Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34/*
 35 * Called when an inode is released. Note that this is different
 36 * from ext4_file_open: open gets called at every open, but release
 37 * gets called only when /all/ the files are closed.
 38 */
 39static int ext4_release_file(struct inode *inode, struct file *filp)
 40{
 41	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 42		ext4_alloc_da_blocks(inode);
 43		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 44	}
 45	/* if we are the last writer on the inode, drop the block reservation */
 46	if ((filp->f_mode & FMODE_WRITE) &&
 47			(atomic_read(&inode->i_writecount) == 1) &&
 48		        !EXT4_I(inode)->i_reserved_data_blocks)
 49	{
 50		down_write(&EXT4_I(inode)->i_data_sem);
 51		ext4_discard_preallocations(inode);
 52		up_write(&EXT4_I(inode)->i_data_sem);
 53	}
 54	if (is_dx(inode) && filp->private_data)
 55		ext4_htree_free_dir_info(filp->private_data);
 56
 57	return 0;
 58}
 59
 60static void ext4_unwritten_wait(struct inode *inode)
 61{
 62	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 63
 64	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
 65}
 66
 67/*
 68 * This tests whether the IO in question is block-aligned or not.
 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 70 * are converted to written only after the IO is complete.  Until they are
 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 73 * threads are at work on the same unwritten block, they must be synchronized
 74 * or one thread will zero the other's data, causing corruption.
 75 */
 76static int
 77ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
 78{
 79	struct super_block *sb = inode->i_sb;
 80	int blockmask = sb->s_blocksize - 1;
 81
 82	if (pos >= i_size_read(inode))
 83		return 0;
 84
 85	if ((pos | iov_iter_alignment(from)) & blockmask)
 86		return 1;
 87
 88	return 0;
 89}
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91static ssize_t
 92ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 93{
 94	struct file *file = iocb->ki_filp;
 95	struct inode *inode = file_inode(iocb->ki_filp);
 96	struct blk_plug plug;
 97	int o_direct = iocb->ki_flags & IOCB_DIRECT;
 98	int unaligned_aio = 0;
 99	int overwrite = 0;
100	ssize_t ret;
101
102	inode_lock(inode);
103	ret = generic_write_checks(iocb, from);
 
 
 
 
 
 
 
 
 
 
 
 
 
104	if (ret <= 0)
105		goto out;
106
107	/*
108	 * Unaligned direct AIO must be serialized among each other as zeroing
109	 * of partial blocks of two competing unaligned AIOs can result in data
110	 * corruption.
111	 */
112	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113	    !is_sync_kiocb(iocb) &&
114	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115		unaligned_aio = 1;
116		ext4_unwritten_wait(inode);
117	}
118
119	/*
120	 * If we have encountered a bitmap-format file, the size limit
121	 * is smaller than s_maxbytes, which is for extent-mapped files.
122	 */
123	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125
126		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127			ret = -EFBIG;
128			goto out;
129		}
130		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131	}
132
133	iocb->private = &overwrite;
134	if (o_direct) {
135		size_t length = iov_iter_count(from);
136		loff_t pos = iocb->ki_pos;
137		blk_start_plug(&plug);
138
139		/* check whether we do a DIO overwrite or not */
140		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142			struct ext4_map_blocks map;
143			unsigned int blkbits = inode->i_blkbits;
144			int err, len;
145
146			map.m_lblk = pos >> blkbits;
147			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148				- map.m_lblk;
149			len = map.m_len;
150
151			err = ext4_map_blocks(NULL, inode, &map, 0);
152			/*
153			 * 'err==len' means that all of blocks has
154			 * been preallocated no matter they are
155			 * initialized or not.  For excluding
156			 * unwritten extents, we need to check
157			 * m_flags.  There are two conditions that
158			 * indicate for initialized extents.  1) If we
159			 * hit extent cache, EXT4_MAP_MAPPED flag is
160			 * returned; 2) If we do a real lookup,
161			 * non-flags are returned.  So we should check
162			 * these two conditions.
163			 */
164			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165				overwrite = 1;
 
 
 
166		}
167	}
168
169	ret = __generic_file_write_iter(iocb, from);
 
 
 
 
 
 
 
170	inode_unlock(inode);
171
172	if (ret > 0) {
173		ssize_t err;
174
175		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
176		if (err < 0)
177			ret = err;
178	}
179	if (o_direct)
180		blk_finish_plug(&plug);
181
182	return ret;
183
184out:
185	inode_unlock(inode);
186	return ret;
187}
188
189#ifdef CONFIG_FS_DAX
190static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
191{
192	int result;
 
 
193	handle_t *handle = NULL;
194	struct inode *inode = file_inode(vma->vm_file);
195	struct super_block *sb = inode->i_sb;
196	bool write = vmf->flags & FAULT_FLAG_WRITE;
197
198	if (write) {
199		sb_start_pagefault(sb);
200		file_update_time(vma->vm_file);
201		down_read(&EXT4_I(inode)->i_mmap_sem);
202		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203						EXT4_DATA_TRANS_BLOCKS(sb));
204	} else
205		down_read(&EXT4_I(inode)->i_mmap_sem);
206
207	if (IS_ERR(handle))
208		result = VM_FAULT_SIGBUS;
209	else
210		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211
212	if (write) {
213		if (!IS_ERR(handle))
214			ext4_journal_stop(handle);
215		up_read(&EXT4_I(inode)->i_mmap_sem);
216		sb_end_pagefault(sb);
217	} else
218		up_read(&EXT4_I(inode)->i_mmap_sem);
219
220	return result;
221}
222
223static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224						pmd_t *pmd, unsigned int flags)
225{
226	int result;
227	handle_t *handle = NULL;
228	struct inode *inode = file_inode(vma->vm_file);
229	struct super_block *sb = inode->i_sb;
230	bool write = flags & FAULT_FLAG_WRITE;
 
 
 
231
232	if (write) {
233		sb_start_pagefault(sb);
234		file_update_time(vma->vm_file);
235		down_read(&EXT4_I(inode)->i_mmap_sem);
 
236		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237				ext4_chunk_trans_blocks(inode,
238							PMD_SIZE / PAGE_SIZE));
239	} else
 
 
 
 
240		down_read(&EXT4_I(inode)->i_mmap_sem);
241
242	if (IS_ERR(handle))
243		result = VM_FAULT_SIGBUS;
244	else
245		result = __dax_pmd_fault(vma, addr, pmd, flags,
246				ext4_dax_mmap_get_block, NULL);
247
248	if (write) {
249		if (!IS_ERR(handle))
250			ext4_journal_stop(handle);
 
 
 
 
 
 
251		up_read(&EXT4_I(inode)->i_mmap_sem);
252		sb_end_pagefault(sb);
253	} else
254		up_read(&EXT4_I(inode)->i_mmap_sem);
 
255
256	return result;
257}
258
259/*
260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261 * handler we check for races agaist truncate. Note that since we cycle through
262 * i_mmap_sem, we are sure that also any hole punching that began before we
263 * were called is finished by now and so if it included part of the file we
264 * are working on, our pte will get unmapped and the check for pte_same() in
265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266 * desired.
267 */
268static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269				struct vm_fault *vmf)
270{
271	struct inode *inode = file_inode(vma->vm_file);
272	struct super_block *sb = inode->i_sb;
273	loff_t size;
274	int ret;
275
276	sb_start_pagefault(sb);
277	file_update_time(vma->vm_file);
278	down_read(&EXT4_I(inode)->i_mmap_sem);
279	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280	if (vmf->pgoff >= size)
281		ret = VM_FAULT_SIGBUS;
282	else
283		ret = dax_pfn_mkwrite(vma, vmf);
284	up_read(&EXT4_I(inode)->i_mmap_sem);
285	sb_end_pagefault(sb);
286
287	return ret;
288}
289
290static const struct vm_operations_struct ext4_dax_vm_ops = {
291	.fault		= ext4_dax_fault,
292	.pmd_fault	= ext4_dax_pmd_fault,
293	.page_mkwrite	= ext4_dax_fault,
294	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
295};
296#else
297#define ext4_dax_vm_ops	ext4_file_vm_ops
298#endif
299
300static const struct vm_operations_struct ext4_file_vm_ops = {
301	.fault		= ext4_filemap_fault,
302	.map_pages	= filemap_map_pages,
303	.page_mkwrite   = ext4_page_mkwrite,
304};
305
306static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307{
308	struct inode *inode = file->f_mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
309
310	if (ext4_encrypted_inode(inode)) {
311		int err = ext4_get_encryption_info(inode);
312		if (err)
313			return 0;
314		if (ext4_encryption_info(inode) == NULL)
315			return -ENOKEY;
316	}
317	file_accessed(file);
318	if (IS_DAX(file_inode(file))) {
319		vma->vm_ops = &ext4_dax_vm_ops;
320		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321	} else {
322		vma->vm_ops = &ext4_file_vm_ops;
323	}
324	return 0;
325}
326
327static int ext4_file_open(struct inode * inode, struct file * filp)
 
328{
329	struct super_block *sb = inode->i_sb;
330	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331	struct vfsmount *mnt = filp->f_path.mnt;
332	struct dentry *dir;
333	struct path path;
334	char buf[64], *cp;
335	int ret;
336
337	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338		     !(sb->s_flags & MS_RDONLY))) {
339		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340		/*
341		 * Sample where the filesystem has been mounted and
342		 * store it in the superblock for sysadmin convenience
343		 * when trying to sort through large numbers of block
344		 * devices or filesystem images.
345		 */
346		memset(buf, 0, sizeof(buf));
347		path.mnt = mnt;
348		path.dentry = mnt->mnt_root;
349		cp = d_path(&path, buf, sizeof(buf));
350		if (!IS_ERR(cp)) {
351			handle_t *handle;
352			int err;
353
354			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355			if (IS_ERR(handle))
356				return PTR_ERR(handle);
357			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359			if (err) {
360				ext4_journal_stop(handle);
361				return err;
362			}
363			strlcpy(sbi->s_es->s_last_mounted, cp,
364				sizeof(sbi->s_es->s_last_mounted));
365			ext4_handle_dirty_super(handle, sb);
366			ext4_journal_stop(handle);
367		}
368	}
369	if (ext4_encrypted_inode(inode)) {
370		ret = ext4_get_encryption_info(inode);
371		if (ret)
372			return -EACCES;
373		if (ext4_encryption_info(inode) == NULL)
374			return -ENOKEY;
375	}
376
377	dir = dget_parent(file_dentry(filp));
378	if (ext4_encrypted_inode(d_inode(dir)) &&
379	    !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
380		ext4_warning(inode->i_sb,
381			     "Inconsistent encryption contexts: %lu/%lu\n",
382			     (unsigned long) d_inode(dir)->i_ino,
383			     (unsigned long) inode->i_ino);
384		dput(dir);
385		return -EPERM;
386	}
387	dput(dir);
388	/*
389	 * Set up the jbd2_inode if we are opening the inode for
390	 * writing and the journal is present
391	 */
392	if (filp->f_mode & FMODE_WRITE) {
393		ret = ext4_inode_attach_jinode(inode);
394		if (ret < 0)
395			return ret;
396	}
397	return dquot_file_open(inode, filp);
398}
399
400/*
401 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
402 * file rather than ext4_ext_walk_space() because we can introduce
403 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
404 * function.  When extent status tree has been fully implemented, it will
405 * track all extent status for a file and we can directly use it to
406 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
407 */
408
409/*
410 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
411 * lookup page cache to check whether or not there has some data between
412 * [startoff, endoff] because, if this range contains an unwritten extent,
413 * we determine this extent as a data or a hole according to whether the
414 * page cache has data or not.
415 */
416static int ext4_find_unwritten_pgoff(struct inode *inode,
417				     int whence,
418				     ext4_lblk_t end_blk,
419				     loff_t *offset)
420{
421	struct pagevec pvec;
422	unsigned int blkbits;
423	pgoff_t index;
424	pgoff_t end;
425	loff_t endoff;
426	loff_t startoff;
427	loff_t lastoff;
428	int found = 0;
429
430	blkbits = inode->i_sb->s_blocksize_bits;
431	startoff = *offset;
432	lastoff = startoff;
433	endoff = (loff_t)end_blk << blkbits;
434
435	index = startoff >> PAGE_SHIFT;
436	end = endoff >> PAGE_SHIFT;
437
438	pagevec_init(&pvec, 0);
439	do {
440		int i, num;
441		unsigned long nr_pages;
442
443		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
444		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
445					  (pgoff_t)num);
446		if (nr_pages == 0) {
447			if (whence == SEEK_DATA)
448				break;
449
450			BUG_ON(whence != SEEK_HOLE);
451			/*
452			 * If this is the first time to go into the loop and
453			 * offset is not beyond the end offset, it will be a
454			 * hole at this offset
455			 */
456			if (lastoff == startoff || lastoff < endoff)
457				found = 1;
458			break;
459		}
460
461		/*
462		 * If this is the first time to go into the loop and
463		 * offset is smaller than the first page offset, it will be a
464		 * hole at this offset.
465		 */
466		if (lastoff == startoff && whence == SEEK_HOLE &&
467		    lastoff < page_offset(pvec.pages[0])) {
468			found = 1;
469			break;
470		}
471
472		for (i = 0; i < nr_pages; i++) {
473			struct page *page = pvec.pages[i];
474			struct buffer_head *bh, *head;
475
476			/*
477			 * If the current offset is not beyond the end of given
478			 * range, it will be a hole.
479			 */
480			if (lastoff < endoff && whence == SEEK_HOLE &&
481			    page->index > end) {
482				found = 1;
483				*offset = lastoff;
484				goto out;
485			}
486
487			lock_page(page);
488
489			if (unlikely(page->mapping != inode->i_mapping)) {
490				unlock_page(page);
491				continue;
492			}
493
494			if (!page_has_buffers(page)) {
495				unlock_page(page);
496				continue;
497			}
498
499			if (page_has_buffers(page)) {
500				lastoff = page_offset(page);
501				bh = head = page_buffers(page);
502				do {
503					if (buffer_uptodate(bh) ||
504					    buffer_unwritten(bh)) {
505						if (whence == SEEK_DATA)
506							found = 1;
507					} else {
508						if (whence == SEEK_HOLE)
509							found = 1;
510					}
511					if (found) {
512						*offset = max_t(loff_t,
513							startoff, lastoff);
514						unlock_page(page);
515						goto out;
516					}
517					lastoff += bh->b_size;
518					bh = bh->b_this_page;
519				} while (bh != head);
520			}
521
522			lastoff = page_offset(page) + PAGE_SIZE;
523			unlock_page(page);
524		}
525
526		/*
527		 * The no. of pages is less than our desired, that would be a
528		 * hole in there.
529		 */
530		if (nr_pages < num && whence == SEEK_HOLE) {
531			found = 1;
532			*offset = lastoff;
533			break;
534		}
535
536		index = pvec.pages[i - 1]->index + 1;
537		pagevec_release(&pvec);
538	} while (index <= end);
 
 
 
 
 
 
 
 
 
 
 
539
 
 
 
 
 
 
 
 
 
 
 
 
 
540out:
541	pagevec_release(&pvec);
542	return found;
543}
544
545/*
546 * ext4_seek_data() retrieves the offset for SEEK_DATA.
547 */
548static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
549{
550	struct inode *inode = file->f_mapping->host;
551	struct extent_status es;
552	ext4_lblk_t start, last, end;
553	loff_t dataoff, isize;
554	int blkbits;
555	int ret;
556
557	inode_lock(inode);
558
559	isize = i_size_read(inode);
560	if (offset >= isize) {
561		inode_unlock(inode);
562		return -ENXIO;
563	}
564
565	blkbits = inode->i_sb->s_blocksize_bits;
566	start = offset >> blkbits;
567	last = start;
568	end = isize >> blkbits;
569	dataoff = offset;
570
571	do {
572		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
573		if (ret <= 0) {
574			/* No extent found -> no data */
575			if (ret == 0)
576				ret = -ENXIO;
577			inode_unlock(inode);
578			return ret;
579		}
580
581		last = es.es_lblk;
582		if (last != start)
583			dataoff = (loff_t)last << blkbits;
584		if (!ext4_es_is_unwritten(&es))
585			break;
586
587		/*
588		 * If there is a unwritten extent at this offset,
589		 * it will be as a data or a hole according to page
590		 * cache that has data or not.
591		 */
592		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
593					      es.es_lblk + es.es_len, &dataoff))
594			break;
595		last += es.es_len;
596		dataoff = (loff_t)last << blkbits;
597		cond_resched();
598	} while (last <= end);
599
600	inode_unlock(inode);
 
 
 
 
 
 
 
 
 
 
601
602	if (dataoff > isize)
603		return -ENXIO;
604
605	return vfs_setpos(file, dataoff, maxsize);
606}
607
608/*
609 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
610 */
611static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
612{
613	struct inode *inode = file->f_mapping->host;
614	struct extent_status es;
615	ext4_lblk_t start, last, end;
616	loff_t holeoff, isize;
617	int blkbits;
618	int ret;
619
620	inode_lock(inode);
621
622	isize = i_size_read(inode);
623	if (offset >= isize) {
624		inode_unlock(inode);
625		return -ENXIO;
626	}
627
628	blkbits = inode->i_sb->s_blocksize_bits;
629	start = offset >> blkbits;
630	last = start;
631	end = isize >> blkbits;
632	holeoff = offset;
633
634	do {
635		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
636		if (ret < 0) {
637			inode_unlock(inode);
638			return ret;
639		}
640		/* Found a hole? */
641		if (ret == 0 || es.es_lblk > last) {
642			if (last != start)
643				holeoff = (loff_t)last << blkbits;
644			break;
645		}
646		/*
647		 * If there is a unwritten extent at this offset,
648		 * it will be as a data or a hole according to page
649		 * cache that has data or not.
650		 */
651		if (ext4_es_is_unwritten(&es) &&
652		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
653					      last + es.es_len, &holeoff))
654			break;
655
656		last += es.es_len;
657		holeoff = (loff_t)last << blkbits;
658		cond_resched();
659	} while (last <= end);
660
661	inode_unlock(inode);
662
663	if (holeoff > isize)
664		holeoff = isize;
665
666	return vfs_setpos(file, holeoff, maxsize);
 
667}
668
669/*
670 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
671 * by calling generic_file_llseek_size() with the appropriate maxbytes
672 * value for each.
673 */
674loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
675{
676	struct inode *inode = file->f_mapping->host;
677	loff_t maxbytes;
678
679	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
680		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
681	else
682		maxbytes = inode->i_sb->s_maxbytes;
683
684	switch (whence) {
685	case SEEK_SET:
686	case SEEK_CUR:
687	case SEEK_END:
688		return generic_file_llseek_size(file, offset, whence,
689						maxbytes, i_size_read(inode));
690	case SEEK_DATA:
691		return ext4_seek_data(file, offset, maxbytes);
692	case SEEK_HOLE:
693		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
694	}
695
696	return -EINVAL;
 
 
697}
698
699const struct file_operations ext4_file_operations = {
700	.llseek		= ext4_llseek,
701	.read_iter	= generic_file_read_iter,
702	.write_iter	= ext4_file_write_iter,
703	.unlocked_ioctl = ext4_ioctl,
704#ifdef CONFIG_COMPAT
705	.compat_ioctl	= ext4_compat_ioctl,
706#endif
707	.mmap		= ext4_file_mmap,
 
708	.open		= ext4_file_open,
709	.release	= ext4_release_file,
710	.fsync		= ext4_sync_file,
 
711	.splice_read	= generic_file_splice_read,
712	.splice_write	= iter_file_splice_write,
713	.fallocate	= ext4_fallocate,
714};
715
716const struct inode_operations ext4_file_inode_operations = {
717	.setattr	= ext4_setattr,
718	.getattr	= ext4_getattr,
719	.setxattr	= generic_setxattr,
720	.getxattr	= generic_getxattr,
721	.listxattr	= ext4_listxattr,
722	.removexattr	= generic_removexattr,
723	.get_acl	= ext4_get_acl,
724	.set_acl	= ext4_set_acl,
725	.fiemap		= ext4_fiemap,
726};
727
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include "ext4.h"
 33#include "ext4_jbd2.h"
 34#include "xattr.h"
 35#include "acl.h"
 36
 37#ifdef CONFIG_FS_DAX
 38static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 39{
 40	struct inode *inode = file_inode(iocb->ki_filp);
 41	ssize_t ret;
 42
 43	if (!inode_trylock_shared(inode)) {
 44		if (iocb->ki_flags & IOCB_NOWAIT)
 45			return -EAGAIN;
 46		inode_lock_shared(inode);
 47	}
 48	/*
 49	 * Recheck under inode lock - at this point we are sure it cannot
 50	 * change anymore
 51	 */
 52	if (!IS_DAX(inode)) {
 53		inode_unlock_shared(inode);
 54		/* Fallback to buffered IO in case we cannot support DAX */
 55		return generic_file_read_iter(iocb, to);
 56	}
 57	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 58	inode_unlock_shared(inode);
 59
 60	file_accessed(iocb->ki_filp);
 61	return ret;
 62}
 63#endif
 64
 65static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 66{
 67	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
 68		return -EIO;
 69
 70	if (!iov_iter_count(to))
 71		return 0; /* skip atime */
 72
 73#ifdef CONFIG_FS_DAX
 74	if (IS_DAX(file_inode(iocb->ki_filp)))
 75		return ext4_dax_read_iter(iocb, to);
 76#endif
 77	return generic_file_read_iter(iocb, to);
 78}
 79
 80/*
 81 * Called when an inode is released. Note that this is different
 82 * from ext4_file_open: open gets called at every open, but release
 83 * gets called only when /all/ the files are closed.
 84 */
 85static int ext4_release_file(struct inode *inode, struct file *filp)
 86{
 87	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 88		ext4_alloc_da_blocks(inode);
 89		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 90	}
 91	/* if we are the last writer on the inode, drop the block reservation */
 92	if ((filp->f_mode & FMODE_WRITE) &&
 93			(atomic_read(&inode->i_writecount) == 1) &&
 94		        !EXT4_I(inode)->i_reserved_data_blocks)
 95	{
 96		down_write(&EXT4_I(inode)->i_data_sem);
 97		ext4_discard_preallocations(inode);
 98		up_write(&EXT4_I(inode)->i_data_sem);
 99	}
100	if (is_dx(inode) && filp->private_data)
101		ext4_htree_free_dir_info(filp->private_data);
102
103	return 0;
104}
105
106static void ext4_unwritten_wait(struct inode *inode)
107{
108	wait_queue_head_t *wq = ext4_ioend_wq(inode);
109
110	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
111}
112
113/*
114 * This tests whether the IO in question is block-aligned or not.
115 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
116 * are converted to written only after the IO is complete.  Until they are
117 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
118 * it needs to zero out portions of the start and/or end block.  If 2 AIO
119 * threads are at work on the same unwritten block, they must be synchronized
120 * or one thread will zero the other's data, causing corruption.
121 */
122static int
123ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
124{
125	struct super_block *sb = inode->i_sb;
126	int blockmask = sb->s_blocksize - 1;
127
128	if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize))
129		return 0;
130
131	if ((pos | iov_iter_alignment(from)) & blockmask)
132		return 1;
133
134	return 0;
135}
136
137/* Is IO overwriting allocated and initialized blocks? */
138static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
139{
140	struct ext4_map_blocks map;
141	unsigned int blkbits = inode->i_blkbits;
142	int err, blklen;
143
144	if (pos + len > i_size_read(inode))
145		return false;
146
147	map.m_lblk = pos >> blkbits;
148	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
149	blklen = map.m_len;
150
151	err = ext4_map_blocks(NULL, inode, &map, 0);
152	/*
153	 * 'err==len' means that all of the blocks have been preallocated,
154	 * regardless of whether they have been initialized or not. To exclude
155	 * unwritten extents, we need to check m_flags.
156	 */
157	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
158}
159
160static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
161{
162	struct inode *inode = file_inode(iocb->ki_filp);
163	ssize_t ret;
164
165	ret = generic_write_checks(iocb, from);
166	if (ret <= 0)
167		return ret;
168
169	if (unlikely(IS_IMMUTABLE(inode)))
170		return -EPERM;
171
172	/*
173	 * If we have encountered a bitmap-format file, the size limit
174	 * is smaller than s_maxbytes, which is for extent-mapped files.
175	 */
176	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
177		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
178
179		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
180			return -EFBIG;
181		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
182	}
183	return iov_iter_count(from);
184}
185
186#ifdef CONFIG_FS_DAX
187static ssize_t
188ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
189{
190	struct inode *inode = file_inode(iocb->ki_filp);
191	ssize_t ret;
192
193	if (!inode_trylock(inode)) {
194		if (iocb->ki_flags & IOCB_NOWAIT)
195			return -EAGAIN;
196		inode_lock(inode);
197	}
198	ret = ext4_write_checks(iocb, from);
199	if (ret <= 0)
200		goto out;
201	ret = file_remove_privs(iocb->ki_filp);
202	if (ret)
203		goto out;
204	ret = file_update_time(iocb->ki_filp);
205	if (ret)
206		goto out;
207
208	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
209out:
210	inode_unlock(inode);
211	if (ret > 0)
212		ret = generic_write_sync(iocb, ret);
213	return ret;
214}
215#endif
216
217static ssize_t
218ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
219{
 
220	struct inode *inode = file_inode(iocb->ki_filp);
 
221	int o_direct = iocb->ki_flags & IOCB_DIRECT;
222	int unaligned_aio = 0;
223	int overwrite = 0;
224	ssize_t ret;
225
226	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
227		return -EIO;
228
229#ifdef CONFIG_FS_DAX
230	if (IS_DAX(inode))
231		return ext4_dax_write_iter(iocb, from);
232#endif
233
234	if (!inode_trylock(inode)) {
235		if (iocb->ki_flags & IOCB_NOWAIT)
236			return -EAGAIN;
237		inode_lock(inode);
238	}
239
240	ret = ext4_write_checks(iocb, from);
241	if (ret <= 0)
242		goto out;
243
244	/*
245	 * Unaligned direct AIO must be serialized among each other as zeroing
246	 * of partial blocks of two competing unaligned AIOs can result in data
247	 * corruption.
248	 */
249	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
250	    !is_sync_kiocb(iocb) &&
251	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
252		unaligned_aio = 1;
253		ext4_unwritten_wait(inode);
254	}
255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256	iocb->private = &overwrite;
257	/* Check whether we do a DIO overwrite or not */
258	if (o_direct && !unaligned_aio) {
259		if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
260			if (ext4_should_dioread_nolock(inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261				overwrite = 1;
262		} else if (iocb->ki_flags & IOCB_NOWAIT) {
263			ret = -EAGAIN;
264			goto out;
265		}
266	}
267
268	ret = __generic_file_write_iter(iocb, from);
269	/*
270	 * Unaligned direct AIO must be the only IO in flight. Otherwise
271	 * overlapping aligned IO after unaligned might result in data
272	 * corruption.
273	 */
274	if (ret == -EIOCBQUEUED && unaligned_aio)
275		ext4_unwritten_wait(inode);
276	inode_unlock(inode);
277
278	if (ret > 0)
279		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
280
281	return ret;
282
283out:
284	inode_unlock(inode);
285	return ret;
286}
287
288#ifdef CONFIG_FS_DAX
289static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
290		enum page_entry_size pe_size)
291{
292	int error = 0;
293	vm_fault_t result;
294	int retries = 0;
295	handle_t *handle = NULL;
296	struct inode *inode = file_inode(vmf->vma->vm_file);
297	struct super_block *sb = inode->i_sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
299	/*
300	 * We have to distinguish real writes from writes which will result in a
301	 * COW page; COW writes should *not* poke the journal (the file will not
302	 * be changed). Doing so would cause unintended failures when mounted
303	 * read-only.
304	 *
305	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
306	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
307	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
308	 * we eventually come back with a COW page.
309	 */
310	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
311		(vmf->vma->vm_flags & VM_SHARED);
312	pfn_t pfn;
313
314	if (write) {
315		sb_start_pagefault(sb);
316		file_update_time(vmf->vma->vm_file);
317		down_read(&EXT4_I(inode)->i_mmap_sem);
318retry:
319		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
320					       EXT4_DATA_TRANS_BLOCKS(sb));
321		if (IS_ERR(handle)) {
322			up_read(&EXT4_I(inode)->i_mmap_sem);
323			sb_end_pagefault(sb);
324			return VM_FAULT_SIGBUS;
325		}
326	} else {
327		down_read(&EXT4_I(inode)->i_mmap_sem);
328	}
329	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
 
 
 
 
 
330	if (write) {
331		ext4_journal_stop(handle);
332
333		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
334		    ext4_should_retry_alloc(sb, &retries))
335			goto retry;
336		/* Handling synchronous page fault? */
337		if (result & VM_FAULT_NEEDDSYNC)
338			result = dax_finish_sync_fault(vmf, pe_size, pfn);
339		up_read(&EXT4_I(inode)->i_mmap_sem);
340		sb_end_pagefault(sb);
341	} else {
342		up_read(&EXT4_I(inode)->i_mmap_sem);
343	}
344
345	return result;
346}
347
348static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
349{
350	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351}
352
353static const struct vm_operations_struct ext4_dax_vm_ops = {
354	.fault		= ext4_dax_fault,
355	.huge_fault	= ext4_dax_huge_fault,
356	.page_mkwrite	= ext4_dax_fault,
357	.pfn_mkwrite	= ext4_dax_fault,
358};
359#else
360#define ext4_dax_vm_ops	ext4_file_vm_ops
361#endif
362
363static const struct vm_operations_struct ext4_file_vm_ops = {
364	.fault		= ext4_filemap_fault,
365	.map_pages	= filemap_map_pages,
366	.page_mkwrite   = ext4_page_mkwrite,
367};
368
369static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
370{
371	struct inode *inode = file->f_mapping->host;
372	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
373	struct dax_device *dax_dev = sbi->s_daxdev;
374
375	if (unlikely(ext4_forced_shutdown(sbi)))
376		return -EIO;
377
378	/*
379	 * We don't support synchronous mappings for non-DAX files and
380	 * for DAX files if underneath dax_device is not synchronous.
381	 */
382	if (!daxdev_mapping_supported(vma, dax_dev))
383		return -EOPNOTSUPP;
384
 
 
 
 
 
 
 
385	file_accessed(file);
386	if (IS_DAX(file_inode(file))) {
387		vma->vm_ops = &ext4_dax_vm_ops;
388		vma->vm_flags |= VM_HUGEPAGE;
389	} else {
390		vma->vm_ops = &ext4_file_vm_ops;
391	}
392	return 0;
393}
394
395static int ext4_sample_last_mounted(struct super_block *sb,
396				    struct vfsmount *mnt)
397{
398	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
399	struct path path;
400	char buf[64], *cp;
401	handle_t *handle;
402	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403
404	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
405		return 0;
 
406
407	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
408		return 0;
 
 
 
 
 
 
 
409
410	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
411	/*
412	 * Sample where the filesystem has been mounted and
413	 * store it in the superblock for sysadmin convenience
414	 * when trying to sort through large numbers of block
415	 * devices or filesystem images.
416	 */
417	memset(buf, 0, sizeof(buf));
418	path.mnt = mnt;
419	path.dentry = mnt->mnt_root;
420	cp = d_path(&path, buf, sizeof(buf));
421	err = 0;
422	if (IS_ERR(cp))
423		goto out;
424
425	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
426	err = PTR_ERR(handle);
427	if (IS_ERR(handle))
428		goto out;
429	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
430	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
431	if (err)
432		goto out_journal;
433	strlcpy(sbi->s_es->s_last_mounted, cp,
434		sizeof(sbi->s_es->s_last_mounted));
435	ext4_handle_dirty_super(handle, sb);
436out_journal:
437	ext4_journal_stop(handle);
438out:
439	sb_end_intwrite(sb);
440	return err;
441}
442
443static int ext4_file_open(struct inode * inode, struct file * filp)
 
 
 
444{
 
 
 
 
 
445	int ret;
446
447	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
448		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449
450	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
451	if (ret)
452		return ret;
453
454	ret = fscrypt_file_open(inode, filp);
455	if (ret)
456		return ret;
457
458	ret = fsverity_file_open(inode, filp);
459	if (ret)
460		return ret;
461
462	/*
463	 * Set up the jbd2_inode if we are opening the inode for
464	 * writing and the journal is present
465	 */
466	if (filp->f_mode & FMODE_WRITE) {
467		ret = ext4_inode_attach_jinode(inode);
468		if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469			return ret;
470	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
472	filp->f_mode |= FMODE_NOWAIT;
473	return dquot_file_open(inode, filp);
474}
475
476/*
477 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
478 * by calling generic_file_llseek_size() with the appropriate maxbytes
479 * value for each.
480 */
481loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
482{
483	struct inode *inode = file->f_mapping->host;
484	loff_t maxbytes;
485
486	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
487		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
488	else
489		maxbytes = inode->i_sb->s_maxbytes;
490
491	switch (whence) {
492	default:
 
 
493		return generic_file_llseek_size(file, offset, whence,
494						maxbytes, i_size_read(inode));
 
 
495	case SEEK_HOLE:
496		inode_lock_shared(inode);
497		offset = iomap_seek_hole(inode, offset, &ext4_iomap_ops);
498		inode_unlock_shared(inode);
499		break;
500	case SEEK_DATA:
501		inode_lock_shared(inode);
502		offset = iomap_seek_data(inode, offset, &ext4_iomap_ops);
503		inode_unlock_shared(inode);
504		break;
505	}
506
507	if (offset < 0)
508		return offset;
509	return vfs_setpos(file, offset, maxbytes);
510}
511
512const struct file_operations ext4_file_operations = {
513	.llseek		= ext4_llseek,
514	.read_iter	= ext4_file_read_iter,
515	.write_iter	= ext4_file_write_iter,
516	.unlocked_ioctl = ext4_ioctl,
517#ifdef CONFIG_COMPAT
518	.compat_ioctl	= ext4_compat_ioctl,
519#endif
520	.mmap		= ext4_file_mmap,
521	.mmap_supported_flags = MAP_SYNC,
522	.open		= ext4_file_open,
523	.release	= ext4_release_file,
524	.fsync		= ext4_sync_file,
525	.get_unmapped_area = thp_get_unmapped_area,
526	.splice_read	= generic_file_splice_read,
527	.splice_write	= iter_file_splice_write,
528	.fallocate	= ext4_fallocate,
529};
530
531const struct inode_operations ext4_file_inode_operations = {
532	.setattr	= ext4_setattr,
533	.getattr	= ext4_file_getattr,
 
 
534	.listxattr	= ext4_listxattr,
 
535	.get_acl	= ext4_get_acl,
536	.set_acl	= ext4_set_acl,
537	.fiemap		= ext4_fiemap,
538};
539