Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
 
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41	switch (fmt) {
  42	case UBIFS_SIMPLE_KEY_FMT:
  43		return "simple";
  44	default:
  45		return "unknown/invalid format";
  46	}
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51	switch (hash) {
  52	case UBIFS_KEY_HASH_R5:
  53		return "R5";
  54	case UBIFS_KEY_HASH_TEST:
  55		return "test";
  56	default:
  57		return "unknown/invalid name hash";
  58	}
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63	switch (type) {
  64	case UBIFS_INO_KEY:
  65		return "inode";
  66	case UBIFS_DENT_KEY:
  67		return "direntry";
  68	case UBIFS_XENT_KEY:
  69		return "xentry";
  70	case UBIFS_DATA_KEY:
  71		return "data";
  72	case UBIFS_TRUN_KEY:
  73		return "truncate";
  74	default:
  75		return "unknown/invalid key";
  76	}
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81	switch (type) {
  82	case UBIFS_ITYPE_REG:
  83		return "file";
  84	case UBIFS_ITYPE_DIR:
  85		return "dir";
  86	case UBIFS_ITYPE_LNK:
  87		return "symlink";
  88	case UBIFS_ITYPE_BLK:
  89		return "blkdev";
  90	case UBIFS_ITYPE_CHR:
  91		return "char dev";
  92	case UBIFS_ITYPE_FIFO:
  93		return "fifo";
  94	case UBIFS_ITYPE_SOCK:
  95		return "socket";
  96	default:
  97		return "unknown/invalid type";
  98	}
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102			     const union ubifs_key *key, char *buffer, int len)
 103{
 104	char *p = buffer;
 105	int type = key_type(c, key);
 106
 107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108		switch (type) {
 109		case UBIFS_INO_KEY:
 110			len -= snprintf(p, len, "(%lu, %s)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type));
 113			break;
 114		case UBIFS_DENT_KEY:
 115		case UBIFS_XENT_KEY:
 116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117					(unsigned long)key_inum(c, key),
 118					get_key_type(type), key_hash(c, key));
 119			break;
 120		case UBIFS_DATA_KEY:
 121			len -= snprintf(p, len, "(%lu, %s, %u)",
 122					(unsigned long)key_inum(c, key),
 123					get_key_type(type), key_block(c, key));
 124			break;
 125		case UBIFS_TRUN_KEY:
 126			len -= snprintf(p, len, "(%lu, %s)",
 127					(unsigned long)key_inum(c, key),
 128					get_key_type(type));
 129			break;
 130		default:
 131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132					key->u32[0], key->u32[1]);
 133		}
 134	} else
 135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136	ubifs_assert(len > 0);
 137	return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142	switch (type) {
 143	case UBIFS_PAD_NODE:
 144		return "padding node";
 145	case UBIFS_SB_NODE:
 146		return "superblock node";
 147	case UBIFS_MST_NODE:
 148		return "master node";
 149	case UBIFS_REF_NODE:
 150		return "reference node";
 151	case UBIFS_INO_NODE:
 152		return "inode node";
 153	case UBIFS_DENT_NODE:
 154		return "direntry node";
 155	case UBIFS_XENT_NODE:
 156		return "xentry node";
 157	case UBIFS_DATA_NODE:
 158		return "data node";
 159	case UBIFS_TRUN_NODE:
 160		return "truncate node";
 161	case UBIFS_IDX_NODE:
 162		return "indexing node";
 163	case UBIFS_CS_NODE:
 164		return "commit start node";
 165	case UBIFS_ORPH_NODE:
 166		return "orphan node";
 
 
 167	default:
 168		return "unknown node";
 169	}
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174	switch (type) {
 175	case UBIFS_NO_NODE_GROUP:
 176		return "no node group";
 177	case UBIFS_IN_NODE_GROUP:
 178		return "in node group";
 179	case UBIFS_LAST_OF_NODE_GROUP:
 180		return "last of node group";
 181	default:
 182		return "unknown";
 183	}
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188	switch (cmt_state) {
 189	case COMMIT_RESTING:
 190		return "commit resting";
 191	case COMMIT_BACKGROUND:
 192		return "background commit requested";
 193	case COMMIT_REQUIRED:
 194		return "commit required";
 195	case COMMIT_RUNNING_BACKGROUND:
 196		return "BACKGROUND commit running";
 197	case COMMIT_RUNNING_REQUIRED:
 198		return "commit running and required";
 199	case COMMIT_BROKEN:
 200		return "broken commit";
 201	default:
 202		return "unknown commit state";
 203	}
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208	switch (jhead) {
 209	case GCHD:
 210		return "0 (GC)";
 211	case BASEHD:
 212		return "1 (base)";
 213	case DATAHD:
 214		return "2 (data)";
 215	default:
 216		return "unknown journal head";
 217	}
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 225	       dbg_ntype(ch->node_type));
 226	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 227	       dbg_gtype(ch->group_type));
 228	pr_err("\tsqnum          %llu\n",
 229	       (unsigned long long)le64_to_cpu(ch->sqnum));
 230	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235	const struct ubifs_inode *ui = ubifs_inode(inode);
 236	struct qstr nm = { .name = NULL };
 237	union ubifs_key key;
 238	struct ubifs_dent_node *dent, *pdent = NULL;
 239	int count = 2;
 240
 241	pr_err("Dump in-memory inode:");
 242	pr_err("\tinode          %lu\n", inode->i_ino);
 243	pr_err("\tsize           %llu\n",
 244	       (unsigned long long)i_size_read(inode));
 245	pr_err("\tnlink          %u\n", inode->i_nlink);
 246	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 247	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 248	pr_err("\tatime          %u.%u\n",
 249	       (unsigned int)inode->i_atime.tv_sec,
 250	       (unsigned int)inode->i_atime.tv_nsec);
 251	pr_err("\tmtime          %u.%u\n",
 252	       (unsigned int)inode->i_mtime.tv_sec,
 253	       (unsigned int)inode->i_mtime.tv_nsec);
 254	pr_err("\tctime          %u.%u\n",
 255	       (unsigned int)inode->i_ctime.tv_sec,
 256	       (unsigned int)inode->i_ctime.tv_nsec);
 257	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258	pr_err("\txattr_size     %u\n", ui->xattr_size);
 259	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 260	pr_err("\txattr_names    %u\n", ui->xattr_names);
 261	pr_err("\tdirty          %u\n", ui->dirty);
 262	pr_err("\txattr          %u\n", ui->xattr);
 263	pr_err("\tbulk_read      %u\n", ui->xattr);
 264	pr_err("\tsynced_i_size  %llu\n",
 265	       (unsigned long long)ui->synced_i_size);
 266	pr_err("\tui_size        %llu\n",
 267	       (unsigned long long)ui->ui_size);
 268	pr_err("\tflags          %d\n", ui->flags);
 269	pr_err("\tcompr_type     %d\n", ui->compr_type);
 270	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 271	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272	pr_err("\tdata_len       %d\n", ui->data_len);
 273
 274	if (!S_ISDIR(inode->i_mode))
 275		return;
 276
 277	pr_err("List of directory entries:\n");
 278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280	lowest_dent_key(c, &key, inode->i_ino);
 281	while (1) {
 282		dent = ubifs_tnc_next_ent(c, &key, &nm);
 283		if (IS_ERR(dent)) {
 284			if (PTR_ERR(dent) != -ENOENT)
 285				pr_err("error %ld\n", PTR_ERR(dent));
 286			break;
 287		}
 288
 289		pr_err("\t%d: %s (%s)\n",
 290		       count++, dent->name, get_dent_type(dent->type));
 
 
 291
 292		nm.name = dent->name;
 293		nm.len = le16_to_cpu(dent->nlen);
 294		kfree(pdent);
 295		pdent = dent;
 296		key_read(c, &dent->key, &key);
 297	}
 298	kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303	int i, n;
 304	union ubifs_key key;
 305	const struct ubifs_ch *ch = node;
 306	char key_buf[DBG_KEY_BUF_LEN];
 307
 308	/* If the magic is incorrect, just hexdump the first bytes */
 309	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 310		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 311		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 312			       (void *)node, UBIFS_CH_SZ, 1);
 313		return;
 314	}
 315
 
 
 
 
 
 
 
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	switch (ch->node_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320	case UBIFS_PAD_NODE:
 321	{
 322		const struct ubifs_pad_node *pad = node;
 323
 324		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 325		break;
 326	}
 327	case UBIFS_SB_NODE:
 328	{
 329		const struct ubifs_sb_node *sup = node;
 330		unsigned int sup_flags = le32_to_cpu(sup->flags);
 331
 332		pr_err("\tkey_hash       %d (%s)\n",
 333		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 334		pr_err("\tkey_fmt        %d (%s)\n",
 335		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 336		pr_err("\tflags          %#x\n", sup_flags);
 337		pr_err("\tbig_lpt        %u\n",
 338		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 339		pr_err("\tspace_fixup    %u\n",
 340		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 341		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 342		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 343		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 344		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 345		pr_err("\tmax_bud_bytes  %llu\n",
 346		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 347		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 348		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 349		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 350		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 351		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 352		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 353		pr_err("\tdefault_compr  %u\n",
 354		       (int)le16_to_cpu(sup->default_compr));
 355		pr_err("\trp_size        %llu\n",
 356		       (unsigned long long)le64_to_cpu(sup->rp_size));
 357		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 358		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 359		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 360		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 361		pr_err("\tUUID           %pUB\n", sup->uuid);
 362		break;
 363	}
 364	case UBIFS_MST_NODE:
 365	{
 366		const struct ubifs_mst_node *mst = node;
 367
 368		pr_err("\thighest_inum   %llu\n",
 369		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 370		pr_err("\tcommit number  %llu\n",
 371		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 372		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 373		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 374		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 375		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 376		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 377		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 378		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 379		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 380		pr_err("\tindex_size     %llu\n",
 381		       (unsigned long long)le64_to_cpu(mst->index_size));
 382		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 383		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 384		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 385		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 386		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 387		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 388		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 389		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 390		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 391		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 392		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 393		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 394		pr_err("\ttotal_free     %llu\n",
 395		       (unsigned long long)le64_to_cpu(mst->total_free));
 396		pr_err("\ttotal_dirty    %llu\n",
 397		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 398		pr_err("\ttotal_used     %llu\n",
 399		       (unsigned long long)le64_to_cpu(mst->total_used));
 400		pr_err("\ttotal_dead     %llu\n",
 401		       (unsigned long long)le64_to_cpu(mst->total_dead));
 402		pr_err("\ttotal_dark     %llu\n",
 403		       (unsigned long long)le64_to_cpu(mst->total_dark));
 404		break;
 405	}
 406	case UBIFS_REF_NODE:
 407	{
 408		const struct ubifs_ref_node *ref = node;
 409
 410		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 411		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 412		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 413		break;
 414	}
 415	case UBIFS_INO_NODE:
 416	{
 417		const struct ubifs_ino_node *ino = node;
 418
 419		key_read(c, &ino->key, &key);
 420		pr_err("\tkey            %s\n",
 421		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 422		pr_err("\tcreat_sqnum    %llu\n",
 423		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 424		pr_err("\tsize           %llu\n",
 425		       (unsigned long long)le64_to_cpu(ino->size));
 426		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 427		pr_err("\tatime          %lld.%u\n",
 428		       (long long)le64_to_cpu(ino->atime_sec),
 429		       le32_to_cpu(ino->atime_nsec));
 430		pr_err("\tmtime          %lld.%u\n",
 431		       (long long)le64_to_cpu(ino->mtime_sec),
 432		       le32_to_cpu(ino->mtime_nsec));
 433		pr_err("\tctime          %lld.%u\n",
 434		       (long long)le64_to_cpu(ino->ctime_sec),
 435		       le32_to_cpu(ino->ctime_nsec));
 436		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 437		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 438		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 439		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 440		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 441		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 442		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 443		pr_err("\tcompr_type     %#x\n",
 444		       (int)le16_to_cpu(ino->compr_type));
 445		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 446		break;
 447	}
 448	case UBIFS_DENT_NODE:
 449	case UBIFS_XENT_NODE:
 450	{
 451		const struct ubifs_dent_node *dent = node;
 452		int nlen = le16_to_cpu(dent->nlen);
 453
 454		key_read(c, &dent->key, &key);
 455		pr_err("\tkey            %s\n",
 456		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 457		pr_err("\tinum           %llu\n",
 458		       (unsigned long long)le64_to_cpu(dent->inum));
 459		pr_err("\ttype           %d\n", (int)dent->type);
 460		pr_err("\tnlen           %d\n", nlen);
 461		pr_err("\tname           ");
 462
 463		if (nlen > UBIFS_MAX_NLEN)
 
 464			pr_err("(bad name length, not printing, bad or corrupted node)");
 465		else {
 466			for (i = 0; i < nlen && dent->name[i]; i++)
 467				pr_cont("%c", dent->name[i]);
 
 468		}
 469		pr_cont("\n");
 470
 471		break;
 472	}
 473	case UBIFS_DATA_NODE:
 474	{
 475		const struct ubifs_data_node *dn = node;
 476		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 477
 478		key_read(c, &dn->key, &key);
 479		pr_err("\tkey            %s\n",
 480		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 481		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 482		pr_err("\tcompr_typ      %d\n",
 483		       (int)le16_to_cpu(dn->compr_type));
 484		pr_err("\tdata size      %d\n", dlen);
 485		pr_err("\tdata:\n");
 
 
 486		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 487			       (void *)&dn->data, dlen, 0);
 
 488		break;
 489	}
 490	case UBIFS_TRUN_NODE:
 491	{
 492		const struct ubifs_trun_node *trun = node;
 493
 494		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 495		pr_err("\told_size       %llu\n",
 496		       (unsigned long long)le64_to_cpu(trun->old_size));
 497		pr_err("\tnew_size       %llu\n",
 498		       (unsigned long long)le64_to_cpu(trun->new_size));
 499		break;
 500	}
 501	case UBIFS_IDX_NODE:
 502	{
 503		const struct ubifs_idx_node *idx = node;
 
 
 
 504
 505		n = le16_to_cpu(idx->child_cnt);
 506		pr_err("\tchild_cnt      %d\n", n);
 507		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 508		pr_err("\tBranches:\n");
 509
 510		for (i = 0; i < n && i < c->fanout - 1; i++) {
 511			const struct ubifs_branch *br;
 512
 513			br = ubifs_idx_branch(c, idx, i);
 514			key_read(c, &br->key, &key);
 515			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 516			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 517			       le32_to_cpu(br->len),
 518			       dbg_snprintf_key(c, &key, key_buf,
 519						DBG_KEY_BUF_LEN));
 520		}
 521		break;
 522	}
 523	case UBIFS_CS_NODE:
 524		break;
 525	case UBIFS_ORPH_NODE:
 526	{
 527		const struct ubifs_orph_node *orph = node;
 528
 529		pr_err("\tcommit number  %llu\n",
 530		       (unsigned long long)
 531				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 532		pr_err("\tlast node flag %llu\n",
 533		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 534		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 535		pr_err("\t%d orphan inode numbers:\n", n);
 536		for (i = 0; i < n; i++)
 537			pr_err("\t  ino %llu\n",
 538			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 539		break;
 540	}
 
 
 
 
 541	default:
 542		pr_err("node type %d was not recognized\n",
 543		       (int)ch->node_type);
 544	}
 
 
 545	spin_unlock(&dbg_lock);
 546}
 547
 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 549{
 550	spin_lock(&dbg_lock);
 551	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 552	       req->new_ino, req->dirtied_ino);
 553	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 554	       req->new_ino_d, req->dirtied_ino_d);
 555	pr_err("\tnew_page    %d, dirtied_page %d\n",
 556	       req->new_page, req->dirtied_page);
 557	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 558	       req->new_dent, req->mod_dent);
 559	pr_err("\tidx_growth  %d\n", req->idx_growth);
 560	pr_err("\tdata_growth %d dd_growth     %d\n",
 561	       req->data_growth, req->dd_growth);
 562	spin_unlock(&dbg_lock);
 563}
 564
 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 566{
 567	spin_lock(&dbg_lock);
 568	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 569	       current->pid, lst->empty_lebs, lst->idx_lebs);
 570	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 571	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 572	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 573	       lst->total_used, lst->total_dark, lst->total_dead);
 574	spin_unlock(&dbg_lock);
 575}
 576
 577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 578{
 579	int i;
 580	struct rb_node *rb;
 581	struct ubifs_bud *bud;
 582	struct ubifs_gced_idx_leb *idx_gc;
 583	long long available, outstanding, free;
 584
 585	spin_lock(&c->space_lock);
 586	spin_lock(&dbg_lock);
 587	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 588	       current->pid, bi->data_growth + bi->dd_growth,
 589	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 590	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 591	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 592	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 593	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 594	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 595	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 596	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 597	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 598	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 599
 600	if (bi != &c->bi)
 601		/*
 602		 * If we are dumping saved budgeting data, do not print
 603		 * additional information which is about the current state, not
 604		 * the old one which corresponded to the saved budgeting data.
 605		 */
 606		goto out_unlock;
 607
 608	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 609	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 610	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 611	       atomic_long_read(&c->dirty_pg_cnt),
 612	       atomic_long_read(&c->dirty_zn_cnt),
 613	       atomic_long_read(&c->clean_zn_cnt));
 614	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 615
 616	/* If we are in R/O mode, journal heads do not exist */
 617	if (c->jheads)
 618		for (i = 0; i < c->jhead_cnt; i++)
 619			pr_err("\tjhead %s\t LEB %d\n",
 620			       dbg_jhead(c->jheads[i].wbuf.jhead),
 621			       c->jheads[i].wbuf.lnum);
 622	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 623		bud = rb_entry(rb, struct ubifs_bud, rb);
 624		pr_err("\tbud LEB %d\n", bud->lnum);
 625	}
 626	list_for_each_entry(bud, &c->old_buds, list)
 627		pr_err("\told bud LEB %d\n", bud->lnum);
 628	list_for_each_entry(idx_gc, &c->idx_gc, list)
 629		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 630		       idx_gc->lnum, idx_gc->unmap);
 631	pr_err("\tcommit state %d\n", c->cmt_state);
 632
 633	/* Print budgeting predictions */
 634	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 635	outstanding = c->bi.data_growth + c->bi.dd_growth;
 636	free = ubifs_get_free_space_nolock(c);
 637	pr_err("Budgeting predictions:\n");
 638	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 639	       available, outstanding, free);
 640out_unlock:
 641	spin_unlock(&dbg_lock);
 642	spin_unlock(&c->space_lock);
 643}
 644
 645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 646{
 647	int i, spc, dark = 0, dead = 0;
 648	struct rb_node *rb;
 649	struct ubifs_bud *bud;
 650
 651	spc = lp->free + lp->dirty;
 652	if (spc < c->dead_wm)
 653		dead = spc;
 654	else
 655		dark = ubifs_calc_dark(c, spc);
 656
 657	if (lp->flags & LPROPS_INDEX)
 658		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 659		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 660		       lp->flags);
 661	else
 662		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 663		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 664		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 665
 666	if (lp->flags & LPROPS_TAKEN) {
 667		if (lp->flags & LPROPS_INDEX)
 668			pr_cont("index, taken");
 669		else
 670			pr_cont("taken");
 671	} else {
 672		const char *s;
 673
 674		if (lp->flags & LPROPS_INDEX) {
 675			switch (lp->flags & LPROPS_CAT_MASK) {
 676			case LPROPS_DIRTY_IDX:
 677				s = "dirty index";
 678				break;
 679			case LPROPS_FRDI_IDX:
 680				s = "freeable index";
 681				break;
 682			default:
 683				s = "index";
 684			}
 685		} else {
 686			switch (lp->flags & LPROPS_CAT_MASK) {
 687			case LPROPS_UNCAT:
 688				s = "not categorized";
 689				break;
 690			case LPROPS_DIRTY:
 691				s = "dirty";
 692				break;
 693			case LPROPS_FREE:
 694				s = "free";
 695				break;
 696			case LPROPS_EMPTY:
 697				s = "empty";
 698				break;
 699			case LPROPS_FREEABLE:
 700				s = "freeable";
 701				break;
 702			default:
 703				s = NULL;
 704				break;
 705			}
 706		}
 707		pr_cont("%s", s);
 708	}
 709
 710	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 711		bud = rb_entry(rb, struct ubifs_bud, rb);
 712		if (bud->lnum == lp->lnum) {
 713			int head = 0;
 714			for (i = 0; i < c->jhead_cnt; i++) {
 715				/*
 716				 * Note, if we are in R/O mode or in the middle
 717				 * of mounting/re-mounting, the write-buffers do
 718				 * not exist.
 719				 */
 720				if (c->jheads &&
 721				    lp->lnum == c->jheads[i].wbuf.lnum) {
 722					pr_cont(", jhead %s", dbg_jhead(i));
 723					head = 1;
 724				}
 725			}
 726			if (!head)
 727				pr_cont(", bud of jhead %s",
 728				       dbg_jhead(bud->jhead));
 729		}
 730	}
 731	if (lp->lnum == c->gc_lnum)
 732		pr_cont(", GC LEB");
 733	pr_cont(")\n");
 734}
 735
 736void ubifs_dump_lprops(struct ubifs_info *c)
 737{
 738	int lnum, err;
 739	struct ubifs_lprops lp;
 740	struct ubifs_lp_stats lst;
 741
 742	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 743	ubifs_get_lp_stats(c, &lst);
 744	ubifs_dump_lstats(&lst);
 745
 746	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 747		err = ubifs_read_one_lp(c, lnum, &lp);
 748		if (err) {
 749			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 750			continue;
 751		}
 752
 753		ubifs_dump_lprop(c, &lp);
 754	}
 755	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 756}
 757
 758void ubifs_dump_lpt_info(struct ubifs_info *c)
 759{
 760	int i;
 761
 762	spin_lock(&dbg_lock);
 763	pr_err("(pid %d) dumping LPT information\n", current->pid);
 764	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 765	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 766	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 767	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 768	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 769	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 770	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 771	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 772	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 773	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 774	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 775	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 776	pr_err("\tspace_bits:    %d\n", c->space_bits);
 777	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 778	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 779	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 780	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 781	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 782	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 783	pr_err("\tLPT head is at %d:%d\n",
 784	       c->nhead_lnum, c->nhead_offs);
 785	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 786	if (c->big_lpt)
 787		pr_err("\tLPT lsave is at %d:%d\n",
 788		       c->lsave_lnum, c->lsave_offs);
 789	for (i = 0; i < c->lpt_lebs; i++)
 790		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 791		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 792		       c->ltab[i].tgc, c->ltab[i].cmt);
 793	spin_unlock(&dbg_lock);
 794}
 795
 796void ubifs_dump_sleb(const struct ubifs_info *c,
 797		     const struct ubifs_scan_leb *sleb, int offs)
 798{
 799	struct ubifs_scan_node *snod;
 800
 801	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 802	       current->pid, sleb->lnum, offs);
 803
 804	list_for_each_entry(snod, &sleb->nodes, list) {
 805		cond_resched();
 806		pr_err("Dumping node at LEB %d:%d len %d\n",
 807		       sleb->lnum, snod->offs, snod->len);
 808		ubifs_dump_node(c, snod->node);
 809	}
 810}
 811
 812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 813{
 814	struct ubifs_scan_leb *sleb;
 815	struct ubifs_scan_node *snod;
 816	void *buf;
 817
 818	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 819
 820	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 821	if (!buf) {
 822		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 823		return;
 824	}
 825
 826	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 827	if (IS_ERR(sleb)) {
 828		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 829		goto out;
 830	}
 831
 832	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 833	       sleb->nodes_cnt, sleb->endpt);
 834
 835	list_for_each_entry(snod, &sleb->nodes, list) {
 836		cond_resched();
 837		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 838		       snod->offs, snod->len);
 839		ubifs_dump_node(c, snod->node);
 840	}
 841
 842	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 843	ubifs_scan_destroy(sleb);
 844
 845out:
 846	vfree(buf);
 847	return;
 848}
 849
 850void ubifs_dump_znode(const struct ubifs_info *c,
 851		      const struct ubifs_znode *znode)
 852{
 853	int n;
 854	const struct ubifs_zbranch *zbr;
 855	char key_buf[DBG_KEY_BUF_LEN];
 856
 857	spin_lock(&dbg_lock);
 858	if (znode->parent)
 859		zbr = &znode->parent->zbranch[znode->iip];
 860	else
 861		zbr = &c->zroot;
 862
 863	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 864	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 865	       znode->level, znode->child_cnt, znode->flags);
 866
 867	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 868		spin_unlock(&dbg_lock);
 869		return;
 870	}
 871
 872	pr_err("zbranches:\n");
 873	for (n = 0; n < znode->child_cnt; n++) {
 874		zbr = &znode->zbranch[n];
 875		if (znode->level > 0)
 876			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 877			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 878			       dbg_snprintf_key(c, &zbr->key, key_buf,
 879						DBG_KEY_BUF_LEN));
 880		else
 881			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 882			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 883			       dbg_snprintf_key(c, &zbr->key, key_buf,
 884						DBG_KEY_BUF_LEN));
 885	}
 886	spin_unlock(&dbg_lock);
 887}
 888
 889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 890{
 891	int i;
 892
 893	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 894	       current->pid, cat, heap->cnt);
 895	for (i = 0; i < heap->cnt; i++) {
 896		struct ubifs_lprops *lprops = heap->arr[i];
 897
 898		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 899		       i, lprops->lnum, lprops->hpos, lprops->free,
 900		       lprops->dirty, lprops->flags);
 901	}
 902	pr_err("(pid %d) finish dumping heap\n", current->pid);
 903}
 904
 905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 906		      struct ubifs_nnode *parent, int iip)
 907{
 908	int i;
 909
 910	pr_err("(pid %d) dumping pnode:\n", current->pid);
 911	pr_err("\taddress %zx parent %zx cnext %zx\n",
 912	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 913	pr_err("\tflags %lu iip %d level %d num %d\n",
 914	       pnode->flags, iip, pnode->level, pnode->num);
 915	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 916		struct ubifs_lprops *lp = &pnode->lprops[i];
 917
 918		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 919		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 920	}
 921}
 922
 923void ubifs_dump_tnc(struct ubifs_info *c)
 924{
 925	struct ubifs_znode *znode;
 926	int level;
 927
 928	pr_err("\n");
 929	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 930	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 931	level = znode->level;
 932	pr_err("== Level %d ==\n", level);
 933	while (znode) {
 934		if (level != znode->level) {
 935			level = znode->level;
 936			pr_err("== Level %d ==\n", level);
 937		}
 938		ubifs_dump_znode(c, znode);
 939		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 940	}
 941	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 942}
 943
 944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 945		      void *priv)
 946{
 947	ubifs_dump_znode(c, znode);
 948	return 0;
 949}
 950
 951/**
 952 * ubifs_dump_index - dump the on-flash index.
 953 * @c: UBIFS file-system description object
 954 *
 955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 956 * which dumps only in-memory znodes and does not read znodes which from flash.
 957 */
 958void ubifs_dump_index(struct ubifs_info *c)
 959{
 960	dbg_walk_index(c, NULL, dump_znode, NULL);
 961}
 962
 963/**
 964 * dbg_save_space_info - save information about flash space.
 965 * @c: UBIFS file-system description object
 966 *
 967 * This function saves information about UBIFS free space, dirty space, etc, in
 968 * order to check it later.
 969 */
 970void dbg_save_space_info(struct ubifs_info *c)
 971{
 972	struct ubifs_debug_info *d = c->dbg;
 973	int freeable_cnt;
 974
 975	spin_lock(&c->space_lock);
 976	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 977	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 978	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 979
 980	/*
 981	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
 982	 * affects the free space calculations, and UBIFS might not know about
 983	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 984	 * only when we read their lprops, and we do this only lazily, upon the
 985	 * need. So at any given point of time @c->freeable_cnt might be not
 986	 * exactly accurate.
 987	 *
 988	 * Just one example about the issue we hit when we did not zero
 989	 * @c->freeable_cnt.
 990	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 991	 *    amount of free space in @d->saved_free
 992	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 993	 *    information from flash, where we cache LEBs from various
 994	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 995	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 996	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 997	 *    -> 'ubifs_add_to_cat()').
 998	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 999	 *    becomes %1.
1000	 * 4. We calculate the amount of free space when the re-mount is
1001	 *    finished in 'dbg_check_space_info()' and it does not match
1002	 *    @d->saved_free.
1003	 */
1004	freeable_cnt = c->freeable_cnt;
1005	c->freeable_cnt = 0;
1006	d->saved_free = ubifs_get_free_space_nolock(c);
1007	c->freeable_cnt = freeable_cnt;
1008	spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022	struct ubifs_debug_info *d = c->dbg;
1023	struct ubifs_lp_stats lst;
1024	long long free;
1025	int freeable_cnt;
1026
1027	spin_lock(&c->space_lock);
1028	freeable_cnt = c->freeable_cnt;
1029	c->freeable_cnt = 0;
1030	free = ubifs_get_free_space_nolock(c);
1031	c->freeable_cnt = freeable_cnt;
1032	spin_unlock(&c->space_lock);
1033
1034	if (free != d->saved_free) {
1035		ubifs_err(c, "free space changed from %lld to %lld",
1036			  d->saved_free, free);
1037		goto out;
1038	}
1039
1040	return 0;
1041
1042out:
1043	ubifs_msg(c, "saved lprops statistics dump");
1044	ubifs_dump_lstats(&d->saved_lst);
1045	ubifs_msg(c, "saved budgeting info dump");
1046	ubifs_dump_budg(c, &d->saved_bi);
1047	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048	ubifs_msg(c, "current lprops statistics dump");
1049	ubifs_get_lp_stats(c, &lst);
1050	ubifs_dump_lstats(&lst);
1051	ubifs_msg(c, "current budgeting info dump");
1052	ubifs_dump_budg(c, &c->bi);
1053	dump_stack();
1054	return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069	int err = 0;
1070	struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072	if (!dbg_is_chk_gen(c))
1073		return 0;
1074	if (!S_ISREG(inode->i_mode))
1075		return 0;
1076
1077	mutex_lock(&ui->ui_mutex);
1078	spin_lock(&ui->ui_lock);
1079	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081			  ui->ui_size, ui->synced_i_size);
1082		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083			  inode->i_mode, i_size_read(inode));
1084		dump_stack();
1085		err = -EINVAL;
1086	}
1087	spin_unlock(&ui->ui_lock);
1088	mutex_unlock(&ui->ui_mutex);
1089	return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107	unsigned int nlink = 2;
1108	union ubifs_key key;
1109	struct ubifs_dent_node *dent, *pdent = NULL;
1110	struct qstr nm = { .name = NULL };
1111	loff_t size = UBIFS_INO_NODE_SZ;
1112
1113	if (!dbg_is_chk_gen(c))
1114		return 0;
1115
1116	if (!S_ISDIR(dir->i_mode))
1117		return 0;
1118
1119	lowest_dent_key(c, &key, dir->i_ino);
1120	while (1) {
1121		int err;
1122
1123		dent = ubifs_tnc_next_ent(c, &key, &nm);
1124		if (IS_ERR(dent)) {
1125			err = PTR_ERR(dent);
1126			if (err == -ENOENT)
1127				break;
 
1128			return err;
1129		}
1130
1131		nm.name = dent->name;
1132		nm.len = le16_to_cpu(dent->nlen);
1133		size += CALC_DENT_SIZE(nm.len);
1134		if (dent->type == UBIFS_ITYPE_DIR)
1135			nlink += 1;
1136		kfree(pdent);
1137		pdent = dent;
1138		key_read(c, &dent->key, &key);
1139	}
1140	kfree(pdent);
1141
1142	if (i_size_read(dir) != size) {
1143		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144			  dir->i_ino, (unsigned long long)i_size_read(dir),
1145			  (unsigned long long)size);
1146		ubifs_dump_inode(c, dir);
1147		dump_stack();
1148		return -EINVAL;
1149	}
1150	if (dir->i_nlink != nlink) {
1151		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152			  dir->i_ino, dir->i_nlink, nlink);
1153		ubifs_dump_inode(c, dir);
1154		dump_stack();
1155		return -EINVAL;
1156	}
1157
1158	return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175			       struct ubifs_zbranch *zbr2)
1176{
1177	int err, nlen1, nlen2, cmp;
1178	struct ubifs_dent_node *dent1, *dent2;
1179	union ubifs_key key;
1180	char key_buf[DBG_KEY_BUF_LEN];
1181
1182	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184	if (!dent1)
1185		return -ENOMEM;
1186	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187	if (!dent2) {
1188		err = -ENOMEM;
1189		goto out_free;
1190	}
1191
1192	err = ubifs_tnc_read_node(c, zbr1, dent1);
1193	if (err)
1194		goto out_free;
1195	err = ubifs_validate_entry(c, dent1);
1196	if (err)
1197		goto out_free;
1198
1199	err = ubifs_tnc_read_node(c, zbr2, dent2);
1200	if (err)
1201		goto out_free;
1202	err = ubifs_validate_entry(c, dent2);
1203	if (err)
1204		goto out_free;
1205
1206	/* Make sure node keys are the same as in zbranch */
1207	err = 1;
1208	key_read(c, &dent1->key, &key);
1209	if (keys_cmp(c, &zbr1->key, &key)) {
1210		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212						       DBG_KEY_BUF_LEN));
1213		ubifs_err(c, "but it should have key %s according to tnc",
1214			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1215					   DBG_KEY_BUF_LEN));
1216		ubifs_dump_node(c, dent1);
1217		goto out_free;
1218	}
1219
1220	key_read(c, &dent2->key, &key);
1221	if (keys_cmp(c, &zbr2->key, &key)) {
1222		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224						       DBG_KEY_BUF_LEN));
1225		ubifs_err(c, "but it should have key %s according to tnc",
1226			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1227					   DBG_KEY_BUF_LEN));
1228		ubifs_dump_node(c, dent2);
1229		goto out_free;
1230	}
1231
1232	nlen1 = le16_to_cpu(dent1->nlen);
1233	nlen2 = le16_to_cpu(dent2->nlen);
1234
1235	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237		err = 0;
1238		goto out_free;
1239	}
1240	if (cmp == 0 && nlen1 == nlen2)
1241		ubifs_err(c, "2 xent/dent nodes with the same name");
1242	else
1243		ubifs_err(c, "bad order of colliding key %s",
1244			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247	ubifs_dump_node(c, dent1);
1248	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249	ubifs_dump_node(c, dent2);
1250
1251out_free:
1252	kfree(dent2);
1253	kfree(dent1);
1254	return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267	struct ubifs_znode *znode = zbr->znode;
1268	struct ubifs_znode *zp = znode->parent;
1269	int n, err, cmp;
1270
1271	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272		err = 1;
1273		goto out;
1274	}
1275	if (znode->level < 0) {
1276		err = 2;
1277		goto out;
1278	}
1279	if (znode->iip < 0 || znode->iip >= c->fanout) {
1280		err = 3;
1281		goto out;
1282	}
1283
1284	if (zbr->len == 0)
1285		/* Only dirty zbranch may have no on-flash nodes */
1286		if (!ubifs_zn_dirty(znode)) {
1287			err = 4;
1288			goto out;
1289		}
1290
1291	if (ubifs_zn_dirty(znode)) {
1292		/*
1293		 * If znode is dirty, its parent has to be dirty as well. The
1294		 * order of the operation is important, so we have to have
1295		 * memory barriers.
1296		 */
1297		smp_mb();
1298		if (zp && !ubifs_zn_dirty(zp)) {
1299			/*
1300			 * The dirty flag is atomic and is cleared outside the
1301			 * TNC mutex, so znode's dirty flag may now have
1302			 * been cleared. The child is always cleared before the
1303			 * parent, so we just need to check again.
1304			 */
1305			smp_mb();
1306			if (ubifs_zn_dirty(znode)) {
1307				err = 5;
1308				goto out;
1309			}
1310		}
1311	}
1312
1313	if (zp) {
1314		const union ubifs_key *min, *max;
1315
1316		if (znode->level != zp->level - 1) {
1317			err = 6;
1318			goto out;
1319		}
1320
1321		/* Make sure the 'parent' pointer in our znode is correct */
1322		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323		if (!err) {
1324			/* This zbranch does not exist in the parent */
1325			err = 7;
1326			goto out;
1327		}
1328
1329		if (znode->iip >= zp->child_cnt) {
1330			err = 8;
1331			goto out;
1332		}
1333
1334		if (znode->iip != n) {
1335			/* This may happen only in case of collisions */
1336			if (keys_cmp(c, &zp->zbranch[n].key,
1337				     &zp->zbranch[znode->iip].key)) {
1338				err = 9;
1339				goto out;
1340			}
1341			n = znode->iip;
1342		}
1343
1344		/*
1345		 * Make sure that the first key in our znode is greater than or
1346		 * equal to the key in the pointing zbranch.
1347		 */
1348		min = &zbr->key;
1349		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350		if (cmp == 1) {
1351			err = 10;
1352			goto out;
1353		}
1354
1355		if (n + 1 < zp->child_cnt) {
1356			max = &zp->zbranch[n + 1].key;
1357
1358			/*
1359			 * Make sure the last key in our znode is less or
1360			 * equivalent than the key in the zbranch which goes
1361			 * after our pointing zbranch.
1362			 */
1363			cmp = keys_cmp(c, max,
1364				&znode->zbranch[znode->child_cnt - 1].key);
1365			if (cmp == -1) {
1366				err = 11;
1367				goto out;
1368			}
1369		}
1370	} else {
1371		/* This may only be root znode */
1372		if (zbr != &c->zroot) {
1373			err = 12;
1374			goto out;
1375		}
1376	}
1377
1378	/*
1379	 * Make sure that next key is greater or equivalent then the previous
1380	 * one.
1381	 */
1382	for (n = 1; n < znode->child_cnt; n++) {
1383		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384			       &znode->zbranch[n].key);
1385		if (cmp > 0) {
1386			err = 13;
1387			goto out;
1388		}
1389		if (cmp == 0) {
1390			/* This can only be keys with colliding hash */
1391			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392				err = 14;
1393				goto out;
1394			}
1395
1396			if (znode->level != 0 || c->replaying)
1397				continue;
1398
1399			/*
1400			 * Colliding keys should follow binary order of
1401			 * corresponding xentry/dentry names.
1402			 */
1403			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404						  &znode->zbranch[n]);
1405			if (err < 0)
1406				return err;
1407			if (err) {
1408				err = 15;
1409				goto out;
1410			}
1411		}
1412	}
1413
1414	for (n = 0; n < znode->child_cnt; n++) {
1415		if (!znode->zbranch[n].znode &&
1416		    (znode->zbranch[n].lnum == 0 ||
1417		     znode->zbranch[n].len == 0)) {
1418			err = 16;
1419			goto out;
1420		}
1421
1422		if (znode->zbranch[n].lnum != 0 &&
1423		    znode->zbranch[n].len == 0) {
1424			err = 17;
1425			goto out;
1426		}
1427
1428		if (znode->zbranch[n].lnum == 0 &&
1429		    znode->zbranch[n].len != 0) {
1430			err = 18;
1431			goto out;
1432		}
1433
1434		if (znode->zbranch[n].lnum == 0 &&
1435		    znode->zbranch[n].offs != 0) {
1436			err = 19;
1437			goto out;
1438		}
1439
1440		if (znode->level != 0 && znode->zbranch[n].znode)
1441			if (znode->zbranch[n].znode->parent != znode) {
1442				err = 20;
1443				goto out;
1444			}
1445	}
1446
1447	return 0;
1448
1449out:
1450	ubifs_err(c, "failed, error %d", err);
1451	ubifs_msg(c, "dump of the znode");
1452	ubifs_dump_znode(c, znode);
1453	if (zp) {
1454		ubifs_msg(c, "dump of the parent znode");
1455		ubifs_dump_znode(c, zp);
1456	}
1457	dump_stack();
1458	return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471	struct ubifs_znode *znode;
1472	long clean_cnt = 0, dirty_cnt = 0;
1473	int err, last;
1474
1475	if (!dbg_is_chk_index(c))
1476		return 0;
1477
1478	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479	if (!c->zroot.znode)
1480		return 0;
1481
1482	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483	while (1) {
1484		struct ubifs_znode *prev;
1485		struct ubifs_zbranch *zbr;
1486
1487		if (!znode->parent)
1488			zbr = &c->zroot;
1489		else
1490			zbr = &znode->parent->zbranch[znode->iip];
1491
1492		err = dbg_check_znode(c, zbr);
1493		if (err)
1494			return err;
1495
1496		if (extra) {
1497			if (ubifs_zn_dirty(znode))
1498				dirty_cnt += 1;
1499			else
1500				clean_cnt += 1;
1501		}
1502
1503		prev = znode;
1504		znode = ubifs_tnc_postorder_next(znode);
1505		if (!znode)
1506			break;
1507
1508		/*
1509		 * If the last key of this znode is equivalent to the first key
1510		 * of the next znode (collision), then check order of the keys.
1511		 */
1512		last = prev->child_cnt - 1;
1513		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514		    !keys_cmp(c, &prev->zbranch[last].key,
1515			      &znode->zbranch[0].key)) {
1516			err = dbg_check_key_order(c, &prev->zbranch[last],
1517						  &znode->zbranch[0]);
1518			if (err < 0)
1519				return err;
1520			if (err) {
1521				ubifs_msg(c, "first znode");
1522				ubifs_dump_znode(c, prev);
1523				ubifs_msg(c, "second znode");
1524				ubifs_dump_znode(c, znode);
1525				return -EINVAL;
1526			}
1527		}
1528	}
1529
1530	if (extra) {
1531		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533				  atomic_long_read(&c->clean_zn_cnt),
1534				  clean_cnt);
1535			return -EINVAL;
1536		}
1537		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539				  atomic_long_read(&c->dirty_zn_cnt),
1540				  dirty_cnt);
1541			return -EINVAL;
1542		}
1543	}
1544
1545	return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564		   dbg_znode_callback znode_cb, void *priv)
1565{
1566	int err;
1567	struct ubifs_zbranch *zbr;
1568	struct ubifs_znode *znode, *child;
1569
1570	mutex_lock(&c->tnc_mutex);
1571	/* If the root indexing node is not in TNC - pull it */
1572	if (!c->zroot.znode) {
1573		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574		if (IS_ERR(c->zroot.znode)) {
1575			err = PTR_ERR(c->zroot.znode);
1576			c->zroot.znode = NULL;
1577			goto out_unlock;
1578		}
1579	}
1580
1581	/*
1582	 * We are going to traverse the indexing tree in the postorder manner.
1583	 * Go down and find the leftmost indexing node where we are going to
1584	 * start from.
1585	 */
1586	znode = c->zroot.znode;
1587	while (znode->level > 0) {
1588		zbr = &znode->zbranch[0];
1589		child = zbr->znode;
1590		if (!child) {
1591			child = ubifs_load_znode(c, zbr, znode, 0);
1592			if (IS_ERR(child)) {
1593				err = PTR_ERR(child);
1594				goto out_unlock;
1595			}
1596			zbr->znode = child;
1597		}
1598
1599		znode = child;
1600	}
1601
1602	/* Iterate over all indexing nodes */
1603	while (1) {
1604		int idx;
1605
1606		cond_resched();
1607
1608		if (znode_cb) {
1609			err = znode_cb(c, znode, priv);
1610			if (err) {
1611				ubifs_err(c, "znode checking function returned error %d",
1612					  err);
1613				ubifs_dump_znode(c, znode);
1614				goto out_dump;
1615			}
1616		}
1617		if (leaf_cb && znode->level == 0) {
1618			for (idx = 0; idx < znode->child_cnt; idx++) {
1619				zbr = &znode->zbranch[idx];
1620				err = leaf_cb(c, zbr, priv);
1621				if (err) {
1622					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623						  err, zbr->lnum, zbr->offs);
1624					goto out_dump;
1625				}
1626			}
1627		}
1628
1629		if (!znode->parent)
1630			break;
1631
1632		idx = znode->iip + 1;
1633		znode = znode->parent;
1634		if (idx < znode->child_cnt) {
1635			/* Switch to the next index in the parent */
1636			zbr = &znode->zbranch[idx];
1637			child = zbr->znode;
1638			if (!child) {
1639				child = ubifs_load_znode(c, zbr, znode, idx);
1640				if (IS_ERR(child)) {
1641					err = PTR_ERR(child);
1642					goto out_unlock;
1643				}
1644				zbr->znode = child;
1645			}
1646			znode = child;
1647		} else
1648			/*
1649			 * This is the last child, switch to the parent and
1650			 * continue.
1651			 */
1652			continue;
1653
1654		/* Go to the lowest leftmost znode in the new sub-tree */
1655		while (znode->level > 0) {
1656			zbr = &znode->zbranch[0];
1657			child = zbr->znode;
1658			if (!child) {
1659				child = ubifs_load_znode(c, zbr, znode, 0);
1660				if (IS_ERR(child)) {
1661					err = PTR_ERR(child);
1662					goto out_unlock;
1663				}
1664				zbr->znode = child;
1665			}
1666			znode = child;
1667		}
1668	}
1669
1670	mutex_unlock(&c->tnc_mutex);
1671	return 0;
1672
1673out_dump:
1674	if (znode->parent)
1675		zbr = &znode->parent->zbranch[znode->iip];
1676	else
1677		zbr = &c->zroot;
1678	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679	ubifs_dump_znode(c, znode);
1680out_unlock:
1681	mutex_unlock(&c->tnc_mutex);
1682	return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697	long long *idx_size = priv;
1698	int add;
1699
1700	add = ubifs_idx_node_sz(c, znode->child_cnt);
1701	add = ALIGN(add, 8);
1702	*idx_size += add;
1703	return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717	int err;
1718	long long calc = 0;
1719
1720	if (!dbg_is_chk_index(c))
1721		return 0;
1722
1723	err = dbg_walk_index(c, NULL, add_size, &calc);
1724	if (err) {
1725		ubifs_err(c, "error %d while walking the index", err);
1726		return err;
1727	}
1728
1729	if (calc != idx_size) {
1730		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731			  calc, idx_size);
1732		dump_stack();
1733		return -EINVAL;
1734	}
1735
1736	return 0;
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 *              while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 *            inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 *             inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760	struct rb_node rb;
1761	ino_t inum;
1762	umode_t mode;
1763	unsigned int nlink;
1764	unsigned int xattr_cnt;
1765	int references;
1766	int calc_cnt;
1767	long long size;
1768	unsigned int xattr_sz;
1769	long long calc_sz;
1770	long long calc_xcnt;
1771	long long calc_xsz;
1772	unsigned int xattr_nms;
1773	long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781	struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795				    struct fsck_data *fsckd,
1796				    struct ubifs_ino_node *ino)
1797{
1798	struct rb_node **p, *parent = NULL;
1799	struct fsck_inode *fscki;
1800	ino_t inum = key_inum_flash(c, &ino->key);
1801	struct inode *inode;
1802	struct ubifs_inode *ui;
1803
1804	p = &fsckd->inodes.rb_node;
1805	while (*p) {
1806		parent = *p;
1807		fscki = rb_entry(parent, struct fsck_inode, rb);
1808		if (inum < fscki->inum)
1809			p = &(*p)->rb_left;
1810		else if (inum > fscki->inum)
1811			p = &(*p)->rb_right;
1812		else
1813			return fscki;
1814	}
1815
1816	if (inum > c->highest_inum) {
1817		ubifs_err(c, "too high inode number, max. is %lu",
1818			  (unsigned long)c->highest_inum);
1819		return ERR_PTR(-EINVAL);
1820	}
1821
1822	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823	if (!fscki)
1824		return ERR_PTR(-ENOMEM);
1825
1826	inode = ilookup(c->vfs_sb, inum);
1827
1828	fscki->inum = inum;
1829	/*
1830	 * If the inode is present in the VFS inode cache, use it instead of
1831	 * the on-flash inode which might be out-of-date. E.g., the size might
1832	 * be out-of-date. If we do not do this, the following may happen, for
1833	 * example:
1834	 *   1. A power cut happens
1835	 *   2. We mount the file-system R/O, the replay process fixes up the
1836	 *      inode size in the VFS cache, but on on-flash.
1837	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1838	 *      size.
1839	 */
1840	if (!inode) {
1841		fscki->nlink = le32_to_cpu(ino->nlink);
1842		fscki->size = le64_to_cpu(ino->size);
1843		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846		fscki->mode = le32_to_cpu(ino->mode);
1847	} else {
1848		ui = ubifs_inode(inode);
1849		fscki->nlink = inode->i_nlink;
1850		fscki->size = inode->i_size;
1851		fscki->xattr_cnt = ui->xattr_cnt;
1852		fscki->xattr_sz = ui->xattr_size;
1853		fscki->xattr_nms = ui->xattr_names;
1854		fscki->mode = inode->i_mode;
1855		iput(inode);
1856	}
1857
1858	if (S_ISDIR(fscki->mode)) {
1859		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860		fscki->calc_cnt = 2;
1861	}
1862
1863	rb_link_node(&fscki->rb, parent, p);
1864	rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866	return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880	struct rb_node *p;
1881	struct fsck_inode *fscki;
1882
1883	p = fsckd->inodes.rb_node;
1884	while (p) {
1885		fscki = rb_entry(p, struct fsck_inode, rb);
1886		if (inum < fscki->inum)
1887			p = p->rb_left;
1888		else if (inum > fscki->inum)
1889			p = p->rb_right;
1890		else
1891			return fscki;
1892	}
1893	return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908					 struct fsck_data *fsckd, ino_t inum)
1909{
1910	int n, err;
1911	union ubifs_key key;
1912	struct ubifs_znode *znode;
1913	struct ubifs_zbranch *zbr;
1914	struct ubifs_ino_node *ino;
1915	struct fsck_inode *fscki;
1916
1917	fscki = search_inode(fsckd, inum);
1918	if (fscki)
1919		return fscki;
1920
1921	ino_key_init(c, &key, inum);
1922	err = ubifs_lookup_level0(c, &key, &znode, &n);
1923	if (!err) {
1924		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925		return ERR_PTR(-ENOENT);
1926	} else if (err < 0) {
1927		ubifs_err(c, "error %d while looking up inode %lu",
1928			  err, (unsigned long)inum);
1929		return ERR_PTR(err);
1930	}
1931
1932	zbr = &znode->zbranch[n];
1933	if (zbr->len < UBIFS_INO_NODE_SZ) {
1934		ubifs_err(c, "bad node %lu node length %d",
1935			  (unsigned long)inum, zbr->len);
1936		return ERR_PTR(-EINVAL);
1937	}
1938
1939	ino = kmalloc(zbr->len, GFP_NOFS);
1940	if (!ino)
1941		return ERR_PTR(-ENOMEM);
1942
1943	err = ubifs_tnc_read_node(c, zbr, ino);
1944	if (err) {
1945		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946			  zbr->lnum, zbr->offs, err);
1947		kfree(ino);
1948		return ERR_PTR(err);
1949	}
1950
1951	fscki = add_inode(c, fsckd, ino);
1952	kfree(ino);
1953	if (IS_ERR(fscki)) {
1954		ubifs_err(c, "error %ld while adding inode %lu node",
1955			  PTR_ERR(fscki), (unsigned long)inum);
1956		return fscki;
1957	}
1958
1959	return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979		      void *priv)
1980{
1981	ino_t inum;
1982	void *node;
1983	struct ubifs_ch *ch;
1984	int err, type = key_type(c, &zbr->key);
1985	struct fsck_inode *fscki;
1986
1987	if (zbr->len < UBIFS_CH_SZ) {
1988		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989			  zbr->len, zbr->lnum, zbr->offs);
1990		return -EINVAL;
1991	}
1992
1993	node = kmalloc(zbr->len, GFP_NOFS);
1994	if (!node)
1995		return -ENOMEM;
1996
1997	err = ubifs_tnc_read_node(c, zbr, node);
1998	if (err) {
1999		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000			  zbr->lnum, zbr->offs, err);
2001		goto out_free;
2002	}
2003
2004	/* If this is an inode node, add it to RB-tree of inodes */
2005	if (type == UBIFS_INO_KEY) {
2006		fscki = add_inode(c, priv, node);
2007		if (IS_ERR(fscki)) {
2008			err = PTR_ERR(fscki);
2009			ubifs_err(c, "error %d while adding inode node", err);
2010			goto out_dump;
2011		}
2012		goto out;
2013	}
2014
2015	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016	    type != UBIFS_DATA_KEY) {
2017		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018			  type, zbr->lnum, zbr->offs);
2019		err = -EINVAL;
2020		goto out_free;
2021	}
2022
2023	ch = node;
2024	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025		ubifs_err(c, "too high sequence number, max. is %llu",
2026			  c->max_sqnum);
2027		err = -EINVAL;
2028		goto out_dump;
2029	}
2030
2031	if (type == UBIFS_DATA_KEY) {
2032		long long blk_offs;
2033		struct ubifs_data_node *dn = node;
2034
2035		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037		/*
2038		 * Search the inode node this data node belongs to and insert
2039		 * it to the RB-tree of inodes.
2040		 */
2041		inum = key_inum_flash(c, &dn->key);
2042		fscki = read_add_inode(c, priv, inum);
2043		if (IS_ERR(fscki)) {
2044			err = PTR_ERR(fscki);
2045			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046				  err, (unsigned long)inum);
2047			goto out_dump;
2048		}
2049
2050		/* Make sure the data node is within inode size */
2051		blk_offs = key_block_flash(c, &dn->key);
2052		blk_offs <<= UBIFS_BLOCK_SHIFT;
2053		blk_offs += le32_to_cpu(dn->size);
2054		if (blk_offs > fscki->size) {
2055			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056				  zbr->lnum, zbr->offs, fscki->size);
2057			err = -EINVAL;
2058			goto out_dump;
2059		}
2060	} else {
2061		int nlen;
2062		struct ubifs_dent_node *dent = node;
2063		struct fsck_inode *fscki1;
2064
2065		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067		err = ubifs_validate_entry(c, dent);
2068		if (err)
2069			goto out_dump;
2070
2071		/*
2072		 * Search the inode node this entry refers to and the parent
2073		 * inode node and insert them to the RB-tree of inodes.
2074		 */
2075		inum = le64_to_cpu(dent->inum);
2076		fscki = read_add_inode(c, priv, inum);
2077		if (IS_ERR(fscki)) {
2078			err = PTR_ERR(fscki);
2079			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080				  err, (unsigned long)inum);
2081			goto out_dump;
2082		}
2083
2084		/* Count how many direntries or xentries refers this inode */
2085		fscki->references += 1;
2086
2087		inum = key_inum_flash(c, &dent->key);
2088		fscki1 = read_add_inode(c, priv, inum);
2089		if (IS_ERR(fscki1)) {
2090			err = PTR_ERR(fscki1);
2091			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092				  err, (unsigned long)inum);
2093			goto out_dump;
2094		}
2095
2096		nlen = le16_to_cpu(dent->nlen);
2097		if (type == UBIFS_XENT_KEY) {
2098			fscki1->calc_xcnt += 1;
2099			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101			fscki1->calc_xnms += nlen;
2102		} else {
2103			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104			if (dent->type == UBIFS_ITYPE_DIR)
2105				fscki1->calc_cnt += 1;
2106		}
2107	}
2108
2109out:
2110	kfree(node);
2111	return 0;
2112
2113out_dump:
2114	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115	ubifs_dump_node(c, node);
2116out_free:
2117	kfree(node);
2118	return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127	struct fsck_inode *fscki, *n;
2128
2129	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130		kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145	int n, err;
2146	union ubifs_key key;
2147	struct ubifs_znode *znode;
2148	struct ubifs_zbranch *zbr;
2149	struct ubifs_ino_node *ino;
2150	struct fsck_inode *fscki;
2151	struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153	while (this) {
2154		fscki = rb_entry(this, struct fsck_inode, rb);
2155		this = rb_next(this);
2156
2157		if (S_ISDIR(fscki->mode)) {
2158			/*
2159			 * Directories have to have exactly one reference (they
2160			 * cannot have hardlinks), although root inode is an
2161			 * exception.
2162			 */
2163			if (fscki->inum != UBIFS_ROOT_INO &&
2164			    fscki->references != 1) {
2165				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166					  (unsigned long)fscki->inum,
2167					  fscki->references);
2168				goto out_dump;
2169			}
2170			if (fscki->inum == UBIFS_ROOT_INO &&
2171			    fscki->references != 0) {
2172				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173					  (unsigned long)fscki->inum,
2174					  fscki->references);
2175				goto out_dump;
2176			}
2177			if (fscki->calc_sz != fscki->size) {
2178				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179					  (unsigned long)fscki->inum,
2180					  fscki->size, fscki->calc_sz);
2181				goto out_dump;
2182			}
2183			if (fscki->calc_cnt != fscki->nlink) {
2184				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185					  (unsigned long)fscki->inum,
2186					  fscki->nlink, fscki->calc_cnt);
2187				goto out_dump;
2188			}
2189		} else {
2190			if (fscki->references != fscki->nlink) {
2191				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192					  (unsigned long)fscki->inum,
2193					  fscki->nlink, fscki->references);
2194				goto out_dump;
2195			}
2196		}
2197		if (fscki->xattr_sz != fscki->calc_xsz) {
2198			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199				  (unsigned long)fscki->inum, fscki->xattr_sz,
2200				  fscki->calc_xsz);
2201			goto out_dump;
2202		}
2203		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205				  (unsigned long)fscki->inum,
2206				  fscki->xattr_cnt, fscki->calc_xcnt);
2207			goto out_dump;
2208		}
2209		if (fscki->xattr_nms != fscki->calc_xnms) {
2210			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211				  (unsigned long)fscki->inum, fscki->xattr_nms,
2212				  fscki->calc_xnms);
2213			goto out_dump;
2214		}
2215	}
2216
2217	return 0;
2218
2219out_dump:
2220	/* Read the bad inode and dump it */
2221	ino_key_init(c, &key, fscki->inum);
2222	err = ubifs_lookup_level0(c, &key, &znode, &n);
2223	if (!err) {
2224		ubifs_err(c, "inode %lu not found in index",
2225			  (unsigned long)fscki->inum);
2226		return -ENOENT;
2227	} else if (err < 0) {
2228		ubifs_err(c, "error %d while looking up inode %lu",
2229			  err, (unsigned long)fscki->inum);
2230		return err;
2231	}
2232
2233	zbr = &znode->zbranch[n];
2234	ino = kmalloc(zbr->len, GFP_NOFS);
2235	if (!ino)
2236		return -ENOMEM;
2237
2238	err = ubifs_tnc_read_node(c, zbr, ino);
2239	if (err) {
2240		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241			  zbr->lnum, zbr->offs, err);
2242		kfree(ino);
2243		return err;
2244	}
2245
2246	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248	ubifs_dump_node(c, ino);
2249	kfree(ino);
2250	return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 *   inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268	int err;
2269	struct fsck_data fsckd;
2270
2271	if (!dbg_is_chk_fs(c))
2272		return 0;
2273
2274	fsckd.inodes = RB_ROOT;
2275	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276	if (err)
2277		goto out_free;
2278
2279	err = check_inodes(c, &fsckd);
2280	if (err)
2281		goto out_free;
2282
2283	free_inodes(&fsckd);
2284	return 0;
2285
2286out_free:
2287	ubifs_err(c, "file-system check failed with error %d", err);
2288	dump_stack();
2289	free_inodes(&fsckd);
2290	return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303	struct list_head *cur;
2304	struct ubifs_scan_node *sa, *sb;
2305
2306	if (!dbg_is_chk_gen(c))
2307		return 0;
2308
2309	for (cur = head->next; cur->next != head; cur = cur->next) {
2310		ino_t inuma, inumb;
2311		uint32_t blka, blkb;
2312
2313		cond_resched();
2314		sa = container_of(cur, struct ubifs_scan_node, list);
2315		sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317		if (sa->type != UBIFS_DATA_NODE) {
2318			ubifs_err(c, "bad node type %d", sa->type);
2319			ubifs_dump_node(c, sa->node);
2320			return -EINVAL;
2321		}
2322		if (sb->type != UBIFS_DATA_NODE) {
2323			ubifs_err(c, "bad node type %d", sb->type);
2324			ubifs_dump_node(c, sb->node);
2325			return -EINVAL;
2326		}
2327
2328		inuma = key_inum(c, &sa->key);
2329		inumb = key_inum(c, &sb->key);
2330
2331		if (inuma < inumb)
2332			continue;
2333		if (inuma > inumb) {
2334			ubifs_err(c, "larger inum %lu goes before inum %lu",
2335				  (unsigned long)inuma, (unsigned long)inumb);
2336			goto error_dump;
2337		}
2338
2339		blka = key_block(c, &sa->key);
2340		blkb = key_block(c, &sb->key);
2341
2342		if (blka > blkb) {
2343			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344			goto error_dump;
2345		}
2346		if (blka == blkb) {
2347			ubifs_err(c, "two data nodes for the same block");
2348			goto error_dump;
2349		}
2350	}
2351
2352	return 0;
2353
2354error_dump:
2355	ubifs_dump_node(c, sa->node);
2356	ubifs_dump_node(c, sb->node);
2357	return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370	struct list_head *cur;
2371	struct ubifs_scan_node *sa, *sb;
2372
2373	if (!dbg_is_chk_gen(c))
2374		return 0;
2375
2376	for (cur = head->next; cur->next != head; cur = cur->next) {
2377		ino_t inuma, inumb;
2378		uint32_t hasha, hashb;
2379
2380		cond_resched();
2381		sa = container_of(cur, struct ubifs_scan_node, list);
2382		sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385		    sa->type != UBIFS_XENT_NODE) {
2386			ubifs_err(c, "bad node type %d", sa->type);
2387			ubifs_dump_node(c, sa->node);
2388			return -EINVAL;
2389		}
2390		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391		    sa->type != UBIFS_XENT_NODE) {
2392			ubifs_err(c, "bad node type %d", sb->type);
2393			ubifs_dump_node(c, sb->node);
2394			return -EINVAL;
2395		}
2396
2397		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398			ubifs_err(c, "non-inode node goes before inode node");
2399			goto error_dump;
2400		}
2401
2402		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403			continue;
2404
2405		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406			/* Inode nodes are sorted in descending size order */
2407			if (sa->len < sb->len) {
2408				ubifs_err(c, "smaller inode node goes first");
2409				goto error_dump;
2410			}
2411			continue;
2412		}
2413
2414		/*
2415		 * This is either a dentry or xentry, which should be sorted in
2416		 * ascending (parent ino, hash) order.
2417		 */
2418		inuma = key_inum(c, &sa->key);
2419		inumb = key_inum(c, &sb->key);
2420
2421		if (inuma < inumb)
2422			continue;
2423		if (inuma > inumb) {
2424			ubifs_err(c, "larger inum %lu goes before inum %lu",
2425				  (unsigned long)inuma, (unsigned long)inumb);
2426			goto error_dump;
2427		}
2428
2429		hasha = key_block(c, &sa->key);
2430		hashb = key_block(c, &sb->key);
2431
2432		if (hasha > hashb) {
2433			ubifs_err(c, "larger hash %u goes before %u",
2434				  hasha, hashb);
2435			goto error_dump;
2436		}
2437	}
2438
2439	return 0;
2440
2441error_dump:
2442	ubifs_msg(c, "dumping first node");
2443	ubifs_dump_node(c, sa->node);
2444	ubifs_msg(c, "dumping second node");
2445	ubifs_dump_node(c, sb->node);
2446	return -EINVAL;
2447	return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452	return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458	struct ubifs_debug_info *d = c->dbg;
2459
2460	ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462	if (!d->pc_cnt) {
2463		/* First call - decide delay to the power cut */
2464		if (chance(1, 2)) {
2465			unsigned long delay;
2466
2467			if (chance(1, 2)) {
2468				d->pc_delay = 1;
2469				/* Fail within 1 minute */
2470				delay = prandom_u32() % 60000;
2471				d->pc_timeout = jiffies;
2472				d->pc_timeout += msecs_to_jiffies(delay);
2473				ubifs_warn(c, "failing after %lums", delay);
2474			} else {
2475				d->pc_delay = 2;
2476				delay = prandom_u32() % 10000;
2477				/* Fail within 10000 operations */
2478				d->pc_cnt_max = delay;
2479				ubifs_warn(c, "failing after %lu calls", delay);
2480			}
2481		}
2482
2483		d->pc_cnt += 1;
2484	}
2485
2486	/* Determine if failure delay has expired */
2487	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488			return 0;
2489	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490			return 0;
2491
2492	if (lnum == UBIFS_SB_LNUM) {
2493		if (write && chance(1, 2))
2494			return 0;
2495		if (chance(19, 20))
2496			return 0;
2497		ubifs_warn(c, "failing in super block LEB %d", lnum);
2498	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499		if (chance(19, 20))
2500			return 0;
2501		ubifs_warn(c, "failing in master LEB %d", lnum);
2502	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503		if (write && chance(99, 100))
2504			return 0;
2505		if (chance(399, 400))
2506			return 0;
2507		ubifs_warn(c, "failing in log LEB %d", lnum);
2508	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509		if (write && chance(7, 8))
2510			return 0;
2511		if (chance(19, 20))
2512			return 0;
2513		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515		if (write && chance(1, 2))
2516			return 0;
2517		if (chance(9, 10))
2518			return 0;
2519		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520	} else if (lnum == c->ihead_lnum) {
2521		if (chance(99, 100))
2522			return 0;
2523		ubifs_warn(c, "failing in index head LEB %d", lnum);
2524	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525		if (chance(9, 10))
2526			return 0;
2527		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529		   !ubifs_search_bud(c, lnum)) {
2530		if (chance(19, 20))
2531			return 0;
2532		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535		if (chance(999, 1000))
2536			return 0;
2537		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538	} else {
2539		if (chance(9999, 10000))
2540			return 0;
2541		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542	}
2543
2544	d->pc_happened = 1;
2545	ubifs_warn(c, "========== Power cut emulated ==========");
2546	dump_stack();
2547	return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551			unsigned int len)
2552{
2553	unsigned int from, to, ffs = chance(1, 2);
2554	unsigned char *p = (void *)buf;
2555
2556	from = prandom_u32() % len;
2557	/* Corruption span max to end of write unit */
2558	to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561		   ffs ? "0xFFs" : "random data");
2562
2563	if (ffs)
2564		memset(p + from, 0xFF, to - from);
2565	else
2566		prandom_bytes(p + from, to - from);
2567
2568	return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572		  int offs, int len)
2573{
2574	int err, failing;
2575
2576	if (dbg_is_power_cut(c))
2577		return -EROFS;
2578
2579	failing = power_cut_emulated(c, lnum, 1);
2580	if (failing) {
2581		len = corrupt_data(c, buf, len);
2582		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583			   len, lnum, offs);
2584	}
2585	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586	if (err)
2587		return err;
2588	if (failing)
2589		return -EROFS;
2590	return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594		   int len)
2595{
2596	int err;
2597
2598	if (dbg_is_power_cut(c))
2599		return -EROFS;
2600	if (power_cut_emulated(c, lnum, 1))
2601		return -EROFS;
2602	err = ubi_leb_change(c->ubi, lnum, buf, len);
2603	if (err)
2604		return err;
2605	if (power_cut_emulated(c, lnum, 1))
2606		return -EROFS;
2607	return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612	int err;
2613
2614	if (dbg_is_power_cut(c))
2615		return -EROFS;
2616	if (power_cut_emulated(c, lnum, 0))
2617		return -EROFS;
2618	err = ubi_leb_unmap(c->ubi, lnum);
2619	if (err)
2620		return err;
2621	if (power_cut_emulated(c, lnum, 0))
2622		return -EROFS;
2623	return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628	int err;
2629
2630	if (dbg_is_power_cut(c))
2631		return -EROFS;
2632	if (power_cut_emulated(c, lnum, 0))
2633		return -EROFS;
2634	err = ubi_leb_map(c->ubi, lnum);
2635	if (err)
2636		return err;
2637	if (power_cut_emulated(c, lnum, 0))
2638		return -EROFS;
2639	return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650	file->private_data = inode->i_private;
2651	return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667			       loff_t *ppos)
2668{
2669	char buf[3];
2670
2671	if (val)
2672		buf[0] = '1';
2673	else
2674		buf[0] = '0';
2675	buf[1] = '\n';
2676	buf[2] = 0x00;
2677
2678	return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682			     loff_t *ppos)
2683{
2684	struct dentry *dent = file->f_path.dentry;
2685	struct ubifs_info *c = file->private_data;
2686	struct ubifs_debug_info *d = c->dbg;
2687	int val;
2688
2689	if (dent == d->dfs_chk_gen)
2690		val = d->chk_gen;
2691	else if (dent == d->dfs_chk_index)
2692		val = d->chk_index;
2693	else if (dent == d->dfs_chk_orph)
2694		val = d->chk_orph;
2695	else if (dent == d->dfs_chk_lprops)
2696		val = d->chk_lprops;
2697	else if (dent == d->dfs_chk_fs)
2698		val = d->chk_fs;
2699	else if (dent == d->dfs_tst_rcvry)
2700		val = d->tst_rcvry;
2701	else if (dent == d->dfs_ro_error)
2702		val = c->ro_error;
2703	else
2704		return -EINVAL;
2705
2706	return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720	size_t buf_size;
2721	char buf[8];
2722
2723	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724	if (copy_from_user(buf, u, buf_size))
2725		return -EFAULT;
2726
2727	if (buf[0] == '1')
2728		return 1;
2729	else if (buf[0] == '0')
2730		return 0;
2731
2732	return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736			      size_t count, loff_t *ppos)
2737{
2738	struct ubifs_info *c = file->private_data;
2739	struct ubifs_debug_info *d = c->dbg;
2740	struct dentry *dent = file->f_path.dentry;
2741	int val;
2742
2743	/*
2744	 * TODO: this is racy - the file-system might have already been
2745	 * unmounted and we'd oops in this case. The plan is to fix it with
2746	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749	 * superblocks and fine the one with the same UUID, and take the
2750	 * locking right.
2751	 *
2752	 * The other way to go suggested by Al Viro is to create a separate
2753	 * 'ubifs-debug' file-system instead.
2754	 */
2755	if (file->f_path.dentry == d->dfs_dump_lprops) {
2756		ubifs_dump_lprops(c);
2757		return count;
2758	}
2759	if (file->f_path.dentry == d->dfs_dump_budg) {
2760		ubifs_dump_budg(c, &c->bi);
2761		return count;
2762	}
2763	if (file->f_path.dentry == d->dfs_dump_tnc) {
2764		mutex_lock(&c->tnc_mutex);
2765		ubifs_dump_tnc(c);
2766		mutex_unlock(&c->tnc_mutex);
2767		return count;
2768	}
2769
2770	val = interpret_user_input(u, count);
2771	if (val < 0)
2772		return val;
2773
2774	if (dent == d->dfs_chk_gen)
2775		d->chk_gen = val;
2776	else if (dent == d->dfs_chk_index)
2777		d->chk_index = val;
2778	else if (dent == d->dfs_chk_orph)
2779		d->chk_orph = val;
2780	else if (dent == d->dfs_chk_lprops)
2781		d->chk_lprops = val;
2782	else if (dent == d->dfs_chk_fs)
2783		d->chk_fs = val;
2784	else if (dent == d->dfs_tst_rcvry)
2785		d->tst_rcvry = val;
2786	else if (dent == d->dfs_ro_error)
2787		c->ro_error = !!val;
2788	else
2789		return -EINVAL;
2790
2791	return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795	.open = dfs_file_open,
2796	.read = dfs_file_read,
2797	.write = dfs_file_write,
2798	.owner = THIS_MODULE,
2799	.llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816	int err, n;
2817	const char *fname;
2818	struct dentry *dent;
2819	struct ubifs_debug_info *d = c->dbg;
2820
2821	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822		return 0;
2823
2824	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825		     c->vi.ubi_num, c->vi.vol_id);
2826	if (n == UBIFS_DFS_DIR_LEN) {
2827		/* The array size is too small */
2828		fname = UBIFS_DFS_DIR_NAME;
2829		dent = ERR_PTR(-EINVAL);
2830		goto out;
2831	}
2832
2833	fname = d->dfs_dir_name;
2834	dent = debugfs_create_dir(fname, dfs_rootdir);
2835	if (IS_ERR_OR_NULL(dent))
2836		goto out;
2837	d->dfs_dir = dent;
2838
2839	fname = "dump_lprops";
2840	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841	if (IS_ERR_OR_NULL(dent))
2842		goto out_remove;
2843	d->dfs_dump_lprops = dent;
2844
2845	fname = "dump_budg";
2846	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847	if (IS_ERR_OR_NULL(dent))
2848		goto out_remove;
2849	d->dfs_dump_budg = dent;
2850
2851	fname = "dump_tnc";
2852	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853	if (IS_ERR_OR_NULL(dent))
2854		goto out_remove;
2855	d->dfs_dump_tnc = dent;
2856
2857	fname = "chk_general";
2858	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859				   &dfs_fops);
2860	if (IS_ERR_OR_NULL(dent))
2861		goto out_remove;
2862	d->dfs_chk_gen = dent;
2863
2864	fname = "chk_index";
2865	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866				   &dfs_fops);
2867	if (IS_ERR_OR_NULL(dent))
2868		goto out_remove;
2869	d->dfs_chk_index = dent;
2870
2871	fname = "chk_orphans";
2872	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873				   &dfs_fops);
2874	if (IS_ERR_OR_NULL(dent))
2875		goto out_remove;
2876	d->dfs_chk_orph = dent;
2877
2878	fname = "chk_lprops";
2879	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880				   &dfs_fops);
2881	if (IS_ERR_OR_NULL(dent))
2882		goto out_remove;
2883	d->dfs_chk_lprops = dent;
2884
2885	fname = "chk_fs";
2886	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887				   &dfs_fops);
2888	if (IS_ERR_OR_NULL(dent))
2889		goto out_remove;
2890	d->dfs_chk_fs = dent;
2891
2892	fname = "tst_recovery";
2893	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894				   &dfs_fops);
2895	if (IS_ERR_OR_NULL(dent))
2896		goto out_remove;
2897	d->dfs_tst_rcvry = dent;
2898
2899	fname = "ro_error";
2900	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901				   &dfs_fops);
2902	if (IS_ERR_OR_NULL(dent))
2903		goto out_remove;
2904	d->dfs_ro_error = dent;
2905
2906	return 0;
2907
2908out_remove:
2909	debugfs_remove_recursive(d->dfs_dir);
2910out:
2911	err = dent ? PTR_ERR(dent) : -ENODEV;
2912	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913		  fname, err);
2914	return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923	if (IS_ENABLED(CONFIG_DEBUG_FS))
2924		debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937				    size_t count, loff_t *ppos)
2938{
2939	struct dentry *dent = file->f_path.dentry;
2940	int val;
2941
2942	if (dent == dfs_chk_gen)
2943		val = ubifs_dbg.chk_gen;
2944	else if (dent == dfs_chk_index)
2945		val = ubifs_dbg.chk_index;
2946	else if (dent == dfs_chk_orph)
2947		val = ubifs_dbg.chk_orph;
2948	else if (dent == dfs_chk_lprops)
2949		val = ubifs_dbg.chk_lprops;
2950	else if (dent == dfs_chk_fs)
2951		val = ubifs_dbg.chk_fs;
2952	else if (dent == dfs_tst_rcvry)
2953		val = ubifs_dbg.tst_rcvry;
2954	else
2955		return -EINVAL;
2956
2957	return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961				     size_t count, loff_t *ppos)
2962{
2963	struct dentry *dent = file->f_path.dentry;
2964	int val;
2965
2966	val = interpret_user_input(u, count);
2967	if (val < 0)
2968		return val;
2969
2970	if (dent == dfs_chk_gen)
2971		ubifs_dbg.chk_gen = val;
2972	else if (dent == dfs_chk_index)
2973		ubifs_dbg.chk_index = val;
2974	else if (dent == dfs_chk_orph)
2975		ubifs_dbg.chk_orph = val;
2976	else if (dent == dfs_chk_lprops)
2977		ubifs_dbg.chk_lprops = val;
2978	else if (dent == dfs_chk_fs)
2979		ubifs_dbg.chk_fs = val;
2980	else if (dent == dfs_tst_rcvry)
2981		ubifs_dbg.tst_rcvry = val;
2982	else
2983		return -EINVAL;
2984
2985	return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989	.read = dfs_global_file_read,
2990	.write = dfs_global_file_write,
2991	.owner = THIS_MODULE,
2992	.llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005	int err;
3006	const char *fname;
3007	struct dentry *dent;
3008
3009	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010		return 0;
3011
3012	fname = "ubifs";
3013	dent = debugfs_create_dir(fname, NULL);
3014	if (IS_ERR_OR_NULL(dent))
3015		goto out;
3016	dfs_rootdir = dent;
3017
3018	fname = "chk_general";
3019	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020				   &dfs_global_fops);
3021	if (IS_ERR_OR_NULL(dent))
3022		goto out_remove;
3023	dfs_chk_gen = dent;
3024
3025	fname = "chk_index";
3026	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027				   &dfs_global_fops);
3028	if (IS_ERR_OR_NULL(dent))
3029		goto out_remove;
3030	dfs_chk_index = dent;
3031
3032	fname = "chk_orphans";
3033	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034				   &dfs_global_fops);
3035	if (IS_ERR_OR_NULL(dent))
3036		goto out_remove;
3037	dfs_chk_orph = dent;
3038
3039	fname = "chk_lprops";
3040	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041				   &dfs_global_fops);
3042	if (IS_ERR_OR_NULL(dent))
3043		goto out_remove;
3044	dfs_chk_lprops = dent;
3045
3046	fname = "chk_fs";
3047	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048				   &dfs_global_fops);
3049	if (IS_ERR_OR_NULL(dent))
3050		goto out_remove;
3051	dfs_chk_fs = dent;
3052
3053	fname = "tst_recovery";
3054	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055				   &dfs_global_fops);
3056	if (IS_ERR_OR_NULL(dent))
3057		goto out_remove;
3058	dfs_tst_rcvry = dent;
3059
3060	return 0;
3061
3062out_remove:
3063	debugfs_remove_recursive(dfs_rootdir);
3064out:
3065	err = dent ? PTR_ERR(dent) : -ENODEV;
3066	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067	       current->pid, fname, err);
3068	return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076	if (IS_ENABLED(CONFIG_DEBUG_FS))
3077		debugfs_remove_recursive(dfs_rootdir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091	if (!c->dbg)
3092		return -ENOMEM;
3093
3094	return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103	kfree(c->dbg);
3104}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int)inode->i_atime.tv_sec,
 241	       (unsigned int)inode->i_atime.tv_nsec);
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int)inode->i_mtime.tv_sec,
 244	       (unsigned int)inode->i_mtime.tv_nsec);
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int)inode->i_ctime.tv_sec,
 247	       (unsigned int)inode->i_ctime.tv_nsec);
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 950	level = znode->level;
 951	pr_err("== Level %d ==\n", level);
 952	while (znode) {
 953		if (level != znode->level) {
 954			level = znode->level;
 955			pr_err("== Level %d ==\n", level);
 956		}
 957		ubifs_dump_znode(c, znode);
 958		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 959	}
 960	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 961}
 962
 963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 964		      void *priv)
 965{
 966	ubifs_dump_znode(c, znode);
 967	return 0;
 968}
 969
 970/**
 971 * ubifs_dump_index - dump the on-flash index.
 972 * @c: UBIFS file-system description object
 973 *
 974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 975 * which dumps only in-memory znodes and does not read znodes which from flash.
 976 */
 977void ubifs_dump_index(struct ubifs_info *c)
 978{
 979	dbg_walk_index(c, NULL, dump_znode, NULL);
 980}
 981
 982/**
 983 * dbg_save_space_info - save information about flash space.
 984 * @c: UBIFS file-system description object
 985 *
 986 * This function saves information about UBIFS free space, dirty space, etc, in
 987 * order to check it later.
 988 */
 989void dbg_save_space_info(struct ubifs_info *c)
 990{
 991	struct ubifs_debug_info *d = c->dbg;
 992	int freeable_cnt;
 993
 994	spin_lock(&c->space_lock);
 995	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 996	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 997	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 998
 999	/*
1000	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001	 * affects the free space calculations, and UBIFS might not know about
1002	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003	 * only when we read their lprops, and we do this only lazily, upon the
1004	 * need. So at any given point of time @c->freeable_cnt might be not
1005	 * exactly accurate.
1006	 *
1007	 * Just one example about the issue we hit when we did not zero
1008	 * @c->freeable_cnt.
1009	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010	 *    amount of free space in @d->saved_free
1011	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012	 *    information from flash, where we cache LEBs from various
1013	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016	 *    -> 'ubifs_add_to_cat()').
1017	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018	 *    becomes %1.
1019	 * 4. We calculate the amount of free space when the re-mount is
1020	 *    finished in 'dbg_check_space_info()' and it does not match
1021	 *    @d->saved_free.
1022	 */
1023	freeable_cnt = c->freeable_cnt;
1024	c->freeable_cnt = 0;
1025	d->saved_free = ubifs_get_free_space_nolock(c);
1026	c->freeable_cnt = freeable_cnt;
1027	spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041	struct ubifs_debug_info *d = c->dbg;
1042	struct ubifs_lp_stats lst;
1043	long long free;
1044	int freeable_cnt;
1045
1046	spin_lock(&c->space_lock);
1047	freeable_cnt = c->freeable_cnt;
1048	c->freeable_cnt = 0;
1049	free = ubifs_get_free_space_nolock(c);
1050	c->freeable_cnt = freeable_cnt;
1051	spin_unlock(&c->space_lock);
1052
1053	if (free != d->saved_free) {
1054		ubifs_err(c, "free space changed from %lld to %lld",
1055			  d->saved_free, free);
1056		goto out;
1057	}
1058
1059	return 0;
1060
1061out:
1062	ubifs_msg(c, "saved lprops statistics dump");
1063	ubifs_dump_lstats(&d->saved_lst);
1064	ubifs_msg(c, "saved budgeting info dump");
1065	ubifs_dump_budg(c, &d->saved_bi);
1066	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067	ubifs_msg(c, "current lprops statistics dump");
1068	ubifs_get_lp_stats(c, &lst);
1069	ubifs_dump_lstats(&lst);
1070	ubifs_msg(c, "current budgeting info dump");
1071	ubifs_dump_budg(c, &c->bi);
1072	dump_stack();
1073	return -EINVAL;
1074}
1075
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
1086int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087{
1088	int err = 0;
1089	struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091	if (!dbg_is_chk_gen(c))
1092		return 0;
1093	if (!S_ISREG(inode->i_mode))
1094		return 0;
1095
1096	mutex_lock(&ui->ui_mutex);
1097	spin_lock(&ui->ui_lock);
1098	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100			  ui->ui_size, ui->synced_i_size);
1101		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102			  inode->i_mode, i_size_read(inode));
1103		dump_stack();
1104		err = -EINVAL;
1105	}
1106	spin_unlock(&ui->ui_lock);
1107	mutex_unlock(&ui->ui_mutex);
1108	return err;
1109}
1110
1111/*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
1124int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125{
1126	unsigned int nlink = 2;
1127	union ubifs_key key;
1128	struct ubifs_dent_node *dent, *pdent = NULL;
1129	struct fscrypt_name nm = {0};
1130	loff_t size = UBIFS_INO_NODE_SZ;
1131
1132	if (!dbg_is_chk_gen(c))
1133		return 0;
1134
1135	if (!S_ISDIR(dir->i_mode))
1136		return 0;
1137
1138	lowest_dent_key(c, &key, dir->i_ino);
1139	while (1) {
1140		int err;
1141
1142		dent = ubifs_tnc_next_ent(c, &key, &nm);
1143		if (IS_ERR(dent)) {
1144			err = PTR_ERR(dent);
1145			if (err == -ENOENT)
1146				break;
1147			kfree(pdent);
1148			return err;
1149		}
1150
1151		fname_name(&nm) = dent->name;
1152		fname_len(&nm) = le16_to_cpu(dent->nlen);
1153		size += CALC_DENT_SIZE(fname_len(&nm));
1154		if (dent->type == UBIFS_ITYPE_DIR)
1155			nlink += 1;
1156		kfree(pdent);
1157		pdent = dent;
1158		key_read(c, &dent->key, &key);
1159	}
1160	kfree(pdent);
1161
1162	if (i_size_read(dir) != size) {
1163		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164			  dir->i_ino, (unsigned long long)i_size_read(dir),
1165			  (unsigned long long)size);
1166		ubifs_dump_inode(c, dir);
1167		dump_stack();
1168		return -EINVAL;
1169	}
1170	if (dir->i_nlink != nlink) {
1171		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172			  dir->i_ino, dir->i_nlink, nlink);
1173		ubifs_dump_inode(c, dir);
1174		dump_stack();
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181/**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
1194static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195			       struct ubifs_zbranch *zbr2)
1196{
1197	int err, nlen1, nlen2, cmp;
1198	struct ubifs_dent_node *dent1, *dent2;
1199	union ubifs_key key;
1200	char key_buf[DBG_KEY_BUF_LEN];
1201
1202	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204	if (!dent1)
1205		return -ENOMEM;
1206	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207	if (!dent2) {
1208		err = -ENOMEM;
1209		goto out_free;
1210	}
1211
1212	err = ubifs_tnc_read_node(c, zbr1, dent1);
1213	if (err)
1214		goto out_free;
1215	err = ubifs_validate_entry(c, dent1);
1216	if (err)
1217		goto out_free;
1218
1219	err = ubifs_tnc_read_node(c, zbr2, dent2);
1220	if (err)
1221		goto out_free;
1222	err = ubifs_validate_entry(c, dent2);
1223	if (err)
1224		goto out_free;
1225
1226	/* Make sure node keys are the same as in zbranch */
1227	err = 1;
1228	key_read(c, &dent1->key, &key);
1229	if (keys_cmp(c, &zbr1->key, &key)) {
1230		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232						       DBG_KEY_BUF_LEN));
1233		ubifs_err(c, "but it should have key %s according to tnc",
1234			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1235					   DBG_KEY_BUF_LEN));
1236		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237		goto out_free;
1238	}
1239
1240	key_read(c, &dent2->key, &key);
1241	if (keys_cmp(c, &zbr2->key, &key)) {
1242		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244						       DBG_KEY_BUF_LEN));
1245		ubifs_err(c, "but it should have key %s according to tnc",
1246			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1247					   DBG_KEY_BUF_LEN));
1248		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249		goto out_free;
1250	}
1251
1252	nlen1 = le16_to_cpu(dent1->nlen);
1253	nlen2 = le16_to_cpu(dent2->nlen);
1254
1255	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257		err = 0;
1258		goto out_free;
1259	}
1260	if (cmp == 0 && nlen1 == nlen2)
1261		ubifs_err(c, "2 xent/dent nodes with the same name");
1262	else
1263		ubifs_err(c, "bad order of colliding key %s",
1264			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271out_free:
1272	kfree(dent2);
1273	kfree(dent1);
1274	return err;
1275}
1276
1277/**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
1285static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286{
1287	struct ubifs_znode *znode = zbr->znode;
1288	struct ubifs_znode *zp = znode->parent;
1289	int n, err, cmp;
1290
1291	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292		err = 1;
1293		goto out;
1294	}
1295	if (znode->level < 0) {
1296		err = 2;
1297		goto out;
1298	}
1299	if (znode->iip < 0 || znode->iip >= c->fanout) {
1300		err = 3;
1301		goto out;
1302	}
1303
1304	if (zbr->len == 0)
1305		/* Only dirty zbranch may have no on-flash nodes */
1306		if (!ubifs_zn_dirty(znode)) {
1307			err = 4;
1308			goto out;
1309		}
1310
1311	if (ubifs_zn_dirty(znode)) {
1312		/*
1313		 * If znode is dirty, its parent has to be dirty as well. The
1314		 * order of the operation is important, so we have to have
1315		 * memory barriers.
1316		 */
1317		smp_mb();
1318		if (zp && !ubifs_zn_dirty(zp)) {
1319			/*
1320			 * The dirty flag is atomic and is cleared outside the
1321			 * TNC mutex, so znode's dirty flag may now have
1322			 * been cleared. The child is always cleared before the
1323			 * parent, so we just need to check again.
1324			 */
1325			smp_mb();
1326			if (ubifs_zn_dirty(znode)) {
1327				err = 5;
1328				goto out;
1329			}
1330		}
1331	}
1332
1333	if (zp) {
1334		const union ubifs_key *min, *max;
1335
1336		if (znode->level != zp->level - 1) {
1337			err = 6;
1338			goto out;
1339		}
1340
1341		/* Make sure the 'parent' pointer in our znode is correct */
1342		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343		if (!err) {
1344			/* This zbranch does not exist in the parent */
1345			err = 7;
1346			goto out;
1347		}
1348
1349		if (znode->iip >= zp->child_cnt) {
1350			err = 8;
1351			goto out;
1352		}
1353
1354		if (znode->iip != n) {
1355			/* This may happen only in case of collisions */
1356			if (keys_cmp(c, &zp->zbranch[n].key,
1357				     &zp->zbranch[znode->iip].key)) {
1358				err = 9;
1359				goto out;
1360			}
1361			n = znode->iip;
1362		}
1363
1364		/*
1365		 * Make sure that the first key in our znode is greater than or
1366		 * equal to the key in the pointing zbranch.
1367		 */
1368		min = &zbr->key;
1369		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370		if (cmp == 1) {
1371			err = 10;
1372			goto out;
1373		}
1374
1375		if (n + 1 < zp->child_cnt) {
1376			max = &zp->zbranch[n + 1].key;
1377
1378			/*
1379			 * Make sure the last key in our znode is less or
1380			 * equivalent than the key in the zbranch which goes
1381			 * after our pointing zbranch.
1382			 */
1383			cmp = keys_cmp(c, max,
1384				&znode->zbranch[znode->child_cnt - 1].key);
1385			if (cmp == -1) {
1386				err = 11;
1387				goto out;
1388			}
1389		}
1390	} else {
1391		/* This may only be root znode */
1392		if (zbr != &c->zroot) {
1393			err = 12;
1394			goto out;
1395		}
1396	}
1397
1398	/*
1399	 * Make sure that next key is greater or equivalent then the previous
1400	 * one.
1401	 */
1402	for (n = 1; n < znode->child_cnt; n++) {
1403		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404			       &znode->zbranch[n].key);
1405		if (cmp > 0) {
1406			err = 13;
1407			goto out;
1408		}
1409		if (cmp == 0) {
1410			/* This can only be keys with colliding hash */
1411			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412				err = 14;
1413				goto out;
1414			}
1415
1416			if (znode->level != 0 || c->replaying)
1417				continue;
1418
1419			/*
1420			 * Colliding keys should follow binary order of
1421			 * corresponding xentry/dentry names.
1422			 */
1423			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424						  &znode->zbranch[n]);
1425			if (err < 0)
1426				return err;
1427			if (err) {
1428				err = 15;
1429				goto out;
1430			}
1431		}
1432	}
1433
1434	for (n = 0; n < znode->child_cnt; n++) {
1435		if (!znode->zbranch[n].znode &&
1436		    (znode->zbranch[n].lnum == 0 ||
1437		     znode->zbranch[n].len == 0)) {
1438			err = 16;
1439			goto out;
1440		}
1441
1442		if (znode->zbranch[n].lnum != 0 &&
1443		    znode->zbranch[n].len == 0) {
1444			err = 17;
1445			goto out;
1446		}
1447
1448		if (znode->zbranch[n].lnum == 0 &&
1449		    znode->zbranch[n].len != 0) {
1450			err = 18;
1451			goto out;
1452		}
1453
1454		if (znode->zbranch[n].lnum == 0 &&
1455		    znode->zbranch[n].offs != 0) {
1456			err = 19;
1457			goto out;
1458		}
1459
1460		if (znode->level != 0 && znode->zbranch[n].znode)
1461			if (znode->zbranch[n].znode->parent != znode) {
1462				err = 20;
1463				goto out;
1464			}
1465	}
1466
1467	return 0;
1468
1469out:
1470	ubifs_err(c, "failed, error %d", err);
1471	ubifs_msg(c, "dump of the znode");
1472	ubifs_dump_znode(c, znode);
1473	if (zp) {
1474		ubifs_msg(c, "dump of the parent znode");
1475		ubifs_dump_znode(c, zp);
1476	}
1477	dump_stack();
1478	return -EINVAL;
1479}
1480
1481/**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
1489int dbg_check_tnc(struct ubifs_info *c, int extra)
1490{
1491	struct ubifs_znode *znode;
1492	long clean_cnt = 0, dirty_cnt = 0;
1493	int err, last;
1494
1495	if (!dbg_is_chk_index(c))
1496		return 0;
1497
1498	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499	if (!c->zroot.znode)
1500		return 0;
1501
1502	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503	while (1) {
1504		struct ubifs_znode *prev;
1505		struct ubifs_zbranch *zbr;
1506
1507		if (!znode->parent)
1508			zbr = &c->zroot;
1509		else
1510			zbr = &znode->parent->zbranch[znode->iip];
1511
1512		err = dbg_check_znode(c, zbr);
1513		if (err)
1514			return err;
1515
1516		if (extra) {
1517			if (ubifs_zn_dirty(znode))
1518				dirty_cnt += 1;
1519			else
1520				clean_cnt += 1;
1521		}
1522
1523		prev = znode;
1524		znode = ubifs_tnc_postorder_next(c, znode);
1525		if (!znode)
1526			break;
1527
1528		/*
1529		 * If the last key of this znode is equivalent to the first key
1530		 * of the next znode (collision), then check order of the keys.
1531		 */
1532		last = prev->child_cnt - 1;
1533		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534		    !keys_cmp(c, &prev->zbranch[last].key,
1535			      &znode->zbranch[0].key)) {
1536			err = dbg_check_key_order(c, &prev->zbranch[last],
1537						  &znode->zbranch[0]);
1538			if (err < 0)
1539				return err;
1540			if (err) {
1541				ubifs_msg(c, "first znode");
1542				ubifs_dump_znode(c, prev);
1543				ubifs_msg(c, "second znode");
1544				ubifs_dump_znode(c, znode);
1545				return -EINVAL;
1546			}
1547		}
1548	}
1549
1550	if (extra) {
1551		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553				  atomic_long_read(&c->clean_zn_cnt),
1554				  clean_cnt);
1555			return -EINVAL;
1556		}
1557		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559				  atomic_long_read(&c->dirty_zn_cnt),
1560				  dirty_cnt);
1561			return -EINVAL;
1562		}
1563	}
1564
1565	return 0;
1566}
1567
1568/**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
1583int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584		   dbg_znode_callback znode_cb, void *priv)
1585{
1586	int err;
1587	struct ubifs_zbranch *zbr;
1588	struct ubifs_znode *znode, *child;
1589
1590	mutex_lock(&c->tnc_mutex);
1591	/* If the root indexing node is not in TNC - pull it */
1592	if (!c->zroot.znode) {
1593		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594		if (IS_ERR(c->zroot.znode)) {
1595			err = PTR_ERR(c->zroot.znode);
1596			c->zroot.znode = NULL;
1597			goto out_unlock;
1598		}
1599	}
1600
1601	/*
1602	 * We are going to traverse the indexing tree in the postorder manner.
1603	 * Go down and find the leftmost indexing node where we are going to
1604	 * start from.
1605	 */
1606	znode = c->zroot.znode;
1607	while (znode->level > 0) {
1608		zbr = &znode->zbranch[0];
1609		child = zbr->znode;
1610		if (!child) {
1611			child = ubifs_load_znode(c, zbr, znode, 0);
1612			if (IS_ERR(child)) {
1613				err = PTR_ERR(child);
1614				goto out_unlock;
1615			}
 
1616		}
1617
1618		znode = child;
1619	}
1620
1621	/* Iterate over all indexing nodes */
1622	while (1) {
1623		int idx;
1624
1625		cond_resched();
1626
1627		if (znode_cb) {
1628			err = znode_cb(c, znode, priv);
1629			if (err) {
1630				ubifs_err(c, "znode checking function returned error %d",
1631					  err);
1632				ubifs_dump_znode(c, znode);
1633				goto out_dump;
1634			}
1635		}
1636		if (leaf_cb && znode->level == 0) {
1637			for (idx = 0; idx < znode->child_cnt; idx++) {
1638				zbr = &znode->zbranch[idx];
1639				err = leaf_cb(c, zbr, priv);
1640				if (err) {
1641					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642						  err, zbr->lnum, zbr->offs);
1643					goto out_dump;
1644				}
1645			}
1646		}
1647
1648		if (!znode->parent)
1649			break;
1650
1651		idx = znode->iip + 1;
1652		znode = znode->parent;
1653		if (idx < znode->child_cnt) {
1654			/* Switch to the next index in the parent */
1655			zbr = &znode->zbranch[idx];
1656			child = zbr->znode;
1657			if (!child) {
1658				child = ubifs_load_znode(c, zbr, znode, idx);
1659				if (IS_ERR(child)) {
1660					err = PTR_ERR(child);
1661					goto out_unlock;
1662				}
1663				zbr->znode = child;
1664			}
1665			znode = child;
1666		} else
1667			/*
1668			 * This is the last child, switch to the parent and
1669			 * continue.
1670			 */
1671			continue;
1672
1673		/* Go to the lowest leftmost znode in the new sub-tree */
1674		while (znode->level > 0) {
1675			zbr = &znode->zbranch[0];
1676			child = zbr->znode;
1677			if (!child) {
1678				child = ubifs_load_znode(c, zbr, znode, 0);
1679				if (IS_ERR(child)) {
1680					err = PTR_ERR(child);
1681					goto out_unlock;
1682				}
1683				zbr->znode = child;
1684			}
1685			znode = child;
1686		}
1687	}
1688
1689	mutex_unlock(&c->tnc_mutex);
1690	return 0;
1691
1692out_dump:
1693	if (znode->parent)
1694		zbr = &znode->parent->zbranch[znode->iip];
1695	else
1696		zbr = &c->zroot;
1697	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698	ubifs_dump_znode(c, znode);
1699out_unlock:
1700	mutex_unlock(&c->tnc_mutex);
1701	return err;
1702}
1703
1704/**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
1714static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715{
1716	long long *idx_size = priv;
1717	int add;
1718
1719	add = ubifs_idx_node_sz(c, znode->child_cnt);
1720	add = ALIGN(add, 8);
1721	*idx_size += add;
1722	return 0;
1723}
1724
1725/**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
1734int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735{
1736	int err;
1737	long long calc = 0;
1738
1739	if (!dbg_is_chk_index(c))
1740		return 0;
1741
1742	err = dbg_walk_index(c, NULL, add_size, &calc);
1743	if (err) {
1744		ubifs_err(c, "error %d while walking the index", err);
1745		return err;
1746	}
1747
1748	if (calc != idx_size) {
1749		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750			  calc, idx_size);
1751		dump_stack();
1752		return -EINVAL;
1753	}
1754
1755	return 0;
1756}
1757
1758/**
1759 * struct fsck_inode - information about an inode used when checking the file-system.
1760 * @rb: link in the RB-tree of inodes
1761 * @inum: inode number
1762 * @mode: inode type, permissions, etc
1763 * @nlink: inode link count
1764 * @xattr_cnt: count of extended attributes
1765 * @references: how many directory/xattr entries refer this inode (calculated
1766 *              while walking the index)
1767 * @calc_cnt: for directory inode count of child directories
1768 * @size: inode size (read from on-flash inode)
1769 * @xattr_sz: summary size of all extended attributes (read from on-flash
1770 *            inode)
1771 * @calc_sz: for directories calculated directory size
1772 * @calc_xcnt: count of extended attributes
1773 * @calc_xsz: calculated summary size of all extended attributes
1774 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775 *             inode (read from on-flash inode)
1776 * @calc_xnms: calculated sum of lengths of all extended attribute names
1777 */
1778struct fsck_inode {
1779	struct rb_node rb;
1780	ino_t inum;
1781	umode_t mode;
1782	unsigned int nlink;
1783	unsigned int xattr_cnt;
1784	int references;
1785	int calc_cnt;
1786	long long size;
1787	unsigned int xattr_sz;
1788	long long calc_sz;
1789	long long calc_xcnt;
1790	long long calc_xsz;
1791	unsigned int xattr_nms;
1792	long long calc_xnms;
1793};
1794
1795/**
1796 * struct fsck_data - private FS checking information.
1797 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798 */
1799struct fsck_data {
1800	struct rb_root inodes;
1801};
1802
1803/**
1804 * add_inode - add inode information to RB-tree of inodes.
1805 * @c: UBIFS file-system description object
1806 * @fsckd: FS checking information
1807 * @ino: raw UBIFS inode to add
1808 *
1809 * This is a helper function for 'check_leaf()' which adds information about
1810 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811 * case of success and a negative error code in case of failure.
1812 */
1813static struct fsck_inode *add_inode(struct ubifs_info *c,
1814				    struct fsck_data *fsckd,
1815				    struct ubifs_ino_node *ino)
1816{
1817	struct rb_node **p, *parent = NULL;
1818	struct fsck_inode *fscki;
1819	ino_t inum = key_inum_flash(c, &ino->key);
1820	struct inode *inode;
1821	struct ubifs_inode *ui;
1822
1823	p = &fsckd->inodes.rb_node;
1824	while (*p) {
1825		parent = *p;
1826		fscki = rb_entry(parent, struct fsck_inode, rb);
1827		if (inum < fscki->inum)
1828			p = &(*p)->rb_left;
1829		else if (inum > fscki->inum)
1830			p = &(*p)->rb_right;
1831		else
1832			return fscki;
1833	}
1834
1835	if (inum > c->highest_inum) {
1836		ubifs_err(c, "too high inode number, max. is %lu",
1837			  (unsigned long)c->highest_inum);
1838		return ERR_PTR(-EINVAL);
1839	}
1840
1841	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842	if (!fscki)
1843		return ERR_PTR(-ENOMEM);
1844
1845	inode = ilookup(c->vfs_sb, inum);
1846
1847	fscki->inum = inum;
1848	/*
1849	 * If the inode is present in the VFS inode cache, use it instead of
1850	 * the on-flash inode which might be out-of-date. E.g., the size might
1851	 * be out-of-date. If we do not do this, the following may happen, for
1852	 * example:
1853	 *   1. A power cut happens
1854	 *   2. We mount the file-system R/O, the replay process fixes up the
1855	 *      inode size in the VFS cache, but on on-flash.
1856	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857	 *      size.
1858	 */
1859	if (!inode) {
1860		fscki->nlink = le32_to_cpu(ino->nlink);
1861		fscki->size = le64_to_cpu(ino->size);
1862		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865		fscki->mode = le32_to_cpu(ino->mode);
1866	} else {
1867		ui = ubifs_inode(inode);
1868		fscki->nlink = inode->i_nlink;
1869		fscki->size = inode->i_size;
1870		fscki->xattr_cnt = ui->xattr_cnt;
1871		fscki->xattr_sz = ui->xattr_size;
1872		fscki->xattr_nms = ui->xattr_names;
1873		fscki->mode = inode->i_mode;
1874		iput(inode);
1875	}
1876
1877	if (S_ISDIR(fscki->mode)) {
1878		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879		fscki->calc_cnt = 2;
1880	}
1881
1882	rb_link_node(&fscki->rb, parent, p);
1883	rb_insert_color(&fscki->rb, &fsckd->inodes);
1884
1885	return fscki;
1886}
1887
1888/**
1889 * search_inode - search inode in the RB-tree of inodes.
1890 * @fsckd: FS checking information
1891 * @inum: inode number to search
1892 *
1893 * This is a helper function for 'check_leaf()' which searches inode @inum in
1894 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895 * the inode was not found.
1896 */
1897static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898{
1899	struct rb_node *p;
1900	struct fsck_inode *fscki;
1901
1902	p = fsckd->inodes.rb_node;
1903	while (p) {
1904		fscki = rb_entry(p, struct fsck_inode, rb);
1905		if (inum < fscki->inum)
1906			p = p->rb_left;
1907		else if (inum > fscki->inum)
1908			p = p->rb_right;
1909		else
1910			return fscki;
1911	}
1912	return NULL;
1913}
1914
1915/**
1916 * read_add_inode - read inode node and add it to RB-tree of inodes.
1917 * @c: UBIFS file-system description object
1918 * @fsckd: FS checking information
1919 * @inum: inode number to read
1920 *
1921 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923 * information pointer in case of success and a negative error code in case of
1924 * failure.
1925 */
1926static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927					 struct fsck_data *fsckd, ino_t inum)
1928{
1929	int n, err;
1930	union ubifs_key key;
1931	struct ubifs_znode *znode;
1932	struct ubifs_zbranch *zbr;
1933	struct ubifs_ino_node *ino;
1934	struct fsck_inode *fscki;
1935
1936	fscki = search_inode(fsckd, inum);
1937	if (fscki)
1938		return fscki;
1939
1940	ino_key_init(c, &key, inum);
1941	err = ubifs_lookup_level0(c, &key, &znode, &n);
1942	if (!err) {
1943		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944		return ERR_PTR(-ENOENT);
1945	} else if (err < 0) {
1946		ubifs_err(c, "error %d while looking up inode %lu",
1947			  err, (unsigned long)inum);
1948		return ERR_PTR(err);
1949	}
1950
1951	zbr = &znode->zbranch[n];
1952	if (zbr->len < UBIFS_INO_NODE_SZ) {
1953		ubifs_err(c, "bad node %lu node length %d",
1954			  (unsigned long)inum, zbr->len);
1955		return ERR_PTR(-EINVAL);
1956	}
1957
1958	ino = kmalloc(zbr->len, GFP_NOFS);
1959	if (!ino)
1960		return ERR_PTR(-ENOMEM);
1961
1962	err = ubifs_tnc_read_node(c, zbr, ino);
1963	if (err) {
1964		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965			  zbr->lnum, zbr->offs, err);
1966		kfree(ino);
1967		return ERR_PTR(err);
1968	}
1969
1970	fscki = add_inode(c, fsckd, ino);
1971	kfree(ino);
1972	if (IS_ERR(fscki)) {
1973		ubifs_err(c, "error %ld while adding inode %lu node",
1974			  PTR_ERR(fscki), (unsigned long)inum);
1975		return fscki;
1976	}
1977
1978	return fscki;
1979}
1980
1981/**
1982 * check_leaf - check leaf node.
1983 * @c: UBIFS file-system description object
1984 * @zbr: zbranch of the leaf node to check
1985 * @priv: FS checking information
1986 *
1987 * This is a helper function for 'dbg_check_filesystem()' which is called for
1988 * every single leaf node while walking the indexing tree. It checks that the
1989 * leaf node referred from the indexing tree exists, has correct CRC, and does
1990 * some other basic validation. This function is also responsible for building
1991 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992 * calculates reference count, size, etc for each inode in order to later
1993 * compare them to the information stored inside the inodes and detect possible
1994 * inconsistencies. Returns zero in case of success and a negative error code
1995 * in case of failure.
1996 */
1997static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998		      void *priv)
1999{
2000	ino_t inum;
2001	void *node;
2002	struct ubifs_ch *ch;
2003	int err, type = key_type(c, &zbr->key);
2004	struct fsck_inode *fscki;
2005
2006	if (zbr->len < UBIFS_CH_SZ) {
2007		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008			  zbr->len, zbr->lnum, zbr->offs);
2009		return -EINVAL;
2010	}
2011
2012	node = kmalloc(zbr->len, GFP_NOFS);
2013	if (!node)
2014		return -ENOMEM;
2015
2016	err = ubifs_tnc_read_node(c, zbr, node);
2017	if (err) {
2018		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019			  zbr->lnum, zbr->offs, err);
2020		goto out_free;
2021	}
2022
2023	/* If this is an inode node, add it to RB-tree of inodes */
2024	if (type == UBIFS_INO_KEY) {
2025		fscki = add_inode(c, priv, node);
2026		if (IS_ERR(fscki)) {
2027			err = PTR_ERR(fscki);
2028			ubifs_err(c, "error %d while adding inode node", err);
2029			goto out_dump;
2030		}
2031		goto out;
2032	}
2033
2034	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035	    type != UBIFS_DATA_KEY) {
2036		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037			  type, zbr->lnum, zbr->offs);
2038		err = -EINVAL;
2039		goto out_free;
2040	}
2041
2042	ch = node;
2043	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044		ubifs_err(c, "too high sequence number, max. is %llu",
2045			  c->max_sqnum);
2046		err = -EINVAL;
2047		goto out_dump;
2048	}
2049
2050	if (type == UBIFS_DATA_KEY) {
2051		long long blk_offs;
2052		struct ubifs_data_node *dn = node;
2053
2054		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055
2056		/*
2057		 * Search the inode node this data node belongs to and insert
2058		 * it to the RB-tree of inodes.
2059		 */
2060		inum = key_inum_flash(c, &dn->key);
2061		fscki = read_add_inode(c, priv, inum);
2062		if (IS_ERR(fscki)) {
2063			err = PTR_ERR(fscki);
2064			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065				  err, (unsigned long)inum);
2066			goto out_dump;
2067		}
2068
2069		/* Make sure the data node is within inode size */
2070		blk_offs = key_block_flash(c, &dn->key);
2071		blk_offs <<= UBIFS_BLOCK_SHIFT;
2072		blk_offs += le32_to_cpu(dn->size);
2073		if (blk_offs > fscki->size) {
2074			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075				  zbr->lnum, zbr->offs, fscki->size);
2076			err = -EINVAL;
2077			goto out_dump;
2078		}
2079	} else {
2080		int nlen;
2081		struct ubifs_dent_node *dent = node;
2082		struct fsck_inode *fscki1;
2083
2084		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085
2086		err = ubifs_validate_entry(c, dent);
2087		if (err)
2088			goto out_dump;
2089
2090		/*
2091		 * Search the inode node this entry refers to and the parent
2092		 * inode node and insert them to the RB-tree of inodes.
2093		 */
2094		inum = le64_to_cpu(dent->inum);
2095		fscki = read_add_inode(c, priv, inum);
2096		if (IS_ERR(fscki)) {
2097			err = PTR_ERR(fscki);
2098			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099				  err, (unsigned long)inum);
2100			goto out_dump;
2101		}
2102
2103		/* Count how many direntries or xentries refers this inode */
2104		fscki->references += 1;
2105
2106		inum = key_inum_flash(c, &dent->key);
2107		fscki1 = read_add_inode(c, priv, inum);
2108		if (IS_ERR(fscki1)) {
2109			err = PTR_ERR(fscki1);
2110			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111				  err, (unsigned long)inum);
2112			goto out_dump;
2113		}
2114
2115		nlen = le16_to_cpu(dent->nlen);
2116		if (type == UBIFS_XENT_KEY) {
2117			fscki1->calc_xcnt += 1;
2118			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120			fscki1->calc_xnms += nlen;
2121		} else {
2122			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123			if (dent->type == UBIFS_ITYPE_DIR)
2124				fscki1->calc_cnt += 1;
2125		}
2126	}
2127
2128out:
2129	kfree(node);
2130	return 0;
2131
2132out_dump:
2133	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134	ubifs_dump_node(c, node, zbr->len);
2135out_free:
2136	kfree(node);
2137	return err;
2138}
2139
2140/**
2141 * free_inodes - free RB-tree of inodes.
2142 * @fsckd: FS checking information
2143 */
2144static void free_inodes(struct fsck_data *fsckd)
2145{
2146	struct fsck_inode *fscki, *n;
2147
2148	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149		kfree(fscki);
2150}
2151
2152/**
2153 * check_inodes - checks all inodes.
2154 * @c: UBIFS file-system description object
2155 * @fsckd: FS checking information
2156 *
2157 * This is a helper function for 'dbg_check_filesystem()' which walks the
2158 * RB-tree of inodes after the index scan has been finished, and checks that
2159 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160 * %-EINVAL if not, and a negative error code in case of failure.
2161 */
2162static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163{
2164	int n, err;
2165	union ubifs_key key;
2166	struct ubifs_znode *znode;
2167	struct ubifs_zbranch *zbr;
2168	struct ubifs_ino_node *ino;
2169	struct fsck_inode *fscki;
2170	struct rb_node *this = rb_first(&fsckd->inodes);
2171
2172	while (this) {
2173		fscki = rb_entry(this, struct fsck_inode, rb);
2174		this = rb_next(this);
2175
2176		if (S_ISDIR(fscki->mode)) {
2177			/*
2178			 * Directories have to have exactly one reference (they
2179			 * cannot have hardlinks), although root inode is an
2180			 * exception.
2181			 */
2182			if (fscki->inum != UBIFS_ROOT_INO &&
2183			    fscki->references != 1) {
2184				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185					  (unsigned long)fscki->inum,
2186					  fscki->references);
2187				goto out_dump;
2188			}
2189			if (fscki->inum == UBIFS_ROOT_INO &&
2190			    fscki->references != 0) {
2191				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192					  (unsigned long)fscki->inum,
2193					  fscki->references);
2194				goto out_dump;
2195			}
2196			if (fscki->calc_sz != fscki->size) {
2197				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198					  (unsigned long)fscki->inum,
2199					  fscki->size, fscki->calc_sz);
2200				goto out_dump;
2201			}
2202			if (fscki->calc_cnt != fscki->nlink) {
2203				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204					  (unsigned long)fscki->inum,
2205					  fscki->nlink, fscki->calc_cnt);
2206				goto out_dump;
2207			}
2208		} else {
2209			if (fscki->references != fscki->nlink) {
2210				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211					  (unsigned long)fscki->inum,
2212					  fscki->nlink, fscki->references);
2213				goto out_dump;
2214			}
2215		}
2216		if (fscki->xattr_sz != fscki->calc_xsz) {
2217			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218				  (unsigned long)fscki->inum, fscki->xattr_sz,
2219				  fscki->calc_xsz);
2220			goto out_dump;
2221		}
2222		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224				  (unsigned long)fscki->inum,
2225				  fscki->xattr_cnt, fscki->calc_xcnt);
2226			goto out_dump;
2227		}
2228		if (fscki->xattr_nms != fscki->calc_xnms) {
2229			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230				  (unsigned long)fscki->inum, fscki->xattr_nms,
2231				  fscki->calc_xnms);
2232			goto out_dump;
2233		}
2234	}
2235
2236	return 0;
2237
2238out_dump:
2239	/* Read the bad inode and dump it */
2240	ino_key_init(c, &key, fscki->inum);
2241	err = ubifs_lookup_level0(c, &key, &znode, &n);
2242	if (!err) {
2243		ubifs_err(c, "inode %lu not found in index",
2244			  (unsigned long)fscki->inum);
2245		return -ENOENT;
2246	} else if (err < 0) {
2247		ubifs_err(c, "error %d while looking up inode %lu",
2248			  err, (unsigned long)fscki->inum);
2249		return err;
2250	}
2251
2252	zbr = &znode->zbranch[n];
2253	ino = kmalloc(zbr->len, GFP_NOFS);
2254	if (!ino)
2255		return -ENOMEM;
2256
2257	err = ubifs_tnc_read_node(c, zbr, ino);
2258	if (err) {
2259		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260			  zbr->lnum, zbr->offs, err);
2261		kfree(ino);
2262		return err;
2263	}
2264
2265	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267	ubifs_dump_node(c, ino, zbr->len);
2268	kfree(ino);
2269	return -EINVAL;
2270}
2271
2272/**
2273 * dbg_check_filesystem - check the file-system.
2274 * @c: UBIFS file-system description object
2275 *
2276 * This function checks the file system, namely:
2277 * o makes sure that all leaf nodes exist and their CRCs are correct;
2278 * o makes sure inode nlink, size, xattr size/count are correct (for all
2279 *   inodes).
2280 *
2281 * The function reads whole indexing tree and all nodes, so it is pretty
2282 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283 * not, and a negative error code in case of failure.
2284 */
2285int dbg_check_filesystem(struct ubifs_info *c)
2286{
2287	int err;
2288	struct fsck_data fsckd;
2289
2290	if (!dbg_is_chk_fs(c))
2291		return 0;
2292
2293	fsckd.inodes = RB_ROOT;
2294	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295	if (err)
2296		goto out_free;
2297
2298	err = check_inodes(c, &fsckd);
2299	if (err)
2300		goto out_free;
2301
2302	free_inodes(&fsckd);
2303	return 0;
2304
2305out_free:
2306	ubifs_err(c, "file-system check failed with error %d", err);
2307	dump_stack();
2308	free_inodes(&fsckd);
2309	return err;
2310}
2311
2312/**
2313 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314 * @c: UBIFS file-system description object
2315 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316 *
2317 * This function returns zero if the list of data nodes is sorted correctly,
2318 * and %-EINVAL if not.
2319 */
2320int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321{
2322	struct list_head *cur;
2323	struct ubifs_scan_node *sa, *sb;
2324
2325	if (!dbg_is_chk_gen(c))
2326		return 0;
2327
2328	for (cur = head->next; cur->next != head; cur = cur->next) {
2329		ino_t inuma, inumb;
2330		uint32_t blka, blkb;
2331
2332		cond_resched();
2333		sa = container_of(cur, struct ubifs_scan_node, list);
2334		sb = container_of(cur->next, struct ubifs_scan_node, list);
2335
2336		if (sa->type != UBIFS_DATA_NODE) {
2337			ubifs_err(c, "bad node type %d", sa->type);
2338			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339			return -EINVAL;
2340		}
2341		if (sb->type != UBIFS_DATA_NODE) {
2342			ubifs_err(c, "bad node type %d", sb->type);
2343			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344			return -EINVAL;
2345		}
2346
2347		inuma = key_inum(c, &sa->key);
2348		inumb = key_inum(c, &sb->key);
2349
2350		if (inuma < inumb)
2351			continue;
2352		if (inuma > inumb) {
2353			ubifs_err(c, "larger inum %lu goes before inum %lu",
2354				  (unsigned long)inuma, (unsigned long)inumb);
2355			goto error_dump;
2356		}
2357
2358		blka = key_block(c, &sa->key);
2359		blkb = key_block(c, &sb->key);
2360
2361		if (blka > blkb) {
2362			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363			goto error_dump;
2364		}
2365		if (blka == blkb) {
2366			ubifs_err(c, "two data nodes for the same block");
2367			goto error_dump;
2368		}
2369	}
2370
2371	return 0;
2372
2373error_dump:
2374	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376	return -EINVAL;
2377}
2378
2379/**
2380 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381 * @c: UBIFS file-system description object
2382 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383 *
2384 * This function returns zero if the list of non-data nodes is sorted correctly,
2385 * and %-EINVAL if not.
2386 */
2387int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388{
2389	struct list_head *cur;
2390	struct ubifs_scan_node *sa, *sb;
2391
2392	if (!dbg_is_chk_gen(c))
2393		return 0;
2394
2395	for (cur = head->next; cur->next != head; cur = cur->next) {
2396		ino_t inuma, inumb;
2397		uint32_t hasha, hashb;
2398
2399		cond_resched();
2400		sa = container_of(cur, struct ubifs_scan_node, list);
2401		sb = container_of(cur->next, struct ubifs_scan_node, list);
2402
2403		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404		    sa->type != UBIFS_XENT_NODE) {
2405			ubifs_err(c, "bad node type %d", sa->type);
2406			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407			return -EINVAL;
2408		}
2409		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410		    sb->type != UBIFS_XENT_NODE) {
2411			ubifs_err(c, "bad node type %d", sb->type);
2412			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413			return -EINVAL;
2414		}
2415
2416		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417			ubifs_err(c, "non-inode node goes before inode node");
2418			goto error_dump;
2419		}
2420
2421		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422			continue;
2423
2424		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425			/* Inode nodes are sorted in descending size order */
2426			if (sa->len < sb->len) {
2427				ubifs_err(c, "smaller inode node goes first");
2428				goto error_dump;
2429			}
2430			continue;
2431		}
2432
2433		/*
2434		 * This is either a dentry or xentry, which should be sorted in
2435		 * ascending (parent ino, hash) order.
2436		 */
2437		inuma = key_inum(c, &sa->key);
2438		inumb = key_inum(c, &sb->key);
2439
2440		if (inuma < inumb)
2441			continue;
2442		if (inuma > inumb) {
2443			ubifs_err(c, "larger inum %lu goes before inum %lu",
2444				  (unsigned long)inuma, (unsigned long)inumb);
2445			goto error_dump;
2446		}
2447
2448		hasha = key_block(c, &sa->key);
2449		hashb = key_block(c, &sb->key);
2450
2451		if (hasha > hashb) {
2452			ubifs_err(c, "larger hash %u goes before %u",
2453				  hasha, hashb);
2454			goto error_dump;
2455		}
2456	}
2457
2458	return 0;
2459
2460error_dump:
2461	ubifs_msg(c, "dumping first node");
2462	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463	ubifs_msg(c, "dumping second node");
2464	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465	return -EINVAL;
 
2466}
2467
2468static inline int chance(unsigned int n, unsigned int out_of)
2469{
2470	return !!(get_random_u32_below(out_of) + 1 <= n);
2471
2472}
2473
2474static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475{
2476	struct ubifs_debug_info *d = c->dbg;
2477
2478	ubifs_assert(c, dbg_is_tst_rcvry(c));
2479
2480	if (!d->pc_cnt) {
2481		/* First call - decide delay to the power cut */
2482		if (chance(1, 2)) {
2483			unsigned long delay;
2484
2485			if (chance(1, 2)) {
2486				d->pc_delay = 1;
2487				/* Fail within 1 minute */
2488				delay = get_random_u32_below(60000);
2489				d->pc_timeout = jiffies;
2490				d->pc_timeout += msecs_to_jiffies(delay);
2491				ubifs_warn(c, "failing after %lums", delay);
2492			} else {
2493				d->pc_delay = 2;
2494				delay = get_random_u32_below(10000);
2495				/* Fail within 10000 operations */
2496				d->pc_cnt_max = delay;
2497				ubifs_warn(c, "failing after %lu calls", delay);
2498			}
2499		}
2500
2501		d->pc_cnt += 1;
2502	}
2503
2504	/* Determine if failure delay has expired */
2505	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506			return 0;
2507	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508			return 0;
2509
2510	if (lnum == UBIFS_SB_LNUM) {
2511		if (write && chance(1, 2))
2512			return 0;
2513		if (chance(19, 20))
2514			return 0;
2515		ubifs_warn(c, "failing in super block LEB %d", lnum);
2516	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517		if (chance(19, 20))
2518			return 0;
2519		ubifs_warn(c, "failing in master LEB %d", lnum);
2520	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521		if (write && chance(99, 100))
2522			return 0;
2523		if (chance(399, 400))
2524			return 0;
2525		ubifs_warn(c, "failing in log LEB %d", lnum);
2526	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527		if (write && chance(7, 8))
2528			return 0;
2529		if (chance(19, 20))
2530			return 0;
2531		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533		if (write && chance(1, 2))
2534			return 0;
2535		if (chance(9, 10))
2536			return 0;
2537		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538	} else if (lnum == c->ihead_lnum) {
2539		if (chance(99, 100))
2540			return 0;
2541		ubifs_warn(c, "failing in index head LEB %d", lnum);
2542	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543		if (chance(9, 10))
2544			return 0;
2545		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547		   !ubifs_search_bud(c, lnum)) {
2548		if (chance(19, 20))
2549			return 0;
2550		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553		if (chance(999, 1000))
2554			return 0;
2555		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556	} else {
2557		if (chance(9999, 10000))
2558			return 0;
2559		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560	}
2561
2562	d->pc_happened = 1;
2563	ubifs_warn(c, "========== Power cut emulated ==========");
2564	dump_stack();
2565	return 1;
2566}
2567
2568static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569			unsigned int len)
2570{
2571	unsigned int from, to, ffs = chance(1, 2);
2572	unsigned char *p = (void *)buf;
2573
2574	from = get_random_u32_below(len);
2575	/* Corruption span max to end of write unit */
2576	to = min(len, ALIGN(from + 1, c->max_write_size));
2577
2578	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579		   ffs ? "0xFFs" : "random data");
2580
2581	if (ffs)
2582		memset(p + from, 0xFF, to - from);
2583	else
2584		get_random_bytes(p + from, to - from);
2585
2586	return to;
2587}
2588
2589int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590		  int offs, int len)
2591{
2592	int err, failing;
2593
2594	if (dbg_is_power_cut(c))
2595		return -EROFS;
2596
2597	failing = power_cut_emulated(c, lnum, 1);
2598	if (failing) {
2599		len = corrupt_data(c, buf, len);
2600		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601			   len, lnum, offs);
2602	}
2603	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604	if (err)
2605		return err;
2606	if (failing)
2607		return -EROFS;
2608	return 0;
2609}
2610
2611int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612		   int len)
2613{
2614	int err;
2615
2616	if (dbg_is_power_cut(c))
2617		return -EROFS;
2618	if (power_cut_emulated(c, lnum, 1))
2619		return -EROFS;
2620	err = ubi_leb_change(c->ubi, lnum, buf, len);
2621	if (err)
2622		return err;
2623	if (power_cut_emulated(c, lnum, 1))
2624		return -EROFS;
2625	return 0;
2626}
2627
2628int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629{
2630	int err;
2631
2632	if (dbg_is_power_cut(c))
2633		return -EROFS;
2634	if (power_cut_emulated(c, lnum, 0))
2635		return -EROFS;
2636	err = ubi_leb_unmap(c->ubi, lnum);
2637	if (err)
2638		return err;
2639	if (power_cut_emulated(c, lnum, 0))
2640		return -EROFS;
2641	return 0;
2642}
2643
2644int dbg_leb_map(struct ubifs_info *c, int lnum)
2645{
2646	int err;
2647
2648	if (dbg_is_power_cut(c))
2649		return -EROFS;
2650	if (power_cut_emulated(c, lnum, 0))
2651		return -EROFS;
2652	err = ubi_leb_map(c->ubi, lnum);
2653	if (err)
2654		return err;
2655	if (power_cut_emulated(c, lnum, 0))
2656		return -EROFS;
2657	return 0;
2658}
2659
2660/*
2661 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662 * contain the stuff specific to particular file-system mounts.
2663 */
2664static struct dentry *dfs_rootdir;
2665
2666static int dfs_file_open(struct inode *inode, struct file *file)
2667{
2668	file->private_data = inode->i_private;
2669	return nonseekable_open(inode, file);
2670}
2671
2672/**
2673 * provide_user_output - provide output to the user reading a debugfs file.
2674 * @val: boolean value for the answer
2675 * @u: the buffer to store the answer at
2676 * @count: size of the buffer
2677 * @ppos: position in the @u output buffer
2678 *
2679 * This is a simple helper function which stores @val boolean value in the user
2680 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681 * bytes written to @u in case of success and a negative error code in case of
2682 * failure.
2683 */
2684static int provide_user_output(int val, char __user *u, size_t count,
2685			       loff_t *ppos)
2686{
2687	char buf[3];
2688
2689	if (val)
2690		buf[0] = '1';
2691	else
2692		buf[0] = '0';
2693	buf[1] = '\n';
2694	buf[2] = 0x00;
2695
2696	return simple_read_from_buffer(u, count, ppos, buf, 2);
2697}
2698
2699static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700			     loff_t *ppos)
2701{
2702	struct dentry *dent = file->f_path.dentry;
2703	struct ubifs_info *c = file->private_data;
2704	struct ubifs_debug_info *d = c->dbg;
2705	int val;
2706
2707	if (dent == d->dfs_chk_gen)
2708		val = d->chk_gen;
2709	else if (dent == d->dfs_chk_index)
2710		val = d->chk_index;
2711	else if (dent == d->dfs_chk_orph)
2712		val = d->chk_orph;
2713	else if (dent == d->dfs_chk_lprops)
2714		val = d->chk_lprops;
2715	else if (dent == d->dfs_chk_fs)
2716		val = d->chk_fs;
2717	else if (dent == d->dfs_tst_rcvry)
2718		val = d->tst_rcvry;
2719	else if (dent == d->dfs_ro_error)
2720		val = c->ro_error;
2721	else
2722		return -EINVAL;
2723
2724	return provide_user_output(val, u, count, ppos);
2725}
2726
2727/**
2728 * interpret_user_input - interpret user debugfs file input.
2729 * @u: user-provided buffer with the input
2730 * @count: buffer size
2731 *
2732 * This is a helper function which interpret user input to a boolean UBIFS
2733 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734 * in case of failure.
2735 */
2736static int interpret_user_input(const char __user *u, size_t count)
2737{
2738	size_t buf_size;
2739	char buf[8];
2740
2741	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742	if (copy_from_user(buf, u, buf_size))
2743		return -EFAULT;
2744
2745	if (buf[0] == '1')
2746		return 1;
2747	else if (buf[0] == '0')
2748		return 0;
2749
2750	return -EINVAL;
2751}
2752
2753static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754			      size_t count, loff_t *ppos)
2755{
2756	struct ubifs_info *c = file->private_data;
2757	struct ubifs_debug_info *d = c->dbg;
2758	struct dentry *dent = file->f_path.dentry;
2759	int val;
2760
 
 
 
 
 
 
 
 
 
 
 
 
2761	if (file->f_path.dentry == d->dfs_dump_lprops) {
2762		ubifs_dump_lprops(c);
2763		return count;
2764	}
2765	if (file->f_path.dentry == d->dfs_dump_budg) {
2766		ubifs_dump_budg(c, &c->bi);
2767		return count;
2768	}
2769	if (file->f_path.dentry == d->dfs_dump_tnc) {
2770		mutex_lock(&c->tnc_mutex);
2771		ubifs_dump_tnc(c);
2772		mutex_unlock(&c->tnc_mutex);
2773		return count;
2774	}
2775
2776	val = interpret_user_input(u, count);
2777	if (val < 0)
2778		return val;
2779
2780	if (dent == d->dfs_chk_gen)
2781		d->chk_gen = val;
2782	else if (dent == d->dfs_chk_index)
2783		d->chk_index = val;
2784	else if (dent == d->dfs_chk_orph)
2785		d->chk_orph = val;
2786	else if (dent == d->dfs_chk_lprops)
2787		d->chk_lprops = val;
2788	else if (dent == d->dfs_chk_fs)
2789		d->chk_fs = val;
2790	else if (dent == d->dfs_tst_rcvry)
2791		d->tst_rcvry = val;
2792	else if (dent == d->dfs_ro_error)
2793		c->ro_error = !!val;
2794	else
2795		return -EINVAL;
2796
2797	return count;
2798}
2799
2800static const struct file_operations dfs_fops = {
2801	.open = dfs_file_open,
2802	.read = dfs_file_read,
2803	.write = dfs_file_write,
2804	.owner = THIS_MODULE,
2805	.llseek = no_llseek,
2806};
2807
2808/**
2809 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810 * @c: UBIFS file-system description object
2811 *
2812 * This function creates all debugfs files for this instance of UBIFS.
 
2813 *
2814 * Note, the only reason we have not merged this function with the
2815 * 'ubifs_debugging_init()' function is because it is better to initialize
2816 * debugfs interfaces at the very end of the mount process, and remove them at
2817 * the very beginning of the mount process.
2818 */
2819void dbg_debugfs_init_fs(struct ubifs_info *c)
2820{
2821	int n;
2822	const char *fname;
 
2823	struct ubifs_debug_info *d = c->dbg;
2824
 
 
 
2825	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826		     c->vi.ubi_num, c->vi.vol_id);
2827	if (n > UBIFS_DFS_DIR_LEN) {
2828		/* The array size is too small */
2829		return;
 
 
2830	}
2831
2832	fname = d->dfs_dir_name;
2833	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
 
 
 
2834
2835	fname = "dump_lprops";
2836	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837						 &dfs_fops);
 
 
2838
2839	fname = "dump_budg";
2840	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841					       &dfs_fops);
 
 
2842
2843	fname = "dump_tnc";
2844	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845					      &dfs_fops);
 
 
2846
2847	fname = "chk_general";
2848	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849					     d->dfs_dir, c, &dfs_fops);
 
 
 
2850
2851	fname = "chk_index";
2852	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853					       d->dfs_dir, c, &dfs_fops);
 
 
 
2854
2855	fname = "chk_orphans";
2856	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857					      d->dfs_dir, c, &dfs_fops);
 
 
 
2858
2859	fname = "chk_lprops";
2860	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861						d->dfs_dir, c, &dfs_fops);
 
 
 
2862
2863	fname = "chk_fs";
2864	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865					    d->dfs_dir, c, &dfs_fops);
 
 
 
2866
2867	fname = "tst_recovery";
2868	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869					       d->dfs_dir, c, &dfs_fops);
 
 
 
2870
2871	fname = "ro_error";
2872	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873					      d->dfs_dir, c, &dfs_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2874}
2875
2876/**
2877 * dbg_debugfs_exit_fs - remove all debugfs files.
2878 * @c: UBIFS file-system description object
2879 */
2880void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881{
2882	debugfs_remove_recursive(c->dbg->dfs_dir);
 
2883}
2884
2885struct ubifs_global_debug_info ubifs_dbg;
2886
2887static struct dentry *dfs_chk_gen;
2888static struct dentry *dfs_chk_index;
2889static struct dentry *dfs_chk_orph;
2890static struct dentry *dfs_chk_lprops;
2891static struct dentry *dfs_chk_fs;
2892static struct dentry *dfs_tst_rcvry;
2893
2894static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895				    size_t count, loff_t *ppos)
2896{
2897	struct dentry *dent = file->f_path.dentry;
2898	int val;
2899
2900	if (dent == dfs_chk_gen)
2901		val = ubifs_dbg.chk_gen;
2902	else if (dent == dfs_chk_index)
2903		val = ubifs_dbg.chk_index;
2904	else if (dent == dfs_chk_orph)
2905		val = ubifs_dbg.chk_orph;
2906	else if (dent == dfs_chk_lprops)
2907		val = ubifs_dbg.chk_lprops;
2908	else if (dent == dfs_chk_fs)
2909		val = ubifs_dbg.chk_fs;
2910	else if (dent == dfs_tst_rcvry)
2911		val = ubifs_dbg.tst_rcvry;
2912	else
2913		return -EINVAL;
2914
2915	return provide_user_output(val, u, count, ppos);
2916}
2917
2918static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919				     size_t count, loff_t *ppos)
2920{
2921	struct dentry *dent = file->f_path.dentry;
2922	int val;
2923
2924	val = interpret_user_input(u, count);
2925	if (val < 0)
2926		return val;
2927
2928	if (dent == dfs_chk_gen)
2929		ubifs_dbg.chk_gen = val;
2930	else if (dent == dfs_chk_index)
2931		ubifs_dbg.chk_index = val;
2932	else if (dent == dfs_chk_orph)
2933		ubifs_dbg.chk_orph = val;
2934	else if (dent == dfs_chk_lprops)
2935		ubifs_dbg.chk_lprops = val;
2936	else if (dent == dfs_chk_fs)
2937		ubifs_dbg.chk_fs = val;
2938	else if (dent == dfs_tst_rcvry)
2939		ubifs_dbg.tst_rcvry = val;
2940	else
2941		return -EINVAL;
2942
2943	return count;
2944}
2945
2946static const struct file_operations dfs_global_fops = {
2947	.read = dfs_global_file_read,
2948	.write = dfs_global_file_write,
2949	.owner = THIS_MODULE,
2950	.llseek = no_llseek,
2951};
2952
2953/**
2954 * dbg_debugfs_init - initialize debugfs file-system.
2955 *
2956 * UBIFS uses debugfs file-system to expose various debugging knobs to
2957 * user-space. This function creates "ubifs" directory in the debugfs
2958 * file-system.
 
2959 */
2960void dbg_debugfs_init(void)
2961{
 
2962	const char *fname;
 
 
 
 
2963
2964	fname = "ubifs";
2965	dfs_rootdir = debugfs_create_dir(fname, NULL);
 
 
 
2966
2967	fname = "chk_general";
2968	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969					  NULL, &dfs_global_fops);
 
 
 
2970
2971	fname = "chk_index";
2972	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2974
2975	fname = "chk_orphans";
2976	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977					   dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2978
2979	fname = "chk_lprops";
2980	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981					     dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2982
2983	fname = "chk_fs";
2984	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985					 NULL, &dfs_global_fops);
 
 
 
2986
2987	fname = "tst_recovery";
2988	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2990}
2991
2992/**
2993 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994 */
2995void dbg_debugfs_exit(void)
2996{
2997	debugfs_remove_recursive(dfs_rootdir);
2998}
2999
3000void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001			 const char *file, int line)
3002{
3003	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004
3005	switch (c->assert_action) {
3006		case ASSACT_PANIC:
3007		BUG();
3008		break;
3009
3010		case ASSACT_RO:
3011		ubifs_ro_mode(c, -EINVAL);
3012		break;
3013
3014		case ASSACT_REPORT:
3015		default:
3016		dump_stack();
3017		break;
3018
3019	}
3020}
3021
3022/**
3023 * ubifs_debugging_init - initialize UBIFS debugging.
3024 * @c: UBIFS file-system description object
3025 *
3026 * This function initializes debugging-related data for the file system.
3027 * Returns zero in case of success and a negative error code in case of
3028 * failure.
3029 */
3030int ubifs_debugging_init(struct ubifs_info *c)
3031{
3032	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033	if (!c->dbg)
3034		return -ENOMEM;
3035
3036	return 0;
3037}
3038
3039/**
3040 * ubifs_debugging_exit - free debugging data.
3041 * @c: UBIFS file-system description object
3042 */
3043void ubifs_debugging_exit(struct ubifs_info *c)
3044{
3045	kfree(c->dbg);
3046}