Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37static DEFINE_SPINLOCK(dbg_lock);
38
39static const char *get_key_fmt(int fmt)
40{
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
46 }
47}
48
49static const char *get_key_hash(int hash)
50{
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
58 }
59}
60
61static const char *get_key_type(int type)
62{
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
76 }
77}
78
79static const char *get_dent_type(int type)
80{
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
98 }
99}
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
103{
104 char *p = buffer;
105 int type = key_type(c, key);
106
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
133 }
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
138}
139
140const char *dbg_ntype(int type)
141{
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
169 }
170}
171
172static const char *dbg_gtype(int type)
173{
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
183 }
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
203 }
204}
205
206const char *dbg_jhead(int jhead)
207{
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
217 }
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
224 pr_err("\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 pr_err("\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
240
241 pr_err("Dump in-memory inode:");
242 pr_err("\tinode %lu\n", inode->i_ino);
243 pr_err("\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 pr_err("\tnlink %u\n", inode->i_nlink);
246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
248 pr_err("\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 pr_err("\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 pr_err("\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 pr_err("\txattr_size %u\n", ui->xattr_size);
259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
260 pr_err("\txattr_names %u\n", ui->xattr_names);
261 pr_err("\tdirty %u\n", ui->dirty);
262 pr_err("\txattr %u\n", ui->xattr);
263 pr_err("\tbulk_read %u\n", ui->xattr);
264 pr_err("\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 pr_err("\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 pr_err("\tflags %d\n", ui->flags);
269 pr_err("\tcompr_type %d\n", ui->compr_type);
270 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
272 pr_err("\tdata_len %d\n", ui->data_len);
273
274 if (!S_ISDIR(inode->i_mode))
275 return;
276
277 pr_err("List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 pr_err("error %ld\n", PTR_ERR(dent));
286 break;
287 }
288
289 pr_err("\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
291
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
297 }
298 kfree(pdent);
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
321 {
322 const struct ubifs_pad_node *pad = node;
323
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
326 }
327 case UBIFS_SB_NODE:
328 {
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
337 pr_err("\tbig_lpt %u\n",
338 !!(sup_flags & UBIFS_FLG_BIGLPT));
339 pr_err("\tspace_fixup %u\n",
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
363 }
364 case UBIFS_MST_NODE:
365 {
366 const struct ubifs_mst_node *mst = node;
367
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
405 }
406 case UBIFS_REF_NODE:
407 {
408 const struct ubifs_ref_node *ref = node;
409
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
414 }
415 case UBIFS_INO_NODE:
416 {
417 const struct ubifs_ino_node *ino = node;
418
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
447 }
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
450 {
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
453
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
462
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
468 }
469 pr_cont("\n");
470
471 break;
472 }
473 case UBIFS_DATA_NODE:
474 {
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
489 }
490 case UBIFS_TRUN_NODE:
491 {
492 const struct ubifs_trun_node *trun = node;
493
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
500 }
501 case UBIFS_IDX_NODE:
502 {
503 const struct ubifs_idx_node *idx = node;
504
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
509
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
512
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
520 }
521 break;
522 }
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
526 {
527 const struct ubifs_orph_node *orph = node;
528
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
540 }
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
544 }
545 spin_unlock(&dbg_lock);
546}
547
548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549{
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
563}
564
565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566{
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
575}
576
577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578{
579 int i;
580 struct rb_node *rb;
581 struct ubifs_bud *bud;
582 struct ubifs_gced_idx_leb *idx_gc;
583 long long available, outstanding, free;
584
585 spin_lock(&c->space_lock);
586 spin_lock(&dbg_lock);
587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588 current->pid, bi->data_growth + bi->dd_growth,
589 bi->data_growth + bi->dd_growth + bi->idx_growth);
590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591 bi->data_growth, bi->dd_growth, bi->idx_growth);
592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595 bi->page_budget, bi->inode_budget, bi->dent_budget);
596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600 if (bi != &c->bi)
601 /*
602 * If we are dumping saved budgeting data, do not print
603 * additional information which is about the current state, not
604 * the old one which corresponded to the saved budgeting data.
605 */
606 goto out_unlock;
607
608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611 atomic_long_read(&c->dirty_pg_cnt),
612 atomic_long_read(&c->dirty_zn_cnt),
613 atomic_long_read(&c->clean_zn_cnt));
614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616 /* If we are in R/O mode, journal heads do not exist */
617 if (c->jheads)
618 for (i = 0; i < c->jhead_cnt; i++)
619 pr_err("\tjhead %s\t LEB %d\n",
620 dbg_jhead(c->jheads[i].wbuf.jhead),
621 c->jheads[i].wbuf.lnum);
622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623 bud = rb_entry(rb, struct ubifs_bud, rb);
624 pr_err("\tbud LEB %d\n", bud->lnum);
625 }
626 list_for_each_entry(bud, &c->old_buds, list)
627 pr_err("\told bud LEB %d\n", bud->lnum);
628 list_for_each_entry(idx_gc, &c->idx_gc, list)
629 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630 idx_gc->lnum, idx_gc->unmap);
631 pr_err("\tcommit state %d\n", c->cmt_state);
632
633 /* Print budgeting predictions */
634 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635 outstanding = c->bi.data_growth + c->bi.dd_growth;
636 free = ubifs_get_free_space_nolock(c);
637 pr_err("Budgeting predictions:\n");
638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639 available, outstanding, free);
640out_unlock:
641 spin_unlock(&dbg_lock);
642 spin_unlock(&c->space_lock);
643}
644
645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646{
647 int i, spc, dark = 0, dead = 0;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650
651 spc = lp->free + lp->dirty;
652 if (spc < c->dead_wm)
653 dead = spc;
654 else
655 dark = ubifs_calc_dark(c, spc);
656
657 if (lp->flags & LPROPS_INDEX)
658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660 lp->flags);
661 else
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665
666 if (lp->flags & LPROPS_TAKEN) {
667 if (lp->flags & LPROPS_INDEX)
668 pr_cont("index, taken");
669 else
670 pr_cont("taken");
671 } else {
672 const char *s;
673
674 if (lp->flags & LPROPS_INDEX) {
675 switch (lp->flags & LPROPS_CAT_MASK) {
676 case LPROPS_DIRTY_IDX:
677 s = "dirty index";
678 break;
679 case LPROPS_FRDI_IDX:
680 s = "freeable index";
681 break;
682 default:
683 s = "index";
684 }
685 } else {
686 switch (lp->flags & LPROPS_CAT_MASK) {
687 case LPROPS_UNCAT:
688 s = "not categorized";
689 break;
690 case LPROPS_DIRTY:
691 s = "dirty";
692 break;
693 case LPROPS_FREE:
694 s = "free";
695 break;
696 case LPROPS_EMPTY:
697 s = "empty";
698 break;
699 case LPROPS_FREEABLE:
700 s = "freeable";
701 break;
702 default:
703 s = NULL;
704 break;
705 }
706 }
707 pr_cont("%s", s);
708 }
709
710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711 bud = rb_entry(rb, struct ubifs_bud, rb);
712 if (bud->lnum == lp->lnum) {
713 int head = 0;
714 for (i = 0; i < c->jhead_cnt; i++) {
715 /*
716 * Note, if we are in R/O mode or in the middle
717 * of mounting/re-mounting, the write-buffers do
718 * not exist.
719 */
720 if (c->jheads &&
721 lp->lnum == c->jheads[i].wbuf.lnum) {
722 pr_cont(", jhead %s", dbg_jhead(i));
723 head = 1;
724 }
725 }
726 if (!head)
727 pr_cont(", bud of jhead %s",
728 dbg_jhead(bud->jhead));
729 }
730 }
731 if (lp->lnum == c->gc_lnum)
732 pr_cont(", GC LEB");
733 pr_cont(")\n");
734}
735
736void ubifs_dump_lprops(struct ubifs_info *c)
737{
738 int lnum, err;
739 struct ubifs_lprops lp;
740 struct ubifs_lp_stats lst;
741
742 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743 ubifs_get_lp_stats(c, &lst);
744 ubifs_dump_lstats(&lst);
745
746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747 err = ubifs_read_one_lp(c, lnum, &lp);
748 if (err) {
749 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750 continue;
751 }
752
753 ubifs_dump_lprop(c, &lp);
754 }
755 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756}
757
758void ubifs_dump_lpt_info(struct ubifs_info *c)
759{
760 int i;
761
762 spin_lock(&dbg_lock);
763 pr_err("(pid %d) dumping LPT information\n", current->pid);
764 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
765 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
766 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
767 pr_err("\tltab_sz: %d\n", c->ltab_sz);
768 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
769 pr_err("\tbig_lpt: %d\n", c->big_lpt);
770 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
771 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
772 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
773 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
774 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
775 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
776 pr_err("\tspace_bits: %d\n", c->space_bits);
777 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
780 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
781 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
782 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783 pr_err("\tLPT head is at %d:%d\n",
784 c->nhead_lnum, c->nhead_offs);
785 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786 if (c->big_lpt)
787 pr_err("\tLPT lsave is at %d:%d\n",
788 c->lsave_lnum, c->lsave_offs);
789 for (i = 0; i < c->lpt_lebs; i++)
790 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792 c->ltab[i].tgc, c->ltab[i].cmt);
793 spin_unlock(&dbg_lock);
794}
795
796void ubifs_dump_sleb(const struct ubifs_info *c,
797 const struct ubifs_scan_leb *sleb, int offs)
798{
799 struct ubifs_scan_node *snod;
800
801 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802 current->pid, sleb->lnum, offs);
803
804 list_for_each_entry(snod, &sleb->nodes, list) {
805 cond_resched();
806 pr_err("Dumping node at LEB %d:%d len %d\n",
807 sleb->lnum, snod->offs, snod->len);
808 ubifs_dump_node(c, snod->node);
809 }
810}
811
812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
813{
814 struct ubifs_scan_leb *sleb;
815 struct ubifs_scan_node *snod;
816 void *buf;
817
818 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
819
820 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821 if (!buf) {
822 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823 return;
824 }
825
826 sleb = ubifs_scan(c, lnum, 0, buf, 0);
827 if (IS_ERR(sleb)) {
828 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829 goto out;
830 }
831
832 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833 sleb->nodes_cnt, sleb->endpt);
834
835 list_for_each_entry(snod, &sleb->nodes, list) {
836 cond_resched();
837 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838 snod->offs, snod->len);
839 ubifs_dump_node(c, snod->node);
840 }
841
842 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843 ubifs_scan_destroy(sleb);
844
845out:
846 vfree(buf);
847 return;
848}
849
850void ubifs_dump_znode(const struct ubifs_info *c,
851 const struct ubifs_znode *znode)
852{
853 int n;
854 const struct ubifs_zbranch *zbr;
855 char key_buf[DBG_KEY_BUF_LEN];
856
857 spin_lock(&dbg_lock);
858 if (znode->parent)
859 zbr = &znode->parent->zbranch[znode->iip];
860 else
861 zbr = &c->zroot;
862
863 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865 znode->level, znode->child_cnt, znode->flags);
866
867 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868 spin_unlock(&dbg_lock);
869 return;
870 }
871
872 pr_err("zbranches:\n");
873 for (n = 0; n < znode->child_cnt; n++) {
874 zbr = &znode->zbranch[n];
875 if (znode->level > 0)
876 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878 dbg_snprintf_key(c, &zbr->key, key_buf,
879 DBG_KEY_BUF_LEN));
880 else
881 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883 dbg_snprintf_key(c, &zbr->key, key_buf,
884 DBG_KEY_BUF_LEN));
885 }
886 spin_unlock(&dbg_lock);
887}
888
889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
890{
891 int i;
892
893 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894 current->pid, cat, heap->cnt);
895 for (i = 0; i < heap->cnt; i++) {
896 struct ubifs_lprops *lprops = heap->arr[i];
897
898 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899 i, lprops->lnum, lprops->hpos, lprops->free,
900 lprops->dirty, lprops->flags);
901 }
902 pr_err("(pid %d) finish dumping heap\n", current->pid);
903}
904
905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906 struct ubifs_nnode *parent, int iip)
907{
908 int i;
909
910 pr_err("(pid %d) dumping pnode:\n", current->pid);
911 pr_err("\taddress %zx parent %zx cnext %zx\n",
912 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913 pr_err("\tflags %lu iip %d level %d num %d\n",
914 pnode->flags, iip, pnode->level, pnode->num);
915 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916 struct ubifs_lprops *lp = &pnode->lprops[i];
917
918 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919 i, lp->free, lp->dirty, lp->flags, lp->lnum);
920 }
921}
922
923void ubifs_dump_tnc(struct ubifs_info *c)
924{
925 struct ubifs_znode *znode;
926 int level;
927
928 pr_err("\n");
929 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931 level = znode->level;
932 pr_err("== Level %d ==\n", level);
933 while (znode) {
934 if (level != znode->level) {
935 level = znode->level;
936 pr_err("== Level %d ==\n", level);
937 }
938 ubifs_dump_znode(c, znode);
939 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
940 }
941 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942}
943
944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945 void *priv)
946{
947 ubifs_dump_znode(c, znode);
948 return 0;
949}
950
951/**
952 * ubifs_dump_index - dump the on-flash index.
953 * @c: UBIFS file-system description object
954 *
955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956 * which dumps only in-memory znodes and does not read znodes which from flash.
957 */
958void ubifs_dump_index(struct ubifs_info *c)
959{
960 dbg_walk_index(c, NULL, dump_znode, NULL);
961}
962
963/**
964 * dbg_save_space_info - save information about flash space.
965 * @c: UBIFS file-system description object
966 *
967 * This function saves information about UBIFS free space, dirty space, etc, in
968 * order to check it later.
969 */
970void dbg_save_space_info(struct ubifs_info *c)
971{
972 struct ubifs_debug_info *d = c->dbg;
973 int freeable_cnt;
974
975 spin_lock(&c->space_lock);
976 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978 d->saved_idx_gc_cnt = c->idx_gc_cnt;
979
980 /*
981 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982 * affects the free space calculations, and UBIFS might not know about
983 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984 * only when we read their lprops, and we do this only lazily, upon the
985 * need. So at any given point of time @c->freeable_cnt might be not
986 * exactly accurate.
987 *
988 * Just one example about the issue we hit when we did not zero
989 * @c->freeable_cnt.
990 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991 * amount of free space in @d->saved_free
992 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993 * information from flash, where we cache LEBs from various
994 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996 * -> 'ubifs_get_pnode()' -> 'update_cats()'
997 * -> 'ubifs_add_to_cat()').
998 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999 * becomes %1.
1000 * 4. We calculate the amount of free space when the re-mount is
1001 * finished in 'dbg_check_space_info()' and it does not match
1002 * @d->saved_free.
1003 */
1004 freeable_cnt = c->freeable_cnt;
1005 c->freeable_cnt = 0;
1006 d->saved_free = ubifs_get_free_space_nolock(c);
1007 c->freeable_cnt = freeable_cnt;
1008 spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022 struct ubifs_debug_info *d = c->dbg;
1023 struct ubifs_lp_stats lst;
1024 long long free;
1025 int freeable_cnt;
1026
1027 spin_lock(&c->space_lock);
1028 freeable_cnt = c->freeable_cnt;
1029 c->freeable_cnt = 0;
1030 free = ubifs_get_free_space_nolock(c);
1031 c->freeable_cnt = freeable_cnt;
1032 spin_unlock(&c->space_lock);
1033
1034 if (free != d->saved_free) {
1035 ubifs_err(c, "free space changed from %lld to %lld",
1036 d->saved_free, free);
1037 goto out;
1038 }
1039
1040 return 0;
1041
1042out:
1043 ubifs_msg(c, "saved lprops statistics dump");
1044 ubifs_dump_lstats(&d->saved_lst);
1045 ubifs_msg(c, "saved budgeting info dump");
1046 ubifs_dump_budg(c, &d->saved_bi);
1047 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048 ubifs_msg(c, "current lprops statistics dump");
1049 ubifs_get_lp_stats(c, &lst);
1050 ubifs_dump_lstats(&lst);
1051 ubifs_msg(c, "current budgeting info dump");
1052 ubifs_dump_budg(c, &c->bi);
1053 dump_stack();
1054 return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069 int err = 0;
1070 struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072 if (!dbg_is_chk_gen(c))
1073 return 0;
1074 if (!S_ISREG(inode->i_mode))
1075 return 0;
1076
1077 mutex_lock(&ui->ui_mutex);
1078 spin_lock(&ui->ui_lock);
1079 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081 ui->ui_size, ui->synced_i_size);
1082 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083 inode->i_mode, i_size_read(inode));
1084 dump_stack();
1085 err = -EINVAL;
1086 }
1087 spin_unlock(&ui->ui_lock);
1088 mutex_unlock(&ui->ui_mutex);
1089 return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107 unsigned int nlink = 2;
1108 union ubifs_key key;
1109 struct ubifs_dent_node *dent, *pdent = NULL;
1110 struct qstr nm = { .name = NULL };
1111 loff_t size = UBIFS_INO_NODE_SZ;
1112
1113 if (!dbg_is_chk_gen(c))
1114 return 0;
1115
1116 if (!S_ISDIR(dir->i_mode))
1117 return 0;
1118
1119 lowest_dent_key(c, &key, dir->i_ino);
1120 while (1) {
1121 int err;
1122
1123 dent = ubifs_tnc_next_ent(c, &key, &nm);
1124 if (IS_ERR(dent)) {
1125 err = PTR_ERR(dent);
1126 if (err == -ENOENT)
1127 break;
1128 return err;
1129 }
1130
1131 nm.name = dent->name;
1132 nm.len = le16_to_cpu(dent->nlen);
1133 size += CALC_DENT_SIZE(nm.len);
1134 if (dent->type == UBIFS_ITYPE_DIR)
1135 nlink += 1;
1136 kfree(pdent);
1137 pdent = dent;
1138 key_read(c, &dent->key, &key);
1139 }
1140 kfree(pdent);
1141
1142 if (i_size_read(dir) != size) {
1143 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144 dir->i_ino, (unsigned long long)i_size_read(dir),
1145 (unsigned long long)size);
1146 ubifs_dump_inode(c, dir);
1147 dump_stack();
1148 return -EINVAL;
1149 }
1150 if (dir->i_nlink != nlink) {
1151 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152 dir->i_ino, dir->i_nlink, nlink);
1153 ubifs_dump_inode(c, dir);
1154 dump_stack();
1155 return -EINVAL;
1156 }
1157
1158 return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175 struct ubifs_zbranch *zbr2)
1176{
1177 int err, nlen1, nlen2, cmp;
1178 struct ubifs_dent_node *dent1, *dent2;
1179 union ubifs_key key;
1180 char key_buf[DBG_KEY_BUF_LEN];
1181
1182 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184 if (!dent1)
1185 return -ENOMEM;
1186 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187 if (!dent2) {
1188 err = -ENOMEM;
1189 goto out_free;
1190 }
1191
1192 err = ubifs_tnc_read_node(c, zbr1, dent1);
1193 if (err)
1194 goto out_free;
1195 err = ubifs_validate_entry(c, dent1);
1196 if (err)
1197 goto out_free;
1198
1199 err = ubifs_tnc_read_node(c, zbr2, dent2);
1200 if (err)
1201 goto out_free;
1202 err = ubifs_validate_entry(c, dent2);
1203 if (err)
1204 goto out_free;
1205
1206 /* Make sure node keys are the same as in zbranch */
1207 err = 1;
1208 key_read(c, &dent1->key, &key);
1209 if (keys_cmp(c, &zbr1->key, &key)) {
1210 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212 DBG_KEY_BUF_LEN));
1213 ubifs_err(c, "but it should have key %s according to tnc",
1214 dbg_snprintf_key(c, &zbr1->key, key_buf,
1215 DBG_KEY_BUF_LEN));
1216 ubifs_dump_node(c, dent1);
1217 goto out_free;
1218 }
1219
1220 key_read(c, &dent2->key, &key);
1221 if (keys_cmp(c, &zbr2->key, &key)) {
1222 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224 DBG_KEY_BUF_LEN));
1225 ubifs_err(c, "but it should have key %s according to tnc",
1226 dbg_snprintf_key(c, &zbr2->key, key_buf,
1227 DBG_KEY_BUF_LEN));
1228 ubifs_dump_node(c, dent2);
1229 goto out_free;
1230 }
1231
1232 nlen1 = le16_to_cpu(dent1->nlen);
1233 nlen2 = le16_to_cpu(dent2->nlen);
1234
1235 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237 err = 0;
1238 goto out_free;
1239 }
1240 if (cmp == 0 && nlen1 == nlen2)
1241 ubifs_err(c, "2 xent/dent nodes with the same name");
1242 else
1243 ubifs_err(c, "bad order of colliding key %s",
1244 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247 ubifs_dump_node(c, dent1);
1248 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249 ubifs_dump_node(c, dent2);
1250
1251out_free:
1252 kfree(dent2);
1253 kfree(dent1);
1254 return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267 struct ubifs_znode *znode = zbr->znode;
1268 struct ubifs_znode *zp = znode->parent;
1269 int n, err, cmp;
1270
1271 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272 err = 1;
1273 goto out;
1274 }
1275 if (znode->level < 0) {
1276 err = 2;
1277 goto out;
1278 }
1279 if (znode->iip < 0 || znode->iip >= c->fanout) {
1280 err = 3;
1281 goto out;
1282 }
1283
1284 if (zbr->len == 0)
1285 /* Only dirty zbranch may have no on-flash nodes */
1286 if (!ubifs_zn_dirty(znode)) {
1287 err = 4;
1288 goto out;
1289 }
1290
1291 if (ubifs_zn_dirty(znode)) {
1292 /*
1293 * If znode is dirty, its parent has to be dirty as well. The
1294 * order of the operation is important, so we have to have
1295 * memory barriers.
1296 */
1297 smp_mb();
1298 if (zp && !ubifs_zn_dirty(zp)) {
1299 /*
1300 * The dirty flag is atomic and is cleared outside the
1301 * TNC mutex, so znode's dirty flag may now have
1302 * been cleared. The child is always cleared before the
1303 * parent, so we just need to check again.
1304 */
1305 smp_mb();
1306 if (ubifs_zn_dirty(znode)) {
1307 err = 5;
1308 goto out;
1309 }
1310 }
1311 }
1312
1313 if (zp) {
1314 const union ubifs_key *min, *max;
1315
1316 if (znode->level != zp->level - 1) {
1317 err = 6;
1318 goto out;
1319 }
1320
1321 /* Make sure the 'parent' pointer in our znode is correct */
1322 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323 if (!err) {
1324 /* This zbranch does not exist in the parent */
1325 err = 7;
1326 goto out;
1327 }
1328
1329 if (znode->iip >= zp->child_cnt) {
1330 err = 8;
1331 goto out;
1332 }
1333
1334 if (znode->iip != n) {
1335 /* This may happen only in case of collisions */
1336 if (keys_cmp(c, &zp->zbranch[n].key,
1337 &zp->zbranch[znode->iip].key)) {
1338 err = 9;
1339 goto out;
1340 }
1341 n = znode->iip;
1342 }
1343
1344 /*
1345 * Make sure that the first key in our znode is greater than or
1346 * equal to the key in the pointing zbranch.
1347 */
1348 min = &zbr->key;
1349 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350 if (cmp == 1) {
1351 err = 10;
1352 goto out;
1353 }
1354
1355 if (n + 1 < zp->child_cnt) {
1356 max = &zp->zbranch[n + 1].key;
1357
1358 /*
1359 * Make sure the last key in our znode is less or
1360 * equivalent than the key in the zbranch which goes
1361 * after our pointing zbranch.
1362 */
1363 cmp = keys_cmp(c, max,
1364 &znode->zbranch[znode->child_cnt - 1].key);
1365 if (cmp == -1) {
1366 err = 11;
1367 goto out;
1368 }
1369 }
1370 } else {
1371 /* This may only be root znode */
1372 if (zbr != &c->zroot) {
1373 err = 12;
1374 goto out;
1375 }
1376 }
1377
1378 /*
1379 * Make sure that next key is greater or equivalent then the previous
1380 * one.
1381 */
1382 for (n = 1; n < znode->child_cnt; n++) {
1383 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384 &znode->zbranch[n].key);
1385 if (cmp > 0) {
1386 err = 13;
1387 goto out;
1388 }
1389 if (cmp == 0) {
1390 /* This can only be keys with colliding hash */
1391 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392 err = 14;
1393 goto out;
1394 }
1395
1396 if (znode->level != 0 || c->replaying)
1397 continue;
1398
1399 /*
1400 * Colliding keys should follow binary order of
1401 * corresponding xentry/dentry names.
1402 */
1403 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404 &znode->zbranch[n]);
1405 if (err < 0)
1406 return err;
1407 if (err) {
1408 err = 15;
1409 goto out;
1410 }
1411 }
1412 }
1413
1414 for (n = 0; n < znode->child_cnt; n++) {
1415 if (!znode->zbranch[n].znode &&
1416 (znode->zbranch[n].lnum == 0 ||
1417 znode->zbranch[n].len == 0)) {
1418 err = 16;
1419 goto out;
1420 }
1421
1422 if (znode->zbranch[n].lnum != 0 &&
1423 znode->zbranch[n].len == 0) {
1424 err = 17;
1425 goto out;
1426 }
1427
1428 if (znode->zbranch[n].lnum == 0 &&
1429 znode->zbranch[n].len != 0) {
1430 err = 18;
1431 goto out;
1432 }
1433
1434 if (znode->zbranch[n].lnum == 0 &&
1435 znode->zbranch[n].offs != 0) {
1436 err = 19;
1437 goto out;
1438 }
1439
1440 if (znode->level != 0 && znode->zbranch[n].znode)
1441 if (znode->zbranch[n].znode->parent != znode) {
1442 err = 20;
1443 goto out;
1444 }
1445 }
1446
1447 return 0;
1448
1449out:
1450 ubifs_err(c, "failed, error %d", err);
1451 ubifs_msg(c, "dump of the znode");
1452 ubifs_dump_znode(c, znode);
1453 if (zp) {
1454 ubifs_msg(c, "dump of the parent znode");
1455 ubifs_dump_znode(c, zp);
1456 }
1457 dump_stack();
1458 return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471 struct ubifs_znode *znode;
1472 long clean_cnt = 0, dirty_cnt = 0;
1473 int err, last;
1474
1475 if (!dbg_is_chk_index(c))
1476 return 0;
1477
1478 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479 if (!c->zroot.znode)
1480 return 0;
1481
1482 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483 while (1) {
1484 struct ubifs_znode *prev;
1485 struct ubifs_zbranch *zbr;
1486
1487 if (!znode->parent)
1488 zbr = &c->zroot;
1489 else
1490 zbr = &znode->parent->zbranch[znode->iip];
1491
1492 err = dbg_check_znode(c, zbr);
1493 if (err)
1494 return err;
1495
1496 if (extra) {
1497 if (ubifs_zn_dirty(znode))
1498 dirty_cnt += 1;
1499 else
1500 clean_cnt += 1;
1501 }
1502
1503 prev = znode;
1504 znode = ubifs_tnc_postorder_next(znode);
1505 if (!znode)
1506 break;
1507
1508 /*
1509 * If the last key of this znode is equivalent to the first key
1510 * of the next znode (collision), then check order of the keys.
1511 */
1512 last = prev->child_cnt - 1;
1513 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514 !keys_cmp(c, &prev->zbranch[last].key,
1515 &znode->zbranch[0].key)) {
1516 err = dbg_check_key_order(c, &prev->zbranch[last],
1517 &znode->zbranch[0]);
1518 if (err < 0)
1519 return err;
1520 if (err) {
1521 ubifs_msg(c, "first znode");
1522 ubifs_dump_znode(c, prev);
1523 ubifs_msg(c, "second znode");
1524 ubifs_dump_znode(c, znode);
1525 return -EINVAL;
1526 }
1527 }
1528 }
1529
1530 if (extra) {
1531 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533 atomic_long_read(&c->clean_zn_cnt),
1534 clean_cnt);
1535 return -EINVAL;
1536 }
1537 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539 atomic_long_read(&c->dirty_zn_cnt),
1540 dirty_cnt);
1541 return -EINVAL;
1542 }
1543 }
1544
1545 return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564 dbg_znode_callback znode_cb, void *priv)
1565{
1566 int err;
1567 struct ubifs_zbranch *zbr;
1568 struct ubifs_znode *znode, *child;
1569
1570 mutex_lock(&c->tnc_mutex);
1571 /* If the root indexing node is not in TNC - pull it */
1572 if (!c->zroot.znode) {
1573 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574 if (IS_ERR(c->zroot.znode)) {
1575 err = PTR_ERR(c->zroot.znode);
1576 c->zroot.znode = NULL;
1577 goto out_unlock;
1578 }
1579 }
1580
1581 /*
1582 * We are going to traverse the indexing tree in the postorder manner.
1583 * Go down and find the leftmost indexing node where we are going to
1584 * start from.
1585 */
1586 znode = c->zroot.znode;
1587 while (znode->level > 0) {
1588 zbr = &znode->zbranch[0];
1589 child = zbr->znode;
1590 if (!child) {
1591 child = ubifs_load_znode(c, zbr, znode, 0);
1592 if (IS_ERR(child)) {
1593 err = PTR_ERR(child);
1594 goto out_unlock;
1595 }
1596 zbr->znode = child;
1597 }
1598
1599 znode = child;
1600 }
1601
1602 /* Iterate over all indexing nodes */
1603 while (1) {
1604 int idx;
1605
1606 cond_resched();
1607
1608 if (znode_cb) {
1609 err = znode_cb(c, znode, priv);
1610 if (err) {
1611 ubifs_err(c, "znode checking function returned error %d",
1612 err);
1613 ubifs_dump_znode(c, znode);
1614 goto out_dump;
1615 }
1616 }
1617 if (leaf_cb && znode->level == 0) {
1618 for (idx = 0; idx < znode->child_cnt; idx++) {
1619 zbr = &znode->zbranch[idx];
1620 err = leaf_cb(c, zbr, priv);
1621 if (err) {
1622 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623 err, zbr->lnum, zbr->offs);
1624 goto out_dump;
1625 }
1626 }
1627 }
1628
1629 if (!znode->parent)
1630 break;
1631
1632 idx = znode->iip + 1;
1633 znode = znode->parent;
1634 if (idx < znode->child_cnt) {
1635 /* Switch to the next index in the parent */
1636 zbr = &znode->zbranch[idx];
1637 child = zbr->znode;
1638 if (!child) {
1639 child = ubifs_load_znode(c, zbr, znode, idx);
1640 if (IS_ERR(child)) {
1641 err = PTR_ERR(child);
1642 goto out_unlock;
1643 }
1644 zbr->znode = child;
1645 }
1646 znode = child;
1647 } else
1648 /*
1649 * This is the last child, switch to the parent and
1650 * continue.
1651 */
1652 continue;
1653
1654 /* Go to the lowest leftmost znode in the new sub-tree */
1655 while (znode->level > 0) {
1656 zbr = &znode->zbranch[0];
1657 child = zbr->znode;
1658 if (!child) {
1659 child = ubifs_load_znode(c, zbr, znode, 0);
1660 if (IS_ERR(child)) {
1661 err = PTR_ERR(child);
1662 goto out_unlock;
1663 }
1664 zbr->znode = child;
1665 }
1666 znode = child;
1667 }
1668 }
1669
1670 mutex_unlock(&c->tnc_mutex);
1671 return 0;
1672
1673out_dump:
1674 if (znode->parent)
1675 zbr = &znode->parent->zbranch[znode->iip];
1676 else
1677 zbr = &c->zroot;
1678 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679 ubifs_dump_znode(c, znode);
1680out_unlock:
1681 mutex_unlock(&c->tnc_mutex);
1682 return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697 long long *idx_size = priv;
1698 int add;
1699
1700 add = ubifs_idx_node_sz(c, znode->child_cnt);
1701 add = ALIGN(add, 8);
1702 *idx_size += add;
1703 return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717 int err;
1718 long long calc = 0;
1719
1720 if (!dbg_is_chk_index(c))
1721 return 0;
1722
1723 err = dbg_walk_index(c, NULL, add_size, &calc);
1724 if (err) {
1725 ubifs_err(c, "error %d while walking the index", err);
1726 return err;
1727 }
1728
1729 if (calc != idx_size) {
1730 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731 calc, idx_size);
1732 dump_stack();
1733 return -EINVAL;
1734 }
1735
1736 return 0;
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 * while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 * inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 * inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760 struct rb_node rb;
1761 ino_t inum;
1762 umode_t mode;
1763 unsigned int nlink;
1764 unsigned int xattr_cnt;
1765 int references;
1766 int calc_cnt;
1767 long long size;
1768 unsigned int xattr_sz;
1769 long long calc_sz;
1770 long long calc_xcnt;
1771 long long calc_xsz;
1772 unsigned int xattr_nms;
1773 long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781 struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795 struct fsck_data *fsckd,
1796 struct ubifs_ino_node *ino)
1797{
1798 struct rb_node **p, *parent = NULL;
1799 struct fsck_inode *fscki;
1800 ino_t inum = key_inum_flash(c, &ino->key);
1801 struct inode *inode;
1802 struct ubifs_inode *ui;
1803
1804 p = &fsckd->inodes.rb_node;
1805 while (*p) {
1806 parent = *p;
1807 fscki = rb_entry(parent, struct fsck_inode, rb);
1808 if (inum < fscki->inum)
1809 p = &(*p)->rb_left;
1810 else if (inum > fscki->inum)
1811 p = &(*p)->rb_right;
1812 else
1813 return fscki;
1814 }
1815
1816 if (inum > c->highest_inum) {
1817 ubifs_err(c, "too high inode number, max. is %lu",
1818 (unsigned long)c->highest_inum);
1819 return ERR_PTR(-EINVAL);
1820 }
1821
1822 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823 if (!fscki)
1824 return ERR_PTR(-ENOMEM);
1825
1826 inode = ilookup(c->vfs_sb, inum);
1827
1828 fscki->inum = inum;
1829 /*
1830 * If the inode is present in the VFS inode cache, use it instead of
1831 * the on-flash inode which might be out-of-date. E.g., the size might
1832 * be out-of-date. If we do not do this, the following may happen, for
1833 * example:
1834 * 1. A power cut happens
1835 * 2. We mount the file-system R/O, the replay process fixes up the
1836 * inode size in the VFS cache, but on on-flash.
1837 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1838 * size.
1839 */
1840 if (!inode) {
1841 fscki->nlink = le32_to_cpu(ino->nlink);
1842 fscki->size = le64_to_cpu(ino->size);
1843 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846 fscki->mode = le32_to_cpu(ino->mode);
1847 } else {
1848 ui = ubifs_inode(inode);
1849 fscki->nlink = inode->i_nlink;
1850 fscki->size = inode->i_size;
1851 fscki->xattr_cnt = ui->xattr_cnt;
1852 fscki->xattr_sz = ui->xattr_size;
1853 fscki->xattr_nms = ui->xattr_names;
1854 fscki->mode = inode->i_mode;
1855 iput(inode);
1856 }
1857
1858 if (S_ISDIR(fscki->mode)) {
1859 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860 fscki->calc_cnt = 2;
1861 }
1862
1863 rb_link_node(&fscki->rb, parent, p);
1864 rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866 return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880 struct rb_node *p;
1881 struct fsck_inode *fscki;
1882
1883 p = fsckd->inodes.rb_node;
1884 while (p) {
1885 fscki = rb_entry(p, struct fsck_inode, rb);
1886 if (inum < fscki->inum)
1887 p = p->rb_left;
1888 else if (inum > fscki->inum)
1889 p = p->rb_right;
1890 else
1891 return fscki;
1892 }
1893 return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908 struct fsck_data *fsckd, ino_t inum)
1909{
1910 int n, err;
1911 union ubifs_key key;
1912 struct ubifs_znode *znode;
1913 struct ubifs_zbranch *zbr;
1914 struct ubifs_ino_node *ino;
1915 struct fsck_inode *fscki;
1916
1917 fscki = search_inode(fsckd, inum);
1918 if (fscki)
1919 return fscki;
1920
1921 ino_key_init(c, &key, inum);
1922 err = ubifs_lookup_level0(c, &key, &znode, &n);
1923 if (!err) {
1924 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925 return ERR_PTR(-ENOENT);
1926 } else if (err < 0) {
1927 ubifs_err(c, "error %d while looking up inode %lu",
1928 err, (unsigned long)inum);
1929 return ERR_PTR(err);
1930 }
1931
1932 zbr = &znode->zbranch[n];
1933 if (zbr->len < UBIFS_INO_NODE_SZ) {
1934 ubifs_err(c, "bad node %lu node length %d",
1935 (unsigned long)inum, zbr->len);
1936 return ERR_PTR(-EINVAL);
1937 }
1938
1939 ino = kmalloc(zbr->len, GFP_NOFS);
1940 if (!ino)
1941 return ERR_PTR(-ENOMEM);
1942
1943 err = ubifs_tnc_read_node(c, zbr, ino);
1944 if (err) {
1945 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946 zbr->lnum, zbr->offs, err);
1947 kfree(ino);
1948 return ERR_PTR(err);
1949 }
1950
1951 fscki = add_inode(c, fsckd, ino);
1952 kfree(ino);
1953 if (IS_ERR(fscki)) {
1954 ubifs_err(c, "error %ld while adding inode %lu node",
1955 PTR_ERR(fscki), (unsigned long)inum);
1956 return fscki;
1957 }
1958
1959 return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979 void *priv)
1980{
1981 ino_t inum;
1982 void *node;
1983 struct ubifs_ch *ch;
1984 int err, type = key_type(c, &zbr->key);
1985 struct fsck_inode *fscki;
1986
1987 if (zbr->len < UBIFS_CH_SZ) {
1988 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989 zbr->len, zbr->lnum, zbr->offs);
1990 return -EINVAL;
1991 }
1992
1993 node = kmalloc(zbr->len, GFP_NOFS);
1994 if (!node)
1995 return -ENOMEM;
1996
1997 err = ubifs_tnc_read_node(c, zbr, node);
1998 if (err) {
1999 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000 zbr->lnum, zbr->offs, err);
2001 goto out_free;
2002 }
2003
2004 /* If this is an inode node, add it to RB-tree of inodes */
2005 if (type == UBIFS_INO_KEY) {
2006 fscki = add_inode(c, priv, node);
2007 if (IS_ERR(fscki)) {
2008 err = PTR_ERR(fscki);
2009 ubifs_err(c, "error %d while adding inode node", err);
2010 goto out_dump;
2011 }
2012 goto out;
2013 }
2014
2015 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016 type != UBIFS_DATA_KEY) {
2017 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018 type, zbr->lnum, zbr->offs);
2019 err = -EINVAL;
2020 goto out_free;
2021 }
2022
2023 ch = node;
2024 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025 ubifs_err(c, "too high sequence number, max. is %llu",
2026 c->max_sqnum);
2027 err = -EINVAL;
2028 goto out_dump;
2029 }
2030
2031 if (type == UBIFS_DATA_KEY) {
2032 long long blk_offs;
2033 struct ubifs_data_node *dn = node;
2034
2035 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037 /*
2038 * Search the inode node this data node belongs to and insert
2039 * it to the RB-tree of inodes.
2040 */
2041 inum = key_inum_flash(c, &dn->key);
2042 fscki = read_add_inode(c, priv, inum);
2043 if (IS_ERR(fscki)) {
2044 err = PTR_ERR(fscki);
2045 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046 err, (unsigned long)inum);
2047 goto out_dump;
2048 }
2049
2050 /* Make sure the data node is within inode size */
2051 blk_offs = key_block_flash(c, &dn->key);
2052 blk_offs <<= UBIFS_BLOCK_SHIFT;
2053 blk_offs += le32_to_cpu(dn->size);
2054 if (blk_offs > fscki->size) {
2055 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056 zbr->lnum, zbr->offs, fscki->size);
2057 err = -EINVAL;
2058 goto out_dump;
2059 }
2060 } else {
2061 int nlen;
2062 struct ubifs_dent_node *dent = node;
2063 struct fsck_inode *fscki1;
2064
2065 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067 err = ubifs_validate_entry(c, dent);
2068 if (err)
2069 goto out_dump;
2070
2071 /*
2072 * Search the inode node this entry refers to and the parent
2073 * inode node and insert them to the RB-tree of inodes.
2074 */
2075 inum = le64_to_cpu(dent->inum);
2076 fscki = read_add_inode(c, priv, inum);
2077 if (IS_ERR(fscki)) {
2078 err = PTR_ERR(fscki);
2079 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080 err, (unsigned long)inum);
2081 goto out_dump;
2082 }
2083
2084 /* Count how many direntries or xentries refers this inode */
2085 fscki->references += 1;
2086
2087 inum = key_inum_flash(c, &dent->key);
2088 fscki1 = read_add_inode(c, priv, inum);
2089 if (IS_ERR(fscki1)) {
2090 err = PTR_ERR(fscki1);
2091 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092 err, (unsigned long)inum);
2093 goto out_dump;
2094 }
2095
2096 nlen = le16_to_cpu(dent->nlen);
2097 if (type == UBIFS_XENT_KEY) {
2098 fscki1->calc_xcnt += 1;
2099 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101 fscki1->calc_xnms += nlen;
2102 } else {
2103 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104 if (dent->type == UBIFS_ITYPE_DIR)
2105 fscki1->calc_cnt += 1;
2106 }
2107 }
2108
2109out:
2110 kfree(node);
2111 return 0;
2112
2113out_dump:
2114 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115 ubifs_dump_node(c, node);
2116out_free:
2117 kfree(node);
2118 return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127 struct fsck_inode *fscki, *n;
2128
2129 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130 kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145 int n, err;
2146 union ubifs_key key;
2147 struct ubifs_znode *znode;
2148 struct ubifs_zbranch *zbr;
2149 struct ubifs_ino_node *ino;
2150 struct fsck_inode *fscki;
2151 struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153 while (this) {
2154 fscki = rb_entry(this, struct fsck_inode, rb);
2155 this = rb_next(this);
2156
2157 if (S_ISDIR(fscki->mode)) {
2158 /*
2159 * Directories have to have exactly one reference (they
2160 * cannot have hardlinks), although root inode is an
2161 * exception.
2162 */
2163 if (fscki->inum != UBIFS_ROOT_INO &&
2164 fscki->references != 1) {
2165 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166 (unsigned long)fscki->inum,
2167 fscki->references);
2168 goto out_dump;
2169 }
2170 if (fscki->inum == UBIFS_ROOT_INO &&
2171 fscki->references != 0) {
2172 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173 (unsigned long)fscki->inum,
2174 fscki->references);
2175 goto out_dump;
2176 }
2177 if (fscki->calc_sz != fscki->size) {
2178 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179 (unsigned long)fscki->inum,
2180 fscki->size, fscki->calc_sz);
2181 goto out_dump;
2182 }
2183 if (fscki->calc_cnt != fscki->nlink) {
2184 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185 (unsigned long)fscki->inum,
2186 fscki->nlink, fscki->calc_cnt);
2187 goto out_dump;
2188 }
2189 } else {
2190 if (fscki->references != fscki->nlink) {
2191 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192 (unsigned long)fscki->inum,
2193 fscki->nlink, fscki->references);
2194 goto out_dump;
2195 }
2196 }
2197 if (fscki->xattr_sz != fscki->calc_xsz) {
2198 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199 (unsigned long)fscki->inum, fscki->xattr_sz,
2200 fscki->calc_xsz);
2201 goto out_dump;
2202 }
2203 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205 (unsigned long)fscki->inum,
2206 fscki->xattr_cnt, fscki->calc_xcnt);
2207 goto out_dump;
2208 }
2209 if (fscki->xattr_nms != fscki->calc_xnms) {
2210 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211 (unsigned long)fscki->inum, fscki->xattr_nms,
2212 fscki->calc_xnms);
2213 goto out_dump;
2214 }
2215 }
2216
2217 return 0;
2218
2219out_dump:
2220 /* Read the bad inode and dump it */
2221 ino_key_init(c, &key, fscki->inum);
2222 err = ubifs_lookup_level0(c, &key, &znode, &n);
2223 if (!err) {
2224 ubifs_err(c, "inode %lu not found in index",
2225 (unsigned long)fscki->inum);
2226 return -ENOENT;
2227 } else if (err < 0) {
2228 ubifs_err(c, "error %d while looking up inode %lu",
2229 err, (unsigned long)fscki->inum);
2230 return err;
2231 }
2232
2233 zbr = &znode->zbranch[n];
2234 ino = kmalloc(zbr->len, GFP_NOFS);
2235 if (!ino)
2236 return -ENOMEM;
2237
2238 err = ubifs_tnc_read_node(c, zbr, ino);
2239 if (err) {
2240 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241 zbr->lnum, zbr->offs, err);
2242 kfree(ino);
2243 return err;
2244 }
2245
2246 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248 ubifs_dump_node(c, ino);
2249 kfree(ino);
2250 return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 * inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268 int err;
2269 struct fsck_data fsckd;
2270
2271 if (!dbg_is_chk_fs(c))
2272 return 0;
2273
2274 fsckd.inodes = RB_ROOT;
2275 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276 if (err)
2277 goto out_free;
2278
2279 err = check_inodes(c, &fsckd);
2280 if (err)
2281 goto out_free;
2282
2283 free_inodes(&fsckd);
2284 return 0;
2285
2286out_free:
2287 ubifs_err(c, "file-system check failed with error %d", err);
2288 dump_stack();
2289 free_inodes(&fsckd);
2290 return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303 struct list_head *cur;
2304 struct ubifs_scan_node *sa, *sb;
2305
2306 if (!dbg_is_chk_gen(c))
2307 return 0;
2308
2309 for (cur = head->next; cur->next != head; cur = cur->next) {
2310 ino_t inuma, inumb;
2311 uint32_t blka, blkb;
2312
2313 cond_resched();
2314 sa = container_of(cur, struct ubifs_scan_node, list);
2315 sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317 if (sa->type != UBIFS_DATA_NODE) {
2318 ubifs_err(c, "bad node type %d", sa->type);
2319 ubifs_dump_node(c, sa->node);
2320 return -EINVAL;
2321 }
2322 if (sb->type != UBIFS_DATA_NODE) {
2323 ubifs_err(c, "bad node type %d", sb->type);
2324 ubifs_dump_node(c, sb->node);
2325 return -EINVAL;
2326 }
2327
2328 inuma = key_inum(c, &sa->key);
2329 inumb = key_inum(c, &sb->key);
2330
2331 if (inuma < inumb)
2332 continue;
2333 if (inuma > inumb) {
2334 ubifs_err(c, "larger inum %lu goes before inum %lu",
2335 (unsigned long)inuma, (unsigned long)inumb);
2336 goto error_dump;
2337 }
2338
2339 blka = key_block(c, &sa->key);
2340 blkb = key_block(c, &sb->key);
2341
2342 if (blka > blkb) {
2343 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344 goto error_dump;
2345 }
2346 if (blka == blkb) {
2347 ubifs_err(c, "two data nodes for the same block");
2348 goto error_dump;
2349 }
2350 }
2351
2352 return 0;
2353
2354error_dump:
2355 ubifs_dump_node(c, sa->node);
2356 ubifs_dump_node(c, sb->node);
2357 return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370 struct list_head *cur;
2371 struct ubifs_scan_node *sa, *sb;
2372
2373 if (!dbg_is_chk_gen(c))
2374 return 0;
2375
2376 for (cur = head->next; cur->next != head; cur = cur->next) {
2377 ino_t inuma, inumb;
2378 uint32_t hasha, hashb;
2379
2380 cond_resched();
2381 sa = container_of(cur, struct ubifs_scan_node, list);
2382 sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385 sa->type != UBIFS_XENT_NODE) {
2386 ubifs_err(c, "bad node type %d", sa->type);
2387 ubifs_dump_node(c, sa->node);
2388 return -EINVAL;
2389 }
2390 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391 sa->type != UBIFS_XENT_NODE) {
2392 ubifs_err(c, "bad node type %d", sb->type);
2393 ubifs_dump_node(c, sb->node);
2394 return -EINVAL;
2395 }
2396
2397 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398 ubifs_err(c, "non-inode node goes before inode node");
2399 goto error_dump;
2400 }
2401
2402 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403 continue;
2404
2405 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406 /* Inode nodes are sorted in descending size order */
2407 if (sa->len < sb->len) {
2408 ubifs_err(c, "smaller inode node goes first");
2409 goto error_dump;
2410 }
2411 continue;
2412 }
2413
2414 /*
2415 * This is either a dentry or xentry, which should be sorted in
2416 * ascending (parent ino, hash) order.
2417 */
2418 inuma = key_inum(c, &sa->key);
2419 inumb = key_inum(c, &sb->key);
2420
2421 if (inuma < inumb)
2422 continue;
2423 if (inuma > inumb) {
2424 ubifs_err(c, "larger inum %lu goes before inum %lu",
2425 (unsigned long)inuma, (unsigned long)inumb);
2426 goto error_dump;
2427 }
2428
2429 hasha = key_block(c, &sa->key);
2430 hashb = key_block(c, &sb->key);
2431
2432 if (hasha > hashb) {
2433 ubifs_err(c, "larger hash %u goes before %u",
2434 hasha, hashb);
2435 goto error_dump;
2436 }
2437 }
2438
2439 return 0;
2440
2441error_dump:
2442 ubifs_msg(c, "dumping first node");
2443 ubifs_dump_node(c, sa->node);
2444 ubifs_msg(c, "dumping second node");
2445 ubifs_dump_node(c, sb->node);
2446 return -EINVAL;
2447 return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452 return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458 struct ubifs_debug_info *d = c->dbg;
2459
2460 ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462 if (!d->pc_cnt) {
2463 /* First call - decide delay to the power cut */
2464 if (chance(1, 2)) {
2465 unsigned long delay;
2466
2467 if (chance(1, 2)) {
2468 d->pc_delay = 1;
2469 /* Fail within 1 minute */
2470 delay = prandom_u32() % 60000;
2471 d->pc_timeout = jiffies;
2472 d->pc_timeout += msecs_to_jiffies(delay);
2473 ubifs_warn(c, "failing after %lums", delay);
2474 } else {
2475 d->pc_delay = 2;
2476 delay = prandom_u32() % 10000;
2477 /* Fail within 10000 operations */
2478 d->pc_cnt_max = delay;
2479 ubifs_warn(c, "failing after %lu calls", delay);
2480 }
2481 }
2482
2483 d->pc_cnt += 1;
2484 }
2485
2486 /* Determine if failure delay has expired */
2487 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488 return 0;
2489 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490 return 0;
2491
2492 if (lnum == UBIFS_SB_LNUM) {
2493 if (write && chance(1, 2))
2494 return 0;
2495 if (chance(19, 20))
2496 return 0;
2497 ubifs_warn(c, "failing in super block LEB %d", lnum);
2498 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499 if (chance(19, 20))
2500 return 0;
2501 ubifs_warn(c, "failing in master LEB %d", lnum);
2502 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503 if (write && chance(99, 100))
2504 return 0;
2505 if (chance(399, 400))
2506 return 0;
2507 ubifs_warn(c, "failing in log LEB %d", lnum);
2508 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509 if (write && chance(7, 8))
2510 return 0;
2511 if (chance(19, 20))
2512 return 0;
2513 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515 if (write && chance(1, 2))
2516 return 0;
2517 if (chance(9, 10))
2518 return 0;
2519 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520 } else if (lnum == c->ihead_lnum) {
2521 if (chance(99, 100))
2522 return 0;
2523 ubifs_warn(c, "failing in index head LEB %d", lnum);
2524 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525 if (chance(9, 10))
2526 return 0;
2527 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529 !ubifs_search_bud(c, lnum)) {
2530 if (chance(19, 20))
2531 return 0;
2532 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535 if (chance(999, 1000))
2536 return 0;
2537 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538 } else {
2539 if (chance(9999, 10000))
2540 return 0;
2541 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542 }
2543
2544 d->pc_happened = 1;
2545 ubifs_warn(c, "========== Power cut emulated ==========");
2546 dump_stack();
2547 return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551 unsigned int len)
2552{
2553 unsigned int from, to, ffs = chance(1, 2);
2554 unsigned char *p = (void *)buf;
2555
2556 from = prandom_u32() % len;
2557 /* Corruption span max to end of write unit */
2558 to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561 ffs ? "0xFFs" : "random data");
2562
2563 if (ffs)
2564 memset(p + from, 0xFF, to - from);
2565 else
2566 prandom_bytes(p + from, to - from);
2567
2568 return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572 int offs, int len)
2573{
2574 int err, failing;
2575
2576 if (dbg_is_power_cut(c))
2577 return -EROFS;
2578
2579 failing = power_cut_emulated(c, lnum, 1);
2580 if (failing) {
2581 len = corrupt_data(c, buf, len);
2582 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583 len, lnum, offs);
2584 }
2585 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586 if (err)
2587 return err;
2588 if (failing)
2589 return -EROFS;
2590 return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594 int len)
2595{
2596 int err;
2597
2598 if (dbg_is_power_cut(c))
2599 return -EROFS;
2600 if (power_cut_emulated(c, lnum, 1))
2601 return -EROFS;
2602 err = ubi_leb_change(c->ubi, lnum, buf, len);
2603 if (err)
2604 return err;
2605 if (power_cut_emulated(c, lnum, 1))
2606 return -EROFS;
2607 return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612 int err;
2613
2614 if (dbg_is_power_cut(c))
2615 return -EROFS;
2616 if (power_cut_emulated(c, lnum, 0))
2617 return -EROFS;
2618 err = ubi_leb_unmap(c->ubi, lnum);
2619 if (err)
2620 return err;
2621 if (power_cut_emulated(c, lnum, 0))
2622 return -EROFS;
2623 return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628 int err;
2629
2630 if (dbg_is_power_cut(c))
2631 return -EROFS;
2632 if (power_cut_emulated(c, lnum, 0))
2633 return -EROFS;
2634 err = ubi_leb_map(c->ubi, lnum);
2635 if (err)
2636 return err;
2637 if (power_cut_emulated(c, lnum, 0))
2638 return -EROFS;
2639 return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650 file->private_data = inode->i_private;
2651 return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667 loff_t *ppos)
2668{
2669 char buf[3];
2670
2671 if (val)
2672 buf[0] = '1';
2673 else
2674 buf[0] = '0';
2675 buf[1] = '\n';
2676 buf[2] = 0x00;
2677
2678 return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682 loff_t *ppos)
2683{
2684 struct dentry *dent = file->f_path.dentry;
2685 struct ubifs_info *c = file->private_data;
2686 struct ubifs_debug_info *d = c->dbg;
2687 int val;
2688
2689 if (dent == d->dfs_chk_gen)
2690 val = d->chk_gen;
2691 else if (dent == d->dfs_chk_index)
2692 val = d->chk_index;
2693 else if (dent == d->dfs_chk_orph)
2694 val = d->chk_orph;
2695 else if (dent == d->dfs_chk_lprops)
2696 val = d->chk_lprops;
2697 else if (dent == d->dfs_chk_fs)
2698 val = d->chk_fs;
2699 else if (dent == d->dfs_tst_rcvry)
2700 val = d->tst_rcvry;
2701 else if (dent == d->dfs_ro_error)
2702 val = c->ro_error;
2703 else
2704 return -EINVAL;
2705
2706 return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720 size_t buf_size;
2721 char buf[8];
2722
2723 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724 if (copy_from_user(buf, u, buf_size))
2725 return -EFAULT;
2726
2727 if (buf[0] == '1')
2728 return 1;
2729 else if (buf[0] == '0')
2730 return 0;
2731
2732 return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736 size_t count, loff_t *ppos)
2737{
2738 struct ubifs_info *c = file->private_data;
2739 struct ubifs_debug_info *d = c->dbg;
2740 struct dentry *dent = file->f_path.dentry;
2741 int val;
2742
2743 /*
2744 * TODO: this is racy - the file-system might have already been
2745 * unmounted and we'd oops in this case. The plan is to fix it with
2746 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749 * superblocks and fine the one with the same UUID, and take the
2750 * locking right.
2751 *
2752 * The other way to go suggested by Al Viro is to create a separate
2753 * 'ubifs-debug' file-system instead.
2754 */
2755 if (file->f_path.dentry == d->dfs_dump_lprops) {
2756 ubifs_dump_lprops(c);
2757 return count;
2758 }
2759 if (file->f_path.dentry == d->dfs_dump_budg) {
2760 ubifs_dump_budg(c, &c->bi);
2761 return count;
2762 }
2763 if (file->f_path.dentry == d->dfs_dump_tnc) {
2764 mutex_lock(&c->tnc_mutex);
2765 ubifs_dump_tnc(c);
2766 mutex_unlock(&c->tnc_mutex);
2767 return count;
2768 }
2769
2770 val = interpret_user_input(u, count);
2771 if (val < 0)
2772 return val;
2773
2774 if (dent == d->dfs_chk_gen)
2775 d->chk_gen = val;
2776 else if (dent == d->dfs_chk_index)
2777 d->chk_index = val;
2778 else if (dent == d->dfs_chk_orph)
2779 d->chk_orph = val;
2780 else if (dent == d->dfs_chk_lprops)
2781 d->chk_lprops = val;
2782 else if (dent == d->dfs_chk_fs)
2783 d->chk_fs = val;
2784 else if (dent == d->dfs_tst_rcvry)
2785 d->tst_rcvry = val;
2786 else if (dent == d->dfs_ro_error)
2787 c->ro_error = !!val;
2788 else
2789 return -EINVAL;
2790
2791 return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795 .open = dfs_file_open,
2796 .read = dfs_file_read,
2797 .write = dfs_file_write,
2798 .owner = THIS_MODULE,
2799 .llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816 int err, n;
2817 const char *fname;
2818 struct dentry *dent;
2819 struct ubifs_debug_info *d = c->dbg;
2820
2821 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822 return 0;
2823
2824 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825 c->vi.ubi_num, c->vi.vol_id);
2826 if (n == UBIFS_DFS_DIR_LEN) {
2827 /* The array size is too small */
2828 fname = UBIFS_DFS_DIR_NAME;
2829 dent = ERR_PTR(-EINVAL);
2830 goto out;
2831 }
2832
2833 fname = d->dfs_dir_name;
2834 dent = debugfs_create_dir(fname, dfs_rootdir);
2835 if (IS_ERR_OR_NULL(dent))
2836 goto out;
2837 d->dfs_dir = dent;
2838
2839 fname = "dump_lprops";
2840 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841 if (IS_ERR_OR_NULL(dent))
2842 goto out_remove;
2843 d->dfs_dump_lprops = dent;
2844
2845 fname = "dump_budg";
2846 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847 if (IS_ERR_OR_NULL(dent))
2848 goto out_remove;
2849 d->dfs_dump_budg = dent;
2850
2851 fname = "dump_tnc";
2852 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853 if (IS_ERR_OR_NULL(dent))
2854 goto out_remove;
2855 d->dfs_dump_tnc = dent;
2856
2857 fname = "chk_general";
2858 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859 &dfs_fops);
2860 if (IS_ERR_OR_NULL(dent))
2861 goto out_remove;
2862 d->dfs_chk_gen = dent;
2863
2864 fname = "chk_index";
2865 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866 &dfs_fops);
2867 if (IS_ERR_OR_NULL(dent))
2868 goto out_remove;
2869 d->dfs_chk_index = dent;
2870
2871 fname = "chk_orphans";
2872 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873 &dfs_fops);
2874 if (IS_ERR_OR_NULL(dent))
2875 goto out_remove;
2876 d->dfs_chk_orph = dent;
2877
2878 fname = "chk_lprops";
2879 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880 &dfs_fops);
2881 if (IS_ERR_OR_NULL(dent))
2882 goto out_remove;
2883 d->dfs_chk_lprops = dent;
2884
2885 fname = "chk_fs";
2886 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887 &dfs_fops);
2888 if (IS_ERR_OR_NULL(dent))
2889 goto out_remove;
2890 d->dfs_chk_fs = dent;
2891
2892 fname = "tst_recovery";
2893 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894 &dfs_fops);
2895 if (IS_ERR_OR_NULL(dent))
2896 goto out_remove;
2897 d->dfs_tst_rcvry = dent;
2898
2899 fname = "ro_error";
2900 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901 &dfs_fops);
2902 if (IS_ERR_OR_NULL(dent))
2903 goto out_remove;
2904 d->dfs_ro_error = dent;
2905
2906 return 0;
2907
2908out_remove:
2909 debugfs_remove_recursive(d->dfs_dir);
2910out:
2911 err = dent ? PTR_ERR(dent) : -ENODEV;
2912 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913 fname, err);
2914 return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923 if (IS_ENABLED(CONFIG_DEBUG_FS))
2924 debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937 size_t count, loff_t *ppos)
2938{
2939 struct dentry *dent = file->f_path.dentry;
2940 int val;
2941
2942 if (dent == dfs_chk_gen)
2943 val = ubifs_dbg.chk_gen;
2944 else if (dent == dfs_chk_index)
2945 val = ubifs_dbg.chk_index;
2946 else if (dent == dfs_chk_orph)
2947 val = ubifs_dbg.chk_orph;
2948 else if (dent == dfs_chk_lprops)
2949 val = ubifs_dbg.chk_lprops;
2950 else if (dent == dfs_chk_fs)
2951 val = ubifs_dbg.chk_fs;
2952 else if (dent == dfs_tst_rcvry)
2953 val = ubifs_dbg.tst_rcvry;
2954 else
2955 return -EINVAL;
2956
2957 return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961 size_t count, loff_t *ppos)
2962{
2963 struct dentry *dent = file->f_path.dentry;
2964 int val;
2965
2966 val = interpret_user_input(u, count);
2967 if (val < 0)
2968 return val;
2969
2970 if (dent == dfs_chk_gen)
2971 ubifs_dbg.chk_gen = val;
2972 else if (dent == dfs_chk_index)
2973 ubifs_dbg.chk_index = val;
2974 else if (dent == dfs_chk_orph)
2975 ubifs_dbg.chk_orph = val;
2976 else if (dent == dfs_chk_lprops)
2977 ubifs_dbg.chk_lprops = val;
2978 else if (dent == dfs_chk_fs)
2979 ubifs_dbg.chk_fs = val;
2980 else if (dent == dfs_tst_rcvry)
2981 ubifs_dbg.tst_rcvry = val;
2982 else
2983 return -EINVAL;
2984
2985 return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989 .read = dfs_global_file_read,
2990 .write = dfs_global_file_write,
2991 .owner = THIS_MODULE,
2992 .llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005 int err;
3006 const char *fname;
3007 struct dentry *dent;
3008
3009 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010 return 0;
3011
3012 fname = "ubifs";
3013 dent = debugfs_create_dir(fname, NULL);
3014 if (IS_ERR_OR_NULL(dent))
3015 goto out;
3016 dfs_rootdir = dent;
3017
3018 fname = "chk_general";
3019 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020 &dfs_global_fops);
3021 if (IS_ERR_OR_NULL(dent))
3022 goto out_remove;
3023 dfs_chk_gen = dent;
3024
3025 fname = "chk_index";
3026 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027 &dfs_global_fops);
3028 if (IS_ERR_OR_NULL(dent))
3029 goto out_remove;
3030 dfs_chk_index = dent;
3031
3032 fname = "chk_orphans";
3033 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034 &dfs_global_fops);
3035 if (IS_ERR_OR_NULL(dent))
3036 goto out_remove;
3037 dfs_chk_orph = dent;
3038
3039 fname = "chk_lprops";
3040 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041 &dfs_global_fops);
3042 if (IS_ERR_OR_NULL(dent))
3043 goto out_remove;
3044 dfs_chk_lprops = dent;
3045
3046 fname = "chk_fs";
3047 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048 &dfs_global_fops);
3049 if (IS_ERR_OR_NULL(dent))
3050 goto out_remove;
3051 dfs_chk_fs = dent;
3052
3053 fname = "tst_recovery";
3054 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055 &dfs_global_fops);
3056 if (IS_ERR_OR_NULL(dent))
3057 goto out_remove;
3058 dfs_tst_rcvry = dent;
3059
3060 return 0;
3061
3062out_remove:
3063 debugfs_remove_recursive(dfs_rootdir);
3064out:
3065 err = dent ? PTR_ERR(dent) : -ENODEV;
3066 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067 current->pid, fname, err);
3068 return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076 if (IS_ENABLED(CONFIG_DEBUG_FS))
3077 debugfs_remove_recursive(dfs_rootdir);
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091 if (!c->dbg)
3092 return -ENOMEM;
3093
3094 return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103 kfree(c->dbg);
3104}
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44static const char *get_key_fmt(int fmt)
45{
46 switch (fmt) {
47 case UBIFS_SIMPLE_KEY_FMT:
48 return "simple";
49 default:
50 return "unknown/invalid format";
51 }
52}
53
54static const char *get_key_hash(int hash)
55{
56 switch (hash) {
57 case UBIFS_KEY_HASH_R5:
58 return "R5";
59 case UBIFS_KEY_HASH_TEST:
60 return "test";
61 default:
62 return "unknown/invalid name hash";
63 }
64}
65
66static const char *get_key_type(int type)
67{
68 switch (type) {
69 case UBIFS_INO_KEY:
70 return "inode";
71 case UBIFS_DENT_KEY:
72 return "direntry";
73 case UBIFS_XENT_KEY:
74 return "xentry";
75 case UBIFS_DATA_KEY:
76 return "data";
77 case UBIFS_TRUN_KEY:
78 return "truncate";
79 default:
80 return "unknown/invalid key";
81 }
82}
83
84static const char *get_dent_type(int type)
85{
86 switch (type) {
87 case UBIFS_ITYPE_REG:
88 return "file";
89 case UBIFS_ITYPE_DIR:
90 return "dir";
91 case UBIFS_ITYPE_LNK:
92 return "symlink";
93 case UBIFS_ITYPE_BLK:
94 return "blkdev";
95 case UBIFS_ITYPE_CHR:
96 return "char dev";
97 case UBIFS_ITYPE_FIFO:
98 return "fifo";
99 case UBIFS_ITYPE_SOCK:
100 return "socket";
101 default:
102 return "unknown/invalid type";
103 }
104}
105
106static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107 char *buffer)
108{
109 char *p = buffer;
110 int type = key_type(c, key);
111
112 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113 switch (type) {
114 case UBIFS_INO_KEY:
115 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116 get_key_type(type));
117 break;
118 case UBIFS_DENT_KEY:
119 case UBIFS_XENT_KEY:
120 sprintf(p, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c, key),
122 get_key_type(type), key_hash(c, key));
123 break;
124 case UBIFS_DATA_KEY:
125 sprintf(p, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c, key),
127 get_key_type(type), key_block(c, key));
128 break;
129 case UBIFS_TRUN_KEY:
130 sprintf(p, "(%lu, %s)",
131 (unsigned long)key_inum(c, key),
132 get_key_type(type));
133 break;
134 default:
135 sprintf(p, "(bad key type: %#08x, %#08x)",
136 key->u32[0], key->u32[1]);
137 }
138 } else
139 sprintf(p, "bad key format %d", c->key_fmt);
140}
141
142const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143{
144 /* dbg_lock must be held */
145 sprintf_key(c, key, dbg_key_buf0);
146 return dbg_key_buf0;
147}
148
149const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150{
151 /* dbg_lock must be held */
152 sprintf_key(c, key, dbg_key_buf1);
153 return dbg_key_buf1;
154}
155
156const char *dbg_ntype(int type)
157{
158 switch (type) {
159 case UBIFS_PAD_NODE:
160 return "padding node";
161 case UBIFS_SB_NODE:
162 return "superblock node";
163 case UBIFS_MST_NODE:
164 return "master node";
165 case UBIFS_REF_NODE:
166 return "reference node";
167 case UBIFS_INO_NODE:
168 return "inode node";
169 case UBIFS_DENT_NODE:
170 return "direntry node";
171 case UBIFS_XENT_NODE:
172 return "xentry node";
173 case UBIFS_DATA_NODE:
174 return "data node";
175 case UBIFS_TRUN_NODE:
176 return "truncate node";
177 case UBIFS_IDX_NODE:
178 return "indexing node";
179 case UBIFS_CS_NODE:
180 return "commit start node";
181 case UBIFS_ORPH_NODE:
182 return "orphan node";
183 default:
184 return "unknown node";
185 }
186}
187
188static const char *dbg_gtype(int type)
189{
190 switch (type) {
191 case UBIFS_NO_NODE_GROUP:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP:
196 return "last of node group";
197 default:
198 return "unknown";
199 }
200}
201
202const char *dbg_cstate(int cmt_state)
203{
204 switch (cmt_state) {
205 case COMMIT_RESTING:
206 return "commit resting";
207 case COMMIT_BACKGROUND:
208 return "background commit requested";
209 case COMMIT_REQUIRED:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED:
214 return "commit running and required";
215 case COMMIT_BROKEN:
216 return "broken commit";
217 default:
218 return "unknown commit state";
219 }
220}
221
222const char *dbg_jhead(int jhead)
223{
224 switch (jhead) {
225 case GCHD:
226 return "0 (GC)";
227 case BASEHD:
228 return "1 (base)";
229 case DATAHD:
230 return "2 (data)";
231 default:
232 return "unknown journal head";
233 }
234}
235
236static void dump_ch(const struct ubifs_ch *ch)
237{
238 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
239 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
240 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
241 dbg_ntype(ch->node_type));
242 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
243 dbg_gtype(ch->group_type));
244 printk(KERN_DEBUG "\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch->sqnum));
246 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
247}
248
249void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250{
251 const struct ubifs_inode *ui = ubifs_inode(inode);
252 struct qstr nm = { .name = NULL };
253 union ubifs_key key;
254 struct ubifs_dent_node *dent, *pdent = NULL;
255 int count = 2;
256
257 printk(KERN_DEBUG "Dump in-memory inode:");
258 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
259 printk(KERN_DEBUG "\tsize %llu\n",
260 (unsigned long long)i_size_read(inode));
261 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
262 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
263 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
264 printk(KERN_DEBUG "\tatime %u.%u\n",
265 (unsigned int)inode->i_atime.tv_sec,
266 (unsigned int)inode->i_atime.tv_nsec);
267 printk(KERN_DEBUG "\tmtime %u.%u\n",
268 (unsigned int)inode->i_mtime.tv_sec,
269 (unsigned int)inode->i_mtime.tv_nsec);
270 printk(KERN_DEBUG "\tctime %u.%u\n",
271 (unsigned int)inode->i_ctime.tv_sec,
272 (unsigned int)inode->i_ctime.tv_nsec);
273 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
274 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
275 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
276 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
277 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
278 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
279 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
280 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
281 (unsigned long long)ui->synced_i_size);
282 printk(KERN_DEBUG "\tui_size %llu\n",
283 (unsigned long long)ui->ui_size);
284 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
285 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
286 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
288 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
289
290 if (!S_ISDIR(inode->i_mode))
291 return;
292
293 printk(KERN_DEBUG "List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295
296 lowest_dent_key(c, &key, inode->i_ino);
297 while (1) {
298 dent = ubifs_tnc_next_ent(c, &key, &nm);
299 if (IS_ERR(dent)) {
300 if (PTR_ERR(dent) != -ENOENT)
301 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302 break;
303 }
304
305 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306 count++, dent->name, get_dent_type(dent->type));
307
308 nm.name = dent->name;
309 nm.len = le16_to_cpu(dent->nlen);
310 kfree(pdent);
311 pdent = dent;
312 key_read(c, &dent->key, &key);
313 }
314 kfree(pdent);
315}
316
317void dbg_dump_node(const struct ubifs_info *c, const void *node)
318{
319 int i, n;
320 union ubifs_key key;
321 const struct ubifs_ch *ch = node;
322
323 if (dbg_is_tst_rcvry(c))
324 return;
325
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330 (void *)node, UBIFS_CH_SZ, 1);
331 return;
332 }
333
334 spin_lock(&dbg_lock);
335 dump_ch(node);
336
337 switch (ch->node_type) {
338 case UBIFS_PAD_NODE:
339 {
340 const struct ubifs_pad_node *pad = node;
341
342 printk(KERN_DEBUG "\tpad_len %u\n",
343 le32_to_cpu(pad->pad_len));
344 break;
345 }
346 case UBIFS_SB_NODE:
347 {
348 const struct ubifs_sb_node *sup = node;
349 unsigned int sup_flags = le32_to_cpu(sup->flags);
350
351 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
352 (int)sup->key_hash, get_key_hash(sup->key_hash));
353 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
354 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
356 printk(KERN_DEBUG "\t big_lpt %u\n",
357 !!(sup_flags & UBIFS_FLG_BIGLPT));
358 printk(KERN_DEBUG "\t space_fixup %u\n",
359 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360 printk(KERN_DEBUG "\tmin_io_size %u\n",
361 le32_to_cpu(sup->min_io_size));
362 printk(KERN_DEBUG "\tleb_size %u\n",
363 le32_to_cpu(sup->leb_size));
364 printk(KERN_DEBUG "\tleb_cnt %u\n",
365 le32_to_cpu(sup->leb_cnt));
366 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup->max_leb_cnt));
368 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 printk(KERN_DEBUG "\tlog_lebs %u\n",
371 le32_to_cpu(sup->log_lebs));
372 printk(KERN_DEBUG "\tlpt_lebs %u\n",
373 le32_to_cpu(sup->lpt_lebs));
374 printk(KERN_DEBUG "\torph_lebs %u\n",
375 le32_to_cpu(sup->orph_lebs));
376 printk(KERN_DEBUG "\tjhead_cnt %u\n",
377 le32_to_cpu(sup->jhead_cnt));
378 printk(KERN_DEBUG "\tfanout %u\n",
379 le32_to_cpu(sup->fanout));
380 printk(KERN_DEBUG "\tlsave_cnt %u\n",
381 le32_to_cpu(sup->lsave_cnt));
382 printk(KERN_DEBUG "\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup->default_compr));
384 printk(KERN_DEBUG "\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup->rp_size));
386 printk(KERN_DEBUG "\trp_uid %u\n",
387 le32_to_cpu(sup->rp_uid));
388 printk(KERN_DEBUG "\trp_gid %u\n",
389 le32_to_cpu(sup->rp_gid));
390 printk(KERN_DEBUG "\tfmt_version %u\n",
391 le32_to_cpu(sup->fmt_version));
392 printk(KERN_DEBUG "\ttime_gran %u\n",
393 le32_to_cpu(sup->time_gran));
394 printk(KERN_DEBUG "\tUUID %pUB\n",
395 sup->uuid);
396 break;
397 }
398 case UBIFS_MST_NODE:
399 {
400 const struct ubifs_mst_node *mst = node;
401
402 printk(KERN_DEBUG "\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst->highest_inum));
404 printk(KERN_DEBUG "\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst->cmt_no));
406 printk(KERN_DEBUG "\tflags %#x\n",
407 le32_to_cpu(mst->flags));
408 printk(KERN_DEBUG "\tlog_lnum %u\n",
409 le32_to_cpu(mst->log_lnum));
410 printk(KERN_DEBUG "\troot_lnum %u\n",
411 le32_to_cpu(mst->root_lnum));
412 printk(KERN_DEBUG "\troot_offs %u\n",
413 le32_to_cpu(mst->root_offs));
414 printk(KERN_DEBUG "\troot_len %u\n",
415 le32_to_cpu(mst->root_len));
416 printk(KERN_DEBUG "\tgc_lnum %u\n",
417 le32_to_cpu(mst->gc_lnum));
418 printk(KERN_DEBUG "\tihead_lnum %u\n",
419 le32_to_cpu(mst->ihead_lnum));
420 printk(KERN_DEBUG "\tihead_offs %u\n",
421 le32_to_cpu(mst->ihead_offs));
422 printk(KERN_DEBUG "\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst->index_size));
424 printk(KERN_DEBUG "\tlpt_lnum %u\n",
425 le32_to_cpu(mst->lpt_lnum));
426 printk(KERN_DEBUG "\tlpt_offs %u\n",
427 le32_to_cpu(mst->lpt_offs));
428 printk(KERN_DEBUG "\tnhead_lnum %u\n",
429 le32_to_cpu(mst->nhead_lnum));
430 printk(KERN_DEBUG "\tnhead_offs %u\n",
431 le32_to_cpu(mst->nhead_offs));
432 printk(KERN_DEBUG "\tltab_lnum %u\n",
433 le32_to_cpu(mst->ltab_lnum));
434 printk(KERN_DEBUG "\tltab_offs %u\n",
435 le32_to_cpu(mst->ltab_offs));
436 printk(KERN_DEBUG "\tlsave_lnum %u\n",
437 le32_to_cpu(mst->lsave_lnum));
438 printk(KERN_DEBUG "\tlsave_offs %u\n",
439 le32_to_cpu(mst->lsave_offs));
440 printk(KERN_DEBUG "\tlscan_lnum %u\n",
441 le32_to_cpu(mst->lscan_lnum));
442 printk(KERN_DEBUG "\tleb_cnt %u\n",
443 le32_to_cpu(mst->leb_cnt));
444 printk(KERN_DEBUG "\tempty_lebs %u\n",
445 le32_to_cpu(mst->empty_lebs));
446 printk(KERN_DEBUG "\tidx_lebs %u\n",
447 le32_to_cpu(mst->idx_lebs));
448 printk(KERN_DEBUG "\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst->total_free));
450 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst->total_dirty));
452 printk(KERN_DEBUG "\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst->total_used));
454 printk(KERN_DEBUG "\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst->total_dead));
456 printk(KERN_DEBUG "\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst->total_dark));
458 break;
459 }
460 case UBIFS_REF_NODE:
461 {
462 const struct ubifs_ref_node *ref = node;
463
464 printk(KERN_DEBUG "\tlnum %u\n",
465 le32_to_cpu(ref->lnum));
466 printk(KERN_DEBUG "\toffs %u\n",
467 le32_to_cpu(ref->offs));
468 printk(KERN_DEBUG "\tjhead %u\n",
469 le32_to_cpu(ref->jhead));
470 break;
471 }
472 case UBIFS_INO_NODE:
473 {
474 const struct ubifs_ino_node *ino = node;
475
476 key_read(c, &ino->key, &key);
477 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
478 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480 printk(KERN_DEBUG "\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino->size));
482 printk(KERN_DEBUG "\tnlink %u\n",
483 le32_to_cpu(ino->nlink));
484 printk(KERN_DEBUG "\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino->atime_sec),
486 le32_to_cpu(ino->atime_nsec));
487 printk(KERN_DEBUG "\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino->mtime_sec),
489 le32_to_cpu(ino->mtime_nsec));
490 printk(KERN_DEBUG "\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino->ctime_sec),
492 le32_to_cpu(ino->ctime_nsec));
493 printk(KERN_DEBUG "\tuid %u\n",
494 le32_to_cpu(ino->uid));
495 printk(KERN_DEBUG "\tgid %u\n",
496 le32_to_cpu(ino->gid));
497 printk(KERN_DEBUG "\tmode %u\n",
498 le32_to_cpu(ino->mode));
499 printk(KERN_DEBUG "\tflags %#x\n",
500 le32_to_cpu(ino->flags));
501 printk(KERN_DEBUG "\txattr_cnt %u\n",
502 le32_to_cpu(ino->xattr_cnt));
503 printk(KERN_DEBUG "\txattr_size %u\n",
504 le32_to_cpu(ino->xattr_size));
505 printk(KERN_DEBUG "\txattr_names %u\n",
506 le32_to_cpu(ino->xattr_names));
507 printk(KERN_DEBUG "\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino->compr_type));
509 printk(KERN_DEBUG "\tdata len %u\n",
510 le32_to_cpu(ino->data_len));
511 break;
512 }
513 case UBIFS_DENT_NODE:
514 case UBIFS_XENT_NODE:
515 {
516 const struct ubifs_dent_node *dent = node;
517 int nlen = le16_to_cpu(dent->nlen);
518
519 key_read(c, &dent->key, &key);
520 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
521 printk(KERN_DEBUG "\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent->inum));
523 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
524 printk(KERN_DEBUG "\tnlen %d\n", nlen);
525 printk(KERN_DEBUG "\tname ");
526
527 if (nlen > UBIFS_MAX_NLEN)
528 printk(KERN_DEBUG "(bad name length, not printing, "
529 "bad or corrupted node)");
530 else {
531 for (i = 0; i < nlen && dent->name[i]; i++)
532 printk(KERN_CONT "%c", dent->name[i]);
533 }
534 printk(KERN_CONT "\n");
535
536 break;
537 }
538 case UBIFS_DATA_NODE:
539 {
540 const struct ubifs_data_node *dn = node;
541 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542
543 key_read(c, &dn->key, &key);
544 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
545 printk(KERN_DEBUG "\tsize %u\n",
546 le32_to_cpu(dn->size));
547 printk(KERN_DEBUG "\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn->compr_type));
549 printk(KERN_DEBUG "\tdata size %d\n",
550 dlen);
551 printk(KERN_DEBUG "\tdata:\n");
552 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553 (void *)&dn->data, dlen, 0);
554 break;
555 }
556 case UBIFS_TRUN_NODE:
557 {
558 const struct ubifs_trun_node *trun = node;
559
560 printk(KERN_DEBUG "\tinum %u\n",
561 le32_to_cpu(trun->inum));
562 printk(KERN_DEBUG "\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun->old_size));
564 printk(KERN_DEBUG "\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun->new_size));
566 break;
567 }
568 case UBIFS_IDX_NODE:
569 {
570 const struct ubifs_idx_node *idx = node;
571
572 n = le16_to_cpu(idx->child_cnt);
573 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
574 printk(KERN_DEBUG "\tlevel %d\n",
575 (int)le16_to_cpu(idx->level));
576 printk(KERN_DEBUG "\tBranches:\n");
577
578 for (i = 0; i < n && i < c->fanout - 1; i++) {
579 const struct ubifs_branch *br;
580
581 br = ubifs_idx_branch(c, idx, i);
582 key_read(c, &br->key, &key);
583 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585 le32_to_cpu(br->len), DBGKEY(&key));
586 }
587 break;
588 }
589 case UBIFS_CS_NODE:
590 break;
591 case UBIFS_ORPH_NODE:
592 {
593 const struct ubifs_orph_node *orph = node;
594
595 printk(KERN_DEBUG "\tcommit number %llu\n",
596 (unsigned long long)
597 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598 printk(KERN_DEBUG "\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602 for (i = 0; i < n; i++)
603 printk(KERN_DEBUG "\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph->inos[i]));
605 break;
606 }
607 default:
608 printk(KERN_DEBUG "node type %d was not recognized\n",
609 (int)ch->node_type);
610 }
611 spin_unlock(&dbg_lock);
612}
613
614void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615{
616 spin_lock(&dbg_lock);
617 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req->new_ino, req->dirtied_ino);
619 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req->new_ino_d, req->dirtied_ino_d);
621 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
622 req->new_page, req->dirtied_page);
623 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
624 req->new_dent, req->mod_dent);
625 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
626 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
627 req->data_growth, req->dd_growth);
628 spin_unlock(&dbg_lock);
629}
630
631void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632{
633 spin_lock(&dbg_lock);
634 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638 lst->total_dirty);
639 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst->total_used, lst->total_dark,
641 lst->total_dead);
642 spin_unlock(&dbg_lock);
643}
644
645void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646{
647 int i;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650 struct ubifs_gced_idx_leb *idx_gc;
651 long long available, outstanding, free;
652
653 spin_lock(&c->space_lock);
654 spin_lock(&dbg_lock);
655 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current->pid,
657 bi->data_growth + bi->dd_growth,
658 bi->data_growth + bi->dd_growth + bi->idx_growth);
659 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661 bi->idx_growth);
662 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664 bi->uncommitted_idx);
665 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi->page_budget, bi->inode_budget, bi->dent_budget);
667 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668 bi->nospace, bi->nospace_rp);
669 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671
672 if (bi != &c->bi)
673 /*
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
677 */
678 goto out_unlock;
679
680 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684 atomic_long_read(&c->dirty_zn_cnt),
685 atomic_long_read(&c->clean_zn_cnt));
686 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687 c->gc_lnum, c->ihead_lnum);
688
689 /* If we are in R/O mode, journal heads do not exist */
690 if (c->jheads)
691 for (i = 0; i < c->jhead_cnt; i++)
692 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693 dbg_jhead(c->jheads[i].wbuf.jhead),
694 c->jheads[i].wbuf.lnum);
695 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696 bud = rb_entry(rb, struct ubifs_bud, rb);
697 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698 }
699 list_for_each_entry(bud, &c->old_buds, list)
700 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701 list_for_each_entry(idx_gc, &c->idx_gc, list)
702 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc->lnum, idx_gc->unmap);
704 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705
706 /* Print budgeting predictions */
707 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708 outstanding = c->bi.data_growth + c->bi.dd_growth;
709 free = ubifs_get_free_space_nolock(c);
710 printk(KERN_DEBUG "Budgeting predictions:\n");
711 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712 available, outstanding, free);
713out_unlock:
714 spin_unlock(&dbg_lock);
715 spin_unlock(&c->space_lock);
716}
717
718void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719{
720 int i, spc, dark = 0, dead = 0;
721 struct rb_node *rb;
722 struct ubifs_bud *bud;
723
724 spc = lp->free + lp->dirty;
725 if (spc < c->dead_wm)
726 dead = spc;
727 else
728 dark = ubifs_calc_dark(c, spc);
729
730 if (lp->flags & LPROPS_INDEX)
731 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733 lp->dirty, c->leb_size - spc, spc, lp->flags);
734 else
735 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738 c->leb_size - spc, spc, dark, dead,
739 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740
741 if (lp->flags & LPROPS_TAKEN) {
742 if (lp->flags & LPROPS_INDEX)
743 printk(KERN_CONT "index, taken");
744 else
745 printk(KERN_CONT "taken");
746 } else {
747 const char *s;
748
749 if (lp->flags & LPROPS_INDEX) {
750 switch (lp->flags & LPROPS_CAT_MASK) {
751 case LPROPS_DIRTY_IDX:
752 s = "dirty index";
753 break;
754 case LPROPS_FRDI_IDX:
755 s = "freeable index";
756 break;
757 default:
758 s = "index";
759 }
760 } else {
761 switch (lp->flags & LPROPS_CAT_MASK) {
762 case LPROPS_UNCAT:
763 s = "not categorized";
764 break;
765 case LPROPS_DIRTY:
766 s = "dirty";
767 break;
768 case LPROPS_FREE:
769 s = "free";
770 break;
771 case LPROPS_EMPTY:
772 s = "empty";
773 break;
774 case LPROPS_FREEABLE:
775 s = "freeable";
776 break;
777 default:
778 s = NULL;
779 break;
780 }
781 }
782 printk(KERN_CONT "%s", s);
783 }
784
785 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786 bud = rb_entry(rb, struct ubifs_bud, rb);
787 if (bud->lnum == lp->lnum) {
788 int head = 0;
789 for (i = 0; i < c->jhead_cnt; i++) {
790 /*
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
793 * not exist.
794 */
795 if (c->jheads &&
796 lp->lnum == c->jheads[i].wbuf.lnum) {
797 printk(KERN_CONT ", jhead %s",
798 dbg_jhead(i));
799 head = 1;
800 }
801 }
802 if (!head)
803 printk(KERN_CONT ", bud of jhead %s",
804 dbg_jhead(bud->jhead));
805 }
806 }
807 if (lp->lnum == c->gc_lnum)
808 printk(KERN_CONT ", GC LEB");
809 printk(KERN_CONT ")\n");
810}
811
812void dbg_dump_lprops(struct ubifs_info *c)
813{
814 int lnum, err;
815 struct ubifs_lprops lp;
816 struct ubifs_lp_stats lst;
817
818 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819 current->pid);
820 ubifs_get_lp_stats(c, &lst);
821 dbg_dump_lstats(&lst);
822
823 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824 err = ubifs_read_one_lp(c, lnum, &lp);
825 if (err)
826 ubifs_err("cannot read lprops for LEB %d", lnum);
827
828 dbg_dump_lprop(c, &lp);
829 }
830 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831 current->pid);
832}
833
834void dbg_dump_lpt_info(struct ubifs_info *c)
835{
836 int i;
837
838 spin_lock(&dbg_lock);
839 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
841 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
842 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
843 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
844 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
845 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
846 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
847 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
848 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
849 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
850 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
851 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
852 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
853 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
856 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
857 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
858 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860 c->nhead_lnum, c->nhead_offs);
861 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862 c->ltab_lnum, c->ltab_offs);
863 if (c->big_lpt)
864 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865 c->lsave_lnum, c->lsave_offs);
866 for (i = 0; i < c->lpt_lebs; i++)
867 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870 spin_unlock(&dbg_lock);
871}
872
873void dbg_dump_leb(const struct ubifs_info *c, int lnum)
874{
875 struct ubifs_scan_leb *sleb;
876 struct ubifs_scan_node *snod;
877 void *buf;
878
879 if (dbg_is_tst_rcvry(c))
880 return;
881
882 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883 current->pid, lnum);
884
885 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886 if (!buf) {
887 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888 return;
889 }
890
891 sleb = ubifs_scan(c, lnum, 0, buf, 0);
892 if (IS_ERR(sleb)) {
893 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894 goto out;
895 }
896
897 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898 sleb->nodes_cnt, sleb->endpt);
899
900 list_for_each_entry(snod, &sleb->nodes, list) {
901 cond_resched();
902 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903 snod->offs, snod->len);
904 dbg_dump_node(c, snod->node);
905 }
906
907 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908 current->pid, lnum);
909 ubifs_scan_destroy(sleb);
910
911out:
912 vfree(buf);
913 return;
914}
915
916void dbg_dump_znode(const struct ubifs_info *c,
917 const struct ubifs_znode *znode)
918{
919 int n;
920 const struct ubifs_zbranch *zbr;
921
922 spin_lock(&dbg_lock);
923 if (znode->parent)
924 zbr = &znode->parent->zbranch[znode->iip];
925 else
926 zbr = &c->zroot;
927
928 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930 zbr->len, znode->parent, znode->iip, znode->level,
931 znode->child_cnt, znode->flags);
932
933 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934 spin_unlock(&dbg_lock);
935 return;
936 }
937
938 printk(KERN_DEBUG "zbranches:\n");
939 for (n = 0; n < znode->child_cnt; n++) {
940 zbr = &znode->zbranch[n];
941 if (znode->level > 0)
942 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943 "%s\n", n, zbr->znode, zbr->lnum,
944 zbr->offs, zbr->len,
945 DBGKEY(&zbr->key));
946 else
947 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948 "%s\n", n, zbr->znode, zbr->lnum,
949 zbr->offs, zbr->len,
950 DBGKEY(&zbr->key));
951 }
952 spin_unlock(&dbg_lock);
953}
954
955void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
956{
957 int i;
958
959 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960 current->pid, cat, heap->cnt);
961 for (i = 0; i < heap->cnt; i++) {
962 struct ubifs_lprops *lprops = heap->arr[i];
963
964 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965 "flags %d\n", i, lprops->lnum, lprops->hpos,
966 lprops->free, lprops->dirty, lprops->flags);
967 }
968 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
969}
970
971void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972 struct ubifs_nnode *parent, int iip)
973{
974 int i;
975
976 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980 pnode->flags, iip, pnode->level, pnode->num);
981 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982 struct ubifs_lprops *lp = &pnode->lprops[i];
983
984 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985 i, lp->free, lp->dirty, lp->flags, lp->lnum);
986 }
987}
988
989void dbg_dump_tnc(struct ubifs_info *c)
990{
991 struct ubifs_znode *znode;
992 int level;
993
994 printk(KERN_DEBUG "\n");
995 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997 level = znode->level;
998 printk(KERN_DEBUG "== Level %d ==\n", level);
999 while (znode) {
1000 if (level != znode->level) {
1001 level = znode->level;
1002 printk(KERN_DEBUG "== Level %d ==\n", level);
1003 }
1004 dbg_dump_znode(c, znode);
1005 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006 }
1007 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008}
1009
1010static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011 void *priv)
1012{
1013 dbg_dump_znode(c, znode);
1014 return 0;
1015}
1016
1017/**
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1020 *
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1023 */
1024void dbg_dump_index(struct ubifs_info *c)
1025{
1026 dbg_walk_index(c, NULL, dump_znode, NULL);
1027}
1028
1029/**
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1032 *
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1035 */
1036void dbg_save_space_info(struct ubifs_info *c)
1037{
1038 struct ubifs_debug_info *d = c->dbg;
1039 int freeable_cnt;
1040
1041 spin_lock(&c->space_lock);
1042 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046 /*
1047 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 * affects the free space calculations, and UBIFS might not know about
1049 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 * only when we read their lprops, and we do this only lazily, upon the
1051 * need. So at any given point of time @c->freeable_cnt might be not
1052 * exactly accurate.
1053 *
1054 * Just one example about the issue we hit when we did not zero
1055 * @c->freeable_cnt.
1056 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 * amount of free space in @d->saved_free
1058 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 * information from flash, where we cache LEBs from various
1060 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 * -> 'ubifs_add_to_cat()').
1064 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065 * becomes %1.
1066 * 4. We calculate the amount of free space when the re-mount is
1067 * finished in 'dbg_check_space_info()' and it does not match
1068 * @d->saved_free.
1069 */
1070 freeable_cnt = c->freeable_cnt;
1071 c->freeable_cnt = 0;
1072 d->saved_free = ubifs_get_free_space_nolock(c);
1073 c->freeable_cnt = freeable_cnt;
1074 spin_unlock(&c->space_lock);
1075}
1076
1077/**
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1085 */
1086int dbg_check_space_info(struct ubifs_info *c)
1087{
1088 struct ubifs_debug_info *d = c->dbg;
1089 struct ubifs_lp_stats lst;
1090 long long free;
1091 int freeable_cnt;
1092
1093 spin_lock(&c->space_lock);
1094 freeable_cnt = c->freeable_cnt;
1095 c->freeable_cnt = 0;
1096 free = ubifs_get_free_space_nolock(c);
1097 c->freeable_cnt = freeable_cnt;
1098 spin_unlock(&c->space_lock);
1099
1100 if (free != d->saved_free) {
1101 ubifs_err("free space changed from %lld to %lld",
1102 d->saved_free, free);
1103 goto out;
1104 }
1105
1106 return 0;
1107
1108out:
1109 ubifs_msg("saved lprops statistics dump");
1110 dbg_dump_lstats(&d->saved_lst);
1111 ubifs_msg("saved budgeting info dump");
1112 dbg_dump_budg(c, &d->saved_bi);
1113 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114 ubifs_msg("current lprops statistics dump");
1115 ubifs_get_lp_stats(c, &lst);
1116 dbg_dump_lstats(&lst);
1117 ubifs_msg("current budgeting info dump");
1118 dbg_dump_budg(c, &c->bi);
1119 dump_stack();
1120 return -EINVAL;
1121}
1122
1123/**
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1127 *
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1132 */
1133int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134{
1135 int err = 0;
1136 struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138 if (!dbg_is_chk_gen(c))
1139 return 0;
1140 if (!S_ISREG(inode->i_mode))
1141 return 0;
1142
1143 mutex_lock(&ui->ui_mutex);
1144 spin_lock(&ui->ui_lock);
1145 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 "is clean", ui->ui_size, ui->synced_i_size);
1148 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149 inode->i_mode, i_size_read(inode));
1150 dbg_dump_stack();
1151 err = -EINVAL;
1152 }
1153 spin_unlock(&ui->ui_lock);
1154 mutex_unlock(&ui->ui_mutex);
1155 return err;
1156}
1157
1158/*
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1163 *
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1167 *
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1170 */
1171int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172{
1173 unsigned int nlink = 2;
1174 union ubifs_key key;
1175 struct ubifs_dent_node *dent, *pdent = NULL;
1176 struct qstr nm = { .name = NULL };
1177 loff_t size = UBIFS_INO_NODE_SZ;
1178
1179 if (!dbg_is_chk_gen(c))
1180 return 0;
1181
1182 if (!S_ISDIR(dir->i_mode))
1183 return 0;
1184
1185 lowest_dent_key(c, &key, dir->i_ino);
1186 while (1) {
1187 int err;
1188
1189 dent = ubifs_tnc_next_ent(c, &key, &nm);
1190 if (IS_ERR(dent)) {
1191 err = PTR_ERR(dent);
1192 if (err == -ENOENT)
1193 break;
1194 return err;
1195 }
1196
1197 nm.name = dent->name;
1198 nm.len = le16_to_cpu(dent->nlen);
1199 size += CALC_DENT_SIZE(nm.len);
1200 if (dent->type == UBIFS_ITYPE_DIR)
1201 nlink += 1;
1202 kfree(pdent);
1203 pdent = dent;
1204 key_read(c, &dent->key, &key);
1205 }
1206 kfree(pdent);
1207
1208 if (i_size_read(dir) != size) {
1209 ubifs_err("directory inode %lu has size %llu, "
1210 "but calculated size is %llu", dir->i_ino,
1211 (unsigned long long)i_size_read(dir),
1212 (unsigned long long)size);
1213 dbg_dump_inode(c, dir);
1214 dump_stack();
1215 return -EINVAL;
1216 }
1217 if (dir->i_nlink != nlink) {
1218 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220 dbg_dump_inode(c, dir);
1221 dump_stack();
1222 return -EINVAL;
1223 }
1224
1225 return 0;
1226}
1227
1228/**
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1233 *
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1240 */
1241static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242 struct ubifs_zbranch *zbr2)
1243{
1244 int err, nlen1, nlen2, cmp;
1245 struct ubifs_dent_node *dent1, *dent2;
1246 union ubifs_key key;
1247
1248 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250 if (!dent1)
1251 return -ENOMEM;
1252 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253 if (!dent2) {
1254 err = -ENOMEM;
1255 goto out_free;
1256 }
1257
1258 err = ubifs_tnc_read_node(c, zbr1, dent1);
1259 if (err)
1260 goto out_free;
1261 err = ubifs_validate_entry(c, dent1);
1262 if (err)
1263 goto out_free;
1264
1265 err = ubifs_tnc_read_node(c, zbr2, dent2);
1266 if (err)
1267 goto out_free;
1268 err = ubifs_validate_entry(c, dent2);
1269 if (err)
1270 goto out_free;
1271
1272 /* Make sure node keys are the same as in zbranch */
1273 err = 1;
1274 key_read(c, &dent1->key, &key);
1275 if (keys_cmp(c, &zbr1->key, &key)) {
1276 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277 zbr1->offs, DBGKEY(&key));
1278 dbg_err("but it should have key %s according to tnc",
1279 DBGKEY(&zbr1->key));
1280 dbg_dump_node(c, dent1);
1281 goto out_free;
1282 }
1283
1284 key_read(c, &dent2->key, &key);
1285 if (keys_cmp(c, &zbr2->key, &key)) {
1286 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287 zbr1->offs, DBGKEY(&key));
1288 dbg_err("but it should have key %s according to tnc",
1289 DBGKEY(&zbr2->key));
1290 dbg_dump_node(c, dent2);
1291 goto out_free;
1292 }
1293
1294 nlen1 = le16_to_cpu(dent1->nlen);
1295 nlen2 = le16_to_cpu(dent2->nlen);
1296
1297 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299 err = 0;
1300 goto out_free;
1301 }
1302 if (cmp == 0 && nlen1 == nlen2)
1303 dbg_err("2 xent/dent nodes with the same name");
1304 else
1305 dbg_err("bad order of colliding key %s",
1306 DBGKEY(&key));
1307
1308 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309 dbg_dump_node(c, dent1);
1310 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311 dbg_dump_node(c, dent2);
1312
1313out_free:
1314 kfree(dent2);
1315 kfree(dent1);
1316 return err;
1317}
1318
1319/**
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1323 *
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1326 */
1327static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328{
1329 struct ubifs_znode *znode = zbr->znode;
1330 struct ubifs_znode *zp = znode->parent;
1331 int n, err, cmp;
1332
1333 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334 err = 1;
1335 goto out;
1336 }
1337 if (znode->level < 0) {
1338 err = 2;
1339 goto out;
1340 }
1341 if (znode->iip < 0 || znode->iip >= c->fanout) {
1342 err = 3;
1343 goto out;
1344 }
1345
1346 if (zbr->len == 0)
1347 /* Only dirty zbranch may have no on-flash nodes */
1348 if (!ubifs_zn_dirty(znode)) {
1349 err = 4;
1350 goto out;
1351 }
1352
1353 if (ubifs_zn_dirty(znode)) {
1354 /*
1355 * If znode is dirty, its parent has to be dirty as well. The
1356 * order of the operation is important, so we have to have
1357 * memory barriers.
1358 */
1359 smp_mb();
1360 if (zp && !ubifs_zn_dirty(zp)) {
1361 /*
1362 * The dirty flag is atomic and is cleared outside the
1363 * TNC mutex, so znode's dirty flag may now have
1364 * been cleared. The child is always cleared before the
1365 * parent, so we just need to check again.
1366 */
1367 smp_mb();
1368 if (ubifs_zn_dirty(znode)) {
1369 err = 5;
1370 goto out;
1371 }
1372 }
1373 }
1374
1375 if (zp) {
1376 const union ubifs_key *min, *max;
1377
1378 if (znode->level != zp->level - 1) {
1379 err = 6;
1380 goto out;
1381 }
1382
1383 /* Make sure the 'parent' pointer in our znode is correct */
1384 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385 if (!err) {
1386 /* This zbranch does not exist in the parent */
1387 err = 7;
1388 goto out;
1389 }
1390
1391 if (znode->iip >= zp->child_cnt) {
1392 err = 8;
1393 goto out;
1394 }
1395
1396 if (znode->iip != n) {
1397 /* This may happen only in case of collisions */
1398 if (keys_cmp(c, &zp->zbranch[n].key,
1399 &zp->zbranch[znode->iip].key)) {
1400 err = 9;
1401 goto out;
1402 }
1403 n = znode->iip;
1404 }
1405
1406 /*
1407 * Make sure that the first key in our znode is greater than or
1408 * equal to the key in the pointing zbranch.
1409 */
1410 min = &zbr->key;
1411 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412 if (cmp == 1) {
1413 err = 10;
1414 goto out;
1415 }
1416
1417 if (n + 1 < zp->child_cnt) {
1418 max = &zp->zbranch[n + 1].key;
1419
1420 /*
1421 * Make sure the last key in our znode is less or
1422 * equivalent than the key in the zbranch which goes
1423 * after our pointing zbranch.
1424 */
1425 cmp = keys_cmp(c, max,
1426 &znode->zbranch[znode->child_cnt - 1].key);
1427 if (cmp == -1) {
1428 err = 11;
1429 goto out;
1430 }
1431 }
1432 } else {
1433 /* This may only be root znode */
1434 if (zbr != &c->zroot) {
1435 err = 12;
1436 goto out;
1437 }
1438 }
1439
1440 /*
1441 * Make sure that next key is greater or equivalent then the previous
1442 * one.
1443 */
1444 for (n = 1; n < znode->child_cnt; n++) {
1445 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446 &znode->zbranch[n].key);
1447 if (cmp > 0) {
1448 err = 13;
1449 goto out;
1450 }
1451 if (cmp == 0) {
1452 /* This can only be keys with colliding hash */
1453 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454 err = 14;
1455 goto out;
1456 }
1457
1458 if (znode->level != 0 || c->replaying)
1459 continue;
1460
1461 /*
1462 * Colliding keys should follow binary order of
1463 * corresponding xentry/dentry names.
1464 */
1465 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466 &znode->zbranch[n]);
1467 if (err < 0)
1468 return err;
1469 if (err) {
1470 err = 15;
1471 goto out;
1472 }
1473 }
1474 }
1475
1476 for (n = 0; n < znode->child_cnt; n++) {
1477 if (!znode->zbranch[n].znode &&
1478 (znode->zbranch[n].lnum == 0 ||
1479 znode->zbranch[n].len == 0)) {
1480 err = 16;
1481 goto out;
1482 }
1483
1484 if (znode->zbranch[n].lnum != 0 &&
1485 znode->zbranch[n].len == 0) {
1486 err = 17;
1487 goto out;
1488 }
1489
1490 if (znode->zbranch[n].lnum == 0 &&
1491 znode->zbranch[n].len != 0) {
1492 err = 18;
1493 goto out;
1494 }
1495
1496 if (znode->zbranch[n].lnum == 0 &&
1497 znode->zbranch[n].offs != 0) {
1498 err = 19;
1499 goto out;
1500 }
1501
1502 if (znode->level != 0 && znode->zbranch[n].znode)
1503 if (znode->zbranch[n].znode->parent != znode) {
1504 err = 20;
1505 goto out;
1506 }
1507 }
1508
1509 return 0;
1510
1511out:
1512 ubifs_err("failed, error %d", err);
1513 ubifs_msg("dump of the znode");
1514 dbg_dump_znode(c, znode);
1515 if (zp) {
1516 ubifs_msg("dump of the parent znode");
1517 dbg_dump_znode(c, zp);
1518 }
1519 dump_stack();
1520 return -EINVAL;
1521}
1522
1523/**
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1527 *
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1530 */
1531int dbg_check_tnc(struct ubifs_info *c, int extra)
1532{
1533 struct ubifs_znode *znode;
1534 long clean_cnt = 0, dirty_cnt = 0;
1535 int err, last;
1536
1537 if (!dbg_is_chk_index(c))
1538 return 0;
1539
1540 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541 if (!c->zroot.znode)
1542 return 0;
1543
1544 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545 while (1) {
1546 struct ubifs_znode *prev;
1547 struct ubifs_zbranch *zbr;
1548
1549 if (!znode->parent)
1550 zbr = &c->zroot;
1551 else
1552 zbr = &znode->parent->zbranch[znode->iip];
1553
1554 err = dbg_check_znode(c, zbr);
1555 if (err)
1556 return err;
1557
1558 if (extra) {
1559 if (ubifs_zn_dirty(znode))
1560 dirty_cnt += 1;
1561 else
1562 clean_cnt += 1;
1563 }
1564
1565 prev = znode;
1566 znode = ubifs_tnc_postorder_next(znode);
1567 if (!znode)
1568 break;
1569
1570 /*
1571 * If the last key of this znode is equivalent to the first key
1572 * of the next znode (collision), then check order of the keys.
1573 */
1574 last = prev->child_cnt - 1;
1575 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576 !keys_cmp(c, &prev->zbranch[last].key,
1577 &znode->zbranch[0].key)) {
1578 err = dbg_check_key_order(c, &prev->zbranch[last],
1579 &znode->zbranch[0]);
1580 if (err < 0)
1581 return err;
1582 if (err) {
1583 ubifs_msg("first znode");
1584 dbg_dump_znode(c, prev);
1585 ubifs_msg("second znode");
1586 dbg_dump_znode(c, znode);
1587 return -EINVAL;
1588 }
1589 }
1590 }
1591
1592 if (extra) {
1593 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 atomic_long_read(&c->clean_zn_cnt),
1596 clean_cnt);
1597 return -EINVAL;
1598 }
1599 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 atomic_long_read(&c->dirty_zn_cnt),
1602 dirty_cnt);
1603 return -EINVAL;
1604 }
1605 }
1606
1607 return 0;
1608}
1609
1610/**
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1616 *
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1620 *
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1624 */
1625int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626 dbg_znode_callback znode_cb, void *priv)
1627{
1628 int err;
1629 struct ubifs_zbranch *zbr;
1630 struct ubifs_znode *znode, *child;
1631
1632 mutex_lock(&c->tnc_mutex);
1633 /* If the root indexing node is not in TNC - pull it */
1634 if (!c->zroot.znode) {
1635 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636 if (IS_ERR(c->zroot.znode)) {
1637 err = PTR_ERR(c->zroot.znode);
1638 c->zroot.znode = NULL;
1639 goto out_unlock;
1640 }
1641 }
1642
1643 /*
1644 * We are going to traverse the indexing tree in the postorder manner.
1645 * Go down and find the leftmost indexing node where we are going to
1646 * start from.
1647 */
1648 znode = c->zroot.znode;
1649 while (znode->level > 0) {
1650 zbr = &znode->zbranch[0];
1651 child = zbr->znode;
1652 if (!child) {
1653 child = ubifs_load_znode(c, zbr, znode, 0);
1654 if (IS_ERR(child)) {
1655 err = PTR_ERR(child);
1656 goto out_unlock;
1657 }
1658 zbr->znode = child;
1659 }
1660
1661 znode = child;
1662 }
1663
1664 /* Iterate over all indexing nodes */
1665 while (1) {
1666 int idx;
1667
1668 cond_resched();
1669
1670 if (znode_cb) {
1671 err = znode_cb(c, znode, priv);
1672 if (err) {
1673 ubifs_err("znode checking function returned "
1674 "error %d", err);
1675 dbg_dump_znode(c, znode);
1676 goto out_dump;
1677 }
1678 }
1679 if (leaf_cb && znode->level == 0) {
1680 for (idx = 0; idx < znode->child_cnt; idx++) {
1681 zbr = &znode->zbranch[idx];
1682 err = leaf_cb(c, zbr, priv);
1683 if (err) {
1684 ubifs_err("leaf checking function "
1685 "returned error %d, for leaf "
1686 "at LEB %d:%d",
1687 err, zbr->lnum, zbr->offs);
1688 goto out_dump;
1689 }
1690 }
1691 }
1692
1693 if (!znode->parent)
1694 break;
1695
1696 idx = znode->iip + 1;
1697 znode = znode->parent;
1698 if (idx < znode->child_cnt) {
1699 /* Switch to the next index in the parent */
1700 zbr = &znode->zbranch[idx];
1701 child = zbr->znode;
1702 if (!child) {
1703 child = ubifs_load_znode(c, zbr, znode, idx);
1704 if (IS_ERR(child)) {
1705 err = PTR_ERR(child);
1706 goto out_unlock;
1707 }
1708 zbr->znode = child;
1709 }
1710 znode = child;
1711 } else
1712 /*
1713 * This is the last child, switch to the parent and
1714 * continue.
1715 */
1716 continue;
1717
1718 /* Go to the lowest leftmost znode in the new sub-tree */
1719 while (znode->level > 0) {
1720 zbr = &znode->zbranch[0];
1721 child = zbr->znode;
1722 if (!child) {
1723 child = ubifs_load_znode(c, zbr, znode, 0);
1724 if (IS_ERR(child)) {
1725 err = PTR_ERR(child);
1726 goto out_unlock;
1727 }
1728 zbr->znode = child;
1729 }
1730 znode = child;
1731 }
1732 }
1733
1734 mutex_unlock(&c->tnc_mutex);
1735 return 0;
1736
1737out_dump:
1738 if (znode->parent)
1739 zbr = &znode->parent->zbranch[znode->iip];
1740 else
1741 zbr = &c->zroot;
1742 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743 dbg_dump_znode(c, znode);
1744out_unlock:
1745 mutex_unlock(&c->tnc_mutex);
1746 return err;
1747}
1748
1749/**
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1754 *
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1758 */
1759static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760{
1761 long long *idx_size = priv;
1762 int add;
1763
1764 add = ubifs_idx_node_sz(c, znode->child_cnt);
1765 add = ALIGN(add, 8);
1766 *idx_size += add;
1767 return 0;
1768}
1769
1770/**
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1774 *
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1778 */
1779int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780{
1781 int err;
1782 long long calc = 0;
1783
1784 if (!dbg_is_chk_index(c))
1785 return 0;
1786
1787 err = dbg_walk_index(c, NULL, add_size, &calc);
1788 if (err) {
1789 ubifs_err("error %d while walking the index", err);
1790 return err;
1791 }
1792
1793 if (calc != idx_size) {
1794 ubifs_err("index size check failed: calculated size is %lld, "
1795 "should be %lld", calc, idx_size);
1796 dump_stack();
1797 return -EINVAL;
1798 }
1799
1800 return 0;
1801}
1802
1803/**
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 * while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 * inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 * inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1822 */
1823struct fsck_inode {
1824 struct rb_node rb;
1825 ino_t inum;
1826 umode_t mode;
1827 unsigned int nlink;
1828 unsigned int xattr_cnt;
1829 int references;
1830 int calc_cnt;
1831 long long size;
1832 unsigned int xattr_sz;
1833 long long calc_sz;
1834 long long calc_xcnt;
1835 long long calc_xsz;
1836 unsigned int xattr_nms;
1837 long long calc_xnms;
1838};
1839
1840/**
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843 */
1844struct fsck_data {
1845 struct rb_root inodes;
1846};
1847
1848/**
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1853 *
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1857 */
1858static struct fsck_inode *add_inode(struct ubifs_info *c,
1859 struct fsck_data *fsckd,
1860 struct ubifs_ino_node *ino)
1861{
1862 struct rb_node **p, *parent = NULL;
1863 struct fsck_inode *fscki;
1864 ino_t inum = key_inum_flash(c, &ino->key);
1865 struct inode *inode;
1866 struct ubifs_inode *ui;
1867
1868 p = &fsckd->inodes.rb_node;
1869 while (*p) {
1870 parent = *p;
1871 fscki = rb_entry(parent, struct fsck_inode, rb);
1872 if (inum < fscki->inum)
1873 p = &(*p)->rb_left;
1874 else if (inum > fscki->inum)
1875 p = &(*p)->rb_right;
1876 else
1877 return fscki;
1878 }
1879
1880 if (inum > c->highest_inum) {
1881 ubifs_err("too high inode number, max. is %lu",
1882 (unsigned long)c->highest_inum);
1883 return ERR_PTR(-EINVAL);
1884 }
1885
1886 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887 if (!fscki)
1888 return ERR_PTR(-ENOMEM);
1889
1890 inode = ilookup(c->vfs_sb, inum);
1891
1892 fscki->inum = inum;
1893 /*
1894 * If the inode is present in the VFS inode cache, use it instead of
1895 * the on-flash inode which might be out-of-date. E.g., the size might
1896 * be out-of-date. If we do not do this, the following may happen, for
1897 * example:
1898 * 1. A power cut happens
1899 * 2. We mount the file-system R/O, the replay process fixes up the
1900 * inode size in the VFS cache, but on on-flash.
1901 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1902 * size.
1903 */
1904 if (!inode) {
1905 fscki->nlink = le32_to_cpu(ino->nlink);
1906 fscki->size = le64_to_cpu(ino->size);
1907 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910 fscki->mode = le32_to_cpu(ino->mode);
1911 } else {
1912 ui = ubifs_inode(inode);
1913 fscki->nlink = inode->i_nlink;
1914 fscki->size = inode->i_size;
1915 fscki->xattr_cnt = ui->xattr_cnt;
1916 fscki->xattr_sz = ui->xattr_size;
1917 fscki->xattr_nms = ui->xattr_names;
1918 fscki->mode = inode->i_mode;
1919 iput(inode);
1920 }
1921
1922 if (S_ISDIR(fscki->mode)) {
1923 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924 fscki->calc_cnt = 2;
1925 }
1926
1927 rb_link_node(&fscki->rb, parent, p);
1928 rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930 return fscki;
1931}
1932
1933/**
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1937 *
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1941 */
1942static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943{
1944 struct rb_node *p;
1945 struct fsck_inode *fscki;
1946
1947 p = fsckd->inodes.rb_node;
1948 while (p) {
1949 fscki = rb_entry(p, struct fsck_inode, rb);
1950 if (inum < fscki->inum)
1951 p = p->rb_left;
1952 else if (inum > fscki->inum)
1953 p = p->rb_right;
1954 else
1955 return fscki;
1956 }
1957 return NULL;
1958}
1959
1960/**
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1965 *
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1970 */
1971static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972 struct fsck_data *fsckd, ino_t inum)
1973{
1974 int n, err;
1975 union ubifs_key key;
1976 struct ubifs_znode *znode;
1977 struct ubifs_zbranch *zbr;
1978 struct ubifs_ino_node *ino;
1979 struct fsck_inode *fscki;
1980
1981 fscki = search_inode(fsckd, inum);
1982 if (fscki)
1983 return fscki;
1984
1985 ino_key_init(c, &key, inum);
1986 err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 if (!err) {
1988 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989 return ERR_PTR(-ENOENT);
1990 } else if (err < 0) {
1991 ubifs_err("error %d while looking up inode %lu",
1992 err, (unsigned long)inum);
1993 return ERR_PTR(err);
1994 }
1995
1996 zbr = &znode->zbranch[n];
1997 if (zbr->len < UBIFS_INO_NODE_SZ) {
1998 ubifs_err("bad node %lu node length %d",
1999 (unsigned long)inum, zbr->len);
2000 return ERR_PTR(-EINVAL);
2001 }
2002
2003 ino = kmalloc(zbr->len, GFP_NOFS);
2004 if (!ino)
2005 return ERR_PTR(-ENOMEM);
2006
2007 err = ubifs_tnc_read_node(c, zbr, ino);
2008 if (err) {
2009 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 zbr->lnum, zbr->offs, err);
2011 kfree(ino);
2012 return ERR_PTR(err);
2013 }
2014
2015 fscki = add_inode(c, fsckd, ino);
2016 kfree(ino);
2017 if (IS_ERR(fscki)) {
2018 ubifs_err("error %ld while adding inode %lu node",
2019 PTR_ERR(fscki), (unsigned long)inum);
2020 return fscki;
2021 }
2022
2023 return fscki;
2024}
2025
2026/**
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2031 *
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2041 */
2042static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043 void *priv)
2044{
2045 ino_t inum;
2046 void *node;
2047 struct ubifs_ch *ch;
2048 int err, type = key_type(c, &zbr->key);
2049 struct fsck_inode *fscki;
2050
2051 if (zbr->len < UBIFS_CH_SZ) {
2052 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 zbr->len, zbr->lnum, zbr->offs);
2054 return -EINVAL;
2055 }
2056
2057 node = kmalloc(zbr->len, GFP_NOFS);
2058 if (!node)
2059 return -ENOMEM;
2060
2061 err = ubifs_tnc_read_node(c, zbr, node);
2062 if (err) {
2063 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 zbr->lnum, zbr->offs, err);
2065 goto out_free;
2066 }
2067
2068 /* If this is an inode node, add it to RB-tree of inodes */
2069 if (type == UBIFS_INO_KEY) {
2070 fscki = add_inode(c, priv, node);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err("error %d while adding inode node", err);
2074 goto out_dump;
2075 }
2076 goto out;
2077 }
2078
2079 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080 type != UBIFS_DATA_KEY) {
2081 ubifs_err("unexpected node type %d at LEB %d:%d",
2082 type, zbr->lnum, zbr->offs);
2083 err = -EINVAL;
2084 goto out_free;
2085 }
2086
2087 ch = node;
2088 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089 ubifs_err("too high sequence number, max. is %llu",
2090 c->max_sqnum);
2091 err = -EINVAL;
2092 goto out_dump;
2093 }
2094
2095 if (type == UBIFS_DATA_KEY) {
2096 long long blk_offs;
2097 struct ubifs_data_node *dn = node;
2098
2099 /*
2100 * Search the inode node this data node belongs to and insert
2101 * it to the RB-tree of inodes.
2102 */
2103 inum = key_inum_flash(c, &dn->key);
2104 fscki = read_add_inode(c, priv, inum);
2105 if (IS_ERR(fscki)) {
2106 err = PTR_ERR(fscki);
2107 ubifs_err("error %d while processing data node and "
2108 "trying to find inode node %lu",
2109 err, (unsigned long)inum);
2110 goto out_dump;
2111 }
2112
2113 /* Make sure the data node is within inode size */
2114 blk_offs = key_block_flash(c, &dn->key);
2115 blk_offs <<= UBIFS_BLOCK_SHIFT;
2116 blk_offs += le32_to_cpu(dn->size);
2117 if (blk_offs > fscki->size) {
2118 ubifs_err("data node at LEB %d:%d is not within inode "
2119 "size %lld", zbr->lnum, zbr->offs,
2120 fscki->size);
2121 err = -EINVAL;
2122 goto out_dump;
2123 }
2124 } else {
2125 int nlen;
2126 struct ubifs_dent_node *dent = node;
2127 struct fsck_inode *fscki1;
2128
2129 err = ubifs_validate_entry(c, dent);
2130 if (err)
2131 goto out_dump;
2132
2133 /*
2134 * Search the inode node this entry refers to and the parent
2135 * inode node and insert them to the RB-tree of inodes.
2136 */
2137 inum = le64_to_cpu(dent->inum);
2138 fscki = read_add_inode(c, priv, inum);
2139 if (IS_ERR(fscki)) {
2140 err = PTR_ERR(fscki);
2141 ubifs_err("error %d while processing entry node and "
2142 "trying to find inode node %lu",
2143 err, (unsigned long)inum);
2144 goto out_dump;
2145 }
2146
2147 /* Count how many direntries or xentries refers this inode */
2148 fscki->references += 1;
2149
2150 inum = key_inum_flash(c, &dent->key);
2151 fscki1 = read_add_inode(c, priv, inum);
2152 if (IS_ERR(fscki1)) {
2153 err = PTR_ERR(fscki1);
2154 ubifs_err("error %d while processing entry node and "
2155 "trying to find parent inode node %lu",
2156 err, (unsigned long)inum);
2157 goto out_dump;
2158 }
2159
2160 nlen = le16_to_cpu(dent->nlen);
2161 if (type == UBIFS_XENT_KEY) {
2162 fscki1->calc_xcnt += 1;
2163 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165 fscki1->calc_xnms += nlen;
2166 } else {
2167 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168 if (dent->type == UBIFS_ITYPE_DIR)
2169 fscki1->calc_cnt += 1;
2170 }
2171 }
2172
2173out:
2174 kfree(node);
2175 return 0;
2176
2177out_dump:
2178 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179 dbg_dump_node(c, node);
2180out_free:
2181 kfree(node);
2182 return err;
2183}
2184
2185/**
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2188 */
2189static void free_inodes(struct fsck_data *fsckd)
2190{
2191 struct rb_node *this = fsckd->inodes.rb_node;
2192 struct fsck_inode *fscki;
2193
2194 while (this) {
2195 if (this->rb_left)
2196 this = this->rb_left;
2197 else if (this->rb_right)
2198 this = this->rb_right;
2199 else {
2200 fscki = rb_entry(this, struct fsck_inode, rb);
2201 this = rb_parent(this);
2202 if (this) {
2203 if (this->rb_left == &fscki->rb)
2204 this->rb_left = NULL;
2205 else
2206 this->rb_right = NULL;
2207 }
2208 kfree(fscki);
2209 }
2210 }
2211}
2212
2213/**
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2217 *
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2222 */
2223static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224{
2225 int n, err;
2226 union ubifs_key key;
2227 struct ubifs_znode *znode;
2228 struct ubifs_zbranch *zbr;
2229 struct ubifs_ino_node *ino;
2230 struct fsck_inode *fscki;
2231 struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233 while (this) {
2234 fscki = rb_entry(this, struct fsck_inode, rb);
2235 this = rb_next(this);
2236
2237 if (S_ISDIR(fscki->mode)) {
2238 /*
2239 * Directories have to have exactly one reference (they
2240 * cannot have hardlinks), although root inode is an
2241 * exception.
2242 */
2243 if (fscki->inum != UBIFS_ROOT_INO &&
2244 fscki->references != 1) {
2245 ubifs_err("directory inode %lu has %d "
2246 "direntries which refer it, but "
2247 "should be 1",
2248 (unsigned long)fscki->inum,
2249 fscki->references);
2250 goto out_dump;
2251 }
2252 if (fscki->inum == UBIFS_ROOT_INO &&
2253 fscki->references != 0) {
2254 ubifs_err("root inode %lu has non-zero (%d) "
2255 "direntries which refer it",
2256 (unsigned long)fscki->inum,
2257 fscki->references);
2258 goto out_dump;
2259 }
2260 if (fscki->calc_sz != fscki->size) {
2261 ubifs_err("directory inode %lu size is %lld, "
2262 "but calculated size is %lld",
2263 (unsigned long)fscki->inum,
2264 fscki->size, fscki->calc_sz);
2265 goto out_dump;
2266 }
2267 if (fscki->calc_cnt != fscki->nlink) {
2268 ubifs_err("directory inode %lu nlink is %d, "
2269 "but calculated nlink is %d",
2270 (unsigned long)fscki->inum,
2271 fscki->nlink, fscki->calc_cnt);
2272 goto out_dump;
2273 }
2274 } else {
2275 if (fscki->references != fscki->nlink) {
2276 ubifs_err("inode %lu nlink is %d, but "
2277 "calculated nlink is %d",
2278 (unsigned long)fscki->inum,
2279 fscki->nlink, fscki->references);
2280 goto out_dump;
2281 }
2282 }
2283 if (fscki->xattr_sz != fscki->calc_xsz) {
2284 ubifs_err("inode %lu has xattr size %u, but "
2285 "calculated size is %lld",
2286 (unsigned long)fscki->inum, fscki->xattr_sz,
2287 fscki->calc_xsz);
2288 goto out_dump;
2289 }
2290 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291 ubifs_err("inode %lu has %u xattrs, but "
2292 "calculated count is %lld",
2293 (unsigned long)fscki->inum,
2294 fscki->xattr_cnt, fscki->calc_xcnt);
2295 goto out_dump;
2296 }
2297 if (fscki->xattr_nms != fscki->calc_xnms) {
2298 ubifs_err("inode %lu has xattr names' size %u, but "
2299 "calculated names' size is %lld",
2300 (unsigned long)fscki->inum, fscki->xattr_nms,
2301 fscki->calc_xnms);
2302 goto out_dump;
2303 }
2304 }
2305
2306 return 0;
2307
2308out_dump:
2309 /* Read the bad inode and dump it */
2310 ino_key_init(c, &key, fscki->inum);
2311 err = ubifs_lookup_level0(c, &key, &znode, &n);
2312 if (!err) {
2313 ubifs_err("inode %lu not found in index",
2314 (unsigned long)fscki->inum);
2315 return -ENOENT;
2316 } else if (err < 0) {
2317 ubifs_err("error %d while looking up inode %lu",
2318 err, (unsigned long)fscki->inum);
2319 return err;
2320 }
2321
2322 zbr = &znode->zbranch[n];
2323 ino = kmalloc(zbr->len, GFP_NOFS);
2324 if (!ino)
2325 return -ENOMEM;
2326
2327 err = ubifs_tnc_read_node(c, zbr, ino);
2328 if (err) {
2329 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 zbr->lnum, zbr->offs, err);
2331 kfree(ino);
2332 return err;
2333 }
2334
2335 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337 dbg_dump_node(c, ino);
2338 kfree(ino);
2339 return -EINVAL;
2340}
2341
2342/**
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2345 *
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 * inodes).
2350 *
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2354 */
2355int dbg_check_filesystem(struct ubifs_info *c)
2356{
2357 int err;
2358 struct fsck_data fsckd;
2359
2360 if (!dbg_is_chk_fs(c))
2361 return 0;
2362
2363 fsckd.inodes = RB_ROOT;
2364 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365 if (err)
2366 goto out_free;
2367
2368 err = check_inodes(c, &fsckd);
2369 if (err)
2370 goto out_free;
2371
2372 free_inodes(&fsckd);
2373 return 0;
2374
2375out_free:
2376 ubifs_err("file-system check failed with error %d", err);
2377 dump_stack();
2378 free_inodes(&fsckd);
2379 return err;
2380}
2381
2382/**
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386 *
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2389 */
2390int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391{
2392 struct list_head *cur;
2393 struct ubifs_scan_node *sa, *sb;
2394
2395 if (!dbg_is_chk_gen(c))
2396 return 0;
2397
2398 for (cur = head->next; cur->next != head; cur = cur->next) {
2399 ino_t inuma, inumb;
2400 uint32_t blka, blkb;
2401
2402 cond_resched();
2403 sa = container_of(cur, struct ubifs_scan_node, list);
2404 sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406 if (sa->type != UBIFS_DATA_NODE) {
2407 ubifs_err("bad node type %d", sa->type);
2408 dbg_dump_node(c, sa->node);
2409 return -EINVAL;
2410 }
2411 if (sb->type != UBIFS_DATA_NODE) {
2412 ubifs_err("bad node type %d", sb->type);
2413 dbg_dump_node(c, sb->node);
2414 return -EINVAL;
2415 }
2416
2417 inuma = key_inum(c, &sa->key);
2418 inumb = key_inum(c, &sb->key);
2419
2420 if (inuma < inumb)
2421 continue;
2422 if (inuma > inumb) {
2423 ubifs_err("larger inum %lu goes before inum %lu",
2424 (unsigned long)inuma, (unsigned long)inumb);
2425 goto error_dump;
2426 }
2427
2428 blka = key_block(c, &sa->key);
2429 blkb = key_block(c, &sb->key);
2430
2431 if (blka > blkb) {
2432 ubifs_err("larger block %u goes before %u", blka, blkb);
2433 goto error_dump;
2434 }
2435 if (blka == blkb) {
2436 ubifs_err("two data nodes for the same block");
2437 goto error_dump;
2438 }
2439 }
2440
2441 return 0;
2442
2443error_dump:
2444 dbg_dump_node(c, sa->node);
2445 dbg_dump_node(c, sb->node);
2446 return -EINVAL;
2447}
2448
2449/**
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453 *
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2456 */
2457int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458{
2459 struct list_head *cur;
2460 struct ubifs_scan_node *sa, *sb;
2461
2462 if (!dbg_is_chk_gen(c))
2463 return 0;
2464
2465 for (cur = head->next; cur->next != head; cur = cur->next) {
2466 ino_t inuma, inumb;
2467 uint32_t hasha, hashb;
2468
2469 cond_resched();
2470 sa = container_of(cur, struct ubifs_scan_node, list);
2471 sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474 sa->type != UBIFS_XENT_NODE) {
2475 ubifs_err("bad node type %d", sa->type);
2476 dbg_dump_node(c, sa->node);
2477 return -EINVAL;
2478 }
2479 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480 sa->type != UBIFS_XENT_NODE) {
2481 ubifs_err("bad node type %d", sb->type);
2482 dbg_dump_node(c, sb->node);
2483 return -EINVAL;
2484 }
2485
2486 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487 ubifs_err("non-inode node goes before inode node");
2488 goto error_dump;
2489 }
2490
2491 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492 continue;
2493
2494 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495 /* Inode nodes are sorted in descending size order */
2496 if (sa->len < sb->len) {
2497 ubifs_err("smaller inode node goes first");
2498 goto error_dump;
2499 }
2500 continue;
2501 }
2502
2503 /*
2504 * This is either a dentry or xentry, which should be sorted in
2505 * ascending (parent ino, hash) order.
2506 */
2507 inuma = key_inum(c, &sa->key);
2508 inumb = key_inum(c, &sb->key);
2509
2510 if (inuma < inumb)
2511 continue;
2512 if (inuma > inumb) {
2513 ubifs_err("larger inum %lu goes before inum %lu",
2514 (unsigned long)inuma, (unsigned long)inumb);
2515 goto error_dump;
2516 }
2517
2518 hasha = key_block(c, &sa->key);
2519 hashb = key_block(c, &sb->key);
2520
2521 if (hasha > hashb) {
2522 ubifs_err("larger hash %u goes before %u",
2523 hasha, hashb);
2524 goto error_dump;
2525 }
2526 }
2527
2528 return 0;
2529
2530error_dump:
2531 ubifs_msg("dumping first node");
2532 dbg_dump_node(c, sa->node);
2533 ubifs_msg("dumping second node");
2534 dbg_dump_node(c, sb->node);
2535 return -EINVAL;
2536 return 0;
2537}
2538
2539static inline int chance(unsigned int n, unsigned int out_of)
2540{
2541 return !!((random32() % out_of) + 1 <= n);
2542
2543}
2544
2545static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546{
2547 struct ubifs_debug_info *d = c->dbg;
2548
2549 ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551 if (!d->pc_cnt) {
2552 /* First call - decide delay to the power cut */
2553 if (chance(1, 2)) {
2554 unsigned long delay;
2555
2556 if (chance(1, 2)) {
2557 d->pc_delay = 1;
2558 /* Fail withing 1 minute */
2559 delay = random32() % 60000;
2560 d->pc_timeout = jiffies;
2561 d->pc_timeout += msecs_to_jiffies(delay);
2562 ubifs_warn("failing after %lums", delay);
2563 } else {
2564 d->pc_delay = 2;
2565 delay = random32() % 10000;
2566 /* Fail within 10000 operations */
2567 d->pc_cnt_max = delay;
2568 ubifs_warn("failing after %lu calls", delay);
2569 }
2570 }
2571
2572 d->pc_cnt += 1;
2573 }
2574
2575 /* Determine if failure delay has expired */
2576 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577 return 0;
2578 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579 return 0;
2580
2581 if (lnum == UBIFS_SB_LNUM) {
2582 if (write && chance(1, 2))
2583 return 0;
2584 if (chance(19, 20))
2585 return 0;
2586 ubifs_warn("failing in super block LEB %d", lnum);
2587 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588 if (chance(19, 20))
2589 return 0;
2590 ubifs_warn("failing in master LEB %d", lnum);
2591 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592 if (write && chance(99, 100))
2593 return 0;
2594 if (chance(399, 400))
2595 return 0;
2596 ubifs_warn("failing in log LEB %d", lnum);
2597 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598 if (write && chance(7, 8))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in LPT LEB %d", lnum);
2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 if (write && chance(1, 2))
2605 return 0;
2606 if (chance(9, 10))
2607 return 0;
2608 ubifs_warn("failing in orphan LEB %d", lnum);
2609 } else if (lnum == c->ihead_lnum) {
2610 if (chance(99, 100))
2611 return 0;
2612 ubifs_warn("failing in index head LEB %d", lnum);
2613 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614 if (chance(9, 10))
2615 return 0;
2616 ubifs_warn("failing in GC head LEB %d", lnum);
2617 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618 !ubifs_search_bud(c, lnum)) {
2619 if (chance(19, 20))
2620 return 0;
2621 ubifs_warn("failing in non-bud LEB %d", lnum);
2622 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624 if (chance(999, 1000))
2625 return 0;
2626 ubifs_warn("failing in bud LEB %d commit running", lnum);
2627 } else {
2628 if (chance(9999, 10000))
2629 return 0;
2630 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631 }
2632
2633 d->pc_happened = 1;
2634 ubifs_warn("========== Power cut emulated ==========");
2635 dump_stack();
2636 return 1;
2637}
2638
2639static void cut_data(const void *buf, unsigned int len)
2640{
2641 unsigned int from, to, i, ffs = chance(1, 2);
2642 unsigned char *p = (void *)buf;
2643
2644 from = random32() % (len + 1);
2645 if (chance(1, 2))
2646 to = random32() % (len - from + 1);
2647 else
2648 to = len;
2649
2650 if (from < to)
2651 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652 ffs ? "0xFFs" : "random data");
2653
2654 if (ffs)
2655 for (i = from; i < to; i++)
2656 p[i] = 0xFF;
2657 else
2658 for (i = from; i < to; i++)
2659 p[i] = random32() % 0x100;
2660}
2661
2662int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663 int offs, int len, int dtype)
2664{
2665 int err, failing;
2666
2667 if (c->dbg->pc_happened)
2668 return -EROFS;
2669
2670 failing = power_cut_emulated(c, lnum, 1);
2671 if (failing)
2672 cut_data(buf, len);
2673 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674 if (err)
2675 return err;
2676 if (failing)
2677 return -EROFS;
2678 return 0;
2679}
2680
2681int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682 int len, int dtype)
2683{
2684 int err;
2685
2686 if (c->dbg->pc_happened)
2687 return -EROFS;
2688 if (power_cut_emulated(c, lnum, 1))
2689 return -EROFS;
2690 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691 if (err)
2692 return err;
2693 if (power_cut_emulated(c, lnum, 1))
2694 return -EROFS;
2695 return 0;
2696}
2697
2698int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699{
2700 int err;
2701
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 0))
2705 return -EROFS;
2706 err = ubi_leb_unmap(c->ubi, lnum);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 0))
2710 return -EROFS;
2711 return 0;
2712}
2713
2714int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715{
2716 int err;
2717
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_map(c->ubi, lnum, dtype);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2728}
2729
2730/*
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2733 */
2734static struct dentry *dfs_rootdir;
2735
2736static int dfs_file_open(struct inode *inode, struct file *file)
2737{
2738 file->private_data = inode->i_private;
2739 return nonseekable_open(inode, file);
2740}
2741
2742/**
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2748 *
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2753 */
2754static int provide_user_output(int val, char __user *u, size_t count,
2755 loff_t *ppos)
2756{
2757 char buf[3];
2758
2759 if (val)
2760 buf[0] = '1';
2761 else
2762 buf[0] = '0';
2763 buf[1] = '\n';
2764 buf[2] = 0x00;
2765
2766 return simple_read_from_buffer(u, count, ppos, buf, 2);
2767}
2768
2769static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770 loff_t *ppos)
2771{
2772 struct dentry *dent = file->f_path.dentry;
2773 struct ubifs_info *c = file->private_data;
2774 struct ubifs_debug_info *d = c->dbg;
2775 int val;
2776
2777 if (dent == d->dfs_chk_gen)
2778 val = d->chk_gen;
2779 else if (dent == d->dfs_chk_index)
2780 val = d->chk_index;
2781 else if (dent == d->dfs_chk_orph)
2782 val = d->chk_orph;
2783 else if (dent == d->dfs_chk_lprops)
2784 val = d->chk_lprops;
2785 else if (dent == d->dfs_chk_fs)
2786 val = d->chk_fs;
2787 else if (dent == d->dfs_tst_rcvry)
2788 val = d->tst_rcvry;
2789 else
2790 return -EINVAL;
2791
2792 return provide_user_output(val, u, count, ppos);
2793}
2794
2795/**
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2799 *
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2803 */
2804static int interpret_user_input(const char __user *u, size_t count)
2805{
2806 size_t buf_size;
2807 char buf[8];
2808
2809 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810 if (copy_from_user(buf, u, buf_size))
2811 return -EFAULT;
2812
2813 if (buf[0] == '1')
2814 return 1;
2815 else if (buf[0] == '0')
2816 return 0;
2817
2818 return -EINVAL;
2819}
2820
2821static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822 size_t count, loff_t *ppos)
2823{
2824 struct ubifs_info *c = file->private_data;
2825 struct ubifs_debug_info *d = c->dbg;
2826 struct dentry *dent = file->f_path.dentry;
2827 int val;
2828
2829 /*
2830 * TODO: this is racy - the file-system might have already been
2831 * unmounted and we'd oops in this case. The plan is to fix it with
2832 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 * superblocks and fine the one with the same UUID, and take the
2836 * locking right.
2837 *
2838 * The other way to go suggested by Al Viro is to create a separate
2839 * 'ubifs-debug' file-system instead.
2840 */
2841 if (file->f_path.dentry == d->dfs_dump_lprops) {
2842 dbg_dump_lprops(c);
2843 return count;
2844 }
2845 if (file->f_path.dentry == d->dfs_dump_budg) {
2846 dbg_dump_budg(c, &c->bi);
2847 return count;
2848 }
2849 if (file->f_path.dentry == d->dfs_dump_tnc) {
2850 mutex_lock(&c->tnc_mutex);
2851 dbg_dump_tnc(c);
2852 mutex_unlock(&c->tnc_mutex);
2853 return count;
2854 }
2855
2856 val = interpret_user_input(u, count);
2857 if (val < 0)
2858 return val;
2859
2860 if (dent == d->dfs_chk_gen)
2861 d->chk_gen = val;
2862 else if (dent == d->dfs_chk_index)
2863 d->chk_index = val;
2864 else if (dent == d->dfs_chk_orph)
2865 d->chk_orph = val;
2866 else if (dent == d->dfs_chk_lprops)
2867 d->chk_lprops = val;
2868 else if (dent == d->dfs_chk_fs)
2869 d->chk_fs = val;
2870 else if (dent == d->dfs_tst_rcvry)
2871 d->tst_rcvry = val;
2872 else
2873 return -EINVAL;
2874
2875 return count;
2876}
2877
2878static const struct file_operations dfs_fops = {
2879 .open = dfs_file_open,
2880 .read = dfs_file_read,
2881 .write = dfs_file_write,
2882 .owner = THIS_MODULE,
2883 .llseek = no_llseek,
2884};
2885
2886/**
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2889 *
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2892 *
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2897 */
2898int dbg_debugfs_init_fs(struct ubifs_info *c)
2899{
2900 int err, n;
2901 const char *fname;
2902 struct dentry *dent;
2903 struct ubifs_debug_info *d = c->dbg;
2904
2905 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906 c->vi.ubi_num, c->vi.vol_id);
2907 if (n == UBIFS_DFS_DIR_LEN) {
2908 /* The array size is too small */
2909 fname = UBIFS_DFS_DIR_NAME;
2910 dent = ERR_PTR(-EINVAL);
2911 goto out;
2912 }
2913
2914 fname = d->dfs_dir_name;
2915 dent = debugfs_create_dir(fname, dfs_rootdir);
2916 if (IS_ERR_OR_NULL(dent))
2917 goto out;
2918 d->dfs_dir = dent;
2919
2920 fname = "dump_lprops";
2921 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922 if (IS_ERR_OR_NULL(dent))
2923 goto out_remove;
2924 d->dfs_dump_lprops = dent;
2925
2926 fname = "dump_budg";
2927 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928 if (IS_ERR_OR_NULL(dent))
2929 goto out_remove;
2930 d->dfs_dump_budg = dent;
2931
2932 fname = "dump_tnc";
2933 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out_remove;
2936 d->dfs_dump_tnc = dent;
2937
2938 fname = "chk_general";
2939 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_chk_gen = dent;
2944
2945 fname = "chk_index";
2946 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 &dfs_fops);
2948 if (IS_ERR_OR_NULL(dent))
2949 goto out_remove;
2950 d->dfs_chk_index = dent;
2951
2952 fname = "chk_orphans";
2953 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954 &dfs_fops);
2955 if (IS_ERR_OR_NULL(dent))
2956 goto out_remove;
2957 d->dfs_chk_orph = dent;
2958
2959 fname = "chk_lprops";
2960 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961 &dfs_fops);
2962 if (IS_ERR_OR_NULL(dent))
2963 goto out_remove;
2964 d->dfs_chk_lprops = dent;
2965
2966 fname = "chk_fs";
2967 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968 &dfs_fops);
2969 if (IS_ERR_OR_NULL(dent))
2970 goto out_remove;
2971 d->dfs_chk_fs = dent;
2972
2973 fname = "tst_recovery";
2974 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975 &dfs_fops);
2976 if (IS_ERR_OR_NULL(dent))
2977 goto out_remove;
2978 d->dfs_tst_rcvry = dent;
2979
2980 return 0;
2981
2982out_remove:
2983 debugfs_remove_recursive(d->dfs_dir);
2984out:
2985 err = dent ? PTR_ERR(dent) : -ENODEV;
2986 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987 fname, err);
2988 return err;
2989}
2990
2991/**
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2994 */
2995void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996{
2997 debugfs_remove_recursive(c->dbg->dfs_dir);
2998}
2999
3000struct ubifs_global_debug_info ubifs_dbg;
3001
3002static struct dentry *dfs_chk_gen;
3003static struct dentry *dfs_chk_index;
3004static struct dentry *dfs_chk_orph;
3005static struct dentry *dfs_chk_lprops;
3006static struct dentry *dfs_chk_fs;
3007static struct dentry *dfs_tst_rcvry;
3008
3009static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010 size_t count, loff_t *ppos)
3011{
3012 struct dentry *dent = file->f_path.dentry;
3013 int val;
3014
3015 if (dent == dfs_chk_gen)
3016 val = ubifs_dbg.chk_gen;
3017 else if (dent == dfs_chk_index)
3018 val = ubifs_dbg.chk_index;
3019 else if (dent == dfs_chk_orph)
3020 val = ubifs_dbg.chk_orph;
3021 else if (dent == dfs_chk_lprops)
3022 val = ubifs_dbg.chk_lprops;
3023 else if (dent == dfs_chk_fs)
3024 val = ubifs_dbg.chk_fs;
3025 else if (dent == dfs_tst_rcvry)
3026 val = ubifs_dbg.tst_rcvry;
3027 else
3028 return -EINVAL;
3029
3030 return provide_user_output(val, u, count, ppos);
3031}
3032
3033static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034 size_t count, loff_t *ppos)
3035{
3036 struct dentry *dent = file->f_path.dentry;
3037 int val;
3038
3039 val = interpret_user_input(u, count);
3040 if (val < 0)
3041 return val;
3042
3043 if (dent == dfs_chk_gen)
3044 ubifs_dbg.chk_gen = val;
3045 else if (dent == dfs_chk_index)
3046 ubifs_dbg.chk_index = val;
3047 else if (dent == dfs_chk_orph)
3048 ubifs_dbg.chk_orph = val;
3049 else if (dent == dfs_chk_lprops)
3050 ubifs_dbg.chk_lprops = val;
3051 else if (dent == dfs_chk_fs)
3052 ubifs_dbg.chk_fs = val;
3053 else if (dent == dfs_tst_rcvry)
3054 ubifs_dbg.tst_rcvry = val;
3055 else
3056 return -EINVAL;
3057
3058 return count;
3059}
3060
3061static const struct file_operations dfs_global_fops = {
3062 .read = dfs_global_file_read,
3063 .write = dfs_global_file_write,
3064 .owner = THIS_MODULE,
3065 .llseek = no_llseek,
3066};
3067
3068/**
3069 * dbg_debugfs_init - initialize debugfs file-system.
3070 *
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3075 */
3076int dbg_debugfs_init(void)
3077{
3078 int err;
3079 const char *fname;
3080 struct dentry *dent;
3081
3082 fname = "ubifs";
3083 dent = debugfs_create_dir(fname, NULL);
3084 if (IS_ERR_OR_NULL(dent))
3085 goto out;
3086 dfs_rootdir = dent;
3087
3088 fname = "chk_general";
3089 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090 &dfs_global_fops);
3091 if (IS_ERR_OR_NULL(dent))
3092 goto out_remove;
3093 dfs_chk_gen = dent;
3094
3095 fname = "chk_index";
3096 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097 &dfs_global_fops);
3098 if (IS_ERR_OR_NULL(dent))
3099 goto out_remove;
3100 dfs_chk_index = dent;
3101
3102 fname = "chk_orphans";
3103 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104 &dfs_global_fops);
3105 if (IS_ERR_OR_NULL(dent))
3106 goto out_remove;
3107 dfs_chk_orph = dent;
3108
3109 fname = "chk_lprops";
3110 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111 &dfs_global_fops);
3112 if (IS_ERR_OR_NULL(dent))
3113 goto out_remove;
3114 dfs_chk_lprops = dent;
3115
3116 fname = "chk_fs";
3117 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118 &dfs_global_fops);
3119 if (IS_ERR_OR_NULL(dent))
3120 goto out_remove;
3121 dfs_chk_fs = dent;
3122
3123 fname = "tst_recovery";
3124 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125 &dfs_global_fops);
3126 if (IS_ERR_OR_NULL(dent))
3127 goto out_remove;
3128 dfs_tst_rcvry = dent;
3129
3130 return 0;
3131
3132out_remove:
3133 debugfs_remove_recursive(dfs_rootdir);
3134out:
3135 err = dent ? PTR_ERR(dent) : -ENODEV;
3136 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137 fname, err);
3138 return err;
3139}
3140
3141/**
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143 */
3144void dbg_debugfs_exit(void)
3145{
3146 debugfs_remove_recursive(dfs_rootdir);
3147}
3148
3149/**
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3152 *
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3156 */
3157int ubifs_debugging_init(struct ubifs_info *c)
3158{
3159 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160 if (!c->dbg)
3161 return -ENOMEM;
3162
3163 return 0;
3164}
3165
3166/**
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3169 */
3170void ubifs_debugging_exit(struct ubifs_info *c)
3171{
3172 kfree(c->dbg);
3173}
3174
3175#endif /* CONFIG_UBIFS_FS_DEBUG */