ANNOTATIONS
87 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
88 select ARCH_SUPPORTS_HUGETLBFS
89 select ARCH_SUPPORTS_MEMORY_FAILURE
90 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
91 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
92 select ARCH_SUPPORTS_LTO_CLANG_THIN
93 select ARCH_SUPPORTS_CFI_CLANG
94 select ARCH_SUPPORTS_ATOMIC_RMW
95 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
96 select ARCH_SUPPORTS_NUMA_BALANCING
97 select ARCH_SUPPORTS_PAGE_TABLE_CHECK
98 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
99 select ARCH_WANT_DEFAULT_BPF_JIT
100 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
101 select ARCH_WANT_FRAME_POINTERS
102 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
103 select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
104 select ARCH_WANT_LD_ORPHAN_WARN
105 select ARCH_WANTS_NO_INSTR
106 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
107 select ARCH_HAS_UBSAN_SANITIZE_ALL
108 select ARM_AMBA
109 select ARM_ARCH_TIMER
110 select ARM_GIC
111 select AUDIT_ARCH_COMPAT_GENERIC
112 select ARM_GIC_V2M if PCI
113 select ARM_GIC_V3
114 select ARM_GIC_V3_ITS if PCI
115 select ARM_PSCI_FW
116 select BUILDTIME_TABLE_SORT
117 select CLONE_BACKWARDS
118 select COMMON_CLK
119 select CPU_PM if (SUSPEND || CPU_IDLE)
120 select CRC32
121 select DCACHE_WORD_ACCESS
122 select DYNAMIC_FTRACE if FUNCTION_TRACER
123 select DMA_DIRECT_REMAP
124 select EDAC_SUPPORT
125 select FRAME_POINTER
126 select GENERIC_ALLOCATOR
127 select GENERIC_ARCH_TOPOLOGY
128 select GENERIC_CLOCKEVENTS_BROADCAST
129 select GENERIC_CPU_AUTOPROBE
130 select GENERIC_CPU_VULNERABILITIES
131 select GENERIC_EARLY_IOREMAP
132 select GENERIC_IDLE_POLL_SETUP
133 select GENERIC_IOREMAP
134 select GENERIC_IRQ_IPI
135 select GENERIC_IRQ_PROBE
136 select GENERIC_IRQ_SHOW
137 select GENERIC_IRQ_SHOW_LEVEL
138 select GENERIC_LIB_DEVMEM_IS_ALLOWED
139 select GENERIC_PCI_IOMAP
140 select GENERIC_PTDUMP
141 select GENERIC_SCHED_CLOCK
142 select GENERIC_SMP_IDLE_THREAD
143 select GENERIC_TIME_VSYSCALL
144 select GENERIC_GETTIMEOFDAY
145 select GENERIC_VDSO_TIME_NS
146 select HARDIRQS_SW_RESEND
147 select HAVE_MOVE_PMD
148 select HAVE_MOVE_PUD
149 select HAVE_PCI
150 select HAVE_ACPI_APEI if (ACPI && EFI)
151 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
152 select HAVE_ARCH_AUDITSYSCALL
153 select HAVE_ARCH_BITREVERSE
154 select HAVE_ARCH_COMPILER_H
155 select HAVE_ARCH_HUGE_VMALLOC
156 select HAVE_ARCH_HUGE_VMAP
157 select HAVE_ARCH_JUMP_LABEL
158 select HAVE_ARCH_JUMP_LABEL_RELATIVE
159 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
160 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
161 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
162 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
163 # Some instrumentation may be unsound, hence EXPERT
164 select HAVE_ARCH_KCSAN if EXPERT
165 select HAVE_ARCH_KFENCE
166 select HAVE_ARCH_KGDB
167 select HAVE_ARCH_MMAP_RND_BITS
168 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
169 select HAVE_ARCH_PREL32_RELOCATIONS
170 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
171 select HAVE_ARCH_SECCOMP_FILTER
172 select HAVE_ARCH_STACKLEAK
173 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
174 select HAVE_ARCH_TRACEHOOK
175 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
176 select HAVE_ARCH_VMAP_STACK
177 select HAVE_ARM_SMCCC
178 select HAVE_ASM_MODVERSIONS
179 select HAVE_EBPF_JIT
180 select HAVE_C_RECORDMCOUNT
181 select HAVE_CMPXCHG_DOUBLE
182 select HAVE_CMPXCHG_LOCAL
183 select HAVE_CONTEXT_TRACKING_USER
184 select HAVE_DEBUG_KMEMLEAK
185 select HAVE_DMA_CONTIGUOUS
186 select HAVE_DYNAMIC_FTRACE
187 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
188 if DYNAMIC_FTRACE_WITH_ARGS
189 select HAVE_EFFICIENT_UNALIGNED_ACCESS
190 select HAVE_FAST_GUP
191 select HAVE_FTRACE_MCOUNT_RECORD
192 select HAVE_FUNCTION_TRACER
193 select HAVE_FUNCTION_ERROR_INJECTION
194 select HAVE_FUNCTION_GRAPH_TRACER
195 select HAVE_GCC_PLUGINS
196 select HAVE_HW_BREAKPOINT if PERF_EVENTS
197 select HAVE_IOREMAP_PROT
198 select HAVE_IRQ_TIME_ACCOUNTING
199 select HAVE_KVM
200 select HAVE_NMI
201 select HAVE_PERF_EVENTS
202 select HAVE_PERF_REGS
203 select HAVE_PERF_USER_STACK_DUMP
204 select HAVE_PREEMPT_DYNAMIC_KEY
205 select HAVE_REGS_AND_STACK_ACCESS_API
206 select HAVE_POSIX_CPU_TIMERS_TASK_WORK
207 select HAVE_FUNCTION_ARG_ACCESS_API
208 select MMU_GATHER_RCU_TABLE_FREE
209 select HAVE_RSEQ
210 select HAVE_STACKPROTECTOR
211 select HAVE_SYSCALL_TRACEPOINTS
212 select HAVE_KPROBES
213 select HAVE_KRETPROBES
214 select HAVE_GENERIC_VDSO
215 select IRQ_DOMAIN
216 select IRQ_FORCED_THREADING
217 select KASAN_VMALLOC if KASAN
218 select MODULES_USE_ELF_RELA
219 select NEED_DMA_MAP_STATE
220 select NEED_SG_DMA_LENGTH
221 select OF
222 select OF_EARLY_FLATTREE
223 select PCI_DOMAINS_GENERIC if PCI
224 select PCI_ECAM if (ACPI && PCI)
225 select PCI_SYSCALL if PCI
226 select POWER_RESET
227 select POWER_SUPPLY
228 select SPARSE_IRQ
229 select SWIOTLB
230 select SYSCTL_EXCEPTION_TRACE
231 select THREAD_INFO_IN_TASK
232 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
233 select TRACE_IRQFLAGS_SUPPORT
234 select TRACE_IRQFLAGS_NMI_SUPPORT
235 select HAVE_SOFTIRQ_ON_OWN_STACK
236 help
237 ARM 64-bit (AArch64) Linux support.
238
239config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
240 def_bool CC_IS_CLANG
241 # https://github.com/ClangBuiltLinux/linux/issues/1507
242 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
243 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
244
245config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
246 def_bool CC_IS_GCC
247 depends on $(cc-option,-fpatchable-function-entry=2)
248 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
249
250config 64BIT
251 def_bool y
252
253config MMU
254 def_bool y
255
256config ARM64_PAGE_SHIFT
257 int
258 default 16 if ARM64_64K_PAGES
259 default 14 if ARM64_16K_PAGES
260 default 12
261
262config ARM64_CONT_PTE_SHIFT
263 int
264 default 5 if ARM64_64K_PAGES
265 default 7 if ARM64_16K_PAGES
266 default 4
267
268config ARM64_CONT_PMD_SHIFT
269 int
270 default 5 if ARM64_64K_PAGES
271 default 5 if ARM64_16K_PAGES
272 default 4
273
274config ARCH_MMAP_RND_BITS_MIN
275 default 14 if ARM64_64K_PAGES
276 default 16 if ARM64_16K_PAGES
277 default 18
278
279# max bits determined by the following formula:
280# VA_BITS - PAGE_SHIFT - 3
281config ARCH_MMAP_RND_BITS_MAX
282 default 19 if ARM64_VA_BITS=36
283 default 24 if ARM64_VA_BITS=39
284 default 27 if ARM64_VA_BITS=42
285 default 30 if ARM64_VA_BITS=47
286 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
287 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
288 default 33 if ARM64_VA_BITS=48
289 default 14 if ARM64_64K_PAGES
290 default 16 if ARM64_16K_PAGES
291 default 18
292
293config ARCH_MMAP_RND_COMPAT_BITS_MIN
294 default 7 if ARM64_64K_PAGES
295 default 9 if ARM64_16K_PAGES
296 default 11
297
298config ARCH_MMAP_RND_COMPAT_BITS_MAX
299 default 16
300
301config NO_IOPORT_MAP
302 def_bool y if !PCI
303
304config STACKTRACE_SUPPORT
305 def_bool y
306
307config ILLEGAL_POINTER_VALUE
308 hex
309 default 0xdead000000000000
310
311config LOCKDEP_SUPPORT
312 def_bool y
313
314config GENERIC_BUG
315 def_bool y
316 depends on BUG
317
318config GENERIC_BUG_RELATIVE_POINTERS
319 def_bool y
320 depends on GENERIC_BUG
321
322config GENERIC_HWEIGHT
323 def_bool y
324
325config GENERIC_CSUM
326 def_bool y
327
328config GENERIC_CALIBRATE_DELAY
329 def_bool y
330
331config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
332 def_bool y
333
334config SMP
335 def_bool y
336
337config KERNEL_MODE_NEON
338 def_bool y
339
340config FIX_EARLYCON_MEM
341 def_bool y
342
343config PGTABLE_LEVELS
344 int
345 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
346 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
347 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
348 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
349 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
350 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
351
352config ARCH_SUPPORTS_UPROBES
353 def_bool y
354
355config ARCH_PROC_KCORE_TEXT
356 def_bool y
357
358config BROKEN_GAS_INST
359 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
360
361config KASAN_SHADOW_OFFSET
362 hex
363 depends on KASAN_GENERIC || KASAN_SW_TAGS
364 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
365 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
366 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
367 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
368 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
369 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
370 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
371 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
372 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
373 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
374 default 0xffffffffffffffff
375
376config UNWIND_TABLES
377 bool
378
379source "arch/arm64/Kconfig.platforms"
380
381menu "Kernel Features"
382
383menu "ARM errata workarounds via the alternatives framework"
384
385config ARM64_WORKAROUND_CLEAN_CACHE
386 bool
387
388config ARM64_ERRATUM_826319
389 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
390 default y
391 select ARM64_WORKAROUND_CLEAN_CACHE
392 help
393 This option adds an alternative code sequence to work around ARM
394 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
395 AXI master interface and an L2 cache.
396
397 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
398 and is unable to accept a certain write via this interface, it will
399 not progress on read data presented on the read data channel and the
400 system can deadlock.
401
402 The workaround promotes data cache clean instructions to
403 data cache clean-and-invalidate.
404 Please note that this does not necessarily enable the workaround,
405 as it depends on the alternative framework, which will only patch
406 the kernel if an affected CPU is detected.
407
408 If unsure, say Y.
409
410config ARM64_ERRATUM_827319
411 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
412 default y
413 select ARM64_WORKAROUND_CLEAN_CACHE
414 help
415 This option adds an alternative code sequence to work around ARM
416 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
417 master interface and an L2 cache.
418
419 Under certain conditions this erratum can cause a clean line eviction
420 to occur at the same time as another transaction to the same address
421 on the AMBA 5 CHI interface, which can cause data corruption if the
422 interconnect reorders the two transactions.
423
424 The workaround promotes data cache clean instructions to
425 data cache clean-and-invalidate.
426 Please note that this does not necessarily enable the workaround,
427 as it depends on the alternative framework, which will only patch
428 the kernel if an affected CPU is detected.
429
430 If unsure, say Y.
431
432config ARM64_ERRATUM_824069
433 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
434 default y
435 select ARM64_WORKAROUND_CLEAN_CACHE
436 help
437 This option adds an alternative code sequence to work around ARM
438 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
439 to a coherent interconnect.
440
441 If a Cortex-A53 processor is executing a store or prefetch for
442 write instruction at the same time as a processor in another
443 cluster is executing a cache maintenance operation to the same
444 address, then this erratum might cause a clean cache line to be
445 incorrectly marked as dirty.
446
447 The workaround promotes data cache clean instructions to
448 data cache clean-and-invalidate.
449 Please note that this option does not necessarily enable the
450 workaround, as it depends on the alternative framework, which will
451 only patch the kernel if an affected CPU is detected.
452
453 If unsure, say Y.
454
455config ARM64_ERRATUM_819472
456 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
457 default y
458 select ARM64_WORKAROUND_CLEAN_CACHE
459 help
460 This option adds an alternative code sequence to work around ARM
461 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
462 present when it is connected to a coherent interconnect.
463
464 If the processor is executing a load and store exclusive sequence at
465 the same time as a processor in another cluster is executing a cache
466 maintenance operation to the same address, then this erratum might
467 cause data corruption.
468
469 The workaround promotes data cache clean instructions to
470 data cache clean-and-invalidate.
471 Please note that this does not necessarily enable the workaround,
472 as it depends on the alternative framework, which will only patch
473 the kernel if an affected CPU is detected.
474
475 If unsure, say Y.
476
477config ARM64_ERRATUM_832075
478 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
479 default y
480 help
481 This option adds an alternative code sequence to work around ARM
482 erratum 832075 on Cortex-A57 parts up to r1p2.
483
484 Affected Cortex-A57 parts might deadlock when exclusive load/store
485 instructions to Write-Back memory are mixed with Device loads.
486
487 The workaround is to promote device loads to use Load-Acquire
488 semantics.
489 Please note that this does not necessarily enable the workaround,
490 as it depends on the alternative framework, which will only patch
491 the kernel if an affected CPU is detected.
492
493 If unsure, say Y.
494
495config ARM64_ERRATUM_834220
496 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
497 depends on KVM
498 default y
499 help
500 This option adds an alternative code sequence to work around ARM
501 erratum 834220 on Cortex-A57 parts up to r1p2.
502
503 Affected Cortex-A57 parts might report a Stage 2 translation
504 fault as the result of a Stage 1 fault for load crossing a
505 page boundary when there is a permission or device memory
506 alignment fault at Stage 1 and a translation fault at Stage 2.
507
508 The workaround is to verify that the Stage 1 translation
509 doesn't generate a fault before handling the Stage 2 fault.
510 Please note that this does not necessarily enable the workaround,
511 as it depends on the alternative framework, which will only patch
512 the kernel if an affected CPU is detected.
513
514 If unsure, say Y.
515
516config ARM64_ERRATUM_1742098
517 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
518 depends on COMPAT
519 default y
520 help
521 This option removes the AES hwcap for aarch32 user-space to
522 workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
523
524 Affected parts may corrupt the AES state if an interrupt is
525 taken between a pair of AES instructions. These instructions
526 are only present if the cryptography extensions are present.
527 All software should have a fallback implementation for CPUs
528 that don't implement the cryptography extensions.
529
530 If unsure, say Y.
531
532config ARM64_ERRATUM_845719
533 bool "Cortex-A53: 845719: a load might read incorrect data"
534 depends on COMPAT
535 default y
536 help
537 This option adds an alternative code sequence to work around ARM
538 erratum 845719 on Cortex-A53 parts up to r0p4.
539
540 When running a compat (AArch32) userspace on an affected Cortex-A53
541 part, a load at EL0 from a virtual address that matches the bottom 32
542 bits of the virtual address used by a recent load at (AArch64) EL1
543 might return incorrect data.
544
545 The workaround is to write the contextidr_el1 register on exception
546 return to a 32-bit task.
547 Please note that this does not necessarily enable the workaround,
548 as it depends on the alternative framework, which will only patch
549 the kernel if an affected CPU is detected.
550
551 If unsure, say Y.
552
553config ARM64_ERRATUM_843419
554 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
555 default y
556 select ARM64_MODULE_PLTS if MODULES
557 help
558 This option links the kernel with '--fix-cortex-a53-843419' and
559 enables PLT support to replace certain ADRP instructions, which can
560 cause subsequent memory accesses to use an incorrect address on
561 Cortex-A53 parts up to r0p4.
562
563 If unsure, say Y.
564
565config ARM64_LD_HAS_FIX_ERRATUM_843419
566 def_bool $(ld-option,--fix-cortex-a53-843419)
567
568config ARM64_ERRATUM_1024718
569 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
570 default y
571 help
572 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
573
574 Affected Cortex-A55 cores (all revisions) could cause incorrect
575 update of the hardware dirty bit when the DBM/AP bits are updated
576 without a break-before-make. The workaround is to disable the usage
577 of hardware DBM locally on the affected cores. CPUs not affected by
578 this erratum will continue to use the feature.
579
580 If unsure, say Y.
581
582config ARM64_ERRATUM_1418040
583 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
584 default y
585 depends on COMPAT
586 help
587 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
588 errata 1188873 and 1418040.
589
590 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
591 cause register corruption when accessing the timer registers
592 from AArch32 userspace.
593
594 If unsure, say Y.
595
596config ARM64_WORKAROUND_SPECULATIVE_AT
597 bool
598
599config ARM64_ERRATUM_1165522
600 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
601 default y
602 select ARM64_WORKAROUND_SPECULATIVE_AT
603 help
604 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
605
606 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
607 corrupted TLBs by speculating an AT instruction during a guest
608 context switch.
609
610 If unsure, say Y.
611
612config ARM64_ERRATUM_1319367
613 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
614 default y
615 select ARM64_WORKAROUND_SPECULATIVE_AT
616 help
617 This option adds work arounds for ARM Cortex-A57 erratum 1319537
618 and A72 erratum 1319367
619
620 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
621 speculating an AT instruction during a guest context switch.
622
623 If unsure, say Y.
624
625config ARM64_ERRATUM_1530923
626 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
627 default y
628 select ARM64_WORKAROUND_SPECULATIVE_AT
629 help
630 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
631
632 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
633 corrupted TLBs by speculating an AT instruction during a guest
634 context switch.
635
636 If unsure, say Y.
637
638config ARM64_WORKAROUND_REPEAT_TLBI
639 bool
640
641config ARM64_ERRATUM_2441007
642 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
643 default y
644 select ARM64_WORKAROUND_REPEAT_TLBI
645 help
646 This option adds a workaround for ARM Cortex-A55 erratum #2441007.
647
648 Under very rare circumstances, affected Cortex-A55 CPUs
649 may not handle a race between a break-before-make sequence on one
650 CPU, and another CPU accessing the same page. This could allow a
651 store to a page that has been unmapped.
652
653 Work around this by adding the affected CPUs to the list that needs
654 TLB sequences to be done twice.
655
656 If unsure, say Y.
657
658config ARM64_ERRATUM_1286807
659 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
660 default y
661 select ARM64_WORKAROUND_REPEAT_TLBI
662 help
663 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
664
665 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
666 address for a cacheable mapping of a location is being
667 accessed by a core while another core is remapping the virtual
668 address to a new physical page using the recommended
669 break-before-make sequence, then under very rare circumstances
670 TLBI+DSB completes before a read using the translation being
671 invalidated has been observed by other observers. The
672 workaround repeats the TLBI+DSB operation.
673
674config ARM64_ERRATUM_1463225
675 bool "Cortex-A76: Software Step might prevent interrupt recognition"
676 default y
677 help
678 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
679
680 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
681 of a system call instruction (SVC) can prevent recognition of
682 subsequent interrupts when software stepping is disabled in the
683 exception handler of the system call and either kernel debugging
684 is enabled or VHE is in use.
685
686 Work around the erratum by triggering a dummy step exception
687 when handling a system call from a task that is being stepped
688 in a VHE configuration of the kernel.
689
690 If unsure, say Y.
691
692config ARM64_ERRATUM_1542419
693 bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
694 default y
695 help
696 This option adds a workaround for ARM Neoverse-N1 erratum
697 1542419.
698
699 Affected Neoverse-N1 cores could execute a stale instruction when
700 modified by another CPU. The workaround depends on a firmware
701 counterpart.
702
703 Workaround the issue by hiding the DIC feature from EL0. This
704 forces user-space to perform cache maintenance.
705
706 If unsure, say Y.
707
708config ARM64_ERRATUM_1508412
709 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
710 default y
711 help
712 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
713
714 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
715 of a store-exclusive or read of PAR_EL1 and a load with device or
716 non-cacheable memory attributes. The workaround depends on a firmware
717 counterpart.
718
719 KVM guests must also have the workaround implemented or they can
720 deadlock the system.
721
722 Work around the issue by inserting DMB SY barriers around PAR_EL1
723 register reads and warning KVM users. The DMB barrier is sufficient
724 to prevent a speculative PAR_EL1 read.
725
726 If unsure, say Y.
727
728config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
729 bool
730
731config ARM64_ERRATUM_2051678
732 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
733 default y
734 help
735 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
736 Affected Cortex-A510 might not respect the ordering rules for
737 hardware update of the page table's dirty bit. The workaround
738 is to not enable the feature on affected CPUs.
739
740 If unsure, say Y.
741
742config ARM64_ERRATUM_2077057
743 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
744 default y
745 help
746 This option adds the workaround for ARM Cortex-A510 erratum 2077057.
747 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
748 expected, but a Pointer Authentication trap is taken instead. The
749 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
750 EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
751
752 This can only happen when EL2 is stepping EL1.
753
754 When these conditions occur, the SPSR_EL2 value is unchanged from the
755 previous guest entry, and can be restored from the in-memory copy.
756
757 If unsure, say Y.
758
759config ARM64_ERRATUM_2658417
760 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
761 default y
762 help
763 This option adds the workaround for ARM Cortex-A510 erratum 2658417.
764 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
765 BFMMLA or VMMLA instructions in rare circumstances when a pair of
766 A510 CPUs are using shared neon hardware. As the sharing is not
767 discoverable by the kernel, hide the BF16 HWCAP to indicate that
768 user-space should not be using these instructions.
769
770 If unsure, say Y.
771
772config ARM64_ERRATUM_2119858
773 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
774 default y
775 depends on CORESIGHT_TRBE
776 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
777 help
778 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
779
780 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
781 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
782 the event of a WRAP event.
783
784 Work around the issue by always making sure we move the TRBPTR_EL1 by
785 256 bytes before enabling the buffer and filling the first 256 bytes of
786 the buffer with ETM ignore packets upon disabling.
787
788 If unsure, say Y.
789
790config ARM64_ERRATUM_2139208
791 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
792 default y
793 depends on CORESIGHT_TRBE
794 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
795 help
796 This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
797
798 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
799 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
800 the event of a WRAP event.
801
802 Work around the issue by always making sure we move the TRBPTR_EL1 by
803 256 bytes before enabling the buffer and filling the first 256 bytes of
804 the buffer with ETM ignore packets upon disabling.
805
806 If unsure, say Y.
807
808config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
809 bool
810
811config ARM64_ERRATUM_2054223
812 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
813 default y
814 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
815 help
816 Enable workaround for ARM Cortex-A710 erratum 2054223
817
818 Affected cores may fail to flush the trace data on a TSB instruction, when
819 the PE is in trace prohibited state. This will cause losing a few bytes
820 of the trace cached.
821
822 Workaround is to issue two TSB consecutively on affected cores.
823
824 If unsure, say Y.
825
826config ARM64_ERRATUM_2067961
827 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
828 default y
829 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
830 help
831 Enable workaround for ARM Neoverse-N2 erratum 2067961
832
833 Affected cores may fail to flush the trace data on a TSB instruction, when
834 the PE is in trace prohibited state. This will cause losing a few bytes
835 of the trace cached.
836
837 Workaround is to issue two TSB consecutively on affected cores.
838
839 If unsure, say Y.
840
841config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
842 bool
843
844config ARM64_ERRATUM_2253138
845 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
846 depends on CORESIGHT_TRBE
847 default y
848 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
849 help
850 This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
851
852 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
853 for TRBE. Under some conditions, the TRBE might generate a write to the next
854 virtually addressed page following the last page of the TRBE address space
855 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
856
857 Work around this in the driver by always making sure that there is a
858 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
859
860 If unsure, say Y.
861
862config ARM64_ERRATUM_2224489
863 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
864 depends on CORESIGHT_TRBE
865 default y
866 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
867 help
868 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
869
870 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
871 for TRBE. Under some conditions, the TRBE might generate a write to the next
872 virtually addressed page following the last page of the TRBE address space
873 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
874
875 Work around this in the driver by always making sure that there is a
876 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
877
878 If unsure, say Y.
879
880config ARM64_ERRATUM_2441009
881 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
882 default y
883 select ARM64_WORKAROUND_REPEAT_TLBI
884 help
885 This option adds a workaround for ARM Cortex-A510 erratum #2441009.
886
887 Under very rare circumstances, affected Cortex-A510 CPUs
888 may not handle a race between a break-before-make sequence on one
889 CPU, and another CPU accessing the same page. This could allow a
890 store to a page that has been unmapped.
891
892 Work around this by adding the affected CPUs to the list that needs
893 TLB sequences to be done twice.
894
895 If unsure, say Y.
896
897config ARM64_ERRATUM_2064142
898 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
899 depends on CORESIGHT_TRBE
900 default y
901 help
902 This option adds the workaround for ARM Cortex-A510 erratum 2064142.
903
904 Affected Cortex-A510 core might fail to write into system registers after the
905 TRBE has been disabled. Under some conditions after the TRBE has been disabled
906 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
907 and TRBTRG_EL1 will be ignored and will not be effected.
908
909 Work around this in the driver by executing TSB CSYNC and DSB after collection
910 is stopped and before performing a system register write to one of the affected
911 registers.
912
913 If unsure, say Y.
914
915config ARM64_ERRATUM_2038923
916 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
917 depends on CORESIGHT_TRBE
918 default y
919 help
920 This option adds the workaround for ARM Cortex-A510 erratum 2038923.
921
922 Affected Cortex-A510 core might cause an inconsistent view on whether trace is
923 prohibited within the CPU. As a result, the trace buffer or trace buffer state
924 might be corrupted. This happens after TRBE buffer has been enabled by setting
925 TRBLIMITR_EL1.E, followed by just a single context synchronization event before
926 execution changes from a context, in which trace is prohibited to one where it
927 isn't, or vice versa. In these mentioned conditions, the view of whether trace
928 is prohibited is inconsistent between parts of the CPU, and the trace buffer or
929 the trace buffer state might be corrupted.
930
931 Work around this in the driver by preventing an inconsistent view of whether the
932 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
933 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
934 two ISB instructions if no ERET is to take place.
935
936 If unsure, say Y.
937
938config ARM64_ERRATUM_1902691
939 bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
940 depends on CORESIGHT_TRBE
941 default y
942 help
943 This option adds the workaround for ARM Cortex-A510 erratum 1902691.
944
945 Affected Cortex-A510 core might cause trace data corruption, when being written
946 into the memory. Effectively TRBE is broken and hence cannot be used to capture
947 trace data.
948
949 Work around this problem in the driver by just preventing TRBE initialization on
950 affected cpus. The firmware must have disabled the access to TRBE for the kernel
951 on such implementations. This will cover the kernel for any firmware that doesn't
952 do this already.
953
954 If unsure, say Y.
955
956config ARM64_ERRATUM_2457168
957 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
958 depends on ARM64_AMU_EXTN
959 default y
960 help
961 This option adds the workaround for ARM Cortex-A510 erratum 2457168.
962
963 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
964 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
965 incorrectly giving a significantly higher output value.
966
967 Work around this problem by returning 0 when reading the affected counter in
968 key locations that results in disabling all users of this counter. This effect
969 is the same to firmware disabling affected counters.
970
971 If unsure, say Y.
972
973config ARM64_ERRATUM_2645198
974 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
975 default y
976 help
977 This option adds the workaround for ARM Cortex-A715 erratum 2645198.
978
979 If a Cortex-A715 cpu sees a page mapping permissions change from executable
980 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
981 next instruction abort caused by permission fault.
982
983 Only user-space does executable to non-executable permission transition via
984 mprotect() system call. Workaround the problem by doing a break-before-make
985 TLB invalidation, for all changes to executable user space mappings.
986
987 If unsure, say Y.
988
989config CAVIUM_ERRATUM_22375
990 bool "Cavium erratum 22375, 24313"
991 default y
992 help
993 Enable workaround for errata 22375 and 24313.
994
995 This implements two gicv3-its errata workarounds for ThunderX. Both
996 with a small impact affecting only ITS table allocation.
997
998 erratum 22375: only alloc 8MB table size
999 erratum 24313: ignore memory access type
1000
1001 The fixes are in ITS initialization and basically ignore memory access
1002 type and table size provided by the TYPER and BASER registers.
1003
1004 If unsure, say Y.
1005
1006config CAVIUM_ERRATUM_23144
1007 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1008 depends on NUMA
1009 default y
1010 help
1011 ITS SYNC command hang for cross node io and collections/cpu mapping.
1012
1013 If unsure, say Y.
1014
1015config CAVIUM_ERRATUM_23154
1016 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1017 default y
1018 help
1019 The ThunderX GICv3 implementation requires a modified version for
1020 reading the IAR status to ensure data synchronization
1021 (access to icc_iar1_el1 is not sync'ed before and after).
1022
1023 It also suffers from erratum 38545 (also present on Marvell's
1024 OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1025 spuriously presented to the CPU interface.
1026
1027 If unsure, say Y.
1028
1029config CAVIUM_ERRATUM_27456
1030 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1031 default y
1032 help
1033 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1034 instructions may cause the icache to become corrupted if it
1035 contains data for a non-current ASID. The fix is to
1036 invalidate the icache when changing the mm context.
1037
1038 If unsure, say Y.
1039
1040config CAVIUM_ERRATUM_30115
1041 bool "Cavium erratum 30115: Guest may disable interrupts in host"
1042 default y
1043 help
1044 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1045 1.2, and T83 Pass 1.0, KVM guest execution may disable
1046 interrupts in host. Trapping both GICv3 group-0 and group-1
1047 accesses sidesteps the issue.
1048
1049 If unsure, say Y.
1050
1051config CAVIUM_TX2_ERRATUM_219
1052 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1053 default y
1054 help
1055 On Cavium ThunderX2, a load, store or prefetch instruction between a
1056 TTBR update and the corresponding context synchronizing operation can
1057 cause a spurious Data Abort to be delivered to any hardware thread in
1058 the CPU core.
1059
1060 Work around the issue by avoiding the problematic code sequence and
1061 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1062 trap handler performs the corresponding register access, skips the
1063 instruction and ensures context synchronization by virtue of the
1064 exception return.
1065
1066 If unsure, say Y.
1067
1068config FUJITSU_ERRATUM_010001
1069 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1070 default y
1071 help
1072 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1073 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1074 accesses may cause undefined fault (Data abort, DFSC=0b111111).
1075 This fault occurs under a specific hardware condition when a
1076 load/store instruction performs an address translation using:
1077 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1078 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1079 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1080 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1081
1082 The workaround is to ensure these bits are clear in TCR_ELx.
1083 The workaround only affects the Fujitsu-A64FX.
1084
1085 If unsure, say Y.
1086
1087config HISILICON_ERRATUM_161600802
1088 bool "Hip07 161600802: Erroneous redistributor VLPI base"
1089 default y
1090 help
1091 The HiSilicon Hip07 SoC uses the wrong redistributor base
1092 when issued ITS commands such as VMOVP and VMAPP, and requires
1093 a 128kB offset to be applied to the target address in this commands.
1094
1095 If unsure, say Y.
1096
1097config QCOM_FALKOR_ERRATUM_1003
1098 bool "Falkor E1003: Incorrect translation due to ASID change"
1099 default y
1100 help
1101 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1102 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1103 in TTBR1_EL1, this situation only occurs in the entry trampoline and
1104 then only for entries in the walk cache, since the leaf translation
1105 is unchanged. Work around the erratum by invalidating the walk cache
1106 entries for the trampoline before entering the kernel proper.
1107
1108config QCOM_FALKOR_ERRATUM_1009
1109 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1110 default y
1111 select ARM64_WORKAROUND_REPEAT_TLBI
1112 help
1113 On Falkor v1, the CPU may prematurely complete a DSB following a
1114 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1115 one more time to fix the issue.
1116
1117 If unsure, say Y.
1118
1119config QCOM_QDF2400_ERRATUM_0065
1120 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1121 default y
1122 help
1123 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1124 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1125 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1126
1127 If unsure, say Y.
1128
1129config QCOM_FALKOR_ERRATUM_E1041
1130 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1131 default y
1132 help
1133 Falkor CPU may speculatively fetch instructions from an improper
1134 memory location when MMU translation is changed from SCTLR_ELn[M]=1
1135 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1136
1137 If unsure, say Y.
1138
1139config NVIDIA_CARMEL_CNP_ERRATUM
1140 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1141 default y
1142 help
1143 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1144 invalidate shared TLB entries installed by a different core, as it would
1145 on standard ARM cores.
1146
1147 If unsure, say Y.
1148
1149config SOCIONEXT_SYNQUACER_PREITS
1150 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1151 default y
1152 help
1153 Socionext Synquacer SoCs implement a separate h/w block to generate
1154 MSI doorbell writes with non-zero values for the device ID.
1155
1156 If unsure, say Y.
1157
1158endmenu # "ARM errata workarounds via the alternatives framework"
1159
1160choice
1161 prompt "Page size"
1162 default ARM64_4K_PAGES
1163 help
1164 Page size (translation granule) configuration.
1165
1166config ARM64_4K_PAGES
1167 bool "4KB"
1168 help
1169 This feature enables 4KB pages support.
1170
1171config ARM64_16K_PAGES
1172 bool "16KB"
1173 help
1174 The system will use 16KB pages support. AArch32 emulation
1175 requires applications compiled with 16K (or a multiple of 16K)
1176 aligned segments.
1177
1178config ARM64_64K_PAGES
1179 bool "64KB"
1180 help
1181 This feature enables 64KB pages support (4KB by default)
1182 allowing only two levels of page tables and faster TLB
1183 look-up. AArch32 emulation requires applications compiled
1184 with 64K aligned segments.
1185
1186endchoice
1187
1188choice
1189 prompt "Virtual address space size"
1190 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1191 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1192 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1193 help
1194 Allows choosing one of multiple possible virtual address
1195 space sizes. The level of translation table is determined by
1196 a combination of page size and virtual address space size.
1197
1198config ARM64_VA_BITS_36
1199 bool "36-bit" if EXPERT
1200 depends on ARM64_16K_PAGES
1201
1202config ARM64_VA_BITS_39
1203 bool "39-bit"
1204 depends on ARM64_4K_PAGES
1205
1206config ARM64_VA_BITS_42
1207 bool "42-bit"
1208 depends on ARM64_64K_PAGES
1209
1210config ARM64_VA_BITS_47
1211 bool "47-bit"
1212 depends on ARM64_16K_PAGES
1213
1214config ARM64_VA_BITS_48
1215 bool "48-bit"
1216
1217config ARM64_VA_BITS_52
1218 bool "52-bit"
1219 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1220 help
1221 Enable 52-bit virtual addressing for userspace when explicitly
1222 requested via a hint to mmap(). The kernel will also use 52-bit
1223 virtual addresses for its own mappings (provided HW support for
1224 this feature is available, otherwise it reverts to 48-bit).
1225
1226 NOTE: Enabling 52-bit virtual addressing in conjunction with
1227 ARMv8.3 Pointer Authentication will result in the PAC being
1228 reduced from 7 bits to 3 bits, which may have a significant
1229 impact on its susceptibility to brute-force attacks.
1230
1231 If unsure, select 48-bit virtual addressing instead.
1232
1233endchoice
1234
1235config ARM64_FORCE_52BIT
1236 bool "Force 52-bit virtual addresses for userspace"
1237 depends on ARM64_VA_BITS_52 && EXPERT
1238 help
1239 For systems with 52-bit userspace VAs enabled, the kernel will attempt
1240 to maintain compatibility with older software by providing 48-bit VAs
1241 unless a hint is supplied to mmap.
1242
1243 This configuration option disables the 48-bit compatibility logic, and
1244 forces all userspace addresses to be 52-bit on HW that supports it. One
1245 should only enable this configuration option for stress testing userspace
1246 memory management code. If unsure say N here.
1247
1248config ARM64_VA_BITS
1249 int
1250 default 36 if ARM64_VA_BITS_36
1251 default 39 if ARM64_VA_BITS_39
1252 default 42 if ARM64_VA_BITS_42
1253 default 47 if ARM64_VA_BITS_47
1254 default 48 if ARM64_VA_BITS_48
1255 default 52 if ARM64_VA_BITS_52
1256
1257choice
1258 prompt "Physical address space size"
1259 default ARM64_PA_BITS_48
1260 help
1261 Choose the maximum physical address range that the kernel will
1262 support.
1263
1264config ARM64_PA_BITS_48
1265 bool "48-bit"
1266
1267config ARM64_PA_BITS_52
1268 bool "52-bit (ARMv8.2)"
1269 depends on ARM64_64K_PAGES
1270 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1271 help
1272 Enable support for a 52-bit physical address space, introduced as
1273 part of the ARMv8.2-LPA extension.
1274
1275 With this enabled, the kernel will also continue to work on CPUs that
1276 do not support ARMv8.2-LPA, but with some added memory overhead (and
1277 minor performance overhead).
1278
1279endchoice
1280
1281config ARM64_PA_BITS
1282 int
1283 default 48 if ARM64_PA_BITS_48
1284 default 52 if ARM64_PA_BITS_52
1285
1286choice
1287 prompt "Endianness"
1288 default CPU_LITTLE_ENDIAN
1289 help
1290 Select the endianness of data accesses performed by the CPU. Userspace
1291 applications will need to be compiled and linked for the endianness
1292 that is selected here.
1293
1294config CPU_BIG_ENDIAN
1295 bool "Build big-endian kernel"
1296 depends on !LD_IS_LLD || LLD_VERSION >= 130000
1297 help
1298 Say Y if you plan on running a kernel with a big-endian userspace.
1299
1300config CPU_LITTLE_ENDIAN
1301 bool "Build little-endian kernel"
1302 help
1303 Say Y if you plan on running a kernel with a little-endian userspace.
1304 This is usually the case for distributions targeting arm64.
1305
1306endchoice
1307
1308config SCHED_MC
1309 bool "Multi-core scheduler support"
1310 help
1311 Multi-core scheduler support improves the CPU scheduler's decision
1312 making when dealing with multi-core CPU chips at a cost of slightly
1313 increased overhead in some places. If unsure say N here.
1314
1315config SCHED_CLUSTER
1316 bool "Cluster scheduler support"
1317 help
1318 Cluster scheduler support improves the CPU scheduler's decision
1319 making when dealing with machines that have clusters of CPUs.
1320 Cluster usually means a couple of CPUs which are placed closely
1321 by sharing mid-level caches, last-level cache tags or internal
1322 busses.
1323
1324config SCHED_SMT
1325 bool "SMT scheduler support"
1326 help
1327 Improves the CPU scheduler's decision making when dealing with
1328 MultiThreading at a cost of slightly increased overhead in some
1329 places. If unsure say N here.
1330
1331config NR_CPUS
1332 int "Maximum number of CPUs (2-4096)"
1333 range 2 4096
1334 default "256"
1335
1336config HOTPLUG_CPU
1337 bool "Support for hot-pluggable CPUs"
1338 select GENERIC_IRQ_MIGRATION
1339 help
1340 Say Y here to experiment with turning CPUs off and on. CPUs
1341 can be controlled through /sys/devices/system/cpu.
1342
1343# Common NUMA Features
1344config NUMA
1345 bool "NUMA Memory Allocation and Scheduler Support"
1346 select GENERIC_ARCH_NUMA
1347 select ACPI_NUMA if ACPI
1348 select OF_NUMA
1349 select HAVE_SETUP_PER_CPU_AREA
1350 select NEED_PER_CPU_EMBED_FIRST_CHUNK
1351 select NEED_PER_CPU_PAGE_FIRST_CHUNK
1352 select USE_PERCPU_NUMA_NODE_ID
1353 help
1354 Enable NUMA (Non-Uniform Memory Access) support.
1355
1356 The kernel will try to allocate memory used by a CPU on the
1357 local memory of the CPU and add some more
1358 NUMA awareness to the kernel.
1359
1360config NODES_SHIFT
1361 int "Maximum NUMA Nodes (as a power of 2)"
1362 range 1 10
1363 default "4"
1364 depends on NUMA
1365 help
1366 Specify the maximum number of NUMA Nodes available on the target
1367 system. Increases memory reserved to accommodate various tables.
1368
1369source "kernel/Kconfig.hz"
1370
1371config ARCH_SPARSEMEM_ENABLE
1372 def_bool y
1373 select SPARSEMEM_VMEMMAP_ENABLE
1374 select SPARSEMEM_VMEMMAP
1375
1376config HW_PERF_EVENTS
1377 def_bool y
1378 depends on ARM_PMU
1379
1380# Supported by clang >= 7.0 or GCC >= 12.0.0
1381config CC_HAVE_SHADOW_CALL_STACK
1382 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1383
1384config PARAVIRT
1385 bool "Enable paravirtualization code"
1386 help
1387 This changes the kernel so it can modify itself when it is run
1388 under a hypervisor, potentially improving performance significantly
1389 over full virtualization.
1390
1391config PARAVIRT_TIME_ACCOUNTING
1392 bool "Paravirtual steal time accounting"
1393 select PARAVIRT
1394 help
1395 Select this option to enable fine granularity task steal time
1396 accounting. Time spent executing other tasks in parallel with
1397 the current vCPU is discounted from the vCPU power. To account for
1398 that, there can be a small performance impact.
1399
1400 If in doubt, say N here.
1401
1402config KEXEC
1403 depends on PM_SLEEP_SMP
1404 select KEXEC_CORE
1405 bool "kexec system call"
1406 help
1407 kexec is a system call that implements the ability to shutdown your
1408 current kernel, and to start another kernel. It is like a reboot
1409 but it is independent of the system firmware. And like a reboot
1410 you can start any kernel with it, not just Linux.
1411
1412config KEXEC_FILE
1413 bool "kexec file based system call"
1414 select KEXEC_CORE
1415 select HAVE_IMA_KEXEC if IMA
1416 help
1417 This is new version of kexec system call. This system call is
1418 file based and takes file descriptors as system call argument
1419 for kernel and initramfs as opposed to list of segments as
1420 accepted by previous system call.
1421
1422config KEXEC_SIG
1423 bool "Verify kernel signature during kexec_file_load() syscall"
1424 depends on KEXEC_FILE
1425 help
1426 Select this option to verify a signature with loaded kernel
1427 image. If configured, any attempt of loading a image without
1428 valid signature will fail.
1429
1430 In addition to that option, you need to enable signature
1431 verification for the corresponding kernel image type being
1432 loaded in order for this to work.
1433
1434config KEXEC_IMAGE_VERIFY_SIG
1435 bool "Enable Image signature verification support"
1436 default y
1437 depends on KEXEC_SIG
1438 depends on EFI && SIGNED_PE_FILE_VERIFICATION
1439 help
1440 Enable Image signature verification support.
1441
1442comment "Support for PE file signature verification disabled"
1443 depends on KEXEC_SIG
1444 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1445
1446config CRASH_DUMP
1447 bool "Build kdump crash kernel"
1448 help
1449 Generate crash dump after being started by kexec. This should
1450 be normally only set in special crash dump kernels which are
1451 loaded in the main kernel with kexec-tools into a specially
1452 reserved region and then later executed after a crash by
1453 kdump/kexec.
1454
1455 For more details see Documentation/admin-guide/kdump/kdump.rst
1456
1457config TRANS_TABLE
1458 def_bool y
1459 depends on HIBERNATION || KEXEC_CORE
1460
1461config XEN_DOM0
1462 def_bool y
1463 depends on XEN
1464
1465config XEN
1466 bool "Xen guest support on ARM64"
1467 depends on ARM64 && OF
1468 select SWIOTLB_XEN
1469 select PARAVIRT
1470 help
1471 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1472
1473config ARCH_FORCE_MAX_ORDER
1474 int
1475 default "14" if ARM64_64K_PAGES
1476 default "12" if ARM64_16K_PAGES
1477 default "11"
1478 help
1479 The kernel memory allocator divides physically contiguous memory
1480 blocks into "zones", where each zone is a power of two number of
1481 pages. This option selects the largest power of two that the kernel
1482 keeps in the memory allocator. If you need to allocate very large
1483 blocks of physically contiguous memory, then you may need to
1484 increase this value.
1485
1486 This config option is actually maximum order plus one. For example,
1487 a value of 11 means that the largest free memory block is 2^10 pages.
1488
1489 We make sure that we can allocate upto a HugePage size for each configuration.
1490 Hence we have :
1491 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1492
1493 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1494 4M allocations matching the default size used by generic code.
1495
1496config UNMAP_KERNEL_AT_EL0
1497 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1498 default y
1499 help
1500 Speculation attacks against some high-performance processors can
1501 be used to bypass MMU permission checks and leak kernel data to
1502 userspace. This can be defended against by unmapping the kernel
1503 when running in userspace, mapping it back in on exception entry
1504 via a trampoline page in the vector table.
1505
1506 If unsure, say Y.
1507
1508config MITIGATE_SPECTRE_BRANCH_HISTORY
1509 bool "Mitigate Spectre style attacks against branch history" if EXPERT
1510 default y
1511 help
1512 Speculation attacks against some high-performance processors can
1513 make use of branch history to influence future speculation.
1514 When taking an exception from user-space, a sequence of branches
1515 or a firmware call overwrites the branch history.
1516
1517config RODATA_FULL_DEFAULT_ENABLED
1518 bool "Apply r/o permissions of VM areas also to their linear aliases"
1519 default y
1520 help
1521 Apply read-only attributes of VM areas to the linear alias of
1522 the backing pages as well. This prevents code or read-only data
1523 from being modified (inadvertently or intentionally) via another
1524 mapping of the same memory page. This additional enhancement can
1525 be turned off at runtime by passing rodata=[off|on] (and turned on
1526 with rodata=full if this option is set to 'n')
1527
1528 This requires the linear region to be mapped down to pages,
1529 which may adversely affect performance in some cases.
1530
1531config ARM64_SW_TTBR0_PAN
1532 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1533 help
1534 Enabling this option prevents the kernel from accessing
1535 user-space memory directly by pointing TTBR0_EL1 to a reserved
1536 zeroed area and reserved ASID. The user access routines
1537 restore the valid TTBR0_EL1 temporarily.
1538
1539config ARM64_TAGGED_ADDR_ABI
1540 bool "Enable the tagged user addresses syscall ABI"
1541 default y
1542 help
1543 When this option is enabled, user applications can opt in to a
1544 relaxed ABI via prctl() allowing tagged addresses to be passed
1545 to system calls as pointer arguments. For details, see
1546 Documentation/arm64/tagged-address-abi.rst.
1547
1548menuconfig COMPAT
1549 bool "Kernel support for 32-bit EL0"
1550 depends on ARM64_4K_PAGES || EXPERT
1551 select HAVE_UID16
1552 select OLD_SIGSUSPEND3
1553 select COMPAT_OLD_SIGACTION
1554 help
1555 This option enables support for a 32-bit EL0 running under a 64-bit
1556 kernel at EL1. AArch32-specific components such as system calls,
1557 the user helper functions, VFP support and the ptrace interface are
1558 handled appropriately by the kernel.
1559
1560 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1561 that you will only be able to execute AArch32 binaries that were compiled
1562 with page size aligned segments.
1563
1564 If you want to execute 32-bit userspace applications, say Y.
1565
1566if COMPAT
1567
1568config KUSER_HELPERS
1569 bool "Enable kuser helpers page for 32-bit applications"
1570 default y
1571 help
1572 Warning: disabling this option may break 32-bit user programs.
1573
1574 Provide kuser helpers to compat tasks. The kernel provides
1575 helper code to userspace in read only form at a fixed location
1576 to allow userspace to be independent of the CPU type fitted to
1577 the system. This permits binaries to be run on ARMv4 through
1578 to ARMv8 without modification.
1579
1580 See Documentation/arm/kernel_user_helpers.rst for details.
1581
1582 However, the fixed address nature of these helpers can be used
1583 by ROP (return orientated programming) authors when creating
1584 exploits.
1585
1586 If all of the binaries and libraries which run on your platform
1587 are built specifically for your platform, and make no use of
1588 these helpers, then you can turn this option off to hinder
1589 such exploits. However, in that case, if a binary or library
1590 relying on those helpers is run, it will not function correctly.
1591
1592 Say N here only if you are absolutely certain that you do not
1593 need these helpers; otherwise, the safe option is to say Y.
1594
1595config COMPAT_VDSO
1596 bool "Enable vDSO for 32-bit applications"
1597 depends on !CPU_BIG_ENDIAN
1598 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1599 select GENERIC_COMPAT_VDSO
1600 default y
1601 help
1602 Place in the process address space of 32-bit applications an
1603 ELF shared object providing fast implementations of gettimeofday
1604 and clock_gettime.
1605
1606 You must have a 32-bit build of glibc 2.22 or later for programs
1607 to seamlessly take advantage of this.
1608
1609config THUMB2_COMPAT_VDSO
1610 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1611 depends on COMPAT_VDSO
1612 default y
1613 help
1614 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1615 otherwise with '-marm'.
1616
1617config COMPAT_ALIGNMENT_FIXUPS
1618 bool "Fix up misaligned multi-word loads and stores in user space"
1619
1620menuconfig ARMV8_DEPRECATED
1621 bool "Emulate deprecated/obsolete ARMv8 instructions"
1622 depends on SYSCTL
1623 help
1624 Legacy software support may require certain instructions
1625 that have been deprecated or obsoleted in the architecture.
1626
1627 Enable this config to enable selective emulation of these
1628 features.
1629
1630 If unsure, say Y
1631
1632if ARMV8_DEPRECATED
1633
1634config SWP_EMULATION
1635 bool "Emulate SWP/SWPB instructions"
1636 help
1637 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1638 they are always undefined. Say Y here to enable software
1639 emulation of these instructions for userspace using LDXR/STXR.
1640 This feature can be controlled at runtime with the abi.swp
1641 sysctl which is disabled by default.
1642
1643 In some older versions of glibc [<=2.8] SWP is used during futex
1644 trylock() operations with the assumption that the code will not
1645 be preempted. This invalid assumption may be more likely to fail
1646 with SWP emulation enabled, leading to deadlock of the user
1647 application.
1648
1649 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1650 on an external transaction monitoring block called a global
1651 monitor to maintain update atomicity. If your system does not
1652 implement a global monitor, this option can cause programs that
1653 perform SWP operations to uncached memory to deadlock.
1654
1655 If unsure, say Y
1656
1657config CP15_BARRIER_EMULATION
1658 bool "Emulate CP15 Barrier instructions"
1659 help
1660 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1661 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1662 strongly recommended to use the ISB, DSB, and DMB
1663 instructions instead.
1664
1665 Say Y here to enable software emulation of these
1666 instructions for AArch32 userspace code. When this option is
1667 enabled, CP15 barrier usage is traced which can help
1668 identify software that needs updating. This feature can be
1669 controlled at runtime with the abi.cp15_barrier sysctl.
1670
1671 If unsure, say Y
1672
1673config SETEND_EMULATION
1674 bool "Emulate SETEND instruction"
1675 help
1676 The SETEND instruction alters the data-endianness of the
1677 AArch32 EL0, and is deprecated in ARMv8.
1678
1679 Say Y here to enable software emulation of the instruction
1680 for AArch32 userspace code. This feature can be controlled
1681 at runtime with the abi.setend sysctl.
1682
1683 Note: All the cpus on the system must have mixed endian support at EL0
1684 for this feature to be enabled. If a new CPU - which doesn't support mixed
1685 endian - is hotplugged in after this feature has been enabled, there could
1686 be unexpected results in the applications.
1687
1688 If unsure, say Y
1689endif # ARMV8_DEPRECATED
1690
1691endif # COMPAT
1692
1693menu "ARMv8.1 architectural features"
1694
1695config ARM64_HW_AFDBM
1696 bool "Support for hardware updates of the Access and Dirty page flags"
1697 default y
1698 help
1699 The ARMv8.1 architecture extensions introduce support for
1700 hardware updates of the access and dirty information in page
1701 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1702 capable processors, accesses to pages with PTE_AF cleared will
1703 set this bit instead of raising an access flag fault.
1704 Similarly, writes to read-only pages with the DBM bit set will
1705 clear the read-only bit (AP[2]) instead of raising a
1706 permission fault.
1707
1708 Kernels built with this configuration option enabled continue
1709 to work on pre-ARMv8.1 hardware and the performance impact is
1710 minimal. If unsure, say Y.
1711
1712config ARM64_PAN
1713 bool "Enable support for Privileged Access Never (PAN)"
1714 default y
1715 help
1716 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1717 prevents the kernel or hypervisor from accessing user-space (EL0)
1718 memory directly.
1719
1720 Choosing this option will cause any unprotected (not using
1721 copy_to_user et al) memory access to fail with a permission fault.
1722
1723 The feature is detected at runtime, and will remain as a 'nop'
1724 instruction if the cpu does not implement the feature.
1725
1726config AS_HAS_LDAPR
1727 def_bool $(as-instr,.arch_extension rcpc)
1728
1729config AS_HAS_LSE_ATOMICS
1730 def_bool $(as-instr,.arch_extension lse)
1731
1732config ARM64_LSE_ATOMICS
1733 bool
1734 default ARM64_USE_LSE_ATOMICS
1735 depends on AS_HAS_LSE_ATOMICS
1736
1737config ARM64_USE_LSE_ATOMICS
1738 bool "Atomic instructions"
1739 default y
1740 help
1741 As part of the Large System Extensions, ARMv8.1 introduces new
1742 atomic instructions that are designed specifically to scale in
1743 very large systems.
1744
1745 Say Y here to make use of these instructions for the in-kernel
1746 atomic routines. This incurs a small overhead on CPUs that do
1747 not support these instructions and requires the kernel to be
1748 built with binutils >= 2.25 in order for the new instructions
1749 to be used.
1750
1751endmenu # "ARMv8.1 architectural features"
1752
1753menu "ARMv8.2 architectural features"
1754
1755config AS_HAS_ARMV8_2
1756 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1757
1758config AS_HAS_SHA3
1759 def_bool $(as-instr,.arch armv8.2-a+sha3)
1760
1761config ARM64_PMEM
1762 bool "Enable support for persistent memory"
1763 select ARCH_HAS_PMEM_API
1764 select ARCH_HAS_UACCESS_FLUSHCACHE
1765 help
1766 Say Y to enable support for the persistent memory API based on the
1767 ARMv8.2 DCPoP feature.
1768
1769 The feature is detected at runtime, and the kernel will use DC CVAC
1770 operations if DC CVAP is not supported (following the behaviour of
1771 DC CVAP itself if the system does not define a point of persistence).
1772
1773config ARM64_RAS_EXTN
1774 bool "Enable support for RAS CPU Extensions"
1775 default y
1776 help
1777 CPUs that support the Reliability, Availability and Serviceability
1778 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1779 errors, classify them and report them to software.
1780
1781 On CPUs with these extensions system software can use additional
1782 barriers to determine if faults are pending and read the
1783 classification from a new set of registers.
1784
1785 Selecting this feature will allow the kernel to use these barriers
1786 and access the new registers if the system supports the extension.
1787 Platform RAS features may additionally depend on firmware support.
1788
1789config ARM64_CNP
1790 bool "Enable support for Common Not Private (CNP) translations"
1791 default y
1792 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1793 help
1794 Common Not Private (CNP) allows translation table entries to
1795 be shared between different PEs in the same inner shareable
1796 domain, so the hardware can use this fact to optimise the
1797 caching of such entries in the TLB.
1798
1799 Selecting this option allows the CNP feature to be detected
1800 at runtime, and does not affect PEs that do not implement
1801 this feature.
1802
1803endmenu # "ARMv8.2 architectural features"
1804
1805menu "ARMv8.3 architectural features"
1806
1807config ARM64_PTR_AUTH
1808 bool "Enable support for pointer authentication"
1809 default y
1810 help
1811 Pointer authentication (part of the ARMv8.3 Extensions) provides
1812 instructions for signing and authenticating pointers against secret
1813 keys, which can be used to mitigate Return Oriented Programming (ROP)
1814 and other attacks.
1815
1816 This option enables these instructions at EL0 (i.e. for userspace).
1817 Choosing this option will cause the kernel to initialise secret keys
1818 for each process at exec() time, with these keys being
1819 context-switched along with the process.
1820
1821 The feature is detected at runtime. If the feature is not present in
1822 hardware it will not be advertised to userspace/KVM guest nor will it
1823 be enabled.
1824
1825 If the feature is present on the boot CPU but not on a late CPU, then
1826 the late CPU will be parked. Also, if the boot CPU does not have
1827 address auth and the late CPU has then the late CPU will still boot
1828 but with the feature disabled. On such a system, this option should
1829 not be selected.
1830
1831config ARM64_PTR_AUTH_KERNEL
1832 bool "Use pointer authentication for kernel"
1833 default y
1834 depends on ARM64_PTR_AUTH
1835 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1836 # Modern compilers insert a .note.gnu.property section note for PAC
1837 # which is only understood by binutils starting with version 2.33.1.
1838 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1839 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1840 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1841 help
1842 If the compiler supports the -mbranch-protection or
1843 -msign-return-address flag (e.g. GCC 7 or later), then this option
1844 will cause the kernel itself to be compiled with return address
1845 protection. In this case, and if the target hardware is known to
1846 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1847 disabled with minimal loss of protection.
1848
1849 This feature works with FUNCTION_GRAPH_TRACER option only if
1850 DYNAMIC_FTRACE_WITH_ARGS is enabled.
1851
1852config CC_HAS_BRANCH_PROT_PAC_RET
1853 # GCC 9 or later, clang 8 or later
1854 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1855
1856config CC_HAS_SIGN_RETURN_ADDRESS
1857 # GCC 7, 8
1858 def_bool $(cc-option,-msign-return-address=all)
1859
1860config AS_HAS_PAC
1861 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1862
1863config AS_HAS_CFI_NEGATE_RA_STATE
1864 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1865
1866endmenu # "ARMv8.3 architectural features"
1867
1868menu "ARMv8.4 architectural features"
1869
1870config ARM64_AMU_EXTN
1871 bool "Enable support for the Activity Monitors Unit CPU extension"
1872 default y
1873 help
1874 The activity monitors extension is an optional extension introduced
1875 by the ARMv8.4 CPU architecture. This enables support for version 1
1876 of the activity monitors architecture, AMUv1.
1877
1878 To enable the use of this extension on CPUs that implement it, say Y.
1879
1880 Note that for architectural reasons, firmware _must_ implement AMU
1881 support when running on CPUs that present the activity monitors
1882 extension. The required support is present in:
1883 * Version 1.5 and later of the ARM Trusted Firmware
1884
1885 For kernels that have this configuration enabled but boot with broken
1886 firmware, you may need to say N here until the firmware is fixed.
1887 Otherwise you may experience firmware panics or lockups when
1888 accessing the counter registers. Even if you are not observing these
1889 symptoms, the values returned by the register reads might not
1890 correctly reflect reality. Most commonly, the value read will be 0,
1891 indicating that the counter is not enabled.
1892
1893config AS_HAS_ARMV8_4
1894 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1895
1896config ARM64_TLB_RANGE
1897 bool "Enable support for tlbi range feature"
1898 default y
1899 depends on AS_HAS_ARMV8_4
1900 help
1901 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1902 range of input addresses.
1903
1904 The feature introduces new assembly instructions, and they were
1905 support when binutils >= 2.30.
1906
1907endmenu # "ARMv8.4 architectural features"
1908
1909menu "ARMv8.5 architectural features"
1910
1911config AS_HAS_ARMV8_5
1912 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1913
1914config ARM64_BTI
1915 bool "Branch Target Identification support"
1916 default y
1917 help
1918 Branch Target Identification (part of the ARMv8.5 Extensions)
1919 provides a mechanism to limit the set of locations to which computed
1920 branch instructions such as BR or BLR can jump.
1921
1922 To make use of BTI on CPUs that support it, say Y.
1923
1924 BTI is intended to provide complementary protection to other control
1925 flow integrity protection mechanisms, such as the Pointer
1926 authentication mechanism provided as part of the ARMv8.3 Extensions.
1927 For this reason, it does not make sense to enable this option without
1928 also enabling support for pointer authentication. Thus, when
1929 enabling this option you should also select ARM64_PTR_AUTH=y.
1930
1931 Userspace binaries must also be specifically compiled to make use of
1932 this mechanism. If you say N here or the hardware does not support
1933 BTI, such binaries can still run, but you get no additional
1934 enforcement of branch destinations.
1935
1936config ARM64_BTI_KERNEL
1937 bool "Use Branch Target Identification for kernel"
1938 default y
1939 depends on ARM64_BTI
1940 depends on ARM64_PTR_AUTH_KERNEL
1941 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1942 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1943 depends on !CC_IS_GCC || GCC_VERSION >= 100100
1944 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1945 depends on !CC_IS_GCC
1946 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1947 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1948 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1949 help
1950 Build the kernel with Branch Target Identification annotations
1951 and enable enforcement of this for kernel code. When this option
1952 is enabled and the system supports BTI all kernel code including
1953 modular code must have BTI enabled.
1954
1955config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1956 # GCC 9 or later, clang 8 or later
1957 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1958
1959config ARM64_E0PD
1960 bool "Enable support for E0PD"
1961 default y
1962 help
1963 E0PD (part of the ARMv8.5 extensions) allows us to ensure
1964 that EL0 accesses made via TTBR1 always fault in constant time,
1965 providing similar benefits to KASLR as those provided by KPTI, but
1966 with lower overhead and without disrupting legitimate access to
1967 kernel memory such as SPE.
1968
1969 This option enables E0PD for TTBR1 where available.
1970
1971config ARM64_AS_HAS_MTE
1972 # Initial support for MTE went in binutils 2.32.0, checked with
1973 # ".arch armv8.5-a+memtag" below. However, this was incomplete
1974 # as a late addition to the final architecture spec (LDGM/STGM)
1975 # is only supported in the newer 2.32.x and 2.33 binutils
1976 # versions, hence the extra "stgm" instruction check below.
1977 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1978
1979config ARM64_MTE
1980 bool "Memory Tagging Extension support"
1981 default y
1982 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1983 depends on AS_HAS_ARMV8_5
1984 depends on AS_HAS_LSE_ATOMICS
1985 # Required for tag checking in the uaccess routines
1986 depends on ARM64_PAN
1987 select ARCH_HAS_SUBPAGE_FAULTS
1988 select ARCH_USES_HIGH_VMA_FLAGS
1989 select ARCH_USES_PG_ARCH_X
1990 help
1991 Memory Tagging (part of the ARMv8.5 Extensions) provides
1992 architectural support for run-time, always-on detection of
1993 various classes of memory error to aid with software debugging
1994 to eliminate vulnerabilities arising from memory-unsafe
1995 languages.
1996
1997 This option enables the support for the Memory Tagging
1998 Extension at EL0 (i.e. for userspace).
1999
2000 Selecting this option allows the feature to be detected at
2001 runtime. Any secondary CPU not implementing this feature will
2002 not be allowed a late bring-up.
2003
2004 Userspace binaries that want to use this feature must
2005 explicitly opt in. The mechanism for the userspace is
2006 described in:
2007
2008 Documentation/arm64/memory-tagging-extension.rst.
2009
2010endmenu # "ARMv8.5 architectural features"
2011
2012menu "ARMv8.7 architectural features"
2013
2014config ARM64_EPAN
2015 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2016 default y
2017 depends on ARM64_PAN
2018 help
2019 Enhanced Privileged Access Never (EPAN) allows Privileged
2020 Access Never to be used with Execute-only mappings.
2021
2022 The feature is detected at runtime, and will remain disabled
2023 if the cpu does not implement the feature.
2024endmenu # "ARMv8.7 architectural features"
2025
2026config ARM64_SVE
2027 bool "ARM Scalable Vector Extension support"
2028 default y
2029 help
2030 The Scalable Vector Extension (SVE) is an extension to the AArch64
2031 execution state which complements and extends the SIMD functionality
2032 of the base architecture to support much larger vectors and to enable
2033 additional vectorisation opportunities.
2034
2035 To enable use of this extension on CPUs that implement it, say Y.
2036
2037 On CPUs that support the SVE2 extensions, this option will enable
2038 those too.
2039
2040 Note that for architectural reasons, firmware _must_ implement SVE
2041 support when running on SVE capable hardware. The required support
2042 is present in:
2043
2044 * version 1.5 and later of the ARM Trusted Firmware
2045 * the AArch64 boot wrapper since commit 5e1261e08abf
2046 ("bootwrapper: SVE: Enable SVE for EL2 and below").
2047
2048 For other firmware implementations, consult the firmware documentation
2049 or vendor.
2050
2051 If you need the kernel to boot on SVE-capable hardware with broken
2052 firmware, you may need to say N here until you get your firmware
2053 fixed. Otherwise, you may experience firmware panics or lockups when
2054 booting the kernel. If unsure and you are not observing these
2055 symptoms, you should assume that it is safe to say Y.
2056
2057config ARM64_SME
2058 bool "ARM Scalable Matrix Extension support"
2059 default y
2060 depends on ARM64_SVE
2061 help
2062 The Scalable Matrix Extension (SME) is an extension to the AArch64
2063 execution state which utilises a substantial subset of the SVE
2064 instruction set, together with the addition of new architectural
2065 register state capable of holding two dimensional matrix tiles to
2066 enable various matrix operations.
2067
2068config ARM64_MODULE_PLTS
2069 bool "Use PLTs to allow module memory to spill over into vmalloc area"
2070 depends on MODULES
2071 select HAVE_MOD_ARCH_SPECIFIC
2072 help
2073 Allocate PLTs when loading modules so that jumps and calls whose
2074 targets are too far away for their relative offsets to be encoded
2075 in the instructions themselves can be bounced via veneers in the
2076 module's PLT. This allows modules to be allocated in the generic
2077 vmalloc area after the dedicated module memory area has been
2078 exhausted.
2079
2080 When running with address space randomization (KASLR), the module
2081 region itself may be too far away for ordinary relative jumps and
2082 calls, and so in that case, module PLTs are required and cannot be
2083 disabled.
2084
2085 Specific errata workaround(s) might also force module PLTs to be
2086 enabled (ARM64_ERRATUM_843419).
2087
2088config ARM64_PSEUDO_NMI
2089 bool "Support for NMI-like interrupts"
2090 select ARM_GIC_V3
2091 help
2092 Adds support for mimicking Non-Maskable Interrupts through the use of
2093 GIC interrupt priority. This support requires version 3 or later of
2094 ARM GIC.
2095
2096 This high priority configuration for interrupts needs to be
2097 explicitly enabled by setting the kernel parameter
2098 "irqchip.gicv3_pseudo_nmi" to 1.
2099
2100 If unsure, say N
2101
2102if ARM64_PSEUDO_NMI
2103config ARM64_DEBUG_PRIORITY_MASKING
2104 bool "Debug interrupt priority masking"
2105 help
2106 This adds runtime checks to functions enabling/disabling
2107 interrupts when using priority masking. The additional checks verify
2108 the validity of ICC_PMR_EL1 when calling concerned functions.
2109
2110 If unsure, say N
2111endif # ARM64_PSEUDO_NMI
2112
2113config RELOCATABLE
2114 bool "Build a relocatable kernel image" if EXPERT
2115 select ARCH_HAS_RELR
2116 default y
2117 help
2118 This builds the kernel as a Position Independent Executable (PIE),
2119 which retains all relocation metadata required to relocate the
2120 kernel binary at runtime to a different virtual address than the
2121 address it was linked at.
2122 Since AArch64 uses the RELA relocation format, this requires a
2123 relocation pass at runtime even if the kernel is loaded at the
2124 same address it was linked at.
2125
2126config RANDOMIZE_BASE
2127 bool "Randomize the address of the kernel image"
2128 select ARM64_MODULE_PLTS if MODULES
2129 select RELOCATABLE
2130 help
2131 Randomizes the virtual address at which the kernel image is
2132 loaded, as a security feature that deters exploit attempts
2133 relying on knowledge of the location of kernel internals.
2134
2135 It is the bootloader's job to provide entropy, by passing a
2136 random u64 value in /chosen/kaslr-seed at kernel entry.
2137
2138 When booting via the UEFI stub, it will invoke the firmware's
2139 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2140 to the kernel proper. In addition, it will randomise the physical
2141 location of the kernel Image as well.
2142
2143 If unsure, say N.
2144
2145config RANDOMIZE_MODULE_REGION_FULL
2146 bool "Randomize the module region over a 2 GB range"
2147 depends on RANDOMIZE_BASE
2148 default y
2149 help
2150 Randomizes the location of the module region inside a 2 GB window
2151 covering the core kernel. This way, it is less likely for modules
2152 to leak information about the location of core kernel data structures
2153 but it does imply that function calls between modules and the core
2154 kernel will need to be resolved via veneers in the module PLT.
2155
2156 When this option is not set, the module region will be randomized over
2157 a limited range that contains the [_stext, _etext] interval of the
2158 core kernel, so branch relocations are almost always in range unless
2159 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2160 particular case of region exhaustion, modules might be able to fall
2161 back to a larger 2GB area.
2162
2163config CC_HAVE_STACKPROTECTOR_SYSREG
2164 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2165
2166config STACKPROTECTOR_PER_TASK
2167 def_bool y
2168 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2169
2170config UNWIND_PATCH_PAC_INTO_SCS
2171 bool "Enable shadow call stack dynamically using code patching"
2172 # needs Clang with https://reviews.llvm.org/D111780 incorporated
2173 depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2174 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2175 depends on SHADOW_CALL_STACK
2176 select UNWIND_TABLES
2177 select DYNAMIC_SCS
2178
2179endmenu # "Kernel Features"
2180
2181menu "Boot options"
2182
2183config ARM64_ACPI_PARKING_PROTOCOL
2184 bool "Enable support for the ARM64 ACPI parking protocol"
2185 depends on ACPI
2186 help
2187 Enable support for the ARM64 ACPI parking protocol. If disabled
2188 the kernel will not allow booting through the ARM64 ACPI parking
2189 protocol even if the corresponding data is present in the ACPI
2190 MADT table.
2191
2192config CMDLINE
2193 string "Default kernel command string"
2194 default ""
2195 help
2196 Provide a set of default command-line options at build time by
2197 entering them here. As a minimum, you should specify the the
2198 root device (e.g. root=/dev/nfs).
2199
2200choice
2201 prompt "Kernel command line type" if CMDLINE != ""
2202 default CMDLINE_FROM_BOOTLOADER
2203 help
2204 Choose how the kernel will handle the provided default kernel
2205 command line string.
2206
2207config CMDLINE_FROM_BOOTLOADER
2208 bool "Use bootloader kernel arguments if available"
2209 help
2210 Uses the command-line options passed by the boot loader. If
2211 the boot loader doesn't provide any, the default kernel command
2212 string provided in CMDLINE will be used.
2213
2214config CMDLINE_FORCE
2215 bool "Always use the default kernel command string"
2216 help
2217 Always use the default kernel command string, even if the boot
2218 loader passes other arguments to the kernel.
2219 This is useful if you cannot or don't want to change the
2220 command-line options your boot loader passes to the kernel.
2221
2222endchoice
2223
2224config EFI_STUB
2225 bool
2226
2227config EFI
2228 bool "UEFI runtime support"
2229 depends on OF && !CPU_BIG_ENDIAN
2230 depends on KERNEL_MODE_NEON
2231 select ARCH_SUPPORTS_ACPI
2232 select LIBFDT
2233 select UCS2_STRING
2234 select EFI_PARAMS_FROM_FDT
2235 select EFI_RUNTIME_WRAPPERS
2236 select EFI_STUB
2237 select EFI_GENERIC_STUB
2238 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2239 default y
2240 help
2241 This option provides support for runtime services provided
2242 by UEFI firmware (such as non-volatile variables, realtime
2243 clock, and platform reset). A UEFI stub is also provided to
2244 allow the kernel to be booted as an EFI application. This
2245 is only useful on systems that have UEFI firmware.
2246
2247config DMI
2248 bool "Enable support for SMBIOS (DMI) tables"
2249 depends on EFI
2250 default y
2251 help
2252 This enables SMBIOS/DMI feature for systems.
2253
2254 This option is only useful on systems that have UEFI firmware.
2255 However, even with this option, the resultant kernel should
2256 continue to boot on existing non-UEFI platforms.
2257
2258endmenu # "Boot options"
2259
2260menu "Power management options"
2261
2262source "kernel/power/Kconfig"
2263
2264config ARCH_HIBERNATION_POSSIBLE
2265 def_bool y
2266 depends on CPU_PM
2267
2268config ARCH_HIBERNATION_HEADER
2269 def_bool y
2270 depends on HIBERNATION
2271
2272config ARCH_SUSPEND_POSSIBLE
2273 def_bool y
2274
2275endmenu # "Power management options"
2276
2277menu "CPU Power Management"
2278
2279source "drivers/cpuidle/Kconfig"
2280
2281source "drivers/cpufreq/Kconfig"
2282
2283endmenu # "CPU Power Management"
2284
2285source "drivers/acpi/Kconfig"
2286
2287source "arch/arm64/kvm/Kconfig"
2288