Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37static DEFINE_SPINLOCK(dbg_lock);
38
39static const char *get_key_fmt(int fmt)
40{
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
46 }
47}
48
49static const char *get_key_hash(int hash)
50{
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
58 }
59}
60
61static const char *get_key_type(int type)
62{
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
76 }
77}
78
79static const char *get_dent_type(int type)
80{
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
98 }
99}
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
103{
104 char *p = buffer;
105 int type = key_type(c, key);
106
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
133 }
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
138}
139
140const char *dbg_ntype(int type)
141{
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
169 }
170}
171
172static const char *dbg_gtype(int type)
173{
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
183 }
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
203 }
204}
205
206const char *dbg_jhead(int jhead)
207{
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
217 }
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
224 pr_err("\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 pr_err("\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
240
241 pr_err("Dump in-memory inode:");
242 pr_err("\tinode %lu\n", inode->i_ino);
243 pr_err("\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 pr_err("\tnlink %u\n", inode->i_nlink);
246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
248 pr_err("\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 pr_err("\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 pr_err("\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 pr_err("\txattr_size %u\n", ui->xattr_size);
259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
260 pr_err("\txattr_names %u\n", ui->xattr_names);
261 pr_err("\tdirty %u\n", ui->dirty);
262 pr_err("\txattr %u\n", ui->xattr);
263 pr_err("\tbulk_read %u\n", ui->xattr);
264 pr_err("\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 pr_err("\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 pr_err("\tflags %d\n", ui->flags);
269 pr_err("\tcompr_type %d\n", ui->compr_type);
270 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
272 pr_err("\tdata_len %d\n", ui->data_len);
273
274 if (!S_ISDIR(inode->i_mode))
275 return;
276
277 pr_err("List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 pr_err("error %ld\n", PTR_ERR(dent));
286 break;
287 }
288
289 pr_err("\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
291
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
297 }
298 kfree(pdent);
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
321 {
322 const struct ubifs_pad_node *pad = node;
323
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
326 }
327 case UBIFS_SB_NODE:
328 {
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
337 pr_err("\tbig_lpt %u\n",
338 !!(sup_flags & UBIFS_FLG_BIGLPT));
339 pr_err("\tspace_fixup %u\n",
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
363 }
364 case UBIFS_MST_NODE:
365 {
366 const struct ubifs_mst_node *mst = node;
367
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
405 }
406 case UBIFS_REF_NODE:
407 {
408 const struct ubifs_ref_node *ref = node;
409
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
414 }
415 case UBIFS_INO_NODE:
416 {
417 const struct ubifs_ino_node *ino = node;
418
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
447 }
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
450 {
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
453
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
462
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
468 }
469 pr_cont("\n");
470
471 break;
472 }
473 case UBIFS_DATA_NODE:
474 {
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
489 }
490 case UBIFS_TRUN_NODE:
491 {
492 const struct ubifs_trun_node *trun = node;
493
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
500 }
501 case UBIFS_IDX_NODE:
502 {
503 const struct ubifs_idx_node *idx = node;
504
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
509
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
512
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
520 }
521 break;
522 }
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
526 {
527 const struct ubifs_orph_node *orph = node;
528
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
540 }
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
544 }
545 spin_unlock(&dbg_lock);
546}
547
548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549{
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
563}
564
565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566{
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
575}
576
577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578{
579 int i;
580 struct rb_node *rb;
581 struct ubifs_bud *bud;
582 struct ubifs_gced_idx_leb *idx_gc;
583 long long available, outstanding, free;
584
585 spin_lock(&c->space_lock);
586 spin_lock(&dbg_lock);
587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588 current->pid, bi->data_growth + bi->dd_growth,
589 bi->data_growth + bi->dd_growth + bi->idx_growth);
590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591 bi->data_growth, bi->dd_growth, bi->idx_growth);
592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595 bi->page_budget, bi->inode_budget, bi->dent_budget);
596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600 if (bi != &c->bi)
601 /*
602 * If we are dumping saved budgeting data, do not print
603 * additional information which is about the current state, not
604 * the old one which corresponded to the saved budgeting data.
605 */
606 goto out_unlock;
607
608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611 atomic_long_read(&c->dirty_pg_cnt),
612 atomic_long_read(&c->dirty_zn_cnt),
613 atomic_long_read(&c->clean_zn_cnt));
614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616 /* If we are in R/O mode, journal heads do not exist */
617 if (c->jheads)
618 for (i = 0; i < c->jhead_cnt; i++)
619 pr_err("\tjhead %s\t LEB %d\n",
620 dbg_jhead(c->jheads[i].wbuf.jhead),
621 c->jheads[i].wbuf.lnum);
622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623 bud = rb_entry(rb, struct ubifs_bud, rb);
624 pr_err("\tbud LEB %d\n", bud->lnum);
625 }
626 list_for_each_entry(bud, &c->old_buds, list)
627 pr_err("\told bud LEB %d\n", bud->lnum);
628 list_for_each_entry(idx_gc, &c->idx_gc, list)
629 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630 idx_gc->lnum, idx_gc->unmap);
631 pr_err("\tcommit state %d\n", c->cmt_state);
632
633 /* Print budgeting predictions */
634 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635 outstanding = c->bi.data_growth + c->bi.dd_growth;
636 free = ubifs_get_free_space_nolock(c);
637 pr_err("Budgeting predictions:\n");
638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639 available, outstanding, free);
640out_unlock:
641 spin_unlock(&dbg_lock);
642 spin_unlock(&c->space_lock);
643}
644
645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646{
647 int i, spc, dark = 0, dead = 0;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650
651 spc = lp->free + lp->dirty;
652 if (spc < c->dead_wm)
653 dead = spc;
654 else
655 dark = ubifs_calc_dark(c, spc);
656
657 if (lp->flags & LPROPS_INDEX)
658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660 lp->flags);
661 else
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665
666 if (lp->flags & LPROPS_TAKEN) {
667 if (lp->flags & LPROPS_INDEX)
668 pr_cont("index, taken");
669 else
670 pr_cont("taken");
671 } else {
672 const char *s;
673
674 if (lp->flags & LPROPS_INDEX) {
675 switch (lp->flags & LPROPS_CAT_MASK) {
676 case LPROPS_DIRTY_IDX:
677 s = "dirty index";
678 break;
679 case LPROPS_FRDI_IDX:
680 s = "freeable index";
681 break;
682 default:
683 s = "index";
684 }
685 } else {
686 switch (lp->flags & LPROPS_CAT_MASK) {
687 case LPROPS_UNCAT:
688 s = "not categorized";
689 break;
690 case LPROPS_DIRTY:
691 s = "dirty";
692 break;
693 case LPROPS_FREE:
694 s = "free";
695 break;
696 case LPROPS_EMPTY:
697 s = "empty";
698 break;
699 case LPROPS_FREEABLE:
700 s = "freeable";
701 break;
702 default:
703 s = NULL;
704 break;
705 }
706 }
707 pr_cont("%s", s);
708 }
709
710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711 bud = rb_entry(rb, struct ubifs_bud, rb);
712 if (bud->lnum == lp->lnum) {
713 int head = 0;
714 for (i = 0; i < c->jhead_cnt; i++) {
715 /*
716 * Note, if we are in R/O mode or in the middle
717 * of mounting/re-mounting, the write-buffers do
718 * not exist.
719 */
720 if (c->jheads &&
721 lp->lnum == c->jheads[i].wbuf.lnum) {
722 pr_cont(", jhead %s", dbg_jhead(i));
723 head = 1;
724 }
725 }
726 if (!head)
727 pr_cont(", bud of jhead %s",
728 dbg_jhead(bud->jhead));
729 }
730 }
731 if (lp->lnum == c->gc_lnum)
732 pr_cont(", GC LEB");
733 pr_cont(")\n");
734}
735
736void ubifs_dump_lprops(struct ubifs_info *c)
737{
738 int lnum, err;
739 struct ubifs_lprops lp;
740 struct ubifs_lp_stats lst;
741
742 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743 ubifs_get_lp_stats(c, &lst);
744 ubifs_dump_lstats(&lst);
745
746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747 err = ubifs_read_one_lp(c, lnum, &lp);
748 if (err) {
749 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750 continue;
751 }
752
753 ubifs_dump_lprop(c, &lp);
754 }
755 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756}
757
758void ubifs_dump_lpt_info(struct ubifs_info *c)
759{
760 int i;
761
762 spin_lock(&dbg_lock);
763 pr_err("(pid %d) dumping LPT information\n", current->pid);
764 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
765 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
766 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
767 pr_err("\tltab_sz: %d\n", c->ltab_sz);
768 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
769 pr_err("\tbig_lpt: %d\n", c->big_lpt);
770 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
771 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
772 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
773 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
774 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
775 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
776 pr_err("\tspace_bits: %d\n", c->space_bits);
777 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
780 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
781 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
782 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783 pr_err("\tLPT head is at %d:%d\n",
784 c->nhead_lnum, c->nhead_offs);
785 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786 if (c->big_lpt)
787 pr_err("\tLPT lsave is at %d:%d\n",
788 c->lsave_lnum, c->lsave_offs);
789 for (i = 0; i < c->lpt_lebs; i++)
790 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792 c->ltab[i].tgc, c->ltab[i].cmt);
793 spin_unlock(&dbg_lock);
794}
795
796void ubifs_dump_sleb(const struct ubifs_info *c,
797 const struct ubifs_scan_leb *sleb, int offs)
798{
799 struct ubifs_scan_node *snod;
800
801 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802 current->pid, sleb->lnum, offs);
803
804 list_for_each_entry(snod, &sleb->nodes, list) {
805 cond_resched();
806 pr_err("Dumping node at LEB %d:%d len %d\n",
807 sleb->lnum, snod->offs, snod->len);
808 ubifs_dump_node(c, snod->node);
809 }
810}
811
812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
813{
814 struct ubifs_scan_leb *sleb;
815 struct ubifs_scan_node *snod;
816 void *buf;
817
818 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
819
820 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821 if (!buf) {
822 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823 return;
824 }
825
826 sleb = ubifs_scan(c, lnum, 0, buf, 0);
827 if (IS_ERR(sleb)) {
828 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829 goto out;
830 }
831
832 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833 sleb->nodes_cnt, sleb->endpt);
834
835 list_for_each_entry(snod, &sleb->nodes, list) {
836 cond_resched();
837 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838 snod->offs, snod->len);
839 ubifs_dump_node(c, snod->node);
840 }
841
842 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843 ubifs_scan_destroy(sleb);
844
845out:
846 vfree(buf);
847 return;
848}
849
850void ubifs_dump_znode(const struct ubifs_info *c,
851 const struct ubifs_znode *znode)
852{
853 int n;
854 const struct ubifs_zbranch *zbr;
855 char key_buf[DBG_KEY_BUF_LEN];
856
857 spin_lock(&dbg_lock);
858 if (znode->parent)
859 zbr = &znode->parent->zbranch[znode->iip];
860 else
861 zbr = &c->zroot;
862
863 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865 znode->level, znode->child_cnt, znode->flags);
866
867 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868 spin_unlock(&dbg_lock);
869 return;
870 }
871
872 pr_err("zbranches:\n");
873 for (n = 0; n < znode->child_cnt; n++) {
874 zbr = &znode->zbranch[n];
875 if (znode->level > 0)
876 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878 dbg_snprintf_key(c, &zbr->key, key_buf,
879 DBG_KEY_BUF_LEN));
880 else
881 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883 dbg_snprintf_key(c, &zbr->key, key_buf,
884 DBG_KEY_BUF_LEN));
885 }
886 spin_unlock(&dbg_lock);
887}
888
889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
890{
891 int i;
892
893 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894 current->pid, cat, heap->cnt);
895 for (i = 0; i < heap->cnt; i++) {
896 struct ubifs_lprops *lprops = heap->arr[i];
897
898 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899 i, lprops->lnum, lprops->hpos, lprops->free,
900 lprops->dirty, lprops->flags);
901 }
902 pr_err("(pid %d) finish dumping heap\n", current->pid);
903}
904
905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906 struct ubifs_nnode *parent, int iip)
907{
908 int i;
909
910 pr_err("(pid %d) dumping pnode:\n", current->pid);
911 pr_err("\taddress %zx parent %zx cnext %zx\n",
912 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913 pr_err("\tflags %lu iip %d level %d num %d\n",
914 pnode->flags, iip, pnode->level, pnode->num);
915 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916 struct ubifs_lprops *lp = &pnode->lprops[i];
917
918 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919 i, lp->free, lp->dirty, lp->flags, lp->lnum);
920 }
921}
922
923void ubifs_dump_tnc(struct ubifs_info *c)
924{
925 struct ubifs_znode *znode;
926 int level;
927
928 pr_err("\n");
929 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931 level = znode->level;
932 pr_err("== Level %d ==\n", level);
933 while (znode) {
934 if (level != znode->level) {
935 level = znode->level;
936 pr_err("== Level %d ==\n", level);
937 }
938 ubifs_dump_znode(c, znode);
939 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
940 }
941 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942}
943
944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945 void *priv)
946{
947 ubifs_dump_znode(c, znode);
948 return 0;
949}
950
951/**
952 * ubifs_dump_index - dump the on-flash index.
953 * @c: UBIFS file-system description object
954 *
955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956 * which dumps only in-memory znodes and does not read znodes which from flash.
957 */
958void ubifs_dump_index(struct ubifs_info *c)
959{
960 dbg_walk_index(c, NULL, dump_znode, NULL);
961}
962
963/**
964 * dbg_save_space_info - save information about flash space.
965 * @c: UBIFS file-system description object
966 *
967 * This function saves information about UBIFS free space, dirty space, etc, in
968 * order to check it later.
969 */
970void dbg_save_space_info(struct ubifs_info *c)
971{
972 struct ubifs_debug_info *d = c->dbg;
973 int freeable_cnt;
974
975 spin_lock(&c->space_lock);
976 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978 d->saved_idx_gc_cnt = c->idx_gc_cnt;
979
980 /*
981 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982 * affects the free space calculations, and UBIFS might not know about
983 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984 * only when we read their lprops, and we do this only lazily, upon the
985 * need. So at any given point of time @c->freeable_cnt might be not
986 * exactly accurate.
987 *
988 * Just one example about the issue we hit when we did not zero
989 * @c->freeable_cnt.
990 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991 * amount of free space in @d->saved_free
992 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993 * information from flash, where we cache LEBs from various
994 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996 * -> 'ubifs_get_pnode()' -> 'update_cats()'
997 * -> 'ubifs_add_to_cat()').
998 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999 * becomes %1.
1000 * 4. We calculate the amount of free space when the re-mount is
1001 * finished in 'dbg_check_space_info()' and it does not match
1002 * @d->saved_free.
1003 */
1004 freeable_cnt = c->freeable_cnt;
1005 c->freeable_cnt = 0;
1006 d->saved_free = ubifs_get_free_space_nolock(c);
1007 c->freeable_cnt = freeable_cnt;
1008 spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022 struct ubifs_debug_info *d = c->dbg;
1023 struct ubifs_lp_stats lst;
1024 long long free;
1025 int freeable_cnt;
1026
1027 spin_lock(&c->space_lock);
1028 freeable_cnt = c->freeable_cnt;
1029 c->freeable_cnt = 0;
1030 free = ubifs_get_free_space_nolock(c);
1031 c->freeable_cnt = freeable_cnt;
1032 spin_unlock(&c->space_lock);
1033
1034 if (free != d->saved_free) {
1035 ubifs_err(c, "free space changed from %lld to %lld",
1036 d->saved_free, free);
1037 goto out;
1038 }
1039
1040 return 0;
1041
1042out:
1043 ubifs_msg(c, "saved lprops statistics dump");
1044 ubifs_dump_lstats(&d->saved_lst);
1045 ubifs_msg(c, "saved budgeting info dump");
1046 ubifs_dump_budg(c, &d->saved_bi);
1047 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048 ubifs_msg(c, "current lprops statistics dump");
1049 ubifs_get_lp_stats(c, &lst);
1050 ubifs_dump_lstats(&lst);
1051 ubifs_msg(c, "current budgeting info dump");
1052 ubifs_dump_budg(c, &c->bi);
1053 dump_stack();
1054 return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069 int err = 0;
1070 struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072 if (!dbg_is_chk_gen(c))
1073 return 0;
1074 if (!S_ISREG(inode->i_mode))
1075 return 0;
1076
1077 mutex_lock(&ui->ui_mutex);
1078 spin_lock(&ui->ui_lock);
1079 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081 ui->ui_size, ui->synced_i_size);
1082 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083 inode->i_mode, i_size_read(inode));
1084 dump_stack();
1085 err = -EINVAL;
1086 }
1087 spin_unlock(&ui->ui_lock);
1088 mutex_unlock(&ui->ui_mutex);
1089 return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107 unsigned int nlink = 2;
1108 union ubifs_key key;
1109 struct ubifs_dent_node *dent, *pdent = NULL;
1110 struct qstr nm = { .name = NULL };
1111 loff_t size = UBIFS_INO_NODE_SZ;
1112
1113 if (!dbg_is_chk_gen(c))
1114 return 0;
1115
1116 if (!S_ISDIR(dir->i_mode))
1117 return 0;
1118
1119 lowest_dent_key(c, &key, dir->i_ino);
1120 while (1) {
1121 int err;
1122
1123 dent = ubifs_tnc_next_ent(c, &key, &nm);
1124 if (IS_ERR(dent)) {
1125 err = PTR_ERR(dent);
1126 if (err == -ENOENT)
1127 break;
1128 return err;
1129 }
1130
1131 nm.name = dent->name;
1132 nm.len = le16_to_cpu(dent->nlen);
1133 size += CALC_DENT_SIZE(nm.len);
1134 if (dent->type == UBIFS_ITYPE_DIR)
1135 nlink += 1;
1136 kfree(pdent);
1137 pdent = dent;
1138 key_read(c, &dent->key, &key);
1139 }
1140 kfree(pdent);
1141
1142 if (i_size_read(dir) != size) {
1143 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144 dir->i_ino, (unsigned long long)i_size_read(dir),
1145 (unsigned long long)size);
1146 ubifs_dump_inode(c, dir);
1147 dump_stack();
1148 return -EINVAL;
1149 }
1150 if (dir->i_nlink != nlink) {
1151 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152 dir->i_ino, dir->i_nlink, nlink);
1153 ubifs_dump_inode(c, dir);
1154 dump_stack();
1155 return -EINVAL;
1156 }
1157
1158 return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175 struct ubifs_zbranch *zbr2)
1176{
1177 int err, nlen1, nlen2, cmp;
1178 struct ubifs_dent_node *dent1, *dent2;
1179 union ubifs_key key;
1180 char key_buf[DBG_KEY_BUF_LEN];
1181
1182 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184 if (!dent1)
1185 return -ENOMEM;
1186 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187 if (!dent2) {
1188 err = -ENOMEM;
1189 goto out_free;
1190 }
1191
1192 err = ubifs_tnc_read_node(c, zbr1, dent1);
1193 if (err)
1194 goto out_free;
1195 err = ubifs_validate_entry(c, dent1);
1196 if (err)
1197 goto out_free;
1198
1199 err = ubifs_tnc_read_node(c, zbr2, dent2);
1200 if (err)
1201 goto out_free;
1202 err = ubifs_validate_entry(c, dent2);
1203 if (err)
1204 goto out_free;
1205
1206 /* Make sure node keys are the same as in zbranch */
1207 err = 1;
1208 key_read(c, &dent1->key, &key);
1209 if (keys_cmp(c, &zbr1->key, &key)) {
1210 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212 DBG_KEY_BUF_LEN));
1213 ubifs_err(c, "but it should have key %s according to tnc",
1214 dbg_snprintf_key(c, &zbr1->key, key_buf,
1215 DBG_KEY_BUF_LEN));
1216 ubifs_dump_node(c, dent1);
1217 goto out_free;
1218 }
1219
1220 key_read(c, &dent2->key, &key);
1221 if (keys_cmp(c, &zbr2->key, &key)) {
1222 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224 DBG_KEY_BUF_LEN));
1225 ubifs_err(c, "but it should have key %s according to tnc",
1226 dbg_snprintf_key(c, &zbr2->key, key_buf,
1227 DBG_KEY_BUF_LEN));
1228 ubifs_dump_node(c, dent2);
1229 goto out_free;
1230 }
1231
1232 nlen1 = le16_to_cpu(dent1->nlen);
1233 nlen2 = le16_to_cpu(dent2->nlen);
1234
1235 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237 err = 0;
1238 goto out_free;
1239 }
1240 if (cmp == 0 && nlen1 == nlen2)
1241 ubifs_err(c, "2 xent/dent nodes with the same name");
1242 else
1243 ubifs_err(c, "bad order of colliding key %s",
1244 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247 ubifs_dump_node(c, dent1);
1248 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249 ubifs_dump_node(c, dent2);
1250
1251out_free:
1252 kfree(dent2);
1253 kfree(dent1);
1254 return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267 struct ubifs_znode *znode = zbr->znode;
1268 struct ubifs_znode *zp = znode->parent;
1269 int n, err, cmp;
1270
1271 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272 err = 1;
1273 goto out;
1274 }
1275 if (znode->level < 0) {
1276 err = 2;
1277 goto out;
1278 }
1279 if (znode->iip < 0 || znode->iip >= c->fanout) {
1280 err = 3;
1281 goto out;
1282 }
1283
1284 if (zbr->len == 0)
1285 /* Only dirty zbranch may have no on-flash nodes */
1286 if (!ubifs_zn_dirty(znode)) {
1287 err = 4;
1288 goto out;
1289 }
1290
1291 if (ubifs_zn_dirty(znode)) {
1292 /*
1293 * If znode is dirty, its parent has to be dirty as well. The
1294 * order of the operation is important, so we have to have
1295 * memory barriers.
1296 */
1297 smp_mb();
1298 if (zp && !ubifs_zn_dirty(zp)) {
1299 /*
1300 * The dirty flag is atomic and is cleared outside the
1301 * TNC mutex, so znode's dirty flag may now have
1302 * been cleared. The child is always cleared before the
1303 * parent, so we just need to check again.
1304 */
1305 smp_mb();
1306 if (ubifs_zn_dirty(znode)) {
1307 err = 5;
1308 goto out;
1309 }
1310 }
1311 }
1312
1313 if (zp) {
1314 const union ubifs_key *min, *max;
1315
1316 if (znode->level != zp->level - 1) {
1317 err = 6;
1318 goto out;
1319 }
1320
1321 /* Make sure the 'parent' pointer in our znode is correct */
1322 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323 if (!err) {
1324 /* This zbranch does not exist in the parent */
1325 err = 7;
1326 goto out;
1327 }
1328
1329 if (znode->iip >= zp->child_cnt) {
1330 err = 8;
1331 goto out;
1332 }
1333
1334 if (znode->iip != n) {
1335 /* This may happen only in case of collisions */
1336 if (keys_cmp(c, &zp->zbranch[n].key,
1337 &zp->zbranch[znode->iip].key)) {
1338 err = 9;
1339 goto out;
1340 }
1341 n = znode->iip;
1342 }
1343
1344 /*
1345 * Make sure that the first key in our znode is greater than or
1346 * equal to the key in the pointing zbranch.
1347 */
1348 min = &zbr->key;
1349 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350 if (cmp == 1) {
1351 err = 10;
1352 goto out;
1353 }
1354
1355 if (n + 1 < zp->child_cnt) {
1356 max = &zp->zbranch[n + 1].key;
1357
1358 /*
1359 * Make sure the last key in our znode is less or
1360 * equivalent than the key in the zbranch which goes
1361 * after our pointing zbranch.
1362 */
1363 cmp = keys_cmp(c, max,
1364 &znode->zbranch[znode->child_cnt - 1].key);
1365 if (cmp == -1) {
1366 err = 11;
1367 goto out;
1368 }
1369 }
1370 } else {
1371 /* This may only be root znode */
1372 if (zbr != &c->zroot) {
1373 err = 12;
1374 goto out;
1375 }
1376 }
1377
1378 /*
1379 * Make sure that next key is greater or equivalent then the previous
1380 * one.
1381 */
1382 for (n = 1; n < znode->child_cnt; n++) {
1383 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384 &znode->zbranch[n].key);
1385 if (cmp > 0) {
1386 err = 13;
1387 goto out;
1388 }
1389 if (cmp == 0) {
1390 /* This can only be keys with colliding hash */
1391 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392 err = 14;
1393 goto out;
1394 }
1395
1396 if (znode->level != 0 || c->replaying)
1397 continue;
1398
1399 /*
1400 * Colliding keys should follow binary order of
1401 * corresponding xentry/dentry names.
1402 */
1403 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404 &znode->zbranch[n]);
1405 if (err < 0)
1406 return err;
1407 if (err) {
1408 err = 15;
1409 goto out;
1410 }
1411 }
1412 }
1413
1414 for (n = 0; n < znode->child_cnt; n++) {
1415 if (!znode->zbranch[n].znode &&
1416 (znode->zbranch[n].lnum == 0 ||
1417 znode->zbranch[n].len == 0)) {
1418 err = 16;
1419 goto out;
1420 }
1421
1422 if (znode->zbranch[n].lnum != 0 &&
1423 znode->zbranch[n].len == 0) {
1424 err = 17;
1425 goto out;
1426 }
1427
1428 if (znode->zbranch[n].lnum == 0 &&
1429 znode->zbranch[n].len != 0) {
1430 err = 18;
1431 goto out;
1432 }
1433
1434 if (znode->zbranch[n].lnum == 0 &&
1435 znode->zbranch[n].offs != 0) {
1436 err = 19;
1437 goto out;
1438 }
1439
1440 if (znode->level != 0 && znode->zbranch[n].znode)
1441 if (znode->zbranch[n].znode->parent != znode) {
1442 err = 20;
1443 goto out;
1444 }
1445 }
1446
1447 return 0;
1448
1449out:
1450 ubifs_err(c, "failed, error %d", err);
1451 ubifs_msg(c, "dump of the znode");
1452 ubifs_dump_znode(c, znode);
1453 if (zp) {
1454 ubifs_msg(c, "dump of the parent znode");
1455 ubifs_dump_znode(c, zp);
1456 }
1457 dump_stack();
1458 return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471 struct ubifs_znode *znode;
1472 long clean_cnt = 0, dirty_cnt = 0;
1473 int err, last;
1474
1475 if (!dbg_is_chk_index(c))
1476 return 0;
1477
1478 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479 if (!c->zroot.znode)
1480 return 0;
1481
1482 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483 while (1) {
1484 struct ubifs_znode *prev;
1485 struct ubifs_zbranch *zbr;
1486
1487 if (!znode->parent)
1488 zbr = &c->zroot;
1489 else
1490 zbr = &znode->parent->zbranch[znode->iip];
1491
1492 err = dbg_check_znode(c, zbr);
1493 if (err)
1494 return err;
1495
1496 if (extra) {
1497 if (ubifs_zn_dirty(znode))
1498 dirty_cnt += 1;
1499 else
1500 clean_cnt += 1;
1501 }
1502
1503 prev = znode;
1504 znode = ubifs_tnc_postorder_next(znode);
1505 if (!znode)
1506 break;
1507
1508 /*
1509 * If the last key of this znode is equivalent to the first key
1510 * of the next znode (collision), then check order of the keys.
1511 */
1512 last = prev->child_cnt - 1;
1513 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514 !keys_cmp(c, &prev->zbranch[last].key,
1515 &znode->zbranch[0].key)) {
1516 err = dbg_check_key_order(c, &prev->zbranch[last],
1517 &znode->zbranch[0]);
1518 if (err < 0)
1519 return err;
1520 if (err) {
1521 ubifs_msg(c, "first znode");
1522 ubifs_dump_znode(c, prev);
1523 ubifs_msg(c, "second znode");
1524 ubifs_dump_znode(c, znode);
1525 return -EINVAL;
1526 }
1527 }
1528 }
1529
1530 if (extra) {
1531 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533 atomic_long_read(&c->clean_zn_cnt),
1534 clean_cnt);
1535 return -EINVAL;
1536 }
1537 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539 atomic_long_read(&c->dirty_zn_cnt),
1540 dirty_cnt);
1541 return -EINVAL;
1542 }
1543 }
1544
1545 return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564 dbg_znode_callback znode_cb, void *priv)
1565{
1566 int err;
1567 struct ubifs_zbranch *zbr;
1568 struct ubifs_znode *znode, *child;
1569
1570 mutex_lock(&c->tnc_mutex);
1571 /* If the root indexing node is not in TNC - pull it */
1572 if (!c->zroot.znode) {
1573 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574 if (IS_ERR(c->zroot.znode)) {
1575 err = PTR_ERR(c->zroot.znode);
1576 c->zroot.znode = NULL;
1577 goto out_unlock;
1578 }
1579 }
1580
1581 /*
1582 * We are going to traverse the indexing tree in the postorder manner.
1583 * Go down and find the leftmost indexing node where we are going to
1584 * start from.
1585 */
1586 znode = c->zroot.znode;
1587 while (znode->level > 0) {
1588 zbr = &znode->zbranch[0];
1589 child = zbr->znode;
1590 if (!child) {
1591 child = ubifs_load_znode(c, zbr, znode, 0);
1592 if (IS_ERR(child)) {
1593 err = PTR_ERR(child);
1594 goto out_unlock;
1595 }
1596 zbr->znode = child;
1597 }
1598
1599 znode = child;
1600 }
1601
1602 /* Iterate over all indexing nodes */
1603 while (1) {
1604 int idx;
1605
1606 cond_resched();
1607
1608 if (znode_cb) {
1609 err = znode_cb(c, znode, priv);
1610 if (err) {
1611 ubifs_err(c, "znode checking function returned error %d",
1612 err);
1613 ubifs_dump_znode(c, znode);
1614 goto out_dump;
1615 }
1616 }
1617 if (leaf_cb && znode->level == 0) {
1618 for (idx = 0; idx < znode->child_cnt; idx++) {
1619 zbr = &znode->zbranch[idx];
1620 err = leaf_cb(c, zbr, priv);
1621 if (err) {
1622 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623 err, zbr->lnum, zbr->offs);
1624 goto out_dump;
1625 }
1626 }
1627 }
1628
1629 if (!znode->parent)
1630 break;
1631
1632 idx = znode->iip + 1;
1633 znode = znode->parent;
1634 if (idx < znode->child_cnt) {
1635 /* Switch to the next index in the parent */
1636 zbr = &znode->zbranch[idx];
1637 child = zbr->znode;
1638 if (!child) {
1639 child = ubifs_load_znode(c, zbr, znode, idx);
1640 if (IS_ERR(child)) {
1641 err = PTR_ERR(child);
1642 goto out_unlock;
1643 }
1644 zbr->znode = child;
1645 }
1646 znode = child;
1647 } else
1648 /*
1649 * This is the last child, switch to the parent and
1650 * continue.
1651 */
1652 continue;
1653
1654 /* Go to the lowest leftmost znode in the new sub-tree */
1655 while (znode->level > 0) {
1656 zbr = &znode->zbranch[0];
1657 child = zbr->znode;
1658 if (!child) {
1659 child = ubifs_load_znode(c, zbr, znode, 0);
1660 if (IS_ERR(child)) {
1661 err = PTR_ERR(child);
1662 goto out_unlock;
1663 }
1664 zbr->znode = child;
1665 }
1666 znode = child;
1667 }
1668 }
1669
1670 mutex_unlock(&c->tnc_mutex);
1671 return 0;
1672
1673out_dump:
1674 if (znode->parent)
1675 zbr = &znode->parent->zbranch[znode->iip];
1676 else
1677 zbr = &c->zroot;
1678 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679 ubifs_dump_znode(c, znode);
1680out_unlock:
1681 mutex_unlock(&c->tnc_mutex);
1682 return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697 long long *idx_size = priv;
1698 int add;
1699
1700 add = ubifs_idx_node_sz(c, znode->child_cnt);
1701 add = ALIGN(add, 8);
1702 *idx_size += add;
1703 return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717 int err;
1718 long long calc = 0;
1719
1720 if (!dbg_is_chk_index(c))
1721 return 0;
1722
1723 err = dbg_walk_index(c, NULL, add_size, &calc);
1724 if (err) {
1725 ubifs_err(c, "error %d while walking the index", err);
1726 return err;
1727 }
1728
1729 if (calc != idx_size) {
1730 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731 calc, idx_size);
1732 dump_stack();
1733 return -EINVAL;
1734 }
1735
1736 return 0;
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 * while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 * inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 * inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760 struct rb_node rb;
1761 ino_t inum;
1762 umode_t mode;
1763 unsigned int nlink;
1764 unsigned int xattr_cnt;
1765 int references;
1766 int calc_cnt;
1767 long long size;
1768 unsigned int xattr_sz;
1769 long long calc_sz;
1770 long long calc_xcnt;
1771 long long calc_xsz;
1772 unsigned int xattr_nms;
1773 long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781 struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795 struct fsck_data *fsckd,
1796 struct ubifs_ino_node *ino)
1797{
1798 struct rb_node **p, *parent = NULL;
1799 struct fsck_inode *fscki;
1800 ino_t inum = key_inum_flash(c, &ino->key);
1801 struct inode *inode;
1802 struct ubifs_inode *ui;
1803
1804 p = &fsckd->inodes.rb_node;
1805 while (*p) {
1806 parent = *p;
1807 fscki = rb_entry(parent, struct fsck_inode, rb);
1808 if (inum < fscki->inum)
1809 p = &(*p)->rb_left;
1810 else if (inum > fscki->inum)
1811 p = &(*p)->rb_right;
1812 else
1813 return fscki;
1814 }
1815
1816 if (inum > c->highest_inum) {
1817 ubifs_err(c, "too high inode number, max. is %lu",
1818 (unsigned long)c->highest_inum);
1819 return ERR_PTR(-EINVAL);
1820 }
1821
1822 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823 if (!fscki)
1824 return ERR_PTR(-ENOMEM);
1825
1826 inode = ilookup(c->vfs_sb, inum);
1827
1828 fscki->inum = inum;
1829 /*
1830 * If the inode is present in the VFS inode cache, use it instead of
1831 * the on-flash inode which might be out-of-date. E.g., the size might
1832 * be out-of-date. If we do not do this, the following may happen, for
1833 * example:
1834 * 1. A power cut happens
1835 * 2. We mount the file-system R/O, the replay process fixes up the
1836 * inode size in the VFS cache, but on on-flash.
1837 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1838 * size.
1839 */
1840 if (!inode) {
1841 fscki->nlink = le32_to_cpu(ino->nlink);
1842 fscki->size = le64_to_cpu(ino->size);
1843 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846 fscki->mode = le32_to_cpu(ino->mode);
1847 } else {
1848 ui = ubifs_inode(inode);
1849 fscki->nlink = inode->i_nlink;
1850 fscki->size = inode->i_size;
1851 fscki->xattr_cnt = ui->xattr_cnt;
1852 fscki->xattr_sz = ui->xattr_size;
1853 fscki->xattr_nms = ui->xattr_names;
1854 fscki->mode = inode->i_mode;
1855 iput(inode);
1856 }
1857
1858 if (S_ISDIR(fscki->mode)) {
1859 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860 fscki->calc_cnt = 2;
1861 }
1862
1863 rb_link_node(&fscki->rb, parent, p);
1864 rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866 return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880 struct rb_node *p;
1881 struct fsck_inode *fscki;
1882
1883 p = fsckd->inodes.rb_node;
1884 while (p) {
1885 fscki = rb_entry(p, struct fsck_inode, rb);
1886 if (inum < fscki->inum)
1887 p = p->rb_left;
1888 else if (inum > fscki->inum)
1889 p = p->rb_right;
1890 else
1891 return fscki;
1892 }
1893 return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908 struct fsck_data *fsckd, ino_t inum)
1909{
1910 int n, err;
1911 union ubifs_key key;
1912 struct ubifs_znode *znode;
1913 struct ubifs_zbranch *zbr;
1914 struct ubifs_ino_node *ino;
1915 struct fsck_inode *fscki;
1916
1917 fscki = search_inode(fsckd, inum);
1918 if (fscki)
1919 return fscki;
1920
1921 ino_key_init(c, &key, inum);
1922 err = ubifs_lookup_level0(c, &key, &znode, &n);
1923 if (!err) {
1924 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925 return ERR_PTR(-ENOENT);
1926 } else if (err < 0) {
1927 ubifs_err(c, "error %d while looking up inode %lu",
1928 err, (unsigned long)inum);
1929 return ERR_PTR(err);
1930 }
1931
1932 zbr = &znode->zbranch[n];
1933 if (zbr->len < UBIFS_INO_NODE_SZ) {
1934 ubifs_err(c, "bad node %lu node length %d",
1935 (unsigned long)inum, zbr->len);
1936 return ERR_PTR(-EINVAL);
1937 }
1938
1939 ino = kmalloc(zbr->len, GFP_NOFS);
1940 if (!ino)
1941 return ERR_PTR(-ENOMEM);
1942
1943 err = ubifs_tnc_read_node(c, zbr, ino);
1944 if (err) {
1945 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946 zbr->lnum, zbr->offs, err);
1947 kfree(ino);
1948 return ERR_PTR(err);
1949 }
1950
1951 fscki = add_inode(c, fsckd, ino);
1952 kfree(ino);
1953 if (IS_ERR(fscki)) {
1954 ubifs_err(c, "error %ld while adding inode %lu node",
1955 PTR_ERR(fscki), (unsigned long)inum);
1956 return fscki;
1957 }
1958
1959 return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979 void *priv)
1980{
1981 ino_t inum;
1982 void *node;
1983 struct ubifs_ch *ch;
1984 int err, type = key_type(c, &zbr->key);
1985 struct fsck_inode *fscki;
1986
1987 if (zbr->len < UBIFS_CH_SZ) {
1988 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989 zbr->len, zbr->lnum, zbr->offs);
1990 return -EINVAL;
1991 }
1992
1993 node = kmalloc(zbr->len, GFP_NOFS);
1994 if (!node)
1995 return -ENOMEM;
1996
1997 err = ubifs_tnc_read_node(c, zbr, node);
1998 if (err) {
1999 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000 zbr->lnum, zbr->offs, err);
2001 goto out_free;
2002 }
2003
2004 /* If this is an inode node, add it to RB-tree of inodes */
2005 if (type == UBIFS_INO_KEY) {
2006 fscki = add_inode(c, priv, node);
2007 if (IS_ERR(fscki)) {
2008 err = PTR_ERR(fscki);
2009 ubifs_err(c, "error %d while adding inode node", err);
2010 goto out_dump;
2011 }
2012 goto out;
2013 }
2014
2015 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016 type != UBIFS_DATA_KEY) {
2017 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018 type, zbr->lnum, zbr->offs);
2019 err = -EINVAL;
2020 goto out_free;
2021 }
2022
2023 ch = node;
2024 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025 ubifs_err(c, "too high sequence number, max. is %llu",
2026 c->max_sqnum);
2027 err = -EINVAL;
2028 goto out_dump;
2029 }
2030
2031 if (type == UBIFS_DATA_KEY) {
2032 long long blk_offs;
2033 struct ubifs_data_node *dn = node;
2034
2035 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037 /*
2038 * Search the inode node this data node belongs to and insert
2039 * it to the RB-tree of inodes.
2040 */
2041 inum = key_inum_flash(c, &dn->key);
2042 fscki = read_add_inode(c, priv, inum);
2043 if (IS_ERR(fscki)) {
2044 err = PTR_ERR(fscki);
2045 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046 err, (unsigned long)inum);
2047 goto out_dump;
2048 }
2049
2050 /* Make sure the data node is within inode size */
2051 blk_offs = key_block_flash(c, &dn->key);
2052 blk_offs <<= UBIFS_BLOCK_SHIFT;
2053 blk_offs += le32_to_cpu(dn->size);
2054 if (blk_offs > fscki->size) {
2055 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056 zbr->lnum, zbr->offs, fscki->size);
2057 err = -EINVAL;
2058 goto out_dump;
2059 }
2060 } else {
2061 int nlen;
2062 struct ubifs_dent_node *dent = node;
2063 struct fsck_inode *fscki1;
2064
2065 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067 err = ubifs_validate_entry(c, dent);
2068 if (err)
2069 goto out_dump;
2070
2071 /*
2072 * Search the inode node this entry refers to and the parent
2073 * inode node and insert them to the RB-tree of inodes.
2074 */
2075 inum = le64_to_cpu(dent->inum);
2076 fscki = read_add_inode(c, priv, inum);
2077 if (IS_ERR(fscki)) {
2078 err = PTR_ERR(fscki);
2079 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080 err, (unsigned long)inum);
2081 goto out_dump;
2082 }
2083
2084 /* Count how many direntries or xentries refers this inode */
2085 fscki->references += 1;
2086
2087 inum = key_inum_flash(c, &dent->key);
2088 fscki1 = read_add_inode(c, priv, inum);
2089 if (IS_ERR(fscki1)) {
2090 err = PTR_ERR(fscki1);
2091 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092 err, (unsigned long)inum);
2093 goto out_dump;
2094 }
2095
2096 nlen = le16_to_cpu(dent->nlen);
2097 if (type == UBIFS_XENT_KEY) {
2098 fscki1->calc_xcnt += 1;
2099 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101 fscki1->calc_xnms += nlen;
2102 } else {
2103 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104 if (dent->type == UBIFS_ITYPE_DIR)
2105 fscki1->calc_cnt += 1;
2106 }
2107 }
2108
2109out:
2110 kfree(node);
2111 return 0;
2112
2113out_dump:
2114 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115 ubifs_dump_node(c, node);
2116out_free:
2117 kfree(node);
2118 return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127 struct fsck_inode *fscki, *n;
2128
2129 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130 kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145 int n, err;
2146 union ubifs_key key;
2147 struct ubifs_znode *znode;
2148 struct ubifs_zbranch *zbr;
2149 struct ubifs_ino_node *ino;
2150 struct fsck_inode *fscki;
2151 struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153 while (this) {
2154 fscki = rb_entry(this, struct fsck_inode, rb);
2155 this = rb_next(this);
2156
2157 if (S_ISDIR(fscki->mode)) {
2158 /*
2159 * Directories have to have exactly one reference (they
2160 * cannot have hardlinks), although root inode is an
2161 * exception.
2162 */
2163 if (fscki->inum != UBIFS_ROOT_INO &&
2164 fscki->references != 1) {
2165 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166 (unsigned long)fscki->inum,
2167 fscki->references);
2168 goto out_dump;
2169 }
2170 if (fscki->inum == UBIFS_ROOT_INO &&
2171 fscki->references != 0) {
2172 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173 (unsigned long)fscki->inum,
2174 fscki->references);
2175 goto out_dump;
2176 }
2177 if (fscki->calc_sz != fscki->size) {
2178 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179 (unsigned long)fscki->inum,
2180 fscki->size, fscki->calc_sz);
2181 goto out_dump;
2182 }
2183 if (fscki->calc_cnt != fscki->nlink) {
2184 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185 (unsigned long)fscki->inum,
2186 fscki->nlink, fscki->calc_cnt);
2187 goto out_dump;
2188 }
2189 } else {
2190 if (fscki->references != fscki->nlink) {
2191 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192 (unsigned long)fscki->inum,
2193 fscki->nlink, fscki->references);
2194 goto out_dump;
2195 }
2196 }
2197 if (fscki->xattr_sz != fscki->calc_xsz) {
2198 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199 (unsigned long)fscki->inum, fscki->xattr_sz,
2200 fscki->calc_xsz);
2201 goto out_dump;
2202 }
2203 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205 (unsigned long)fscki->inum,
2206 fscki->xattr_cnt, fscki->calc_xcnt);
2207 goto out_dump;
2208 }
2209 if (fscki->xattr_nms != fscki->calc_xnms) {
2210 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211 (unsigned long)fscki->inum, fscki->xattr_nms,
2212 fscki->calc_xnms);
2213 goto out_dump;
2214 }
2215 }
2216
2217 return 0;
2218
2219out_dump:
2220 /* Read the bad inode and dump it */
2221 ino_key_init(c, &key, fscki->inum);
2222 err = ubifs_lookup_level0(c, &key, &znode, &n);
2223 if (!err) {
2224 ubifs_err(c, "inode %lu not found in index",
2225 (unsigned long)fscki->inum);
2226 return -ENOENT;
2227 } else if (err < 0) {
2228 ubifs_err(c, "error %d while looking up inode %lu",
2229 err, (unsigned long)fscki->inum);
2230 return err;
2231 }
2232
2233 zbr = &znode->zbranch[n];
2234 ino = kmalloc(zbr->len, GFP_NOFS);
2235 if (!ino)
2236 return -ENOMEM;
2237
2238 err = ubifs_tnc_read_node(c, zbr, ino);
2239 if (err) {
2240 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241 zbr->lnum, zbr->offs, err);
2242 kfree(ino);
2243 return err;
2244 }
2245
2246 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248 ubifs_dump_node(c, ino);
2249 kfree(ino);
2250 return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 * inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268 int err;
2269 struct fsck_data fsckd;
2270
2271 if (!dbg_is_chk_fs(c))
2272 return 0;
2273
2274 fsckd.inodes = RB_ROOT;
2275 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276 if (err)
2277 goto out_free;
2278
2279 err = check_inodes(c, &fsckd);
2280 if (err)
2281 goto out_free;
2282
2283 free_inodes(&fsckd);
2284 return 0;
2285
2286out_free:
2287 ubifs_err(c, "file-system check failed with error %d", err);
2288 dump_stack();
2289 free_inodes(&fsckd);
2290 return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303 struct list_head *cur;
2304 struct ubifs_scan_node *sa, *sb;
2305
2306 if (!dbg_is_chk_gen(c))
2307 return 0;
2308
2309 for (cur = head->next; cur->next != head; cur = cur->next) {
2310 ino_t inuma, inumb;
2311 uint32_t blka, blkb;
2312
2313 cond_resched();
2314 sa = container_of(cur, struct ubifs_scan_node, list);
2315 sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317 if (sa->type != UBIFS_DATA_NODE) {
2318 ubifs_err(c, "bad node type %d", sa->type);
2319 ubifs_dump_node(c, sa->node);
2320 return -EINVAL;
2321 }
2322 if (sb->type != UBIFS_DATA_NODE) {
2323 ubifs_err(c, "bad node type %d", sb->type);
2324 ubifs_dump_node(c, sb->node);
2325 return -EINVAL;
2326 }
2327
2328 inuma = key_inum(c, &sa->key);
2329 inumb = key_inum(c, &sb->key);
2330
2331 if (inuma < inumb)
2332 continue;
2333 if (inuma > inumb) {
2334 ubifs_err(c, "larger inum %lu goes before inum %lu",
2335 (unsigned long)inuma, (unsigned long)inumb);
2336 goto error_dump;
2337 }
2338
2339 blka = key_block(c, &sa->key);
2340 blkb = key_block(c, &sb->key);
2341
2342 if (blka > blkb) {
2343 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344 goto error_dump;
2345 }
2346 if (blka == blkb) {
2347 ubifs_err(c, "two data nodes for the same block");
2348 goto error_dump;
2349 }
2350 }
2351
2352 return 0;
2353
2354error_dump:
2355 ubifs_dump_node(c, sa->node);
2356 ubifs_dump_node(c, sb->node);
2357 return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370 struct list_head *cur;
2371 struct ubifs_scan_node *sa, *sb;
2372
2373 if (!dbg_is_chk_gen(c))
2374 return 0;
2375
2376 for (cur = head->next; cur->next != head; cur = cur->next) {
2377 ino_t inuma, inumb;
2378 uint32_t hasha, hashb;
2379
2380 cond_resched();
2381 sa = container_of(cur, struct ubifs_scan_node, list);
2382 sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385 sa->type != UBIFS_XENT_NODE) {
2386 ubifs_err(c, "bad node type %d", sa->type);
2387 ubifs_dump_node(c, sa->node);
2388 return -EINVAL;
2389 }
2390 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391 sa->type != UBIFS_XENT_NODE) {
2392 ubifs_err(c, "bad node type %d", sb->type);
2393 ubifs_dump_node(c, sb->node);
2394 return -EINVAL;
2395 }
2396
2397 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398 ubifs_err(c, "non-inode node goes before inode node");
2399 goto error_dump;
2400 }
2401
2402 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403 continue;
2404
2405 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406 /* Inode nodes are sorted in descending size order */
2407 if (sa->len < sb->len) {
2408 ubifs_err(c, "smaller inode node goes first");
2409 goto error_dump;
2410 }
2411 continue;
2412 }
2413
2414 /*
2415 * This is either a dentry or xentry, which should be sorted in
2416 * ascending (parent ino, hash) order.
2417 */
2418 inuma = key_inum(c, &sa->key);
2419 inumb = key_inum(c, &sb->key);
2420
2421 if (inuma < inumb)
2422 continue;
2423 if (inuma > inumb) {
2424 ubifs_err(c, "larger inum %lu goes before inum %lu",
2425 (unsigned long)inuma, (unsigned long)inumb);
2426 goto error_dump;
2427 }
2428
2429 hasha = key_block(c, &sa->key);
2430 hashb = key_block(c, &sb->key);
2431
2432 if (hasha > hashb) {
2433 ubifs_err(c, "larger hash %u goes before %u",
2434 hasha, hashb);
2435 goto error_dump;
2436 }
2437 }
2438
2439 return 0;
2440
2441error_dump:
2442 ubifs_msg(c, "dumping first node");
2443 ubifs_dump_node(c, sa->node);
2444 ubifs_msg(c, "dumping second node");
2445 ubifs_dump_node(c, sb->node);
2446 return -EINVAL;
2447 return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452 return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458 struct ubifs_debug_info *d = c->dbg;
2459
2460 ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462 if (!d->pc_cnt) {
2463 /* First call - decide delay to the power cut */
2464 if (chance(1, 2)) {
2465 unsigned long delay;
2466
2467 if (chance(1, 2)) {
2468 d->pc_delay = 1;
2469 /* Fail within 1 minute */
2470 delay = prandom_u32() % 60000;
2471 d->pc_timeout = jiffies;
2472 d->pc_timeout += msecs_to_jiffies(delay);
2473 ubifs_warn(c, "failing after %lums", delay);
2474 } else {
2475 d->pc_delay = 2;
2476 delay = prandom_u32() % 10000;
2477 /* Fail within 10000 operations */
2478 d->pc_cnt_max = delay;
2479 ubifs_warn(c, "failing after %lu calls", delay);
2480 }
2481 }
2482
2483 d->pc_cnt += 1;
2484 }
2485
2486 /* Determine if failure delay has expired */
2487 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488 return 0;
2489 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490 return 0;
2491
2492 if (lnum == UBIFS_SB_LNUM) {
2493 if (write && chance(1, 2))
2494 return 0;
2495 if (chance(19, 20))
2496 return 0;
2497 ubifs_warn(c, "failing in super block LEB %d", lnum);
2498 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499 if (chance(19, 20))
2500 return 0;
2501 ubifs_warn(c, "failing in master LEB %d", lnum);
2502 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503 if (write && chance(99, 100))
2504 return 0;
2505 if (chance(399, 400))
2506 return 0;
2507 ubifs_warn(c, "failing in log LEB %d", lnum);
2508 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509 if (write && chance(7, 8))
2510 return 0;
2511 if (chance(19, 20))
2512 return 0;
2513 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515 if (write && chance(1, 2))
2516 return 0;
2517 if (chance(9, 10))
2518 return 0;
2519 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520 } else if (lnum == c->ihead_lnum) {
2521 if (chance(99, 100))
2522 return 0;
2523 ubifs_warn(c, "failing in index head LEB %d", lnum);
2524 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525 if (chance(9, 10))
2526 return 0;
2527 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529 !ubifs_search_bud(c, lnum)) {
2530 if (chance(19, 20))
2531 return 0;
2532 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535 if (chance(999, 1000))
2536 return 0;
2537 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538 } else {
2539 if (chance(9999, 10000))
2540 return 0;
2541 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542 }
2543
2544 d->pc_happened = 1;
2545 ubifs_warn(c, "========== Power cut emulated ==========");
2546 dump_stack();
2547 return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551 unsigned int len)
2552{
2553 unsigned int from, to, ffs = chance(1, 2);
2554 unsigned char *p = (void *)buf;
2555
2556 from = prandom_u32() % len;
2557 /* Corruption span max to end of write unit */
2558 to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561 ffs ? "0xFFs" : "random data");
2562
2563 if (ffs)
2564 memset(p + from, 0xFF, to - from);
2565 else
2566 prandom_bytes(p + from, to - from);
2567
2568 return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572 int offs, int len)
2573{
2574 int err, failing;
2575
2576 if (dbg_is_power_cut(c))
2577 return -EROFS;
2578
2579 failing = power_cut_emulated(c, lnum, 1);
2580 if (failing) {
2581 len = corrupt_data(c, buf, len);
2582 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583 len, lnum, offs);
2584 }
2585 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586 if (err)
2587 return err;
2588 if (failing)
2589 return -EROFS;
2590 return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594 int len)
2595{
2596 int err;
2597
2598 if (dbg_is_power_cut(c))
2599 return -EROFS;
2600 if (power_cut_emulated(c, lnum, 1))
2601 return -EROFS;
2602 err = ubi_leb_change(c->ubi, lnum, buf, len);
2603 if (err)
2604 return err;
2605 if (power_cut_emulated(c, lnum, 1))
2606 return -EROFS;
2607 return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612 int err;
2613
2614 if (dbg_is_power_cut(c))
2615 return -EROFS;
2616 if (power_cut_emulated(c, lnum, 0))
2617 return -EROFS;
2618 err = ubi_leb_unmap(c->ubi, lnum);
2619 if (err)
2620 return err;
2621 if (power_cut_emulated(c, lnum, 0))
2622 return -EROFS;
2623 return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628 int err;
2629
2630 if (dbg_is_power_cut(c))
2631 return -EROFS;
2632 if (power_cut_emulated(c, lnum, 0))
2633 return -EROFS;
2634 err = ubi_leb_map(c->ubi, lnum);
2635 if (err)
2636 return err;
2637 if (power_cut_emulated(c, lnum, 0))
2638 return -EROFS;
2639 return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650 file->private_data = inode->i_private;
2651 return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667 loff_t *ppos)
2668{
2669 char buf[3];
2670
2671 if (val)
2672 buf[0] = '1';
2673 else
2674 buf[0] = '0';
2675 buf[1] = '\n';
2676 buf[2] = 0x00;
2677
2678 return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682 loff_t *ppos)
2683{
2684 struct dentry *dent = file->f_path.dentry;
2685 struct ubifs_info *c = file->private_data;
2686 struct ubifs_debug_info *d = c->dbg;
2687 int val;
2688
2689 if (dent == d->dfs_chk_gen)
2690 val = d->chk_gen;
2691 else if (dent == d->dfs_chk_index)
2692 val = d->chk_index;
2693 else if (dent == d->dfs_chk_orph)
2694 val = d->chk_orph;
2695 else if (dent == d->dfs_chk_lprops)
2696 val = d->chk_lprops;
2697 else if (dent == d->dfs_chk_fs)
2698 val = d->chk_fs;
2699 else if (dent == d->dfs_tst_rcvry)
2700 val = d->tst_rcvry;
2701 else if (dent == d->dfs_ro_error)
2702 val = c->ro_error;
2703 else
2704 return -EINVAL;
2705
2706 return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720 size_t buf_size;
2721 char buf[8];
2722
2723 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724 if (copy_from_user(buf, u, buf_size))
2725 return -EFAULT;
2726
2727 if (buf[0] == '1')
2728 return 1;
2729 else if (buf[0] == '0')
2730 return 0;
2731
2732 return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736 size_t count, loff_t *ppos)
2737{
2738 struct ubifs_info *c = file->private_data;
2739 struct ubifs_debug_info *d = c->dbg;
2740 struct dentry *dent = file->f_path.dentry;
2741 int val;
2742
2743 /*
2744 * TODO: this is racy - the file-system might have already been
2745 * unmounted and we'd oops in this case. The plan is to fix it with
2746 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749 * superblocks and fine the one with the same UUID, and take the
2750 * locking right.
2751 *
2752 * The other way to go suggested by Al Viro is to create a separate
2753 * 'ubifs-debug' file-system instead.
2754 */
2755 if (file->f_path.dentry == d->dfs_dump_lprops) {
2756 ubifs_dump_lprops(c);
2757 return count;
2758 }
2759 if (file->f_path.dentry == d->dfs_dump_budg) {
2760 ubifs_dump_budg(c, &c->bi);
2761 return count;
2762 }
2763 if (file->f_path.dentry == d->dfs_dump_tnc) {
2764 mutex_lock(&c->tnc_mutex);
2765 ubifs_dump_tnc(c);
2766 mutex_unlock(&c->tnc_mutex);
2767 return count;
2768 }
2769
2770 val = interpret_user_input(u, count);
2771 if (val < 0)
2772 return val;
2773
2774 if (dent == d->dfs_chk_gen)
2775 d->chk_gen = val;
2776 else if (dent == d->dfs_chk_index)
2777 d->chk_index = val;
2778 else if (dent == d->dfs_chk_orph)
2779 d->chk_orph = val;
2780 else if (dent == d->dfs_chk_lprops)
2781 d->chk_lprops = val;
2782 else if (dent == d->dfs_chk_fs)
2783 d->chk_fs = val;
2784 else if (dent == d->dfs_tst_rcvry)
2785 d->tst_rcvry = val;
2786 else if (dent == d->dfs_ro_error)
2787 c->ro_error = !!val;
2788 else
2789 return -EINVAL;
2790
2791 return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795 .open = dfs_file_open,
2796 .read = dfs_file_read,
2797 .write = dfs_file_write,
2798 .owner = THIS_MODULE,
2799 .llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816 int err, n;
2817 const char *fname;
2818 struct dentry *dent;
2819 struct ubifs_debug_info *d = c->dbg;
2820
2821 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822 return 0;
2823
2824 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825 c->vi.ubi_num, c->vi.vol_id);
2826 if (n == UBIFS_DFS_DIR_LEN) {
2827 /* The array size is too small */
2828 fname = UBIFS_DFS_DIR_NAME;
2829 dent = ERR_PTR(-EINVAL);
2830 goto out;
2831 }
2832
2833 fname = d->dfs_dir_name;
2834 dent = debugfs_create_dir(fname, dfs_rootdir);
2835 if (IS_ERR_OR_NULL(dent))
2836 goto out;
2837 d->dfs_dir = dent;
2838
2839 fname = "dump_lprops";
2840 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841 if (IS_ERR_OR_NULL(dent))
2842 goto out_remove;
2843 d->dfs_dump_lprops = dent;
2844
2845 fname = "dump_budg";
2846 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847 if (IS_ERR_OR_NULL(dent))
2848 goto out_remove;
2849 d->dfs_dump_budg = dent;
2850
2851 fname = "dump_tnc";
2852 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853 if (IS_ERR_OR_NULL(dent))
2854 goto out_remove;
2855 d->dfs_dump_tnc = dent;
2856
2857 fname = "chk_general";
2858 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859 &dfs_fops);
2860 if (IS_ERR_OR_NULL(dent))
2861 goto out_remove;
2862 d->dfs_chk_gen = dent;
2863
2864 fname = "chk_index";
2865 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866 &dfs_fops);
2867 if (IS_ERR_OR_NULL(dent))
2868 goto out_remove;
2869 d->dfs_chk_index = dent;
2870
2871 fname = "chk_orphans";
2872 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873 &dfs_fops);
2874 if (IS_ERR_OR_NULL(dent))
2875 goto out_remove;
2876 d->dfs_chk_orph = dent;
2877
2878 fname = "chk_lprops";
2879 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880 &dfs_fops);
2881 if (IS_ERR_OR_NULL(dent))
2882 goto out_remove;
2883 d->dfs_chk_lprops = dent;
2884
2885 fname = "chk_fs";
2886 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887 &dfs_fops);
2888 if (IS_ERR_OR_NULL(dent))
2889 goto out_remove;
2890 d->dfs_chk_fs = dent;
2891
2892 fname = "tst_recovery";
2893 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894 &dfs_fops);
2895 if (IS_ERR_OR_NULL(dent))
2896 goto out_remove;
2897 d->dfs_tst_rcvry = dent;
2898
2899 fname = "ro_error";
2900 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901 &dfs_fops);
2902 if (IS_ERR_OR_NULL(dent))
2903 goto out_remove;
2904 d->dfs_ro_error = dent;
2905
2906 return 0;
2907
2908out_remove:
2909 debugfs_remove_recursive(d->dfs_dir);
2910out:
2911 err = dent ? PTR_ERR(dent) : -ENODEV;
2912 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913 fname, err);
2914 return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923 if (IS_ENABLED(CONFIG_DEBUG_FS))
2924 debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937 size_t count, loff_t *ppos)
2938{
2939 struct dentry *dent = file->f_path.dentry;
2940 int val;
2941
2942 if (dent == dfs_chk_gen)
2943 val = ubifs_dbg.chk_gen;
2944 else if (dent == dfs_chk_index)
2945 val = ubifs_dbg.chk_index;
2946 else if (dent == dfs_chk_orph)
2947 val = ubifs_dbg.chk_orph;
2948 else if (dent == dfs_chk_lprops)
2949 val = ubifs_dbg.chk_lprops;
2950 else if (dent == dfs_chk_fs)
2951 val = ubifs_dbg.chk_fs;
2952 else if (dent == dfs_tst_rcvry)
2953 val = ubifs_dbg.tst_rcvry;
2954 else
2955 return -EINVAL;
2956
2957 return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961 size_t count, loff_t *ppos)
2962{
2963 struct dentry *dent = file->f_path.dentry;
2964 int val;
2965
2966 val = interpret_user_input(u, count);
2967 if (val < 0)
2968 return val;
2969
2970 if (dent == dfs_chk_gen)
2971 ubifs_dbg.chk_gen = val;
2972 else if (dent == dfs_chk_index)
2973 ubifs_dbg.chk_index = val;
2974 else if (dent == dfs_chk_orph)
2975 ubifs_dbg.chk_orph = val;
2976 else if (dent == dfs_chk_lprops)
2977 ubifs_dbg.chk_lprops = val;
2978 else if (dent == dfs_chk_fs)
2979 ubifs_dbg.chk_fs = val;
2980 else if (dent == dfs_tst_rcvry)
2981 ubifs_dbg.tst_rcvry = val;
2982 else
2983 return -EINVAL;
2984
2985 return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989 .read = dfs_global_file_read,
2990 .write = dfs_global_file_write,
2991 .owner = THIS_MODULE,
2992 .llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005 int err;
3006 const char *fname;
3007 struct dentry *dent;
3008
3009 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010 return 0;
3011
3012 fname = "ubifs";
3013 dent = debugfs_create_dir(fname, NULL);
3014 if (IS_ERR_OR_NULL(dent))
3015 goto out;
3016 dfs_rootdir = dent;
3017
3018 fname = "chk_general";
3019 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020 &dfs_global_fops);
3021 if (IS_ERR_OR_NULL(dent))
3022 goto out_remove;
3023 dfs_chk_gen = dent;
3024
3025 fname = "chk_index";
3026 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027 &dfs_global_fops);
3028 if (IS_ERR_OR_NULL(dent))
3029 goto out_remove;
3030 dfs_chk_index = dent;
3031
3032 fname = "chk_orphans";
3033 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034 &dfs_global_fops);
3035 if (IS_ERR_OR_NULL(dent))
3036 goto out_remove;
3037 dfs_chk_orph = dent;
3038
3039 fname = "chk_lprops";
3040 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041 &dfs_global_fops);
3042 if (IS_ERR_OR_NULL(dent))
3043 goto out_remove;
3044 dfs_chk_lprops = dent;
3045
3046 fname = "chk_fs";
3047 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048 &dfs_global_fops);
3049 if (IS_ERR_OR_NULL(dent))
3050 goto out_remove;
3051 dfs_chk_fs = dent;
3052
3053 fname = "tst_recovery";
3054 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055 &dfs_global_fops);
3056 if (IS_ERR_OR_NULL(dent))
3057 goto out_remove;
3058 dfs_tst_rcvry = dent;
3059
3060 return 0;
3061
3062out_remove:
3063 debugfs_remove_recursive(dfs_rootdir);
3064out:
3065 err = dent ? PTR_ERR(dent) : -ENODEV;
3066 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067 current->pid, fname, err);
3068 return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076 if (IS_ENABLED(CONFIG_DEBUG_FS))
3077 debugfs_remove_recursive(dfs_rootdir);
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091 if (!c->dbg)
3092 return -ENOMEM;
3093
3094 return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103 kfree(c->dbg);
3104}
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37static DEFINE_SPINLOCK(dbg_lock);
38
39static const char *get_key_fmt(int fmt)
40{
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
46 }
47}
48
49static const char *get_key_hash(int hash)
50{
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
58 }
59}
60
61static const char *get_key_type(int type)
62{
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
76 }
77}
78
79static const char *get_dent_type(int type)
80{
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
98 }
99}
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
103{
104 char *p = buffer;
105 int type = key_type(c, key);
106
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
133 }
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
138}
139
140const char *dbg_ntype(int type)
141{
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
169 }
170}
171
172static const char *dbg_gtype(int type)
173{
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
183 }
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
203 }
204}
205
206const char *dbg_jhead(int jhead)
207{
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
217 }
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic));
223 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc));
224 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 printk(KERN_ERR "\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
240
241 printk(KERN_ERR "Dump in-memory inode:");
242 printk(KERN_ERR "\tinode %lu\n", inode->i_ino);
243 printk(KERN_ERR "\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink);
246 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid);
247 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid);
248 printk(KERN_ERR "\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 printk(KERN_ERR "\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 printk(KERN_ERR "\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size);
259 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt);
260 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names);
261 printk(KERN_ERR "\tdirty %u\n", ui->dirty);
262 printk(KERN_ERR "\txattr %u\n", ui->xattr);
263 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr);
264 printk(KERN_ERR "\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 printk(KERN_ERR "\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 printk(KERN_ERR "\tflags %d\n", ui->flags);
269 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type);
270 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row);
272 printk(KERN_ERR "\tdata_len %d\n", ui->data_len);
273
274 if (!S_ISDIR(inode->i_mode))
275 return;
276
277 printk(KERN_ERR "List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286 break;
287 }
288
289 printk(KERN_ERR "\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
291
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
297 }
298 kfree(pdent);
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 if (dbg_is_tst_rcvry(c))
309 return;
310
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 (void *)node, UBIFS_CH_SZ, 1);
316 return;
317 }
318
319 spin_lock(&dbg_lock);
320 dump_ch(node);
321
322 switch (ch->node_type) {
323 case UBIFS_PAD_NODE:
324 {
325 const struct ubifs_pad_node *pad = node;
326
327 printk(KERN_ERR "\tpad_len %u\n",
328 le32_to_cpu(pad->pad_len));
329 break;
330 }
331 case UBIFS_SB_NODE:
332 {
333 const struct ubifs_sb_node *sup = node;
334 unsigned int sup_flags = le32_to_cpu(sup->flags);
335
336 printk(KERN_ERR "\tkey_hash %d (%s)\n",
337 (int)sup->key_hash, get_key_hash(sup->key_hash));
338 printk(KERN_ERR "\tkey_fmt %d (%s)\n",
339 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
340 printk(KERN_ERR "\tflags %#x\n", sup_flags);
341 printk(KERN_ERR "\t big_lpt %u\n",
342 !!(sup_flags & UBIFS_FLG_BIGLPT));
343 printk(KERN_ERR "\t space_fixup %u\n",
344 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
345 printk(KERN_ERR "\tmin_io_size %u\n",
346 le32_to_cpu(sup->min_io_size));
347 printk(KERN_ERR "\tleb_size %u\n",
348 le32_to_cpu(sup->leb_size));
349 printk(KERN_ERR "\tleb_cnt %u\n",
350 le32_to_cpu(sup->leb_cnt));
351 printk(KERN_ERR "\tmax_leb_cnt %u\n",
352 le32_to_cpu(sup->max_leb_cnt));
353 printk(KERN_ERR "\tmax_bud_bytes %llu\n",
354 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
355 printk(KERN_ERR "\tlog_lebs %u\n",
356 le32_to_cpu(sup->log_lebs));
357 printk(KERN_ERR "\tlpt_lebs %u\n",
358 le32_to_cpu(sup->lpt_lebs));
359 printk(KERN_ERR "\torph_lebs %u\n",
360 le32_to_cpu(sup->orph_lebs));
361 printk(KERN_ERR "\tjhead_cnt %u\n",
362 le32_to_cpu(sup->jhead_cnt));
363 printk(KERN_ERR "\tfanout %u\n",
364 le32_to_cpu(sup->fanout));
365 printk(KERN_ERR "\tlsave_cnt %u\n",
366 le32_to_cpu(sup->lsave_cnt));
367 printk(KERN_ERR "\tdefault_compr %u\n",
368 (int)le16_to_cpu(sup->default_compr));
369 printk(KERN_ERR "\trp_size %llu\n",
370 (unsigned long long)le64_to_cpu(sup->rp_size));
371 printk(KERN_ERR "\trp_uid %u\n",
372 le32_to_cpu(sup->rp_uid));
373 printk(KERN_ERR "\trp_gid %u\n",
374 le32_to_cpu(sup->rp_gid));
375 printk(KERN_ERR "\tfmt_version %u\n",
376 le32_to_cpu(sup->fmt_version));
377 printk(KERN_ERR "\ttime_gran %u\n",
378 le32_to_cpu(sup->time_gran));
379 printk(KERN_ERR "\tUUID %pUB\n",
380 sup->uuid);
381 break;
382 }
383 case UBIFS_MST_NODE:
384 {
385 const struct ubifs_mst_node *mst = node;
386
387 printk(KERN_ERR "\thighest_inum %llu\n",
388 (unsigned long long)le64_to_cpu(mst->highest_inum));
389 printk(KERN_ERR "\tcommit number %llu\n",
390 (unsigned long long)le64_to_cpu(mst->cmt_no));
391 printk(KERN_ERR "\tflags %#x\n",
392 le32_to_cpu(mst->flags));
393 printk(KERN_ERR "\tlog_lnum %u\n",
394 le32_to_cpu(mst->log_lnum));
395 printk(KERN_ERR "\troot_lnum %u\n",
396 le32_to_cpu(mst->root_lnum));
397 printk(KERN_ERR "\troot_offs %u\n",
398 le32_to_cpu(mst->root_offs));
399 printk(KERN_ERR "\troot_len %u\n",
400 le32_to_cpu(mst->root_len));
401 printk(KERN_ERR "\tgc_lnum %u\n",
402 le32_to_cpu(mst->gc_lnum));
403 printk(KERN_ERR "\tihead_lnum %u\n",
404 le32_to_cpu(mst->ihead_lnum));
405 printk(KERN_ERR "\tihead_offs %u\n",
406 le32_to_cpu(mst->ihead_offs));
407 printk(KERN_ERR "\tindex_size %llu\n",
408 (unsigned long long)le64_to_cpu(mst->index_size));
409 printk(KERN_ERR "\tlpt_lnum %u\n",
410 le32_to_cpu(mst->lpt_lnum));
411 printk(KERN_ERR "\tlpt_offs %u\n",
412 le32_to_cpu(mst->lpt_offs));
413 printk(KERN_ERR "\tnhead_lnum %u\n",
414 le32_to_cpu(mst->nhead_lnum));
415 printk(KERN_ERR "\tnhead_offs %u\n",
416 le32_to_cpu(mst->nhead_offs));
417 printk(KERN_ERR "\tltab_lnum %u\n",
418 le32_to_cpu(mst->ltab_lnum));
419 printk(KERN_ERR "\tltab_offs %u\n",
420 le32_to_cpu(mst->ltab_offs));
421 printk(KERN_ERR "\tlsave_lnum %u\n",
422 le32_to_cpu(mst->lsave_lnum));
423 printk(KERN_ERR "\tlsave_offs %u\n",
424 le32_to_cpu(mst->lsave_offs));
425 printk(KERN_ERR "\tlscan_lnum %u\n",
426 le32_to_cpu(mst->lscan_lnum));
427 printk(KERN_ERR "\tleb_cnt %u\n",
428 le32_to_cpu(mst->leb_cnt));
429 printk(KERN_ERR "\tempty_lebs %u\n",
430 le32_to_cpu(mst->empty_lebs));
431 printk(KERN_ERR "\tidx_lebs %u\n",
432 le32_to_cpu(mst->idx_lebs));
433 printk(KERN_ERR "\ttotal_free %llu\n",
434 (unsigned long long)le64_to_cpu(mst->total_free));
435 printk(KERN_ERR "\ttotal_dirty %llu\n",
436 (unsigned long long)le64_to_cpu(mst->total_dirty));
437 printk(KERN_ERR "\ttotal_used %llu\n",
438 (unsigned long long)le64_to_cpu(mst->total_used));
439 printk(KERN_ERR "\ttotal_dead %llu\n",
440 (unsigned long long)le64_to_cpu(mst->total_dead));
441 printk(KERN_ERR "\ttotal_dark %llu\n",
442 (unsigned long long)le64_to_cpu(mst->total_dark));
443 break;
444 }
445 case UBIFS_REF_NODE:
446 {
447 const struct ubifs_ref_node *ref = node;
448
449 printk(KERN_ERR "\tlnum %u\n",
450 le32_to_cpu(ref->lnum));
451 printk(KERN_ERR "\toffs %u\n",
452 le32_to_cpu(ref->offs));
453 printk(KERN_ERR "\tjhead %u\n",
454 le32_to_cpu(ref->jhead));
455 break;
456 }
457 case UBIFS_INO_NODE:
458 {
459 const struct ubifs_ino_node *ino = node;
460
461 key_read(c, &ino->key, &key);
462 printk(KERN_ERR "\tkey %s\n",
463 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
464 printk(KERN_ERR "\tcreat_sqnum %llu\n",
465 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
466 printk(KERN_ERR "\tsize %llu\n",
467 (unsigned long long)le64_to_cpu(ino->size));
468 printk(KERN_ERR "\tnlink %u\n",
469 le32_to_cpu(ino->nlink));
470 printk(KERN_ERR "\tatime %lld.%u\n",
471 (long long)le64_to_cpu(ino->atime_sec),
472 le32_to_cpu(ino->atime_nsec));
473 printk(KERN_ERR "\tmtime %lld.%u\n",
474 (long long)le64_to_cpu(ino->mtime_sec),
475 le32_to_cpu(ino->mtime_nsec));
476 printk(KERN_ERR "\tctime %lld.%u\n",
477 (long long)le64_to_cpu(ino->ctime_sec),
478 le32_to_cpu(ino->ctime_nsec));
479 printk(KERN_ERR "\tuid %u\n",
480 le32_to_cpu(ino->uid));
481 printk(KERN_ERR "\tgid %u\n",
482 le32_to_cpu(ino->gid));
483 printk(KERN_ERR "\tmode %u\n",
484 le32_to_cpu(ino->mode));
485 printk(KERN_ERR "\tflags %#x\n",
486 le32_to_cpu(ino->flags));
487 printk(KERN_ERR "\txattr_cnt %u\n",
488 le32_to_cpu(ino->xattr_cnt));
489 printk(KERN_ERR "\txattr_size %u\n",
490 le32_to_cpu(ino->xattr_size));
491 printk(KERN_ERR "\txattr_names %u\n",
492 le32_to_cpu(ino->xattr_names));
493 printk(KERN_ERR "\tcompr_type %#x\n",
494 (int)le16_to_cpu(ino->compr_type));
495 printk(KERN_ERR "\tdata len %u\n",
496 le32_to_cpu(ino->data_len));
497 break;
498 }
499 case UBIFS_DENT_NODE:
500 case UBIFS_XENT_NODE:
501 {
502 const struct ubifs_dent_node *dent = node;
503 int nlen = le16_to_cpu(dent->nlen);
504
505 key_read(c, &dent->key, &key);
506 printk(KERN_ERR "\tkey %s\n",
507 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
508 printk(KERN_ERR "\tinum %llu\n",
509 (unsigned long long)le64_to_cpu(dent->inum));
510 printk(KERN_ERR "\ttype %d\n", (int)dent->type);
511 printk(KERN_ERR "\tnlen %d\n", nlen);
512 printk(KERN_ERR "\tname ");
513
514 if (nlen > UBIFS_MAX_NLEN)
515 printk(KERN_ERR "(bad name length, not printing, "
516 "bad or corrupted node)");
517 else {
518 for (i = 0; i < nlen && dent->name[i]; i++)
519 printk(KERN_CONT "%c", dent->name[i]);
520 }
521 printk(KERN_CONT "\n");
522
523 break;
524 }
525 case UBIFS_DATA_NODE:
526 {
527 const struct ubifs_data_node *dn = node;
528 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
529
530 key_read(c, &dn->key, &key);
531 printk(KERN_ERR "\tkey %s\n",
532 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
533 printk(KERN_ERR "\tsize %u\n",
534 le32_to_cpu(dn->size));
535 printk(KERN_ERR "\tcompr_typ %d\n",
536 (int)le16_to_cpu(dn->compr_type));
537 printk(KERN_ERR "\tdata size %d\n",
538 dlen);
539 printk(KERN_ERR "\tdata:\n");
540 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
541 (void *)&dn->data, dlen, 0);
542 break;
543 }
544 case UBIFS_TRUN_NODE:
545 {
546 const struct ubifs_trun_node *trun = node;
547
548 printk(KERN_ERR "\tinum %u\n",
549 le32_to_cpu(trun->inum));
550 printk(KERN_ERR "\told_size %llu\n",
551 (unsigned long long)le64_to_cpu(trun->old_size));
552 printk(KERN_ERR "\tnew_size %llu\n",
553 (unsigned long long)le64_to_cpu(trun->new_size));
554 break;
555 }
556 case UBIFS_IDX_NODE:
557 {
558 const struct ubifs_idx_node *idx = node;
559
560 n = le16_to_cpu(idx->child_cnt);
561 printk(KERN_ERR "\tchild_cnt %d\n", n);
562 printk(KERN_ERR "\tlevel %d\n",
563 (int)le16_to_cpu(idx->level));
564 printk(KERN_ERR "\tBranches:\n");
565
566 for (i = 0; i < n && i < c->fanout - 1; i++) {
567 const struct ubifs_branch *br;
568
569 br = ubifs_idx_branch(c, idx, i);
570 key_read(c, &br->key, &key);
571 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
572 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
573 le32_to_cpu(br->len),
574 dbg_snprintf_key(c, &key, key_buf,
575 DBG_KEY_BUF_LEN));
576 }
577 break;
578 }
579 case UBIFS_CS_NODE:
580 break;
581 case UBIFS_ORPH_NODE:
582 {
583 const struct ubifs_orph_node *orph = node;
584
585 printk(KERN_ERR "\tcommit number %llu\n",
586 (unsigned long long)
587 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
588 printk(KERN_ERR "\tlast node flag %llu\n",
589 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
590 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
591 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
592 for (i = 0; i < n; i++)
593 printk(KERN_ERR "\t ino %llu\n",
594 (unsigned long long)le64_to_cpu(orph->inos[i]));
595 break;
596 }
597 default:
598 printk(KERN_ERR "node type %d was not recognized\n",
599 (int)ch->node_type);
600 }
601 spin_unlock(&dbg_lock);
602}
603
604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
605{
606 spin_lock(&dbg_lock);
607 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
608 req->new_ino, req->dirtied_ino);
609 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n",
610 req->new_ino_d, req->dirtied_ino_d);
611 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n",
612 req->new_page, req->dirtied_page);
613 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n",
614 req->new_dent, req->mod_dent);
615 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth);
616 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n",
617 req->data_growth, req->dd_growth);
618 spin_unlock(&dbg_lock);
619}
620
621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
622{
623 spin_lock(&dbg_lock);
624 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
625 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
626 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
627 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
628 lst->total_dirty);
629 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
630 "total_dead %lld\n", lst->total_used, lst->total_dark,
631 lst->total_dead);
632 spin_unlock(&dbg_lock);
633}
634
635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
636{
637 int i;
638 struct rb_node *rb;
639 struct ubifs_bud *bud;
640 struct ubifs_gced_idx_leb *idx_gc;
641 long long available, outstanding, free;
642
643 spin_lock(&c->space_lock);
644 spin_lock(&dbg_lock);
645 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
646 "total budget sum %lld\n", current->pid,
647 bi->data_growth + bi->dd_growth,
648 bi->data_growth + bi->dd_growth + bi->idx_growth);
649 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
650 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
651 bi->idx_growth);
652 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
653 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
654 bi->uncommitted_idx);
655 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
656 bi->page_budget, bi->inode_budget, bi->dent_budget);
657 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
658 bi->nospace, bi->nospace_rp);
659 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
660 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
661
662 if (bi != &c->bi)
663 /*
664 * If we are dumping saved budgeting data, do not print
665 * additional information which is about the current state, not
666 * the old one which corresponded to the saved budgeting data.
667 */
668 goto out_unlock;
669
670 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
671 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
672 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
673 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
674 atomic_long_read(&c->dirty_zn_cnt),
675 atomic_long_read(&c->clean_zn_cnt));
676 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
677 c->gc_lnum, c->ihead_lnum);
678
679 /* If we are in R/O mode, journal heads do not exist */
680 if (c->jheads)
681 for (i = 0; i < c->jhead_cnt; i++)
682 printk(KERN_ERR "\tjhead %s\t LEB %d\n",
683 dbg_jhead(c->jheads[i].wbuf.jhead),
684 c->jheads[i].wbuf.lnum);
685 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
686 bud = rb_entry(rb, struct ubifs_bud, rb);
687 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
688 }
689 list_for_each_entry(bud, &c->old_buds, list)
690 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
691 list_for_each_entry(idx_gc, &c->idx_gc, list)
692 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
693 idx_gc->lnum, idx_gc->unmap);
694 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
695
696 /* Print budgeting predictions */
697 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
698 outstanding = c->bi.data_growth + c->bi.dd_growth;
699 free = ubifs_get_free_space_nolock(c);
700 printk(KERN_ERR "Budgeting predictions:\n");
701 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
702 available, outstanding, free);
703out_unlock:
704 spin_unlock(&dbg_lock);
705 spin_unlock(&c->space_lock);
706}
707
708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
709{
710 int i, spc, dark = 0, dead = 0;
711 struct rb_node *rb;
712 struct ubifs_bud *bud;
713
714 spc = lp->free + lp->dirty;
715 if (spc < c->dead_wm)
716 dead = spc;
717 else
718 dark = ubifs_calc_dark(c, spc);
719
720 if (lp->flags & LPROPS_INDEX)
721 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
722 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
723 lp->dirty, c->leb_size - spc, spc, lp->flags);
724 else
725 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
726 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
727 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
728 c->leb_size - spc, spc, dark, dead,
729 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
730
731 if (lp->flags & LPROPS_TAKEN) {
732 if (lp->flags & LPROPS_INDEX)
733 printk(KERN_CONT "index, taken");
734 else
735 printk(KERN_CONT "taken");
736 } else {
737 const char *s;
738
739 if (lp->flags & LPROPS_INDEX) {
740 switch (lp->flags & LPROPS_CAT_MASK) {
741 case LPROPS_DIRTY_IDX:
742 s = "dirty index";
743 break;
744 case LPROPS_FRDI_IDX:
745 s = "freeable index";
746 break;
747 default:
748 s = "index";
749 }
750 } else {
751 switch (lp->flags & LPROPS_CAT_MASK) {
752 case LPROPS_UNCAT:
753 s = "not categorized";
754 break;
755 case LPROPS_DIRTY:
756 s = "dirty";
757 break;
758 case LPROPS_FREE:
759 s = "free";
760 break;
761 case LPROPS_EMPTY:
762 s = "empty";
763 break;
764 case LPROPS_FREEABLE:
765 s = "freeable";
766 break;
767 default:
768 s = NULL;
769 break;
770 }
771 }
772 printk(KERN_CONT "%s", s);
773 }
774
775 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
776 bud = rb_entry(rb, struct ubifs_bud, rb);
777 if (bud->lnum == lp->lnum) {
778 int head = 0;
779 for (i = 0; i < c->jhead_cnt; i++) {
780 /*
781 * Note, if we are in R/O mode or in the middle
782 * of mounting/re-mounting, the write-buffers do
783 * not exist.
784 */
785 if (c->jheads &&
786 lp->lnum == c->jheads[i].wbuf.lnum) {
787 printk(KERN_CONT ", jhead %s",
788 dbg_jhead(i));
789 head = 1;
790 }
791 }
792 if (!head)
793 printk(KERN_CONT ", bud of jhead %s",
794 dbg_jhead(bud->jhead));
795 }
796 }
797 if (lp->lnum == c->gc_lnum)
798 printk(KERN_CONT ", GC LEB");
799 printk(KERN_CONT ")\n");
800}
801
802void ubifs_dump_lprops(struct ubifs_info *c)
803{
804 int lnum, err;
805 struct ubifs_lprops lp;
806 struct ubifs_lp_stats lst;
807
808 printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
809 current->pid);
810 ubifs_get_lp_stats(c, &lst);
811 ubifs_dump_lstats(&lst);
812
813 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
814 err = ubifs_read_one_lp(c, lnum, &lp);
815 if (err)
816 ubifs_err("cannot read lprops for LEB %d", lnum);
817
818 ubifs_dump_lprop(c, &lp);
819 }
820 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
821 current->pid);
822}
823
824void ubifs_dump_lpt_info(struct ubifs_info *c)
825{
826 int i;
827
828 spin_lock(&dbg_lock);
829 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
830 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz);
831 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz);
832 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz);
833 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz);
834 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz);
835 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt);
836 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght);
837 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt);
838 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt);
839 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
840 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
841 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt);
842 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits);
843 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
844 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
845 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
846 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits);
847 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits);
848 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
849 printk(KERN_ERR "\tLPT head is at %d:%d\n",
850 c->nhead_lnum, c->nhead_offs);
851 printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
852 c->ltab_lnum, c->ltab_offs);
853 if (c->big_lpt)
854 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
855 c->lsave_lnum, c->lsave_offs);
856 for (i = 0; i < c->lpt_lebs; i++)
857 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
858 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
859 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
860 spin_unlock(&dbg_lock);
861}
862
863void ubifs_dump_sleb(const struct ubifs_info *c,
864 const struct ubifs_scan_leb *sleb, int offs)
865{
866 struct ubifs_scan_node *snod;
867
868 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
869 current->pid, sleb->lnum, offs);
870
871 list_for_each_entry(snod, &sleb->nodes, list) {
872 cond_resched();
873 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
874 snod->offs, snod->len);
875 ubifs_dump_node(c, snod->node);
876 }
877}
878
879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
880{
881 struct ubifs_scan_leb *sleb;
882 struct ubifs_scan_node *snod;
883 void *buf;
884
885 if (dbg_is_tst_rcvry(c))
886 return;
887
888 printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
889 current->pid, lnum);
890
891 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
892 if (!buf) {
893 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
894 return;
895 }
896
897 sleb = ubifs_scan(c, lnum, 0, buf, 0);
898 if (IS_ERR(sleb)) {
899 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
900 goto out;
901 }
902
903 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
904 sleb->nodes_cnt, sleb->endpt);
905
906 list_for_each_entry(snod, &sleb->nodes, list) {
907 cond_resched();
908 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
909 snod->offs, snod->len);
910 ubifs_dump_node(c, snod->node);
911 }
912
913 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
914 current->pid, lnum);
915 ubifs_scan_destroy(sleb);
916
917out:
918 vfree(buf);
919 return;
920}
921
922void ubifs_dump_znode(const struct ubifs_info *c,
923 const struct ubifs_znode *znode)
924{
925 int n;
926 const struct ubifs_zbranch *zbr;
927 char key_buf[DBG_KEY_BUF_LEN];
928
929 spin_lock(&dbg_lock);
930 if (znode->parent)
931 zbr = &znode->parent->zbranch[znode->iip];
932 else
933 zbr = &c->zroot;
934
935 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
936 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
937 zbr->len, znode->parent, znode->iip, znode->level,
938 znode->child_cnt, znode->flags);
939
940 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
941 spin_unlock(&dbg_lock);
942 return;
943 }
944
945 printk(KERN_ERR "zbranches:\n");
946 for (n = 0; n < znode->child_cnt; n++) {
947 zbr = &znode->zbranch[n];
948 if (znode->level > 0)
949 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
950 "%s\n", n, zbr->znode, zbr->lnum,
951 zbr->offs, zbr->len,
952 dbg_snprintf_key(c, &zbr->key,
953 key_buf,
954 DBG_KEY_BUF_LEN));
955 else
956 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
957 "%s\n", n, zbr->znode, zbr->lnum,
958 zbr->offs, zbr->len,
959 dbg_snprintf_key(c, &zbr->key,
960 key_buf,
961 DBG_KEY_BUF_LEN));
962 }
963 spin_unlock(&dbg_lock);
964}
965
966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
967{
968 int i;
969
970 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
971 current->pid, cat, heap->cnt);
972 for (i = 0; i < heap->cnt; i++) {
973 struct ubifs_lprops *lprops = heap->arr[i];
974
975 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
976 "flags %d\n", i, lprops->lnum, lprops->hpos,
977 lprops->free, lprops->dirty, lprops->flags);
978 }
979 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
980}
981
982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
983 struct ubifs_nnode *parent, int iip)
984{
985 int i;
986
987 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
988 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
989 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
990 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
991 pnode->flags, iip, pnode->level, pnode->num);
992 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
993 struct ubifs_lprops *lp = &pnode->lprops[i];
994
995 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
996 i, lp->free, lp->dirty, lp->flags, lp->lnum);
997 }
998}
999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002 struct ubifs_znode *znode;
1003 int level;
1004
1005 printk(KERN_ERR "\n");
1006 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008 level = znode->level;
1009 printk(KERN_ERR "== Level %d ==\n", level);
1010 while (znode) {
1011 if (level != znode->level) {
1012 level = znode->level;
1013 printk(KERN_ERR "== Level %d ==\n", level);
1014 }
1015 ubifs_dump_znode(c, znode);
1016 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017 }
1018 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022 void *priv)
1023{
1024 ubifs_dump_znode(c, znode);
1025 return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037 dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049 struct ubifs_debug_info *d = c->dbg;
1050 int freeable_cnt;
1051
1052 spin_lock(&c->space_lock);
1053 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057 /*
1058 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059 * affects the free space calculations, and UBIFS might not know about
1060 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061 * only when we read their lprops, and we do this only lazily, upon the
1062 * need. So at any given point of time @c->freeable_cnt might be not
1063 * exactly accurate.
1064 *
1065 * Just one example about the issue we hit when we did not zero
1066 * @c->freeable_cnt.
1067 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068 * amount of free space in @d->saved_free
1069 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070 * information from flash, where we cache LEBs from various
1071 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1074 * -> 'ubifs_add_to_cat()').
1075 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076 * becomes %1.
1077 * 4. We calculate the amount of free space when the re-mount is
1078 * finished in 'dbg_check_space_info()' and it does not match
1079 * @d->saved_free.
1080 */
1081 freeable_cnt = c->freeable_cnt;
1082 c->freeable_cnt = 0;
1083 d->saved_free = ubifs_get_free_space_nolock(c);
1084 c->freeable_cnt = freeable_cnt;
1085 spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099 struct ubifs_debug_info *d = c->dbg;
1100 struct ubifs_lp_stats lst;
1101 long long free;
1102 int freeable_cnt;
1103
1104 spin_lock(&c->space_lock);
1105 freeable_cnt = c->freeable_cnt;
1106 c->freeable_cnt = 0;
1107 free = ubifs_get_free_space_nolock(c);
1108 c->freeable_cnt = freeable_cnt;
1109 spin_unlock(&c->space_lock);
1110
1111 if (free != d->saved_free) {
1112 ubifs_err("free space changed from %lld to %lld",
1113 d->saved_free, free);
1114 goto out;
1115 }
1116
1117 return 0;
1118
1119out:
1120 ubifs_msg("saved lprops statistics dump");
1121 ubifs_dump_lstats(&d->saved_lst);
1122 ubifs_msg("saved budgeting info dump");
1123 ubifs_dump_budg(c, &d->saved_bi);
1124 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125 ubifs_msg("current lprops statistics dump");
1126 ubifs_get_lp_stats(c, &lst);
1127 ubifs_dump_lstats(&lst);
1128 ubifs_msg("current budgeting info dump");
1129 ubifs_dump_budg(c, &c->bi);
1130 dump_stack();
1131 return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146 int err = 0;
1147 struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149 if (!dbg_is_chk_gen(c))
1150 return 0;
1151 if (!S_ISREG(inode->i_mode))
1152 return 0;
1153
1154 mutex_lock(&ui->ui_mutex);
1155 spin_lock(&ui->ui_lock);
1156 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158 "is clean", ui->ui_size, ui->synced_i_size);
1159 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160 inode->i_mode, i_size_read(inode));
1161 dump_stack();
1162 err = -EINVAL;
1163 }
1164 spin_unlock(&ui->ui_lock);
1165 mutex_unlock(&ui->ui_mutex);
1166 return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184 unsigned int nlink = 2;
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent, *pdent = NULL;
1187 struct qstr nm = { .name = NULL };
1188 loff_t size = UBIFS_INO_NODE_SZ;
1189
1190 if (!dbg_is_chk_gen(c))
1191 return 0;
1192
1193 if (!S_ISDIR(dir->i_mode))
1194 return 0;
1195
1196 lowest_dent_key(c, &key, dir->i_ino);
1197 while (1) {
1198 int err;
1199
1200 dent = ubifs_tnc_next_ent(c, &key, &nm);
1201 if (IS_ERR(dent)) {
1202 err = PTR_ERR(dent);
1203 if (err == -ENOENT)
1204 break;
1205 return err;
1206 }
1207
1208 nm.name = dent->name;
1209 nm.len = le16_to_cpu(dent->nlen);
1210 size += CALC_DENT_SIZE(nm.len);
1211 if (dent->type == UBIFS_ITYPE_DIR)
1212 nlink += 1;
1213 kfree(pdent);
1214 pdent = dent;
1215 key_read(c, &dent->key, &key);
1216 }
1217 kfree(pdent);
1218
1219 if (i_size_read(dir) != size) {
1220 ubifs_err("directory inode %lu has size %llu, "
1221 "but calculated size is %llu", dir->i_ino,
1222 (unsigned long long)i_size_read(dir),
1223 (unsigned long long)size);
1224 ubifs_dump_inode(c, dir);
1225 dump_stack();
1226 return -EINVAL;
1227 }
1228 if (dir->i_nlink != nlink) {
1229 ubifs_err("directory inode %lu has nlink %u, but calculated "
1230 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231 ubifs_dump_inode(c, dir);
1232 dump_stack();
1233 return -EINVAL;
1234 }
1235
1236 return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253 struct ubifs_zbranch *zbr2)
1254{
1255 int err, nlen1, nlen2, cmp;
1256 struct ubifs_dent_node *dent1, *dent2;
1257 union ubifs_key key;
1258 char key_buf[DBG_KEY_BUF_LEN];
1259
1260 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262 if (!dent1)
1263 return -ENOMEM;
1264 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265 if (!dent2) {
1266 err = -ENOMEM;
1267 goto out_free;
1268 }
1269
1270 err = ubifs_tnc_read_node(c, zbr1, dent1);
1271 if (err)
1272 goto out_free;
1273 err = ubifs_validate_entry(c, dent1);
1274 if (err)
1275 goto out_free;
1276
1277 err = ubifs_tnc_read_node(c, zbr2, dent2);
1278 if (err)
1279 goto out_free;
1280 err = ubifs_validate_entry(c, dent2);
1281 if (err)
1282 goto out_free;
1283
1284 /* Make sure node keys are the same as in zbranch */
1285 err = 1;
1286 key_read(c, &dent1->key, &key);
1287 if (keys_cmp(c, &zbr1->key, &key)) {
1288 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290 DBG_KEY_BUF_LEN));
1291 ubifs_err("but it should have key %s according to tnc",
1292 dbg_snprintf_key(c, &zbr1->key, key_buf,
1293 DBG_KEY_BUF_LEN));
1294 ubifs_dump_node(c, dent1);
1295 goto out_free;
1296 }
1297
1298 key_read(c, &dent2->key, &key);
1299 if (keys_cmp(c, &zbr2->key, &key)) {
1300 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302 DBG_KEY_BUF_LEN));
1303 ubifs_err("but it should have key %s according to tnc",
1304 dbg_snprintf_key(c, &zbr2->key, key_buf,
1305 DBG_KEY_BUF_LEN));
1306 ubifs_dump_node(c, dent2);
1307 goto out_free;
1308 }
1309
1310 nlen1 = le16_to_cpu(dent1->nlen);
1311 nlen2 = le16_to_cpu(dent2->nlen);
1312
1313 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315 err = 0;
1316 goto out_free;
1317 }
1318 if (cmp == 0 && nlen1 == nlen2)
1319 ubifs_err("2 xent/dent nodes with the same name");
1320 else
1321 ubifs_err("bad order of colliding key %s",
1322 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325 ubifs_dump_node(c, dent1);
1326 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327 ubifs_dump_node(c, dent2);
1328
1329out_free:
1330 kfree(dent2);
1331 kfree(dent1);
1332 return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345 struct ubifs_znode *znode = zbr->znode;
1346 struct ubifs_znode *zp = znode->parent;
1347 int n, err, cmp;
1348
1349 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350 err = 1;
1351 goto out;
1352 }
1353 if (znode->level < 0) {
1354 err = 2;
1355 goto out;
1356 }
1357 if (znode->iip < 0 || znode->iip >= c->fanout) {
1358 err = 3;
1359 goto out;
1360 }
1361
1362 if (zbr->len == 0)
1363 /* Only dirty zbranch may have no on-flash nodes */
1364 if (!ubifs_zn_dirty(znode)) {
1365 err = 4;
1366 goto out;
1367 }
1368
1369 if (ubifs_zn_dirty(znode)) {
1370 /*
1371 * If znode is dirty, its parent has to be dirty as well. The
1372 * order of the operation is important, so we have to have
1373 * memory barriers.
1374 */
1375 smp_mb();
1376 if (zp && !ubifs_zn_dirty(zp)) {
1377 /*
1378 * The dirty flag is atomic and is cleared outside the
1379 * TNC mutex, so znode's dirty flag may now have
1380 * been cleared. The child is always cleared before the
1381 * parent, so we just need to check again.
1382 */
1383 smp_mb();
1384 if (ubifs_zn_dirty(znode)) {
1385 err = 5;
1386 goto out;
1387 }
1388 }
1389 }
1390
1391 if (zp) {
1392 const union ubifs_key *min, *max;
1393
1394 if (znode->level != zp->level - 1) {
1395 err = 6;
1396 goto out;
1397 }
1398
1399 /* Make sure the 'parent' pointer in our znode is correct */
1400 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401 if (!err) {
1402 /* This zbranch does not exist in the parent */
1403 err = 7;
1404 goto out;
1405 }
1406
1407 if (znode->iip >= zp->child_cnt) {
1408 err = 8;
1409 goto out;
1410 }
1411
1412 if (znode->iip != n) {
1413 /* This may happen only in case of collisions */
1414 if (keys_cmp(c, &zp->zbranch[n].key,
1415 &zp->zbranch[znode->iip].key)) {
1416 err = 9;
1417 goto out;
1418 }
1419 n = znode->iip;
1420 }
1421
1422 /*
1423 * Make sure that the first key in our znode is greater than or
1424 * equal to the key in the pointing zbranch.
1425 */
1426 min = &zbr->key;
1427 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428 if (cmp == 1) {
1429 err = 10;
1430 goto out;
1431 }
1432
1433 if (n + 1 < zp->child_cnt) {
1434 max = &zp->zbranch[n + 1].key;
1435
1436 /*
1437 * Make sure the last key in our znode is less or
1438 * equivalent than the key in the zbranch which goes
1439 * after our pointing zbranch.
1440 */
1441 cmp = keys_cmp(c, max,
1442 &znode->zbranch[znode->child_cnt - 1].key);
1443 if (cmp == -1) {
1444 err = 11;
1445 goto out;
1446 }
1447 }
1448 } else {
1449 /* This may only be root znode */
1450 if (zbr != &c->zroot) {
1451 err = 12;
1452 goto out;
1453 }
1454 }
1455
1456 /*
1457 * Make sure that next key is greater or equivalent then the previous
1458 * one.
1459 */
1460 for (n = 1; n < znode->child_cnt; n++) {
1461 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462 &znode->zbranch[n].key);
1463 if (cmp > 0) {
1464 err = 13;
1465 goto out;
1466 }
1467 if (cmp == 0) {
1468 /* This can only be keys with colliding hash */
1469 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470 err = 14;
1471 goto out;
1472 }
1473
1474 if (znode->level != 0 || c->replaying)
1475 continue;
1476
1477 /*
1478 * Colliding keys should follow binary order of
1479 * corresponding xentry/dentry names.
1480 */
1481 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482 &znode->zbranch[n]);
1483 if (err < 0)
1484 return err;
1485 if (err) {
1486 err = 15;
1487 goto out;
1488 }
1489 }
1490 }
1491
1492 for (n = 0; n < znode->child_cnt; n++) {
1493 if (!znode->zbranch[n].znode &&
1494 (znode->zbranch[n].lnum == 0 ||
1495 znode->zbranch[n].len == 0)) {
1496 err = 16;
1497 goto out;
1498 }
1499
1500 if (znode->zbranch[n].lnum != 0 &&
1501 znode->zbranch[n].len == 0) {
1502 err = 17;
1503 goto out;
1504 }
1505
1506 if (znode->zbranch[n].lnum == 0 &&
1507 znode->zbranch[n].len != 0) {
1508 err = 18;
1509 goto out;
1510 }
1511
1512 if (znode->zbranch[n].lnum == 0 &&
1513 znode->zbranch[n].offs != 0) {
1514 err = 19;
1515 goto out;
1516 }
1517
1518 if (znode->level != 0 && znode->zbranch[n].znode)
1519 if (znode->zbranch[n].znode->parent != znode) {
1520 err = 20;
1521 goto out;
1522 }
1523 }
1524
1525 return 0;
1526
1527out:
1528 ubifs_err("failed, error %d", err);
1529 ubifs_msg("dump of the znode");
1530 ubifs_dump_znode(c, znode);
1531 if (zp) {
1532 ubifs_msg("dump of the parent znode");
1533 ubifs_dump_znode(c, zp);
1534 }
1535 dump_stack();
1536 return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549 struct ubifs_znode *znode;
1550 long clean_cnt = 0, dirty_cnt = 0;
1551 int err, last;
1552
1553 if (!dbg_is_chk_index(c))
1554 return 0;
1555
1556 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557 if (!c->zroot.znode)
1558 return 0;
1559
1560 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561 while (1) {
1562 struct ubifs_znode *prev;
1563 struct ubifs_zbranch *zbr;
1564
1565 if (!znode->parent)
1566 zbr = &c->zroot;
1567 else
1568 zbr = &znode->parent->zbranch[znode->iip];
1569
1570 err = dbg_check_znode(c, zbr);
1571 if (err)
1572 return err;
1573
1574 if (extra) {
1575 if (ubifs_zn_dirty(znode))
1576 dirty_cnt += 1;
1577 else
1578 clean_cnt += 1;
1579 }
1580
1581 prev = znode;
1582 znode = ubifs_tnc_postorder_next(znode);
1583 if (!znode)
1584 break;
1585
1586 /*
1587 * If the last key of this znode is equivalent to the first key
1588 * of the next znode (collision), then check order of the keys.
1589 */
1590 last = prev->child_cnt - 1;
1591 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592 !keys_cmp(c, &prev->zbranch[last].key,
1593 &znode->zbranch[0].key)) {
1594 err = dbg_check_key_order(c, &prev->zbranch[last],
1595 &znode->zbranch[0]);
1596 if (err < 0)
1597 return err;
1598 if (err) {
1599 ubifs_msg("first znode");
1600 ubifs_dump_znode(c, prev);
1601 ubifs_msg("second znode");
1602 ubifs_dump_znode(c, znode);
1603 return -EINVAL;
1604 }
1605 }
1606 }
1607
1608 if (extra) {
1609 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611 atomic_long_read(&c->clean_zn_cnt),
1612 clean_cnt);
1613 return -EINVAL;
1614 }
1615 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617 atomic_long_read(&c->dirty_zn_cnt),
1618 dirty_cnt);
1619 return -EINVAL;
1620 }
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642 dbg_znode_callback znode_cb, void *priv)
1643{
1644 int err;
1645 struct ubifs_zbranch *zbr;
1646 struct ubifs_znode *znode, *child;
1647
1648 mutex_lock(&c->tnc_mutex);
1649 /* If the root indexing node is not in TNC - pull it */
1650 if (!c->zroot.znode) {
1651 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652 if (IS_ERR(c->zroot.znode)) {
1653 err = PTR_ERR(c->zroot.znode);
1654 c->zroot.znode = NULL;
1655 goto out_unlock;
1656 }
1657 }
1658
1659 /*
1660 * We are going to traverse the indexing tree in the postorder manner.
1661 * Go down and find the leftmost indexing node where we are going to
1662 * start from.
1663 */
1664 znode = c->zroot.znode;
1665 while (znode->level > 0) {
1666 zbr = &znode->zbranch[0];
1667 child = zbr->znode;
1668 if (!child) {
1669 child = ubifs_load_znode(c, zbr, znode, 0);
1670 if (IS_ERR(child)) {
1671 err = PTR_ERR(child);
1672 goto out_unlock;
1673 }
1674 zbr->znode = child;
1675 }
1676
1677 znode = child;
1678 }
1679
1680 /* Iterate over all indexing nodes */
1681 while (1) {
1682 int idx;
1683
1684 cond_resched();
1685
1686 if (znode_cb) {
1687 err = znode_cb(c, znode, priv);
1688 if (err) {
1689 ubifs_err("znode checking function returned "
1690 "error %d", err);
1691 ubifs_dump_znode(c, znode);
1692 goto out_dump;
1693 }
1694 }
1695 if (leaf_cb && znode->level == 0) {
1696 for (idx = 0; idx < znode->child_cnt; idx++) {
1697 zbr = &znode->zbranch[idx];
1698 err = leaf_cb(c, zbr, priv);
1699 if (err) {
1700 ubifs_err("leaf checking function "
1701 "returned error %d, for leaf "
1702 "at LEB %d:%d",
1703 err, zbr->lnum, zbr->offs);
1704 goto out_dump;
1705 }
1706 }
1707 }
1708
1709 if (!znode->parent)
1710 break;
1711
1712 idx = znode->iip + 1;
1713 znode = znode->parent;
1714 if (idx < znode->child_cnt) {
1715 /* Switch to the next index in the parent */
1716 zbr = &znode->zbranch[idx];
1717 child = zbr->znode;
1718 if (!child) {
1719 child = ubifs_load_znode(c, zbr, znode, idx);
1720 if (IS_ERR(child)) {
1721 err = PTR_ERR(child);
1722 goto out_unlock;
1723 }
1724 zbr->znode = child;
1725 }
1726 znode = child;
1727 } else
1728 /*
1729 * This is the last child, switch to the parent and
1730 * continue.
1731 */
1732 continue;
1733
1734 /* Go to the lowest leftmost znode in the new sub-tree */
1735 while (znode->level > 0) {
1736 zbr = &znode->zbranch[0];
1737 child = zbr->znode;
1738 if (!child) {
1739 child = ubifs_load_znode(c, zbr, znode, 0);
1740 if (IS_ERR(child)) {
1741 err = PTR_ERR(child);
1742 goto out_unlock;
1743 }
1744 zbr->znode = child;
1745 }
1746 znode = child;
1747 }
1748 }
1749
1750 mutex_unlock(&c->tnc_mutex);
1751 return 0;
1752
1753out_dump:
1754 if (znode->parent)
1755 zbr = &znode->parent->zbranch[znode->iip];
1756 else
1757 zbr = &c->zroot;
1758 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759 ubifs_dump_znode(c, znode);
1760out_unlock:
1761 mutex_unlock(&c->tnc_mutex);
1762 return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777 long long *idx_size = priv;
1778 int add;
1779
1780 add = ubifs_idx_node_sz(c, znode->child_cnt);
1781 add = ALIGN(add, 8);
1782 *idx_size += add;
1783 return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797 int err;
1798 long long calc = 0;
1799
1800 if (!dbg_is_chk_index(c))
1801 return 0;
1802
1803 err = dbg_walk_index(c, NULL, add_size, &calc);
1804 if (err) {
1805 ubifs_err("error %d while walking the index", err);
1806 return err;
1807 }
1808
1809 if (calc != idx_size) {
1810 ubifs_err("index size check failed: calculated size is %lld, "
1811 "should be %lld", calc, idx_size);
1812 dump_stack();
1813 return -EINVAL;
1814 }
1815
1816 return 0;
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 * while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 * inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 * inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840 struct rb_node rb;
1841 ino_t inum;
1842 umode_t mode;
1843 unsigned int nlink;
1844 unsigned int xattr_cnt;
1845 int references;
1846 int calc_cnt;
1847 long long size;
1848 unsigned int xattr_sz;
1849 long long calc_sz;
1850 long long calc_xcnt;
1851 long long calc_xsz;
1852 unsigned int xattr_nms;
1853 long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861 struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875 struct fsck_data *fsckd,
1876 struct ubifs_ino_node *ino)
1877{
1878 struct rb_node **p, *parent = NULL;
1879 struct fsck_inode *fscki;
1880 ino_t inum = key_inum_flash(c, &ino->key);
1881 struct inode *inode;
1882 struct ubifs_inode *ui;
1883
1884 p = &fsckd->inodes.rb_node;
1885 while (*p) {
1886 parent = *p;
1887 fscki = rb_entry(parent, struct fsck_inode, rb);
1888 if (inum < fscki->inum)
1889 p = &(*p)->rb_left;
1890 else if (inum > fscki->inum)
1891 p = &(*p)->rb_right;
1892 else
1893 return fscki;
1894 }
1895
1896 if (inum > c->highest_inum) {
1897 ubifs_err("too high inode number, max. is %lu",
1898 (unsigned long)c->highest_inum);
1899 return ERR_PTR(-EINVAL);
1900 }
1901
1902 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903 if (!fscki)
1904 return ERR_PTR(-ENOMEM);
1905
1906 inode = ilookup(c->vfs_sb, inum);
1907
1908 fscki->inum = inum;
1909 /*
1910 * If the inode is present in the VFS inode cache, use it instead of
1911 * the on-flash inode which might be out-of-date. E.g., the size might
1912 * be out-of-date. If we do not do this, the following may happen, for
1913 * example:
1914 * 1. A power cut happens
1915 * 2. We mount the file-system R/O, the replay process fixes up the
1916 * inode size in the VFS cache, but on on-flash.
1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1918 * size.
1919 */
1920 if (!inode) {
1921 fscki->nlink = le32_to_cpu(ino->nlink);
1922 fscki->size = le64_to_cpu(ino->size);
1923 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926 fscki->mode = le32_to_cpu(ino->mode);
1927 } else {
1928 ui = ubifs_inode(inode);
1929 fscki->nlink = inode->i_nlink;
1930 fscki->size = inode->i_size;
1931 fscki->xattr_cnt = ui->xattr_cnt;
1932 fscki->xattr_sz = ui->xattr_size;
1933 fscki->xattr_nms = ui->xattr_names;
1934 fscki->mode = inode->i_mode;
1935 iput(inode);
1936 }
1937
1938 if (S_ISDIR(fscki->mode)) {
1939 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940 fscki->calc_cnt = 2;
1941 }
1942
1943 rb_link_node(&fscki->rb, parent, p);
1944 rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946 return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960 struct rb_node *p;
1961 struct fsck_inode *fscki;
1962
1963 p = fsckd->inodes.rb_node;
1964 while (p) {
1965 fscki = rb_entry(p, struct fsck_inode, rb);
1966 if (inum < fscki->inum)
1967 p = p->rb_left;
1968 else if (inum > fscki->inum)
1969 p = p->rb_right;
1970 else
1971 return fscki;
1972 }
1973 return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988 struct fsck_data *fsckd, ino_t inum)
1989{
1990 int n, err;
1991 union ubifs_key key;
1992 struct ubifs_znode *znode;
1993 struct ubifs_zbranch *zbr;
1994 struct ubifs_ino_node *ino;
1995 struct fsck_inode *fscki;
1996
1997 fscki = search_inode(fsckd, inum);
1998 if (fscki)
1999 return fscki;
2000
2001 ino_key_init(c, &key, inum);
2002 err = ubifs_lookup_level0(c, &key, &znode, &n);
2003 if (!err) {
2004 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005 return ERR_PTR(-ENOENT);
2006 } else if (err < 0) {
2007 ubifs_err("error %d while looking up inode %lu",
2008 err, (unsigned long)inum);
2009 return ERR_PTR(err);
2010 }
2011
2012 zbr = &znode->zbranch[n];
2013 if (zbr->len < UBIFS_INO_NODE_SZ) {
2014 ubifs_err("bad node %lu node length %d",
2015 (unsigned long)inum, zbr->len);
2016 return ERR_PTR(-EINVAL);
2017 }
2018
2019 ino = kmalloc(zbr->len, GFP_NOFS);
2020 if (!ino)
2021 return ERR_PTR(-ENOMEM);
2022
2023 err = ubifs_tnc_read_node(c, zbr, ino);
2024 if (err) {
2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026 zbr->lnum, zbr->offs, err);
2027 kfree(ino);
2028 return ERR_PTR(err);
2029 }
2030
2031 fscki = add_inode(c, fsckd, ino);
2032 kfree(ino);
2033 if (IS_ERR(fscki)) {
2034 ubifs_err("error %ld while adding inode %lu node",
2035 PTR_ERR(fscki), (unsigned long)inum);
2036 return fscki;
2037 }
2038
2039 return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059 void *priv)
2060{
2061 ino_t inum;
2062 void *node;
2063 struct ubifs_ch *ch;
2064 int err, type = key_type(c, &zbr->key);
2065 struct fsck_inode *fscki;
2066
2067 if (zbr->len < UBIFS_CH_SZ) {
2068 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069 zbr->len, zbr->lnum, zbr->offs);
2070 return -EINVAL;
2071 }
2072
2073 node = kmalloc(zbr->len, GFP_NOFS);
2074 if (!node)
2075 return -ENOMEM;
2076
2077 err = ubifs_tnc_read_node(c, zbr, node);
2078 if (err) {
2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080 zbr->lnum, zbr->offs, err);
2081 goto out_free;
2082 }
2083
2084 /* If this is an inode node, add it to RB-tree of inodes */
2085 if (type == UBIFS_INO_KEY) {
2086 fscki = add_inode(c, priv, node);
2087 if (IS_ERR(fscki)) {
2088 err = PTR_ERR(fscki);
2089 ubifs_err("error %d while adding inode node", err);
2090 goto out_dump;
2091 }
2092 goto out;
2093 }
2094
2095 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096 type != UBIFS_DATA_KEY) {
2097 ubifs_err("unexpected node type %d at LEB %d:%d",
2098 type, zbr->lnum, zbr->offs);
2099 err = -EINVAL;
2100 goto out_free;
2101 }
2102
2103 ch = node;
2104 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105 ubifs_err("too high sequence number, max. is %llu",
2106 c->max_sqnum);
2107 err = -EINVAL;
2108 goto out_dump;
2109 }
2110
2111 if (type == UBIFS_DATA_KEY) {
2112 long long blk_offs;
2113 struct ubifs_data_node *dn = node;
2114
2115 /*
2116 * Search the inode node this data node belongs to and insert
2117 * it to the RB-tree of inodes.
2118 */
2119 inum = key_inum_flash(c, &dn->key);
2120 fscki = read_add_inode(c, priv, inum);
2121 if (IS_ERR(fscki)) {
2122 err = PTR_ERR(fscki);
2123 ubifs_err("error %d while processing data node and "
2124 "trying to find inode node %lu",
2125 err, (unsigned long)inum);
2126 goto out_dump;
2127 }
2128
2129 /* Make sure the data node is within inode size */
2130 blk_offs = key_block_flash(c, &dn->key);
2131 blk_offs <<= UBIFS_BLOCK_SHIFT;
2132 blk_offs += le32_to_cpu(dn->size);
2133 if (blk_offs > fscki->size) {
2134 ubifs_err("data node at LEB %d:%d is not within inode "
2135 "size %lld", zbr->lnum, zbr->offs,
2136 fscki->size);
2137 err = -EINVAL;
2138 goto out_dump;
2139 }
2140 } else {
2141 int nlen;
2142 struct ubifs_dent_node *dent = node;
2143 struct fsck_inode *fscki1;
2144
2145 err = ubifs_validate_entry(c, dent);
2146 if (err)
2147 goto out_dump;
2148
2149 /*
2150 * Search the inode node this entry refers to and the parent
2151 * inode node and insert them to the RB-tree of inodes.
2152 */
2153 inum = le64_to_cpu(dent->inum);
2154 fscki = read_add_inode(c, priv, inum);
2155 if (IS_ERR(fscki)) {
2156 err = PTR_ERR(fscki);
2157 ubifs_err("error %d while processing entry node and "
2158 "trying to find inode node %lu",
2159 err, (unsigned long)inum);
2160 goto out_dump;
2161 }
2162
2163 /* Count how many direntries or xentries refers this inode */
2164 fscki->references += 1;
2165
2166 inum = key_inum_flash(c, &dent->key);
2167 fscki1 = read_add_inode(c, priv, inum);
2168 if (IS_ERR(fscki1)) {
2169 err = PTR_ERR(fscki1);
2170 ubifs_err("error %d while processing entry node and "
2171 "trying to find parent inode node %lu",
2172 err, (unsigned long)inum);
2173 goto out_dump;
2174 }
2175
2176 nlen = le16_to_cpu(dent->nlen);
2177 if (type == UBIFS_XENT_KEY) {
2178 fscki1->calc_xcnt += 1;
2179 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181 fscki1->calc_xnms += nlen;
2182 } else {
2183 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184 if (dent->type == UBIFS_ITYPE_DIR)
2185 fscki1->calc_cnt += 1;
2186 }
2187 }
2188
2189out:
2190 kfree(node);
2191 return 0;
2192
2193out_dump:
2194 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195 ubifs_dump_node(c, node);
2196out_free:
2197 kfree(node);
2198 return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207 struct rb_node *this = fsckd->inodes.rb_node;
2208 struct fsck_inode *fscki;
2209
2210 while (this) {
2211 if (this->rb_left)
2212 this = this->rb_left;
2213 else if (this->rb_right)
2214 this = this->rb_right;
2215 else {
2216 fscki = rb_entry(this, struct fsck_inode, rb);
2217 this = rb_parent(this);
2218 if (this) {
2219 if (this->rb_left == &fscki->rb)
2220 this->rb_left = NULL;
2221 else
2222 this->rb_right = NULL;
2223 }
2224 kfree(fscki);
2225 }
2226 }
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241 int n, err;
2242 union ubifs_key key;
2243 struct ubifs_znode *znode;
2244 struct ubifs_zbranch *zbr;
2245 struct ubifs_ino_node *ino;
2246 struct fsck_inode *fscki;
2247 struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249 while (this) {
2250 fscki = rb_entry(this, struct fsck_inode, rb);
2251 this = rb_next(this);
2252
2253 if (S_ISDIR(fscki->mode)) {
2254 /*
2255 * Directories have to have exactly one reference (they
2256 * cannot have hardlinks), although root inode is an
2257 * exception.
2258 */
2259 if (fscki->inum != UBIFS_ROOT_INO &&
2260 fscki->references != 1) {
2261 ubifs_err("directory inode %lu has %d "
2262 "direntries which refer it, but "
2263 "should be 1",
2264 (unsigned long)fscki->inum,
2265 fscki->references);
2266 goto out_dump;
2267 }
2268 if (fscki->inum == UBIFS_ROOT_INO &&
2269 fscki->references != 0) {
2270 ubifs_err("root inode %lu has non-zero (%d) "
2271 "direntries which refer it",
2272 (unsigned long)fscki->inum,
2273 fscki->references);
2274 goto out_dump;
2275 }
2276 if (fscki->calc_sz != fscki->size) {
2277 ubifs_err("directory inode %lu size is %lld, "
2278 "but calculated size is %lld",
2279 (unsigned long)fscki->inum,
2280 fscki->size, fscki->calc_sz);
2281 goto out_dump;
2282 }
2283 if (fscki->calc_cnt != fscki->nlink) {
2284 ubifs_err("directory inode %lu nlink is %d, "
2285 "but calculated nlink is %d",
2286 (unsigned long)fscki->inum,
2287 fscki->nlink, fscki->calc_cnt);
2288 goto out_dump;
2289 }
2290 } else {
2291 if (fscki->references != fscki->nlink) {
2292 ubifs_err("inode %lu nlink is %d, but "
2293 "calculated nlink is %d",
2294 (unsigned long)fscki->inum,
2295 fscki->nlink, fscki->references);
2296 goto out_dump;
2297 }
2298 }
2299 if (fscki->xattr_sz != fscki->calc_xsz) {
2300 ubifs_err("inode %lu has xattr size %u, but "
2301 "calculated size is %lld",
2302 (unsigned long)fscki->inum, fscki->xattr_sz,
2303 fscki->calc_xsz);
2304 goto out_dump;
2305 }
2306 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307 ubifs_err("inode %lu has %u xattrs, but "
2308 "calculated count is %lld",
2309 (unsigned long)fscki->inum,
2310 fscki->xattr_cnt, fscki->calc_xcnt);
2311 goto out_dump;
2312 }
2313 if (fscki->xattr_nms != fscki->calc_xnms) {
2314 ubifs_err("inode %lu has xattr names' size %u, but "
2315 "calculated names' size is %lld",
2316 (unsigned long)fscki->inum, fscki->xattr_nms,
2317 fscki->calc_xnms);
2318 goto out_dump;
2319 }
2320 }
2321
2322 return 0;
2323
2324out_dump:
2325 /* Read the bad inode and dump it */
2326 ino_key_init(c, &key, fscki->inum);
2327 err = ubifs_lookup_level0(c, &key, &znode, &n);
2328 if (!err) {
2329 ubifs_err("inode %lu not found in index",
2330 (unsigned long)fscki->inum);
2331 return -ENOENT;
2332 } else if (err < 0) {
2333 ubifs_err("error %d while looking up inode %lu",
2334 err, (unsigned long)fscki->inum);
2335 return err;
2336 }
2337
2338 zbr = &znode->zbranch[n];
2339 ino = kmalloc(zbr->len, GFP_NOFS);
2340 if (!ino)
2341 return -ENOMEM;
2342
2343 err = ubifs_tnc_read_node(c, zbr, ino);
2344 if (err) {
2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346 zbr->lnum, zbr->offs, err);
2347 kfree(ino);
2348 return err;
2349 }
2350
2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353 ubifs_dump_node(c, ino);
2354 kfree(ino);
2355 return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 * inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373 int err;
2374 struct fsck_data fsckd;
2375
2376 if (!dbg_is_chk_fs(c))
2377 return 0;
2378
2379 fsckd.inodes = RB_ROOT;
2380 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381 if (err)
2382 goto out_free;
2383
2384 err = check_inodes(c, &fsckd);
2385 if (err)
2386 goto out_free;
2387
2388 free_inodes(&fsckd);
2389 return 0;
2390
2391out_free:
2392 ubifs_err("file-system check failed with error %d", err);
2393 dump_stack();
2394 free_inodes(&fsckd);
2395 return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408 struct list_head *cur;
2409 struct ubifs_scan_node *sa, *sb;
2410
2411 if (!dbg_is_chk_gen(c))
2412 return 0;
2413
2414 for (cur = head->next; cur->next != head; cur = cur->next) {
2415 ino_t inuma, inumb;
2416 uint32_t blka, blkb;
2417
2418 cond_resched();
2419 sa = container_of(cur, struct ubifs_scan_node, list);
2420 sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422 if (sa->type != UBIFS_DATA_NODE) {
2423 ubifs_err("bad node type %d", sa->type);
2424 ubifs_dump_node(c, sa->node);
2425 return -EINVAL;
2426 }
2427 if (sb->type != UBIFS_DATA_NODE) {
2428 ubifs_err("bad node type %d", sb->type);
2429 ubifs_dump_node(c, sb->node);
2430 return -EINVAL;
2431 }
2432
2433 inuma = key_inum(c, &sa->key);
2434 inumb = key_inum(c, &sb->key);
2435
2436 if (inuma < inumb)
2437 continue;
2438 if (inuma > inumb) {
2439 ubifs_err("larger inum %lu goes before inum %lu",
2440 (unsigned long)inuma, (unsigned long)inumb);
2441 goto error_dump;
2442 }
2443
2444 blka = key_block(c, &sa->key);
2445 blkb = key_block(c, &sb->key);
2446
2447 if (blka > blkb) {
2448 ubifs_err("larger block %u goes before %u", blka, blkb);
2449 goto error_dump;
2450 }
2451 if (blka == blkb) {
2452 ubifs_err("two data nodes for the same block");
2453 goto error_dump;
2454 }
2455 }
2456
2457 return 0;
2458
2459error_dump:
2460 ubifs_dump_node(c, sa->node);
2461 ubifs_dump_node(c, sb->node);
2462 return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475 struct list_head *cur;
2476 struct ubifs_scan_node *sa, *sb;
2477
2478 if (!dbg_is_chk_gen(c))
2479 return 0;
2480
2481 for (cur = head->next; cur->next != head; cur = cur->next) {
2482 ino_t inuma, inumb;
2483 uint32_t hasha, hashb;
2484
2485 cond_resched();
2486 sa = container_of(cur, struct ubifs_scan_node, list);
2487 sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490 sa->type != UBIFS_XENT_NODE) {
2491 ubifs_err("bad node type %d", sa->type);
2492 ubifs_dump_node(c, sa->node);
2493 return -EINVAL;
2494 }
2495 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496 sa->type != UBIFS_XENT_NODE) {
2497 ubifs_err("bad node type %d", sb->type);
2498 ubifs_dump_node(c, sb->node);
2499 return -EINVAL;
2500 }
2501
2502 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503 ubifs_err("non-inode node goes before inode node");
2504 goto error_dump;
2505 }
2506
2507 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508 continue;
2509
2510 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511 /* Inode nodes are sorted in descending size order */
2512 if (sa->len < sb->len) {
2513 ubifs_err("smaller inode node goes first");
2514 goto error_dump;
2515 }
2516 continue;
2517 }
2518
2519 /*
2520 * This is either a dentry or xentry, which should be sorted in
2521 * ascending (parent ino, hash) order.
2522 */
2523 inuma = key_inum(c, &sa->key);
2524 inumb = key_inum(c, &sb->key);
2525
2526 if (inuma < inumb)
2527 continue;
2528 if (inuma > inumb) {
2529 ubifs_err("larger inum %lu goes before inum %lu",
2530 (unsigned long)inuma, (unsigned long)inumb);
2531 goto error_dump;
2532 }
2533
2534 hasha = key_block(c, &sa->key);
2535 hashb = key_block(c, &sb->key);
2536
2537 if (hasha > hashb) {
2538 ubifs_err("larger hash %u goes before %u",
2539 hasha, hashb);
2540 goto error_dump;
2541 }
2542 }
2543
2544 return 0;
2545
2546error_dump:
2547 ubifs_msg("dumping first node");
2548 ubifs_dump_node(c, sa->node);
2549 ubifs_msg("dumping second node");
2550 ubifs_dump_node(c, sb->node);
2551 return -EINVAL;
2552 return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557 return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563 struct ubifs_debug_info *d = c->dbg;
2564
2565 ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567 if (!d->pc_cnt) {
2568 /* First call - decide delay to the power cut */
2569 if (chance(1, 2)) {
2570 unsigned long delay;
2571
2572 if (chance(1, 2)) {
2573 d->pc_delay = 1;
2574 /* Fail withing 1 minute */
2575 delay = random32() % 60000;
2576 d->pc_timeout = jiffies;
2577 d->pc_timeout += msecs_to_jiffies(delay);
2578 ubifs_warn("failing after %lums", delay);
2579 } else {
2580 d->pc_delay = 2;
2581 delay = random32() % 10000;
2582 /* Fail within 10000 operations */
2583 d->pc_cnt_max = delay;
2584 ubifs_warn("failing after %lu calls", delay);
2585 }
2586 }
2587
2588 d->pc_cnt += 1;
2589 }
2590
2591 /* Determine if failure delay has expired */
2592 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593 return 0;
2594 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595 return 0;
2596
2597 if (lnum == UBIFS_SB_LNUM) {
2598 if (write && chance(1, 2))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in super block LEB %d", lnum);
2603 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604 if (chance(19, 20))
2605 return 0;
2606 ubifs_warn("failing in master LEB %d", lnum);
2607 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608 if (write && chance(99, 100))
2609 return 0;
2610 if (chance(399, 400))
2611 return 0;
2612 ubifs_warn("failing in log LEB %d", lnum);
2613 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614 if (write && chance(7, 8))
2615 return 0;
2616 if (chance(19, 20))
2617 return 0;
2618 ubifs_warn("failing in LPT LEB %d", lnum);
2619 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620 if (write && chance(1, 2))
2621 return 0;
2622 if (chance(9, 10))
2623 return 0;
2624 ubifs_warn("failing in orphan LEB %d", lnum);
2625 } else if (lnum == c->ihead_lnum) {
2626 if (chance(99, 100))
2627 return 0;
2628 ubifs_warn("failing in index head LEB %d", lnum);
2629 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630 if (chance(9, 10))
2631 return 0;
2632 ubifs_warn("failing in GC head LEB %d", lnum);
2633 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634 !ubifs_search_bud(c, lnum)) {
2635 if (chance(19, 20))
2636 return 0;
2637 ubifs_warn("failing in non-bud LEB %d", lnum);
2638 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640 if (chance(999, 1000))
2641 return 0;
2642 ubifs_warn("failing in bud LEB %d commit running", lnum);
2643 } else {
2644 if (chance(9999, 10000))
2645 return 0;
2646 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647 }
2648
2649 d->pc_happened = 1;
2650 ubifs_warn("========== Power cut emulated ==========");
2651 dump_stack();
2652 return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
2656{
2657 unsigned int from, to, i, ffs = chance(1, 2);
2658 unsigned char *p = (void *)buf;
2659
2660 from = random32() % (len + 1);
2661 if (chance(1, 2))
2662 to = random32() % (len - from + 1);
2663 else
2664 to = len;
2665
2666 if (from < to)
2667 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668 ffs ? "0xFFs" : "random data");
2669
2670 if (ffs)
2671 for (i = from; i < to; i++)
2672 p[i] = 0xFF;
2673 else
2674 for (i = from; i < to; i++)
2675 p[i] = random32() % 0x100;
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679 int offs, int len)
2680{
2681 int err, failing;
2682
2683 if (c->dbg->pc_happened)
2684 return -EROFS;
2685
2686 failing = power_cut_emulated(c, lnum, 1);
2687 if (failing)
2688 cut_data(buf, len);
2689 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690 if (err)
2691 return err;
2692 if (failing)
2693 return -EROFS;
2694 return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698 int len)
2699{
2700 int err;
2701
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 1))
2705 return -EROFS;
2706 err = ubi_leb_change(c->ubi, lnum, buf, len);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 1))
2710 return -EROFS;
2711 return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716 int err;
2717
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_unmap(c->ubi, lnum);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732 int err;
2733
2734 if (c->dbg->pc_happened)
2735 return -EROFS;
2736 if (power_cut_emulated(c, lnum, 0))
2737 return -EROFS;
2738 err = ubi_leb_map(c->ubi, lnum);
2739 if (err)
2740 return err;
2741 if (power_cut_emulated(c, lnum, 0))
2742 return -EROFS;
2743 return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754 file->private_data = inode->i_private;
2755 return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771 loff_t *ppos)
2772{
2773 char buf[3];
2774
2775 if (val)
2776 buf[0] = '1';
2777 else
2778 buf[0] = '0';
2779 buf[1] = '\n';
2780 buf[2] = 0x00;
2781
2782 return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786 loff_t *ppos)
2787{
2788 struct dentry *dent = file->f_path.dentry;
2789 struct ubifs_info *c = file->private_data;
2790 struct ubifs_debug_info *d = c->dbg;
2791 int val;
2792
2793 if (dent == d->dfs_chk_gen)
2794 val = d->chk_gen;
2795 else if (dent == d->dfs_chk_index)
2796 val = d->chk_index;
2797 else if (dent == d->dfs_chk_orph)
2798 val = d->chk_orph;
2799 else if (dent == d->dfs_chk_lprops)
2800 val = d->chk_lprops;
2801 else if (dent == d->dfs_chk_fs)
2802 val = d->chk_fs;
2803 else if (dent == d->dfs_tst_rcvry)
2804 val = d->tst_rcvry;
2805 else
2806 return -EINVAL;
2807
2808 return provide_user_output(val, u, count, ppos);
2809}
2810
2811/**
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2815 *
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2819 */
2820static int interpret_user_input(const char __user *u, size_t count)
2821{
2822 size_t buf_size;
2823 char buf[8];
2824
2825 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826 if (copy_from_user(buf, u, buf_size))
2827 return -EFAULT;
2828
2829 if (buf[0] == '1')
2830 return 1;
2831 else if (buf[0] == '0')
2832 return 0;
2833
2834 return -EINVAL;
2835}
2836
2837static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838 size_t count, loff_t *ppos)
2839{
2840 struct ubifs_info *c = file->private_data;
2841 struct ubifs_debug_info *d = c->dbg;
2842 struct dentry *dent = file->f_path.dentry;
2843 int val;
2844
2845 /*
2846 * TODO: this is racy - the file-system might have already been
2847 * unmounted and we'd oops in this case. The plan is to fix it with
2848 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851 * superblocks and fine the one with the same UUID, and take the
2852 * locking right.
2853 *
2854 * The other way to go suggested by Al Viro is to create a separate
2855 * 'ubifs-debug' file-system instead.
2856 */
2857 if (file->f_path.dentry == d->dfs_dump_lprops) {
2858 ubifs_dump_lprops(c);
2859 return count;
2860 }
2861 if (file->f_path.dentry == d->dfs_dump_budg) {
2862 ubifs_dump_budg(c, &c->bi);
2863 return count;
2864 }
2865 if (file->f_path.dentry == d->dfs_dump_tnc) {
2866 mutex_lock(&c->tnc_mutex);
2867 ubifs_dump_tnc(c);
2868 mutex_unlock(&c->tnc_mutex);
2869 return count;
2870 }
2871
2872 val = interpret_user_input(u, count);
2873 if (val < 0)
2874 return val;
2875
2876 if (dent == d->dfs_chk_gen)
2877 d->chk_gen = val;
2878 else if (dent == d->dfs_chk_index)
2879 d->chk_index = val;
2880 else if (dent == d->dfs_chk_orph)
2881 d->chk_orph = val;
2882 else if (dent == d->dfs_chk_lprops)
2883 d->chk_lprops = val;
2884 else if (dent == d->dfs_chk_fs)
2885 d->chk_fs = val;
2886 else if (dent == d->dfs_tst_rcvry)
2887 d->tst_rcvry = val;
2888 else
2889 return -EINVAL;
2890
2891 return count;
2892}
2893
2894static const struct file_operations dfs_fops = {
2895 .open = dfs_file_open,
2896 .read = dfs_file_read,
2897 .write = dfs_file_write,
2898 .owner = THIS_MODULE,
2899 .llseek = no_llseek,
2900};
2901
2902/**
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2905 *
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2908 *
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2913 */
2914int dbg_debugfs_init_fs(struct ubifs_info *c)
2915{
2916 int err, n;
2917 const char *fname;
2918 struct dentry *dent;
2919 struct ubifs_debug_info *d = c->dbg;
2920
2921 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2922 return 0;
2923
2924 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2925 c->vi.ubi_num, c->vi.vol_id);
2926 if (n == UBIFS_DFS_DIR_LEN) {
2927 /* The array size is too small */
2928 fname = UBIFS_DFS_DIR_NAME;
2929 dent = ERR_PTR(-EINVAL);
2930 goto out;
2931 }
2932
2933 fname = d->dfs_dir_name;
2934 dent = debugfs_create_dir(fname, dfs_rootdir);
2935 if (IS_ERR_OR_NULL(dent))
2936 goto out;
2937 d->dfs_dir = dent;
2938
2939 fname = "dump_lprops";
2940 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_dump_lprops = dent;
2944
2945 fname = "dump_budg";
2946 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2947 if (IS_ERR_OR_NULL(dent))
2948 goto out_remove;
2949 d->dfs_dump_budg = dent;
2950
2951 fname = "dump_tnc";
2952 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2953 if (IS_ERR_OR_NULL(dent))
2954 goto out_remove;
2955 d->dfs_dump_tnc = dent;
2956
2957 fname = "chk_general";
2958 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2959 &dfs_fops);
2960 if (IS_ERR_OR_NULL(dent))
2961 goto out_remove;
2962 d->dfs_chk_gen = dent;
2963
2964 fname = "chk_index";
2965 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2966 &dfs_fops);
2967 if (IS_ERR_OR_NULL(dent))
2968 goto out_remove;
2969 d->dfs_chk_index = dent;
2970
2971 fname = "chk_orphans";
2972 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2973 &dfs_fops);
2974 if (IS_ERR_OR_NULL(dent))
2975 goto out_remove;
2976 d->dfs_chk_orph = dent;
2977
2978 fname = "chk_lprops";
2979 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2980 &dfs_fops);
2981 if (IS_ERR_OR_NULL(dent))
2982 goto out_remove;
2983 d->dfs_chk_lprops = dent;
2984
2985 fname = "chk_fs";
2986 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2987 &dfs_fops);
2988 if (IS_ERR_OR_NULL(dent))
2989 goto out_remove;
2990 d->dfs_chk_fs = dent;
2991
2992 fname = "tst_recovery";
2993 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2994 &dfs_fops);
2995 if (IS_ERR_OR_NULL(dent))
2996 goto out_remove;
2997 d->dfs_tst_rcvry = dent;
2998
2999 return 0;
3000
3001out_remove:
3002 debugfs_remove_recursive(d->dfs_dir);
3003out:
3004 err = dent ? PTR_ERR(dent) : -ENODEV;
3005 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3006 fname, err);
3007 return err;
3008}
3009
3010/**
3011 * dbg_debugfs_exit_fs - remove all debugfs files.
3012 * @c: UBIFS file-system description object
3013 */
3014void dbg_debugfs_exit_fs(struct ubifs_info *c)
3015{
3016 if (IS_ENABLED(CONFIG_DEBUG_FS))
3017 debugfs_remove_recursive(c->dbg->dfs_dir);
3018}
3019
3020struct ubifs_global_debug_info ubifs_dbg;
3021
3022static struct dentry *dfs_chk_gen;
3023static struct dentry *dfs_chk_index;
3024static struct dentry *dfs_chk_orph;
3025static struct dentry *dfs_chk_lprops;
3026static struct dentry *dfs_chk_fs;
3027static struct dentry *dfs_tst_rcvry;
3028
3029static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3030 size_t count, loff_t *ppos)
3031{
3032 struct dentry *dent = file->f_path.dentry;
3033 int val;
3034
3035 if (dent == dfs_chk_gen)
3036 val = ubifs_dbg.chk_gen;
3037 else if (dent == dfs_chk_index)
3038 val = ubifs_dbg.chk_index;
3039 else if (dent == dfs_chk_orph)
3040 val = ubifs_dbg.chk_orph;
3041 else if (dent == dfs_chk_lprops)
3042 val = ubifs_dbg.chk_lprops;
3043 else if (dent == dfs_chk_fs)
3044 val = ubifs_dbg.chk_fs;
3045 else if (dent == dfs_tst_rcvry)
3046 val = ubifs_dbg.tst_rcvry;
3047 else
3048 return -EINVAL;
3049
3050 return provide_user_output(val, u, count, ppos);
3051}
3052
3053static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3054 size_t count, loff_t *ppos)
3055{
3056 struct dentry *dent = file->f_path.dentry;
3057 int val;
3058
3059 val = interpret_user_input(u, count);
3060 if (val < 0)
3061 return val;
3062
3063 if (dent == dfs_chk_gen)
3064 ubifs_dbg.chk_gen = val;
3065 else if (dent == dfs_chk_index)
3066 ubifs_dbg.chk_index = val;
3067 else if (dent == dfs_chk_orph)
3068 ubifs_dbg.chk_orph = val;
3069 else if (dent == dfs_chk_lprops)
3070 ubifs_dbg.chk_lprops = val;
3071 else if (dent == dfs_chk_fs)
3072 ubifs_dbg.chk_fs = val;
3073 else if (dent == dfs_tst_rcvry)
3074 ubifs_dbg.tst_rcvry = val;
3075 else
3076 return -EINVAL;
3077
3078 return count;
3079}
3080
3081static const struct file_operations dfs_global_fops = {
3082 .read = dfs_global_file_read,
3083 .write = dfs_global_file_write,
3084 .owner = THIS_MODULE,
3085 .llseek = no_llseek,
3086};
3087
3088/**
3089 * dbg_debugfs_init - initialize debugfs file-system.
3090 *
3091 * UBIFS uses debugfs file-system to expose various debugging knobs to
3092 * user-space. This function creates "ubifs" directory in the debugfs
3093 * file-system. Returns zero in case of success and a negative error code in
3094 * case of failure.
3095 */
3096int dbg_debugfs_init(void)
3097{
3098 int err;
3099 const char *fname;
3100 struct dentry *dent;
3101
3102 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3103 return 0;
3104
3105 fname = "ubifs";
3106 dent = debugfs_create_dir(fname, NULL);
3107 if (IS_ERR_OR_NULL(dent))
3108 goto out;
3109 dfs_rootdir = dent;
3110
3111 fname = "chk_general";
3112 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113 &dfs_global_fops);
3114 if (IS_ERR_OR_NULL(dent))
3115 goto out_remove;
3116 dfs_chk_gen = dent;
3117
3118 fname = "chk_index";
3119 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120 &dfs_global_fops);
3121 if (IS_ERR_OR_NULL(dent))
3122 goto out_remove;
3123 dfs_chk_index = dent;
3124
3125 fname = "chk_orphans";
3126 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127 &dfs_global_fops);
3128 if (IS_ERR_OR_NULL(dent))
3129 goto out_remove;
3130 dfs_chk_orph = dent;
3131
3132 fname = "chk_lprops";
3133 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134 &dfs_global_fops);
3135 if (IS_ERR_OR_NULL(dent))
3136 goto out_remove;
3137 dfs_chk_lprops = dent;
3138
3139 fname = "chk_fs";
3140 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141 &dfs_global_fops);
3142 if (IS_ERR_OR_NULL(dent))
3143 goto out_remove;
3144 dfs_chk_fs = dent;
3145
3146 fname = "tst_recovery";
3147 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3148 &dfs_global_fops);
3149 if (IS_ERR_OR_NULL(dent))
3150 goto out_remove;
3151 dfs_tst_rcvry = dent;
3152
3153 return 0;
3154
3155out_remove:
3156 debugfs_remove_recursive(dfs_rootdir);
3157out:
3158 err = dent ? PTR_ERR(dent) : -ENODEV;
3159 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160 fname, err);
3161 return err;
3162}
3163
3164/**
3165 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3166 */
3167void dbg_debugfs_exit(void)
3168{
3169 if (IS_ENABLED(CONFIG_DEBUG_FS))
3170 debugfs_remove_recursive(dfs_rootdir);
3171}
3172
3173/**
3174 * ubifs_debugging_init - initialize UBIFS debugging.
3175 * @c: UBIFS file-system description object
3176 *
3177 * This function initializes debugging-related data for the file system.
3178 * Returns zero in case of success and a negative error code in case of
3179 * failure.
3180 */
3181int ubifs_debugging_init(struct ubifs_info *c)
3182{
3183 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3184 if (!c->dbg)
3185 return -ENOMEM;
3186
3187 return 0;
3188}
3189
3190/**
3191 * ubifs_debugging_exit - free debugging data.
3192 * @c: UBIFS file-system description object
3193 */
3194void ubifs_debugging_exit(struct ubifs_info *c)
3195{
3196 kfree(c->dbg);
3197}