Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34/*
 35 * Called when an inode is released. Note that this is different
 36 * from ext4_file_open: open gets called at every open, but release
 37 * gets called only when /all/ the files are closed.
 38 */
 39static int ext4_release_file(struct inode *inode, struct file *filp)
 40{
 41	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 42		ext4_alloc_da_blocks(inode);
 43		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 44	}
 45	/* if we are the last writer on the inode, drop the block reservation */
 46	if ((filp->f_mode & FMODE_WRITE) &&
 47			(atomic_read(&inode->i_writecount) == 1) &&
 48		        !EXT4_I(inode)->i_reserved_data_blocks)
 49	{
 50		down_write(&EXT4_I(inode)->i_data_sem);
 51		ext4_discard_preallocations(inode);
 52		up_write(&EXT4_I(inode)->i_data_sem);
 53	}
 54	if (is_dx(inode) && filp->private_data)
 55		ext4_htree_free_dir_info(filp->private_data);
 56
 57	return 0;
 58}
 59
 60static void ext4_unwritten_wait(struct inode *inode)
 61{
 62	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 63
 64	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
 65}
 66
 67/*
 68 * This tests whether the IO in question is block-aligned or not.
 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 70 * are converted to written only after the IO is complete.  Until they are
 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 73 * threads are at work on the same unwritten block, they must be synchronized
 74 * or one thread will zero the other's data, causing corruption.
 75 */
 76static int
 77ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
 78{
 79	struct super_block *sb = inode->i_sb;
 80	int blockmask = sb->s_blocksize - 1;
 81
 82	if (pos >= i_size_read(inode))
 83		return 0;
 84
 85	if ((pos | iov_iter_alignment(from)) & blockmask)
 86		return 1;
 87
 88	return 0;
 89}
 90
 91static ssize_t
 92ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93{
 94	struct file *file = iocb->ki_filp;
 95	struct inode *inode = file_inode(iocb->ki_filp);
 96	struct blk_plug plug;
 97	int o_direct = iocb->ki_flags & IOCB_DIRECT;
 98	int unaligned_aio = 0;
 99	int overwrite = 0;
100	ssize_t ret;
101
102	inode_lock(inode);
 
 
103	ret = generic_write_checks(iocb, from);
104	if (ret <= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105		goto out;
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107	/*
108	 * Unaligned direct AIO must be serialized among each other as zeroing
109	 * of partial blocks of two competing unaligned AIOs can result in data
110	 * corruption.
 
 
 
111	 */
112	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113	    !is_sync_kiocb(iocb) &&
114	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115		unaligned_aio = 1;
116		ext4_unwritten_wait(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	}
118
119	/*
120	 * If we have encountered a bitmap-format file, the size limit
121	 * is smaller than s_maxbytes, which is for extent-mapped files.
122	 */
123	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127			ret = -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128			goto out;
129		}
130		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	}
 
 
 
 
 
 
 
132
133	iocb->private = &overwrite;
134	if (o_direct) {
135		size_t length = iov_iter_count(from);
136		loff_t pos = iocb->ki_pos;
137		blk_start_plug(&plug);
138
139		/* check whether we do a DIO overwrite or not */
140		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142			struct ext4_map_blocks map;
143			unsigned int blkbits = inode->i_blkbits;
144			int err, len;
145
146			map.m_lblk = pos >> blkbits;
147			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148				- map.m_lblk;
149			len = map.m_len;
150
151			err = ext4_map_blocks(NULL, inode, &map, 0);
152			/*
153			 * 'err==len' means that all of blocks has
154			 * been preallocated no matter they are
155			 * initialized or not.  For excluding
156			 * unwritten extents, we need to check
157			 * m_flags.  There are two conditions that
158			 * indicate for initialized extents.  1) If we
159			 * hit extent cache, EXT4_MAP_MAPPED flag is
160			 * returned; 2) If we do a real lookup,
161			 * non-flags are returned.  So we should check
162			 * these two conditions.
163			 */
164			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165				overwrite = 1;
166		}
 
 
 
 
 
167	}
168
169	ret = __generic_file_write_iter(iocb, from);
170	inode_unlock(inode);
 
 
 
 
 
 
171
172	if (ret > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173		ssize_t err;
 
174
175		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 
176		if (err < 0)
177			ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178	}
179	if (o_direct)
180		blk_finish_plug(&plug);
181
182	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184out:
185	inode_unlock(inode);
 
 
186	return ret;
187}
 
188
189#ifdef CONFIG_FS_DAX
190static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
191{
192	int result;
193	handle_t *handle = NULL;
194	struct inode *inode = file_inode(vma->vm_file);
195	struct super_block *sb = inode->i_sb;
196	bool write = vmf->flags & FAULT_FLAG_WRITE;
197
198	if (write) {
199		sb_start_pagefault(sb);
200		file_update_time(vma->vm_file);
201		down_read(&EXT4_I(inode)->i_mmap_sem);
202		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203						EXT4_DATA_TRANS_BLOCKS(sb));
204	} else
205		down_read(&EXT4_I(inode)->i_mmap_sem);
206
207	if (IS_ERR(handle))
208		result = VM_FAULT_SIGBUS;
 
 
 
 
209	else
210		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211
212	if (write) {
213		if (!IS_ERR(handle))
214			ext4_journal_stop(handle);
215		up_read(&EXT4_I(inode)->i_mmap_sem);
216		sb_end_pagefault(sb);
217	} else
218		up_read(&EXT4_I(inode)->i_mmap_sem);
219
220	return result;
221}
222
223static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224						pmd_t *pmd, unsigned int flags)
 
225{
226	int result;
 
 
227	handle_t *handle = NULL;
228	struct inode *inode = file_inode(vma->vm_file);
229	struct super_block *sb = inode->i_sb;
230	bool write = flags & FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
232	if (write) {
233		sb_start_pagefault(sb);
234		file_update_time(vma->vm_file);
235		down_read(&EXT4_I(inode)->i_mmap_sem);
 
236		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237				ext4_chunk_trans_blocks(inode,
238							PMD_SIZE / PAGE_SIZE));
239	} else
 
 
 
 
240		down_read(&EXT4_I(inode)->i_mmap_sem);
241
242	if (IS_ERR(handle))
243		result = VM_FAULT_SIGBUS;
244	else
245		result = __dax_pmd_fault(vma, addr, pmd, flags,
246				ext4_dax_mmap_get_block, NULL);
247
248	if (write) {
249		if (!IS_ERR(handle))
250			ext4_journal_stop(handle);
 
 
 
 
 
 
251		up_read(&EXT4_I(inode)->i_mmap_sem);
252		sb_end_pagefault(sb);
253	} else
254		up_read(&EXT4_I(inode)->i_mmap_sem);
 
255
256	return result;
257}
258
259/*
260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261 * handler we check for races agaist truncate. Note that since we cycle through
262 * i_mmap_sem, we are sure that also any hole punching that began before we
263 * were called is finished by now and so if it included part of the file we
264 * are working on, our pte will get unmapped and the check for pte_same() in
265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266 * desired.
267 */
268static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269				struct vm_fault *vmf)
270{
271	struct inode *inode = file_inode(vma->vm_file);
272	struct super_block *sb = inode->i_sb;
273	loff_t size;
274	int ret;
275
276	sb_start_pagefault(sb);
277	file_update_time(vma->vm_file);
278	down_read(&EXT4_I(inode)->i_mmap_sem);
279	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280	if (vmf->pgoff >= size)
281		ret = VM_FAULT_SIGBUS;
282	else
283		ret = dax_pfn_mkwrite(vma, vmf);
284	up_read(&EXT4_I(inode)->i_mmap_sem);
285	sb_end_pagefault(sb);
286
287	return ret;
288}
289
290static const struct vm_operations_struct ext4_dax_vm_ops = {
291	.fault		= ext4_dax_fault,
292	.pmd_fault	= ext4_dax_pmd_fault,
293	.page_mkwrite	= ext4_dax_fault,
294	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
295};
296#else
297#define ext4_dax_vm_ops	ext4_file_vm_ops
298#endif
299
300static const struct vm_operations_struct ext4_file_vm_ops = {
301	.fault		= ext4_filemap_fault,
302	.map_pages	= filemap_map_pages,
303	.page_mkwrite   = ext4_page_mkwrite,
304};
305
306static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307{
308	struct inode *inode = file->f_mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
309
310	if (ext4_encrypted_inode(inode)) {
311		int err = ext4_get_encryption_info(inode);
312		if (err)
313			return 0;
314		if (ext4_encryption_info(inode) == NULL)
315			return -ENOKEY;
316	}
317	file_accessed(file);
318	if (IS_DAX(file_inode(file))) {
319		vma->vm_ops = &ext4_dax_vm_ops;
320		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321	} else {
322		vma->vm_ops = &ext4_file_vm_ops;
323	}
324	return 0;
325}
326
327static int ext4_file_open(struct inode * inode, struct file * filp)
 
328{
329	struct super_block *sb = inode->i_sb;
330	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331	struct vfsmount *mnt = filp->f_path.mnt;
332	struct dentry *dir;
333	struct path path;
334	char buf[64], *cp;
335	int ret;
 
336
337	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338		     !(sb->s_flags & MS_RDONLY))) {
339		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340		/*
341		 * Sample where the filesystem has been mounted and
342		 * store it in the superblock for sysadmin convenience
343		 * when trying to sort through large numbers of block
344		 * devices or filesystem images.
345		 */
346		memset(buf, 0, sizeof(buf));
347		path.mnt = mnt;
348		path.dentry = mnt->mnt_root;
349		cp = d_path(&path, buf, sizeof(buf));
350		if (!IS_ERR(cp)) {
351			handle_t *handle;
352			int err;
353
354			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355			if (IS_ERR(handle))
356				return PTR_ERR(handle);
357			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359			if (err) {
360				ext4_journal_stop(handle);
361				return err;
362			}
363			strlcpy(sbi->s_es->s_last_mounted, cp,
364				sizeof(sbi->s_es->s_last_mounted));
365			ext4_handle_dirty_super(handle, sb);
366			ext4_journal_stop(handle);
367		}
368	}
369	if (ext4_encrypted_inode(inode)) {
370		ret = ext4_get_encryption_info(inode);
371		if (ret)
372			return -EACCES;
373		if (ext4_encryption_info(inode) == NULL)
374			return -ENOKEY;
375	}
376
377	dir = dget_parent(file_dentry(filp));
378	if (ext4_encrypted_inode(d_inode(dir)) &&
379	    !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
380		ext4_warning(inode->i_sb,
381			     "Inconsistent encryption contexts: %lu/%lu\n",
382			     (unsigned long) d_inode(dir)->i_ino,
383			     (unsigned long) inode->i_ino);
384		dput(dir);
385		return -EPERM;
386	}
387	dput(dir);
388	/*
389	 * Set up the jbd2_inode if we are opening the inode for
390	 * writing and the journal is present
 
 
391	 */
392	if (filp->f_mode & FMODE_WRITE) {
393		ret = ext4_inode_attach_jinode(inode);
394		if (ret < 0)
395			return ret;
396	}
397	return dquot_file_open(inode, filp);
398}
399
400/*
401 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
402 * file rather than ext4_ext_walk_space() because we can introduce
403 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
404 * function.  When extent status tree has been fully implemented, it will
405 * track all extent status for a file and we can directly use it to
406 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
407 */
408
409/*
410 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
411 * lookup page cache to check whether or not there has some data between
412 * [startoff, endoff] because, if this range contains an unwritten extent,
413 * we determine this extent as a data or a hole according to whether the
414 * page cache has data or not.
415 */
416static int ext4_find_unwritten_pgoff(struct inode *inode,
417				     int whence,
418				     ext4_lblk_t end_blk,
419				     loff_t *offset)
420{
421	struct pagevec pvec;
422	unsigned int blkbits;
423	pgoff_t index;
424	pgoff_t end;
425	loff_t endoff;
426	loff_t startoff;
427	loff_t lastoff;
428	int found = 0;
429
430	blkbits = inode->i_sb->s_blocksize_bits;
431	startoff = *offset;
432	lastoff = startoff;
433	endoff = (loff_t)end_blk << blkbits;
434
435	index = startoff >> PAGE_SHIFT;
436	end = endoff >> PAGE_SHIFT;
437
438	pagevec_init(&pvec, 0);
439	do {
440		int i, num;
441		unsigned long nr_pages;
442
443		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
444		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
445					  (pgoff_t)num);
446		if (nr_pages == 0) {
447			if (whence == SEEK_DATA)
448				break;
449
450			BUG_ON(whence != SEEK_HOLE);
451			/*
452			 * If this is the first time to go into the loop and
453			 * offset is not beyond the end offset, it will be a
454			 * hole at this offset
455			 */
456			if (lastoff == startoff || lastoff < endoff)
457				found = 1;
458			break;
459		}
460
461		/*
462		 * If this is the first time to go into the loop and
463		 * offset is smaller than the first page offset, it will be a
464		 * hole at this offset.
465		 */
466		if (lastoff == startoff && whence == SEEK_HOLE &&
467		    lastoff < page_offset(pvec.pages[0])) {
468			found = 1;
469			break;
470		}
471
472		for (i = 0; i < nr_pages; i++) {
473			struct page *page = pvec.pages[i];
474			struct buffer_head *bh, *head;
475
476			/*
477			 * If the current offset is not beyond the end of given
478			 * range, it will be a hole.
479			 */
480			if (lastoff < endoff && whence == SEEK_HOLE &&
481			    page->index > end) {
482				found = 1;
483				*offset = lastoff;
484				goto out;
485			}
486
487			lock_page(page);
488
489			if (unlikely(page->mapping != inode->i_mapping)) {
490				unlock_page(page);
491				continue;
492			}
493
494			if (!page_has_buffers(page)) {
495				unlock_page(page);
496				continue;
497			}
498
499			if (page_has_buffers(page)) {
500				lastoff = page_offset(page);
501				bh = head = page_buffers(page);
502				do {
503					if (buffer_uptodate(bh) ||
504					    buffer_unwritten(bh)) {
505						if (whence == SEEK_DATA)
506							found = 1;
507					} else {
508						if (whence == SEEK_HOLE)
509							found = 1;
510					}
511					if (found) {
512						*offset = max_t(loff_t,
513							startoff, lastoff);
514						unlock_page(page);
515						goto out;
516					}
517					lastoff += bh->b_size;
518					bh = bh->b_this_page;
519				} while (bh != head);
520			}
521
522			lastoff = page_offset(page) + PAGE_SIZE;
523			unlock_page(page);
524		}
525
526		/*
527		 * The no. of pages is less than our desired, that would be a
528		 * hole in there.
529		 */
530		if (nr_pages < num && whence == SEEK_HOLE) {
531			found = 1;
532			*offset = lastoff;
533			break;
534		}
535
536		index = pvec.pages[i - 1]->index + 1;
537		pagevec_release(&pvec);
538	} while (index <= end);
539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540out:
541	pagevec_release(&pvec);
542	return found;
543}
544
545/*
546 * ext4_seek_data() retrieves the offset for SEEK_DATA.
547 */
548static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
549{
550	struct inode *inode = file->f_mapping->host;
551	struct extent_status es;
552	ext4_lblk_t start, last, end;
553	loff_t dataoff, isize;
554	int blkbits;
555	int ret;
556
557	inode_lock(inode);
 
558
559	isize = i_size_read(inode);
560	if (offset >= isize) {
561		inode_unlock(inode);
562		return -ENXIO;
563	}
 
 
 
 
 
 
564
565	blkbits = inode->i_sb->s_blocksize_bits;
566	start = offset >> blkbits;
567	last = start;
568	end = isize >> blkbits;
569	dataoff = offset;
570
571	do {
572		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
573		if (ret <= 0) {
574			/* No extent found -> no data */
575			if (ret == 0)
576				ret = -ENXIO;
577			inode_unlock(inode);
578			return ret;
579		}
580
581		last = es.es_lblk;
582		if (last != start)
583			dataoff = (loff_t)last << blkbits;
584		if (!ext4_es_is_unwritten(&es))
585			break;
586
587		/*
588		 * If there is a unwritten extent at this offset,
589		 * it will be as a data or a hole according to page
590		 * cache that has data or not.
591		 */
592		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
593					      es.es_lblk + es.es_len, &dataoff))
594			break;
595		last += es.es_len;
596		dataoff = (loff_t)last << blkbits;
597		cond_resched();
598	} while (last <= end);
599
600	inode_unlock(inode);
601
602	if (dataoff > isize)
603		return -ENXIO;
604
605	return vfs_setpos(file, dataoff, maxsize);
606}
607
608/*
609 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
610 */
611static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
612{
613	struct inode *inode = file->f_mapping->host;
614	struct extent_status es;
615	ext4_lblk_t start, last, end;
616	loff_t holeoff, isize;
617	int blkbits;
618	int ret;
619
620	inode_lock(inode);
621
622	isize = i_size_read(inode);
623	if (offset >= isize) {
624		inode_unlock(inode);
625		return -ENXIO;
626	}
627
628	blkbits = inode->i_sb->s_blocksize_bits;
629	start = offset >> blkbits;
630	last = start;
631	end = isize >> blkbits;
632	holeoff = offset;
633
634	do {
635		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
636		if (ret < 0) {
637			inode_unlock(inode);
638			return ret;
639		}
640		/* Found a hole? */
641		if (ret == 0 || es.es_lblk > last) {
642			if (last != start)
643				holeoff = (loff_t)last << blkbits;
644			break;
645		}
646		/*
647		 * If there is a unwritten extent at this offset,
648		 * it will be as a data or a hole according to page
649		 * cache that has data or not.
650		 */
651		if (ext4_es_is_unwritten(&es) &&
652		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
653					      last + es.es_len, &holeoff))
654			break;
655
656		last += es.es_len;
657		holeoff = (loff_t)last << blkbits;
658		cond_resched();
659	} while (last <= end);
660
661	inode_unlock(inode);
662
663	if (holeoff > isize)
664		holeoff = isize;
665
666	return vfs_setpos(file, holeoff, maxsize);
667}
668
669/*
670 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
671 * by calling generic_file_llseek_size() with the appropriate maxbytes
672 * value for each.
673 */
674loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
675{
676	struct inode *inode = file->f_mapping->host;
677	loff_t maxbytes;
678
679	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
680		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
681	else
682		maxbytes = inode->i_sb->s_maxbytes;
683
684	switch (whence) {
685	case SEEK_SET:
686	case SEEK_CUR:
687	case SEEK_END:
688		return generic_file_llseek_size(file, offset, whence,
689						maxbytes, i_size_read(inode));
690	case SEEK_DATA:
691		return ext4_seek_data(file, offset, maxbytes);
692	case SEEK_HOLE:
693		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
 
 
694	}
695
696	return -EINVAL;
 
 
697}
698
699const struct file_operations ext4_file_operations = {
700	.llseek		= ext4_llseek,
701	.read_iter	= generic_file_read_iter,
702	.write_iter	= ext4_file_write_iter,
 
703	.unlocked_ioctl = ext4_ioctl,
704#ifdef CONFIG_COMPAT
705	.compat_ioctl	= ext4_compat_ioctl,
706#endif
707	.mmap		= ext4_file_mmap,
 
708	.open		= ext4_file_open,
709	.release	= ext4_release_file,
710	.fsync		= ext4_sync_file,
 
711	.splice_read	= generic_file_splice_read,
712	.splice_write	= iter_file_splice_write,
713	.fallocate	= ext4_fallocate,
714};
715
716const struct inode_operations ext4_file_inode_operations = {
717	.setattr	= ext4_setattr,
718	.getattr	= ext4_getattr,
719	.setxattr	= generic_setxattr,
720	.getxattr	= generic_getxattr,
721	.listxattr	= ext4_listxattr,
722	.removexattr	= generic_removexattr,
723	.get_acl	= ext4_get_acl,
724	.set_acl	= ext4_set_acl,
725	.fiemap		= ext4_fiemap,
 
 
726};
727
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include <linux/backing-dev.h>
 33#include "ext4.h"
 34#include "ext4_jbd2.h"
 35#include "xattr.h"
 36#include "acl.h"
 37#include "truncate.h"
 38
 39static bool ext4_dio_supported(struct inode *inode)
 40{
 41	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
 42		return false;
 43	if (fsverity_active(inode))
 44		return false;
 45	if (ext4_should_journal_data(inode))
 46		return false;
 47	if (ext4_has_inline_data(inode))
 48		return false;
 49	return true;
 50}
 51
 52static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 53{
 54	ssize_t ret;
 55	struct inode *inode = file_inode(iocb->ki_filp);
 56
 57	if (iocb->ki_flags & IOCB_NOWAIT) {
 58		if (!inode_trylock_shared(inode))
 59			return -EAGAIN;
 60	} else {
 61		inode_lock_shared(inode);
 62	}
 63
 64	if (!ext4_dio_supported(inode)) {
 65		inode_unlock_shared(inode);
 66		/*
 67		 * Fallback to buffered I/O if the operation being performed on
 68		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 69		 * flag needs to be cleared here in order to ensure that the
 70		 * direct I/O path within generic_file_read_iter() is not
 71		 * taken.
 72		 */
 73		iocb->ki_flags &= ~IOCB_DIRECT;
 74		return generic_file_read_iter(iocb, to);
 75	}
 76
 77	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0);
 78	inode_unlock_shared(inode);
 79
 80	file_accessed(iocb->ki_filp);
 81	return ret;
 82}
 83
 84#ifdef CONFIG_FS_DAX
 85static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 86{
 87	struct inode *inode = file_inode(iocb->ki_filp);
 88	ssize_t ret;
 89
 90	if (iocb->ki_flags & IOCB_NOWAIT) {
 91		if (!inode_trylock_shared(inode))
 92			return -EAGAIN;
 93	} else {
 94		inode_lock_shared(inode);
 95	}
 96	/*
 97	 * Recheck under inode lock - at this point we are sure it cannot
 98	 * change anymore
 99	 */
100	if (!IS_DAX(inode)) {
101		inode_unlock_shared(inode);
102		/* Fallback to buffered IO in case we cannot support DAX */
103		return generic_file_read_iter(iocb, to);
104	}
105	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
106	inode_unlock_shared(inode);
107
108	file_accessed(iocb->ki_filp);
109	return ret;
110}
111#endif
112
113static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
114{
115	struct inode *inode = file_inode(iocb->ki_filp);
116
117	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
118		return -EIO;
119
120	if (!iov_iter_count(to))
121		return 0; /* skip atime */
122
123#ifdef CONFIG_FS_DAX
124	if (IS_DAX(inode))
125		return ext4_dax_read_iter(iocb, to);
126#endif
127	if (iocb->ki_flags & IOCB_DIRECT)
128		return ext4_dio_read_iter(iocb, to);
129
130	return generic_file_read_iter(iocb, to);
131}
132
133/*
134 * Called when an inode is released. Note that this is different
135 * from ext4_file_open: open gets called at every open, but release
136 * gets called only when /all/ the files are closed.
137 */
138static int ext4_release_file(struct inode *inode, struct file *filp)
139{
140	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
141		ext4_alloc_da_blocks(inode);
142		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
143	}
144	/* if we are the last writer on the inode, drop the block reservation */
145	if ((filp->f_mode & FMODE_WRITE) &&
146			(atomic_read(&inode->i_writecount) == 1) &&
147			!EXT4_I(inode)->i_reserved_data_blocks) {
 
148		down_write(&EXT4_I(inode)->i_data_sem);
149		ext4_discard_preallocations(inode, 0);
150		up_write(&EXT4_I(inode)->i_data_sem);
151	}
152	if (is_dx(inode) && filp->private_data)
153		ext4_htree_free_dir_info(filp->private_data);
154
155	return 0;
156}
157
 
 
 
 
 
 
 
158/*
159 * This tests whether the IO in question is block-aligned or not.
160 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
161 * are converted to written only after the IO is complete.  Until they are
162 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
163 * it needs to zero out portions of the start and/or end block.  If 2 AIO
164 * threads are at work on the same unwritten block, they must be synchronized
165 * or one thread will zero the other's data, causing corruption.
166 */
167static bool
168ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
169{
170	struct super_block *sb = inode->i_sb;
171	unsigned long blockmask = sb->s_blocksize - 1;
 
 
 
172
173	if ((pos | iov_iter_alignment(from)) & blockmask)
174		return true;
175
176	return false;
177}
178
179static bool
180ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
181{
182	if (offset + len > i_size_read(inode) ||
183	    offset + len > EXT4_I(inode)->i_disksize)
184		return true;
185	return false;
186}
187
188/* Is IO overwriting allocated and initialized blocks? */
189static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
190{
191	struct ext4_map_blocks map;
192	unsigned int blkbits = inode->i_blkbits;
193	int err, blklen;
194
195	if (pos + len > i_size_read(inode))
196		return false;
197
198	map.m_lblk = pos >> blkbits;
199	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
200	blklen = map.m_len;
201
202	err = ext4_map_blocks(NULL, inode, &map, 0);
203	/*
204	 * 'err==len' means that all of the blocks have been preallocated,
205	 * regardless of whether they have been initialized or not. To exclude
206	 * unwritten extents, we need to check m_flags.
207	 */
208	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
209}
210
211static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
212					 struct iov_iter *from)
213{
 
214	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
 
215	ssize_t ret;
216
217	if (unlikely(IS_IMMUTABLE(inode)))
218		return -EPERM;
219
220	ret = generic_write_checks(iocb, from);
221	if (ret <= 0)
222		return ret;
223
224	/*
225	 * If we have encountered a bitmap-format file, the size limit
226	 * is smaller than s_maxbytes, which is for extent-mapped files.
227	 */
228	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
229		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
230
231		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
232			return -EFBIG;
233		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
234	}
235
236	return iov_iter_count(from);
237}
238
239static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
240{
241	ssize_t ret, count;
242
243	count = ext4_generic_write_checks(iocb, from);
244	if (count <= 0)
245		return count;
246
247	ret = file_modified(iocb->ki_filp);
248	if (ret)
249		return ret;
250	return count;
251}
252
253static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
254					struct iov_iter *from)
255{
256	ssize_t ret;
257	struct inode *inode = file_inode(iocb->ki_filp);
258
259	if (iocb->ki_flags & IOCB_NOWAIT)
260		return -EOPNOTSUPP;
261
262	ext4_fc_start_update(inode);
263	inode_lock(inode);
264	ret = ext4_write_checks(iocb, from);
265	if (ret <= 0)
266		goto out;
267
268	current->backing_dev_info = inode_to_bdi(inode);
269	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270	current->backing_dev_info = NULL;
271
272out:
273	inode_unlock(inode);
274	ext4_fc_stop_update(inode);
275	if (likely(ret > 0)) {
276		iocb->ki_pos += ret;
277		ret = generic_write_sync(iocb, ret);
278	}
279
280	return ret;
281}
282
283static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284					   ssize_t written, size_t count)
285{
286	handle_t *handle;
287	bool truncate = false;
288	u8 blkbits = inode->i_blkbits;
289	ext4_lblk_t written_blk, end_blk;
290	int ret;
291
292	/*
293	 * Note that EXT4_I(inode)->i_disksize can get extended up to
294	 * inode->i_size while the I/O was running due to writeback of delalloc
295	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296	 * zeroed/unwritten extents if this is possible; thus we won't leave
297	 * uninitialized blocks in a file even if we didn't succeed in writing
298	 * as much as we intended.
299	 */
300	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
301	if (offset + count <= EXT4_I(inode)->i_disksize) {
302		/*
303		 * We need to ensure that the inode is removed from the orphan
304		 * list if it has been added prematurely, due to writeback of
305		 * delalloc blocks.
306		 */
307		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
308			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
309
310			if (IS_ERR(handle)) {
311				ext4_orphan_del(NULL, inode);
312				return PTR_ERR(handle);
313			}
314
315			ext4_orphan_del(handle, inode);
316			ext4_journal_stop(handle);
317		}
318
319		return written;
320	}
321
322	if (written < 0)
323		goto truncate;
324
325	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
326	if (IS_ERR(handle)) {
327		written = PTR_ERR(handle);
328		goto truncate;
329	}
330
331	if (ext4_update_inode_size(inode, offset + written)) {
332		ret = ext4_mark_inode_dirty(handle, inode);
333		if (unlikely(ret)) {
334			written = ret;
335			ext4_journal_stop(handle);
336			goto truncate;
337		}
338	}
339
340	/*
341	 * We may need to truncate allocated but not written blocks beyond EOF.
 
342	 */
343	written_blk = ALIGN(offset + written, 1 << blkbits);
344	end_blk = ALIGN(offset + count, 1 << blkbits);
345	if (written_blk < end_blk && ext4_can_truncate(inode))
346		truncate = true;
347
348	/*
349	 * Remove the inode from the orphan list if it has been extended and
350	 * everything went OK.
351	 */
352	if (!truncate && inode->i_nlink)
353		ext4_orphan_del(handle, inode);
354	ext4_journal_stop(handle);
355
356	if (truncate) {
357truncate:
358		ext4_truncate_failed_write(inode);
359		/*
360		 * If the truncate operation failed early, then the inode may
361		 * still be on the orphan list. In that case, we need to try
362		 * remove the inode from the in-memory linked list.
363		 */
364		if (inode->i_nlink)
365			ext4_orphan_del(NULL, inode);
366	}
367
368	return written;
369}
370
371static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
372				 int error, unsigned int flags)
373{
374	loff_t pos = iocb->ki_pos;
375	struct inode *inode = file_inode(iocb->ki_filp);
376
377	if (error)
378		return error;
379
380	if (size && flags & IOMAP_DIO_UNWRITTEN) {
381		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382		if (error < 0)
383			return error;
384	}
385	/*
386	 * If we are extending the file, we have to update i_size here before
387	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
388	 * buffered reads could zero out too much from page cache pages. Update
389	 * of on-disk size will happen later in ext4_dio_write_iter() where
390	 * we have enough information to also perform orphan list handling etc.
391	 * Note that we perform all extending writes synchronously under
392	 * i_rwsem held exclusively so i_size update is safe here in that case.
393	 * If the write was not extending, we cannot see pos > i_size here
394	 * because operations reducing i_size like truncate wait for all
395	 * outstanding DIO before updating i_size.
396	 */
397	pos += size;
398	if (pos > i_size_read(inode))
399		i_size_write(inode, pos);
400
401	return 0;
402}
403
404static const struct iomap_dio_ops ext4_dio_write_ops = {
405	.end_io = ext4_dio_write_end_io,
406};
407
408/*
409 * The intention here is to start with shared lock acquired then see if any
410 * condition requires an exclusive inode lock. If yes, then we restart the
411 * whole operation by releasing the shared lock and acquiring exclusive lock.
412 *
413 * - For unaligned_io we never take shared lock as it may cause data corruption
414 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
415 *
416 * - For extending writes case we don't take the shared lock, since it requires
417 *   updating inode i_disksize and/or orphan handling with exclusive lock.
418 *
419 * - shared locking will only be true mostly with overwrites. Otherwise we will
420 *   switch to exclusive i_rwsem lock.
421 */
422static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
423				     bool *ilock_shared, bool *extend)
424{
425	struct file *file = iocb->ki_filp;
426	struct inode *inode = file_inode(file);
427	loff_t offset;
428	size_t count;
429	ssize_t ret;
430
431restart:
432	ret = ext4_generic_write_checks(iocb, from);
433	if (ret <= 0)
434		goto out;
435
436	offset = iocb->ki_pos;
437	count = ret;
438	if (ext4_extending_io(inode, offset, count))
439		*extend = true;
440	/*
441	 * Determine whether the IO operation will overwrite allocated
442	 * and initialized blocks.
443	 * We need exclusive i_rwsem for changing security info
444	 * in file_modified().
445	 */
446	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
447	     !ext4_overwrite_io(inode, offset, count))) {
448		if (iocb->ki_flags & IOCB_NOWAIT) {
449			ret = -EAGAIN;
450			goto out;
451		}
452		inode_unlock_shared(inode);
453		*ilock_shared = false;
454		inode_lock(inode);
455		goto restart;
456	}
457
458	ret = file_modified(file);
459	if (ret < 0)
460		goto out;
461
462	return count;
463out:
464	if (*ilock_shared)
465		inode_unlock_shared(inode);
466	else
467		inode_unlock(inode);
468	return ret;
469}
470
471static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
472{
473	ssize_t ret;
474	handle_t *handle;
475	struct inode *inode = file_inode(iocb->ki_filp);
476	loff_t offset = iocb->ki_pos;
477	size_t count = iov_iter_count(from);
478	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
479	bool extend = false, unaligned_io = false;
480	bool ilock_shared = true;
481
482	/*
483	 * We initially start with shared inode lock unless it is
484	 * unaligned IO which needs exclusive lock anyways.
485	 */
486	if (ext4_unaligned_io(inode, from, offset)) {
487		unaligned_io = true;
488		ilock_shared = false;
489	}
490	/*
491	 * Quick check here without any i_rwsem lock to see if it is extending
492	 * IO. A more reliable check is done in ext4_dio_write_checks() with
493	 * proper locking in place.
494	 */
495	if (offset + count > i_size_read(inode))
496		ilock_shared = false;
497
498	if (iocb->ki_flags & IOCB_NOWAIT) {
499		if (ilock_shared) {
500			if (!inode_trylock_shared(inode))
501				return -EAGAIN;
502		} else {
503			if (!inode_trylock(inode))
504				return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505		}
506	} else {
507		if (ilock_shared)
508			inode_lock_shared(inode);
509		else
510			inode_lock(inode);
511	}
512
513	/* Fallback to buffered I/O if the inode does not support direct I/O. */
514	if (!ext4_dio_supported(inode)) {
515		if (ilock_shared)
516			inode_unlock_shared(inode);
517		else
518			inode_unlock(inode);
519		return ext4_buffered_write_iter(iocb, from);
520	}
521
522	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
523	if (ret <= 0)
524		return ret;
525
526	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
527	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
528		ret = -EAGAIN;
529		goto out;
530	}
531
532	offset = iocb->ki_pos;
533	count = ret;
534
535	/*
536	 * Unaligned direct IO must be serialized among each other as zeroing
537	 * of partial blocks of two competing unaligned IOs can result in data
538	 * corruption.
539	 *
540	 * So we make sure we don't allow any unaligned IO in flight.
541	 * For IOs where we need not wait (like unaligned non-AIO DIO),
542	 * below inode_dio_wait() may anyway become a no-op, since we start
543	 * with exclusive lock.
544	 */
545	if (unaligned_io)
546		inode_dio_wait(inode);
547
548	if (extend) {
549		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
550		if (IS_ERR(handle)) {
551			ret = PTR_ERR(handle);
552			goto out;
553		}
554
555		ext4_fc_start_update(inode);
556		ret = ext4_orphan_add(handle, inode);
557		ext4_fc_stop_update(inode);
558		if (ret) {
559			ext4_journal_stop(handle);
560			goto out;
561		}
562
563		ext4_journal_stop(handle);
564	}
565
566	if (ilock_shared)
567		iomap_ops = &ext4_iomap_overwrite_ops;
568	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
569			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0);
570	if (ret == -ENOTBLK)
571		ret = 0;
572
573	if (extend)
574		ret = ext4_handle_inode_extension(inode, offset, ret, count);
575
576out:
577	if (ilock_shared)
578		inode_unlock_shared(inode);
579	else
580		inode_unlock(inode);
581
582	if (ret >= 0 && iov_iter_count(from)) {
583		ssize_t err;
584		loff_t endbyte;
585
586		offset = iocb->ki_pos;
587		err = ext4_buffered_write_iter(iocb, from);
588		if (err < 0)
589			return err;
590
591		/*
592		 * We need to ensure that the pages within the page cache for
593		 * the range covered by this I/O are written to disk and
594		 * invalidated. This is in attempt to preserve the expected
595		 * direct I/O semantics in the case we fallback to buffered I/O
596		 * to complete off the I/O request.
597		 */
598		ret += err;
599		endbyte = offset + err - 1;
600		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
601						   offset, endbyte);
602		if (!err)
603			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
604						 offset >> PAGE_SHIFT,
605						 endbyte >> PAGE_SHIFT);
606	}
 
 
607
608	return ret;
609}
610
611#ifdef CONFIG_FS_DAX
612static ssize_t
613ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
614{
615	ssize_t ret;
616	size_t count;
617	loff_t offset;
618	handle_t *handle;
619	bool extend = false;
620	struct inode *inode = file_inode(iocb->ki_filp);
621
622	if (iocb->ki_flags & IOCB_NOWAIT) {
623		if (!inode_trylock(inode))
624			return -EAGAIN;
625	} else {
626		inode_lock(inode);
627	}
628
629	ret = ext4_write_checks(iocb, from);
630	if (ret <= 0)
631		goto out;
632
633	offset = iocb->ki_pos;
634	count = iov_iter_count(from);
635
636	if (offset + count > EXT4_I(inode)->i_disksize) {
637		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
638		if (IS_ERR(handle)) {
639			ret = PTR_ERR(handle);
640			goto out;
641		}
642
643		ret = ext4_orphan_add(handle, inode);
644		if (ret) {
645			ext4_journal_stop(handle);
646			goto out;
647		}
648
649		extend = true;
650		ext4_journal_stop(handle);
651	}
652
653	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
654
655	if (extend)
656		ret = ext4_handle_inode_extension(inode, offset, ret, count);
657out:
658	inode_unlock(inode);
659	if (ret > 0)
660		ret = generic_write_sync(iocb, ret);
661	return ret;
662}
663#endif
664
665static ssize_t
666ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
667{
668	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
 
669
670	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
671		return -EIO;
 
 
 
 
 
 
672
673#ifdef CONFIG_FS_DAX
674	if (IS_DAX(inode))
675		return ext4_dax_write_iter(iocb, from);
676#endif
677	if (iocb->ki_flags & IOCB_DIRECT)
678		return ext4_dio_write_iter(iocb, from);
679	else
680		return ext4_buffered_write_iter(iocb, from);
 
 
 
 
 
 
 
 
 
 
681}
682
683#ifdef CONFIG_FS_DAX
684static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
685		enum page_entry_size pe_size)
686{
687	int error = 0;
688	vm_fault_t result;
689	int retries = 0;
690	handle_t *handle = NULL;
691	struct inode *inode = file_inode(vmf->vma->vm_file);
692	struct super_block *sb = inode->i_sb;
693
694	/*
695	 * We have to distinguish real writes from writes which will result in a
696	 * COW page; COW writes should *not* poke the journal (the file will not
697	 * be changed). Doing so would cause unintended failures when mounted
698	 * read-only.
699	 *
700	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
701	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
702	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
703	 * we eventually come back with a COW page.
704	 */
705	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
706		(vmf->vma->vm_flags & VM_SHARED);
707	pfn_t pfn;
708
709	if (write) {
710		sb_start_pagefault(sb);
711		file_update_time(vmf->vma->vm_file);
712		down_read(&EXT4_I(inode)->i_mmap_sem);
713retry:
714		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
715					       EXT4_DATA_TRANS_BLOCKS(sb));
716		if (IS_ERR(handle)) {
717			up_read(&EXT4_I(inode)->i_mmap_sem);
718			sb_end_pagefault(sb);
719			return VM_FAULT_SIGBUS;
720		}
721	} else {
722		down_read(&EXT4_I(inode)->i_mmap_sem);
723	}
724	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
 
 
 
 
 
725	if (write) {
726		ext4_journal_stop(handle);
727
728		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
729		    ext4_should_retry_alloc(sb, &retries))
730			goto retry;
731		/* Handling synchronous page fault? */
732		if (result & VM_FAULT_NEEDDSYNC)
733			result = dax_finish_sync_fault(vmf, pe_size, pfn);
734		up_read(&EXT4_I(inode)->i_mmap_sem);
735		sb_end_pagefault(sb);
736	} else {
737		up_read(&EXT4_I(inode)->i_mmap_sem);
738	}
739
740	return result;
741}
742
743static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
744{
745	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746}
747
748static const struct vm_operations_struct ext4_dax_vm_ops = {
749	.fault		= ext4_dax_fault,
750	.huge_fault	= ext4_dax_huge_fault,
751	.page_mkwrite	= ext4_dax_fault,
752	.pfn_mkwrite	= ext4_dax_fault,
753};
754#else
755#define ext4_dax_vm_ops	ext4_file_vm_ops
756#endif
757
758static const struct vm_operations_struct ext4_file_vm_ops = {
759	.fault		= ext4_filemap_fault,
760	.map_pages	= filemap_map_pages,
761	.page_mkwrite   = ext4_page_mkwrite,
762};
763
764static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
765{
766	struct inode *inode = file->f_mapping->host;
767	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
768	struct dax_device *dax_dev = sbi->s_daxdev;
769
770	if (unlikely(ext4_forced_shutdown(sbi)))
771		return -EIO;
772
773	/*
774	 * We don't support synchronous mappings for non-DAX files and
775	 * for DAX files if underneath dax_device is not synchronous.
776	 */
777	if (!daxdev_mapping_supported(vma, dax_dev))
778		return -EOPNOTSUPP;
779
 
 
 
 
 
 
 
780	file_accessed(file);
781	if (IS_DAX(file_inode(file))) {
782		vma->vm_ops = &ext4_dax_vm_ops;
783		vma->vm_flags |= VM_HUGEPAGE;
784	} else {
785		vma->vm_ops = &ext4_file_vm_ops;
786	}
787	return 0;
788}
789
790static int ext4_sample_last_mounted(struct super_block *sb,
791				    struct vfsmount *mnt)
792{
793	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
794	struct path path;
795	char buf[64], *cp;
796	handle_t *handle;
797	int err;
798
799	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
800		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801
802	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
803		return 0;
804
805	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806	/*
807	 * Sample where the filesystem has been mounted and
808	 * store it in the superblock for sysadmin convenience
809	 * when trying to sort through large numbers of block
810	 * devices or filesystem images.
811	 */
812	memset(buf, 0, sizeof(buf));
813	path.mnt = mnt;
814	path.dentry = mnt->mnt_root;
815	cp = d_path(&path, buf, sizeof(buf));
816	err = 0;
817	if (IS_ERR(cp))
818		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819
820	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
821	err = PTR_ERR(handle);
822	if (IS_ERR(handle))
823		goto out;
824	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
825	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
826	if (err)
827		goto out_journal;
828	lock_buffer(sbi->s_sbh);
829	strncpy(sbi->s_es->s_last_mounted, cp,
830		sizeof(sbi->s_es->s_last_mounted));
831	ext4_superblock_csum_set(sb);
832	unlock_buffer(sbi->s_sbh);
833	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
834out_journal:
835	ext4_journal_stop(handle);
836out:
837	sb_end_intwrite(sb);
838	return err;
839}
840
841static int ext4_file_open(struct inode *inode, struct file *filp)
 
 
 
842{
 
 
 
 
 
843	int ret;
844
845	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
846		return -EIO;
847
848	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
849	if (ret)
850		return ret;
851
852	ret = fscrypt_file_open(inode, filp);
853	if (ret)
854		return ret;
855
856	ret = fsverity_file_open(inode, filp);
857	if (ret)
858		return ret;
859
860	/*
861	 * Set up the jbd2_inode if we are opening the inode for
862	 * writing and the journal is present
863	 */
864	if (filp->f_mode & FMODE_WRITE) {
865		ret = ext4_inode_attach_jinode(inode);
866		if (ret < 0)
 
 
 
 
 
 
867			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868	}
869
870	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
871	return dquot_file_open(inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872}
873
874/*
875 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
876 * by calling generic_file_llseek_size() with the appropriate maxbytes
877 * value for each.
878 */
879loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
880{
881	struct inode *inode = file->f_mapping->host;
882	loff_t maxbytes;
883
884	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
885		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
886	else
887		maxbytes = inode->i_sb->s_maxbytes;
888
889	switch (whence) {
890	default:
 
 
891		return generic_file_llseek_size(file, offset, whence,
892						maxbytes, i_size_read(inode));
 
 
893	case SEEK_HOLE:
894		inode_lock_shared(inode);
895		offset = iomap_seek_hole(inode, offset,
896					 &ext4_iomap_report_ops);
897		inode_unlock_shared(inode);
898		break;
899	case SEEK_DATA:
900		inode_lock_shared(inode);
901		offset = iomap_seek_data(inode, offset,
902					 &ext4_iomap_report_ops);
903		inode_unlock_shared(inode);
904		break;
905	}
906
907	if (offset < 0)
908		return offset;
909	return vfs_setpos(file, offset, maxbytes);
910}
911
912const struct file_operations ext4_file_operations = {
913	.llseek		= ext4_llseek,
914	.read_iter	= ext4_file_read_iter,
915	.write_iter	= ext4_file_write_iter,
916	.iopoll		= iomap_dio_iopoll,
917	.unlocked_ioctl = ext4_ioctl,
918#ifdef CONFIG_COMPAT
919	.compat_ioctl	= ext4_compat_ioctl,
920#endif
921	.mmap		= ext4_file_mmap,
922	.mmap_supported_flags = MAP_SYNC,
923	.open		= ext4_file_open,
924	.release	= ext4_release_file,
925	.fsync		= ext4_sync_file,
926	.get_unmapped_area = thp_get_unmapped_area,
927	.splice_read	= generic_file_splice_read,
928	.splice_write	= iter_file_splice_write,
929	.fallocate	= ext4_fallocate,
930};
931
932const struct inode_operations ext4_file_inode_operations = {
933	.setattr	= ext4_setattr,
934	.getattr	= ext4_file_getattr,
 
 
935	.listxattr	= ext4_listxattr,
 
936	.get_acl	= ext4_get_acl,
937	.set_acl	= ext4_set_acl,
938	.fiemap		= ext4_fiemap,
939	.fileattr_get	= ext4_fileattr_get,
940	.fileattr_set	= ext4_fileattr_set,
941};
942