Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34/*
 35 * Called when an inode is released. Note that this is different
 36 * from ext4_file_open: open gets called at every open, but release
 37 * gets called only when /all/ the files are closed.
 38 */
 39static int ext4_release_file(struct inode *inode, struct file *filp)
 40{
 41	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 42		ext4_alloc_da_blocks(inode);
 43		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 44	}
 45	/* if we are the last writer on the inode, drop the block reservation */
 46	if ((filp->f_mode & FMODE_WRITE) &&
 47			(atomic_read(&inode->i_writecount) == 1) &&
 48		        !EXT4_I(inode)->i_reserved_data_blocks)
 49	{
 50		down_write(&EXT4_I(inode)->i_data_sem);
 51		ext4_discard_preallocations(inode);
 52		up_write(&EXT4_I(inode)->i_data_sem);
 53	}
 54	if (is_dx(inode) && filp->private_data)
 55		ext4_htree_free_dir_info(filp->private_data);
 56
 57	return 0;
 58}
 59
 60static void ext4_unwritten_wait(struct inode *inode)
 61{
 62	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 63
 64	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
 65}
 66
 67/*
 68 * This tests whether the IO in question is block-aligned or not.
 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 70 * are converted to written only after the IO is complete.  Until they are
 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 73 * threads are at work on the same unwritten block, they must be synchronized
 74 * or one thread will zero the other's data, causing corruption.
 75 */
 76static int
 77ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
 78{
 79	struct super_block *sb = inode->i_sb;
 80	int blockmask = sb->s_blocksize - 1;
 81
 82	if (pos >= i_size_read(inode))
 83		return 0;
 84
 85	if ((pos | iov_iter_alignment(from)) & blockmask)
 86		return 1;
 87
 88	return 0;
 89}
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91static ssize_t
 92ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 93{
 94	struct file *file = iocb->ki_filp;
 95	struct inode *inode = file_inode(iocb->ki_filp);
 96	struct blk_plug plug;
 97	int o_direct = iocb->ki_flags & IOCB_DIRECT;
 98	int unaligned_aio = 0;
 99	int overwrite = 0;
100	ssize_t ret;
101
 
 
 
 
 
102	inode_lock(inode);
103	ret = generic_write_checks(iocb, from);
104	if (ret <= 0)
105		goto out;
106
107	/*
108	 * Unaligned direct AIO must be serialized among each other as zeroing
109	 * of partial blocks of two competing unaligned AIOs can result in data
110	 * corruption.
111	 */
112	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113	    !is_sync_kiocb(iocb) &&
114	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115		unaligned_aio = 1;
116		ext4_unwritten_wait(inode);
117	}
118
119	/*
120	 * If we have encountered a bitmap-format file, the size limit
121	 * is smaller than s_maxbytes, which is for extent-mapped files.
122	 */
123	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125
126		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127			ret = -EFBIG;
128			goto out;
129		}
130		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131	}
132
133	iocb->private = &overwrite;
134	if (o_direct) {
135		size_t length = iov_iter_count(from);
136		loff_t pos = iocb->ki_pos;
137		blk_start_plug(&plug);
138
139		/* check whether we do a DIO overwrite or not */
140		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142			struct ext4_map_blocks map;
143			unsigned int blkbits = inode->i_blkbits;
144			int err, len;
145
146			map.m_lblk = pos >> blkbits;
147			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148				- map.m_lblk;
149			len = map.m_len;
150
151			err = ext4_map_blocks(NULL, inode, &map, 0);
152			/*
153			 * 'err==len' means that all of blocks has
154			 * been preallocated no matter they are
155			 * initialized or not.  For excluding
156			 * unwritten extents, we need to check
157			 * m_flags.  There are two conditions that
158			 * indicate for initialized extents.  1) If we
159			 * hit extent cache, EXT4_MAP_MAPPED flag is
160			 * returned; 2) If we do a real lookup,
161			 * non-flags are returned.  So we should check
162			 * these two conditions.
163			 */
164			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165				overwrite = 1;
166		}
167	}
168
169	ret = __generic_file_write_iter(iocb, from);
170	inode_unlock(inode);
171
172	if (ret > 0) {
173		ssize_t err;
174
175		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
176		if (err < 0)
177			ret = err;
178	}
179	if (o_direct)
180		blk_finish_plug(&plug);
181
182	return ret;
183
184out:
185	inode_unlock(inode);
186	return ret;
187}
188
189#ifdef CONFIG_FS_DAX
190static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
191{
192	int result;
193	handle_t *handle = NULL;
194	struct inode *inode = file_inode(vma->vm_file);
195	struct super_block *sb = inode->i_sb;
196	bool write = vmf->flags & FAULT_FLAG_WRITE;
197
198	if (write) {
199		sb_start_pagefault(sb);
200		file_update_time(vma->vm_file);
201		down_read(&EXT4_I(inode)->i_mmap_sem);
202		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203						EXT4_DATA_TRANS_BLOCKS(sb));
204	} else
205		down_read(&EXT4_I(inode)->i_mmap_sem);
206
207	if (IS_ERR(handle))
208		result = VM_FAULT_SIGBUS;
209	else
210		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211
212	if (write) {
213		if (!IS_ERR(handle))
214			ext4_journal_stop(handle);
215		up_read(&EXT4_I(inode)->i_mmap_sem);
216		sb_end_pagefault(sb);
217	} else
218		up_read(&EXT4_I(inode)->i_mmap_sem);
219
220	return result;
221}
222
223static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224						pmd_t *pmd, unsigned int flags)
225{
226	int result;
227	handle_t *handle = NULL;
228	struct inode *inode = file_inode(vma->vm_file);
229	struct super_block *sb = inode->i_sb;
230	bool write = flags & FAULT_FLAG_WRITE;
231
232	if (write) {
233		sb_start_pagefault(sb);
234		file_update_time(vma->vm_file);
235		down_read(&EXT4_I(inode)->i_mmap_sem);
236		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237				ext4_chunk_trans_blocks(inode,
238							PMD_SIZE / PAGE_SIZE));
239	} else
240		down_read(&EXT4_I(inode)->i_mmap_sem);
241
242	if (IS_ERR(handle))
243		result = VM_FAULT_SIGBUS;
244	else
245		result = __dax_pmd_fault(vma, addr, pmd, flags,
246				ext4_dax_mmap_get_block, NULL);
247
248	if (write) {
249		if (!IS_ERR(handle))
250			ext4_journal_stop(handle);
251		up_read(&EXT4_I(inode)->i_mmap_sem);
252		sb_end_pagefault(sb);
253	} else
254		up_read(&EXT4_I(inode)->i_mmap_sem);
255
256	return result;
257}
258
259/*
260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261 * handler we check for races agaist truncate. Note that since we cycle through
262 * i_mmap_sem, we are sure that also any hole punching that began before we
263 * were called is finished by now and so if it included part of the file we
264 * are working on, our pte will get unmapped and the check for pte_same() in
265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266 * desired.
267 */
268static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269				struct vm_fault *vmf)
270{
271	struct inode *inode = file_inode(vma->vm_file);
272	struct super_block *sb = inode->i_sb;
273	loff_t size;
274	int ret;
275
276	sb_start_pagefault(sb);
277	file_update_time(vma->vm_file);
278	down_read(&EXT4_I(inode)->i_mmap_sem);
279	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280	if (vmf->pgoff >= size)
281		ret = VM_FAULT_SIGBUS;
282	else
283		ret = dax_pfn_mkwrite(vma, vmf);
284	up_read(&EXT4_I(inode)->i_mmap_sem);
285	sb_end_pagefault(sb);
286
287	return ret;
288}
289
290static const struct vm_operations_struct ext4_dax_vm_ops = {
291	.fault		= ext4_dax_fault,
292	.pmd_fault	= ext4_dax_pmd_fault,
293	.page_mkwrite	= ext4_dax_fault,
294	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
295};
296#else
297#define ext4_dax_vm_ops	ext4_file_vm_ops
298#endif
299
300static const struct vm_operations_struct ext4_file_vm_ops = {
301	.fault		= ext4_filemap_fault,
302	.map_pages	= filemap_map_pages,
303	.page_mkwrite   = ext4_page_mkwrite,
304};
305
306static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307{
308	struct inode *inode = file->f_mapping->host;
309
310	if (ext4_encrypted_inode(inode)) {
311		int err = ext4_get_encryption_info(inode);
312		if (err)
313			return 0;
314		if (ext4_encryption_info(inode) == NULL)
315			return -ENOKEY;
316	}
317	file_accessed(file);
318	if (IS_DAX(file_inode(file))) {
319		vma->vm_ops = &ext4_dax_vm_ops;
320		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321	} else {
322		vma->vm_ops = &ext4_file_vm_ops;
323	}
324	return 0;
325}
326
327static int ext4_file_open(struct inode * inode, struct file * filp)
328{
329	struct super_block *sb = inode->i_sb;
330	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331	struct vfsmount *mnt = filp->f_path.mnt;
332	struct dentry *dir;
333	struct path path;
334	char buf[64], *cp;
335	int ret;
336
337	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338		     !(sb->s_flags & MS_RDONLY))) {
339		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340		/*
341		 * Sample where the filesystem has been mounted and
342		 * store it in the superblock for sysadmin convenience
343		 * when trying to sort through large numbers of block
344		 * devices or filesystem images.
345		 */
346		memset(buf, 0, sizeof(buf));
347		path.mnt = mnt;
348		path.dentry = mnt->mnt_root;
349		cp = d_path(&path, buf, sizeof(buf));
350		if (!IS_ERR(cp)) {
351			handle_t *handle;
352			int err;
353
354			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355			if (IS_ERR(handle))
356				return PTR_ERR(handle);
357			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359			if (err) {
360				ext4_journal_stop(handle);
361				return err;
362			}
363			strlcpy(sbi->s_es->s_last_mounted, cp,
364				sizeof(sbi->s_es->s_last_mounted));
365			ext4_handle_dirty_super(handle, sb);
366			ext4_journal_stop(handle);
367		}
368	}
369	if (ext4_encrypted_inode(inode)) {
370		ret = ext4_get_encryption_info(inode);
371		if (ret)
372			return -EACCES;
373		if (ext4_encryption_info(inode) == NULL)
374			return -ENOKEY;
375	}
376
377	dir = dget_parent(file_dentry(filp));
378	if (ext4_encrypted_inode(d_inode(dir)) &&
379	    !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
380		ext4_warning(inode->i_sb,
381			     "Inconsistent encryption contexts: %lu/%lu\n",
382			     (unsigned long) d_inode(dir)->i_ino,
383			     (unsigned long) inode->i_ino);
384		dput(dir);
385		return -EPERM;
386	}
387	dput(dir);
388	/*
389	 * Set up the jbd2_inode if we are opening the inode for
390	 * writing and the journal is present
391	 */
392	if (filp->f_mode & FMODE_WRITE) {
393		ret = ext4_inode_attach_jinode(inode);
394		if (ret < 0)
395			return ret;
396	}
397	return dquot_file_open(inode, filp);
398}
399
400/*
401 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
402 * file rather than ext4_ext_walk_space() because we can introduce
403 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
404 * function.  When extent status tree has been fully implemented, it will
405 * track all extent status for a file and we can directly use it to
406 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
407 */
408
409/*
410 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
411 * lookup page cache to check whether or not there has some data between
412 * [startoff, endoff] because, if this range contains an unwritten extent,
413 * we determine this extent as a data or a hole according to whether the
414 * page cache has data or not.
415 */
416static int ext4_find_unwritten_pgoff(struct inode *inode,
417				     int whence,
418				     ext4_lblk_t end_blk,
419				     loff_t *offset)
420{
421	struct pagevec pvec;
422	unsigned int blkbits;
423	pgoff_t index;
424	pgoff_t end;
425	loff_t endoff;
426	loff_t startoff;
427	loff_t lastoff;
428	int found = 0;
429
430	blkbits = inode->i_sb->s_blocksize_bits;
431	startoff = *offset;
432	lastoff = startoff;
433	endoff = (loff_t)end_blk << blkbits;
434
435	index = startoff >> PAGE_SHIFT;
436	end = endoff >> PAGE_SHIFT;
437
438	pagevec_init(&pvec, 0);
439	do {
440		int i, num;
441		unsigned long nr_pages;
442
443		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
444		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
445					  (pgoff_t)num);
446		if (nr_pages == 0) {
447			if (whence == SEEK_DATA)
448				break;
449
450			BUG_ON(whence != SEEK_HOLE);
451			/*
452			 * If this is the first time to go into the loop and
453			 * offset is not beyond the end offset, it will be a
454			 * hole at this offset
455			 */
456			if (lastoff == startoff || lastoff < endoff)
457				found = 1;
458			break;
459		}
460
461		/*
462		 * If this is the first time to go into the loop and
463		 * offset is smaller than the first page offset, it will be a
464		 * hole at this offset.
465		 */
466		if (lastoff == startoff && whence == SEEK_HOLE &&
467		    lastoff < page_offset(pvec.pages[0])) {
468			found = 1;
469			break;
470		}
471
472		for (i = 0; i < nr_pages; i++) {
473			struct page *page = pvec.pages[i];
474			struct buffer_head *bh, *head;
475
476			/*
477			 * If the current offset is not beyond the end of given
478			 * range, it will be a hole.
479			 */
480			if (lastoff < endoff && whence == SEEK_HOLE &&
481			    page->index > end) {
482				found = 1;
483				*offset = lastoff;
484				goto out;
485			}
486
487			lock_page(page);
488
489			if (unlikely(page->mapping != inode->i_mapping)) {
490				unlock_page(page);
491				continue;
492			}
493
494			if (!page_has_buffers(page)) {
495				unlock_page(page);
496				continue;
497			}
498
499			if (page_has_buffers(page)) {
500				lastoff = page_offset(page);
501				bh = head = page_buffers(page);
502				do {
503					if (buffer_uptodate(bh) ||
504					    buffer_unwritten(bh)) {
505						if (whence == SEEK_DATA)
506							found = 1;
507					} else {
508						if (whence == SEEK_HOLE)
509							found = 1;
510					}
511					if (found) {
512						*offset = max_t(loff_t,
513							startoff, lastoff);
514						unlock_page(page);
515						goto out;
516					}
517					lastoff += bh->b_size;
518					bh = bh->b_this_page;
519				} while (bh != head);
520			}
521
522			lastoff = page_offset(page) + PAGE_SIZE;
523			unlock_page(page);
524		}
525
526		/*
527		 * The no. of pages is less than our desired, that would be a
528		 * hole in there.
529		 */
530		if (nr_pages < num && whence == SEEK_HOLE) {
531			found = 1;
532			*offset = lastoff;
533			break;
534		}
535
536		index = pvec.pages[i - 1]->index + 1;
537		pagevec_release(&pvec);
538	} while (index <= end);
539
540out:
541	pagevec_release(&pvec);
542	return found;
543}
544
545/*
546 * ext4_seek_data() retrieves the offset for SEEK_DATA.
547 */
548static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
549{
550	struct inode *inode = file->f_mapping->host;
551	struct extent_status es;
552	ext4_lblk_t start, last, end;
553	loff_t dataoff, isize;
554	int blkbits;
555	int ret;
556
557	inode_lock(inode);
558
559	isize = i_size_read(inode);
560	if (offset >= isize) {
561		inode_unlock(inode);
562		return -ENXIO;
563	}
564
565	blkbits = inode->i_sb->s_blocksize_bits;
566	start = offset >> blkbits;
567	last = start;
568	end = isize >> blkbits;
569	dataoff = offset;
570
571	do {
572		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
573		if (ret <= 0) {
574			/* No extent found -> no data */
575			if (ret == 0)
576				ret = -ENXIO;
577			inode_unlock(inode);
578			return ret;
579		}
580
581		last = es.es_lblk;
582		if (last != start)
583			dataoff = (loff_t)last << blkbits;
584		if (!ext4_es_is_unwritten(&es))
585			break;
586
587		/*
588		 * If there is a unwritten extent at this offset,
589		 * it will be as a data or a hole according to page
590		 * cache that has data or not.
591		 */
592		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
593					      es.es_lblk + es.es_len, &dataoff))
594			break;
595		last += es.es_len;
596		dataoff = (loff_t)last << blkbits;
597		cond_resched();
598	} while (last <= end);
599
600	inode_unlock(inode);
601
602	if (dataoff > isize)
603		return -ENXIO;
604
605	return vfs_setpos(file, dataoff, maxsize);
606}
607
608/*
609 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
610 */
611static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
612{
613	struct inode *inode = file->f_mapping->host;
614	struct extent_status es;
615	ext4_lblk_t start, last, end;
616	loff_t holeoff, isize;
617	int blkbits;
618	int ret;
619
620	inode_lock(inode);
621
622	isize = i_size_read(inode);
623	if (offset >= isize) {
624		inode_unlock(inode);
625		return -ENXIO;
626	}
627
628	blkbits = inode->i_sb->s_blocksize_bits;
629	start = offset >> blkbits;
630	last = start;
631	end = isize >> blkbits;
632	holeoff = offset;
633
634	do {
635		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
636		if (ret < 0) {
637			inode_unlock(inode);
638			return ret;
639		}
640		/* Found a hole? */
641		if (ret == 0 || es.es_lblk > last) {
642			if (last != start)
643				holeoff = (loff_t)last << blkbits;
644			break;
645		}
646		/*
647		 * If there is a unwritten extent at this offset,
648		 * it will be as a data or a hole according to page
649		 * cache that has data or not.
650		 */
651		if (ext4_es_is_unwritten(&es) &&
652		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
653					      last + es.es_len, &holeoff))
654			break;
655
656		last += es.es_len;
657		holeoff = (loff_t)last << blkbits;
658		cond_resched();
659	} while (last <= end);
660
661	inode_unlock(inode);
662
663	if (holeoff > isize)
664		holeoff = isize;
665
666	return vfs_setpos(file, holeoff, maxsize);
667}
668
669/*
670 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
671 * by calling generic_file_llseek_size() with the appropriate maxbytes
672 * value for each.
673 */
674loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
675{
676	struct inode *inode = file->f_mapping->host;
677	loff_t maxbytes;
678
679	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
680		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
681	else
682		maxbytes = inode->i_sb->s_maxbytes;
683
684	switch (whence) {
685	case SEEK_SET:
686	case SEEK_CUR:
687	case SEEK_END:
688		return generic_file_llseek_size(file, offset, whence,
689						maxbytes, i_size_read(inode));
690	case SEEK_DATA:
691		return ext4_seek_data(file, offset, maxbytes);
692	case SEEK_HOLE:
693		return ext4_seek_hole(file, offset, maxbytes);
694	}
695
696	return -EINVAL;
697}
698
699const struct file_operations ext4_file_operations = {
700	.llseek		= ext4_llseek,
701	.read_iter	= generic_file_read_iter,
702	.write_iter	= ext4_file_write_iter,
703	.unlocked_ioctl = ext4_ioctl,
704#ifdef CONFIG_COMPAT
705	.compat_ioctl	= ext4_compat_ioctl,
706#endif
707	.mmap		= ext4_file_mmap,
708	.open		= ext4_file_open,
709	.release	= ext4_release_file,
710	.fsync		= ext4_sync_file,
 
711	.splice_read	= generic_file_splice_read,
712	.splice_write	= iter_file_splice_write,
713	.fallocate	= ext4_fallocate,
714};
715
716const struct inode_operations ext4_file_inode_operations = {
717	.setattr	= ext4_setattr,
718	.getattr	= ext4_getattr,
719	.setxattr	= generic_setxattr,
720	.getxattr	= generic_getxattr,
721	.listxattr	= ext4_listxattr,
722	.removexattr	= generic_removexattr,
723	.get_acl	= ext4_get_acl,
724	.set_acl	= ext4_set_acl,
725	.fiemap		= ext4_fiemap,
726};
727
v4.10.11
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 33
 34#ifdef CONFIG_FS_DAX
 35static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 36{
 37	struct inode *inode = file_inode(iocb->ki_filp);
 38	ssize_t ret;
 39
 40	inode_lock_shared(inode);
 41	/*
 42	 * Recheck under inode lock - at this point we are sure it cannot
 43	 * change anymore
 44	 */
 45	if (!IS_DAX(inode)) {
 46		inode_unlock_shared(inode);
 47		/* Fallback to buffered IO in case we cannot support DAX */
 48		return generic_file_read_iter(iocb, to);
 49	}
 50	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 51	inode_unlock_shared(inode);
 52
 53	file_accessed(iocb->ki_filp);
 54	return ret;
 55}
 56#endif
 57
 58static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 59{
 60	if (!iov_iter_count(to))
 61		return 0; /* skip atime */
 62
 63#ifdef CONFIG_FS_DAX
 64	if (IS_DAX(file_inode(iocb->ki_filp)))
 65		return ext4_dax_read_iter(iocb, to);
 66#endif
 67	return generic_file_read_iter(iocb, to);
 68}
 69
 70/*
 71 * Called when an inode is released. Note that this is different
 72 * from ext4_file_open: open gets called at every open, but release
 73 * gets called only when /all/ the files are closed.
 74 */
 75static int ext4_release_file(struct inode *inode, struct file *filp)
 76{
 77	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 78		ext4_alloc_da_blocks(inode);
 79		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 80	}
 81	/* if we are the last writer on the inode, drop the block reservation */
 82	if ((filp->f_mode & FMODE_WRITE) &&
 83			(atomic_read(&inode->i_writecount) == 1) &&
 84		        !EXT4_I(inode)->i_reserved_data_blocks)
 85	{
 86		down_write(&EXT4_I(inode)->i_data_sem);
 87		ext4_discard_preallocations(inode);
 88		up_write(&EXT4_I(inode)->i_data_sem);
 89	}
 90	if (is_dx(inode) && filp->private_data)
 91		ext4_htree_free_dir_info(filp->private_data);
 92
 93	return 0;
 94}
 95
 96static void ext4_unwritten_wait(struct inode *inode)
 97{
 98	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 99
100	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101}
102
103/*
104 * This tests whether the IO in question is block-aligned or not.
105 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106 * are converted to written only after the IO is complete.  Until they are
107 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108 * it needs to zero out portions of the start and/or end block.  If 2 AIO
109 * threads are at work on the same unwritten block, they must be synchronized
110 * or one thread will zero the other's data, causing corruption.
111 */
112static int
113ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114{
115	struct super_block *sb = inode->i_sb;
116	int blockmask = sb->s_blocksize - 1;
117
118	if (pos >= i_size_read(inode))
119		return 0;
120
121	if ((pos | iov_iter_alignment(from)) & blockmask)
122		return 1;
123
124	return 0;
125}
126
127/* Is IO overwriting allocated and initialized blocks? */
128static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129{
130	struct ext4_map_blocks map;
131	unsigned int blkbits = inode->i_blkbits;
132	int err, blklen;
133
134	if (pos + len > i_size_read(inode))
135		return false;
136
137	map.m_lblk = pos >> blkbits;
138	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139	blklen = map.m_len;
140
141	err = ext4_map_blocks(NULL, inode, &map, 0);
142	/*
143	 * 'err==len' means that all of the blocks have been preallocated,
144	 * regardless of whether they have been initialized or not. To exclude
145	 * unwritten extents, we need to check m_flags.
146	 */
147	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148}
149
150static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
151{
152	struct inode *inode = file_inode(iocb->ki_filp);
153	ssize_t ret;
154
155	ret = generic_write_checks(iocb, from);
156	if (ret <= 0)
157		return ret;
158	/*
159	 * If we have encountered a bitmap-format file, the size limit
160	 * is smaller than s_maxbytes, which is for extent-mapped files.
161	 */
162	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164
165		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166			return -EFBIG;
167		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168	}
169	return iov_iter_count(from);
170}
171
172#ifdef CONFIG_FS_DAX
173static ssize_t
174ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
175{
176	struct inode *inode = file_inode(iocb->ki_filp);
177	ssize_t ret;
178	bool overwrite = false;
179
180	inode_lock(inode);
181	ret = ext4_write_checks(iocb, from);
182	if (ret <= 0)
183		goto out;
184	ret = file_remove_privs(iocb->ki_filp);
185	if (ret)
186		goto out;
187	ret = file_update_time(iocb->ki_filp);
188	if (ret)
189		goto out;
190
191	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192		overwrite = true;
193		downgrade_write(&inode->i_rwsem);
194	}
195	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196out:
197	if (!overwrite)
198		inode_unlock(inode);
199	else
200		inode_unlock_shared(inode);
201	if (ret > 0)
202		ret = generic_write_sync(iocb, ret);
203	return ret;
204}
205#endif
206
207static ssize_t
208ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209{
 
210	struct inode *inode = file_inode(iocb->ki_filp);
 
211	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212	int unaligned_aio = 0;
213	int overwrite = 0;
214	ssize_t ret;
215
216#ifdef CONFIG_FS_DAX
217	if (IS_DAX(inode))
218		return ext4_dax_write_iter(iocb, from);
219#endif
220
221	inode_lock(inode);
222	ret = ext4_write_checks(iocb, from);
223	if (ret <= 0)
224		goto out;
225
226	/*
227	 * Unaligned direct AIO must be serialized among each other as zeroing
228	 * of partial blocks of two competing unaligned AIOs can result in data
229	 * corruption.
230	 */
231	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232	    !is_sync_kiocb(iocb) &&
233	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234		unaligned_aio = 1;
235		ext4_unwritten_wait(inode);
236	}
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238	iocb->private = &overwrite;
239	/* Check whether we do a DIO overwrite or not */
240	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242		overwrite = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244	ret = __generic_file_write_iter(iocb, from);
245	inode_unlock(inode);
246
247	if (ret > 0)
248		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
249
250	return ret;
251
252out:
253	inode_unlock(inode);
254	return ret;
255}
256
257#ifdef CONFIG_FS_DAX
258static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259{
260	int result;
 
261	struct inode *inode = file_inode(vma->vm_file);
262	struct super_block *sb = inode->i_sb;
263	bool write = vmf->flags & FAULT_FLAG_WRITE;
264
265	if (write) {
266		sb_start_pagefault(sb);
267		file_update_time(vma->vm_file);
268	}
269	down_read(&EXT4_I(inode)->i_mmap_sem);
270	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271	up_read(&EXT4_I(inode)->i_mmap_sem);
272	if (write)
 
 
 
 
 
 
 
 
 
 
273		sb_end_pagefault(sb);
 
 
274
275	return result;
276}
277
278static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279						pmd_t *pmd, unsigned int flags)
280{
281	int result;
 
282	struct inode *inode = file_inode(vma->vm_file);
283	struct super_block *sb = inode->i_sb;
284	bool write = flags & FAULT_FLAG_WRITE;
285
286	if (write) {
287		sb_start_pagefault(sb);
288		file_update_time(vma->vm_file);
289	}
290	down_read(&EXT4_I(inode)->i_mmap_sem);
291	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292				     &ext4_iomap_ops);
293	up_read(&EXT4_I(inode)->i_mmap_sem);
294	if (write)
 
 
 
 
 
 
 
 
 
 
 
295		sb_end_pagefault(sb);
 
 
296
297	return result;
298}
299
300/*
301 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302 * handler we check for races agaist truncate. Note that since we cycle through
303 * i_mmap_sem, we are sure that also any hole punching that began before we
304 * were called is finished by now and so if it included part of the file we
305 * are working on, our pte will get unmapped and the check for pte_same() in
306 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307 * desired.
308 */
309static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310				struct vm_fault *vmf)
311{
312	struct inode *inode = file_inode(vma->vm_file);
313	struct super_block *sb = inode->i_sb;
314	loff_t size;
315	int ret;
316
317	sb_start_pagefault(sb);
318	file_update_time(vma->vm_file);
319	down_read(&EXT4_I(inode)->i_mmap_sem);
320	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321	if (vmf->pgoff >= size)
322		ret = VM_FAULT_SIGBUS;
323	else
324		ret = dax_pfn_mkwrite(vma, vmf);
325	up_read(&EXT4_I(inode)->i_mmap_sem);
326	sb_end_pagefault(sb);
327
328	return ret;
329}
330
331static const struct vm_operations_struct ext4_dax_vm_ops = {
332	.fault		= ext4_dax_fault,
333	.pmd_fault	= ext4_dax_pmd_fault,
334	.page_mkwrite	= ext4_dax_fault,
335	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336};
337#else
338#define ext4_dax_vm_ops	ext4_file_vm_ops
339#endif
340
341static const struct vm_operations_struct ext4_file_vm_ops = {
342	.fault		= ext4_filemap_fault,
343	.map_pages	= filemap_map_pages,
344	.page_mkwrite   = ext4_page_mkwrite,
345};
346
347static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348{
349	struct inode *inode = file->f_mapping->host;
350
351	if (ext4_encrypted_inode(inode)) {
352		int err = fscrypt_get_encryption_info(inode);
353		if (err)
354			return 0;
355		if (!fscrypt_has_encryption_key(inode))
356			return -ENOKEY;
357	}
358	file_accessed(file);
359	if (IS_DAX(file_inode(file))) {
360		vma->vm_ops = &ext4_dax_vm_ops;
361		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362	} else {
363		vma->vm_ops = &ext4_file_vm_ops;
364	}
365	return 0;
366}
367
368static int ext4_file_open(struct inode * inode, struct file * filp)
369{
370	struct super_block *sb = inode->i_sb;
371	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
372	struct vfsmount *mnt = filp->f_path.mnt;
373	struct dentry *dir;
374	struct path path;
375	char buf[64], *cp;
376	int ret;
377
378	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379		     !(sb->s_flags & MS_RDONLY))) {
380		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381		/*
382		 * Sample where the filesystem has been mounted and
383		 * store it in the superblock for sysadmin convenience
384		 * when trying to sort through large numbers of block
385		 * devices or filesystem images.
386		 */
387		memset(buf, 0, sizeof(buf));
388		path.mnt = mnt;
389		path.dentry = mnt->mnt_root;
390		cp = d_path(&path, buf, sizeof(buf));
391		if (!IS_ERR(cp)) {
392			handle_t *handle;
393			int err;
394
395			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396			if (IS_ERR(handle))
397				return PTR_ERR(handle);
398			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400			if (err) {
401				ext4_journal_stop(handle);
402				return err;
403			}
404			strlcpy(sbi->s_es->s_last_mounted, cp,
405				sizeof(sbi->s_es->s_last_mounted));
406			ext4_handle_dirty_super(handle, sb);
407			ext4_journal_stop(handle);
408		}
409	}
410	if (ext4_encrypted_inode(inode)) {
411		ret = fscrypt_get_encryption_info(inode);
412		if (ret)
413			return -EACCES;
414		if (!fscrypt_has_encryption_key(inode))
415			return -ENOKEY;
416	}
417
418	dir = dget_parent(file_dentry(filp));
419	if (ext4_encrypted_inode(d_inode(dir)) &&
420			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421		ext4_warning(inode->i_sb,
422			     "Inconsistent encryption contexts: %lu/%lu",
423			     (unsigned long) d_inode(dir)->i_ino,
424			     (unsigned long) inode->i_ino);
425		dput(dir);
426		return -EPERM;
427	}
428	dput(dir);
429	/*
430	 * Set up the jbd2_inode if we are opening the inode for
431	 * writing and the journal is present
432	 */
433	if (filp->f_mode & FMODE_WRITE) {
434		ret = ext4_inode_attach_jinode(inode);
435		if (ret < 0)
436			return ret;
437	}
438	return dquot_file_open(inode, filp);
439}
440
441/*
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function.  When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448 */
449
450/*
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
456 */
457static int ext4_find_unwritten_pgoff(struct inode *inode,
458				     int whence,
459				     ext4_lblk_t end_blk,
460				     loff_t *offset)
461{
462	struct pagevec pvec;
463	unsigned int blkbits;
464	pgoff_t index;
465	pgoff_t end;
466	loff_t endoff;
467	loff_t startoff;
468	loff_t lastoff;
469	int found = 0;
470
471	blkbits = inode->i_sb->s_blocksize_bits;
472	startoff = *offset;
473	lastoff = startoff;
474	endoff = (loff_t)end_blk << blkbits;
475
476	index = startoff >> PAGE_SHIFT;
477	end = endoff >> PAGE_SHIFT;
478
479	pagevec_init(&pvec, 0);
480	do {
481		int i, num;
482		unsigned long nr_pages;
483
484		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486					  (pgoff_t)num);
487		if (nr_pages == 0) {
488			if (whence == SEEK_DATA)
489				break;
490
491			BUG_ON(whence != SEEK_HOLE);
492			/*
493			 * If this is the first time to go into the loop and
494			 * offset is not beyond the end offset, it will be a
495			 * hole at this offset
496			 */
497			if (lastoff == startoff || lastoff < endoff)
498				found = 1;
499			break;
500		}
501
502		/*
503		 * If this is the first time to go into the loop and
504		 * offset is smaller than the first page offset, it will be a
505		 * hole at this offset.
506		 */
507		if (lastoff == startoff && whence == SEEK_HOLE &&
508		    lastoff < page_offset(pvec.pages[0])) {
509			found = 1;
510			break;
511		}
512
513		for (i = 0; i < nr_pages; i++) {
514			struct page *page = pvec.pages[i];
515			struct buffer_head *bh, *head;
516
517			/*
518			 * If the current offset is not beyond the end of given
519			 * range, it will be a hole.
520			 */
521			if (lastoff < endoff && whence == SEEK_HOLE &&
522			    page->index > end) {
523				found = 1;
524				*offset = lastoff;
525				goto out;
526			}
527
528			lock_page(page);
529
530			if (unlikely(page->mapping != inode->i_mapping)) {
531				unlock_page(page);
532				continue;
533			}
534
535			if (!page_has_buffers(page)) {
536				unlock_page(page);
537				continue;
538			}
539
540			if (page_has_buffers(page)) {
541				lastoff = page_offset(page);
542				bh = head = page_buffers(page);
543				do {
544					if (buffer_uptodate(bh) ||
545					    buffer_unwritten(bh)) {
546						if (whence == SEEK_DATA)
547							found = 1;
548					} else {
549						if (whence == SEEK_HOLE)
550							found = 1;
551					}
552					if (found) {
553						*offset = max_t(loff_t,
554							startoff, lastoff);
555						unlock_page(page);
556						goto out;
557					}
558					lastoff += bh->b_size;
559					bh = bh->b_this_page;
560				} while (bh != head);
561			}
562
563			lastoff = page_offset(page) + PAGE_SIZE;
564			unlock_page(page);
565		}
566
567		/*
568		 * The no. of pages is less than our desired, that would be a
569		 * hole in there.
570		 */
571		if (nr_pages < num && whence == SEEK_HOLE) {
572			found = 1;
573			*offset = lastoff;
574			break;
575		}
576
577		index = pvec.pages[i - 1]->index + 1;
578		pagevec_release(&pvec);
579	} while (index <= end);
580
581out:
582	pagevec_release(&pvec);
583	return found;
584}
585
586/*
587 * ext4_seek_data() retrieves the offset for SEEK_DATA.
588 */
589static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590{
591	struct inode *inode = file->f_mapping->host;
592	struct extent_status es;
593	ext4_lblk_t start, last, end;
594	loff_t dataoff, isize;
595	int blkbits;
596	int ret;
597
598	inode_lock(inode);
599
600	isize = i_size_read(inode);
601	if (offset >= isize) {
602		inode_unlock(inode);
603		return -ENXIO;
604	}
605
606	blkbits = inode->i_sb->s_blocksize_bits;
607	start = offset >> blkbits;
608	last = start;
609	end = isize >> blkbits;
610	dataoff = offset;
611
612	do {
613		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614		if (ret <= 0) {
615			/* No extent found -> no data */
616			if (ret == 0)
617				ret = -ENXIO;
618			inode_unlock(inode);
619			return ret;
620		}
621
622		last = es.es_lblk;
623		if (last != start)
624			dataoff = (loff_t)last << blkbits;
625		if (!ext4_es_is_unwritten(&es))
626			break;
627
628		/*
629		 * If there is a unwritten extent at this offset,
630		 * it will be as a data or a hole according to page
631		 * cache that has data or not.
632		 */
633		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634					      es.es_lblk + es.es_len, &dataoff))
635			break;
636		last += es.es_len;
637		dataoff = (loff_t)last << blkbits;
638		cond_resched();
639	} while (last <= end);
640
641	inode_unlock(inode);
642
643	if (dataoff > isize)
644		return -ENXIO;
645
646	return vfs_setpos(file, dataoff, maxsize);
647}
648
649/*
650 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651 */
652static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653{
654	struct inode *inode = file->f_mapping->host;
655	struct extent_status es;
656	ext4_lblk_t start, last, end;
657	loff_t holeoff, isize;
658	int blkbits;
659	int ret;
660
661	inode_lock(inode);
662
663	isize = i_size_read(inode);
664	if (offset >= isize) {
665		inode_unlock(inode);
666		return -ENXIO;
667	}
668
669	blkbits = inode->i_sb->s_blocksize_bits;
670	start = offset >> blkbits;
671	last = start;
672	end = isize >> blkbits;
673	holeoff = offset;
674
675	do {
676		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677		if (ret < 0) {
678			inode_unlock(inode);
679			return ret;
680		}
681		/* Found a hole? */
682		if (ret == 0 || es.es_lblk > last) {
683			if (last != start)
684				holeoff = (loff_t)last << blkbits;
685			break;
686		}
687		/*
688		 * If there is a unwritten extent at this offset,
689		 * it will be as a data or a hole according to page
690		 * cache that has data or not.
691		 */
692		if (ext4_es_is_unwritten(&es) &&
693		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694					      last + es.es_len, &holeoff))
695			break;
696
697		last += es.es_len;
698		holeoff = (loff_t)last << blkbits;
699		cond_resched();
700	} while (last <= end);
701
702	inode_unlock(inode);
703
704	if (holeoff > isize)
705		holeoff = isize;
706
707	return vfs_setpos(file, holeoff, maxsize);
708}
709
710/*
711 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712 * by calling generic_file_llseek_size() with the appropriate maxbytes
713 * value for each.
714 */
715loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716{
717	struct inode *inode = file->f_mapping->host;
718	loff_t maxbytes;
719
720	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722	else
723		maxbytes = inode->i_sb->s_maxbytes;
724
725	switch (whence) {
726	case SEEK_SET:
727	case SEEK_CUR:
728	case SEEK_END:
729		return generic_file_llseek_size(file, offset, whence,
730						maxbytes, i_size_read(inode));
731	case SEEK_DATA:
732		return ext4_seek_data(file, offset, maxbytes);
733	case SEEK_HOLE:
734		return ext4_seek_hole(file, offset, maxbytes);
735	}
736
737	return -EINVAL;
738}
739
740const struct file_operations ext4_file_operations = {
741	.llseek		= ext4_llseek,
742	.read_iter	= ext4_file_read_iter,
743	.write_iter	= ext4_file_write_iter,
744	.unlocked_ioctl = ext4_ioctl,
745#ifdef CONFIG_COMPAT
746	.compat_ioctl	= ext4_compat_ioctl,
747#endif
748	.mmap		= ext4_file_mmap,
749	.open		= ext4_file_open,
750	.release	= ext4_release_file,
751	.fsync		= ext4_sync_file,
752	.get_unmapped_area = thp_get_unmapped_area,
753	.splice_read	= generic_file_splice_read,
754	.splice_write	= iter_file_splice_write,
755	.fallocate	= ext4_fallocate,
756};
757
758const struct inode_operations ext4_file_inode_operations = {
759	.setattr	= ext4_setattr,
760	.getattr	= ext4_getattr,
 
 
761	.listxattr	= ext4_listxattr,
 
762	.get_acl	= ext4_get_acl,
763	.set_acl	= ext4_set_acl,
764	.fiemap		= ext4_fiemap,
765};
766