Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34/*
 35 * Called when an inode is released. Note that this is different
 36 * from ext4_file_open: open gets called at every open, but release
 37 * gets called only when /all/ the files are closed.
 38 */
 39static int ext4_release_file(struct inode *inode, struct file *filp)
 40{
 41	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 42		ext4_alloc_da_blocks(inode);
 43		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 44	}
 45	/* if we are the last writer on the inode, drop the block reservation */
 46	if ((filp->f_mode & FMODE_WRITE) &&
 47			(atomic_read(&inode->i_writecount) == 1) &&
 48		        !EXT4_I(inode)->i_reserved_data_blocks)
 49	{
 50		down_write(&EXT4_I(inode)->i_data_sem);
 51		ext4_discard_preallocations(inode);
 52		up_write(&EXT4_I(inode)->i_data_sem);
 53	}
 54	if (is_dx(inode) && filp->private_data)
 55		ext4_htree_free_dir_info(filp->private_data);
 56
 57	return 0;
 58}
 59
 60static void ext4_unwritten_wait(struct inode *inode)
 61{
 62	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 63
 64	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
 65}
 66
 67/*
 68 * This tests whether the IO in question is block-aligned or not.
 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 70 * are converted to written only after the IO is complete.  Until they are
 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 73 * threads are at work on the same unwritten block, they must be synchronized
 74 * or one thread will zero the other's data, causing corruption.
 75 */
 76static int
 77ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
 78{
 79	struct super_block *sb = inode->i_sb;
 80	int blockmask = sb->s_blocksize - 1;
 81
 82	if (pos >= i_size_read(inode))
 83		return 0;
 84
 85	if ((pos | iov_iter_alignment(from)) & blockmask)
 86		return 1;
 87
 88	return 0;
 89}
 90
 91static ssize_t
 92ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93{
 94	struct file *file = iocb->ki_filp;
 95	struct inode *inode = file_inode(iocb->ki_filp);
 96	struct blk_plug plug;
 97	int o_direct = iocb->ki_flags & IOCB_DIRECT;
 98	int unaligned_aio = 0;
 99	int overwrite = 0;
100	ssize_t ret;
101
102	inode_lock(inode);
 
 
103	ret = generic_write_checks(iocb, from);
104	if (ret <= 0)
105		goto out;
106
107	/*
108	 * Unaligned direct AIO must be serialized among each other as zeroing
109	 * of partial blocks of two competing unaligned AIOs can result in data
110	 * corruption.
111	 */
112	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113	    !is_sync_kiocb(iocb) &&
114	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115		unaligned_aio = 1;
116		ext4_unwritten_wait(inode);
117	}
118
119	/*
120	 * If we have encountered a bitmap-format file, the size limit
121	 * is smaller than s_maxbytes, which is for extent-mapped files.
122	 */
123	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125
126		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127			ret = -EFBIG;
128			goto out;
129		}
130		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131	}
132
133	iocb->private = &overwrite;
134	if (o_direct) {
135		size_t length = iov_iter_count(from);
136		loff_t pos = iocb->ki_pos;
137		blk_start_plug(&plug);
138
139		/* check whether we do a DIO overwrite or not */
140		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142			struct ext4_map_blocks map;
143			unsigned int blkbits = inode->i_blkbits;
144			int err, len;
145
146			map.m_lblk = pos >> blkbits;
147			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148				- map.m_lblk;
149			len = map.m_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
151			err = ext4_map_blocks(NULL, inode, &map, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152			/*
153			 * 'err==len' means that all of blocks has
154			 * been preallocated no matter they are
155			 * initialized or not.  For excluding
156			 * unwritten extents, we need to check
157			 * m_flags.  There are two conditions that
158			 * indicate for initialized extents.  1) If we
159			 * hit extent cache, EXT4_MAP_MAPPED flag is
160			 * returned; 2) If we do a real lookup,
161			 * non-flags are returned.  So we should check
162			 * these two conditions.
163			 */
164			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165				overwrite = 1;
166		}
 
 
167	}
 
168
169	ret = __generic_file_write_iter(iocb, from);
170	inode_unlock(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
172	if (ret > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173		ssize_t err;
 
 
 
 
 
 
 
 
174
175		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 
176		if (err < 0)
177			ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178	}
179	if (o_direct)
180		blk_finish_plug(&plug);
181
182	return ret;
 
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184out:
185	inode_unlock(inode);
 
 
186	return ret;
187}
 
188
189#ifdef CONFIG_FS_DAX
190static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
191{
192	int result;
193	handle_t *handle = NULL;
194	struct inode *inode = file_inode(vma->vm_file);
195	struct super_block *sb = inode->i_sb;
196	bool write = vmf->flags & FAULT_FLAG_WRITE;
197
198	if (write) {
199		sb_start_pagefault(sb);
200		file_update_time(vma->vm_file);
201		down_read(&EXT4_I(inode)->i_mmap_sem);
202		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203						EXT4_DATA_TRANS_BLOCKS(sb));
204	} else
205		down_read(&EXT4_I(inode)->i_mmap_sem);
206
207	if (IS_ERR(handle))
208		result = VM_FAULT_SIGBUS;
209	else
210		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211
212	if (write) {
213		if (!IS_ERR(handle))
214			ext4_journal_stop(handle);
215		up_read(&EXT4_I(inode)->i_mmap_sem);
216		sb_end_pagefault(sb);
217	} else
218		up_read(&EXT4_I(inode)->i_mmap_sem);
219
220	return result;
 
 
 
 
 
 
 
 
221}
222
223static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224						pmd_t *pmd, unsigned int flags)
225{
226	int result;
 
 
227	handle_t *handle = NULL;
228	struct inode *inode = file_inode(vma->vm_file);
229	struct super_block *sb = inode->i_sb;
230	bool write = flags & FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
232	if (write) {
233		sb_start_pagefault(sb);
234		file_update_time(vma->vm_file);
235		down_read(&EXT4_I(inode)->i_mmap_sem);
 
236		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237				ext4_chunk_trans_blocks(inode,
238							PMD_SIZE / PAGE_SIZE));
239	} else
240		down_read(&EXT4_I(inode)->i_mmap_sem);
241
242	if (IS_ERR(handle))
243		result = VM_FAULT_SIGBUS;
244	else
245		result = __dax_pmd_fault(vma, addr, pmd, flags,
246				ext4_dax_mmap_get_block, NULL);
247
248	if (write) {
249		if (!IS_ERR(handle))
250			ext4_journal_stop(handle);
251		up_read(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
 
252		sb_end_pagefault(sb);
253	} else
254		up_read(&EXT4_I(inode)->i_mmap_sem);
 
255
256	return result;
257}
258
259/*
260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261 * handler we check for races agaist truncate. Note that since we cycle through
262 * i_mmap_sem, we are sure that also any hole punching that began before we
263 * were called is finished by now and so if it included part of the file we
264 * are working on, our pte will get unmapped and the check for pte_same() in
265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266 * desired.
267 */
268static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269				struct vm_fault *vmf)
270{
271	struct inode *inode = file_inode(vma->vm_file);
272	struct super_block *sb = inode->i_sb;
273	loff_t size;
274	int ret;
275
276	sb_start_pagefault(sb);
277	file_update_time(vma->vm_file);
278	down_read(&EXT4_I(inode)->i_mmap_sem);
279	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280	if (vmf->pgoff >= size)
281		ret = VM_FAULT_SIGBUS;
282	else
283		ret = dax_pfn_mkwrite(vma, vmf);
284	up_read(&EXT4_I(inode)->i_mmap_sem);
285	sb_end_pagefault(sb);
286
287	return ret;
288}
289
290static const struct vm_operations_struct ext4_dax_vm_ops = {
291	.fault		= ext4_dax_fault,
292	.pmd_fault	= ext4_dax_pmd_fault,
293	.page_mkwrite	= ext4_dax_fault,
294	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
295};
296#else
297#define ext4_dax_vm_ops	ext4_file_vm_ops
298#endif
299
300static const struct vm_operations_struct ext4_file_vm_ops = {
301	.fault		= ext4_filemap_fault,
302	.map_pages	= filemap_map_pages,
303	.page_mkwrite   = ext4_page_mkwrite,
304};
305
306static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307{
308	struct inode *inode = file->f_mapping->host;
 
 
 
 
 
 
 
 
 
 
 
309
310	if (ext4_encrypted_inode(inode)) {
311		int err = ext4_get_encryption_info(inode);
312		if (err)
313			return 0;
314		if (ext4_encryption_info(inode) == NULL)
315			return -ENOKEY;
316	}
317	file_accessed(file);
318	if (IS_DAX(file_inode(file))) {
319		vma->vm_ops = &ext4_dax_vm_ops;
320		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321	} else {
322		vma->vm_ops = &ext4_file_vm_ops;
323	}
324	return 0;
325}
326
327static int ext4_file_open(struct inode * inode, struct file * filp)
 
328{
329	struct super_block *sb = inode->i_sb;
330	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331	struct vfsmount *mnt = filp->f_path.mnt;
332	struct dentry *dir;
333	struct path path;
334	char buf[64], *cp;
335	int ret;
 
336
337	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338		     !(sb->s_flags & MS_RDONLY))) {
339		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340		/*
341		 * Sample where the filesystem has been mounted and
342		 * store it in the superblock for sysadmin convenience
343		 * when trying to sort through large numbers of block
344		 * devices or filesystem images.
345		 */
346		memset(buf, 0, sizeof(buf));
347		path.mnt = mnt;
348		path.dentry = mnt->mnt_root;
349		cp = d_path(&path, buf, sizeof(buf));
350		if (!IS_ERR(cp)) {
351			handle_t *handle;
352			int err;
353
354			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355			if (IS_ERR(handle))
356				return PTR_ERR(handle);
357			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359			if (err) {
360				ext4_journal_stop(handle);
361				return err;
362			}
363			strlcpy(sbi->s_es->s_last_mounted, cp,
364				sizeof(sbi->s_es->s_last_mounted));
365			ext4_handle_dirty_super(handle, sb);
366			ext4_journal_stop(handle);
367		}
368	}
369	if (ext4_encrypted_inode(inode)) {
370		ret = ext4_get_encryption_info(inode);
371		if (ret)
372			return -EACCES;
373		if (ext4_encryption_info(inode) == NULL)
374			return -ENOKEY;
375	}
376
377	dir = dget_parent(file_dentry(filp));
378	if (ext4_encrypted_inode(d_inode(dir)) &&
379	    !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
380		ext4_warning(inode->i_sb,
381			     "Inconsistent encryption contexts: %lu/%lu\n",
382			     (unsigned long) d_inode(dir)->i_ino,
383			     (unsigned long) inode->i_ino);
384		dput(dir);
385		return -EPERM;
386	}
387	dput(dir);
388	/*
389	 * Set up the jbd2_inode if we are opening the inode for
390	 * writing and the journal is present
 
 
391	 */
392	if (filp->f_mode & FMODE_WRITE) {
393		ret = ext4_inode_attach_jinode(inode);
394		if (ret < 0)
395			return ret;
396	}
397	return dquot_file_open(inode, filp);
398}
399
400/*
401 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
402 * file rather than ext4_ext_walk_space() because we can introduce
403 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
404 * function.  When extent status tree has been fully implemented, it will
405 * track all extent status for a file and we can directly use it to
406 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
407 */
408
409/*
410 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
411 * lookup page cache to check whether or not there has some data between
412 * [startoff, endoff] because, if this range contains an unwritten extent,
413 * we determine this extent as a data or a hole according to whether the
414 * page cache has data or not.
415 */
416static int ext4_find_unwritten_pgoff(struct inode *inode,
417				     int whence,
418				     ext4_lblk_t end_blk,
419				     loff_t *offset)
420{
421	struct pagevec pvec;
422	unsigned int blkbits;
423	pgoff_t index;
424	pgoff_t end;
425	loff_t endoff;
426	loff_t startoff;
427	loff_t lastoff;
428	int found = 0;
429
430	blkbits = inode->i_sb->s_blocksize_bits;
431	startoff = *offset;
432	lastoff = startoff;
433	endoff = (loff_t)end_blk << blkbits;
434
435	index = startoff >> PAGE_SHIFT;
436	end = endoff >> PAGE_SHIFT;
437
438	pagevec_init(&pvec, 0);
439	do {
440		int i, num;
441		unsigned long nr_pages;
442
443		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
444		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
445					  (pgoff_t)num);
446		if (nr_pages == 0) {
447			if (whence == SEEK_DATA)
448				break;
449
450			BUG_ON(whence != SEEK_HOLE);
451			/*
452			 * If this is the first time to go into the loop and
453			 * offset is not beyond the end offset, it will be a
454			 * hole at this offset
455			 */
456			if (lastoff == startoff || lastoff < endoff)
457				found = 1;
458			break;
459		}
460
461		/*
462		 * If this is the first time to go into the loop and
463		 * offset is smaller than the first page offset, it will be a
464		 * hole at this offset.
465		 */
466		if (lastoff == startoff && whence == SEEK_HOLE &&
467		    lastoff < page_offset(pvec.pages[0])) {
468			found = 1;
469			break;
470		}
471
472		for (i = 0; i < nr_pages; i++) {
473			struct page *page = pvec.pages[i];
474			struct buffer_head *bh, *head;
475
476			/*
477			 * If the current offset is not beyond the end of given
478			 * range, it will be a hole.
479			 */
480			if (lastoff < endoff && whence == SEEK_HOLE &&
481			    page->index > end) {
482				found = 1;
483				*offset = lastoff;
484				goto out;
485			}
486
487			lock_page(page);
488
489			if (unlikely(page->mapping != inode->i_mapping)) {
490				unlock_page(page);
491				continue;
492			}
493
494			if (!page_has_buffers(page)) {
495				unlock_page(page);
496				continue;
497			}
498
499			if (page_has_buffers(page)) {
500				lastoff = page_offset(page);
501				bh = head = page_buffers(page);
502				do {
503					if (buffer_uptodate(bh) ||
504					    buffer_unwritten(bh)) {
505						if (whence == SEEK_DATA)
506							found = 1;
507					} else {
508						if (whence == SEEK_HOLE)
509							found = 1;
510					}
511					if (found) {
512						*offset = max_t(loff_t,
513							startoff, lastoff);
514						unlock_page(page);
515						goto out;
516					}
517					lastoff += bh->b_size;
518					bh = bh->b_this_page;
519				} while (bh != head);
520			}
521
522			lastoff = page_offset(page) + PAGE_SIZE;
523			unlock_page(page);
524		}
525
526		/*
527		 * The no. of pages is less than our desired, that would be a
528		 * hole in there.
529		 */
530		if (nr_pages < num && whence == SEEK_HOLE) {
531			found = 1;
532			*offset = lastoff;
533			break;
534		}
535
536		index = pvec.pages[i - 1]->index + 1;
537		pagevec_release(&pvec);
538	} while (index <= end);
539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540out:
541	pagevec_release(&pvec);
542	return found;
543}
544
545/*
546 * ext4_seek_data() retrieves the offset for SEEK_DATA.
547 */
548static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
549{
550	struct inode *inode = file->f_mapping->host;
551	struct extent_status es;
552	ext4_lblk_t start, last, end;
553	loff_t dataoff, isize;
554	int blkbits;
555	int ret;
556
557	inode_lock(inode);
 
558
559	isize = i_size_read(inode);
560	if (offset >= isize) {
561		inode_unlock(inode);
562		return -ENXIO;
563	}
 
 
 
 
 
 
564
565	blkbits = inode->i_sb->s_blocksize_bits;
566	start = offset >> blkbits;
567	last = start;
568	end = isize >> blkbits;
569	dataoff = offset;
570
571	do {
572		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
573		if (ret <= 0) {
574			/* No extent found -> no data */
575			if (ret == 0)
576				ret = -ENXIO;
577			inode_unlock(inode);
578			return ret;
579		}
580
581		last = es.es_lblk;
582		if (last != start)
583			dataoff = (loff_t)last << blkbits;
584		if (!ext4_es_is_unwritten(&es))
585			break;
586
587		/*
588		 * If there is a unwritten extent at this offset,
589		 * it will be as a data or a hole according to page
590		 * cache that has data or not.
591		 */
592		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
593					      es.es_lblk + es.es_len, &dataoff))
594			break;
595		last += es.es_len;
596		dataoff = (loff_t)last << blkbits;
597		cond_resched();
598	} while (last <= end);
599
600	inode_unlock(inode);
601
602	if (dataoff > isize)
603		return -ENXIO;
604
605	return vfs_setpos(file, dataoff, maxsize);
606}
607
608/*
609 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
610 */
611static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
612{
613	struct inode *inode = file->f_mapping->host;
614	struct extent_status es;
615	ext4_lblk_t start, last, end;
616	loff_t holeoff, isize;
617	int blkbits;
618	int ret;
619
620	inode_lock(inode);
621
622	isize = i_size_read(inode);
623	if (offset >= isize) {
624		inode_unlock(inode);
625		return -ENXIO;
626	}
627
628	blkbits = inode->i_sb->s_blocksize_bits;
629	start = offset >> blkbits;
630	last = start;
631	end = isize >> blkbits;
632	holeoff = offset;
633
634	do {
635		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
636		if (ret < 0) {
637			inode_unlock(inode);
638			return ret;
639		}
640		/* Found a hole? */
641		if (ret == 0 || es.es_lblk > last) {
642			if (last != start)
643				holeoff = (loff_t)last << blkbits;
644			break;
645		}
646		/*
647		 * If there is a unwritten extent at this offset,
648		 * it will be as a data or a hole according to page
649		 * cache that has data or not.
650		 */
651		if (ext4_es_is_unwritten(&es) &&
652		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
653					      last + es.es_len, &holeoff))
654			break;
655
656		last += es.es_len;
657		holeoff = (loff_t)last << blkbits;
658		cond_resched();
659	} while (last <= end);
660
661	inode_unlock(inode);
662
663	if (holeoff > isize)
664		holeoff = isize;
665
666	return vfs_setpos(file, holeoff, maxsize);
667}
668
669/*
670 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
671 * by calling generic_file_llseek_size() with the appropriate maxbytes
672 * value for each.
673 */
674loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
675{
676	struct inode *inode = file->f_mapping->host;
677	loff_t maxbytes;
678
679	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
680		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
681	else
682		maxbytes = inode->i_sb->s_maxbytes;
683
684	switch (whence) {
685	case SEEK_SET:
686	case SEEK_CUR:
687	case SEEK_END:
688		return generic_file_llseek_size(file, offset, whence,
689						maxbytes, i_size_read(inode));
690	case SEEK_DATA:
691		return ext4_seek_data(file, offset, maxbytes);
692	case SEEK_HOLE:
693		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
 
 
694	}
695
696	return -EINVAL;
 
 
697}
698
699const struct file_operations ext4_file_operations = {
700	.llseek		= ext4_llseek,
701	.read_iter	= generic_file_read_iter,
702	.write_iter	= ext4_file_write_iter,
 
703	.unlocked_ioctl = ext4_ioctl,
704#ifdef CONFIG_COMPAT
705	.compat_ioctl	= ext4_compat_ioctl,
706#endif
707	.mmap		= ext4_file_mmap,
708	.open		= ext4_file_open,
709	.release	= ext4_release_file,
710	.fsync		= ext4_sync_file,
711	.splice_read	= generic_file_splice_read,
 
712	.splice_write	= iter_file_splice_write,
713	.fallocate	= ext4_fallocate,
 
 
714};
715
716const struct inode_operations ext4_file_inode_operations = {
717	.setattr	= ext4_setattr,
718	.getattr	= ext4_getattr,
719	.setxattr	= generic_setxattr,
720	.getxattr	= generic_getxattr,
721	.listxattr	= ext4_listxattr,
722	.removexattr	= generic_removexattr,
723	.get_acl	= ext4_get_acl,
724	.set_acl	= ext4_set_acl,
725	.fiemap		= ext4_fiemap,
 
 
726};
727
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include <linux/backing-dev.h>
 33#include "ext4.h"
 34#include "ext4_jbd2.h"
 35#include "xattr.h"
 36#include "acl.h"
 37#include "truncate.h"
 38
 39/*
 40 * Returns %true if the given DIO request should be attempted with DIO, or
 41 * %false if it should fall back to buffered I/O.
 42 *
 43 * DIO isn't well specified; when it's unsupported (either due to the request
 44 * being misaligned, or due to the file not supporting DIO at all), filesystems
 45 * either fall back to buffered I/O or return EINVAL.  For files that don't use
 46 * any special features like encryption or verity, ext4 has traditionally
 47 * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
 48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
 49 *
 50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
 51 * traditionally falls back to buffered I/O.
 52 *
 53 * This function implements the traditional ext4 behavior in all these cases.
 54 */
 55static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
 56{
 57	struct inode *inode = file_inode(iocb->ki_filp);
 58	u32 dio_align = ext4_dio_alignment(inode);
 59
 60	if (dio_align == 0)
 61		return false;
 62
 63	if (dio_align == 1)
 64		return true;
 65
 66	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
 67}
 68
 69static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 70{
 71	ssize_t ret;
 72	struct inode *inode = file_inode(iocb->ki_filp);
 73
 74	if (iocb->ki_flags & IOCB_NOWAIT) {
 75		if (!inode_trylock_shared(inode))
 76			return -EAGAIN;
 77	} else {
 78		inode_lock_shared(inode);
 79	}
 80
 81	if (!ext4_should_use_dio(iocb, to)) {
 82		inode_unlock_shared(inode);
 83		/*
 84		 * Fallback to buffered I/O if the operation being performed on
 85		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 86		 * flag needs to be cleared here in order to ensure that the
 87		 * direct I/O path within generic_file_read_iter() is not
 88		 * taken.
 89		 */
 90		iocb->ki_flags &= ~IOCB_DIRECT;
 91		return generic_file_read_iter(iocb, to);
 92	}
 93
 94	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
 95	inode_unlock_shared(inode);
 96
 97	file_accessed(iocb->ki_filp);
 98	return ret;
 99}
100
101#ifdef CONFIG_FS_DAX
102static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103{
104	struct inode *inode = file_inode(iocb->ki_filp);
105	ssize_t ret;
106
107	if (iocb->ki_flags & IOCB_NOWAIT) {
108		if (!inode_trylock_shared(inode))
109			return -EAGAIN;
110	} else {
111		inode_lock_shared(inode);
112	}
113	/*
114	 * Recheck under inode lock - at this point we are sure it cannot
115	 * change anymore
116	 */
117	if (!IS_DAX(inode)) {
118		inode_unlock_shared(inode);
119		/* Fallback to buffered IO in case we cannot support DAX */
120		return generic_file_read_iter(iocb, to);
121	}
122	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123	inode_unlock_shared(inode);
124
125	file_accessed(iocb->ki_filp);
126	return ret;
127}
128#endif
129
130static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131{
132	struct inode *inode = file_inode(iocb->ki_filp);
133
134	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135		return -EIO;
136
137	if (!iov_iter_count(to))
138		return 0; /* skip atime */
139
140#ifdef CONFIG_FS_DAX
141	if (IS_DAX(inode))
142		return ext4_dax_read_iter(iocb, to);
143#endif
144	if (iocb->ki_flags & IOCB_DIRECT)
145		return ext4_dio_read_iter(iocb, to);
146
147	return generic_file_read_iter(iocb, to);
148}
149
150static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151				     struct pipe_inode_info *pipe,
152				     size_t len, unsigned int flags)
153{
154	struct inode *inode = file_inode(in);
155
156	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157		return -EIO;
158	return filemap_splice_read(in, ppos, pipe, len, flags);
159}
160
161/*
162 * Called when an inode is released. Note that this is different
163 * from ext4_file_open: open gets called at every open, but release
164 * gets called only when /all/ the files are closed.
165 */
166static int ext4_release_file(struct inode *inode, struct file *filp)
167{
168	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169		ext4_alloc_da_blocks(inode);
170		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171	}
172	/* if we are the last writer on the inode, drop the block reservation */
173	if ((filp->f_mode & FMODE_WRITE) &&
174			(atomic_read(&inode->i_writecount) == 1) &&
175			!EXT4_I(inode)->i_reserved_data_blocks) {
 
176		down_write(&EXT4_I(inode)->i_data_sem);
177		ext4_discard_preallocations(inode);
178		up_write(&EXT4_I(inode)->i_data_sem);
179	}
180	if (is_dx(inode) && filp->private_data)
181		ext4_htree_free_dir_info(filp->private_data);
182
183	return 0;
184}
185
 
 
 
 
 
 
 
186/*
187 * This tests whether the IO in question is block-aligned or not.
188 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189 * are converted to written only after the IO is complete.  Until they are
190 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191 * it needs to zero out portions of the start and/or end block.  If 2 AIO
192 * threads are at work on the same unwritten block, they must be synchronized
193 * or one thread will zero the other's data, causing corruption.
194 */
195static bool
196ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197{
198	struct super_block *sb = inode->i_sb;
199	unsigned long blockmask = sb->s_blocksize - 1;
 
 
 
200
201	if ((pos | iov_iter_alignment(from)) & blockmask)
202		return true;
203
204	return false;
205}
206
207static bool
208ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209{
210	if (offset + len > i_size_read(inode) ||
211	    offset + len > EXT4_I(inode)->i_disksize)
212		return true;
213	return false;
214}
215
216/* Is IO overwriting allocated or initialized blocks? */
217static bool ext4_overwrite_io(struct inode *inode,
218			      loff_t pos, loff_t len, bool *unwritten)
219{
220	struct ext4_map_blocks map;
221	unsigned int blkbits = inode->i_blkbits;
222	int err, blklen;
223
224	if (pos + len > i_size_read(inode))
225		return false;
226
227	map.m_lblk = pos >> blkbits;
228	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229	blklen = map.m_len;
230
231	err = ext4_map_blocks(NULL, inode, &map, 0);
232	if (err != blklen)
233		return false;
234	/*
235	 * 'err==len' means that all of the blocks have been preallocated,
236	 * regardless of whether they have been initialized or not. We need to
237	 * check m_flags to distinguish the unwritten extents.
238	 */
239	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240	return true;
241}
242
243static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244					 struct iov_iter *from)
245{
 
246	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
 
247	ssize_t ret;
248
249	if (unlikely(IS_IMMUTABLE(inode)))
250		return -EPERM;
251
252	ret = generic_write_checks(iocb, from);
253	if (ret <= 0)
254		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
255
256	/*
257	 * If we have encountered a bitmap-format file, the size limit
258	 * is smaller than s_maxbytes, which is for extent-mapped files.
259	 */
260	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264			return -EFBIG;
 
 
265		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266	}
267
268	return iov_iter_count(from);
269}
270
271static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272{
273	ssize_t ret, count;
274
275	count = ext4_generic_write_checks(iocb, from);
276	if (count <= 0)
277		return count;
278
279	ret = file_modified(iocb->ki_filp);
280	if (ret)
281		return ret;
282	return count;
283}
284
285static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286					struct iov_iter *from)
287{
288	ssize_t ret;
289	struct inode *inode = file_inode(iocb->ki_filp);
290
291	if (iocb->ki_flags & IOCB_NOWAIT)
292		return -EOPNOTSUPP;
293
294	inode_lock(inode);
295	ret = ext4_write_checks(iocb, from);
296	if (ret <= 0)
297		goto out;
298
299	ret = generic_perform_write(iocb, from);
300
301out:
302	inode_unlock(inode);
303	if (unlikely(ret <= 0))
304		return ret;
305	return generic_write_sync(iocb, ret);
306}
307
308static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309					   ssize_t written, ssize_t count)
310{
311	handle_t *handle;
312
313	lockdep_assert_held_write(&inode->i_rwsem);
314	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315	if (IS_ERR(handle))
316		return PTR_ERR(handle);
317
318	if (ext4_update_inode_size(inode, offset + written)) {
319		int ret = ext4_mark_inode_dirty(handle, inode);
320		if (unlikely(ret)) {
321			ext4_journal_stop(handle);
322			return ret;
323		}
324	}
325
326	if ((written == count) && inode->i_nlink)
327		ext4_orphan_del(handle, inode);
328	ext4_journal_stop(handle);
329
330	return written;
331}
332
333/*
334 * Clean up the inode after DIO or DAX extending write has completed and the
335 * inode size has been updated using ext4_handle_inode_extension().
336 */
337static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
338{
339	lockdep_assert_held_write(&inode->i_rwsem);
340	if (need_trunc) {
341		ext4_truncate_failed_write(inode);
342		/*
343		 * If the truncate operation failed early, then the inode may
344		 * still be on the orphan list. In that case, we need to try
345		 * remove the inode from the in-memory linked list.
346		 */
347		if (inode->i_nlink)
348			ext4_orphan_del(NULL, inode);
349		return;
350	}
351	/*
352	 * If i_disksize got extended either due to writeback of delalloc
353	 * blocks or extending truncate while the DIO was running we could fail
354	 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
355	 * now.
356	 */
357	if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
358		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
359
360		if (IS_ERR(handle)) {
361			/*
362			 * The write has successfully completed. Not much to
363			 * do with the error here so just cleanup the orphan
364			 * list and hope for the best.
 
 
 
 
 
 
 
365			 */
366			ext4_orphan_del(NULL, inode);
367			return;
368		}
369		ext4_orphan_del(handle, inode);
370		ext4_journal_stop(handle);
371	}
372}
373
374static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
375				 int error, unsigned int flags)
376{
377	loff_t pos = iocb->ki_pos;
378	struct inode *inode = file_inode(iocb->ki_filp);
379
380	if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
381		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382	if (error)
383		return error;
384	/*
385	 * Note that EXT4_I(inode)->i_disksize can get extended up to
386	 * inode->i_size while the I/O was running due to writeback of delalloc
387	 * blocks. But the code in ext4_iomap_alloc() is careful to use
388	 * zeroed/unwritten extents if this is possible; thus we won't leave
389	 * uninitialized blocks in a file even if we didn't succeed in writing
390	 * as much as we intended. Also we can race with truncate or write
391	 * expanding the file so we have to be a bit careful here.
392	 */
393	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
394	    pos + size <= i_size_read(inode))
395		return 0;
396	error = ext4_handle_inode_extension(inode, pos, size, size);
397	return error < 0 ? error : 0;
398}
399
400static const struct iomap_dio_ops ext4_dio_write_ops = {
401	.end_io = ext4_dio_write_end_io,
402};
403
404/*
405 * The intention here is to start with shared lock acquired then see if any
406 * condition requires an exclusive inode lock. If yes, then we restart the
407 * whole operation by releasing the shared lock and acquiring exclusive lock.
408 *
409 * - For unaligned_io we never take shared lock as it may cause data corruption
410 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
411 *
412 * - For extending writes case we don't take the shared lock, since it requires
413 *   updating inode i_disksize and/or orphan handling with exclusive lock.
414 *
415 * - shared locking will only be true mostly with overwrites, including
416 *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
417 *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
418 *   also release exclusive i_rwsem lock.
419 *
420 * - Otherwise we will switch to exclusive i_rwsem lock.
421 */
422static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
423				     bool *ilock_shared, bool *extend,
424				     bool *unwritten, int *dio_flags)
425{
426	struct file *file = iocb->ki_filp;
427	struct inode *inode = file_inode(file);
428	loff_t offset;
429	size_t count;
430	ssize_t ret;
431	bool overwrite, unaligned_io;
432
433restart:
434	ret = ext4_generic_write_checks(iocb, from);
435	if (ret <= 0)
436		goto out;
437
438	offset = iocb->ki_pos;
439	count = ret;
440
441	unaligned_io = ext4_unaligned_io(inode, from, offset);
442	*extend = ext4_extending_io(inode, offset, count);
443	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
444
445	/*
446	 * Determine whether we need to upgrade to an exclusive lock. This is
447	 * required to change security info in file_modified(), for extending
448	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
449	 * extents (as partial block zeroing may be required).
450	 *
451	 * Note that unaligned writes are allowed under shared lock so long as
452	 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
453	 * data corruption due to partial block zeroing in the dio layer, and so
454	 * the I/O must occur exclusively.
455	 */
456	if (*ilock_shared &&
457	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
458	     (unaligned_io && *unwritten)))) {
459		if (iocb->ki_flags & IOCB_NOWAIT) {
460			ret = -EAGAIN;
461			goto out;
462		}
463		inode_unlock_shared(inode);
464		*ilock_shared = false;
465		inode_lock(inode);
466		goto restart;
467	}
468
469	/*
470	 * Now that locking is settled, determine dio flags and exclusivity
471	 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
472	 * behavior already. The inode lock is already held exclusive if the
473	 * write is non-overwrite or extending, so drain all outstanding dio and
474	 * set the force wait dio flag.
475	 */
476	if (!*ilock_shared && (unaligned_io || *extend)) {
477		if (iocb->ki_flags & IOCB_NOWAIT) {
478			ret = -EAGAIN;
479			goto out;
480		}
481		if (unaligned_io && (!overwrite || *unwritten))
482			inode_dio_wait(inode);
483		*dio_flags = IOMAP_DIO_FORCE_WAIT;
484	}
485
486	ret = file_modified(file);
487	if (ret < 0)
488		goto out;
489
490	return count;
491out:
492	if (*ilock_shared)
493		inode_unlock_shared(inode);
494	else
495		inode_unlock(inode);
496	return ret;
497}
498
499static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
500{
501	ssize_t ret;
502	handle_t *handle;
503	struct inode *inode = file_inode(iocb->ki_filp);
504	loff_t offset = iocb->ki_pos;
505	size_t count = iov_iter_count(from);
506	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
507	bool extend = false, unwritten = false;
508	bool ilock_shared = true;
509	int dio_flags = 0;
510
511	/*
512	 * Quick check here without any i_rwsem lock to see if it is extending
513	 * IO. A more reliable check is done in ext4_dio_write_checks() with
514	 * proper locking in place.
515	 */
516	if (offset + count > i_size_read(inode))
517		ilock_shared = false;
518
519	if (iocb->ki_flags & IOCB_NOWAIT) {
520		if (ilock_shared) {
521			if (!inode_trylock_shared(inode))
522				return -EAGAIN;
523		} else {
524			if (!inode_trylock(inode))
525				return -EAGAIN;
526		}
527	} else {
528		if (ilock_shared)
529			inode_lock_shared(inode);
530		else
531			inode_lock(inode);
532	}
533
534	/* Fallback to buffered I/O if the inode does not support direct I/O. */
535	if (!ext4_should_use_dio(iocb, from)) {
536		if (ilock_shared)
537			inode_unlock_shared(inode);
538		else
539			inode_unlock(inode);
540		return ext4_buffered_write_iter(iocb, from);
541	}
542
543	/*
544	 * Prevent inline data from being created since we are going to allocate
545	 * blocks for DIO. We know the inode does not currently have inline data
546	 * because ext4_should_use_dio() checked for it, but we have to clear
547	 * the state flag before the write checks because a lock cycle could
548	 * introduce races with other writers.
549	 */
550	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
551
552	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
553				    &unwritten, &dio_flags);
554	if (ret <= 0)
555		return ret;
556
557	offset = iocb->ki_pos;
558	count = ret;
559
560	if (extend) {
561		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
562		if (IS_ERR(handle)) {
563			ret = PTR_ERR(handle);
564			goto out;
565		}
566
567		ret = ext4_orphan_add(handle, inode);
568		ext4_journal_stop(handle);
569		if (ret)
570			goto out;
571	}
572
573	if (ilock_shared && !unwritten)
574		iomap_ops = &ext4_iomap_overwrite_ops;
575	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
576			   dio_flags, NULL, 0);
577	if (ret == -ENOTBLK)
578		ret = 0;
579	if (extend) {
580		/*
581		 * We always perform extending DIO write synchronously so by
582		 * now the IO is completed and ext4_handle_inode_extension()
583		 * was called. Cleanup the inode in case of error or race with
584		 * writeback of delalloc blocks.
585		 */
586		WARN_ON_ONCE(ret == -EIOCBQUEUED);
587		ext4_inode_extension_cleanup(inode, ret < 0);
588	}
589
590out:
591	if (ilock_shared)
592		inode_unlock_shared(inode);
593	else
594		inode_unlock(inode);
595
596	if (ret >= 0 && iov_iter_count(from)) {
597		ssize_t err;
598		loff_t endbyte;
599
600		/*
601		 * There is no support for atomic writes on buffered-io yet,
602		 * we should never fallback to buffered-io for DIO atomic
603		 * writes.
604		 */
605		WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC);
606
607		offset = iocb->ki_pos;
608		err = ext4_buffered_write_iter(iocb, from);
609		if (err < 0)
610			return err;
611
612		/*
613		 * We need to ensure that the pages within the page cache for
614		 * the range covered by this I/O are written to disk and
615		 * invalidated. This is in attempt to preserve the expected
616		 * direct I/O semantics in the case we fallback to buffered I/O
617		 * to complete off the I/O request.
618		 */
619		ret += err;
620		endbyte = offset + err - 1;
621		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
622						   offset, endbyte);
623		if (!err)
624			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
625						 offset >> PAGE_SHIFT,
626						 endbyte >> PAGE_SHIFT);
627	}
 
 
628
629	return ret;
630}
631
632#ifdef CONFIG_FS_DAX
633static ssize_t
634ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
635{
636	ssize_t ret;
637	size_t count;
638	loff_t offset;
639	handle_t *handle;
640	bool extend = false;
641	struct inode *inode = file_inode(iocb->ki_filp);
642
643	if (iocb->ki_flags & IOCB_NOWAIT) {
644		if (!inode_trylock(inode))
645			return -EAGAIN;
646	} else {
647		inode_lock(inode);
648	}
649
650	ret = ext4_write_checks(iocb, from);
651	if (ret <= 0)
652		goto out;
653
654	offset = iocb->ki_pos;
655	count = iov_iter_count(from);
656
657	if (offset + count > EXT4_I(inode)->i_disksize) {
658		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
659		if (IS_ERR(handle)) {
660			ret = PTR_ERR(handle);
661			goto out;
662		}
663
664		ret = ext4_orphan_add(handle, inode);
665		if (ret) {
666			ext4_journal_stop(handle);
667			goto out;
668		}
669
670		extend = true;
671		ext4_journal_stop(handle);
672	}
673
674	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
675
676	if (extend) {
677		ret = ext4_handle_inode_extension(inode, offset, ret, count);
678		ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
679	}
680out:
681	inode_unlock(inode);
682	if (ret > 0)
683		ret = generic_write_sync(iocb, ret);
684	return ret;
685}
686#endif
687
688static ssize_t
689ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
690{
691	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
 
692
693	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
694		return -EIO;
 
 
 
 
 
 
695
696#ifdef CONFIG_FS_DAX
697	if (IS_DAX(inode))
698		return ext4_dax_write_iter(iocb, from);
699#endif
700
701	if (iocb->ki_flags & IOCB_ATOMIC) {
702		size_t len = iov_iter_count(from);
703		int ret;
704
705		if (len < EXT4_SB(inode->i_sb)->s_awu_min ||
706		    len > EXT4_SB(inode->i_sb)->s_awu_max)
707			return -EINVAL;
708
709		ret = generic_atomic_write_valid(iocb, from);
710		if (ret)
711			return ret;
712	}
713
714	if (iocb->ki_flags & IOCB_DIRECT)
715		return ext4_dio_write_iter(iocb, from);
716	else
717		return ext4_buffered_write_iter(iocb, from);
718}
719
720#ifdef CONFIG_FS_DAX
721static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722{
723	int error = 0;
724	vm_fault_t result;
725	int retries = 0;
726	handle_t *handle = NULL;
727	struct inode *inode = file_inode(vmf->vma->vm_file);
728	struct super_block *sb = inode->i_sb;
729
730	/*
731	 * We have to distinguish real writes from writes which will result in a
732	 * COW page; COW writes should *not* poke the journal (the file will not
733	 * be changed). Doing so would cause unintended failures when mounted
734	 * read-only.
735	 *
736	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
737	 * unset for order != 0 (i.e. only in do_cow_fault); for
738	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
739	 * we eventually come back with a COW page.
740	 */
741	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742		(vmf->vma->vm_flags & VM_SHARED);
743	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744	pfn_t pfn;
745
746	if (write) {
747		sb_start_pagefault(sb);
748		file_update_time(vmf->vma->vm_file);
749		filemap_invalidate_lock_shared(mapping);
750retry:
751		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752					       EXT4_DATA_TRANS_BLOCKS(sb));
753		if (IS_ERR(handle)) {
754			filemap_invalidate_unlock_shared(mapping);
755			sb_end_pagefault(sb);
756			return VM_FAULT_SIGBUS;
757		}
758	} else {
759		filemap_invalidate_lock_shared(mapping);
760	}
761	result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
 
762	if (write) {
763		ext4_journal_stop(handle);
764
765		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766		    ext4_should_retry_alloc(sb, &retries))
767			goto retry;
768		/* Handling synchronous page fault? */
769		if (result & VM_FAULT_NEEDDSYNC)
770			result = dax_finish_sync_fault(vmf, order, pfn);
771		filemap_invalidate_unlock_shared(mapping);
772		sb_end_pagefault(sb);
773	} else {
774		filemap_invalidate_unlock_shared(mapping);
775	}
776
777	return result;
778}
779
780static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
781{
782	return ext4_dax_huge_fault(vmf, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783}
784
785static const struct vm_operations_struct ext4_dax_vm_ops = {
786	.fault		= ext4_dax_fault,
787	.huge_fault	= ext4_dax_huge_fault,
788	.page_mkwrite	= ext4_dax_fault,
789	.pfn_mkwrite	= ext4_dax_fault,
790};
791#else
792#define ext4_dax_vm_ops	ext4_file_vm_ops
793#endif
794
795static const struct vm_operations_struct ext4_file_vm_ops = {
796	.fault		= filemap_fault,
797	.map_pages	= filemap_map_pages,
798	.page_mkwrite   = ext4_page_mkwrite,
799};
800
801static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802{
803	struct inode *inode = file->f_mapping->host;
804	struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805
806	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807		return -EIO;
808
809	/*
810	 * We don't support synchronous mappings for non-DAX files and
811	 * for DAX files if underneath dax_device is not synchronous.
812	 */
813	if (!daxdev_mapping_supported(vma, dax_dev))
814		return -EOPNOTSUPP;
815
 
 
 
 
 
 
 
816	file_accessed(file);
817	if (IS_DAX(file_inode(file))) {
818		vma->vm_ops = &ext4_dax_vm_ops;
819		vm_flags_set(vma, VM_HUGEPAGE);
820	} else {
821		vma->vm_ops = &ext4_file_vm_ops;
822	}
823	return 0;
824}
825
826static int ext4_sample_last_mounted(struct super_block *sb,
827				    struct vfsmount *mnt)
828{
829	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
830	struct path path;
831	char buf[64], *cp;
832	handle_t *handle;
833	int err;
834
835	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837
838	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839		return 0;
840
841	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
 
 
 
 
 
 
 
842	/*
843	 * Sample where the filesystem has been mounted and
844	 * store it in the superblock for sysadmin convenience
845	 * when trying to sort through large numbers of block
846	 * devices or filesystem images.
847	 */
848	memset(buf, 0, sizeof(buf));
849	path.mnt = mnt;
850	path.dentry = mnt->mnt_root;
851	cp = d_path(&path, buf, sizeof(buf));
852	err = 0;
853	if (IS_ERR(cp))
854		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855
856	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857	err = PTR_ERR(handle);
858	if (IS_ERR(handle))
859		goto out;
860	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862					    EXT4_JTR_NONE);
863	if (err)
864		goto out_journal;
865	lock_buffer(sbi->s_sbh);
866	strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
867	ext4_superblock_csum_set(sb);
868	unlock_buffer(sbi->s_sbh);
869	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
870out_journal:
871	ext4_journal_stop(handle);
872out:
873	sb_end_intwrite(sb);
874	return err;
875}
876
877static int ext4_file_open(struct inode *inode, struct file *filp)
 
 
 
878{
 
 
 
 
 
879	int ret;
880
881	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
882		return -EIO;
883
884	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
885	if (ret)
886		return ret;
887
888	ret = fscrypt_file_open(inode, filp);
889	if (ret)
890		return ret;
891
892	ret = fsverity_file_open(inode, filp);
893	if (ret)
894		return ret;
895
896	/*
897	 * Set up the jbd2_inode if we are opening the inode for
898	 * writing and the journal is present
899	 */
900	if (filp->f_mode & FMODE_WRITE) {
901		ret = ext4_inode_attach_jinode(inode);
902		if (ret < 0)
 
 
 
 
 
 
903			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
904	}
905
906	if (ext4_inode_can_atomic_write(inode))
907		filp->f_mode |= FMODE_CAN_ATOMIC_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908
909	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
910	return dquot_file_open(inode, filp);
 
 
 
 
911}
912
913/*
914 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
915 * by calling generic_file_llseek_size() with the appropriate maxbytes
916 * value for each.
917 */
918loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
919{
920	struct inode *inode = file->f_mapping->host;
921	loff_t maxbytes;
922
923	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
924		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
925	else
926		maxbytes = inode->i_sb->s_maxbytes;
927
928	switch (whence) {
929	default:
 
 
930		return generic_file_llseek_size(file, offset, whence,
931						maxbytes, i_size_read(inode));
 
 
932	case SEEK_HOLE:
933		inode_lock_shared(inode);
934		offset = iomap_seek_hole(inode, offset,
935					 &ext4_iomap_report_ops);
936		inode_unlock_shared(inode);
937		break;
938	case SEEK_DATA:
939		inode_lock_shared(inode);
940		offset = iomap_seek_data(inode, offset,
941					 &ext4_iomap_report_ops);
942		inode_unlock_shared(inode);
943		break;
944	}
945
946	if (offset < 0)
947		return offset;
948	return vfs_setpos(file, offset, maxbytes);
949}
950
951const struct file_operations ext4_file_operations = {
952	.llseek		= ext4_llseek,
953	.read_iter	= ext4_file_read_iter,
954	.write_iter	= ext4_file_write_iter,
955	.iopoll		= iocb_bio_iopoll,
956	.unlocked_ioctl = ext4_ioctl,
957#ifdef CONFIG_COMPAT
958	.compat_ioctl	= ext4_compat_ioctl,
959#endif
960	.mmap		= ext4_file_mmap,
961	.open		= ext4_file_open,
962	.release	= ext4_release_file,
963	.fsync		= ext4_sync_file,
964	.get_unmapped_area = thp_get_unmapped_area,
965	.splice_read	= ext4_file_splice_read,
966	.splice_write	= iter_file_splice_write,
967	.fallocate	= ext4_fallocate,
968	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
969			  FOP_DIO_PARALLEL_WRITE,
970};
971
972const struct inode_operations ext4_file_inode_operations = {
973	.setattr	= ext4_setattr,
974	.getattr	= ext4_file_getattr,
 
 
975	.listxattr	= ext4_listxattr,
976	.get_inode_acl	= ext4_get_acl,
 
977	.set_acl	= ext4_set_acl,
978	.fiemap		= ext4_fiemap,
979	.fileattr_get	= ext4_fileattr_get,
980	.fileattr_set	= ext4_fileattr_set,
981};
982