Linux Audio

Check our new training course

Loading...
v4.6
 
 
   1
   2#include <linux/device.h>
 
   3#include <linux/io.h>
   4#include <linux/ioport.h>
 
   5#include <linux/module.h>
   6#include <linux/of_address.h>
 
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
 
 
 
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS	4
  14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19		const __be32 *addrp, u64 size, unsigned int flags,
  20		const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26	printk(KERN_DEBUG "%s", s);
  27	while (na--)
  28		printk(" %08x", be32_to_cpu(*(addr++)));
  29	printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37	const char	*name;
  38	const char	*addresses;
  39	int		(*match)(struct device_node *parent);
  40	void		(*count_cells)(struct device_node *child,
  41				       int *addrc, int *sizec);
  42	u64		(*map)(__be32 *addr, const __be32 *range,
  43				int na, int ns, int pna);
  44	int		(*translate)(__be32 *addr, u64 offset, int na);
 
  45	unsigned int	(*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53				       int *addrc, int *sizec)
  54{
  55	if (addrc)
  56		*addrc = of_n_addr_cells(dev);
  57	if (sizec)
  58		*sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62		int na, int ns, int pna)
  63{
  64	u64 cp, s, da;
  65
  66	cp = of_read_number(range, na);
  67	s  = of_read_number(range + na + pna, ns);
  68	da = of_read_number(addr, na);
  69
  70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71		 (unsigned long long)cp, (unsigned long long)s,
  72		 (unsigned long long)da);
  73
  74	if (da < cp || da >= (cp + s))
  75		return OF_BAD_ADDR;
  76	return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81	u64 a = of_read_number(addr, na);
  82	memset(addr, 0, na * 4);
  83	a += offset;
  84	if (na > 1)
  85		addr[na - 2] = cpu_to_be32(a >> 32);
  86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88	return 0;
  89}
  90
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93	return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97/*
  98 * PCI bus specific translator
  99 */
 100
 
 
 
 
 
 
 
 
 
 
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103	/*
 104 	 * "pciex" is PCI Express
 105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106	 * "ht" is hypertransport
 
 
 
 107	 */
 108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113				   int *addrc, int *sizec)
 114{
 115	if (addrc)
 116		*addrc = 3;
 117	if (sizec)
 118		*sizec = 2;
 119}
 120
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	switch((w >> 24) & 0x03) {
 127	case 0x01:
 128		flags |= IORESOURCE_IO;
 129		break;
 130	case 0x02: /* 32 bits */
 131	case 0x03: /* 64 bits */
 132		flags |= IORESOURCE_MEM;
 133		break;
 134	}
 135	if (w & 0x40000000)
 136		flags |= IORESOURCE_PREFETCH;
 137	return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141		int pna)
 142{
 143	u64 cp, s, da;
 144	unsigned int af, rf;
 145
 146	af = of_bus_pci_get_flags(addr);
 147	rf = of_bus_pci_get_flags(range);
 148
 149	/* Check address type match */
 150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151		return OF_BAD_ADDR;
 152
 153	/* Read address values, skipping high cell */
 154	cp = of_read_number(range + 1, na - 1);
 155	s  = of_read_number(range + na + pna, ns);
 156	da = of_read_number(addr + 1, na - 1);
 157
 158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159		 (unsigned long long)cp, (unsigned long long)s,
 160		 (unsigned long long)da);
 161
 162	if (da < cp || da >= (cp + s))
 163		return OF_BAD_ADDR;
 164	return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169	return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175			unsigned int *flags)
 176{
 177	const __be32 *prop;
 178	unsigned int psize;
 179	struct device_node *parent;
 180	struct of_bus *bus;
 181	int onesize, i, na, ns;
 182
 183	/* Get parent & match bus type */
 184	parent = of_get_parent(dev);
 185	if (parent == NULL)
 186		return NULL;
 187	bus = of_match_bus(parent);
 188	if (strcmp(bus->name, "pci")) {
 189		of_node_put(parent);
 190		return NULL;
 191	}
 192	bus->count_cells(dev, &na, &ns);
 193	of_node_put(parent);
 194	if (!OF_CHECK_ADDR_COUNT(na))
 195		return NULL;
 196
 197	/* Get "reg" or "assigned-addresses" property */
 198	prop = of_get_property(dev, bus->addresses, &psize);
 199	if (prop == NULL)
 200		return NULL;
 201	psize /= 4;
 202
 203	onesize = na + ns;
 204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205		u32 val = be32_to_cpu(prop[0]);
 206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207			if (size)
 208				*size = of_read_number(prop + na, ns);
 209			if (flags)
 210				*flags = bus->get_flags(prop);
 211			return prop;
 212		}
 213	}
 214	return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219			       struct resource *r)
 220{
 221	const __be32	*addrp;
 222	u64		size;
 223	unsigned int	flags;
 224
 225	addrp = of_get_pci_address(dev, bar, &size, &flags);
 226	if (addrp == NULL)
 227		return -EINVAL;
 228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233				struct device_node *node)
 234{
 235	const int na = 3, ns = 2;
 236	int rlen;
 237
 238	parser->node = node;
 239	parser->pna = of_n_addr_cells(node);
 240	parser->np = parser->pna + na + ns;
 241
 242	parser->range = of_get_property(node, "ranges", &rlen);
 243	if (parser->range == NULL)
 244		return -ENOENT;
 245
 246	parser->end = parser->range + rlen / sizeof(__be32);
 247
 248	return 0;
 249}
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253						struct of_pci_range *range)
 254{
 255	const int na = 3, ns = 2;
 256
 257	if (!range)
 258		return NULL;
 259
 260	if (!parser->range || parser->range + parser->np > parser->end)
 261		return NULL;
 262
 263	range->pci_space = parser->range[0];
 264	range->flags = of_bus_pci_get_flags(parser->range);
 265	range->pci_addr = of_read_number(parser->range + 1, ns);
 266	range->cpu_addr = of_translate_address(parser->node,
 267				parser->range + na);
 268	range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270	parser->range += parser->np;
 
 271
 272	/* Now consume following elements while they are contiguous */
 273	while (parser->range + parser->np <= parser->end) {
 274		u32 flags, pci_space;
 275		u64 pci_addr, cpu_addr, size;
 276
 277		pci_space = be32_to_cpup(parser->range);
 278		flags = of_bus_pci_get_flags(parser->range);
 279		pci_addr = of_read_number(parser->range + 1, ns);
 280		cpu_addr = of_translate_address(parser->node,
 281				parser->range + na);
 282		size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284		if (flags != range->flags)
 285			break;
 286		if (pci_addr != range->pci_addr + range->size ||
 287		    cpu_addr != range->cpu_addr + range->size)
 288			break;
 289
 290		range->size += size;
 291		parser->range += parser->np;
 292	}
 293
 294	return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:	the PCI range that describes the resource
 301 * @np:		device node where the range belongs to
 302 * @res:	pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314			     struct device_node *np, struct resource *res)
 315{
 316	int err;
 317	res->flags = range->flags;
 318	res->parent = res->child = res->sibling = NULL;
 319	res->name = np->full_name;
 320
 
 
 
 321	if (res->flags & IORESOURCE_IO) {
 322		unsigned long port;
 323		err = pci_register_io_range(range->cpu_addr, range->size);
 
 324		if (err)
 325			goto invalid_range;
 326		port = pci_address_to_pio(range->cpu_addr);
 327		if (port == (unsigned long)-1) {
 328			err = -EINVAL;
 329			goto invalid_range;
 330		}
 331		res->start = port;
 332	} else {
 333		if ((sizeof(resource_size_t) < 8) &&
 334		    upper_32_bits(range->cpu_addr)) {
 335			err = -EINVAL;
 336			goto invalid_range;
 337		}
 338
 339		res->start = range->cpu_addr;
 340	}
 341	res->end = res->start + range->size - 1;
 342	return 0;
 343
 344invalid_range:
 345	res->start = (resource_size_t)OF_BAD_ADDR;
 346	res->end = (resource_size_t)OF_BAD_ADDR;
 347	return err;
 348}
 349#endif /* CONFIG_PCI */
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357	return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361				   int *addrc, int *sizec)
 362{
 363	if (addrc)
 364		*addrc = 2;
 365	if (sizec)
 366		*sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370		int pna)
 371{
 372	u64 cp, s, da;
 373
 374	/* Check address type match */
 375	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376		return OF_BAD_ADDR;
 377
 378	/* Read address values, skipping high cell */
 379	cp = of_read_number(range + 1, na - 1);
 380	s  = of_read_number(range + na + pna, ns);
 381	da = of_read_number(addr + 1, na - 1);
 382
 383	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384		 (unsigned long long)cp, (unsigned long long)s,
 385		 (unsigned long long)da);
 386
 387	if (da < cp || da >= (cp + s))
 388		return OF_BAD_ADDR;
 389	return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394	return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399	unsigned int flags = 0;
 400	u32 w = be32_to_cpup(addr);
 401
 402	if (w & 1)
 403		flags |= IORESOURCE_IO;
 404	else
 405		flags |= IORESOURCE_MEM;
 406	return flags;
 407}
 408
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415	/* PCI */
 416	{
 417		.name = "pci",
 418		.addresses = "assigned-addresses",
 419		.match = of_bus_pci_match,
 420		.count_cells = of_bus_pci_count_cells,
 421		.map = of_bus_pci_map,
 422		.translate = of_bus_pci_translate,
 
 423		.get_flags = of_bus_pci_get_flags,
 424	},
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426	/* ISA */
 427	{
 428		.name = "isa",
 429		.addresses = "reg",
 430		.match = of_bus_isa_match,
 431		.count_cells = of_bus_isa_count_cells,
 432		.map = of_bus_isa_map,
 433		.translate = of_bus_isa_translate,
 
 434		.get_flags = of_bus_isa_get_flags,
 435	},
 436	/* Default */
 437	{
 438		.name = "default",
 439		.addresses = "reg",
 440		.match = NULL,
 441		.count_cells = of_bus_default_count_cells,
 442		.map = of_bus_default_map,
 443		.translate = of_bus_default_translate,
 444		.get_flags = of_bus_default_get_flags,
 445	},
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450	int i;
 451
 452	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453		if (!of_busses[i].match || of_busses[i].match(np))
 454			return &of_busses[i];
 455	BUG();
 456	return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461	if (IS_ENABLED(CONFIG_PPC)) {
 462		/* To save cycles, we cache the result for global "Mac" setting */
 463		static int quirk_state = -1;
 464
 465		/* PA-SEMI sdc DT bug */
 466		if (of_device_is_compatible(np, "1682m-sdc"))
 467			return true;
 468
 469		/* Make quirk cached */
 470		if (quirk_state < 0)
 471			quirk_state =
 472				of_machine_is_compatible("Power Macintosh") ||
 473				of_machine_is_compatible("MacRISC");
 474		return quirk_state;
 475	}
 476	return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480			    struct of_bus *pbus, __be32 *addr,
 481			    int na, int ns, int pna, const char *rprop)
 482{
 483	const __be32 *ranges;
 484	unsigned int rlen;
 485	int rone;
 486	u64 offset = OF_BAD_ADDR;
 487
 488	/*
 489	 * Normally, an absence of a "ranges" property means we are
 490	 * crossing a non-translatable boundary, and thus the addresses
 491	 * below the current cannot be converted to CPU physical ones.
 492	 * Unfortunately, while this is very clear in the spec, it's not
 493	 * what Apple understood, and they do have things like /uni-n or
 494	 * /ht nodes with no "ranges" property and a lot of perfectly
 495	 * useable mapped devices below them. Thus we treat the absence of
 496	 * "ranges" as equivalent to an empty "ranges" property which means
 497	 * a 1:1 translation at that level. It's up to the caller not to try
 498	 * to translate addresses that aren't supposed to be translated in
 499	 * the first place. --BenH.
 500	 *
 501	 * As far as we know, this damage only exists on Apple machines, so
 502	 * This code is only enabled on powerpc. --gcl
 
 
 
 503	 */
 504	ranges = of_get_property(parent, rprop, &rlen);
 505	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506		pr_debug("OF: no ranges; cannot translate\n");
 
 507		return 1;
 508	}
 509	if (ranges == NULL || rlen == 0) {
 510		offset = of_read_number(addr, na);
 511		memset(addr, 0, pna * 4);
 512		pr_debug("OF: empty ranges; 1:1 translation\n");
 513		goto finish;
 514	}
 515
 516	pr_debug("OF: walking ranges...\n");
 517
 518	/* Now walk through the ranges */
 519	rlen /= 4;
 520	rone = na + pna + ns;
 521	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522		offset = bus->map(addr, ranges, na, ns, pna);
 523		if (offset != OF_BAD_ADDR)
 524			break;
 525	}
 526	if (offset == OF_BAD_ADDR) {
 527		pr_debug("OF: not found !\n");
 528		return 1;
 529	}
 530	memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533	of_dump_addr("OF: parent translation for:", addr, pna);
 534	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536	/* Translate it into parent bus space */
 537	return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 
 
 
 
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551				  const __be32 *in_addr, const char *rprop)
 
 
 552{
 553	struct device_node *parent = NULL;
 554	struct of_bus *bus, *pbus;
 555	__be32 addr[OF_MAX_ADDR_CELLS];
 556	int na, ns, pna, pns;
 557	u64 result = OF_BAD_ADDR;
 558
 559	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561	/* Increase refcount at current level */
 562	of_node_get(dev);
 563
 
 564	/* Get parent & match bus type */
 565	parent = of_get_parent(dev);
 566	if (parent == NULL)
 567		goto bail;
 568	bus = of_match_bus(parent);
 569
 570	/* Count address cells & copy address locally */
 571	bus->count_cells(dev, &na, &ns);
 572	if (!OF_CHECK_COUNTS(na, ns)) {
 573		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 574		goto bail;
 575	}
 576	memcpy(addr, in_addr, na * 4);
 577
 578	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579	    bus->name, na, ns, of_node_full_name(parent));
 580	of_dump_addr("OF: translating address:", addr, na);
 581
 582	/* Translate */
 583	for (;;) {
 
 
 584		/* Switch to parent bus */
 585		of_node_put(dev);
 586		dev = parent;
 587		parent = of_get_parent(dev);
 588
 589		/* If root, we have finished */
 590		if (parent == NULL) {
 591			pr_debug("OF: reached root node\n");
 592			result = of_read_number(addr, na);
 593			break;
 594		}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 596		/* Get new parent bus and counts */
 597		pbus = of_match_bus(parent);
 598		pbus->count_cells(dev, &pna, &pns);
 599		if (!OF_CHECK_COUNTS(pna, pns)) {
 600			pr_err("prom_parse: Bad cell count for %s\n",
 601			       of_node_full_name(dev));
 602			break;
 603		}
 604
 605		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606		    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608		/* Apply bus translation */
 609		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610			break;
 611
 612		/* Complete the move up one level */
 613		na = pna;
 614		ns = pns;
 615		bus = pbus;
 616
 617		of_dump_addr("OF: one level translation:", addr, na);
 618	}
 619 bail:
 620	of_node_put(parent);
 621	of_node_put(dev);
 622
 623	return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628	return __of_translate_address(dev, in_addr, "ranges");
 
 
 
 
 
 
 
 
 
 
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634	return __of_translate_address(dev, in_addr, "dma-ranges");
 
 
 
 
 
 
 
 
 
 
 
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639		    unsigned int *flags)
 640{
 641	const __be32 *prop;
 642	unsigned int psize;
 643	struct device_node *parent;
 644	struct of_bus *bus;
 645	int onesize, i, na, ns;
 646
 647	/* Get parent & match bus type */
 648	parent = of_get_parent(dev);
 649	if (parent == NULL)
 650		return NULL;
 651	bus = of_match_bus(parent);
 
 
 
 
 652	bus->count_cells(dev, &na, &ns);
 653	of_node_put(parent);
 654	if (!OF_CHECK_ADDR_COUNT(na))
 655		return NULL;
 656
 657	/* Get "reg" or "assigned-addresses" property */
 658	prop = of_get_property(dev, bus->addresses, &psize);
 659	if (prop == NULL)
 660		return NULL;
 661	psize /= 4;
 662
 663	onesize = na + ns;
 664	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665		if (i == index) {
 
 
 
 666			if (size)
 667				*size = of_read_number(prop + na, ns);
 668			if (flags)
 669				*flags = bus->get_flags(prop);
 670			return prop;
 671		}
 
 672	return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678	struct list_head list;
 679	phys_addr_t start;
 680	resource_size_t size;
 681};
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 
 
 
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 692{
 693	int err = 0;
 694
 695#ifdef PCI_IOBASE
 696	struct io_range *range;
 697	resource_size_t allocated_size = 0;
 698
 699	/* check if the range hasn't been previously recorded */
 700	spin_lock(&io_range_lock);
 701	list_for_each_entry(range, &io_range_list, list) {
 702		if (addr >= range->start && addr + size <= range->start + size) {
 703			/* range already registered, bail out */
 704			goto end_register;
 705		}
 706		allocated_size += range->size;
 707	}
 708
 709	/* range not registed yet, check for available space */
 710	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711		/* if it's too big check if 64K space can be reserved */
 712		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713			err = -E2BIG;
 714			goto end_register;
 715		}
 716
 717		size = SZ_64K;
 718		pr_warn("Requested IO range too big, new size set to 64K\n");
 719	}
 
 
 
 720
 721	/* add the range to the list */
 722	range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723	if (!range) {
 724		err = -ENOMEM;
 725		goto end_register;
 726	}
 
 727
 728	range->start = addr;
 729	range->size = size;
 
 
 
 
 
 730
 731	list_add_tail(&range->list, &io_range_list);
 
 732
 733end_register:
 734	spin_unlock(&io_range_lock);
 735#endif
 736
 737	return err;
 738}
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 741{
 742	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 743
 744#ifdef PCI_IOBASE
 745	struct io_range *range;
 746	resource_size_t allocated_size = 0;
 747
 748	if (pio > IO_SPACE_LIMIT)
 749		return address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751	spin_lock(&io_range_lock);
 752	list_for_each_entry(range, &io_range_list, list) {
 753		if (pio >= allocated_size && pio < allocated_size + range->size) {
 754			address = range->start + pio - allocated_size;
 755			break;
 756		}
 757		allocated_size += range->size;
 
 
 
 
 758	}
 759	spin_unlock(&io_range_lock);
 760#endif
 761
 762	return address;
 763}
 
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 
 766{
 767#ifdef PCI_IOBASE
 768	struct io_range *res;
 769	resource_size_t offset = 0;
 770	unsigned long addr = -1;
 771
 772	spin_lock(&io_range_lock);
 773	list_for_each_entry(res, &io_range_list, list) {
 774		if (address >= res->start && address < res->start + res->size) {
 775			addr = address - res->start + offset;
 776			break;
 777		}
 778		offset += res->size;
 
 
 779	}
 780	spin_unlock(&io_range_lock);
 781
 782	return addr;
 783#else
 784	if (address > IO_SPACE_LIMIT)
 785		return (unsigned long)-1;
 786
 787	return (unsigned long) address;
 788#endif
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792		const __be32 *addrp, u64 size, unsigned int flags,
 793		const char *name, struct resource *r)
 794{
 795	u64 taddr;
 
 
 
 
 
 
 
 
 796
 797	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 
 
 
 
 
 
 
 
 798		return -EINVAL;
 799	taddr = of_translate_address(dev, addrp);
 800	if (taddr == OF_BAD_ADDR)
 801		return -EINVAL;
 802	memset(r, 0, sizeof(struct resource));
 803	if (flags & IORESOURCE_IO) {
 804		unsigned long port;
 805		port = pci_address_to_pio(taddr);
 806		if (port == (unsigned long)-1)
 807			return -EINVAL;
 808		r->start = port;
 809		r->end = port + size - 1;
 810	} else {
 811		r->start = taddr;
 812		r->end = taddr + size - 1;
 813	}
 814	r->flags = flags;
 815	r->name = name ? name : dev->full_name;
 816
 817	return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 
 
 
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829			   struct resource *r)
 830{
 831	const __be32	*addrp;
 832	u64		size;
 833	unsigned int	flags;
 834	const char	*name = NULL;
 835
 836	addrp = of_get_address(dev, index, &size, &flags);
 837	if (addrp == NULL)
 838		return -EINVAL;
 839
 840	/* Get optional "reg-names" property to add a name to a resource */
 841	of_property_read_string_index(dev, "reg-names",	index, &name);
 842
 843	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848					const struct of_device_id *matches,
 849					u64 base_address)
 850{
 851	struct device_node *dn = of_find_matching_node(from, matches);
 852	struct resource res;
 853
 854	while (dn) {
 855		if (!of_address_to_resource(dn, 0, &res) &&
 856		    res.start == base_address)
 857			return dn;
 858
 859		dn = of_find_matching_node(dn, matches);
 860	}
 861
 862	return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:	the device whose io range will be mapped
 869 * @index:	index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875	struct resource res;
 876
 877	if (of_address_to_resource(np, index, &res))
 878		return NULL;
 879
 880	return ioremap(res.start, resource_size(&res));
 
 
 
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *			   for a given device_node
 887 * @device:	the device whose io range will be mapped
 888 * @index:	index of the io range
 889 * @name:	name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *	base = of_io_request_and_map(node, 0, "foo");
 895 *	if (IS_ERR(base))
 896 *		return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899					const char *name)
 900{
 901	struct resource res;
 902	void __iomem *mem;
 903
 904	if (of_address_to_resource(np, index, &res))
 905		return IOMEM_ERR_PTR(-EINVAL);
 906
 
 
 907	if (!request_mem_region(res.start, resource_size(&res), name))
 908		return IOMEM_ERR_PTR(-EBUSY);
 909
 910	mem = ioremap(res.start, resource_size(&res));
 
 
 
 
 911	if (!mem) {
 912		release_mem_region(res.start, resource_size(&res));
 913		return IOMEM_ERR_PTR(-ENOMEM);
 914	}
 915
 916	return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:		device node to get DMA range info
 923 * @dma_addr:	pointer to store initial DMA address of DMA range
 924 * @paddr:	pointer to store initial CPU address of DMA range
 925 * @size:	pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 
 930 *	DMA addr (dma_addr)	: naddr cells
 931 *	CPU addr (phys_addr_t)	: pna cells
 932 *	size			: nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939	struct device_node *node = of_node_get(np);
 940	const __be32 *ranges = NULL;
 941	int len, naddr, nsize, pna;
 
 
 
 
 942	int ret = 0;
 943	u64 dmaaddr;
 944
 945	if (!node)
 946		return -EINVAL;
 947
 948	while (1) {
 949		naddr = of_n_addr_cells(node);
 950		nsize = of_n_size_cells(node);
 951		node = of_get_next_parent(node);
 952		if (!node)
 953			break;
 954
 
 955		ranges = of_get_property(node, "dma-ranges", &len);
 956
 957		/* Ignore empty ranges, they imply no translation required */
 958		if (ranges && len > 0)
 959			break;
 960
 961		/*
 962		 * At least empty ranges has to be defined for parent node if
 963		 * DMA is supported
 964		 */
 965		if (!ranges)
 966			break;
 
 
 967	}
 968
 969	if (!ranges) {
 970		pr_debug("%s: no dma-ranges found for node(%s)\n",
 971			 __func__, np->full_name);
 972		ret = -ENODEV;
 973		goto out;
 974	}
 975
 976	len /= sizeof(u32);
 977
 978	pna = of_n_addr_cells(node);
 
 
 
 
 
 
 979
 980	/* dma-ranges format:
 981	 * DMA addr	: naddr cells
 982	 * CPU addr	: pna cells
 983	 * size		: nsize cells
 984	 */
 985	dmaaddr = of_read_number(ranges, naddr);
 986	*paddr = of_translate_dma_address(np, ranges);
 987	if (*paddr == OF_BAD_ADDR) {
 988		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989		       __func__, dma_addr, np->full_name);
 990		ret = -EINVAL;
 991		goto out;
 
 
 
 
 
 
 
 
 992	}
 993	*dma_addr = dmaaddr;
 
 
 
 
 994
 995	*size = of_read_number(ranges + naddr + pna, nsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998		 *dma_addr, *paddr, *size);
 999
1000out:
1001	of_node_put(node);
 
 
 
 
1002
1003	return ret;
 
 
 
 
 
 
 
 
 
 
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np:	device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
 
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016	struct device_node *node = of_node_get(np);
 
 
 
 
 
1017
1018	while (node) {
1019		if (of_property_read_bool(node, "dma-coherent")) {
1020			of_node_put(node);
1021			return true;
1022		}
1023		node = of_get_next_parent(node);
1024	}
1025	of_node_put(node);
1026	return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/dma-direct.h> /* for bus_dma_region */
  17
  18#include "of_private.h"
  19
  20/* Max address size we deal with */
  21#define OF_MAX_ADDR_CELLS	4
  22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  24
  25static struct of_bus *of_match_bus(struct device_node *np);
  26static int __of_address_to_resource(struct device_node *dev, int index,
  27		int bar_no, struct resource *r);
  28static bool of_mmio_is_nonposted(struct device_node *np);
  29
  30/* Debug utility */
  31#ifdef DEBUG
  32static void of_dump_addr(const char *s, const __be32 *addr, int na)
  33{
  34	pr_debug("%s", s);
  35	while (na--)
  36		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  37	pr_cont("\n");
  38}
  39#else
  40static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  41#endif
  42
  43/* Callbacks for bus specific translators */
  44struct of_bus {
  45	const char	*name;
  46	const char	*addresses;
  47	int		(*match)(struct device_node *parent);
  48	void		(*count_cells)(struct device_node *child,
  49				       int *addrc, int *sizec);
  50	u64		(*map)(__be32 *addr, const __be32 *range,
  51				int na, int ns, int pna);
  52	int		(*translate)(__be32 *addr, u64 offset, int na);
  53	bool	has_flags;
  54	unsigned int	(*get_flags)(const __be32 *addr);
  55};
  56
  57/*
  58 * Default translator (generic bus)
  59 */
  60
  61static void of_bus_default_count_cells(struct device_node *dev,
  62				       int *addrc, int *sizec)
  63{
  64	if (addrc)
  65		*addrc = of_n_addr_cells(dev);
  66	if (sizec)
  67		*sizec = of_n_size_cells(dev);
  68}
  69
  70static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  71		int na, int ns, int pna)
  72{
  73	u64 cp, s, da;
  74
  75	cp = of_read_number(range, na);
  76	s  = of_read_number(range + na + pna, ns);
  77	da = of_read_number(addr, na);
  78
  79	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 
 
  80
  81	if (da < cp || da >= (cp + s))
  82		return OF_BAD_ADDR;
  83	return da - cp;
  84}
  85
  86static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  87{
  88	u64 a = of_read_number(addr, na);
  89	memset(addr, 0, na * 4);
  90	a += offset;
  91	if (na > 1)
  92		addr[na - 2] = cpu_to_be32(a >> 32);
  93	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  94
  95	return 0;
  96}
  97
  98static unsigned int of_bus_default_get_flags(const __be32 *addr)
  99{
 100	return IORESOURCE_MEM;
 101}
 102
 103#ifdef CONFIG_PCI
 104static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 105{
 106	unsigned int flags = 0;
 107	u32 w = be32_to_cpup(addr);
 108
 109	if (!IS_ENABLED(CONFIG_PCI))
 110		return 0;
 111
 112	switch((w >> 24) & 0x03) {
 113	case 0x01:
 114		flags |= IORESOURCE_IO;
 115		break;
 116	case 0x02: /* 32 bits */
 117		flags |= IORESOURCE_MEM;
 118		break;
 119
 120	case 0x03: /* 64 bits */
 121		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 122		break;
 123	}
 124	if (w & 0x40000000)
 125		flags |= IORESOURCE_PREFETCH;
 126	return flags;
 127}
 128
 129/*
 130 * PCI bus specific translator
 131 */
 132
 133static bool of_node_is_pcie(struct device_node *np)
 134{
 135	bool is_pcie = of_node_name_eq(np, "pcie");
 136
 137	if (is_pcie)
 138		pr_warn_once("%pOF: Missing device_type\n", np);
 139
 140	return is_pcie;
 141}
 142
 143static int of_bus_pci_match(struct device_node *np)
 144{
 145	/*
 146 	 * "pciex" is PCI Express
 147	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 148	 * "ht" is hypertransport
 149	 *
 150	 * If none of the device_type match, and that the node name is
 151	 * "pcie", accept the device as PCI (with a warning).
 152	 */
 153	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 154		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 155		of_node_is_pcie(np);
 156}
 157
 158static void of_bus_pci_count_cells(struct device_node *np,
 159				   int *addrc, int *sizec)
 160{
 161	if (addrc)
 162		*addrc = 3;
 163	if (sizec)
 164		*sizec = 2;
 165}
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 168		int pna)
 169{
 170	u64 cp, s, da;
 171	unsigned int af, rf;
 172
 173	af = of_bus_pci_get_flags(addr);
 174	rf = of_bus_pci_get_flags(range);
 175
 176	/* Check address type match */
 177	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 178		return OF_BAD_ADDR;
 179
 180	/* Read address values, skipping high cell */
 181	cp = of_read_number(range + 1, na - 1);
 182	s  = of_read_number(range + na + pna, ns);
 183	da = of_read_number(addr + 1, na - 1);
 184
 185	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 
 
 186
 187	if (da < cp || da >= (cp + s))
 188		return OF_BAD_ADDR;
 189	return da - cp;
 190}
 191
 192static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 193{
 194	return of_bus_default_translate(addr + 1, offset, na - 1);
 195}
 196#endif /* CONFIG_PCI */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198int of_pci_address_to_resource(struct device_node *dev, int bar,
 199			       struct resource *r)
 200{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201
 202	if (!IS_ENABLED(CONFIG_PCI))
 203		return -ENOSYS;
 204
 205	return __of_address_to_resource(dev, -1, bar, r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206}
 207EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 208
 209/*
 210 * of_pci_range_to_resource - Create a resource from an of_pci_range
 211 * @range:	the PCI range that describes the resource
 212 * @np:		device node where the range belongs to
 213 * @res:	pointer to a valid resource that will be updated to
 214 *              reflect the values contained in the range.
 215 *
 216 * Returns EINVAL if the range cannot be converted to resource.
 217 *
 218 * Note that if the range is an IO range, the resource will be converted
 219 * using pci_address_to_pio() which can fail if it is called too early or
 220 * if the range cannot be matched to any host bridge IO space (our case here).
 221 * To guard against that we try to register the IO range first.
 222 * If that fails we know that pci_address_to_pio() will do too.
 223 */
 224int of_pci_range_to_resource(struct of_pci_range *range,
 225			     struct device_node *np, struct resource *res)
 226{
 227	int err;
 228	res->flags = range->flags;
 229	res->parent = res->child = res->sibling = NULL;
 230	res->name = np->full_name;
 231
 232	if (!IS_ENABLED(CONFIG_PCI))
 233		return -ENOSYS;
 234
 235	if (res->flags & IORESOURCE_IO) {
 236		unsigned long port;
 237		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 238				range->size);
 239		if (err)
 240			goto invalid_range;
 241		port = pci_address_to_pio(range->cpu_addr);
 242		if (port == (unsigned long)-1) {
 243			err = -EINVAL;
 244			goto invalid_range;
 245		}
 246		res->start = port;
 247	} else {
 248		if ((sizeof(resource_size_t) < 8) &&
 249		    upper_32_bits(range->cpu_addr)) {
 250			err = -EINVAL;
 251			goto invalid_range;
 252		}
 253
 254		res->start = range->cpu_addr;
 255	}
 256	res->end = res->start + range->size - 1;
 257	return 0;
 258
 259invalid_range:
 260	res->start = (resource_size_t)OF_BAD_ADDR;
 261	res->end = (resource_size_t)OF_BAD_ADDR;
 262	return err;
 263}
 264EXPORT_SYMBOL(of_pci_range_to_resource);
 265
 266/*
 267 * ISA bus specific translator
 268 */
 269
 270static int of_bus_isa_match(struct device_node *np)
 271{
 272	return of_node_name_eq(np, "isa");
 273}
 274
 275static void of_bus_isa_count_cells(struct device_node *child,
 276				   int *addrc, int *sizec)
 277{
 278	if (addrc)
 279		*addrc = 2;
 280	if (sizec)
 281		*sizec = 1;
 282}
 283
 284static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 285		int pna)
 286{
 287	u64 cp, s, da;
 288
 289	/* Check address type match */
 290	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 291		return OF_BAD_ADDR;
 292
 293	/* Read address values, skipping high cell */
 294	cp = of_read_number(range + 1, na - 1);
 295	s  = of_read_number(range + na + pna, ns);
 296	da = of_read_number(addr + 1, na - 1);
 297
 298	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 
 
 299
 300	if (da < cp || da >= (cp + s))
 301		return OF_BAD_ADDR;
 302	return da - cp;
 303}
 304
 305static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 306{
 307	return of_bus_default_translate(addr + 1, offset, na - 1);
 308}
 309
 310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 311{
 312	unsigned int flags = 0;
 313	u32 w = be32_to_cpup(addr);
 314
 315	if (w & 1)
 316		flags |= IORESOURCE_IO;
 317	else
 318		flags |= IORESOURCE_MEM;
 319	return flags;
 320}
 321
 322/*
 323 * Array of bus specific translators
 324 */
 325
 326static struct of_bus of_busses[] = {
 327#ifdef CONFIG_PCI
 328	/* PCI */
 329	{
 330		.name = "pci",
 331		.addresses = "assigned-addresses",
 332		.match = of_bus_pci_match,
 333		.count_cells = of_bus_pci_count_cells,
 334		.map = of_bus_pci_map,
 335		.translate = of_bus_pci_translate,
 336		.has_flags = true,
 337		.get_flags = of_bus_pci_get_flags,
 338	},
 339#endif /* CONFIG_PCI */
 340	/* ISA */
 341	{
 342		.name = "isa",
 343		.addresses = "reg",
 344		.match = of_bus_isa_match,
 345		.count_cells = of_bus_isa_count_cells,
 346		.map = of_bus_isa_map,
 347		.translate = of_bus_isa_translate,
 348		.has_flags = true,
 349		.get_flags = of_bus_isa_get_flags,
 350	},
 351	/* Default */
 352	{
 353		.name = "default",
 354		.addresses = "reg",
 355		.match = NULL,
 356		.count_cells = of_bus_default_count_cells,
 357		.map = of_bus_default_map,
 358		.translate = of_bus_default_translate,
 359		.get_flags = of_bus_default_get_flags,
 360	},
 361};
 362
 363static struct of_bus *of_match_bus(struct device_node *np)
 364{
 365	int i;
 366
 367	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 368		if (!of_busses[i].match || of_busses[i].match(np))
 369			return &of_busses[i];
 370	BUG();
 371	return NULL;
 372}
 373
 374static int of_empty_ranges_quirk(struct device_node *np)
 375{
 376	if (IS_ENABLED(CONFIG_PPC)) {
 377		/* To save cycles, we cache the result for global "Mac" setting */
 378		static int quirk_state = -1;
 379
 380		/* PA-SEMI sdc DT bug */
 381		if (of_device_is_compatible(np, "1682m-sdc"))
 382			return true;
 383
 384		/* Make quirk cached */
 385		if (quirk_state < 0)
 386			quirk_state =
 387				of_machine_is_compatible("Power Macintosh") ||
 388				of_machine_is_compatible("MacRISC");
 389		return quirk_state;
 390	}
 391	return false;
 392}
 393
 394static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 395			    struct of_bus *pbus, __be32 *addr,
 396			    int na, int ns, int pna, const char *rprop)
 397{
 398	const __be32 *ranges;
 399	unsigned int rlen;
 400	int rone;
 401	u64 offset = OF_BAD_ADDR;
 402
 403	/*
 404	 * Normally, an absence of a "ranges" property means we are
 405	 * crossing a non-translatable boundary, and thus the addresses
 406	 * below the current cannot be converted to CPU physical ones.
 407	 * Unfortunately, while this is very clear in the spec, it's not
 408	 * what Apple understood, and they do have things like /uni-n or
 409	 * /ht nodes with no "ranges" property and a lot of perfectly
 410	 * useable mapped devices below them. Thus we treat the absence of
 411	 * "ranges" as equivalent to an empty "ranges" property which means
 412	 * a 1:1 translation at that level. It's up to the caller not to try
 413	 * to translate addresses that aren't supposed to be translated in
 414	 * the first place. --BenH.
 415	 *
 416	 * As far as we know, this damage only exists on Apple machines, so
 417	 * This code is only enabled on powerpc. --gcl
 418	 *
 419	 * This quirk also applies for 'dma-ranges' which frequently exist in
 420	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 421	 */
 422	ranges = of_get_property(parent, rprop, &rlen);
 423	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 424	    strcmp(rprop, "dma-ranges")) {
 425		pr_debug("no ranges; cannot translate\n");
 426		return 1;
 427	}
 428	if (ranges == NULL || rlen == 0) {
 429		offset = of_read_number(addr, na);
 430		memset(addr, 0, pna * 4);
 431		pr_debug("empty ranges; 1:1 translation\n");
 432		goto finish;
 433	}
 434
 435	pr_debug("walking ranges...\n");
 436
 437	/* Now walk through the ranges */
 438	rlen /= 4;
 439	rone = na + pna + ns;
 440	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 441		offset = bus->map(addr, ranges, na, ns, pna);
 442		if (offset != OF_BAD_ADDR)
 443			break;
 444	}
 445	if (offset == OF_BAD_ADDR) {
 446		pr_debug("not found !\n");
 447		return 1;
 448	}
 449	memcpy(addr, ranges + na, 4 * pna);
 450
 451 finish:
 452	of_dump_addr("parent translation for:", addr, pna);
 453	pr_debug("with offset: %llx\n", offset);
 454
 455	/* Translate it into parent bus space */
 456	return pbus->translate(addr, offset, pna);
 457}
 458
 459/*
 460 * Translate an address from the device-tree into a CPU physical address,
 461 * this walks up the tree and applies the various bus mappings on the
 462 * way.
 463 *
 464 * Note: We consider that crossing any level with #size-cells == 0 to mean
 465 * that translation is impossible (that is we are not dealing with a value
 466 * that can be mapped to a cpu physical address). This is not really specified
 467 * that way, but this is traditionally the way IBM at least do things
 468 *
 469 * Whenever the translation fails, the *host pointer will be set to the
 470 * device that had registered logical PIO mapping, and the return code is
 471 * relative to that node.
 472 */
 473static u64 __of_translate_address(struct device_node *dev,
 474				  struct device_node *(*get_parent)(const struct device_node *),
 475				  const __be32 *in_addr, const char *rprop,
 476				  struct device_node **host)
 477{
 478	struct device_node *parent = NULL;
 479	struct of_bus *bus, *pbus;
 480	__be32 addr[OF_MAX_ADDR_CELLS];
 481	int na, ns, pna, pns;
 482	u64 result = OF_BAD_ADDR;
 483
 484	pr_debug("** translation for device %pOF **\n", dev);
 485
 486	/* Increase refcount at current level */
 487	of_node_get(dev);
 488
 489	*host = NULL;
 490	/* Get parent & match bus type */
 491	parent = get_parent(dev);
 492	if (parent == NULL)
 493		goto bail;
 494	bus = of_match_bus(parent);
 495
 496	/* Count address cells & copy address locally */
 497	bus->count_cells(dev, &na, &ns);
 498	if (!OF_CHECK_COUNTS(na, ns)) {
 499		pr_debug("Bad cell count for %pOF\n", dev);
 500		goto bail;
 501	}
 502	memcpy(addr, in_addr, na * 4);
 503
 504	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 505	    bus->name, na, ns, parent);
 506	of_dump_addr("translating address:", addr, na);
 507
 508	/* Translate */
 509	for (;;) {
 510		struct logic_pio_hwaddr *iorange;
 511
 512		/* Switch to parent bus */
 513		of_node_put(dev);
 514		dev = parent;
 515		parent = get_parent(dev);
 516
 517		/* If root, we have finished */
 518		if (parent == NULL) {
 519			pr_debug("reached root node\n");
 520			result = of_read_number(addr, na);
 521			break;
 522		}
 523
 524		/*
 525		 * For indirectIO device which has no ranges property, get
 526		 * the address from reg directly.
 527		 */
 528		iorange = find_io_range_by_fwnode(&dev->fwnode);
 529		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 530			result = of_read_number(addr + 1, na - 1);
 531			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 532				 dev, result);
 533			*host = of_node_get(dev);
 534			break;
 535		}
 536
 537		/* Get new parent bus and counts */
 538		pbus = of_match_bus(parent);
 539		pbus->count_cells(dev, &pna, &pns);
 540		if (!OF_CHECK_COUNTS(pna, pns)) {
 541			pr_err("Bad cell count for %pOF\n", dev);
 
 542			break;
 543		}
 544
 545		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 546		    pbus->name, pna, pns, parent);
 547
 548		/* Apply bus translation */
 549		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 550			break;
 551
 552		/* Complete the move up one level */
 553		na = pna;
 554		ns = pns;
 555		bus = pbus;
 556
 557		of_dump_addr("one level translation:", addr, na);
 558	}
 559 bail:
 560	of_node_put(parent);
 561	of_node_put(dev);
 562
 563	return result;
 564}
 565
 566u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 567{
 568	struct device_node *host;
 569	u64 ret;
 570
 571	ret = __of_translate_address(dev, of_get_parent,
 572				     in_addr, "ranges", &host);
 573	if (host) {
 574		of_node_put(host);
 575		return OF_BAD_ADDR;
 576	}
 577
 578	return ret;
 579}
 580EXPORT_SYMBOL(of_translate_address);
 581
 582static struct device_node *__of_get_dma_parent(const struct device_node *np)
 583{
 584	struct of_phandle_args args;
 585	int ret, index;
 586
 587	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 588	if (index < 0)
 589		return of_get_parent(np);
 590
 591	ret = of_parse_phandle_with_args(np, "interconnects",
 592					 "#interconnect-cells",
 593					 index, &args);
 594	if (ret < 0)
 595		return of_get_parent(np);
 596
 597	return of_node_get(args.np);
 598}
 599
 600static struct device_node *of_get_next_dma_parent(struct device_node *np)
 601{
 602	struct device_node *parent;
 603
 604	parent = __of_get_dma_parent(np);
 605	of_node_put(np);
 606
 607	return parent;
 608}
 609
 610u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 611{
 612	struct device_node *host;
 613	u64 ret;
 614
 615	ret = __of_translate_address(dev, __of_get_dma_parent,
 616				     in_addr, "dma-ranges", &host);
 617
 618	if (host) {
 619		of_node_put(host);
 620		return OF_BAD_ADDR;
 621	}
 622
 623	return ret;
 624}
 625EXPORT_SYMBOL(of_translate_dma_address);
 626
 627const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 628			       u64 *size, unsigned int *flags)
 629{
 630	const __be32 *prop;
 631	unsigned int psize;
 632	struct device_node *parent;
 633	struct of_bus *bus;
 634	int onesize, i, na, ns;
 635
 636	/* Get parent & match bus type */
 637	parent = of_get_parent(dev);
 638	if (parent == NULL)
 639		return NULL;
 640	bus = of_match_bus(parent);
 641	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
 642		of_node_put(parent);
 643		return NULL;
 644	}
 645	bus->count_cells(dev, &na, &ns);
 646	of_node_put(parent);
 647	if (!OF_CHECK_ADDR_COUNT(na))
 648		return NULL;
 649
 650	/* Get "reg" or "assigned-addresses" property */
 651	prop = of_get_property(dev, bus->addresses, &psize);
 652	if (prop == NULL)
 653		return NULL;
 654	psize /= 4;
 655
 656	onesize = na + ns;
 657	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 658		u32 val = be32_to_cpu(prop[0]);
 659		/* PCI bus matches on BAR number instead of index */
 660		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 661		    ((index >= 0) && (i == index))) {
 662			if (size)
 663				*size = of_read_number(prop + na, ns);
 664			if (flags)
 665				*flags = bus->get_flags(prop);
 666			return prop;
 667		}
 668	}
 669	return NULL;
 670}
 671EXPORT_SYMBOL(__of_get_address);
 672
 673static int parser_init(struct of_pci_range_parser *parser,
 674			struct device_node *node, const char *name)
 675{
 676	int rlen;
 
 
 677
 678	parser->node = node;
 679	parser->pna = of_n_addr_cells(node);
 680	parser->na = of_bus_n_addr_cells(node);
 681	parser->ns = of_bus_n_size_cells(node);
 682	parser->dma = !strcmp(name, "dma-ranges");
 683	parser->bus = of_match_bus(node);
 684
 685	parser->range = of_get_property(node, name, &rlen);
 686	if (parser->range == NULL)
 687		return -ENOENT;
 
 
 
 
 688
 689	parser->end = parser->range + rlen / sizeof(__be32);
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	return 0;
 692}
 
 
 
 
 
 693
 694int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 695				struct device_node *node)
 696{
 697	return parser_init(parser, node, "ranges");
 698}
 699EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 700
 701int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 702				struct device_node *node)
 703{
 704	return parser_init(parser, node, "dma-ranges");
 705}
 706EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 707#define of_dma_range_parser_init of_pci_dma_range_parser_init
 708
 709struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 710						struct of_pci_range *range)
 711{
 712	int na = parser->na;
 713	int ns = parser->ns;
 714	int np = parser->pna + na + ns;
 715	int busflag_na = 0;
 716
 717	if (!range)
 718		return NULL;
 719
 720	if (!parser->range || parser->range + np > parser->end)
 721		return NULL;
 
 722
 723	range->flags = parser->bus->get_flags(parser->range);
 
 724
 725	/* A extra cell for resource flags */
 726	if (parser->bus->has_flags)
 727		busflag_na = 1;
 728
 729	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 
 
 730
 731	if (parser->dma)
 732		range->cpu_addr = of_translate_dma_address(parser->node,
 733				parser->range + na);
 734	else
 735		range->cpu_addr = of_translate_address(parser->node,
 736				parser->range + na);
 737	range->size = of_read_number(parser->range + parser->pna + na, ns);
 738
 739	parser->range += np;
 740
 741	/* Now consume following elements while they are contiguous */
 742	while (parser->range + np <= parser->end) {
 743		u32 flags = 0;
 744		u64 bus_addr, cpu_addr, size;
 745
 746		flags = parser->bus->get_flags(parser->range);
 747		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 748		if (parser->dma)
 749			cpu_addr = of_translate_dma_address(parser->node,
 750					parser->range + na);
 751		else
 752			cpu_addr = of_translate_address(parser->node,
 753					parser->range + na);
 754		size = of_read_number(parser->range + parser->pna + na, ns);
 755
 756		if (flags != range->flags)
 
 
 
 757			break;
 758		if (bus_addr != range->bus_addr + range->size ||
 759		    cpu_addr != range->cpu_addr + range->size)
 760			break;
 761
 762		range->size += size;
 763		parser->range += np;
 764	}
 
 
 765
 766	return range;
 767}
 768EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 769
 770static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 771			u64 size)
 772{
 773	u64 taddr;
 774	unsigned long port;
 775	struct device_node *host;
 
 776
 777	taddr = __of_translate_address(dev, of_get_parent,
 778				       in_addr, "ranges", &host);
 779	if (host) {
 780		/* host-specific port access */
 781		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 782		of_node_put(host);
 783	} else {
 784		/* memory-mapped I/O range */
 785		port = pci_address_to_pio(taddr);
 786	}
 
 787
 788	if (port == (unsigned long)-1)
 789		return OF_BAD_ADDR;
 
 
 790
 791	return port;
 
 792}
 793
 794static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
 795		struct resource *r)
 
 796{
 797	u64 taddr;
 798	const __be32	*addrp;
 799	u64		size;
 800	unsigned int	flags;
 801	const char	*name = NULL;
 802
 803	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
 804	if (addrp == NULL)
 805		return -EINVAL;
 806
 807	/* Get optional "reg-names" property to add a name to a resource */
 808	if (index >= 0)
 809		of_property_read_string_index(dev, "reg-names",	index, &name);
 810
 811	if (flags & IORESOURCE_MEM)
 812		taddr = of_translate_address(dev, addrp);
 813	else if (flags & IORESOURCE_IO)
 814		taddr = of_translate_ioport(dev, addrp, size);
 815	else
 816		return -EINVAL;
 817
 818	if (taddr == OF_BAD_ADDR)
 819		return -EINVAL;
 820	memset(r, 0, sizeof(struct resource));
 821
 822	if (of_mmio_is_nonposted(dev))
 823		flags |= IORESOURCE_MEM_NONPOSTED;
 824
 825	r->start = taddr;
 826	r->end = taddr + size - 1;
 
 
 
 
 
 827	r->flags = flags;
 828	r->name = name ? name : dev->full_name;
 829
 830	return 0;
 831}
 832
 833/**
 834 * of_address_to_resource - Translate device tree address and return as resource
 835 * @dev:	Caller's Device Node
 836 * @index:	Index into the array
 837 * @r:		Pointer to resource array
 838 *
 839 * Note that if your address is a PIO address, the conversion will fail if
 840 * the physical address can't be internally converted to an IO token with
 841 * pci_address_to_pio(), that is because it's either called too early or it
 842 * can't be matched to any host bridge IO space
 843 */
 844int of_address_to_resource(struct device_node *dev, int index,
 845			   struct resource *r)
 846{
 847	return __of_address_to_resource(dev, index, -1, r);
 
 
 
 
 
 
 
 
 
 
 
 
 848}
 849EXPORT_SYMBOL_GPL(of_address_to_resource);
 850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851/**
 852 * of_iomap - Maps the memory mapped IO for a given device_node
 853 * @np:		the device whose io range will be mapped
 854 * @index:	index of the io range
 855 *
 856 * Returns a pointer to the mapped memory
 857 */
 858void __iomem *of_iomap(struct device_node *np, int index)
 859{
 860	struct resource res;
 861
 862	if (of_address_to_resource(np, index, &res))
 863		return NULL;
 864
 865	if (res.flags & IORESOURCE_MEM_NONPOSTED)
 866		return ioremap_np(res.start, resource_size(&res));
 867	else
 868		return ioremap(res.start, resource_size(&res));
 869}
 870EXPORT_SYMBOL(of_iomap);
 871
 872/*
 873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 874 *			   for a given device_node
 875 * @device:	the device whose io range will be mapped
 876 * @index:	index of the io range
 877 * @name:	name "override" for the memory region request or NULL
 878 *
 879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 880 * error code on failure. Usage example:
 881 *
 882 *	base = of_io_request_and_map(node, 0, "foo");
 883 *	if (IS_ERR(base))
 884 *		return PTR_ERR(base);
 885 */
 886void __iomem *of_io_request_and_map(struct device_node *np, int index,
 887				    const char *name)
 888{
 889	struct resource res;
 890	void __iomem *mem;
 891
 892	if (of_address_to_resource(np, index, &res))
 893		return IOMEM_ERR_PTR(-EINVAL);
 894
 895	if (!name)
 896		name = res.name;
 897	if (!request_mem_region(res.start, resource_size(&res), name))
 898		return IOMEM_ERR_PTR(-EBUSY);
 899
 900	if (res.flags & IORESOURCE_MEM_NONPOSTED)
 901		mem = ioremap_np(res.start, resource_size(&res));
 902	else
 903		mem = ioremap(res.start, resource_size(&res));
 904
 905	if (!mem) {
 906		release_mem_region(res.start, resource_size(&res));
 907		return IOMEM_ERR_PTR(-ENOMEM);
 908	}
 909
 910	return mem;
 911}
 912EXPORT_SYMBOL(of_io_request_and_map);
 913
 914#ifdef CONFIG_HAS_DMA
 915/**
 916 * of_dma_get_range - Get DMA range info and put it into a map array
 917 * @np:		device node to get DMA range info
 918 * @map:	dma range structure to return
 
 
 919 *
 920 * Look in bottom up direction for the first "dma-ranges" property
 921 * and parse it.  Put the information into a DMA offset map array.
 922 *
 923 * dma-ranges format:
 924 *	DMA addr (dma_addr)	: naddr cells
 925 *	CPU addr (phys_addr_t)	: pna cells
 926 *	size			: nsize cells
 927 *
 928 * It returns -ENODEV if "dma-ranges" property was not found for this
 929 * device in the DT.
 930 */
 931int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 932{
 933	struct device_node *node = of_node_get(np);
 934	const __be32 *ranges = NULL;
 935	bool found_dma_ranges = false;
 936	struct of_range_parser parser;
 937	struct of_range range;
 938	struct bus_dma_region *r;
 939	int len, num_ranges = 0;
 940	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 941
 942	while (node) {
 943		ranges = of_get_property(node, "dma-ranges", &len);
 944
 945		/* Ignore empty ranges, they imply no translation required */
 946		if (ranges && len > 0)
 947			break;
 948
 949		/* Once we find 'dma-ranges', then a missing one is an error */
 950		if (found_dma_ranges && !ranges) {
 951			ret = -ENODEV;
 952			goto out;
 953		}
 954		found_dma_ranges = true;
 955
 956		node = of_get_next_dma_parent(node);
 957	}
 958
 959	if (!node || !ranges) {
 960		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 
 961		ret = -ENODEV;
 962		goto out;
 963	}
 964
 965	of_dma_range_parser_init(&parser, node);
 966	for_each_of_range(&parser, &range)
 967		num_ranges++;
 968
 969	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 970	if (!r) {
 971		ret = -ENOMEM;
 972		goto out;
 973	}
 974
 975	/*
 976	 * Record all info in the generic DMA ranges array for struct device.
 
 
 977	 */
 978	*map = r;
 979	of_dma_range_parser_init(&parser, node);
 980	for_each_of_range(&parser, &range) {
 981		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 982			 range.bus_addr, range.cpu_addr, range.size);
 983		if (range.cpu_addr == OF_BAD_ADDR) {
 984			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 985			       range.bus_addr, node);
 986			continue;
 987		}
 988		r->cpu_start = range.cpu_addr;
 989		r->dma_start = range.bus_addr;
 990		r->size = range.size;
 991		r->offset = range.cpu_addr - range.bus_addr;
 992		r++;
 993	}
 994out:
 995	of_node_put(node);
 996	return ret;
 997}
 998#endif /* CONFIG_HAS_DMA */
 999
1000/**
1001 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1002 * @np: The node to start searching from or NULL to start from the root
1003 *
1004 * Gets the highest CPU physical address that is addressable by all DMA masters
1005 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1006 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1007 */
1008phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1009{
1010	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1011	struct of_range_parser parser;
1012	phys_addr_t subtree_max_addr;
1013	struct device_node *child;
1014	struct of_range range;
1015	const __be32 *ranges;
1016	u64 cpu_end = 0;
1017	int len;
1018
1019	if (!np)
1020		np = of_root;
1021
1022	ranges = of_get_property(np, "dma-ranges", &len);
1023	if (ranges && len) {
1024		of_dma_range_parser_init(&parser, np);
1025		for_each_of_range(&parser, &range)
1026			if (range.cpu_addr + range.size > cpu_end)
1027				cpu_end = range.cpu_addr + range.size - 1;
1028
1029		if (max_cpu_addr > cpu_end)
1030			max_cpu_addr = cpu_end;
1031	}
1032
1033	for_each_available_child_of_node(np, child) {
1034		subtree_max_addr = of_dma_get_max_cpu_address(child);
1035		if (max_cpu_addr > subtree_max_addr)
1036			max_cpu_addr = subtree_max_addr;
1037	}
1038
1039	return max_cpu_addr;
1040}
 
1041
1042/**
1043 * of_dma_is_coherent - Check if device is coherent
1044 * @np:	device node
1045 *
1046 * It returns true if "dma-coherent" property was found
1047 * for this device in the DT, or if DMA is coherent by
1048 * default for OF devices on the current platform.
1049 */
1050bool of_dma_is_coherent(struct device_node *np)
1051{
1052	struct device_node *node;
1053
1054	if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1055		return true;
1056
1057	node = of_node_get(np);
1058
1059	while (node) {
1060		if (of_property_read_bool(node, "dma-coherent")) {
1061			of_node_put(node);
1062			return true;
1063		}
1064		node = of_get_next_dma_parent(node);
1065	}
1066	of_node_put(node);
1067	return false;
1068}
1069EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1070
1071/**
1072 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1073 * @np:	device node
1074 *
1075 * Returns true if the "nonposted-mmio" property was found for
1076 * the device's bus.
1077 *
1078 * This is currently only enabled on builds that support Apple ARM devices, as
1079 * an optimization.
1080 */
1081static bool of_mmio_is_nonposted(struct device_node *np)
1082{
1083	struct device_node *parent;
1084	bool nonposted;
1085
1086	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1087		return false;
1088
1089	parent = of_get_parent(np);
1090	if (!parent)
1091		return false;
1092
1093	nonposted = of_property_read_bool(parent, "nonposted-mmio");
1094
1095	of_node_put(parent);
1096	return nonposted;
1097}