Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
 
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41	switch (fmt) {
  42	case UBIFS_SIMPLE_KEY_FMT:
  43		return "simple";
  44	default:
  45		return "unknown/invalid format";
  46	}
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51	switch (hash) {
  52	case UBIFS_KEY_HASH_R5:
  53		return "R5";
  54	case UBIFS_KEY_HASH_TEST:
  55		return "test";
  56	default:
  57		return "unknown/invalid name hash";
  58	}
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63	switch (type) {
  64	case UBIFS_INO_KEY:
  65		return "inode";
  66	case UBIFS_DENT_KEY:
  67		return "direntry";
  68	case UBIFS_XENT_KEY:
  69		return "xentry";
  70	case UBIFS_DATA_KEY:
  71		return "data";
  72	case UBIFS_TRUN_KEY:
  73		return "truncate";
  74	default:
  75		return "unknown/invalid key";
  76	}
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81	switch (type) {
  82	case UBIFS_ITYPE_REG:
  83		return "file";
  84	case UBIFS_ITYPE_DIR:
  85		return "dir";
  86	case UBIFS_ITYPE_LNK:
  87		return "symlink";
  88	case UBIFS_ITYPE_BLK:
  89		return "blkdev";
  90	case UBIFS_ITYPE_CHR:
  91		return "char dev";
  92	case UBIFS_ITYPE_FIFO:
  93		return "fifo";
  94	case UBIFS_ITYPE_SOCK:
  95		return "socket";
  96	default:
  97		return "unknown/invalid type";
  98	}
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102			     const union ubifs_key *key, char *buffer, int len)
 103{
 104	char *p = buffer;
 105	int type = key_type(c, key);
 106
 107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108		switch (type) {
 109		case UBIFS_INO_KEY:
 110			len -= snprintf(p, len, "(%lu, %s)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type));
 113			break;
 114		case UBIFS_DENT_KEY:
 115		case UBIFS_XENT_KEY:
 116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117					(unsigned long)key_inum(c, key),
 118					get_key_type(type), key_hash(c, key));
 119			break;
 120		case UBIFS_DATA_KEY:
 121			len -= snprintf(p, len, "(%lu, %s, %u)",
 122					(unsigned long)key_inum(c, key),
 123					get_key_type(type), key_block(c, key));
 124			break;
 125		case UBIFS_TRUN_KEY:
 126			len -= snprintf(p, len, "(%lu, %s)",
 127					(unsigned long)key_inum(c, key),
 128					get_key_type(type));
 129			break;
 130		default:
 131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132					key->u32[0], key->u32[1]);
 133		}
 134	} else
 135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136	ubifs_assert(len > 0);
 137	return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142	switch (type) {
 143	case UBIFS_PAD_NODE:
 144		return "padding node";
 145	case UBIFS_SB_NODE:
 146		return "superblock node";
 147	case UBIFS_MST_NODE:
 148		return "master node";
 149	case UBIFS_REF_NODE:
 150		return "reference node";
 151	case UBIFS_INO_NODE:
 152		return "inode node";
 153	case UBIFS_DENT_NODE:
 154		return "direntry node";
 155	case UBIFS_XENT_NODE:
 156		return "xentry node";
 157	case UBIFS_DATA_NODE:
 158		return "data node";
 159	case UBIFS_TRUN_NODE:
 160		return "truncate node";
 161	case UBIFS_IDX_NODE:
 162		return "indexing node";
 163	case UBIFS_CS_NODE:
 164		return "commit start node";
 165	case UBIFS_ORPH_NODE:
 166		return "orphan node";
 
 
 167	default:
 168		return "unknown node";
 169	}
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174	switch (type) {
 175	case UBIFS_NO_NODE_GROUP:
 176		return "no node group";
 177	case UBIFS_IN_NODE_GROUP:
 178		return "in node group";
 179	case UBIFS_LAST_OF_NODE_GROUP:
 180		return "last of node group";
 181	default:
 182		return "unknown";
 183	}
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188	switch (cmt_state) {
 189	case COMMIT_RESTING:
 190		return "commit resting";
 191	case COMMIT_BACKGROUND:
 192		return "background commit requested";
 193	case COMMIT_REQUIRED:
 194		return "commit required";
 195	case COMMIT_RUNNING_BACKGROUND:
 196		return "BACKGROUND commit running";
 197	case COMMIT_RUNNING_REQUIRED:
 198		return "commit running and required";
 199	case COMMIT_BROKEN:
 200		return "broken commit";
 201	default:
 202		return "unknown commit state";
 203	}
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208	switch (jhead) {
 209	case GCHD:
 210		return "0 (GC)";
 211	case BASEHD:
 212		return "1 (base)";
 213	case DATAHD:
 214		return "2 (data)";
 215	default:
 216		return "unknown journal head";
 217	}
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 225	       dbg_ntype(ch->node_type));
 226	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 227	       dbg_gtype(ch->group_type));
 228	pr_err("\tsqnum          %llu\n",
 229	       (unsigned long long)le64_to_cpu(ch->sqnum));
 230	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235	const struct ubifs_inode *ui = ubifs_inode(inode);
 236	struct qstr nm = { .name = NULL };
 237	union ubifs_key key;
 238	struct ubifs_dent_node *dent, *pdent = NULL;
 239	int count = 2;
 240
 241	pr_err("Dump in-memory inode:");
 242	pr_err("\tinode          %lu\n", inode->i_ino);
 243	pr_err("\tsize           %llu\n",
 244	       (unsigned long long)i_size_read(inode));
 245	pr_err("\tnlink          %u\n", inode->i_nlink);
 246	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 247	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 248	pr_err("\tatime          %u.%u\n",
 249	       (unsigned int)inode->i_atime.tv_sec,
 250	       (unsigned int)inode->i_atime.tv_nsec);
 251	pr_err("\tmtime          %u.%u\n",
 252	       (unsigned int)inode->i_mtime.tv_sec,
 253	       (unsigned int)inode->i_mtime.tv_nsec);
 254	pr_err("\tctime          %u.%u\n",
 255	       (unsigned int)inode->i_ctime.tv_sec,
 256	       (unsigned int)inode->i_ctime.tv_nsec);
 257	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258	pr_err("\txattr_size     %u\n", ui->xattr_size);
 259	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 260	pr_err("\txattr_names    %u\n", ui->xattr_names);
 261	pr_err("\tdirty          %u\n", ui->dirty);
 262	pr_err("\txattr          %u\n", ui->xattr);
 263	pr_err("\tbulk_read      %u\n", ui->xattr);
 264	pr_err("\tsynced_i_size  %llu\n",
 265	       (unsigned long long)ui->synced_i_size);
 266	pr_err("\tui_size        %llu\n",
 267	       (unsigned long long)ui->ui_size);
 268	pr_err("\tflags          %d\n", ui->flags);
 269	pr_err("\tcompr_type     %d\n", ui->compr_type);
 270	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 271	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272	pr_err("\tdata_len       %d\n", ui->data_len);
 273
 274	if (!S_ISDIR(inode->i_mode))
 275		return;
 276
 277	pr_err("List of directory entries:\n");
 278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280	lowest_dent_key(c, &key, inode->i_ino);
 281	while (1) {
 282		dent = ubifs_tnc_next_ent(c, &key, &nm);
 283		if (IS_ERR(dent)) {
 284			if (PTR_ERR(dent) != -ENOENT)
 285				pr_err("error %ld\n", PTR_ERR(dent));
 286			break;
 287		}
 288
 289		pr_err("\t%d: %s (%s)\n",
 290		       count++, dent->name, get_dent_type(dent->type));
 
 
 291
 292		nm.name = dent->name;
 293		nm.len = le16_to_cpu(dent->nlen);
 294		kfree(pdent);
 295		pdent = dent;
 296		key_read(c, &dent->key, &key);
 297	}
 298	kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303	int i, n;
 304	union ubifs_key key;
 305	const struct ubifs_ch *ch = node;
 306	char key_buf[DBG_KEY_BUF_LEN];
 307
 308	/* If the magic is incorrect, just hexdump the first bytes */
 309	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 310		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 311		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 312			       (void *)node, UBIFS_CH_SZ, 1);
 313		return;
 314	}
 315
 
 
 
 
 
 
 
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	switch (ch->node_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320	case UBIFS_PAD_NODE:
 321	{
 322		const struct ubifs_pad_node *pad = node;
 323
 324		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 325		break;
 326	}
 327	case UBIFS_SB_NODE:
 328	{
 329		const struct ubifs_sb_node *sup = node;
 330		unsigned int sup_flags = le32_to_cpu(sup->flags);
 331
 332		pr_err("\tkey_hash       %d (%s)\n",
 333		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 334		pr_err("\tkey_fmt        %d (%s)\n",
 335		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 336		pr_err("\tflags          %#x\n", sup_flags);
 337		pr_err("\tbig_lpt        %u\n",
 338		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 339		pr_err("\tspace_fixup    %u\n",
 340		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 341		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 342		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 343		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 344		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 345		pr_err("\tmax_bud_bytes  %llu\n",
 346		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 347		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 348		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 349		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 350		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 351		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 352		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 353		pr_err("\tdefault_compr  %u\n",
 354		       (int)le16_to_cpu(sup->default_compr));
 355		pr_err("\trp_size        %llu\n",
 356		       (unsigned long long)le64_to_cpu(sup->rp_size));
 357		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 358		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 359		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 360		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 361		pr_err("\tUUID           %pUB\n", sup->uuid);
 362		break;
 363	}
 364	case UBIFS_MST_NODE:
 365	{
 366		const struct ubifs_mst_node *mst = node;
 367
 368		pr_err("\thighest_inum   %llu\n",
 369		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 370		pr_err("\tcommit number  %llu\n",
 371		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 372		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 373		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 374		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 375		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 376		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 377		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 378		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 379		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 380		pr_err("\tindex_size     %llu\n",
 381		       (unsigned long long)le64_to_cpu(mst->index_size));
 382		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 383		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 384		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 385		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 386		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 387		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 388		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 389		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 390		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 391		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 392		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 393		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 394		pr_err("\ttotal_free     %llu\n",
 395		       (unsigned long long)le64_to_cpu(mst->total_free));
 396		pr_err("\ttotal_dirty    %llu\n",
 397		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 398		pr_err("\ttotal_used     %llu\n",
 399		       (unsigned long long)le64_to_cpu(mst->total_used));
 400		pr_err("\ttotal_dead     %llu\n",
 401		       (unsigned long long)le64_to_cpu(mst->total_dead));
 402		pr_err("\ttotal_dark     %llu\n",
 403		       (unsigned long long)le64_to_cpu(mst->total_dark));
 404		break;
 405	}
 406	case UBIFS_REF_NODE:
 407	{
 408		const struct ubifs_ref_node *ref = node;
 409
 410		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 411		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 412		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 413		break;
 414	}
 415	case UBIFS_INO_NODE:
 416	{
 417		const struct ubifs_ino_node *ino = node;
 418
 419		key_read(c, &ino->key, &key);
 420		pr_err("\tkey            %s\n",
 421		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 422		pr_err("\tcreat_sqnum    %llu\n",
 423		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 424		pr_err("\tsize           %llu\n",
 425		       (unsigned long long)le64_to_cpu(ino->size));
 426		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 427		pr_err("\tatime          %lld.%u\n",
 428		       (long long)le64_to_cpu(ino->atime_sec),
 429		       le32_to_cpu(ino->atime_nsec));
 430		pr_err("\tmtime          %lld.%u\n",
 431		       (long long)le64_to_cpu(ino->mtime_sec),
 432		       le32_to_cpu(ino->mtime_nsec));
 433		pr_err("\tctime          %lld.%u\n",
 434		       (long long)le64_to_cpu(ino->ctime_sec),
 435		       le32_to_cpu(ino->ctime_nsec));
 436		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 437		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 438		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 439		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 440		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 441		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 442		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 443		pr_err("\tcompr_type     %#x\n",
 444		       (int)le16_to_cpu(ino->compr_type));
 445		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 446		break;
 447	}
 448	case UBIFS_DENT_NODE:
 449	case UBIFS_XENT_NODE:
 450	{
 451		const struct ubifs_dent_node *dent = node;
 452		int nlen = le16_to_cpu(dent->nlen);
 453
 454		key_read(c, &dent->key, &key);
 455		pr_err("\tkey            %s\n",
 456		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 457		pr_err("\tinum           %llu\n",
 458		       (unsigned long long)le64_to_cpu(dent->inum));
 459		pr_err("\ttype           %d\n", (int)dent->type);
 460		pr_err("\tnlen           %d\n", nlen);
 461		pr_err("\tname           ");
 462
 463		if (nlen > UBIFS_MAX_NLEN)
 
 464			pr_err("(bad name length, not printing, bad or corrupted node)");
 465		else {
 466			for (i = 0; i < nlen && dent->name[i]; i++)
 467				pr_cont("%c", dent->name[i]);
 
 468		}
 469		pr_cont("\n");
 470
 471		break;
 472	}
 473	case UBIFS_DATA_NODE:
 474	{
 475		const struct ubifs_data_node *dn = node;
 476		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 477
 478		key_read(c, &dn->key, &key);
 479		pr_err("\tkey            %s\n",
 480		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 481		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 482		pr_err("\tcompr_typ      %d\n",
 483		       (int)le16_to_cpu(dn->compr_type));
 484		pr_err("\tdata size      %d\n", dlen);
 485		pr_err("\tdata:\n");
 
 
 486		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 487			       (void *)&dn->data, dlen, 0);
 
 488		break;
 489	}
 490	case UBIFS_TRUN_NODE:
 491	{
 492		const struct ubifs_trun_node *trun = node;
 493
 494		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 495		pr_err("\told_size       %llu\n",
 496		       (unsigned long long)le64_to_cpu(trun->old_size));
 497		pr_err("\tnew_size       %llu\n",
 498		       (unsigned long long)le64_to_cpu(trun->new_size));
 499		break;
 500	}
 501	case UBIFS_IDX_NODE:
 502	{
 503		const struct ubifs_idx_node *idx = node;
 
 
 
 504
 505		n = le16_to_cpu(idx->child_cnt);
 506		pr_err("\tchild_cnt      %d\n", n);
 507		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 508		pr_err("\tBranches:\n");
 509
 510		for (i = 0; i < n && i < c->fanout - 1; i++) {
 511			const struct ubifs_branch *br;
 512
 513			br = ubifs_idx_branch(c, idx, i);
 514			key_read(c, &br->key, &key);
 515			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 516			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 517			       le32_to_cpu(br->len),
 518			       dbg_snprintf_key(c, &key, key_buf,
 519						DBG_KEY_BUF_LEN));
 520		}
 521		break;
 522	}
 523	case UBIFS_CS_NODE:
 524		break;
 525	case UBIFS_ORPH_NODE:
 526	{
 527		const struct ubifs_orph_node *orph = node;
 528
 529		pr_err("\tcommit number  %llu\n",
 530		       (unsigned long long)
 531				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 532		pr_err("\tlast node flag %llu\n",
 533		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 534		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 535		pr_err("\t%d orphan inode numbers:\n", n);
 536		for (i = 0; i < n; i++)
 537			pr_err("\t  ino %llu\n",
 538			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 539		break;
 540	}
 
 
 
 
 541	default:
 542		pr_err("node type %d was not recognized\n",
 543		       (int)ch->node_type);
 544	}
 
 
 545	spin_unlock(&dbg_lock);
 546}
 547
 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 549{
 550	spin_lock(&dbg_lock);
 551	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 552	       req->new_ino, req->dirtied_ino);
 553	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 554	       req->new_ino_d, req->dirtied_ino_d);
 555	pr_err("\tnew_page    %d, dirtied_page %d\n",
 556	       req->new_page, req->dirtied_page);
 557	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 558	       req->new_dent, req->mod_dent);
 559	pr_err("\tidx_growth  %d\n", req->idx_growth);
 560	pr_err("\tdata_growth %d dd_growth     %d\n",
 561	       req->data_growth, req->dd_growth);
 562	spin_unlock(&dbg_lock);
 563}
 564
 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 566{
 567	spin_lock(&dbg_lock);
 568	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 569	       current->pid, lst->empty_lebs, lst->idx_lebs);
 570	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 571	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 572	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 573	       lst->total_used, lst->total_dark, lst->total_dead);
 574	spin_unlock(&dbg_lock);
 575}
 576
 577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 578{
 579	int i;
 580	struct rb_node *rb;
 581	struct ubifs_bud *bud;
 582	struct ubifs_gced_idx_leb *idx_gc;
 583	long long available, outstanding, free;
 584
 585	spin_lock(&c->space_lock);
 586	spin_lock(&dbg_lock);
 587	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 588	       current->pid, bi->data_growth + bi->dd_growth,
 589	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 590	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 591	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 592	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 593	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 594	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 595	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 596	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 597	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 598	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 599
 600	if (bi != &c->bi)
 601		/*
 602		 * If we are dumping saved budgeting data, do not print
 603		 * additional information which is about the current state, not
 604		 * the old one which corresponded to the saved budgeting data.
 605		 */
 606		goto out_unlock;
 607
 608	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 609	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 610	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 611	       atomic_long_read(&c->dirty_pg_cnt),
 612	       atomic_long_read(&c->dirty_zn_cnt),
 613	       atomic_long_read(&c->clean_zn_cnt));
 614	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 615
 616	/* If we are in R/O mode, journal heads do not exist */
 617	if (c->jheads)
 618		for (i = 0; i < c->jhead_cnt; i++)
 619			pr_err("\tjhead %s\t LEB %d\n",
 620			       dbg_jhead(c->jheads[i].wbuf.jhead),
 621			       c->jheads[i].wbuf.lnum);
 622	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 623		bud = rb_entry(rb, struct ubifs_bud, rb);
 624		pr_err("\tbud LEB %d\n", bud->lnum);
 625	}
 626	list_for_each_entry(bud, &c->old_buds, list)
 627		pr_err("\told bud LEB %d\n", bud->lnum);
 628	list_for_each_entry(idx_gc, &c->idx_gc, list)
 629		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 630		       idx_gc->lnum, idx_gc->unmap);
 631	pr_err("\tcommit state %d\n", c->cmt_state);
 632
 633	/* Print budgeting predictions */
 634	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 635	outstanding = c->bi.data_growth + c->bi.dd_growth;
 636	free = ubifs_get_free_space_nolock(c);
 637	pr_err("Budgeting predictions:\n");
 638	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 639	       available, outstanding, free);
 640out_unlock:
 641	spin_unlock(&dbg_lock);
 642	spin_unlock(&c->space_lock);
 643}
 644
 645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 646{
 647	int i, spc, dark = 0, dead = 0;
 648	struct rb_node *rb;
 649	struct ubifs_bud *bud;
 650
 651	spc = lp->free + lp->dirty;
 652	if (spc < c->dead_wm)
 653		dead = spc;
 654	else
 655		dark = ubifs_calc_dark(c, spc);
 656
 657	if (lp->flags & LPROPS_INDEX)
 658		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 659		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 660		       lp->flags);
 661	else
 662		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 663		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 664		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 665
 666	if (lp->flags & LPROPS_TAKEN) {
 667		if (lp->flags & LPROPS_INDEX)
 668			pr_cont("index, taken");
 669		else
 670			pr_cont("taken");
 671	} else {
 672		const char *s;
 673
 674		if (lp->flags & LPROPS_INDEX) {
 675			switch (lp->flags & LPROPS_CAT_MASK) {
 676			case LPROPS_DIRTY_IDX:
 677				s = "dirty index";
 678				break;
 679			case LPROPS_FRDI_IDX:
 680				s = "freeable index";
 681				break;
 682			default:
 683				s = "index";
 684			}
 685		} else {
 686			switch (lp->flags & LPROPS_CAT_MASK) {
 687			case LPROPS_UNCAT:
 688				s = "not categorized";
 689				break;
 690			case LPROPS_DIRTY:
 691				s = "dirty";
 692				break;
 693			case LPROPS_FREE:
 694				s = "free";
 695				break;
 696			case LPROPS_EMPTY:
 697				s = "empty";
 698				break;
 699			case LPROPS_FREEABLE:
 700				s = "freeable";
 701				break;
 702			default:
 703				s = NULL;
 704				break;
 705			}
 706		}
 707		pr_cont("%s", s);
 708	}
 709
 710	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 711		bud = rb_entry(rb, struct ubifs_bud, rb);
 712		if (bud->lnum == lp->lnum) {
 713			int head = 0;
 714			for (i = 0; i < c->jhead_cnt; i++) {
 715				/*
 716				 * Note, if we are in R/O mode or in the middle
 717				 * of mounting/re-mounting, the write-buffers do
 718				 * not exist.
 719				 */
 720				if (c->jheads &&
 721				    lp->lnum == c->jheads[i].wbuf.lnum) {
 722					pr_cont(", jhead %s", dbg_jhead(i));
 723					head = 1;
 724				}
 725			}
 726			if (!head)
 727				pr_cont(", bud of jhead %s",
 728				       dbg_jhead(bud->jhead));
 729		}
 730	}
 731	if (lp->lnum == c->gc_lnum)
 732		pr_cont(", GC LEB");
 733	pr_cont(")\n");
 734}
 735
 736void ubifs_dump_lprops(struct ubifs_info *c)
 737{
 738	int lnum, err;
 739	struct ubifs_lprops lp;
 740	struct ubifs_lp_stats lst;
 741
 742	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 743	ubifs_get_lp_stats(c, &lst);
 744	ubifs_dump_lstats(&lst);
 745
 746	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 747		err = ubifs_read_one_lp(c, lnum, &lp);
 748		if (err) {
 749			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 750			continue;
 751		}
 752
 753		ubifs_dump_lprop(c, &lp);
 754	}
 755	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 756}
 757
 758void ubifs_dump_lpt_info(struct ubifs_info *c)
 759{
 760	int i;
 761
 762	spin_lock(&dbg_lock);
 763	pr_err("(pid %d) dumping LPT information\n", current->pid);
 764	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 765	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 766	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 767	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 768	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 769	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 770	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 771	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 772	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 773	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 774	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 775	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 776	pr_err("\tspace_bits:    %d\n", c->space_bits);
 777	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 778	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 779	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 780	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 781	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 782	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 783	pr_err("\tLPT head is at %d:%d\n",
 784	       c->nhead_lnum, c->nhead_offs);
 785	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 786	if (c->big_lpt)
 787		pr_err("\tLPT lsave is at %d:%d\n",
 788		       c->lsave_lnum, c->lsave_offs);
 789	for (i = 0; i < c->lpt_lebs; i++)
 790		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 791		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 792		       c->ltab[i].tgc, c->ltab[i].cmt);
 793	spin_unlock(&dbg_lock);
 794}
 795
 796void ubifs_dump_sleb(const struct ubifs_info *c,
 797		     const struct ubifs_scan_leb *sleb, int offs)
 798{
 799	struct ubifs_scan_node *snod;
 800
 801	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 802	       current->pid, sleb->lnum, offs);
 803
 804	list_for_each_entry(snod, &sleb->nodes, list) {
 805		cond_resched();
 806		pr_err("Dumping node at LEB %d:%d len %d\n",
 807		       sleb->lnum, snod->offs, snod->len);
 808		ubifs_dump_node(c, snod->node);
 809	}
 810}
 811
 812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 813{
 814	struct ubifs_scan_leb *sleb;
 815	struct ubifs_scan_node *snod;
 816	void *buf;
 817
 818	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 819
 820	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 821	if (!buf) {
 822		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 823		return;
 824	}
 825
 826	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 827	if (IS_ERR(sleb)) {
 828		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 829		goto out;
 830	}
 831
 832	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 833	       sleb->nodes_cnt, sleb->endpt);
 834
 835	list_for_each_entry(snod, &sleb->nodes, list) {
 836		cond_resched();
 837		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 838		       snod->offs, snod->len);
 839		ubifs_dump_node(c, snod->node);
 840	}
 841
 842	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 843	ubifs_scan_destroy(sleb);
 844
 845out:
 846	vfree(buf);
 847	return;
 848}
 849
 850void ubifs_dump_znode(const struct ubifs_info *c,
 851		      const struct ubifs_znode *znode)
 852{
 853	int n;
 854	const struct ubifs_zbranch *zbr;
 855	char key_buf[DBG_KEY_BUF_LEN];
 856
 857	spin_lock(&dbg_lock);
 858	if (znode->parent)
 859		zbr = &znode->parent->zbranch[znode->iip];
 860	else
 861		zbr = &c->zroot;
 862
 863	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 864	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 865	       znode->level, znode->child_cnt, znode->flags);
 866
 867	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 868		spin_unlock(&dbg_lock);
 869		return;
 870	}
 871
 872	pr_err("zbranches:\n");
 873	for (n = 0; n < znode->child_cnt; n++) {
 874		zbr = &znode->zbranch[n];
 875		if (znode->level > 0)
 876			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 877			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 878			       dbg_snprintf_key(c, &zbr->key, key_buf,
 879						DBG_KEY_BUF_LEN));
 880		else
 881			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 882			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 883			       dbg_snprintf_key(c, &zbr->key, key_buf,
 884						DBG_KEY_BUF_LEN));
 885	}
 886	spin_unlock(&dbg_lock);
 887}
 888
 889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 890{
 891	int i;
 892
 893	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 894	       current->pid, cat, heap->cnt);
 895	for (i = 0; i < heap->cnt; i++) {
 896		struct ubifs_lprops *lprops = heap->arr[i];
 897
 898		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 899		       i, lprops->lnum, lprops->hpos, lprops->free,
 900		       lprops->dirty, lprops->flags);
 901	}
 902	pr_err("(pid %d) finish dumping heap\n", current->pid);
 903}
 904
 905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 906		      struct ubifs_nnode *parent, int iip)
 907{
 908	int i;
 909
 910	pr_err("(pid %d) dumping pnode:\n", current->pid);
 911	pr_err("\taddress %zx parent %zx cnext %zx\n",
 912	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 913	pr_err("\tflags %lu iip %d level %d num %d\n",
 914	       pnode->flags, iip, pnode->level, pnode->num);
 915	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 916		struct ubifs_lprops *lp = &pnode->lprops[i];
 917
 918		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 919		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 920	}
 921}
 922
 923void ubifs_dump_tnc(struct ubifs_info *c)
 924{
 925	struct ubifs_znode *znode;
 926	int level;
 927
 928	pr_err("\n");
 929	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 930	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 931	level = znode->level;
 932	pr_err("== Level %d ==\n", level);
 933	while (znode) {
 934		if (level != znode->level) {
 935			level = znode->level;
 936			pr_err("== Level %d ==\n", level);
 
 
 
 
 937		}
 938		ubifs_dump_znode(c, znode);
 939		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 940	}
 941	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 942}
 943
 944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 945		      void *priv)
 946{
 947	ubifs_dump_znode(c, znode);
 948	return 0;
 949}
 950
 951/**
 952 * ubifs_dump_index - dump the on-flash index.
 953 * @c: UBIFS file-system description object
 954 *
 955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 956 * which dumps only in-memory znodes and does not read znodes which from flash.
 957 */
 958void ubifs_dump_index(struct ubifs_info *c)
 959{
 960	dbg_walk_index(c, NULL, dump_znode, NULL);
 961}
 962
 963/**
 964 * dbg_save_space_info - save information about flash space.
 965 * @c: UBIFS file-system description object
 966 *
 967 * This function saves information about UBIFS free space, dirty space, etc, in
 968 * order to check it later.
 969 */
 970void dbg_save_space_info(struct ubifs_info *c)
 971{
 972	struct ubifs_debug_info *d = c->dbg;
 973	int freeable_cnt;
 974
 975	spin_lock(&c->space_lock);
 976	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 977	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 978	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 979
 980	/*
 981	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
 982	 * affects the free space calculations, and UBIFS might not know about
 983	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 984	 * only when we read their lprops, and we do this only lazily, upon the
 985	 * need. So at any given point of time @c->freeable_cnt might be not
 986	 * exactly accurate.
 987	 *
 988	 * Just one example about the issue we hit when we did not zero
 989	 * @c->freeable_cnt.
 990	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 991	 *    amount of free space in @d->saved_free
 992	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 993	 *    information from flash, where we cache LEBs from various
 994	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 995	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 996	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 997	 *    -> 'ubifs_add_to_cat()').
 998	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 999	 *    becomes %1.
1000	 * 4. We calculate the amount of free space when the re-mount is
1001	 *    finished in 'dbg_check_space_info()' and it does not match
1002	 *    @d->saved_free.
1003	 */
1004	freeable_cnt = c->freeable_cnt;
1005	c->freeable_cnt = 0;
1006	d->saved_free = ubifs_get_free_space_nolock(c);
1007	c->freeable_cnt = freeable_cnt;
1008	spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022	struct ubifs_debug_info *d = c->dbg;
1023	struct ubifs_lp_stats lst;
1024	long long free;
1025	int freeable_cnt;
1026
1027	spin_lock(&c->space_lock);
1028	freeable_cnt = c->freeable_cnt;
1029	c->freeable_cnt = 0;
1030	free = ubifs_get_free_space_nolock(c);
1031	c->freeable_cnt = freeable_cnt;
1032	spin_unlock(&c->space_lock);
1033
1034	if (free != d->saved_free) {
1035		ubifs_err(c, "free space changed from %lld to %lld",
1036			  d->saved_free, free);
1037		goto out;
1038	}
1039
1040	return 0;
1041
1042out:
1043	ubifs_msg(c, "saved lprops statistics dump");
1044	ubifs_dump_lstats(&d->saved_lst);
1045	ubifs_msg(c, "saved budgeting info dump");
1046	ubifs_dump_budg(c, &d->saved_bi);
1047	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048	ubifs_msg(c, "current lprops statistics dump");
1049	ubifs_get_lp_stats(c, &lst);
1050	ubifs_dump_lstats(&lst);
1051	ubifs_msg(c, "current budgeting info dump");
1052	ubifs_dump_budg(c, &c->bi);
1053	dump_stack();
1054	return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069	int err = 0;
1070	struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072	if (!dbg_is_chk_gen(c))
1073		return 0;
1074	if (!S_ISREG(inode->i_mode))
1075		return 0;
1076
1077	mutex_lock(&ui->ui_mutex);
1078	spin_lock(&ui->ui_lock);
1079	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081			  ui->ui_size, ui->synced_i_size);
1082		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083			  inode->i_mode, i_size_read(inode));
1084		dump_stack();
1085		err = -EINVAL;
1086	}
1087	spin_unlock(&ui->ui_lock);
1088	mutex_unlock(&ui->ui_mutex);
1089	return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107	unsigned int nlink = 2;
1108	union ubifs_key key;
1109	struct ubifs_dent_node *dent, *pdent = NULL;
1110	struct qstr nm = { .name = NULL };
1111	loff_t size = UBIFS_INO_NODE_SZ;
1112
1113	if (!dbg_is_chk_gen(c))
1114		return 0;
1115
1116	if (!S_ISDIR(dir->i_mode))
1117		return 0;
1118
1119	lowest_dent_key(c, &key, dir->i_ino);
1120	while (1) {
1121		int err;
1122
1123		dent = ubifs_tnc_next_ent(c, &key, &nm);
1124		if (IS_ERR(dent)) {
1125			err = PTR_ERR(dent);
1126			if (err == -ENOENT)
1127				break;
 
1128			return err;
1129		}
1130
1131		nm.name = dent->name;
1132		nm.len = le16_to_cpu(dent->nlen);
1133		size += CALC_DENT_SIZE(nm.len);
1134		if (dent->type == UBIFS_ITYPE_DIR)
1135			nlink += 1;
1136		kfree(pdent);
1137		pdent = dent;
1138		key_read(c, &dent->key, &key);
1139	}
1140	kfree(pdent);
1141
1142	if (i_size_read(dir) != size) {
1143		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144			  dir->i_ino, (unsigned long long)i_size_read(dir),
1145			  (unsigned long long)size);
1146		ubifs_dump_inode(c, dir);
1147		dump_stack();
1148		return -EINVAL;
1149	}
1150	if (dir->i_nlink != nlink) {
1151		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152			  dir->i_ino, dir->i_nlink, nlink);
1153		ubifs_dump_inode(c, dir);
1154		dump_stack();
1155		return -EINVAL;
1156	}
1157
1158	return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175			       struct ubifs_zbranch *zbr2)
1176{
1177	int err, nlen1, nlen2, cmp;
1178	struct ubifs_dent_node *dent1, *dent2;
1179	union ubifs_key key;
1180	char key_buf[DBG_KEY_BUF_LEN];
1181
1182	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184	if (!dent1)
1185		return -ENOMEM;
1186	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187	if (!dent2) {
1188		err = -ENOMEM;
1189		goto out_free;
1190	}
1191
1192	err = ubifs_tnc_read_node(c, zbr1, dent1);
1193	if (err)
1194		goto out_free;
1195	err = ubifs_validate_entry(c, dent1);
1196	if (err)
1197		goto out_free;
1198
1199	err = ubifs_tnc_read_node(c, zbr2, dent2);
1200	if (err)
1201		goto out_free;
1202	err = ubifs_validate_entry(c, dent2);
1203	if (err)
1204		goto out_free;
1205
1206	/* Make sure node keys are the same as in zbranch */
1207	err = 1;
1208	key_read(c, &dent1->key, &key);
1209	if (keys_cmp(c, &zbr1->key, &key)) {
1210		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212						       DBG_KEY_BUF_LEN));
1213		ubifs_err(c, "but it should have key %s according to tnc",
1214			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1215					   DBG_KEY_BUF_LEN));
1216		ubifs_dump_node(c, dent1);
1217		goto out_free;
1218	}
1219
1220	key_read(c, &dent2->key, &key);
1221	if (keys_cmp(c, &zbr2->key, &key)) {
1222		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224						       DBG_KEY_BUF_LEN));
1225		ubifs_err(c, "but it should have key %s according to tnc",
1226			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1227					   DBG_KEY_BUF_LEN));
1228		ubifs_dump_node(c, dent2);
1229		goto out_free;
1230	}
1231
1232	nlen1 = le16_to_cpu(dent1->nlen);
1233	nlen2 = le16_to_cpu(dent2->nlen);
1234
1235	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237		err = 0;
1238		goto out_free;
1239	}
1240	if (cmp == 0 && nlen1 == nlen2)
1241		ubifs_err(c, "2 xent/dent nodes with the same name");
1242	else
1243		ubifs_err(c, "bad order of colliding key %s",
1244			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247	ubifs_dump_node(c, dent1);
1248	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249	ubifs_dump_node(c, dent2);
1250
1251out_free:
1252	kfree(dent2);
1253	kfree(dent1);
1254	return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267	struct ubifs_znode *znode = zbr->znode;
1268	struct ubifs_znode *zp = znode->parent;
1269	int n, err, cmp;
1270
1271	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272		err = 1;
1273		goto out;
1274	}
1275	if (znode->level < 0) {
1276		err = 2;
1277		goto out;
1278	}
1279	if (znode->iip < 0 || znode->iip >= c->fanout) {
1280		err = 3;
1281		goto out;
1282	}
1283
1284	if (zbr->len == 0)
1285		/* Only dirty zbranch may have no on-flash nodes */
1286		if (!ubifs_zn_dirty(znode)) {
1287			err = 4;
1288			goto out;
1289		}
1290
1291	if (ubifs_zn_dirty(znode)) {
1292		/*
1293		 * If znode is dirty, its parent has to be dirty as well. The
1294		 * order of the operation is important, so we have to have
1295		 * memory barriers.
1296		 */
1297		smp_mb();
1298		if (zp && !ubifs_zn_dirty(zp)) {
1299			/*
1300			 * The dirty flag is atomic and is cleared outside the
1301			 * TNC mutex, so znode's dirty flag may now have
1302			 * been cleared. The child is always cleared before the
1303			 * parent, so we just need to check again.
1304			 */
1305			smp_mb();
1306			if (ubifs_zn_dirty(znode)) {
1307				err = 5;
1308				goto out;
1309			}
1310		}
1311	}
1312
1313	if (zp) {
1314		const union ubifs_key *min, *max;
1315
1316		if (znode->level != zp->level - 1) {
1317			err = 6;
1318			goto out;
1319		}
1320
1321		/* Make sure the 'parent' pointer in our znode is correct */
1322		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323		if (!err) {
1324			/* This zbranch does not exist in the parent */
1325			err = 7;
1326			goto out;
1327		}
1328
1329		if (znode->iip >= zp->child_cnt) {
1330			err = 8;
1331			goto out;
1332		}
1333
1334		if (znode->iip != n) {
1335			/* This may happen only in case of collisions */
1336			if (keys_cmp(c, &zp->zbranch[n].key,
1337				     &zp->zbranch[znode->iip].key)) {
1338				err = 9;
1339				goto out;
1340			}
1341			n = znode->iip;
1342		}
1343
1344		/*
1345		 * Make sure that the first key in our znode is greater than or
1346		 * equal to the key in the pointing zbranch.
1347		 */
1348		min = &zbr->key;
1349		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350		if (cmp == 1) {
1351			err = 10;
1352			goto out;
1353		}
1354
1355		if (n + 1 < zp->child_cnt) {
1356			max = &zp->zbranch[n + 1].key;
1357
1358			/*
1359			 * Make sure the last key in our znode is less or
1360			 * equivalent than the key in the zbranch which goes
1361			 * after our pointing zbranch.
1362			 */
1363			cmp = keys_cmp(c, max,
1364				&znode->zbranch[znode->child_cnt - 1].key);
1365			if (cmp == -1) {
1366				err = 11;
1367				goto out;
1368			}
1369		}
1370	} else {
1371		/* This may only be root znode */
1372		if (zbr != &c->zroot) {
1373			err = 12;
1374			goto out;
1375		}
1376	}
1377
1378	/*
1379	 * Make sure that next key is greater or equivalent then the previous
1380	 * one.
1381	 */
1382	for (n = 1; n < znode->child_cnt; n++) {
1383		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384			       &znode->zbranch[n].key);
1385		if (cmp > 0) {
1386			err = 13;
1387			goto out;
1388		}
1389		if (cmp == 0) {
1390			/* This can only be keys with colliding hash */
1391			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392				err = 14;
1393				goto out;
1394			}
1395
1396			if (znode->level != 0 || c->replaying)
1397				continue;
1398
1399			/*
1400			 * Colliding keys should follow binary order of
1401			 * corresponding xentry/dentry names.
1402			 */
1403			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404						  &znode->zbranch[n]);
1405			if (err < 0)
1406				return err;
1407			if (err) {
1408				err = 15;
1409				goto out;
1410			}
1411		}
1412	}
1413
1414	for (n = 0; n < znode->child_cnt; n++) {
1415		if (!znode->zbranch[n].znode &&
1416		    (znode->zbranch[n].lnum == 0 ||
1417		     znode->zbranch[n].len == 0)) {
1418			err = 16;
1419			goto out;
1420		}
1421
1422		if (znode->zbranch[n].lnum != 0 &&
1423		    znode->zbranch[n].len == 0) {
1424			err = 17;
1425			goto out;
1426		}
1427
1428		if (znode->zbranch[n].lnum == 0 &&
1429		    znode->zbranch[n].len != 0) {
1430			err = 18;
1431			goto out;
1432		}
1433
1434		if (znode->zbranch[n].lnum == 0 &&
1435		    znode->zbranch[n].offs != 0) {
1436			err = 19;
1437			goto out;
1438		}
1439
1440		if (znode->level != 0 && znode->zbranch[n].znode)
1441			if (znode->zbranch[n].znode->parent != znode) {
1442				err = 20;
1443				goto out;
1444			}
1445	}
1446
1447	return 0;
1448
1449out:
1450	ubifs_err(c, "failed, error %d", err);
1451	ubifs_msg(c, "dump of the znode");
1452	ubifs_dump_znode(c, znode);
1453	if (zp) {
1454		ubifs_msg(c, "dump of the parent znode");
1455		ubifs_dump_znode(c, zp);
1456	}
1457	dump_stack();
1458	return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471	struct ubifs_znode *znode;
1472	long clean_cnt = 0, dirty_cnt = 0;
1473	int err, last;
1474
1475	if (!dbg_is_chk_index(c))
1476		return 0;
1477
1478	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479	if (!c->zroot.znode)
1480		return 0;
1481
1482	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483	while (1) {
1484		struct ubifs_znode *prev;
1485		struct ubifs_zbranch *zbr;
1486
1487		if (!znode->parent)
1488			zbr = &c->zroot;
1489		else
1490			zbr = &znode->parent->zbranch[znode->iip];
1491
1492		err = dbg_check_znode(c, zbr);
1493		if (err)
1494			return err;
1495
1496		if (extra) {
1497			if (ubifs_zn_dirty(znode))
1498				dirty_cnt += 1;
1499			else
1500				clean_cnt += 1;
1501		}
1502
1503		prev = znode;
1504		znode = ubifs_tnc_postorder_next(znode);
1505		if (!znode)
1506			break;
1507
1508		/*
1509		 * If the last key of this znode is equivalent to the first key
1510		 * of the next znode (collision), then check order of the keys.
1511		 */
1512		last = prev->child_cnt - 1;
1513		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514		    !keys_cmp(c, &prev->zbranch[last].key,
1515			      &znode->zbranch[0].key)) {
1516			err = dbg_check_key_order(c, &prev->zbranch[last],
1517						  &znode->zbranch[0]);
1518			if (err < 0)
1519				return err;
1520			if (err) {
1521				ubifs_msg(c, "first znode");
1522				ubifs_dump_znode(c, prev);
1523				ubifs_msg(c, "second znode");
1524				ubifs_dump_znode(c, znode);
1525				return -EINVAL;
1526			}
1527		}
1528	}
1529
1530	if (extra) {
1531		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533				  atomic_long_read(&c->clean_zn_cnt),
1534				  clean_cnt);
1535			return -EINVAL;
1536		}
1537		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539				  atomic_long_read(&c->dirty_zn_cnt),
1540				  dirty_cnt);
1541			return -EINVAL;
1542		}
1543	}
1544
1545	return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564		   dbg_znode_callback znode_cb, void *priv)
1565{
1566	int err;
1567	struct ubifs_zbranch *zbr;
1568	struct ubifs_znode *znode, *child;
1569
1570	mutex_lock(&c->tnc_mutex);
1571	/* If the root indexing node is not in TNC - pull it */
1572	if (!c->zroot.znode) {
1573		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574		if (IS_ERR(c->zroot.znode)) {
1575			err = PTR_ERR(c->zroot.znode);
1576			c->zroot.znode = NULL;
1577			goto out_unlock;
1578		}
1579	}
1580
1581	/*
1582	 * We are going to traverse the indexing tree in the postorder manner.
1583	 * Go down and find the leftmost indexing node where we are going to
1584	 * start from.
1585	 */
1586	znode = c->zroot.znode;
1587	while (znode->level > 0) {
1588		zbr = &znode->zbranch[0];
1589		child = zbr->znode;
1590		if (!child) {
1591			child = ubifs_load_znode(c, zbr, znode, 0);
1592			if (IS_ERR(child)) {
1593				err = PTR_ERR(child);
1594				goto out_unlock;
1595			}
1596			zbr->znode = child;
1597		}
1598
1599		znode = child;
1600	}
1601
1602	/* Iterate over all indexing nodes */
1603	while (1) {
1604		int idx;
1605
1606		cond_resched();
1607
1608		if (znode_cb) {
1609			err = znode_cb(c, znode, priv);
1610			if (err) {
1611				ubifs_err(c, "znode checking function returned error %d",
1612					  err);
1613				ubifs_dump_znode(c, znode);
1614				goto out_dump;
1615			}
1616		}
1617		if (leaf_cb && znode->level == 0) {
1618			for (idx = 0; idx < znode->child_cnt; idx++) {
1619				zbr = &znode->zbranch[idx];
1620				err = leaf_cb(c, zbr, priv);
1621				if (err) {
1622					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623						  err, zbr->lnum, zbr->offs);
1624					goto out_dump;
1625				}
1626			}
1627		}
1628
1629		if (!znode->parent)
1630			break;
1631
1632		idx = znode->iip + 1;
1633		znode = znode->parent;
1634		if (idx < znode->child_cnt) {
1635			/* Switch to the next index in the parent */
1636			zbr = &znode->zbranch[idx];
1637			child = zbr->znode;
1638			if (!child) {
1639				child = ubifs_load_znode(c, zbr, znode, idx);
1640				if (IS_ERR(child)) {
1641					err = PTR_ERR(child);
1642					goto out_unlock;
1643				}
1644				zbr->znode = child;
1645			}
1646			znode = child;
1647		} else
1648			/*
1649			 * This is the last child, switch to the parent and
1650			 * continue.
1651			 */
1652			continue;
1653
1654		/* Go to the lowest leftmost znode in the new sub-tree */
1655		while (znode->level > 0) {
1656			zbr = &znode->zbranch[0];
1657			child = zbr->znode;
1658			if (!child) {
1659				child = ubifs_load_znode(c, zbr, znode, 0);
1660				if (IS_ERR(child)) {
1661					err = PTR_ERR(child);
1662					goto out_unlock;
1663				}
1664				zbr->znode = child;
1665			}
1666			znode = child;
1667		}
1668	}
1669
1670	mutex_unlock(&c->tnc_mutex);
1671	return 0;
1672
1673out_dump:
1674	if (znode->parent)
1675		zbr = &znode->parent->zbranch[znode->iip];
1676	else
1677		zbr = &c->zroot;
1678	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679	ubifs_dump_znode(c, znode);
1680out_unlock:
1681	mutex_unlock(&c->tnc_mutex);
1682	return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697	long long *idx_size = priv;
1698	int add;
1699
1700	add = ubifs_idx_node_sz(c, znode->child_cnt);
1701	add = ALIGN(add, 8);
1702	*idx_size += add;
1703	return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717	int err;
1718	long long calc = 0;
1719
1720	if (!dbg_is_chk_index(c))
1721		return 0;
1722
1723	err = dbg_walk_index(c, NULL, add_size, &calc);
1724	if (err) {
1725		ubifs_err(c, "error %d while walking the index", err);
1726		return err;
1727	}
1728
1729	if (calc != idx_size) {
1730		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731			  calc, idx_size);
1732		dump_stack();
1733		return -EINVAL;
 
1734	}
1735
1736	return 0;
 
 
 
 
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 *              while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 *            inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 *             inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760	struct rb_node rb;
1761	ino_t inum;
1762	umode_t mode;
1763	unsigned int nlink;
1764	unsigned int xattr_cnt;
1765	int references;
1766	int calc_cnt;
1767	long long size;
1768	unsigned int xattr_sz;
1769	long long calc_sz;
1770	long long calc_xcnt;
1771	long long calc_xsz;
1772	unsigned int xattr_nms;
1773	long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781	struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795				    struct fsck_data *fsckd,
1796				    struct ubifs_ino_node *ino)
1797{
1798	struct rb_node **p, *parent = NULL;
1799	struct fsck_inode *fscki;
1800	ino_t inum = key_inum_flash(c, &ino->key);
1801	struct inode *inode;
1802	struct ubifs_inode *ui;
1803
1804	p = &fsckd->inodes.rb_node;
1805	while (*p) {
1806		parent = *p;
1807		fscki = rb_entry(parent, struct fsck_inode, rb);
1808		if (inum < fscki->inum)
1809			p = &(*p)->rb_left;
1810		else if (inum > fscki->inum)
1811			p = &(*p)->rb_right;
1812		else
1813			return fscki;
1814	}
1815
1816	if (inum > c->highest_inum) {
1817		ubifs_err(c, "too high inode number, max. is %lu",
1818			  (unsigned long)c->highest_inum);
1819		return ERR_PTR(-EINVAL);
1820	}
1821
1822	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823	if (!fscki)
1824		return ERR_PTR(-ENOMEM);
1825
1826	inode = ilookup(c->vfs_sb, inum);
1827
1828	fscki->inum = inum;
1829	/*
1830	 * If the inode is present in the VFS inode cache, use it instead of
1831	 * the on-flash inode which might be out-of-date. E.g., the size might
1832	 * be out-of-date. If we do not do this, the following may happen, for
1833	 * example:
1834	 *   1. A power cut happens
1835	 *   2. We mount the file-system R/O, the replay process fixes up the
1836	 *      inode size in the VFS cache, but on on-flash.
1837	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1838	 *      size.
1839	 */
1840	if (!inode) {
1841		fscki->nlink = le32_to_cpu(ino->nlink);
1842		fscki->size = le64_to_cpu(ino->size);
1843		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846		fscki->mode = le32_to_cpu(ino->mode);
1847	} else {
1848		ui = ubifs_inode(inode);
1849		fscki->nlink = inode->i_nlink;
1850		fscki->size = inode->i_size;
1851		fscki->xattr_cnt = ui->xattr_cnt;
1852		fscki->xattr_sz = ui->xattr_size;
1853		fscki->xattr_nms = ui->xattr_names;
1854		fscki->mode = inode->i_mode;
1855		iput(inode);
1856	}
1857
1858	if (S_ISDIR(fscki->mode)) {
1859		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860		fscki->calc_cnt = 2;
1861	}
1862
1863	rb_link_node(&fscki->rb, parent, p);
1864	rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866	return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880	struct rb_node *p;
1881	struct fsck_inode *fscki;
1882
1883	p = fsckd->inodes.rb_node;
1884	while (p) {
1885		fscki = rb_entry(p, struct fsck_inode, rb);
1886		if (inum < fscki->inum)
1887			p = p->rb_left;
1888		else if (inum > fscki->inum)
1889			p = p->rb_right;
1890		else
1891			return fscki;
1892	}
1893	return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908					 struct fsck_data *fsckd, ino_t inum)
1909{
1910	int n, err;
1911	union ubifs_key key;
1912	struct ubifs_znode *znode;
1913	struct ubifs_zbranch *zbr;
1914	struct ubifs_ino_node *ino;
1915	struct fsck_inode *fscki;
1916
1917	fscki = search_inode(fsckd, inum);
1918	if (fscki)
1919		return fscki;
1920
1921	ino_key_init(c, &key, inum);
1922	err = ubifs_lookup_level0(c, &key, &znode, &n);
1923	if (!err) {
1924		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925		return ERR_PTR(-ENOENT);
1926	} else if (err < 0) {
1927		ubifs_err(c, "error %d while looking up inode %lu",
1928			  err, (unsigned long)inum);
1929		return ERR_PTR(err);
1930	}
1931
1932	zbr = &znode->zbranch[n];
1933	if (zbr->len < UBIFS_INO_NODE_SZ) {
1934		ubifs_err(c, "bad node %lu node length %d",
1935			  (unsigned long)inum, zbr->len);
1936		return ERR_PTR(-EINVAL);
1937	}
1938
1939	ino = kmalloc(zbr->len, GFP_NOFS);
1940	if (!ino)
1941		return ERR_PTR(-ENOMEM);
1942
1943	err = ubifs_tnc_read_node(c, zbr, ino);
1944	if (err) {
1945		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946			  zbr->lnum, zbr->offs, err);
1947		kfree(ino);
1948		return ERR_PTR(err);
1949	}
1950
1951	fscki = add_inode(c, fsckd, ino);
1952	kfree(ino);
1953	if (IS_ERR(fscki)) {
1954		ubifs_err(c, "error %ld while adding inode %lu node",
1955			  PTR_ERR(fscki), (unsigned long)inum);
1956		return fscki;
1957	}
1958
1959	return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979		      void *priv)
1980{
1981	ino_t inum;
1982	void *node;
1983	struct ubifs_ch *ch;
1984	int err, type = key_type(c, &zbr->key);
1985	struct fsck_inode *fscki;
1986
1987	if (zbr->len < UBIFS_CH_SZ) {
1988		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989			  zbr->len, zbr->lnum, zbr->offs);
1990		return -EINVAL;
1991	}
1992
1993	node = kmalloc(zbr->len, GFP_NOFS);
1994	if (!node)
1995		return -ENOMEM;
1996
1997	err = ubifs_tnc_read_node(c, zbr, node);
1998	if (err) {
1999		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000			  zbr->lnum, zbr->offs, err);
2001		goto out_free;
2002	}
2003
2004	/* If this is an inode node, add it to RB-tree of inodes */
2005	if (type == UBIFS_INO_KEY) {
2006		fscki = add_inode(c, priv, node);
2007		if (IS_ERR(fscki)) {
2008			err = PTR_ERR(fscki);
2009			ubifs_err(c, "error %d while adding inode node", err);
2010			goto out_dump;
2011		}
2012		goto out;
2013	}
2014
2015	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016	    type != UBIFS_DATA_KEY) {
2017		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018			  type, zbr->lnum, zbr->offs);
2019		err = -EINVAL;
2020		goto out_free;
2021	}
2022
2023	ch = node;
2024	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025		ubifs_err(c, "too high sequence number, max. is %llu",
2026			  c->max_sqnum);
2027		err = -EINVAL;
2028		goto out_dump;
2029	}
2030
2031	if (type == UBIFS_DATA_KEY) {
2032		long long blk_offs;
2033		struct ubifs_data_node *dn = node;
2034
2035		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037		/*
2038		 * Search the inode node this data node belongs to and insert
2039		 * it to the RB-tree of inodes.
2040		 */
2041		inum = key_inum_flash(c, &dn->key);
2042		fscki = read_add_inode(c, priv, inum);
2043		if (IS_ERR(fscki)) {
2044			err = PTR_ERR(fscki);
2045			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046				  err, (unsigned long)inum);
2047			goto out_dump;
2048		}
2049
2050		/* Make sure the data node is within inode size */
2051		blk_offs = key_block_flash(c, &dn->key);
2052		blk_offs <<= UBIFS_BLOCK_SHIFT;
2053		blk_offs += le32_to_cpu(dn->size);
2054		if (blk_offs > fscki->size) {
2055			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056				  zbr->lnum, zbr->offs, fscki->size);
2057			err = -EINVAL;
2058			goto out_dump;
2059		}
2060	} else {
2061		int nlen;
2062		struct ubifs_dent_node *dent = node;
2063		struct fsck_inode *fscki1;
2064
2065		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067		err = ubifs_validate_entry(c, dent);
2068		if (err)
2069			goto out_dump;
2070
2071		/*
2072		 * Search the inode node this entry refers to and the parent
2073		 * inode node and insert them to the RB-tree of inodes.
2074		 */
2075		inum = le64_to_cpu(dent->inum);
2076		fscki = read_add_inode(c, priv, inum);
2077		if (IS_ERR(fscki)) {
2078			err = PTR_ERR(fscki);
2079			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080				  err, (unsigned long)inum);
2081			goto out_dump;
2082		}
2083
2084		/* Count how many direntries or xentries refers this inode */
2085		fscki->references += 1;
2086
2087		inum = key_inum_flash(c, &dent->key);
2088		fscki1 = read_add_inode(c, priv, inum);
2089		if (IS_ERR(fscki1)) {
2090			err = PTR_ERR(fscki1);
2091			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092				  err, (unsigned long)inum);
2093			goto out_dump;
2094		}
2095
2096		nlen = le16_to_cpu(dent->nlen);
2097		if (type == UBIFS_XENT_KEY) {
2098			fscki1->calc_xcnt += 1;
2099			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101			fscki1->calc_xnms += nlen;
2102		} else {
2103			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104			if (dent->type == UBIFS_ITYPE_DIR)
2105				fscki1->calc_cnt += 1;
2106		}
2107	}
2108
2109out:
2110	kfree(node);
2111	return 0;
2112
2113out_dump:
2114	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115	ubifs_dump_node(c, node);
2116out_free:
2117	kfree(node);
2118	return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127	struct fsck_inode *fscki, *n;
2128
2129	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130		kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145	int n, err;
2146	union ubifs_key key;
2147	struct ubifs_znode *znode;
2148	struct ubifs_zbranch *zbr;
2149	struct ubifs_ino_node *ino;
2150	struct fsck_inode *fscki;
2151	struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153	while (this) {
2154		fscki = rb_entry(this, struct fsck_inode, rb);
2155		this = rb_next(this);
2156
2157		if (S_ISDIR(fscki->mode)) {
2158			/*
2159			 * Directories have to have exactly one reference (they
2160			 * cannot have hardlinks), although root inode is an
2161			 * exception.
2162			 */
2163			if (fscki->inum != UBIFS_ROOT_INO &&
2164			    fscki->references != 1) {
2165				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166					  (unsigned long)fscki->inum,
2167					  fscki->references);
2168				goto out_dump;
2169			}
2170			if (fscki->inum == UBIFS_ROOT_INO &&
2171			    fscki->references != 0) {
2172				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173					  (unsigned long)fscki->inum,
2174					  fscki->references);
2175				goto out_dump;
2176			}
2177			if (fscki->calc_sz != fscki->size) {
2178				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179					  (unsigned long)fscki->inum,
2180					  fscki->size, fscki->calc_sz);
2181				goto out_dump;
2182			}
2183			if (fscki->calc_cnt != fscki->nlink) {
2184				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185					  (unsigned long)fscki->inum,
2186					  fscki->nlink, fscki->calc_cnt);
2187				goto out_dump;
2188			}
2189		} else {
2190			if (fscki->references != fscki->nlink) {
2191				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192					  (unsigned long)fscki->inum,
2193					  fscki->nlink, fscki->references);
2194				goto out_dump;
2195			}
2196		}
2197		if (fscki->xattr_sz != fscki->calc_xsz) {
2198			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199				  (unsigned long)fscki->inum, fscki->xattr_sz,
2200				  fscki->calc_xsz);
2201			goto out_dump;
2202		}
2203		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205				  (unsigned long)fscki->inum,
2206				  fscki->xattr_cnt, fscki->calc_xcnt);
2207			goto out_dump;
2208		}
2209		if (fscki->xattr_nms != fscki->calc_xnms) {
2210			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211				  (unsigned long)fscki->inum, fscki->xattr_nms,
2212				  fscki->calc_xnms);
2213			goto out_dump;
2214		}
2215	}
2216
2217	return 0;
2218
2219out_dump:
2220	/* Read the bad inode and dump it */
2221	ino_key_init(c, &key, fscki->inum);
2222	err = ubifs_lookup_level0(c, &key, &znode, &n);
2223	if (!err) {
2224		ubifs_err(c, "inode %lu not found in index",
2225			  (unsigned long)fscki->inum);
2226		return -ENOENT;
2227	} else if (err < 0) {
2228		ubifs_err(c, "error %d while looking up inode %lu",
2229			  err, (unsigned long)fscki->inum);
2230		return err;
2231	}
2232
2233	zbr = &znode->zbranch[n];
2234	ino = kmalloc(zbr->len, GFP_NOFS);
2235	if (!ino)
2236		return -ENOMEM;
2237
2238	err = ubifs_tnc_read_node(c, zbr, ino);
2239	if (err) {
2240		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241			  zbr->lnum, zbr->offs, err);
2242		kfree(ino);
2243		return err;
2244	}
2245
2246	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248	ubifs_dump_node(c, ino);
2249	kfree(ino);
2250	return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 *   inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268	int err;
2269	struct fsck_data fsckd;
2270
2271	if (!dbg_is_chk_fs(c))
2272		return 0;
2273
2274	fsckd.inodes = RB_ROOT;
2275	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276	if (err)
2277		goto out_free;
2278
2279	err = check_inodes(c, &fsckd);
2280	if (err)
2281		goto out_free;
2282
2283	free_inodes(&fsckd);
2284	return 0;
2285
2286out_free:
2287	ubifs_err(c, "file-system check failed with error %d", err);
2288	dump_stack();
2289	free_inodes(&fsckd);
2290	return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303	struct list_head *cur;
2304	struct ubifs_scan_node *sa, *sb;
2305
2306	if (!dbg_is_chk_gen(c))
2307		return 0;
2308
2309	for (cur = head->next; cur->next != head; cur = cur->next) {
2310		ino_t inuma, inumb;
2311		uint32_t blka, blkb;
2312
2313		cond_resched();
2314		sa = container_of(cur, struct ubifs_scan_node, list);
2315		sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317		if (sa->type != UBIFS_DATA_NODE) {
2318			ubifs_err(c, "bad node type %d", sa->type);
2319			ubifs_dump_node(c, sa->node);
2320			return -EINVAL;
2321		}
2322		if (sb->type != UBIFS_DATA_NODE) {
2323			ubifs_err(c, "bad node type %d", sb->type);
2324			ubifs_dump_node(c, sb->node);
2325			return -EINVAL;
2326		}
2327
2328		inuma = key_inum(c, &sa->key);
2329		inumb = key_inum(c, &sb->key);
2330
2331		if (inuma < inumb)
2332			continue;
2333		if (inuma > inumb) {
2334			ubifs_err(c, "larger inum %lu goes before inum %lu",
2335				  (unsigned long)inuma, (unsigned long)inumb);
2336			goto error_dump;
2337		}
2338
2339		blka = key_block(c, &sa->key);
2340		blkb = key_block(c, &sb->key);
2341
2342		if (blka > blkb) {
2343			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344			goto error_dump;
2345		}
2346		if (blka == blkb) {
2347			ubifs_err(c, "two data nodes for the same block");
2348			goto error_dump;
2349		}
2350	}
2351
2352	return 0;
2353
2354error_dump:
2355	ubifs_dump_node(c, sa->node);
2356	ubifs_dump_node(c, sb->node);
2357	return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370	struct list_head *cur;
2371	struct ubifs_scan_node *sa, *sb;
2372
2373	if (!dbg_is_chk_gen(c))
2374		return 0;
2375
2376	for (cur = head->next; cur->next != head; cur = cur->next) {
2377		ino_t inuma, inumb;
2378		uint32_t hasha, hashb;
2379
2380		cond_resched();
2381		sa = container_of(cur, struct ubifs_scan_node, list);
2382		sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385		    sa->type != UBIFS_XENT_NODE) {
2386			ubifs_err(c, "bad node type %d", sa->type);
2387			ubifs_dump_node(c, sa->node);
2388			return -EINVAL;
2389		}
2390		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391		    sa->type != UBIFS_XENT_NODE) {
2392			ubifs_err(c, "bad node type %d", sb->type);
2393			ubifs_dump_node(c, sb->node);
2394			return -EINVAL;
2395		}
2396
2397		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398			ubifs_err(c, "non-inode node goes before inode node");
2399			goto error_dump;
2400		}
2401
2402		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403			continue;
2404
2405		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406			/* Inode nodes are sorted in descending size order */
2407			if (sa->len < sb->len) {
2408				ubifs_err(c, "smaller inode node goes first");
2409				goto error_dump;
2410			}
2411			continue;
2412		}
2413
2414		/*
2415		 * This is either a dentry or xentry, which should be sorted in
2416		 * ascending (parent ino, hash) order.
2417		 */
2418		inuma = key_inum(c, &sa->key);
2419		inumb = key_inum(c, &sb->key);
2420
2421		if (inuma < inumb)
2422			continue;
2423		if (inuma > inumb) {
2424			ubifs_err(c, "larger inum %lu goes before inum %lu",
2425				  (unsigned long)inuma, (unsigned long)inumb);
2426			goto error_dump;
2427		}
2428
2429		hasha = key_block(c, &sa->key);
2430		hashb = key_block(c, &sb->key);
2431
2432		if (hasha > hashb) {
2433			ubifs_err(c, "larger hash %u goes before %u",
2434				  hasha, hashb);
2435			goto error_dump;
2436		}
2437	}
2438
2439	return 0;
2440
2441error_dump:
2442	ubifs_msg(c, "dumping first node");
2443	ubifs_dump_node(c, sa->node);
2444	ubifs_msg(c, "dumping second node");
2445	ubifs_dump_node(c, sb->node);
2446	return -EINVAL;
2447	return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452	return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458	struct ubifs_debug_info *d = c->dbg;
2459
2460	ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462	if (!d->pc_cnt) {
2463		/* First call - decide delay to the power cut */
2464		if (chance(1, 2)) {
2465			unsigned long delay;
2466
2467			if (chance(1, 2)) {
2468				d->pc_delay = 1;
2469				/* Fail within 1 minute */
2470				delay = prandom_u32() % 60000;
2471				d->pc_timeout = jiffies;
2472				d->pc_timeout += msecs_to_jiffies(delay);
2473				ubifs_warn(c, "failing after %lums", delay);
2474			} else {
2475				d->pc_delay = 2;
2476				delay = prandom_u32() % 10000;
2477				/* Fail within 10000 operations */
2478				d->pc_cnt_max = delay;
2479				ubifs_warn(c, "failing after %lu calls", delay);
2480			}
2481		}
2482
2483		d->pc_cnt += 1;
2484	}
2485
2486	/* Determine if failure delay has expired */
2487	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488			return 0;
2489	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490			return 0;
2491
2492	if (lnum == UBIFS_SB_LNUM) {
2493		if (write && chance(1, 2))
2494			return 0;
2495		if (chance(19, 20))
2496			return 0;
2497		ubifs_warn(c, "failing in super block LEB %d", lnum);
2498	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499		if (chance(19, 20))
2500			return 0;
2501		ubifs_warn(c, "failing in master LEB %d", lnum);
2502	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503		if (write && chance(99, 100))
2504			return 0;
2505		if (chance(399, 400))
2506			return 0;
2507		ubifs_warn(c, "failing in log LEB %d", lnum);
2508	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509		if (write && chance(7, 8))
2510			return 0;
2511		if (chance(19, 20))
2512			return 0;
2513		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515		if (write && chance(1, 2))
2516			return 0;
2517		if (chance(9, 10))
2518			return 0;
2519		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520	} else if (lnum == c->ihead_lnum) {
2521		if (chance(99, 100))
2522			return 0;
2523		ubifs_warn(c, "failing in index head LEB %d", lnum);
2524	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525		if (chance(9, 10))
2526			return 0;
2527		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529		   !ubifs_search_bud(c, lnum)) {
2530		if (chance(19, 20))
2531			return 0;
2532		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535		if (chance(999, 1000))
2536			return 0;
2537		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538	} else {
2539		if (chance(9999, 10000))
2540			return 0;
2541		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542	}
2543
2544	d->pc_happened = 1;
2545	ubifs_warn(c, "========== Power cut emulated ==========");
2546	dump_stack();
2547	return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551			unsigned int len)
2552{
2553	unsigned int from, to, ffs = chance(1, 2);
2554	unsigned char *p = (void *)buf;
2555
2556	from = prandom_u32() % len;
2557	/* Corruption span max to end of write unit */
2558	to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561		   ffs ? "0xFFs" : "random data");
2562
2563	if (ffs)
2564		memset(p + from, 0xFF, to - from);
2565	else
2566		prandom_bytes(p + from, to - from);
2567
2568	return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572		  int offs, int len)
2573{
2574	int err, failing;
2575
2576	if (dbg_is_power_cut(c))
2577		return -EROFS;
2578
2579	failing = power_cut_emulated(c, lnum, 1);
2580	if (failing) {
2581		len = corrupt_data(c, buf, len);
2582		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583			   len, lnum, offs);
2584	}
2585	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586	if (err)
2587		return err;
2588	if (failing)
2589		return -EROFS;
2590	return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594		   int len)
2595{
2596	int err;
2597
2598	if (dbg_is_power_cut(c))
2599		return -EROFS;
2600	if (power_cut_emulated(c, lnum, 1))
2601		return -EROFS;
2602	err = ubi_leb_change(c->ubi, lnum, buf, len);
2603	if (err)
2604		return err;
2605	if (power_cut_emulated(c, lnum, 1))
2606		return -EROFS;
2607	return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612	int err;
2613
2614	if (dbg_is_power_cut(c))
2615		return -EROFS;
2616	if (power_cut_emulated(c, lnum, 0))
2617		return -EROFS;
2618	err = ubi_leb_unmap(c->ubi, lnum);
2619	if (err)
2620		return err;
2621	if (power_cut_emulated(c, lnum, 0))
2622		return -EROFS;
2623	return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628	int err;
2629
2630	if (dbg_is_power_cut(c))
2631		return -EROFS;
2632	if (power_cut_emulated(c, lnum, 0))
2633		return -EROFS;
2634	err = ubi_leb_map(c->ubi, lnum);
2635	if (err)
2636		return err;
2637	if (power_cut_emulated(c, lnum, 0))
2638		return -EROFS;
2639	return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650	file->private_data = inode->i_private;
2651	return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667			       loff_t *ppos)
2668{
2669	char buf[3];
2670
2671	if (val)
2672		buf[0] = '1';
2673	else
2674		buf[0] = '0';
2675	buf[1] = '\n';
2676	buf[2] = 0x00;
2677
2678	return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682			     loff_t *ppos)
2683{
2684	struct dentry *dent = file->f_path.dentry;
2685	struct ubifs_info *c = file->private_data;
2686	struct ubifs_debug_info *d = c->dbg;
2687	int val;
2688
2689	if (dent == d->dfs_chk_gen)
2690		val = d->chk_gen;
2691	else if (dent == d->dfs_chk_index)
2692		val = d->chk_index;
2693	else if (dent == d->dfs_chk_orph)
2694		val = d->chk_orph;
2695	else if (dent == d->dfs_chk_lprops)
2696		val = d->chk_lprops;
2697	else if (dent == d->dfs_chk_fs)
2698		val = d->chk_fs;
2699	else if (dent == d->dfs_tst_rcvry)
2700		val = d->tst_rcvry;
2701	else if (dent == d->dfs_ro_error)
2702		val = c->ro_error;
2703	else
2704		return -EINVAL;
2705
2706	return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720	size_t buf_size;
2721	char buf[8];
2722
2723	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724	if (copy_from_user(buf, u, buf_size))
2725		return -EFAULT;
2726
2727	if (buf[0] == '1')
2728		return 1;
2729	else if (buf[0] == '0')
2730		return 0;
2731
2732	return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736			      size_t count, loff_t *ppos)
2737{
2738	struct ubifs_info *c = file->private_data;
2739	struct ubifs_debug_info *d = c->dbg;
2740	struct dentry *dent = file->f_path.dentry;
2741	int val;
2742
2743	/*
2744	 * TODO: this is racy - the file-system might have already been
2745	 * unmounted and we'd oops in this case. The plan is to fix it with
2746	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749	 * superblocks and fine the one with the same UUID, and take the
2750	 * locking right.
2751	 *
2752	 * The other way to go suggested by Al Viro is to create a separate
2753	 * 'ubifs-debug' file-system instead.
2754	 */
2755	if (file->f_path.dentry == d->dfs_dump_lprops) {
2756		ubifs_dump_lprops(c);
2757		return count;
2758	}
2759	if (file->f_path.dentry == d->dfs_dump_budg) {
2760		ubifs_dump_budg(c, &c->bi);
2761		return count;
2762	}
2763	if (file->f_path.dentry == d->dfs_dump_tnc) {
2764		mutex_lock(&c->tnc_mutex);
2765		ubifs_dump_tnc(c);
2766		mutex_unlock(&c->tnc_mutex);
2767		return count;
2768	}
2769
2770	val = interpret_user_input(u, count);
2771	if (val < 0)
2772		return val;
2773
2774	if (dent == d->dfs_chk_gen)
2775		d->chk_gen = val;
2776	else if (dent == d->dfs_chk_index)
2777		d->chk_index = val;
2778	else if (dent == d->dfs_chk_orph)
2779		d->chk_orph = val;
2780	else if (dent == d->dfs_chk_lprops)
2781		d->chk_lprops = val;
2782	else if (dent == d->dfs_chk_fs)
2783		d->chk_fs = val;
2784	else if (dent == d->dfs_tst_rcvry)
2785		d->tst_rcvry = val;
2786	else if (dent == d->dfs_ro_error)
2787		c->ro_error = !!val;
2788	else
2789		return -EINVAL;
2790
2791	return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795	.open = dfs_file_open,
2796	.read = dfs_file_read,
2797	.write = dfs_file_write,
2798	.owner = THIS_MODULE,
2799	.llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816	int err, n;
2817	const char *fname;
2818	struct dentry *dent;
2819	struct ubifs_debug_info *d = c->dbg;
2820
2821	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822		return 0;
2823
2824	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825		     c->vi.ubi_num, c->vi.vol_id);
2826	if (n == UBIFS_DFS_DIR_LEN) {
2827		/* The array size is too small */
2828		fname = UBIFS_DFS_DIR_NAME;
2829		dent = ERR_PTR(-EINVAL);
2830		goto out;
2831	}
2832
2833	fname = d->dfs_dir_name;
2834	dent = debugfs_create_dir(fname, dfs_rootdir);
2835	if (IS_ERR_OR_NULL(dent))
2836		goto out;
2837	d->dfs_dir = dent;
2838
2839	fname = "dump_lprops";
2840	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841	if (IS_ERR_OR_NULL(dent))
2842		goto out_remove;
2843	d->dfs_dump_lprops = dent;
2844
2845	fname = "dump_budg";
2846	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847	if (IS_ERR_OR_NULL(dent))
2848		goto out_remove;
2849	d->dfs_dump_budg = dent;
2850
2851	fname = "dump_tnc";
2852	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853	if (IS_ERR_OR_NULL(dent))
2854		goto out_remove;
2855	d->dfs_dump_tnc = dent;
2856
2857	fname = "chk_general";
2858	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859				   &dfs_fops);
2860	if (IS_ERR_OR_NULL(dent))
2861		goto out_remove;
2862	d->dfs_chk_gen = dent;
2863
2864	fname = "chk_index";
2865	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866				   &dfs_fops);
2867	if (IS_ERR_OR_NULL(dent))
2868		goto out_remove;
2869	d->dfs_chk_index = dent;
2870
2871	fname = "chk_orphans";
2872	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873				   &dfs_fops);
2874	if (IS_ERR_OR_NULL(dent))
2875		goto out_remove;
2876	d->dfs_chk_orph = dent;
2877
2878	fname = "chk_lprops";
2879	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880				   &dfs_fops);
2881	if (IS_ERR_OR_NULL(dent))
2882		goto out_remove;
2883	d->dfs_chk_lprops = dent;
2884
2885	fname = "chk_fs";
2886	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887				   &dfs_fops);
2888	if (IS_ERR_OR_NULL(dent))
2889		goto out_remove;
2890	d->dfs_chk_fs = dent;
2891
2892	fname = "tst_recovery";
2893	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894				   &dfs_fops);
2895	if (IS_ERR_OR_NULL(dent))
2896		goto out_remove;
2897	d->dfs_tst_rcvry = dent;
2898
2899	fname = "ro_error";
2900	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901				   &dfs_fops);
2902	if (IS_ERR_OR_NULL(dent))
2903		goto out_remove;
2904	d->dfs_ro_error = dent;
2905
2906	return 0;
2907
2908out_remove:
2909	debugfs_remove_recursive(d->dfs_dir);
2910out:
2911	err = dent ? PTR_ERR(dent) : -ENODEV;
2912	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913		  fname, err);
2914	return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923	if (IS_ENABLED(CONFIG_DEBUG_FS))
2924		debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937				    size_t count, loff_t *ppos)
2938{
2939	struct dentry *dent = file->f_path.dentry;
2940	int val;
2941
2942	if (dent == dfs_chk_gen)
2943		val = ubifs_dbg.chk_gen;
2944	else if (dent == dfs_chk_index)
2945		val = ubifs_dbg.chk_index;
2946	else if (dent == dfs_chk_orph)
2947		val = ubifs_dbg.chk_orph;
2948	else if (dent == dfs_chk_lprops)
2949		val = ubifs_dbg.chk_lprops;
2950	else if (dent == dfs_chk_fs)
2951		val = ubifs_dbg.chk_fs;
2952	else if (dent == dfs_tst_rcvry)
2953		val = ubifs_dbg.tst_rcvry;
2954	else
2955		return -EINVAL;
2956
2957	return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961				     size_t count, loff_t *ppos)
2962{
2963	struct dentry *dent = file->f_path.dentry;
2964	int val;
2965
2966	val = interpret_user_input(u, count);
2967	if (val < 0)
2968		return val;
2969
2970	if (dent == dfs_chk_gen)
2971		ubifs_dbg.chk_gen = val;
2972	else if (dent == dfs_chk_index)
2973		ubifs_dbg.chk_index = val;
2974	else if (dent == dfs_chk_orph)
2975		ubifs_dbg.chk_orph = val;
2976	else if (dent == dfs_chk_lprops)
2977		ubifs_dbg.chk_lprops = val;
2978	else if (dent == dfs_chk_fs)
2979		ubifs_dbg.chk_fs = val;
2980	else if (dent == dfs_tst_rcvry)
2981		ubifs_dbg.tst_rcvry = val;
2982	else
2983		return -EINVAL;
2984
2985	return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989	.read = dfs_global_file_read,
2990	.write = dfs_global_file_write,
2991	.owner = THIS_MODULE,
2992	.llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005	int err;
3006	const char *fname;
3007	struct dentry *dent;
3008
3009	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010		return 0;
3011
3012	fname = "ubifs";
3013	dent = debugfs_create_dir(fname, NULL);
3014	if (IS_ERR_OR_NULL(dent))
3015		goto out;
3016	dfs_rootdir = dent;
3017
3018	fname = "chk_general";
3019	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020				   &dfs_global_fops);
3021	if (IS_ERR_OR_NULL(dent))
3022		goto out_remove;
3023	dfs_chk_gen = dent;
3024
3025	fname = "chk_index";
3026	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027				   &dfs_global_fops);
3028	if (IS_ERR_OR_NULL(dent))
3029		goto out_remove;
3030	dfs_chk_index = dent;
3031
3032	fname = "chk_orphans";
3033	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034				   &dfs_global_fops);
3035	if (IS_ERR_OR_NULL(dent))
3036		goto out_remove;
3037	dfs_chk_orph = dent;
3038
3039	fname = "chk_lprops";
3040	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041				   &dfs_global_fops);
3042	if (IS_ERR_OR_NULL(dent))
3043		goto out_remove;
3044	dfs_chk_lprops = dent;
3045
3046	fname = "chk_fs";
3047	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048				   &dfs_global_fops);
3049	if (IS_ERR_OR_NULL(dent))
3050		goto out_remove;
3051	dfs_chk_fs = dent;
3052
3053	fname = "tst_recovery";
3054	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055				   &dfs_global_fops);
3056	if (IS_ERR_OR_NULL(dent))
3057		goto out_remove;
3058	dfs_tst_rcvry = dent;
3059
3060	return 0;
3061
3062out_remove:
3063	debugfs_remove_recursive(dfs_rootdir);
3064out:
3065	err = dent ? PTR_ERR(dent) : -ENODEV;
3066	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067	       current->pid, fname, err);
3068	return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076	if (IS_ENABLED(CONFIG_DEBUG_FS))
3077		debugfs_remove_recursive(dfs_rootdir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091	if (!c->dbg)
3092		return -ENOMEM;
3093
3094	return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103	kfree(c->dbg);
3104}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int) inode_get_atime_sec(inode),
 241	       (unsigned int) inode_get_atime_nsec(inode));
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int) inode_get_mtime_sec(inode),
 244	       (unsigned int) inode_get_mtime_nsec(inode));
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int) inode_get_ctime_sec(inode),
 247	       (unsigned int) inode_get_ctime_nsec(inode));
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	if (c->zroot.znode) {
 950		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 951		level = znode->level;
 952		pr_err("== Level %d ==\n", level);
 953		while (znode) {
 954			if (level != znode->level) {
 955				level = znode->level;
 956				pr_err("== Level %d ==\n", level);
 957			}
 958			ubifs_dump_znode(c, znode);
 959			znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 960		}
 961	} else {
 962		pr_err("empty TNC tree in memory\n");
 963	}
 964	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 965}
 966
 967static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 968		      void *priv)
 969{
 970	ubifs_dump_znode(c, znode);
 971	return 0;
 972}
 973
 974/**
 975 * ubifs_dump_index - dump the on-flash index.
 976 * @c: UBIFS file-system description object
 977 *
 978 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 979 * which dumps only in-memory znodes and does not read znodes which from flash.
 980 */
 981void ubifs_dump_index(struct ubifs_info *c)
 982{
 983	dbg_walk_index(c, NULL, dump_znode, NULL);
 984}
 985
 986/**
 987 * dbg_save_space_info - save information about flash space.
 988 * @c: UBIFS file-system description object
 989 *
 990 * This function saves information about UBIFS free space, dirty space, etc, in
 991 * order to check it later.
 992 */
 993void dbg_save_space_info(struct ubifs_info *c)
 994{
 995	struct ubifs_debug_info *d = c->dbg;
 996	int freeable_cnt;
 997
 998	spin_lock(&c->space_lock);
 999	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1000	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1001	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1002
1003	/*
1004	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1005	 * affects the free space calculations, and UBIFS might not know about
1006	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1007	 * only when we read their lprops, and we do this only lazily, upon the
1008	 * need. So at any given point of time @c->freeable_cnt might be not
1009	 * exactly accurate.
1010	 *
1011	 * Just one example about the issue we hit when we did not zero
1012	 * @c->freeable_cnt.
1013	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1014	 *    amount of free space in @d->saved_free
1015	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1016	 *    information from flash, where we cache LEBs from various
1017	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1018	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1019	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1020	 *    -> 'ubifs_add_to_cat()').
1021	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1022	 *    becomes %1.
1023	 * 4. We calculate the amount of free space when the re-mount is
1024	 *    finished in 'dbg_check_space_info()' and it does not match
1025	 *    @d->saved_free.
1026	 */
1027	freeable_cnt = c->freeable_cnt;
1028	c->freeable_cnt = 0;
1029	d->saved_free = ubifs_get_free_space_nolock(c);
1030	c->freeable_cnt = freeable_cnt;
1031	spin_unlock(&c->space_lock);
1032}
1033
1034/**
1035 * dbg_check_space_info - check flash space information.
1036 * @c: UBIFS file-system description object
1037 *
1038 * This function compares current flash space information with the information
1039 * which was saved when the 'dbg_save_space_info()' function was called.
1040 * Returns zero if the information has not changed, and %-EINVAL if it has
1041 * changed.
1042 */
1043int dbg_check_space_info(struct ubifs_info *c)
1044{
1045	struct ubifs_debug_info *d = c->dbg;
1046	struct ubifs_lp_stats lst;
1047	long long free;
1048	int freeable_cnt;
1049
1050	spin_lock(&c->space_lock);
1051	freeable_cnt = c->freeable_cnt;
1052	c->freeable_cnt = 0;
1053	free = ubifs_get_free_space_nolock(c);
1054	c->freeable_cnt = freeable_cnt;
1055	spin_unlock(&c->space_lock);
1056
1057	if (free != d->saved_free) {
1058		ubifs_err(c, "free space changed from %lld to %lld",
1059			  d->saved_free, free);
1060		goto out;
1061	}
1062
1063	return 0;
1064
1065out:
1066	ubifs_msg(c, "saved lprops statistics dump");
1067	ubifs_dump_lstats(&d->saved_lst);
1068	ubifs_msg(c, "saved budgeting info dump");
1069	ubifs_dump_budg(c, &d->saved_bi);
1070	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1071	ubifs_msg(c, "current lprops statistics dump");
1072	ubifs_get_lp_stats(c, &lst);
1073	ubifs_dump_lstats(&lst);
1074	ubifs_msg(c, "current budgeting info dump");
1075	ubifs_dump_budg(c, &c->bi);
1076	dump_stack();
1077	return -EINVAL;
1078}
1079
1080/**
1081 * dbg_check_synced_i_size - check synchronized inode size.
1082 * @c: UBIFS file-system description object
1083 * @inode: inode to check
1084 *
1085 * If inode is clean, synchronized inode size has to be equivalent to current
1086 * inode size. This function has to be called only for locked inodes (@i_mutex
1087 * has to be locked). Returns %0 if synchronized inode size if correct, and
1088 * %-EINVAL if not.
1089 */
1090int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1091{
1092	int err = 0;
1093	struct ubifs_inode *ui = ubifs_inode(inode);
1094
1095	if (!dbg_is_chk_gen(c))
1096		return 0;
1097	if (!S_ISREG(inode->i_mode))
1098		return 0;
1099
1100	mutex_lock(&ui->ui_mutex);
1101	spin_lock(&ui->ui_lock);
1102	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1104			  ui->ui_size, ui->synced_i_size);
1105		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106			  inode->i_mode, i_size_read(inode));
1107		dump_stack();
1108		err = -EINVAL;
1109	}
1110	spin_unlock(&ui->ui_lock);
1111	mutex_unlock(&ui->ui_mutex);
1112	return err;
1113}
1114
1115/*
1116 * dbg_check_dir - check directory inode size and link count.
1117 * @c: UBIFS file-system description object
1118 * @dir: the directory to calculate size for
1119 * @size: the result is returned here
1120 *
1121 * This function makes sure that directory size and link count are correct.
1122 * Returns zero in case of success and a negative error code in case of
1123 * failure.
1124 *
1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126 * calling this function.
1127 */
1128int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1129{
1130	unsigned int nlink = 2;
1131	union ubifs_key key;
1132	struct ubifs_dent_node *dent, *pdent = NULL;
1133	struct fscrypt_name nm = {0};
1134	loff_t size = UBIFS_INO_NODE_SZ;
1135
1136	if (!dbg_is_chk_gen(c))
1137		return 0;
1138
1139	if (!S_ISDIR(dir->i_mode))
1140		return 0;
1141
1142	lowest_dent_key(c, &key, dir->i_ino);
1143	while (1) {
1144		int err;
1145
1146		dent = ubifs_tnc_next_ent(c, &key, &nm);
1147		if (IS_ERR(dent)) {
1148			err = PTR_ERR(dent);
1149			if (err == -ENOENT)
1150				break;
1151			kfree(pdent);
1152			return err;
1153		}
1154
1155		fname_name(&nm) = dent->name;
1156		fname_len(&nm) = le16_to_cpu(dent->nlen);
1157		size += CALC_DENT_SIZE(fname_len(&nm));
1158		if (dent->type == UBIFS_ITYPE_DIR)
1159			nlink += 1;
1160		kfree(pdent);
1161		pdent = dent;
1162		key_read(c, &dent->key, &key);
1163	}
1164	kfree(pdent);
1165
1166	if (i_size_read(dir) != size) {
1167		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1168			  dir->i_ino, (unsigned long long)i_size_read(dir),
1169			  (unsigned long long)size);
1170		ubifs_dump_inode(c, dir);
1171		dump_stack();
1172		return -EINVAL;
1173	}
1174	if (dir->i_nlink != nlink) {
1175		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1176			  dir->i_ino, dir->i_nlink, nlink);
1177		ubifs_dump_inode(c, dir);
1178		dump_stack();
1179		return -EINVAL;
1180	}
1181
1182	return 0;
1183}
1184
1185/**
1186 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1187 * @c: UBIFS file-system description object
1188 * @zbr1: first zbranch
1189 * @zbr2: following zbranch
1190 *
1191 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1192 * names of the direntries/xentries which are referred by the keys. This
1193 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1194 * sure the name of direntry/xentry referred by @zbr1 is less than
1195 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1196 * and a negative error code in case of failure.
1197 */
1198static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1199			       struct ubifs_zbranch *zbr2)
1200{
1201	int err, nlen1, nlen2, cmp;
1202	struct ubifs_dent_node *dent1, *dent2;
1203	union ubifs_key key;
1204	char key_buf[DBG_KEY_BUF_LEN];
1205
1206	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1207	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208	if (!dent1)
1209		return -ENOMEM;
1210	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1211	if (!dent2) {
1212		err = -ENOMEM;
1213		goto out_free;
1214	}
1215
1216	err = ubifs_tnc_read_node(c, zbr1, dent1);
1217	if (err)
1218		goto out_free;
1219	err = ubifs_validate_entry(c, dent1);
1220	if (err)
1221		goto out_free;
1222
1223	err = ubifs_tnc_read_node(c, zbr2, dent2);
1224	if (err)
1225		goto out_free;
1226	err = ubifs_validate_entry(c, dent2);
1227	if (err)
1228		goto out_free;
1229
1230	/* Make sure node keys are the same as in zbranch */
1231	err = 1;
1232	key_read(c, &dent1->key, &key);
1233	if (keys_cmp(c, &zbr1->key, &key)) {
1234		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1235			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1236						       DBG_KEY_BUF_LEN));
1237		ubifs_err(c, "but it should have key %s according to tnc",
1238			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1239					   DBG_KEY_BUF_LEN));
1240		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1241		goto out_free;
1242	}
1243
1244	key_read(c, &dent2->key, &key);
1245	if (keys_cmp(c, &zbr2->key, &key)) {
1246		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1247			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248						       DBG_KEY_BUF_LEN));
1249		ubifs_err(c, "but it should have key %s according to tnc",
1250			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1251					   DBG_KEY_BUF_LEN));
1252		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1253		goto out_free;
1254	}
1255
1256	nlen1 = le16_to_cpu(dent1->nlen);
1257	nlen2 = le16_to_cpu(dent2->nlen);
1258
1259	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1260	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1261		err = 0;
1262		goto out_free;
1263	}
1264	if (cmp == 0 && nlen1 == nlen2)
1265		ubifs_err(c, "2 xent/dent nodes with the same name");
1266	else
1267		ubifs_err(c, "bad order of colliding key %s",
1268			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1269
1270	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1271	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1272	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1273	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1274
1275out_free:
1276	kfree(dent2);
1277	kfree(dent1);
1278	return err;
1279}
1280
1281/**
1282 * dbg_check_znode - check if znode is all right.
1283 * @c: UBIFS file-system description object
1284 * @zbr: zbranch which points to this znode
1285 *
1286 * This function makes sure that znode referred to by @zbr is all right.
1287 * Returns zero if it is, and %-EINVAL if it is not.
1288 */
1289static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1290{
1291	struct ubifs_znode *znode = zbr->znode;
1292	struct ubifs_znode *zp = znode->parent;
1293	int n, err, cmp;
1294
1295	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1296		err = 1;
1297		goto out;
1298	}
1299	if (znode->level < 0) {
1300		err = 2;
1301		goto out;
1302	}
1303	if (znode->iip < 0 || znode->iip >= c->fanout) {
1304		err = 3;
1305		goto out;
1306	}
1307
1308	if (zbr->len == 0)
1309		/* Only dirty zbranch may have no on-flash nodes */
1310		if (!ubifs_zn_dirty(znode)) {
1311			err = 4;
1312			goto out;
1313		}
1314
1315	if (ubifs_zn_dirty(znode)) {
1316		/*
1317		 * If znode is dirty, its parent has to be dirty as well. The
1318		 * order of the operation is important, so we have to have
1319		 * memory barriers.
1320		 */
1321		smp_mb();
1322		if (zp && !ubifs_zn_dirty(zp)) {
1323			/*
1324			 * The dirty flag is atomic and is cleared outside the
1325			 * TNC mutex, so znode's dirty flag may now have
1326			 * been cleared. The child is always cleared before the
1327			 * parent, so we just need to check again.
1328			 */
1329			smp_mb();
1330			if (ubifs_zn_dirty(znode)) {
1331				err = 5;
1332				goto out;
1333			}
1334		}
1335	}
1336
1337	if (zp) {
1338		const union ubifs_key *min, *max;
1339
1340		if (znode->level != zp->level - 1) {
1341			err = 6;
1342			goto out;
1343		}
1344
1345		/* Make sure the 'parent' pointer in our znode is correct */
1346		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1347		if (!err) {
1348			/* This zbranch does not exist in the parent */
1349			err = 7;
1350			goto out;
1351		}
1352
1353		if (znode->iip >= zp->child_cnt) {
1354			err = 8;
1355			goto out;
1356		}
1357
1358		if (znode->iip != n) {
1359			/* This may happen only in case of collisions */
1360			if (keys_cmp(c, &zp->zbranch[n].key,
1361				     &zp->zbranch[znode->iip].key)) {
1362				err = 9;
1363				goto out;
1364			}
1365			n = znode->iip;
1366		}
1367
1368		/*
1369		 * Make sure that the first key in our znode is greater than or
1370		 * equal to the key in the pointing zbranch.
1371		 */
1372		min = &zbr->key;
1373		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1374		if (cmp == 1) {
1375			err = 10;
1376			goto out;
1377		}
1378
1379		if (n + 1 < zp->child_cnt) {
1380			max = &zp->zbranch[n + 1].key;
1381
1382			/*
1383			 * Make sure the last key in our znode is less or
1384			 * equivalent than the key in the zbranch which goes
1385			 * after our pointing zbranch.
1386			 */
1387			cmp = keys_cmp(c, max,
1388				&znode->zbranch[znode->child_cnt - 1].key);
1389			if (cmp == -1) {
1390				err = 11;
1391				goto out;
1392			}
1393		}
1394	} else {
1395		/* This may only be root znode */
1396		if (zbr != &c->zroot) {
1397			err = 12;
1398			goto out;
1399		}
1400	}
1401
1402	/*
1403	 * Make sure that next key is greater or equivalent then the previous
1404	 * one.
1405	 */
1406	for (n = 1; n < znode->child_cnt; n++) {
1407		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1408			       &znode->zbranch[n].key);
1409		if (cmp > 0) {
1410			err = 13;
1411			goto out;
1412		}
1413		if (cmp == 0) {
1414			/* This can only be keys with colliding hash */
1415			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1416				err = 14;
1417				goto out;
1418			}
1419
1420			if (znode->level != 0 || c->replaying)
1421				continue;
1422
1423			/*
1424			 * Colliding keys should follow binary order of
1425			 * corresponding xentry/dentry names.
1426			 */
1427			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1428						  &znode->zbranch[n]);
1429			if (err < 0)
1430				return err;
1431			if (err) {
1432				err = 15;
1433				goto out;
1434			}
1435		}
1436	}
1437
1438	for (n = 0; n < znode->child_cnt; n++) {
1439		if (!znode->zbranch[n].znode &&
1440		    (znode->zbranch[n].lnum == 0 ||
1441		     znode->zbranch[n].len == 0)) {
1442			err = 16;
1443			goto out;
1444		}
1445
1446		if (znode->zbranch[n].lnum != 0 &&
1447		    znode->zbranch[n].len == 0) {
1448			err = 17;
1449			goto out;
1450		}
1451
1452		if (znode->zbranch[n].lnum == 0 &&
1453		    znode->zbranch[n].len != 0) {
1454			err = 18;
1455			goto out;
1456		}
1457
1458		if (znode->zbranch[n].lnum == 0 &&
1459		    znode->zbranch[n].offs != 0) {
1460			err = 19;
1461			goto out;
1462		}
1463
1464		if (znode->level != 0 && znode->zbranch[n].znode)
1465			if (znode->zbranch[n].znode->parent != znode) {
1466				err = 20;
1467				goto out;
1468			}
1469	}
1470
1471	return 0;
1472
1473out:
1474	ubifs_err(c, "failed, error %d", err);
1475	ubifs_msg(c, "dump of the znode");
1476	ubifs_dump_znode(c, znode);
1477	if (zp) {
1478		ubifs_msg(c, "dump of the parent znode");
1479		ubifs_dump_znode(c, zp);
1480	}
1481	dump_stack();
1482	return -EINVAL;
1483}
1484
1485/**
1486 * dbg_check_tnc - check TNC tree.
1487 * @c: UBIFS file-system description object
1488 * @extra: do extra checks that are possible at start commit
1489 *
1490 * This function traverses whole TNC tree and checks every znode. Returns zero
1491 * if everything is all right and %-EINVAL if something is wrong with TNC.
1492 */
1493int dbg_check_tnc(struct ubifs_info *c, int extra)
1494{
1495	struct ubifs_znode *znode;
1496	long clean_cnt = 0, dirty_cnt = 0;
1497	int err, last;
1498
1499	if (!dbg_is_chk_index(c))
1500		return 0;
1501
1502	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1503	if (!c->zroot.znode)
1504		return 0;
1505
1506	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1507	while (1) {
1508		struct ubifs_znode *prev;
1509		struct ubifs_zbranch *zbr;
1510
1511		if (!znode->parent)
1512			zbr = &c->zroot;
1513		else
1514			zbr = &znode->parent->zbranch[znode->iip];
1515
1516		err = dbg_check_znode(c, zbr);
1517		if (err)
1518			return err;
1519
1520		if (extra) {
1521			if (ubifs_zn_dirty(znode))
1522				dirty_cnt += 1;
1523			else
1524				clean_cnt += 1;
1525		}
1526
1527		prev = znode;
1528		znode = ubifs_tnc_postorder_next(c, znode);
1529		if (!znode)
1530			break;
1531
1532		/*
1533		 * If the last key of this znode is equivalent to the first key
1534		 * of the next znode (collision), then check order of the keys.
1535		 */
1536		last = prev->child_cnt - 1;
1537		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1538		    !keys_cmp(c, &prev->zbranch[last].key,
1539			      &znode->zbranch[0].key)) {
1540			err = dbg_check_key_order(c, &prev->zbranch[last],
1541						  &znode->zbranch[0]);
1542			if (err < 0)
1543				return err;
1544			if (err) {
1545				ubifs_msg(c, "first znode");
1546				ubifs_dump_znode(c, prev);
1547				ubifs_msg(c, "second znode");
1548				ubifs_dump_znode(c, znode);
1549				return -EINVAL;
1550			}
1551		}
1552	}
1553
1554	if (extra) {
1555		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1556			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1557				  atomic_long_read(&c->clean_zn_cnt),
1558				  clean_cnt);
1559			return -EINVAL;
1560		}
1561		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1562			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1563				  atomic_long_read(&c->dirty_zn_cnt),
1564				  dirty_cnt);
1565			return -EINVAL;
1566		}
1567	}
1568
1569	return 0;
1570}
1571
1572/**
1573 * dbg_walk_index - walk the on-flash index.
1574 * @c: UBIFS file-system description object
1575 * @leaf_cb: called for each leaf node
1576 * @znode_cb: called for each indexing node
1577 * @priv: private data which is passed to callbacks
1578 *
1579 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1580 * node and @znode_cb for each indexing node. Returns zero in case of success
1581 * and a negative error code in case of failure.
1582 *
1583 * It would be better if this function removed every znode it pulled to into
1584 * the TNC, so that the behavior more closely matched the non-debugging
1585 * behavior.
1586 */
1587int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1588		   dbg_znode_callback znode_cb, void *priv)
1589{
1590	int err;
1591	struct ubifs_zbranch *zbr;
1592	struct ubifs_znode *znode, *child;
1593
1594	mutex_lock(&c->tnc_mutex);
1595	/* If the root indexing node is not in TNC - pull it */
1596	if (!c->zroot.znode) {
1597		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1598		if (IS_ERR(c->zroot.znode)) {
1599			err = PTR_ERR(c->zroot.znode);
1600			c->zroot.znode = NULL;
1601			goto out_unlock;
1602		}
1603	}
1604
1605	/*
1606	 * We are going to traverse the indexing tree in the postorder manner.
1607	 * Go down and find the leftmost indexing node where we are going to
1608	 * start from.
1609	 */
1610	znode = c->zroot.znode;
1611	while (znode->level > 0) {
1612		zbr = &znode->zbranch[0];
1613		child = zbr->znode;
1614		if (!child) {
1615			child = ubifs_load_znode(c, zbr, znode, 0);
1616			if (IS_ERR(child)) {
1617				err = PTR_ERR(child);
1618				goto out_unlock;
1619			}
 
1620		}
1621
1622		znode = child;
1623	}
1624
1625	/* Iterate over all indexing nodes */
1626	while (1) {
1627		int idx;
1628
1629		cond_resched();
1630
1631		if (znode_cb) {
1632			err = znode_cb(c, znode, priv);
1633			if (err) {
1634				ubifs_err(c, "znode checking function returned error %d",
1635					  err);
1636				ubifs_dump_znode(c, znode);
1637				goto out_dump;
1638			}
1639		}
1640		if (leaf_cb && znode->level == 0) {
1641			for (idx = 0; idx < znode->child_cnt; idx++) {
1642				zbr = &znode->zbranch[idx];
1643				err = leaf_cb(c, zbr, priv);
1644				if (err) {
1645					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1646						  err, zbr->lnum, zbr->offs);
1647					goto out_dump;
1648				}
1649			}
1650		}
1651
1652		if (!znode->parent)
1653			break;
1654
1655		idx = znode->iip + 1;
1656		znode = znode->parent;
1657		if (idx < znode->child_cnt) {
1658			/* Switch to the next index in the parent */
1659			zbr = &znode->zbranch[idx];
1660			child = zbr->znode;
1661			if (!child) {
1662				child = ubifs_load_znode(c, zbr, znode, idx);
1663				if (IS_ERR(child)) {
1664					err = PTR_ERR(child);
1665					goto out_unlock;
1666				}
1667				zbr->znode = child;
1668			}
1669			znode = child;
1670		} else
1671			/*
1672			 * This is the last child, switch to the parent and
1673			 * continue.
1674			 */
1675			continue;
1676
1677		/* Go to the lowest leftmost znode in the new sub-tree */
1678		while (znode->level > 0) {
1679			zbr = &znode->zbranch[0];
1680			child = zbr->znode;
1681			if (!child) {
1682				child = ubifs_load_znode(c, zbr, znode, 0);
1683				if (IS_ERR(child)) {
1684					err = PTR_ERR(child);
1685					goto out_unlock;
1686				}
1687				zbr->znode = child;
1688			}
1689			znode = child;
1690		}
1691	}
1692
1693	mutex_unlock(&c->tnc_mutex);
1694	return 0;
1695
1696out_dump:
1697	if (znode->parent)
1698		zbr = &znode->parent->zbranch[znode->iip];
1699	else
1700		zbr = &c->zroot;
1701	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1702	ubifs_dump_znode(c, znode);
1703out_unlock:
1704	mutex_unlock(&c->tnc_mutex);
1705	return err;
1706}
1707
1708/**
1709 * add_size - add znode size to partially calculated index size.
1710 * @c: UBIFS file-system description object
1711 * @znode: znode to add size for
1712 * @priv: partially calculated index size
1713 *
1714 * This is a helper function for 'dbg_check_idx_size()' which is called for
1715 * every indexing node and adds its size to the 'long long' variable pointed to
1716 * by @priv.
1717 */
1718static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1719{
1720	long long *idx_size = priv;
1721	int add;
1722
1723	add = ubifs_idx_node_sz(c, znode->child_cnt);
1724	add = ALIGN(add, 8);
1725	*idx_size += add;
1726	return 0;
1727}
1728
1729/**
1730 * dbg_check_idx_size - check index size.
1731 * @c: UBIFS file-system description object
1732 * @idx_size: size to check
1733 *
1734 * This function walks the UBIFS index, calculates its size and checks that the
1735 * size is equivalent to @idx_size. Returns zero in case of success and a
1736 * negative error code in case of failure.
1737 */
1738int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1739{
1740	int err;
1741	long long calc = 0;
1742
1743	if (!dbg_is_chk_index(c))
1744		return 0;
1745
1746	err = dbg_walk_index(c, NULL, add_size, &calc);
1747	if (err) {
1748		ubifs_err(c, "error %d while walking the index", err);
1749		goto out_err;
1750	}
1751
1752	if (calc != idx_size) {
1753		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1754			  calc, idx_size);
1755		dump_stack();
1756		err = -EINVAL;
1757		goto out_err;
1758	}
1759
1760	return 0;
1761
1762out_err:
1763	ubifs_destroy_tnc_tree(c);
1764	return err;
1765}
1766
1767/**
1768 * struct fsck_inode - information about an inode used when checking the file-system.
1769 * @rb: link in the RB-tree of inodes
1770 * @inum: inode number
1771 * @mode: inode type, permissions, etc
1772 * @nlink: inode link count
1773 * @xattr_cnt: count of extended attributes
1774 * @references: how many directory/xattr entries refer this inode (calculated
1775 *              while walking the index)
1776 * @calc_cnt: for directory inode count of child directories
1777 * @size: inode size (read from on-flash inode)
1778 * @xattr_sz: summary size of all extended attributes (read from on-flash
1779 *            inode)
1780 * @calc_sz: for directories calculated directory size
1781 * @calc_xcnt: count of extended attributes
1782 * @calc_xsz: calculated summary size of all extended attributes
1783 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1784 *             inode (read from on-flash inode)
1785 * @calc_xnms: calculated sum of lengths of all extended attribute names
1786 */
1787struct fsck_inode {
1788	struct rb_node rb;
1789	ino_t inum;
1790	umode_t mode;
1791	unsigned int nlink;
1792	unsigned int xattr_cnt;
1793	int references;
1794	int calc_cnt;
1795	long long size;
1796	unsigned int xattr_sz;
1797	long long calc_sz;
1798	long long calc_xcnt;
1799	long long calc_xsz;
1800	unsigned int xattr_nms;
1801	long long calc_xnms;
1802};
1803
1804/**
1805 * struct fsck_data - private FS checking information.
1806 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1807 */
1808struct fsck_data {
1809	struct rb_root inodes;
1810};
1811
1812/**
1813 * add_inode - add inode information to RB-tree of inodes.
1814 * @c: UBIFS file-system description object
1815 * @fsckd: FS checking information
1816 * @ino: raw UBIFS inode to add
1817 *
1818 * This is a helper function for 'check_leaf()' which adds information about
1819 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1820 * case of success and a negative error code in case of failure.
1821 */
1822static struct fsck_inode *add_inode(struct ubifs_info *c,
1823				    struct fsck_data *fsckd,
1824				    struct ubifs_ino_node *ino)
1825{
1826	struct rb_node **p, *parent = NULL;
1827	struct fsck_inode *fscki;
1828	ino_t inum = key_inum_flash(c, &ino->key);
1829	struct inode *inode;
1830	struct ubifs_inode *ui;
1831
1832	p = &fsckd->inodes.rb_node;
1833	while (*p) {
1834		parent = *p;
1835		fscki = rb_entry(parent, struct fsck_inode, rb);
1836		if (inum < fscki->inum)
1837			p = &(*p)->rb_left;
1838		else if (inum > fscki->inum)
1839			p = &(*p)->rb_right;
1840		else
1841			return fscki;
1842	}
1843
1844	if (inum > c->highest_inum) {
1845		ubifs_err(c, "too high inode number, max. is %lu",
1846			  (unsigned long)c->highest_inum);
1847		return ERR_PTR(-EINVAL);
1848	}
1849
1850	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1851	if (!fscki)
1852		return ERR_PTR(-ENOMEM);
1853
1854	inode = ilookup(c->vfs_sb, inum);
1855
1856	fscki->inum = inum;
1857	/*
1858	 * If the inode is present in the VFS inode cache, use it instead of
1859	 * the on-flash inode which might be out-of-date. E.g., the size might
1860	 * be out-of-date. If we do not do this, the following may happen, for
1861	 * example:
1862	 *   1. A power cut happens
1863	 *   2. We mount the file-system R/O, the replay process fixes up the
1864	 *      inode size in the VFS cache, but on on-flash.
1865	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1866	 *      size.
1867	 */
1868	if (!inode) {
1869		fscki->nlink = le32_to_cpu(ino->nlink);
1870		fscki->size = le64_to_cpu(ino->size);
1871		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1872		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1873		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1874		fscki->mode = le32_to_cpu(ino->mode);
1875	} else {
1876		ui = ubifs_inode(inode);
1877		fscki->nlink = inode->i_nlink;
1878		fscki->size = inode->i_size;
1879		fscki->xattr_cnt = ui->xattr_cnt;
1880		fscki->xattr_sz = ui->xattr_size;
1881		fscki->xattr_nms = ui->xattr_names;
1882		fscki->mode = inode->i_mode;
1883		iput(inode);
1884	}
1885
1886	if (S_ISDIR(fscki->mode)) {
1887		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1888		fscki->calc_cnt = 2;
1889	}
1890
1891	rb_link_node(&fscki->rb, parent, p);
1892	rb_insert_color(&fscki->rb, &fsckd->inodes);
1893
1894	return fscki;
1895}
1896
1897/**
1898 * search_inode - search inode in the RB-tree of inodes.
1899 * @fsckd: FS checking information
1900 * @inum: inode number to search
1901 *
1902 * This is a helper function for 'check_leaf()' which searches inode @inum in
1903 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1904 * the inode was not found.
1905 */
1906static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1907{
1908	struct rb_node *p;
1909	struct fsck_inode *fscki;
1910
1911	p = fsckd->inodes.rb_node;
1912	while (p) {
1913		fscki = rb_entry(p, struct fsck_inode, rb);
1914		if (inum < fscki->inum)
1915			p = p->rb_left;
1916		else if (inum > fscki->inum)
1917			p = p->rb_right;
1918		else
1919			return fscki;
1920	}
1921	return NULL;
1922}
1923
1924/**
1925 * read_add_inode - read inode node and add it to RB-tree of inodes.
1926 * @c: UBIFS file-system description object
1927 * @fsckd: FS checking information
1928 * @inum: inode number to read
1929 *
1930 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1931 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1932 * information pointer in case of success and a negative error code in case of
1933 * failure.
1934 */
1935static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1936					 struct fsck_data *fsckd, ino_t inum)
1937{
1938	int n, err;
1939	union ubifs_key key;
1940	struct ubifs_znode *znode;
1941	struct ubifs_zbranch *zbr;
1942	struct ubifs_ino_node *ino;
1943	struct fsck_inode *fscki;
1944
1945	fscki = search_inode(fsckd, inum);
1946	if (fscki)
1947		return fscki;
1948
1949	ino_key_init(c, &key, inum);
1950	err = ubifs_lookup_level0(c, &key, &znode, &n);
1951	if (!err) {
1952		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1953		return ERR_PTR(-ENOENT);
1954	} else if (err < 0) {
1955		ubifs_err(c, "error %d while looking up inode %lu",
1956			  err, (unsigned long)inum);
1957		return ERR_PTR(err);
1958	}
1959
1960	zbr = &znode->zbranch[n];
1961	if (zbr->len < UBIFS_INO_NODE_SZ) {
1962		ubifs_err(c, "bad node %lu node length %d",
1963			  (unsigned long)inum, zbr->len);
1964		return ERR_PTR(-EINVAL);
1965	}
1966
1967	ino = kmalloc(zbr->len, GFP_NOFS);
1968	if (!ino)
1969		return ERR_PTR(-ENOMEM);
1970
1971	err = ubifs_tnc_read_node(c, zbr, ino);
1972	if (err) {
1973		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1974			  zbr->lnum, zbr->offs, err);
1975		kfree(ino);
1976		return ERR_PTR(err);
1977	}
1978
1979	fscki = add_inode(c, fsckd, ino);
1980	kfree(ino);
1981	if (IS_ERR(fscki)) {
1982		ubifs_err(c, "error %ld while adding inode %lu node",
1983			  PTR_ERR(fscki), (unsigned long)inum);
1984		return fscki;
1985	}
1986
1987	return fscki;
1988}
1989
1990/**
1991 * check_leaf - check leaf node.
1992 * @c: UBIFS file-system description object
1993 * @zbr: zbranch of the leaf node to check
1994 * @priv: FS checking information
1995 *
1996 * This is a helper function for 'dbg_check_filesystem()' which is called for
1997 * every single leaf node while walking the indexing tree. It checks that the
1998 * leaf node referred from the indexing tree exists, has correct CRC, and does
1999 * some other basic validation. This function is also responsible for building
2000 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2001 * calculates reference count, size, etc for each inode in order to later
2002 * compare them to the information stored inside the inodes and detect possible
2003 * inconsistencies. Returns zero in case of success and a negative error code
2004 * in case of failure.
2005 */
2006static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2007		      void *priv)
2008{
2009	ino_t inum;
2010	void *node;
2011	struct ubifs_ch *ch;
2012	int err, type = key_type(c, &zbr->key);
2013	struct fsck_inode *fscki;
2014
2015	if (zbr->len < UBIFS_CH_SZ) {
2016		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2017			  zbr->len, zbr->lnum, zbr->offs);
2018		return -EINVAL;
2019	}
2020
2021	node = kmalloc(zbr->len, GFP_NOFS);
2022	if (!node)
2023		return -ENOMEM;
2024
2025	err = ubifs_tnc_read_node(c, zbr, node);
2026	if (err) {
2027		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2028			  zbr->lnum, zbr->offs, err);
2029		goto out_free;
2030	}
2031
2032	/* If this is an inode node, add it to RB-tree of inodes */
2033	if (type == UBIFS_INO_KEY) {
2034		fscki = add_inode(c, priv, node);
2035		if (IS_ERR(fscki)) {
2036			err = PTR_ERR(fscki);
2037			ubifs_err(c, "error %d while adding inode node", err);
2038			goto out_dump;
2039		}
2040		goto out;
2041	}
2042
2043	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2044	    type != UBIFS_DATA_KEY) {
2045		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2046			  type, zbr->lnum, zbr->offs);
2047		err = -EINVAL;
2048		goto out_free;
2049	}
2050
2051	ch = node;
2052	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2053		ubifs_err(c, "too high sequence number, max. is %llu",
2054			  c->max_sqnum);
2055		err = -EINVAL;
2056		goto out_dump;
2057	}
2058
2059	if (type == UBIFS_DATA_KEY) {
2060		long long blk_offs;
2061		struct ubifs_data_node *dn = node;
2062
2063		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2064
2065		/*
2066		 * Search the inode node this data node belongs to and insert
2067		 * it to the RB-tree of inodes.
2068		 */
2069		inum = key_inum_flash(c, &dn->key);
2070		fscki = read_add_inode(c, priv, inum);
2071		if (IS_ERR(fscki)) {
2072			err = PTR_ERR(fscki);
2073			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2074				  err, (unsigned long)inum);
2075			goto out_dump;
2076		}
2077
2078		/* Make sure the data node is within inode size */
2079		blk_offs = key_block_flash(c, &dn->key);
2080		blk_offs <<= UBIFS_BLOCK_SHIFT;
2081		blk_offs += le32_to_cpu(dn->size);
2082		if (blk_offs > fscki->size) {
2083			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2084				  zbr->lnum, zbr->offs, fscki->size);
2085			err = -EINVAL;
2086			goto out_dump;
2087		}
2088	} else {
2089		int nlen;
2090		struct ubifs_dent_node *dent = node;
2091		struct fsck_inode *fscki1;
2092
2093		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2094
2095		err = ubifs_validate_entry(c, dent);
2096		if (err)
2097			goto out_dump;
2098
2099		/*
2100		 * Search the inode node this entry refers to and the parent
2101		 * inode node and insert them to the RB-tree of inodes.
2102		 */
2103		inum = le64_to_cpu(dent->inum);
2104		fscki = read_add_inode(c, priv, inum);
2105		if (IS_ERR(fscki)) {
2106			err = PTR_ERR(fscki);
2107			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2108				  err, (unsigned long)inum);
2109			goto out_dump;
2110		}
2111
2112		/* Count how many direntries or xentries refers this inode */
2113		fscki->references += 1;
2114
2115		inum = key_inum_flash(c, &dent->key);
2116		fscki1 = read_add_inode(c, priv, inum);
2117		if (IS_ERR(fscki1)) {
2118			err = PTR_ERR(fscki1);
2119			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2120				  err, (unsigned long)inum);
2121			goto out_dump;
2122		}
2123
2124		nlen = le16_to_cpu(dent->nlen);
2125		if (type == UBIFS_XENT_KEY) {
2126			fscki1->calc_xcnt += 1;
2127			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2128			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2129			fscki1->calc_xnms += nlen;
2130		} else {
2131			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2132			if (dent->type == UBIFS_ITYPE_DIR)
2133				fscki1->calc_cnt += 1;
2134		}
2135	}
2136
2137out:
2138	kfree(node);
2139	return 0;
2140
2141out_dump:
2142	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2143	ubifs_dump_node(c, node, zbr->len);
2144out_free:
2145	kfree(node);
2146	return err;
2147}
2148
2149/**
2150 * free_inodes - free RB-tree of inodes.
2151 * @fsckd: FS checking information
2152 */
2153static void free_inodes(struct fsck_data *fsckd)
2154{
2155	struct fsck_inode *fscki, *n;
2156
2157	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2158		kfree(fscki);
2159}
2160
2161/**
2162 * check_inodes - checks all inodes.
2163 * @c: UBIFS file-system description object
2164 * @fsckd: FS checking information
2165 *
2166 * This is a helper function for 'dbg_check_filesystem()' which walks the
2167 * RB-tree of inodes after the index scan has been finished, and checks that
2168 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2169 * %-EINVAL if not, and a negative error code in case of failure.
2170 */
2171static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2172{
2173	int n, err;
2174	union ubifs_key key;
2175	struct ubifs_znode *znode;
2176	struct ubifs_zbranch *zbr;
2177	struct ubifs_ino_node *ino;
2178	struct fsck_inode *fscki;
2179	struct rb_node *this = rb_first(&fsckd->inodes);
2180
2181	while (this) {
2182		fscki = rb_entry(this, struct fsck_inode, rb);
2183		this = rb_next(this);
2184
2185		if (S_ISDIR(fscki->mode)) {
2186			/*
2187			 * Directories have to have exactly one reference (they
2188			 * cannot have hardlinks), although root inode is an
2189			 * exception.
2190			 */
2191			if (fscki->inum != UBIFS_ROOT_INO &&
2192			    fscki->references != 1) {
2193				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2194					  (unsigned long)fscki->inum,
2195					  fscki->references);
2196				goto out_dump;
2197			}
2198			if (fscki->inum == UBIFS_ROOT_INO &&
2199			    fscki->references != 0) {
2200				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2201					  (unsigned long)fscki->inum,
2202					  fscki->references);
2203				goto out_dump;
2204			}
2205			if (fscki->calc_sz != fscki->size) {
2206				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2207					  (unsigned long)fscki->inum,
2208					  fscki->size, fscki->calc_sz);
2209				goto out_dump;
2210			}
2211			if (fscki->calc_cnt != fscki->nlink) {
2212				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2213					  (unsigned long)fscki->inum,
2214					  fscki->nlink, fscki->calc_cnt);
2215				goto out_dump;
2216			}
2217		} else {
2218			if (fscki->references != fscki->nlink) {
2219				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2220					  (unsigned long)fscki->inum,
2221					  fscki->nlink, fscki->references);
2222				goto out_dump;
2223			}
2224		}
2225		if (fscki->xattr_sz != fscki->calc_xsz) {
2226			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2227				  (unsigned long)fscki->inum, fscki->xattr_sz,
2228				  fscki->calc_xsz);
2229			goto out_dump;
2230		}
2231		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2232			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2233				  (unsigned long)fscki->inum,
2234				  fscki->xattr_cnt, fscki->calc_xcnt);
2235			goto out_dump;
2236		}
2237		if (fscki->xattr_nms != fscki->calc_xnms) {
2238			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2239				  (unsigned long)fscki->inum, fscki->xattr_nms,
2240				  fscki->calc_xnms);
2241			goto out_dump;
2242		}
2243	}
2244
2245	return 0;
2246
2247out_dump:
2248	/* Read the bad inode and dump it */
2249	ino_key_init(c, &key, fscki->inum);
2250	err = ubifs_lookup_level0(c, &key, &znode, &n);
2251	if (!err) {
2252		ubifs_err(c, "inode %lu not found in index",
2253			  (unsigned long)fscki->inum);
2254		return -ENOENT;
2255	} else if (err < 0) {
2256		ubifs_err(c, "error %d while looking up inode %lu",
2257			  err, (unsigned long)fscki->inum);
2258		return err;
2259	}
2260
2261	zbr = &znode->zbranch[n];
2262	ino = kmalloc(zbr->len, GFP_NOFS);
2263	if (!ino)
2264		return -ENOMEM;
2265
2266	err = ubifs_tnc_read_node(c, zbr, ino);
2267	if (err) {
2268		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2269			  zbr->lnum, zbr->offs, err);
2270		kfree(ino);
2271		return err;
2272	}
2273
2274	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2275		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2276	ubifs_dump_node(c, ino, zbr->len);
2277	kfree(ino);
2278	return -EINVAL;
2279}
2280
2281/**
2282 * dbg_check_filesystem - check the file-system.
2283 * @c: UBIFS file-system description object
2284 *
2285 * This function checks the file system, namely:
2286 * o makes sure that all leaf nodes exist and their CRCs are correct;
2287 * o makes sure inode nlink, size, xattr size/count are correct (for all
2288 *   inodes).
2289 *
2290 * The function reads whole indexing tree and all nodes, so it is pretty
2291 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2292 * not, and a negative error code in case of failure.
2293 */
2294int dbg_check_filesystem(struct ubifs_info *c)
2295{
2296	int err;
2297	struct fsck_data fsckd;
2298
2299	if (!dbg_is_chk_fs(c))
2300		return 0;
2301
2302	fsckd.inodes = RB_ROOT;
2303	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2304	if (err)
2305		goto out_free;
2306
2307	err = check_inodes(c, &fsckd);
2308	if (err)
2309		goto out_free;
2310
2311	free_inodes(&fsckd);
2312	return 0;
2313
2314out_free:
2315	ubifs_err(c, "file-system check failed with error %d", err);
2316	dump_stack();
2317	free_inodes(&fsckd);
2318	return err;
2319}
2320
2321/**
2322 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2323 * @c: UBIFS file-system description object
2324 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2325 *
2326 * This function returns zero if the list of data nodes is sorted correctly,
2327 * and %-EINVAL if not.
2328 */
2329int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2330{
2331	struct list_head *cur;
2332	struct ubifs_scan_node *sa, *sb;
2333
2334	if (!dbg_is_chk_gen(c))
2335		return 0;
2336
2337	for (cur = head->next; cur->next != head; cur = cur->next) {
2338		ino_t inuma, inumb;
2339		uint32_t blka, blkb;
2340
2341		cond_resched();
2342		sa = container_of(cur, struct ubifs_scan_node, list);
2343		sb = container_of(cur->next, struct ubifs_scan_node, list);
2344
2345		if (sa->type != UBIFS_DATA_NODE) {
2346			ubifs_err(c, "bad node type %d", sa->type);
2347			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2348			return -EINVAL;
2349		}
2350		if (sb->type != UBIFS_DATA_NODE) {
2351			ubifs_err(c, "bad node type %d", sb->type);
2352			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2353			return -EINVAL;
2354		}
2355
2356		inuma = key_inum(c, &sa->key);
2357		inumb = key_inum(c, &sb->key);
2358
2359		if (inuma < inumb)
2360			continue;
2361		if (inuma > inumb) {
2362			ubifs_err(c, "larger inum %lu goes before inum %lu",
2363				  (unsigned long)inuma, (unsigned long)inumb);
2364			goto error_dump;
2365		}
2366
2367		blka = key_block(c, &sa->key);
2368		blkb = key_block(c, &sb->key);
2369
2370		if (blka > blkb) {
2371			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2372			goto error_dump;
2373		}
2374		if (blka == blkb) {
2375			ubifs_err(c, "two data nodes for the same block");
2376			goto error_dump;
2377		}
2378	}
2379
2380	return 0;
2381
2382error_dump:
2383	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2384	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2385	return -EINVAL;
2386}
2387
2388/**
2389 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2390 * @c: UBIFS file-system description object
2391 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2392 *
2393 * This function returns zero if the list of non-data nodes is sorted correctly,
2394 * and %-EINVAL if not.
2395 */
2396int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2397{
2398	struct list_head *cur;
2399	struct ubifs_scan_node *sa, *sb;
2400
2401	if (!dbg_is_chk_gen(c))
2402		return 0;
2403
2404	for (cur = head->next; cur->next != head; cur = cur->next) {
2405		ino_t inuma, inumb;
2406		uint32_t hasha, hashb;
2407
2408		cond_resched();
2409		sa = container_of(cur, struct ubifs_scan_node, list);
2410		sb = container_of(cur->next, struct ubifs_scan_node, list);
2411
2412		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2413		    sa->type != UBIFS_XENT_NODE) {
2414			ubifs_err(c, "bad node type %d", sa->type);
2415			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2416			return -EINVAL;
2417		}
2418		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2419		    sb->type != UBIFS_XENT_NODE) {
2420			ubifs_err(c, "bad node type %d", sb->type);
2421			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2422			return -EINVAL;
2423		}
2424
2425		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2426			ubifs_err(c, "non-inode node goes before inode node");
2427			goto error_dump;
2428		}
2429
2430		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2431			continue;
2432
2433		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2434			/* Inode nodes are sorted in descending size order */
2435			if (sa->len < sb->len) {
2436				ubifs_err(c, "smaller inode node goes first");
2437				goto error_dump;
2438			}
2439			continue;
2440		}
2441
2442		/*
2443		 * This is either a dentry or xentry, which should be sorted in
2444		 * ascending (parent ino, hash) order.
2445		 */
2446		inuma = key_inum(c, &sa->key);
2447		inumb = key_inum(c, &sb->key);
2448
2449		if (inuma < inumb)
2450			continue;
2451		if (inuma > inumb) {
2452			ubifs_err(c, "larger inum %lu goes before inum %lu",
2453				  (unsigned long)inuma, (unsigned long)inumb);
2454			goto error_dump;
2455		}
2456
2457		hasha = key_block(c, &sa->key);
2458		hashb = key_block(c, &sb->key);
2459
2460		if (hasha > hashb) {
2461			ubifs_err(c, "larger hash %u goes before %u",
2462				  hasha, hashb);
2463			goto error_dump;
2464		}
2465	}
2466
2467	return 0;
2468
2469error_dump:
2470	ubifs_msg(c, "dumping first node");
2471	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2472	ubifs_msg(c, "dumping second node");
2473	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2474	return -EINVAL;
 
2475}
2476
2477static inline int chance(unsigned int n, unsigned int out_of)
2478{
2479	return !!(get_random_u32_below(out_of) + 1 <= n);
2480
2481}
2482
2483static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2484{
2485	struct ubifs_debug_info *d = c->dbg;
2486
2487	ubifs_assert(c, dbg_is_tst_rcvry(c));
2488
2489	if (!d->pc_cnt) {
2490		/* First call - decide delay to the power cut */
2491		if (chance(1, 2)) {
2492			unsigned long delay;
2493
2494			if (chance(1, 2)) {
2495				d->pc_delay = 1;
2496				/* Fail within 1 minute */
2497				delay = get_random_u32_below(60000);
2498				d->pc_timeout = jiffies;
2499				d->pc_timeout += msecs_to_jiffies(delay);
2500				ubifs_warn(c, "failing after %lums", delay);
2501			} else {
2502				d->pc_delay = 2;
2503				delay = get_random_u32_below(10000);
2504				/* Fail within 10000 operations */
2505				d->pc_cnt_max = delay;
2506				ubifs_warn(c, "failing after %lu calls", delay);
2507			}
2508		}
2509
2510		d->pc_cnt += 1;
2511	}
2512
2513	/* Determine if failure delay has expired */
2514	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2515			return 0;
2516	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2517			return 0;
2518
2519	if (lnum == UBIFS_SB_LNUM) {
2520		if (write && chance(1, 2))
2521			return 0;
2522		if (chance(19, 20))
2523			return 0;
2524		ubifs_warn(c, "failing in super block LEB %d", lnum);
2525	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526		if (chance(19, 20))
2527			return 0;
2528		ubifs_warn(c, "failing in master LEB %d", lnum);
2529	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530		if (write && chance(99, 100))
2531			return 0;
2532		if (chance(399, 400))
2533			return 0;
2534		ubifs_warn(c, "failing in log LEB %d", lnum);
2535	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2536		if (write && chance(7, 8))
2537			return 0;
2538		if (chance(19, 20))
2539			return 0;
2540		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2541	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2542		if (write && chance(1, 2))
2543			return 0;
2544		if (chance(9, 10))
2545			return 0;
2546		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2547	} else if (lnum == c->ihead_lnum) {
2548		if (chance(99, 100))
2549			return 0;
2550		ubifs_warn(c, "failing in index head LEB %d", lnum);
2551	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2552		if (chance(9, 10))
2553			return 0;
2554		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2555	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2556		   !ubifs_search_bud(c, lnum)) {
2557		if (chance(19, 20))
2558			return 0;
2559		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2560	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2561		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2562		if (chance(999, 1000))
2563			return 0;
2564		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2565	} else {
2566		if (chance(9999, 10000))
2567			return 0;
2568		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2569	}
2570
2571	d->pc_happened = 1;
2572	ubifs_warn(c, "========== Power cut emulated ==========");
2573	dump_stack();
2574	return 1;
2575}
2576
2577static int corrupt_data(const struct ubifs_info *c, const void *buf,
2578			unsigned int len)
2579{
2580	unsigned int from, to, ffs = chance(1, 2);
2581	unsigned char *p = (void *)buf;
2582
2583	from = get_random_u32_below(len);
2584	/* Corruption span max to end of write unit */
2585	to = min(len, ALIGN(from + 1, c->max_write_size));
2586
2587	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2588		   ffs ? "0xFFs" : "random data");
2589
2590	if (ffs)
2591		memset(p + from, 0xFF, to - from);
2592	else
2593		get_random_bytes(p + from, to - from);
2594
2595	return to;
2596}
2597
2598int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2599		  int offs, int len)
2600{
2601	int err, failing;
2602
2603	if (dbg_is_power_cut(c))
2604		return -EROFS;
2605
2606	failing = power_cut_emulated(c, lnum, 1);
2607	if (failing) {
2608		len = corrupt_data(c, buf, len);
2609		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2610			   len, lnum, offs);
2611	}
2612	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2613	if (err)
2614		return err;
2615	if (failing)
2616		return -EROFS;
2617	return 0;
2618}
2619
2620int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2621		   int len)
2622{
2623	int err;
2624
2625	if (dbg_is_power_cut(c))
2626		return -EROFS;
2627	if (power_cut_emulated(c, lnum, 1))
2628		return -EROFS;
2629	err = ubi_leb_change(c->ubi, lnum, buf, len);
2630	if (err)
2631		return err;
2632	if (power_cut_emulated(c, lnum, 1))
2633		return -EROFS;
2634	return 0;
2635}
2636
2637int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2638{
2639	int err;
2640
2641	if (dbg_is_power_cut(c))
2642		return -EROFS;
2643	if (power_cut_emulated(c, lnum, 0))
2644		return -EROFS;
2645	err = ubi_leb_unmap(c->ubi, lnum);
2646	if (err)
2647		return err;
2648	if (power_cut_emulated(c, lnum, 0))
2649		return -EROFS;
2650	return 0;
2651}
2652
2653int dbg_leb_map(struct ubifs_info *c, int lnum)
2654{
2655	int err;
2656
2657	if (dbg_is_power_cut(c))
2658		return -EROFS;
2659	if (power_cut_emulated(c, lnum, 0))
2660		return -EROFS;
2661	err = ubi_leb_map(c->ubi, lnum);
2662	if (err)
2663		return err;
2664	if (power_cut_emulated(c, lnum, 0))
2665		return -EROFS;
2666	return 0;
2667}
2668
2669/*
2670 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2671 * contain the stuff specific to particular file-system mounts.
2672 */
2673static struct dentry *dfs_rootdir;
2674
2675static int dfs_file_open(struct inode *inode, struct file *file)
2676{
2677	file->private_data = inode->i_private;
2678	return nonseekable_open(inode, file);
2679}
2680
2681/**
2682 * provide_user_output - provide output to the user reading a debugfs file.
2683 * @val: boolean value for the answer
2684 * @u: the buffer to store the answer at
2685 * @count: size of the buffer
2686 * @ppos: position in the @u output buffer
2687 *
2688 * This is a simple helper function which stores @val boolean value in the user
2689 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2690 * bytes written to @u in case of success and a negative error code in case of
2691 * failure.
2692 */
2693static int provide_user_output(int val, char __user *u, size_t count,
2694			       loff_t *ppos)
2695{
2696	char buf[3];
2697
2698	if (val)
2699		buf[0] = '1';
2700	else
2701		buf[0] = '0';
2702	buf[1] = '\n';
2703	buf[2] = 0x00;
2704
2705	return simple_read_from_buffer(u, count, ppos, buf, 2);
2706}
2707
2708static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2709			     loff_t *ppos)
2710{
2711	struct dentry *dent = file->f_path.dentry;
2712	struct ubifs_info *c = file->private_data;
2713	struct ubifs_debug_info *d = c->dbg;
2714	int val;
2715
2716	if (dent == d->dfs_chk_gen)
2717		val = d->chk_gen;
2718	else if (dent == d->dfs_chk_index)
2719		val = d->chk_index;
2720	else if (dent == d->dfs_chk_orph)
2721		val = d->chk_orph;
2722	else if (dent == d->dfs_chk_lprops)
2723		val = d->chk_lprops;
2724	else if (dent == d->dfs_chk_fs)
2725		val = d->chk_fs;
2726	else if (dent == d->dfs_tst_rcvry)
2727		val = d->tst_rcvry;
2728	else if (dent == d->dfs_ro_error)
2729		val = c->ro_error;
2730	else
2731		return -EINVAL;
2732
2733	return provide_user_output(val, u, count, ppos);
2734}
2735
2736/**
2737 * interpret_user_input - interpret user debugfs file input.
2738 * @u: user-provided buffer with the input
2739 * @count: buffer size
2740 *
2741 * This is a helper function which interpret user input to a boolean UBIFS
2742 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2743 * in case of failure.
2744 */
2745static int interpret_user_input(const char __user *u, size_t count)
2746{
2747	size_t buf_size;
2748	char buf[8];
2749
2750	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2751	if (copy_from_user(buf, u, buf_size))
2752		return -EFAULT;
2753
2754	if (buf[0] == '1')
2755		return 1;
2756	else if (buf[0] == '0')
2757		return 0;
2758
2759	return -EINVAL;
2760}
2761
2762static ssize_t dfs_file_write(struct file *file, const char __user *u,
2763			      size_t count, loff_t *ppos)
2764{
2765	struct ubifs_info *c = file->private_data;
2766	struct ubifs_debug_info *d = c->dbg;
2767	struct dentry *dent = file->f_path.dentry;
2768	int val;
2769
 
 
 
 
 
 
 
 
 
 
 
 
2770	if (file->f_path.dentry == d->dfs_dump_lprops) {
2771		ubifs_dump_lprops(c);
2772		return count;
2773	}
2774	if (file->f_path.dentry == d->dfs_dump_budg) {
2775		ubifs_dump_budg(c, &c->bi);
2776		return count;
2777	}
2778	if (file->f_path.dentry == d->dfs_dump_tnc) {
2779		mutex_lock(&c->tnc_mutex);
2780		ubifs_dump_tnc(c);
2781		mutex_unlock(&c->tnc_mutex);
2782		return count;
2783	}
2784
2785	val = interpret_user_input(u, count);
2786	if (val < 0)
2787		return val;
2788
2789	if (dent == d->dfs_chk_gen)
2790		d->chk_gen = val;
2791	else if (dent == d->dfs_chk_index)
2792		d->chk_index = val;
2793	else if (dent == d->dfs_chk_orph)
2794		d->chk_orph = val;
2795	else if (dent == d->dfs_chk_lprops)
2796		d->chk_lprops = val;
2797	else if (dent == d->dfs_chk_fs)
2798		d->chk_fs = val;
2799	else if (dent == d->dfs_tst_rcvry)
2800		d->tst_rcvry = val;
2801	else if (dent == d->dfs_ro_error)
2802		c->ro_error = !!val;
2803	else
2804		return -EINVAL;
2805
2806	return count;
2807}
2808
2809static const struct file_operations dfs_fops = {
2810	.open = dfs_file_open,
2811	.read = dfs_file_read,
2812	.write = dfs_file_write,
2813	.owner = THIS_MODULE,
 
2814};
2815
2816/**
2817 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2818 * @c: UBIFS file-system description object
2819 *
2820 * This function creates all debugfs files for this instance of UBIFS.
 
2821 *
2822 * Note, the only reason we have not merged this function with the
2823 * 'ubifs_debugging_init()' function is because it is better to initialize
2824 * debugfs interfaces at the very end of the mount process, and remove them at
2825 * the very beginning of the mount process.
2826 */
2827void dbg_debugfs_init_fs(struct ubifs_info *c)
2828{
2829	int n;
2830	const char *fname;
 
2831	struct ubifs_debug_info *d = c->dbg;
2832
2833	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
 
 
 
2834		     c->vi.ubi_num, c->vi.vol_id);
2835	if (n >= UBIFS_DFS_DIR_LEN) {
2836		/* The array size is too small */
2837		return;
 
 
2838	}
2839
2840	fname = d->dfs_dir_name;
2841	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
 
 
 
2842
2843	fname = "dump_lprops";
2844	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845						 &dfs_fops);
 
 
2846
2847	fname = "dump_budg";
2848	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849					       &dfs_fops);
 
 
2850
2851	fname = "dump_tnc";
2852	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2853					      &dfs_fops);
 
 
2854
2855	fname = "chk_general";
2856	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857					     d->dfs_dir, c, &dfs_fops);
 
 
 
2858
2859	fname = "chk_index";
2860	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861					       d->dfs_dir, c, &dfs_fops);
 
 
 
2862
2863	fname = "chk_orphans";
2864	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865					      d->dfs_dir, c, &dfs_fops);
 
 
 
2866
2867	fname = "chk_lprops";
2868	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869						d->dfs_dir, c, &dfs_fops);
 
 
 
2870
2871	fname = "chk_fs";
2872	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873					    d->dfs_dir, c, &dfs_fops);
 
 
 
2874
2875	fname = "tst_recovery";
2876	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877					       d->dfs_dir, c, &dfs_fops);
 
 
 
2878
2879	fname = "ro_error";
2880	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2881					      d->dfs_dir, c, &dfs_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2882}
2883
2884/**
2885 * dbg_debugfs_exit_fs - remove all debugfs files.
2886 * @c: UBIFS file-system description object
2887 */
2888void dbg_debugfs_exit_fs(struct ubifs_info *c)
2889{
2890	debugfs_remove_recursive(c->dbg->dfs_dir);
 
2891}
2892
2893struct ubifs_global_debug_info ubifs_dbg;
2894
2895static struct dentry *dfs_chk_gen;
2896static struct dentry *dfs_chk_index;
2897static struct dentry *dfs_chk_orph;
2898static struct dentry *dfs_chk_lprops;
2899static struct dentry *dfs_chk_fs;
2900static struct dentry *dfs_tst_rcvry;
2901
2902static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2903				    size_t count, loff_t *ppos)
2904{
2905	struct dentry *dent = file->f_path.dentry;
2906	int val;
2907
2908	if (dent == dfs_chk_gen)
2909		val = ubifs_dbg.chk_gen;
2910	else if (dent == dfs_chk_index)
2911		val = ubifs_dbg.chk_index;
2912	else if (dent == dfs_chk_orph)
2913		val = ubifs_dbg.chk_orph;
2914	else if (dent == dfs_chk_lprops)
2915		val = ubifs_dbg.chk_lprops;
2916	else if (dent == dfs_chk_fs)
2917		val = ubifs_dbg.chk_fs;
2918	else if (dent == dfs_tst_rcvry)
2919		val = ubifs_dbg.tst_rcvry;
2920	else
2921		return -EINVAL;
2922
2923	return provide_user_output(val, u, count, ppos);
2924}
2925
2926static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2927				     size_t count, loff_t *ppos)
2928{
2929	struct dentry *dent = file->f_path.dentry;
2930	int val;
2931
2932	val = interpret_user_input(u, count);
2933	if (val < 0)
2934		return val;
2935
2936	if (dent == dfs_chk_gen)
2937		ubifs_dbg.chk_gen = val;
2938	else if (dent == dfs_chk_index)
2939		ubifs_dbg.chk_index = val;
2940	else if (dent == dfs_chk_orph)
2941		ubifs_dbg.chk_orph = val;
2942	else if (dent == dfs_chk_lprops)
2943		ubifs_dbg.chk_lprops = val;
2944	else if (dent == dfs_chk_fs)
2945		ubifs_dbg.chk_fs = val;
2946	else if (dent == dfs_tst_rcvry)
2947		ubifs_dbg.tst_rcvry = val;
2948	else
2949		return -EINVAL;
2950
2951	return count;
2952}
2953
2954static const struct file_operations dfs_global_fops = {
2955	.read = dfs_global_file_read,
2956	.write = dfs_global_file_write,
2957	.owner = THIS_MODULE,
 
2958};
2959
2960/**
2961 * dbg_debugfs_init - initialize debugfs file-system.
2962 *
2963 * UBIFS uses debugfs file-system to expose various debugging knobs to
2964 * user-space. This function creates "ubifs" directory in the debugfs
2965 * file-system.
 
2966 */
2967void dbg_debugfs_init(void)
2968{
 
2969	const char *fname;
 
 
 
 
2970
2971	fname = "ubifs";
2972	dfs_rootdir = debugfs_create_dir(fname, NULL);
 
 
 
2973
2974	fname = "chk_general";
2975	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976					  NULL, &dfs_global_fops);
 
 
 
2977
2978	fname = "chk_index";
2979	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2981
2982	fname = "chk_orphans";
2983	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2984					   dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2985
2986	fname = "chk_lprops";
2987	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2988					     dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2989
2990	fname = "chk_fs";
2991	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2992					 NULL, &dfs_global_fops);
 
 
 
2993
2994	fname = "tst_recovery";
2995	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2996					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2997}
2998
2999/**
3000 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3001 */
3002void dbg_debugfs_exit(void)
3003{
3004	debugfs_remove_recursive(dfs_rootdir);
3005}
3006
3007void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3008			 const char *file, int line)
3009{
3010	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3011
3012	switch (c->assert_action) {
3013		case ASSACT_PANIC:
3014		BUG();
3015		break;
3016
3017		case ASSACT_RO:
3018		ubifs_ro_mode(c, -EINVAL);
3019		break;
3020
3021		case ASSACT_REPORT:
3022		default:
3023		dump_stack();
3024		break;
3025
3026	}
3027}
3028
3029/**
3030 * ubifs_debugging_init - initialize UBIFS debugging.
3031 * @c: UBIFS file-system description object
3032 *
3033 * This function initializes debugging-related data for the file system.
3034 * Returns zero in case of success and a negative error code in case of
3035 * failure.
3036 */
3037int ubifs_debugging_init(struct ubifs_info *c)
3038{
3039	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3040	if (!c->dbg)
3041		return -ENOMEM;
3042
3043	return 0;
3044}
3045
3046/**
3047 * ubifs_debugging_exit - free debugging data.
3048 * @c: UBIFS file-system description object
3049 */
3050void ubifs_debugging_exit(struct ubifs_info *c)
3051{
3052	kfree(c->dbg);
3053}